EP3467133B1 - Case-hardened steel and manufacturing method therefor as well as gear component manufacturing method - Google Patents

Case-hardened steel and manufacturing method therefor as well as gear component manufacturing method Download PDF

Info

Publication number
EP3467133B1
EP3467133B1 EP17806731.0A EP17806731A EP3467133B1 EP 3467133 B1 EP3467133 B1 EP 3467133B1 EP 17806731 A EP17806731 A EP 17806731A EP 3467133 B1 EP3467133 B1 EP 3467133B1
Authority
EP
European Patent Office
Prior art keywords
less
steel
content
case hardening
hardening steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17806731.0A
Other languages
German (de)
French (fr)
Other versions
EP3467133A4 (en
EP3467133A1 (en
Inventor
Keisuke Ando
Takashi Iwamoto
Kunikazu Tomita
Kazukuni Hase
Kimihiro Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority claimed from PCT/JP2017/020258 external-priority patent/WO2017209180A1/en
Publication of EP3467133A4 publication Critical patent/EP3467133A4/en
Publication of EP3467133A1 publication Critical patent/EP3467133A1/en
Application granted granted Critical
Publication of EP3467133B1 publication Critical patent/EP3467133B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties

Definitions

  • the durability of a gear typically depends on a rotating bending fatigue fracture of a gear tooth root and a pitting fatigue fracture of a gear tooth surface.
  • various carburized case hardening steels have been proposed that involve morphological control of inclusions or inhibition of the formation of an abnormally carburized layer by adding trace elements, or imparting temper softening resistance, i.e. suppressing a decrease in hardness caused by tempering.
  • JP 2945714 B2 discloses a method of enhancing temper softening resistance by using, as raw material, a steel material containing 0.25 % or more and 1.50 % or less Si.
  • Cr is an element effective in improving not only quench hardenability but also temper softening resistance. If the Cr content is less than 1.00 %, the effect of adding Cr is poor. If the Cr content is 1.80 % or more, the effect of enhancing the temper softening resistance is saturated, and an abnormally carburized layer tends to form. This causes a decrease in rotating bending fatigue strength.
  • the Cr content is therefore limited to 1.00 % or more and less than 1.80 %.
  • the Cr content is preferably 1.20 % or more and 1.60 % or less.
  • Ti is a carbonitride forming element as with Nb, and refines the austenite grain size in carburizing and contributes to improved pitting fatigue strength and rotating bending fatigue strength.
  • the Ti content is preferably 0.005 % or more in the case of adding Ti. If the Ti content is 0.025 % or more, the effect is saturated. Besides, excessively adding Ti causes the formation of coarse carbonitride and leads to a decrease in the above-mentioned fatigue strength.
  • the upper limit of the Ti content is therefore preferably 0.025 %.
  • V 0.050 % or less
  • I on the left side is an index indicating the size of a maximum oxide-based inclusion as a fatigue fracture origin, and is calculated as follows. Seven test pieces are collected from a case hardening steel (steel bar or wire rod). The test pieces are collected from a diameter/2 position in the stretching direction in hot working (i.e. the rolling direction in the case of hot rolling, and the stretching direction in forging in the case of hot forging), and each have dimensions of parallel portion diameter 8 mm ⁇ parallel portion length 16 mm as illustrated in FIG. 1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Gears, Cams (AREA)

Description

    TECHNICAL FIELD
  • The present disclosure relates to a case hardening steel used as raw material of mechanical structural parts of vehicles, industrial machines, and the like and a method of producing the case hardening steel, and a method of producing a gear part. The present disclosure particularly relates to a case hardening steel suitable as raw material of mechanical structural parts having high rotating bending fatigue strength and pitting fatigue strength, and a method of producing the case hardening steel.
  • BACKGROUND
  • Mechanical structural parts such as gears used in drive transmission parts of vehicles and the like have been required to be smaller in size with weight reductions of automotive bodies for energy saving in recent years. Meanwhile, load increases for higher engine output have raised the need to improve the durability of gears.
  • The durability of a gear typically depends on a rotating bending fatigue fracture of a gear tooth root and a pitting fatigue fracture of a gear tooth surface. For the purpose of improving rotating bending fatigue strength and pitting fatigue strength, various carburized case hardening steels have been proposed that involve morphological control of inclusions or inhibition of the formation of an abnormally carburized layer by adding trace elements, or imparting temper softening resistance, i.e. suppressing a decrease in hardness caused by tempering.
  • For example, JP H7-122118 B2 (PTL 1) discloses the following method: By reducing Si in steel to less than 0.15 % and controlling the amounts of Mn, Cr, Mo, and Ni, a grain boundary oxidation layer in the surface layer after carburizing heat treatment is reduced to reduce cracks and also the formation of an imperfect quenched layer is inhibited to prevent a decrease in surface hardness and enhance fatigue strength. Moreover, by adding Ca, stretching of MnS which promotes the formation and propagation of cracks is controlled.
  • JP 2945714 B2 (PTL 2) discloses a method of enhancing temper softening resistance by using, as raw material, a steel material containing 0.25 % or more and 1.50 % or less Si.
  • JP 5099276 B2 (PTL 3) discloses a method of suppressing a decrease in gas carburizing property and enhancing pitting fatigue strength even when the amount of Si is increased, by limiting the amounts of Si, Mn, and Cr contributing to improved temper softening resistance to predetermined amounts or more and forming an alloy depletion layer composed of these elements in the surface layer of the steel material.
  • JP 5505263 B2 (PTL 4) discloses a method of delaying the formation of microcracks upon low cycle fatigue by limiting, to a predetermined value or more, the projection core hardness that is determined from the core hardness after carburizing-quenching, the effective hardened case depth, and half of the radius or thickness of a failure site.
  • JP H7-188895 A (PTL 5) discloses a method of ensuring high fatigue strength and reducing peeling of the contact surface, i.e. improving pitting resistance, by controlling the amount of carbon and the amount of nitrogen of the surface in carburizing treatment or carbonitriding treatment within a specific range to facilitate the formation of fine carbide in the surface layer part and obtain an appropriate amount of retained austenite in the surface layer part. US2016/060744A1 describes a case-hardening steel and a case-hardened steel member.
  • CITATION LIST Patent Literatures
    • PTL 1: JP H7-122118 B2
    • PTL 2: JP 2945714 B2
    • PTL 3: JP 5099276 B2
    • PTL 4: JP 5505263 B2
    • PTL 5: JP H7-188895 A
    SUMMARY (Technical Problem)
  • However, the above-mentioned methods described in PTL 1 to PTL 5 have the following problems.
  • According to PTL 1, by reducing Si to less than 0.15 %, a grain boundary oxidation layer and an imperfect quenched layer decrease, so that cracks caused by rotating bending fatigue of the gear tooth root of the gear can be suppressed. However, the temper softening resistance rather decreases, and fracture initiation shifts from the gear tooth root side to the gear tooth surface side, as a result of which temper softening by frictional heat at the gear tooth surface cannot be suppressed and the surface softens. This facilitates peeling damage of the gear tooth surface, i.e. pitting, and causes a decrease in pitting fatigue strength.
  • According to PTL 2, Si is added in order to increase the temper softening resistance. However, the addition of Si causes a grain boundary oxidation layer to form more in typical gas carburizing. Such a grain boundary oxidation layer becomes a fatigue origin, and as a result the rotating bending fatigue strength decreases. This leaves no alternative but to limit carburizing treatment to plasma carburizing or vacuum carburizing with which no grain boundary oxidation layer is formed. Such special carburizing treatment is, however, disadvantageous as it requires high production cost, and unsuitable for mass production on an industrial scale.
  • According to PTL 3, the temper softening resistance is improved by the addition of Si, Mn, and Cr. However, in the case where the content of Mn or Cr that significantly decreases the Ms point is high, the amount of retained austenite after carburizing-quenching increases, and the surface layer hardness decreases. Consequently, the pitting fatigue strength and the rotating bending fatigue strength decrease.
  • According to PTL 4, excellent low cycle fatigue property is achieved by limiting the projection core hardness to a predetermined value or more. However, sufficient temper softening resistance may be unable to be obtained depending on the balance of the additive amounts of Si, Mn, Cr, and Mo. In such a case, the pitting fatigue strength decreases.
  • According to PTL 5, the addition of expensive V is essential, and also the addition of a large amount of expensive Mo is permitted. This leads to a considerable increase in production cost. Besides, these elements increase the precipitation of carbonitride, promoting cracks in continuous casting.
  • It could therefore be helpful to provide a case hardening steel suitable as raw material for producing a mechanical structural part having high rotating bending fatigue strength and pitting fatigue strength at relatively low cost, and a method of producing the case hardening steel.
  • (Solution to Problem)
  • We conducted keen examination on the influences of components, various properties after carburizing, and inclusions on the fatigue properties after carburizing-quenching and tempering. We consequently discovered the following (A) to (C):
    1. (A) If softening due to heat generation at a contact surface in, for example, a gear is suppressed by increasing the amounts of Si, Mn, Cr, and Mo in steel material and enhancing the temper softening resistance, cracks of the gear tooth surface when driving the gear can be suppressed.
    2. (B) Regarding a grain boundary oxidation layer which can be an origin of bending fatigue and fatigue cracks, by adding Si, Mn, Cr, and Mo each in a predetermined amount or more, the growth direction of the grain boundary oxidation layer changes from the depth direction to the surface density increasing direction. Consequently, there is no such oxidation layer grown in the depth direction that can be an origin of bending fatigue and fatigue cracks, and the resultant oxidation layer is unlikely to be an origin of bending fatigue and fatigue cracks.
    3. (C) As stated in the foregoing (A) and (B), Si, Mn, Cr, and Mo are effective in improving the temper softening resistance and controlling the grain boundary oxidation layer. However, excessively adding these elements increases the amount of retained austenite and promotes fatigue cracks. It is therefore necessary to precisely control the contents of Si, Mn, Cr, and Mo.
  • The invention is defined in the appended claims.
  • (Advantageous Effect)
  • It is thus possible to provide a case hardening steel suitable as raw material for producing a mechanical structural part having high rotating bending fatigue strength and pitting fatigue strength at relatively low cost, and a method of producing the case hardening steel. For example, in the case of producing gears as mechanical structural parts using the presently disclosed steel, gears excellent in not only the rotating bending fatigue property of the gear tooth root but also the pitting fatigue property of the gear tooth surface can be mass-produced.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the accompanying drawings:
    • FIG. 1 is a diagram illustrating a rotating bending fatigue test piece;
    • FIG. 2 is a diagram illustrating heat treatment conditions in carburizing-quenching and tempering treatment; and
    • FIG. 3 is a diagram schematically illustrating a roller pitting fatigue test.
    DETAILED DESCRIPTION
  • The reasons for limiting the chemical composition of steel to the above-mentioned range in the present disclosure are described first. In the following description, "%" regarding components denotes mass% unless otherwise noted.
  • C: 0.15 % or more and 0.30 % or less
  • The C content needs to be 0.15 % or more, in order to enhance the hardness of a central portion by quenching after carburizing treatment. If the C content is more than 0.30 %, however, the core toughness decreases. The C content is therefore limited to 0.15 % or more and 0.30 % or less. The C content is preferably 0.15 % or more and 0.25 % or less.
  • Si: 0.80 % or more and 2.00 % or less
  • Si is an element that enhances the temper softening resistance in a temperature range of 200 °C to 300 °C which a gear or the like is expected to reach when rolling, and improves quench hardenability while inhibiting the formation of retained austenite which causes a decrease in the hardness of the carburized surface layer part. Si also has an effect of suppressing a decrease of dislocation density that contributes to fatigue crack propagation suppression, by inhibiting the growth of carbide in this temperature range. To yield steel having such effects, the Si content needs to be 0.80 % or more. Meanwhile, Si is a ferrite-stabilizing element, and excessively adding Si increases the Ac3 transformation point and facilitates the formation of ferrite in the core having low carbon content in a normal quenching temperature range, which causes a decrease in strength. Excessively adding Si also hinders carburizing, and causes a decrease in the hardness of the carburized surface layer part. These adverse effects can be prevented if the Si content is 2.00 % or less. The Si content is therefore limited to 0.80 % or more and 2.00 % or less. The Si content is preferably 0.90 % or more and 1.60 % or less.
  • Mn: 0.20 % or more and 0.80 % or less
  • Mn is an element effective in improving quench hardenability, and the Mn content needs to be 0.20 % or more. Meanwhile, Mn tends to form an abnormally carburized layer. Besides, excessively adding Mn causes an excessive amount of retained austenite, which leads to lower hardness. The upper limit is therefore 0.80 %. The Mn content is preferably 0.40 % or more and 0.60 % or less.
  • P: 0.003 % or more and 0.030 % or less
  • P segregates to grain boundaries, and causes a decrease in the toughness of the carburized layer and the inside. The P content is therefore desirably as low as possible. In detail, if the P content is more than 0.030 %, the adverse effect occurs. The P content is therefore 0.030 % or less. In terms of production cost, the lower limit of the P content is 0.003 %.
  • S: 0.005 % or more and 0.050 % or less
  • S has a function of forming sulfide with Mn to improve machinability by cutting, and so the S content is 0.005 % or more. Meanwhile, excessively adding S causes decreases in the fatigue strength and toughness of the part. The upper limit of the S content is therefore 0.050 %. The S content is preferably 0.010 % or more and 0.030 % or less.
  • Cr: 1.00 % or more and less than 1.80 %
  • Cr is an element effective in improving not only quench hardenability but also temper softening resistance. If the Cr content is less than 1.00 %, the effect of adding Cr is poor. If the Cr content is 1.80 % or more, the effect of enhancing the temper softening resistance is saturated, and an abnormally carburized layer tends to form. This causes a decrease in rotating bending fatigue strength. The Cr content is therefore limited to 1.00 % or more and less than 1.80 %. The Cr content is preferably 1.20 % or more and 1.60 % or less.
  • Mo: 0.03 % or more and 0.30 % or less
  • Mo is an element that has an effect of improving quench hardenability, temper softening resistance, and toughness and also refining the crystal grain size after carburizing treatment. If the Mo content is less than 0.03 %, the effect of adding Mo is poor. The lower limit of the Mo content is therefore 0.03 %. Adding a large amount of Mo causes an excessive amount of retained austenite, which leads to not only lower hardness but also higher production cost. The upper limit of the Mo content is therefore 0.30 %. In terms of reducing the amount of retained austenite and the production cost, the upper limit is preferably 0.20 %.
  • Al: 0.020 % or more and 0.060 % or less
  • Al is an element that bonds with N to form AlN and contributes to finer austenite crystal grains. To achieve this effect, the Al content needs to be 0.020 % or more. If the Al content is more than 0.060 %, the formation of Al2O3 inclusion which is detrimental to fatigue strength is promoted. The Al content is therefore limited to 0.020 % or more and 0.060 % or less. The Al content is preferably 0.020 % or more and 0.040 % or less.
  • N: 0.0060 % or more and 0.0300 % or less
  • N is an element that bonds with Al to form AlN and contributes to finer austenite crystal grains. To achieve this effect, the N content needs to be 0.0060 % or more, although the appropriate additive amount depends on the quantitative balance with Al. Excessively adding N causes blow holes in the steel ingot during solidification and decreases forgeability. The upper limit of the N content is therefore 0.0300 %. The N content is preferably 0.0090 % or more and 0.0150 % or less.
  • O: 0.0003 % or more and 0.0025 % or less
  • O is an element that exists as an oxide-based inclusion in the steel and impairs fatigue strength. The O content is therefore desirably as low as possible, but 0.0025 % or less O is allowable. The O content is preferably 0.0015 % or less. In terms of production cost, the lower limit of the O content is 0.0003 %.
  • The presently disclosed steel contains the components described above with the balance being Fe and inevitable impurities. Further, the following optional components may be added within a range that does not impair the functions according to the present disclosure, for purposes such as imparting other properties.
  • Nb: 0.050 % or less
  • Nb is a carbonitride forming element, and refines the austenite grain size in carburizing and contributes to improved pitting fatigue strength and rotating bending fatigue strength. To effectively achieve this effect, the Nb content is preferably 0.010 % or more in the case of adding Nb. If the Nb content is more than 0.050 %, the effect is saturated. Besides, adding a large amount of Nb causes an increase in cost. The upper limit of the Nb content is therefore preferably 0.050 %. The Nb content is more preferably 0.010 % or more and less than 0.025 %.
  • Ti: less than 0.025 %
  • Ti is a carbonitride forming element as with Nb, and refines the austenite grain size in carburizing and contributes to improved pitting fatigue strength and rotating bending fatigue strength. To effectively achieve this effect, the Ti content is preferably 0.005 % or more in the case of adding Ti. If the Ti content is 0.025 % or more, the effect is saturated. Besides, excessively adding Ti causes the formation of coarse carbonitride and leads to a decrease in the above-mentioned fatigue strength. The upper limit of the Ti content is therefore preferably 0.025 %.
  • Sb: 0.035 % or less
  • Sb has strong tendency to segregate to grain boundaries, and has an effect of reducing the formation of an abnormally carburized layer in the outermost surface layer of the steel to improve the rotating bending fatigue strength by suppressing grain boundary oxidation of Si, Mn, Cr, and the like which contribute to improved quench hardenability in carburizing treatment. To effectively achieve this effect, the Sb content is preferably 0.003 % or more in the case of adding Sb. Excessively adding Sb not only causes an increase in cost but also causes a decrease in toughness. The Sb content is therefore preferably 0.035 % or less. The Sb content is more preferably 0.005 % or more and 0.020 % or less.
  • Cu: 1.0 % or less
  • Cu is an element that contributes to improved quench hardenability. Cu is also a useful element that, when added together with Se, bonds with Se in the steel to exert a crystal grain coarsening prevention effect. To achieve these effects, the Cu content is preferably 0.01 % or more. If the Cu content is more than 1.0 %, there is a possibility that the surface of the rolled material becomes rough and the rough surface remains as a defect. The upper limit of the Cu content is therefore preferably 1.0 %. The Cu content is more preferably 0.10 % or more and 0.50 % or less.
  • Ni: 1.0 % or less
  • Ni is an element that contributes to improved quench hardenability and is also useful in improving toughness. To achieve these effects, the Ni content is preferably 0.01 % or more. If the Ni content is more than 1.0 %, the effects are saturated. The upper limit of the Ni content is therefore preferably 1.0 %. The Ni content is more preferably 0.10 % or more and 0.50 % or less.
  • V: 0.050 % or less
  • V is a carbonitride forming element as with Nb, and refines the austenite grain size in carburizing and contributes to improved fatigue strength. V also has an effect of reducing the grain boundary oxidation layer depth. To effectively achieve these effects, the V content is preferably 0.005 % or more in the case of adding V. If the V content is more than 0.050 %, the effects are saturated. Besides, excessively adding V causes the formation of coarse carbonitride and leads to a decrease in fatigue strength. The upper limit of the V content is therefore preferably 0.050 %. The V content is more preferably 0.005 % or more and 0.030 % or less.
  • Ca: 0.0050 % or less
  • Ca is an element that controls sulfide morphology and is useful in improving machinability by cutting. To achieve these effects, the Ca content is preferably 0.0005 % or more. If the Ca content is more than 0.0050 %, not only the effects are saturated, but also the formation of a coarse oxide-based inclusion which becomes a fatigue fracture origin is promoted. The upper limit of the Ca content is therefore preferably 0.0050 %. The Ca content is more preferably 0.0005 % or more and 0.0020 % or less.
  • Sn: 0.50 % or less
  • Sn is an element effective in improving the corrosion resistance of the steel material surface. In terms of improving the corrosion resistance, the Sn content is preferably 0.003 % or more. Excessively adding Sn degrades forgeability. The upper limit of the Sn content is therefore preferably 0.50 %. The Sn content is more preferably 0.010 % or more and 0.050 % or less.
  • Se: 0.30 % or less
  • Se bonds with Mn or Cu and disperses in the steel as a precipitate. Se precipitate is stably present in a carburizing heat treatment temperature range with little precipitate growth, and has a high austenite grain size pinning effect. Thus, the addition of Se is effective in preventing crystal grain coarsening. To achieve this effect, the Se content is preferably 0.001 % or more. If the Se content is more than 0.30 %, the crystal grain coarsening prevention effect is saturated. The upper limit of the Se content is therefore preferably 0.30 %. The Se content is more preferably 0.005 % or more and 0.100 % or less.
  • Ta: 0.10 % or less
  • Ta forms carbide in the steel, and suppresses coarsening of austenite grain size in carburizing heat treatment by a pinning effect. To achieve this effect, the Ta content is preferably 0.003 % or more. If the Ta content is more than 0.10 %, cracks tend to occur during casting solidification, and a defect may remain after rolling and forging. The upper limit of the Ta content is therefore preferably 0.10 %. The Ta content is more preferably 0.005 % or more and 0.050 % or less.
  • Hf: 0.10 % or less
  • Hf forms carbide in the steel, and suppresses coarsening of austenite grain size in carburizing heat treatment by a pinning effect. To achieve this effect, the Hf content is preferably 0.003 % or more. If the Hf content is more than 0.10 %, there is a possibility that a coarse precipitate forms during casting solidification and causes decreases in grain coarsening inhibiting capability and fatigue strength. The upper limit of the Hf content is therefore preferably 0.10 %. The Hf content is more preferably 0.005 % or more and 0.050 % or less.
  • The chemical composition of the steel suffices to contain the elements described above and the balance being Fe and inevitable impurities, but preferably consists of the elements described above and the balance being Fe and inevitable impurities.
  • We discovered that, in the case where a case hardening steel having the above-mentioned chemical composition satisfies the following Expression (1) and Expression (2), a mechanical structural part produced by subjecting the case hardening steel to carburizing-quenching and tempering exhibits hitherto unattainable excellent bending fatigue strength and pitting fatigue strength: % Si + % Mn + % Cr + % Mo / 3 1.5
    Figure imgb0001
    180 45 % Mn 14 % Cr 51 % Mo + 5 % Si 125
    Figure imgb0002
    where [%M] denotes the content (mass%) of M element.
  • Expression (1) indicates the factors influencing the temper softening resistance. If the value of the left side is less than 1.5, the temper softening resistance improving effect is poor. Expression (2) indicates the factors influencing the amount of retained austenite. If the value of the left side is less than 125, the hardness of the carburized surface layer part decreases, leading to decreases in pitting fatigue strength and rotating bending fatigue strength. According to the present disclosure, Expression (1) is satisfied to enhance the temper softening resistance in a temperature range of 200 °C or more and 300 °C or less which a gear or the like is expected to reach when rolling, and Expression (2) is satisfied to reduce the amount of retained austenite which causes a decrease in the hardness of the carburized surface layer part and thus suppress decreases in pitting fatigue strength and rotating bending fatigue strength.
  • However, we also discovered that, even in the case where the elements satisfy Expressions (1) and (2), if the size of an oxide-based inclusion located at a fracture surface of a test piece after a rotating bending fatigue test is greater than a predetermined value, the pitting fatigue strength and the rotating bending fatigue strength decrease due to the oxide-based inclusion, resulting in an early fatigue fracture. Hence, it is important that the case hardening steel according to the present disclosure satisfies the following Expression (3) after carburizing-quenching and tempering. The value of the left side √I in Expression (3) is more preferably 60 or less, and further preferably 40 or less. I 80
    Figure imgb0003
  • In Expression (3), I on the left side is an index indicating the size of a maximum oxide-based inclusion as a fatigue fracture origin, and is calculated as follows. Seven test pieces are collected from a case hardening steel (steel bar or wire rod). The test pieces are collected from a diameter/2 position in the stretching direction in hot working (i.e. the rolling direction in the case of hot rolling, and the stretching direction in forging in the case of hot forging), and each have dimensions of parallel portion diameter 8 mm × parallel portion length 16 mm as illustrated in FIG. 1.
  • The test pieces are subjected to carburizing-quenching and tempering under the conditions illustrated in FIG. 2 (a carburizing temperature of 930 °C for 180 min, a quenching temperature of 850 °C for 40 min, a tempering temperature of 170 °C for 60 min), and then a completely reversed Ono-type rotating bending fatigue test is conducted to induce a fish eye fracture. The test conditions involve polishing the surface by 0.1 mm after carburizing and applying a load stress of 1000 MPa and a rotational speed of 3500 rpm. For a test piece with minimum fatigue life from among the seven test pieces, a fracture surface is observed by a scanning electron microscope, and the area of an oxide-based inclusion located in a fish eye central portion, that is, a maximum oxide-based inclusion, is measured by image analysis and taken to be I.
  • Such an inclusion size calculation method according to the present disclosure enables evaluation of the size of a maximum oxide-based inclusion in a volume of 3.14 × (7.8 mm/2)2 × 16 mm × 7 = 5349 mm3. With a conventional method of measuring the size, quantity, or density of an oxide-based inclusion present in an area under test, it is impossible to measure the state of an oxide-based inclusion in such a large volume and evaluate any inclusion influencing fatigue life. With the inclusion evaluation method according to the present disclosure, the size of an oxide-based inclusion which actually becomes a fatigue fracture origin of steel in a large volume of 5349 mm3 can be evaluated, so that fatigue life prediction accuracy can be improved.
  • A method of producing a case hardening steel according to the present disclosure is described below.
  • To obtain a case hardening steel satisfying Expression (3), it is necessary to, in its production process, adjust the chemical composition of cast steel to the above-mentioned range including Expressions (1) and (2), and subject the cast steel to hot working by hot forging and/or hot rolling with a reduction in area satisfying the following Expression (4) to yield a steel bar or a wire rod: S 1 S 2 / S 1 0.960
    Figure imgb0004
    where S1 denotes the cross-sectional area (mm2) of the cast steel in a section orthogonal to the stretching direction in the hot working, and S2 denotes the cross-sectional area (mm2) of the steel bar or the wire rod in a section orthogonal to the stretching direction in the hot working.
  • The left side in Expression (4) is an index indicating the reduction in area when performing the hot working on the cast steel. The hot working may be hot forging or hot rolling. The hot working may be both of hot forging and hot rolling. If the index indicated by the left side in Expression (4) is less than 0.960, the pitting fatigue strength and the rotating bending fatigue strength decrease due to an oxide-based inclusion of a large size, resulting in an early fatigue fracture. The left side in Expression (4) is more preferably 0.970 or more, and further preferably 0.985 or more. Thus, by subjecting cast steel satisfying the chemical composition according to the present disclosure to hot working with a reduction in area satisfying Expression (4), case hardening steel satisfying Expression (3) can be obtained after the below-mentioned carburizing-quenching and tempering.
  • The case hardening steel (steel bar or wire rod) produced in this way is then optionally subjected to hot forging or cold forging. Subsequently, the case hardening steel is mechanically worked by cutting or the like into a part shape (e.g. gear shape). The steel in the part shape is then subjected to carburizing-quenching and tempering treatment, to yield a desired part (e.g. gear). The part may be further worked by shot peening or the like. In the case where the case hardening steel is subjected to hot forging or cold forging in working, the oxide-based inclusion size changes, but the change is not in a direction in which fatigue life deteriorates. Accordingly, the use of the case hardening steel according to the present disclosure is effective even in the case where such forging is performed to produce a part. The carburizing-quenching and tempering conditions for the case hardening steel are not limited, and may be known or any conditions. For example, the conditions may involve a carburizing temperature of 900 °C or more and 1050 °C or less for 60 min or more and 600 min or less, a quenching temperature of 800 °C or more and 900 °C or less for 10 min or more and 120 min or less, and a tempering temperature of 120 °C or more and 250 °C or less for 30 min or more and 180 min or less.
  • EXAMPLES
  • The structures and function effects according to the present disclosure are described in more detail below, by way of examples. Note that the present disclosure is not limited to the following examples, and modifications can be made within the scope of the appended claims.
  • Cast steels having the chemical compositions (the unit of the content of each element is mass%, with the balance being Fe and inevitable impurities) listed in Table 1 were hot rolled with the reductions in area listed in Table 2, to obtain round steel bars of various dimensions. In Table 1, Nos. 1 to 27 are conforming steels with chemical compositions satisfying the range according to the present disclosure, and Nos. 28 to 52 are comparative steels with chemical compositions not satisfying the range according to the present disclosure. In Table 2, No. 53 is a comparative example with a reduction in area being outside the limit according to the present disclosure.
  • (Evaluation methods)
  • The conforming steels and the comparative steels were evaluated as follows.
  • (1) Evaluation of rotating bending fatigue strength and I
  • Seven test pieces were collected from a diameter/2 position of each of round steel bars obtained from the conforming steels and the comparative steels by the above-mentioned method, and I was calculated by the above-mentioned method. Image-Pro_PLUS produced by Media Cybernetics, Inc. was used for image analysis. The number of repetitions to a fracture (shortest fatigue life out of the seven test pieces) in the completely reversed Ono-type rotating bending fatigue test in this procedure is shown in Table 2. A shortest fatigue life of 100,000 times or more can be regarded as indicating excellent rotating bending fatigue strength.
  • (2) Evaluation of pitting fatigue strength
  • A test piece of 26 mmϕ illustrated in FIG. 3 was collected from a diameter/2 position of each of round steel bars of 36 mmϕ obtained from the conforming steels and the comparative steels, as a roller pitting fatigue test piece (small roller). The obtained test piece was subjected to carburizing-quenching and tempering treatment illustrated in FIG. 2. After this, a roller pitting fatigue test was conducted using a roller pitting fatigue tester under the conditions of a slip rate of 40 % and a rotational speed of 1500 rpm, with transmission oil of 80 °C being used for lubrication. As a large roller (crowning R: 150 mm), a quenched-and-tempered part of SUJ2 was used. Here, the pitting fatigue strength was measured and evaluated, with 107 being set as a fatigue limit. A fatigue strength of 2800 MPa or more in this test can be regarded as indicating excellent pitting fatigue strength. The evaluation results as shown in Table 2. Table 1
    Steel No. Chemical composition (mass%) Prescribed Expression (1)*2 Prescribed Expression (2) *3 Remarks
    C Si Mn P S Cr Mo Al N O Others
    1 0.20 1.28 0.50 0.016 0.014 1.45 0.13 0.021 0.0125 0.0010 - 2.0 137
    2 0.29 0.85 0.41 0.012 0.016 1.38 0.18 0.034 0.0100 0.0014 - 1.5 137
    3 0.24 1.30 0.75 0.018 0.025 1.60 0.10 0.040 0.0140 0.0015 - 2.1 125
    4 0.22 0.80 0.67 0.013 0.021 1.79 0.05 0.036 0.0139 0.0012 - 1.6 126
    5 0.18 0.95 0.70 0.012 0.006 1.65 0.11 0.028 0.0115 0.0015 - 1.8 125
    6 0.20 1.21 0.54 0.015 0.015 1.53 0.07 0.030 0.0132 0.0009 - 1.9 137
    7 0.19 1.98 0.21 0.014 0.049 1.02 0.09 0.022 0.0091 0.0017 - 2.4 162
    8 0.16 1.54 0.37 0.009 0.013 1.21 0.10 0.033 0.0128 0.0013 - 2.1 149
    9 0.21 1.40 0.55 0.010 0.018 1.25 0.08 0.027 0.0103 0.0010 - 2.0 141
    10 0.23 1.02 0.49 0.011 0.023 1.30 0.15 0.031 0.0096 0.0015 - 1.7 137
    11 0.27 0.82 0.45 0.017 0.016 1.62 0.04 0.059 0.0081 0.0014 - 1.5 139
    12 0.19 0.97 0.51 0.026 0.012 1.57 0.18 0.026 0.0118 0.0012 - 1.7 131
    13 0.21 1.00 0.50 0.014 0.006 1.25 0.16 0.030 0.0110 0.0013 - 1.6 137 Conforming Steel
    14 0.24 1.08 0.62 0.011 0.019 1.30 0.21 0.037 0.0092 0.0011 - 1.8 129
    15 0.18 1.33 0.32 0.013 0.022 1.15 0.28 0.042 0.0289 0.0024 - 1.9 142
    16 0.18 1.10 0.65 0.009 0.010 1.45 0.04 0.025 0.0100 0.0008 - 1.8 134
    17 0.20 0.89 0.60 0.010 0.014 1.43 0.12 0.031 0.0124 0.0015 Nb: 0.022 1.6 131
    18 0.22 1.03 0.47 0.015 0.013 1.33 0.20 0.026 0.0141 0.0013 Ti: 0.024 1.7 135
    19 0.21 1.48 0.43 0.012 0.018 1.50 0.05 0.028 0.0099 0.0008 Sb: 0.018 2.1 145
    20 0.20 1.14 0.62 0.013 0.014 1.61 0.08 0.030 0.0125 0.0012 Cu: 0.29 1.9 131
    21 0.23 0.92 0.55 0.010 0.015 1.39 0.10 0.035 0.0102 0.0011 Ni: 0.23 1.6 135
    22 0.19 1.72 0.25 0.015 0.020 1.18 0.25 0.034 0.0131 0.0013 V:0.15 2.3 148
    23 0.21 1.25 0.52 0.012 0.011 1.49 0.08 0.029 0.0140 0.0009 Ca: 0.0018 1.9 138
    24 0.22 1.34 0.34 0.011 0.013 1.70 0.06 0.027 0.0115 0.0010 Sn: 0.012 2.0 145
    25 0.20 1.16 0.70 0.013 0.014 1.54 0.09 0.030 0.0099 0.0012 Se: 0.021 1.9 128
    26 0.19 1.20 0.48 0.014 0.016 1.37 0.12 0.031 0.0108 0.0014 Ta: 0.021 1.9 139
    27 0.24 0.99 0.43 0.010 0.015 1.20 0.10 0.042 0.0124 0.0010 Hf: 0.008 1.6 144
    Steel No. Chemical composition (mass%) Prescribed Expression (1)*2 Prescribed Expression (2)*3 Remarks
    C Si Mn P S Cr Mo Al N O Others
    28 0.14 1.21 0.64 0.011 0.025 1.39 0.10 0.030 0.0072 0.0012 - 1.9 133
    29 0.32 1.55 0.71 0.015 0.019 1.20 0.25 0.029 0.0168 0.0015 - 2.3 126
    30 0.15 0.56 0.80 0.012 0.015 1.11 0.02 0.028 0.0154 0.0016 - 1.2 130
    31 0.22 0.79 0.58 0.020 0.021 1.09 0.25 0.025 0.0122 0.0011 - 1.4 130
    32 0.17 2.01 0.31 0.019 0.013 1.25 0.07 0.041 0.0101 0.0013 - 2.6 155
    33 0.18 0.84 0.19 0.017 0.016 1.08 0.03 0.036 0.0096 0.0015 - 1.3 159
    34 0.19 1.29 0.82 0.009 0.018 1.72 0.13 0.031 0.0135 0.0012 - 2.2 119
    35 0.21 1.21 1.53 0.021 0.099 1.49 0.03 0.010 0.0250 0.0010 - 2.2 95
    36 0.23 1.40 0.52 0.031 0.032 1.55 0.08 0.033 0.0142 0.0017 - 2.1 138
    37 0.20 1.35 0.67 0.014 0.053 1.28 0.12 0.024 0.0108 0.0016 - 2.0 133
    38 0.18 0.90 0.32 0.013 0.015 0.96 0.05 0.025 0.0114 0.0012 - 1.3 154
    39 0.22 1.05 0.70 0.012 0.012 1.81 0.21 0.029 0.0087 0.0010 - 2.0 118 Comparative Steel
    40 0.21 0.93 0.68 0.019 0.024 1.69 0.32 0.031 0.0123 0.0009 - 1.8 114
    41 0.20 0.80 0.35 0.015 0.050 1.38 0.60 0.030 0.0120 0.0018 - 1.6 118
    42 0.17 1.26 0.54 0.010 0.018 1.46 0.07 0.018 0.0069 0.0014 - 2.0 138
    43 0.24 0.82 0.69 0.017 0.022 1.50 0.21 0.065 0.0179 0.0021 - 1.6 121
    44 0.26 1.13 0.43 0.012 0.016 1.37 0.15 0.023 0.0059 0.0010 - 1.8 139
    45 0.21 1.51 0.38 0.013 0.015 1.15 0.10 0.055 0.0302 0.0013 - 2.1 149
    46 0.20 1.06 0.70 0.012 0.013 1.09 0.08 0.039 0.0138 0.0026 - 1.7 134
    47 0.22 1.02 0.48 0.012 0.010 1.35 0.20 0.030 0.0129 0.0010 Ti: 0.025 1.7 134
    48 0.20 0.80 0.54 0.009 0.014 1.21 0.16 0.031 0.0120 0.0015 - 1.4 135
    49 0.22 0.93 0.62 0.015 0.004 1.44 0.24 0.025 0.0104 0.0008 Nb: 0.024 1.7 124
    50 0.21 0.95 0.75 0.011 0.012 1.75 0.08 0.028 0.0140 0.0009 Ca: 0.0015 1.8 122
    51 0.18 0.95 0.60 0.014 0.011 1.76 0.21 0.027 0.0082 0.0012 - 1.8 122
    52 0.24 0.82 0.71 0.017 0.018 1.38 0.27 0.030 0.0120 0.0014 - 1.6 119
    *1 Underlines indicate outside application range.
    *2 [%Si]+([%Mn]+[%Cr]+[%Mo])/3
    *3 180-45×[%Mn]-14×[%Cr]-51×[%Mo]+5×[%Si]
    Table 2
    Test No. Steel No. (S1-S2)/S1 √I (µm) Rotating bending fatigue test Roller pitting fatigue strength (MPa) Remarks
    Shortest fatigue life (times)
    1 1 0.9888 39 5.1×105 3050
    2 2 0.9895 41 4.5×105 3000
    3 3 0.9892 43 5.2×105 3050
    4 4 0.9820 46 6.6×105 2800
    5 5 0.9941 29 8.9×105 2950
    6 6 0.9624 76 6.9×105 3100
    7 7 0.9765 52 3.5×105 3350
    8 8 0.9792 49 1.2×106 3300
    9 9 0.9919 30 9.1×105 3100
    10 10 0.9819 42 7.8×105 3150
    11 11 0.9891 33 8.3×105 2950
    12 12 0.9912 29 1.0×106 2850
    13 13 0.9743 62 7.2×105 3000
    14 14 0.9878 36 5.4×105 3050 Example
    15 15 0.9814 45 1.1×106 3200
    16 16 0.9875 39 7.6×105 2950
    17 17 0.9920 25 1.8×106 2900
    18 18 0.9932 27 8.0×105 3100
    19 19 0.9840 38 5.9×105 3200
    20 20 0.9920 26 1.6×06 2850
    21 21 0.9765 56 1.2×106 2900
    22 22 0.9872 50 7.7×105 3250
    23 23 0.9903 46 4.1×105 3000
    24 24 0.9889 45 8.5×105 3100
    25 25 0.9854 51 5.9×105 2950
    26 26 0.9910 38 1.0×106 3000
    27 27 0.9900 40 9.0×105 3050
    28 28 0.9932 34 2.5×104 2500
    29 29 0.9901 40 9.8×104 2600
    30 30 0.9863 48 2.4×105 2200
    31 31 0.9920 29 5.0×105 2400
    32 32 0.9814 50 1.1×104 2000
    33 33 0.9952 21 7.5×104 2450
    34 34 0.9793 53 1.5×105 2650
    35 35 0.9639 72 1.2×104 2300
    36 36 0.9854 45 5.8×104 2500
    37 37 0.9926 26 6.6×104 2550
    38 38 0.9897 35 8.9×104 2400
    39 39 0.9900 30 7.1×104 2500
    40 40 0.9879 39 7.8×104 2400 Comparative Example
    41 41 0.9818 44 9.9×104 2350
    42 42 0.9912 27 7.5×104 2500
    43 43 0.9624 112 2.8×104 2250
    44 44 0.9748 59 1.0×105 2400
    45 45 0.9905 34 3.4×104 2100
    46 46 0.9814 91 3.9×104 2300
    47 47 0.9932 38 5.6×104 2500
    48 48 0.9882 40 6.7×105 2400
    49 49 0.9910 36 9.7×104 2650
    50 50 0.9903 47 8.1×104 2550
    51 51 0.9941 25 9.8×104 2600
    52 52 0.9910 38 73×104 2550
    53 13 0.9542 88 5.5×104 2300
    *1 Underlines indicate outside application range.
  • INDUSTRIAL APPLICABILITY
  • It is thus possible to provide a case hardening steel suitable as raw material for producing a mechanical structural part having high rotating bending fatigue strength and pitting fatigue strength at relatively low cost, and a method of producing the case hardening steel.

Claims (4)

  1. A case hardening steel comprising
    a chemical composition containing, in mass%, C: 0.15 % or more and 0.30 % or less, Si: 0.80 % or more and 2.00 % or less, Mn: 0.20 % or more and 0.80 % or less, P: 0.003 % or more and 0.030 % or less, S: 0.005 % or more and 0.050 % or less, Cr: 1.00 % or more and less than 1.80 %, Mo: 0.03 % or more and 0.30 % or less, Al: 0.020 % or more and 0.060 % or less, N: 0.0060 % or more and 0.0300 % or less, and O: 0.0003 % or more and 0.0025 % or less within a range in which the following Expression (1) and Expression (2) are satisfied, optionally further containing, in mass%, one or more selected from the group consisting of Nb: 0.050 % or less, Ti: less than 0.025 %, Sb: 0.035 % or less, Cu: 1.0 % or less, Ni: 1.0 % or less, V: 0.050 % or less, Ca: 0.0050 % or less, Sn: 0.50 % or less, Se: 0.30 % or less, Ta: 0.10 % or less, and Hf: 0.10 % or less, with the balance being Fe and inevitable impurities,
    wherein the following Expression (3) is satisfied: % Si + % Mn + % Cr + % Mo / 3 1.5
    Figure imgb0005
    180 45 % Mn 14 % Cr 51 % Mo + 5 % Si 125
    Figure imgb0006
    I 80
    Figure imgb0007
    where [%M] denotes a content of M element in mass%, and I denotes an area, in µm2, of an oxide-based inclusion located in a fish eye central portion at a fracture surface after subjecting the case hardening steel to carburizing-quenching and tempering and then performing a rotating bending fatigue test as defined in the description.
  2. A method of producing a case hardening steel, comprising subjecting a cast steel to hot working by hot forging and/or hot rolling with a reduction in area, to obtain a case hardening steel which is a steel bar or a wire rod,
    wherein the cast steel has a chemical composition containing, in mass%, C: 0.15 % or more and 0.30 % or less, Si: 0.80 % or more and 2.00 % or less, Mn: 0.20 % or more and 0.80 % or less, P: 0.003 % or more and 0.030 % or less, S: 0.005 % or more and 0.050 % or less, Cr: 1.00 % or more and less than 1.80 %, Mo: 0.03 % or more and 0.30 % or less, A1: 0.020 % or more and 0.060 % or less, N: 0.0060 % or more and 0.0300 % or less, and O: 0.0003 % or more and 0.0025 % or less within a range in which the following Expression (1) and Expression (2) are satisfied, optionally further containing, in mass%, one or more selected from the group consisting of Nb: 0.050 % or less, Ti: less than 0.025 %, Sb: 0.035 % or less, Cu: 1.0 % or less, Ni: 1.0 % or less, V: 0.050 % or less, Ca: 0.0050 % or less, Sn: 0.50 % or less, Se: 0.30 % or less, Ta: 0.10 % or less, and Hf: 0.10 % or less, with the balance being Fe and inevitable impurities, and
    the reduction in area satisfies the following Expression (4): % Si + % Mn + % Cr + % Mo / 3 1.5
    Figure imgb0008
    180 45 % Mn 14 % Cr 51 % Mo + 5 % Si 125
    Figure imgb0009
    S 1 S 2 / S 1 0.960
    Figure imgb0010
    where S1 denotes a cross-sectional area, in mm2, of the cast steel in a section orthogonal to a stretching direction in the hot working, and S2 denotes a cross-sectional area, in mm2, of the steel bar or the wire rod in a section orthogonal to the stretching direction in the hot working.
  3. A method of producing a gear part, comprising:
    subjecting the case hardening steel according to claim 1 to either mechanical working or forging and mechanical working subsequent to the forging, into a gear shape; and
    thereafter subjecting the case hardening steel to carburizing-quenching and tempering, to obtain a gear part.
  4. A method of producing a gear part, comprising:
    the method of producing a case hardening steel according to claim 2;
    subjecting the case hardening steel to either mechanical working or forging and mechanical working subsequent to the forging, into a gear shape; and
    thereafter subjecting the case hardening steel to carburizing-quenching and tempering, to obtain a gear part.
EP17806731.0A 2016-05-31 2017-05-31 Case-hardened steel and manufacturing method therefor as well as gear component manufacturing method Active EP3467133B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016109532 2016-05-31
JP2016176921A JP6460069B2 (en) 2016-05-31 2016-09-09 Case-hardened steel, method for producing the same, and method for producing gear parts
PCT/JP2017/020258 WO2017209180A1 (en) 2016-05-31 2017-05-31 Case-hardened steel and manufacturing method therefor as well as gear component manufacturing method

Publications (3)

Publication Number Publication Date
EP3467133A4 EP3467133A4 (en) 2019-04-10
EP3467133A1 EP3467133A1 (en) 2019-04-10
EP3467133B1 true EP3467133B1 (en) 2020-11-04

Family

ID=60576636

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17806731.0A Active EP3467133B1 (en) 2016-05-31 2017-05-31 Case-hardened steel and manufacturing method therefor as well as gear component manufacturing method

Country Status (6)

Country Link
US (1) US11174543B2 (en)
EP (1) EP3467133B1 (en)
JP (1) JP6460069B2 (en)
KR (1) KR102165228B1 (en)
CN (1) CN109196134A (en)
MX (1) MX2018014641A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102373224B1 (en) * 2018-01-22 2022-03-11 닛폰세이테츠 가부시키가이샤 Carburized bearing steel parts and steel bars for carburized bearing steel parts
CN113025877A (en) * 2019-12-24 2021-06-25 通用汽车环球科技运作有限责任公司 High performance press hardened steel
CN115537678B (en) * 2021-06-30 2024-01-09 宝山钢铁股份有限公司 Steel for high-temperature carburized gear and manufacturing method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113400A (en) 1976-03-16 1977-09-22 Denki Kagaku Kogyo Kk Wafer-shaped doping material based on aluminum metaphosphate and produ ction thereof
JP2945714B2 (en) 1990-05-15 1999-09-06 日産自動車株式会社 High surface pressure gear
JPH07122118B2 (en) 1991-07-18 1995-12-25 新日本製鐵株式会社 Carburizing steel with excellent fatigue properties
JPH07122118A (en) 1993-10-27 1995-05-12 Akira Suzuki Electrically conductive organic ultra-thin film
JPH07188895A (en) 1993-12-28 1995-07-25 Kobe Steel Ltd Manufacture of parts for machine structure use
JP4313983B2 (en) 2002-04-18 2009-08-12 Jfeスチール株式会社 Steel for case hardening bearings with excellent toughness and rolling fatigue life in sub-high temperature range
KR101671133B1 (en) * 2010-01-27 2016-10-31 제이에프이 스틸 가부시키가이샤 Case-hardened steel and carburized material
JP5432105B2 (en) 2010-09-28 2014-03-05 株式会社神戸製鋼所 Case-hardened steel and method for producing the same
JP5505263B2 (en) 2010-11-05 2014-05-28 新日鐵住金株式会社 Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
WO2012077705A1 (en) 2010-12-08 2012-06-14 新日本製鐵株式会社 Gas-carburized steel component with excellent surface fatigue strength, gas-carburizing steel material, and process for producing gas-carburized steel component
KR20150126699A (en) 2013-04-18 2015-11-12 신닛테츠스미킨 카부시키카이샤 Case-hardening steel material and case-hardening steel member
JP6078008B2 (en) * 2014-01-17 2017-02-08 Jfe条鋼株式会社 Case-hardening steel and method for manufacturing machine structural parts
JP6263390B2 (en) 2014-01-17 2018-01-17 Jfeスチール株式会社 Gear steel and gears with excellent fatigue resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3467133A4 (en) 2019-04-10
KR102165228B1 (en) 2020-10-13
JP2017214642A (en) 2017-12-07
JP6460069B2 (en) 2019-01-30
CN109196134A (en) 2019-01-11
KR20190008915A (en) 2019-01-25
US20190352762A1 (en) 2019-11-21
US11174543B2 (en) 2021-11-16
MX2018014641A (en) 2019-03-14
EP3467133A1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
EP1669469B1 (en) Steel parts for machine structure, material therefor, and method for manufacture thereof
EP3088550A1 (en) Carburized-steel-component production method, and carburized steel component
JP6610808B2 (en) Soft nitriding steel and parts
US11332799B2 (en) Case hardening steel, method of producing the same, and method of producing gear parts
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
EP3202937A1 (en) Steel for bolts, and bolt
EP3467133B1 (en) Case-hardened steel and manufacturing method therefor as well as gear component manufacturing method
JP2016204752A (en) Case-hardened steel and production method thereof
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
WO2017209180A1 (en) Case-hardened steel and manufacturing method therefor as well as gear component manufacturing method
JP5381171B2 (en) Manufacturing method of high strength case hardening steel parts
JP6078008B2 (en) Case-hardening steel and method for manufacturing machine structural parts
JP5146063B2 (en) High strength steel with excellent internal fatigue damage resistance and method for producing the same
JP5332410B2 (en) Manufacturing method of carburizing steel
JP5632722B2 (en) Case-hardened steel with low heat treatment distortion
JP5443277B2 (en) High-strength steel with excellent machinability and method for producing the same
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JP6263390B2 (en) Gear steel and gears with excellent fatigue resistance
JP6078007B2 (en) Case-hardening steel and method for manufacturing machine structural parts
JP5969204B2 (en) Induction hardened gear having excellent wear resistance and surface fatigue characteristics and method for producing the same
EP3252182A1 (en) Case hardening steel
JP7545949B2 (en) Steel material, steel part, and manufacturing method of steel part
JP7360060B2 (en) steel and bearings
JP6881497B2 (en) Parts and their manufacturing methods

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181123

A4 Supplementary search report drawn up and despatched

Effective date: 20190222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/02 20060101ALI20200430BHEP

Ipc: C22C 38/00 20060101AFI20200430BHEP

Ipc: F16H 55/06 20060101ALI20200430BHEP

Ipc: C21D 9/52 20060101ALI20200430BHEP

Ipc: C22C 38/04 20060101ALI20200430BHEP

Ipc: C22C 38/22 20060101ALI20200430BHEP

Ipc: C21D 9/32 20060101ALI20200430BHEP

Ipc: C22C 38/60 20060101ALI20200430BHEP

Ipc: C23C 8/80 20060101ALI20200430BHEP

Ipc: C22C 38/06 20060101ALI20200430BHEP

Ipc: C23C 8/22 20060101ALI20200430BHEP

Ipc: C22C 38/34 20060101ALI20200430BHEP

Ipc: C21D 8/06 20060101ALI20200430BHEP

Ipc: C21D 1/06 20060101ALI20200430BHEP

INTG Intention to grant announced

Effective date: 20200525

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1330926

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017027039

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201104

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1330926

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017027039

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240328

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 8