WO2017209063A1 - ネオジム合金製造用の窒化ホウ素ノズルおよび窒化ホウ素坩堝、ならびに当該ノズルもしくは坩堝を用いたネオジム合金の製造方法 - Google Patents

ネオジム合金製造用の窒化ホウ素ノズルおよび窒化ホウ素坩堝、ならびに当該ノズルもしくは坩堝を用いたネオジム合金の製造方法 Download PDF

Info

Publication number
WO2017209063A1
WO2017209063A1 PCT/JP2017/019949 JP2017019949W WO2017209063A1 WO 2017209063 A1 WO2017209063 A1 WO 2017209063A1 JP 2017019949 W JP2017019949 W JP 2017019949W WO 2017209063 A1 WO2017209063 A1 WO 2017209063A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
crucible
boron nitride
neodymium
neodymium alloy
Prior art date
Application number
PCT/JP2017/019949
Other languages
English (en)
French (fr)
Inventor
宏幸 塩月
脩平 野中
西川 正人
剛春 永田
康人 伏井
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016109403A external-priority patent/JP6725325B2/ja
Priority claimed from JP2016109404A external-priority patent/JP2017214246A/ja
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2017209063A1 publication Critical patent/WO2017209063A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride

Definitions

  • the present invention relates to a nozzle for discharging molten metal and a crucible for manufacturing molten metal, which are used in an apparatus for manufacturing a neodymium alloy and are easy to manufacture and have a long life.
  • Neodymium magnets are also used in small devices such as hard disk drives, CD players, and mobile phones, and are considered to be a material that will be further expanded in the future.
  • neodymium magnets are neodymium, iron and boron, and these raw material molten metals (metal melts) are obtained as solid alloys by supplying them to a quenching disk from a nozzle, slit, tundish or the like.
  • a neodymium magnet is manufactured by processing the obtained alloy in a crushing process, a forming process, a sintering process, and a magnetizing process. Therefore, the manufacturing process of a neodymium magnet requires a manufacturing apparatus provided with a member for supplying molten metal.
  • the nozzles and slits are materials that can withstand the discharge of molten metal containing neodymium for a long time. For this reason, such a member mainly made of boron nitride is used as one having excellent corrosion resistance and wear resistance. Of these members, especially crucibles are also kept in contact with the molten metal at a high temperature for a long time, and therefore, those made of boron nitride are mainly used as materials using excellent corrosion resistance.
  • Patent Document 1 related to the prior art discloses a tundish made of ceramics having a fused silica content of 70% by weight or more and a ceramic injection part (nozzle) having a BN content of 20% by weight or more.
  • neodymium oxide is formed by the reaction between the neodymium metal and the components constituting the tundish, and impurities derived from the tundish are mixed into the neodymium magnet.
  • the cause of the unstable discharge rate is not only the above-mentioned wear of the tundish and the nozzle, but also the reaction products produced by the reaction between the molten metal and the components that make up the nozzle cause partial clogging of the nozzle. This may cause instability of the discharge speed.
  • Patent Document 2 related to the prior art describes that the temperature of the discharged molten alloy is set, and at least the surface of the nozzle constituting the molten metal discharge path is made of a non-oxide material. .
  • the technique described in Patent Document 2 takes into account a molten alloy containing neodymium metal that is extremely rich in reactivity, and there is a high possibility that clogging of a nozzle due to a reaction product from neodymium metal cannot be prevented.
  • Patent Document 3 the addition of a compound of alumina and boron oxide or aluminum nitride makes the nozzle excellent in melt resistance, and the addition of zirconium oxide improves wear resistance at high temperatures. I have found.
  • Patent Document 3 when producing a neodymium magnet, the metal oxide described in Patent Document 3 is rich in reactivity with neodymium, as in Patent Document 1, so that B and Al as impurities are products. This causes a problem that it becomes difficult to achieve stable production. More specifically, since the surface of particles of aluminum nitride and silicon nitride is easily oxidized by oxygen and moisture in the atmosphere, aluminum nitride or silicon nitride whose surface is oxidized reacts with neodymium and Al as an impurity. The prior art has the unfavorable feature that Si and Si are mixed into the neodymium magnet.
  • the present invention employs the following means in order to solve the above problems.
  • a method for producing a neodymium alloy Sintering a raw material containing boron nitride having an oxygen content of 1.5 wt% or less, and creating a nozzle and a melting part composed of a sintered body containing boron nitride; Charging a material containing neodymium into the molten portion and heating to make a molten metal; Sending the molten metal to the cooling section through the nozzle; Solidifying the molten metal in the cooling section to obtain a neodymium alloy, At least one of the nozzle and the molten part contains boron nitride at a ratio of 50.0 wt% or more and 97.5 wt% or less, and At least one of the nozzle and the melted portion does not contain an oxide or nitride of Al, Zr, Mg, Si, or Hf except for inevitable impurities.
  • the raw material contains 0.3 wt% or more and 12.5 wt% or less of CaO and 1.0 wt% or more and 40.0 wt% or less of Y 2 O 3 based on the total amount of the raw material. Manufacturing method.
  • the said neodymium alloy contains a neodymium element in 15 wt% or more and 35 wt% or less,
  • the nozzle and crucible made of boron nitride of the present invention are excellent in corrosion resistance against a molten metal containing neodymium, and therefore can have a long service life when used in the production of a neodymium alloy, and are an efficient and stable neodymium alloy. It is possible to manufacture.
  • FIG. 1 is a schematic view showing the structure of an apparatus for producing neodymium alloy powder, and mainly focuses on the structure of a nozzle.
  • FIG. 2 is a schematic view showing the structure of an apparatus for producing neodymium alloy powder, and mainly focuses on the structure of the crucible.
  • the molten metal discharge nozzle and the molten metal production crucible according to the embodiment of the present invention contain 50.0 wt% or more of boron nitride (BN) in order to ensure heat resistance and thermal shock resistance.
  • boron nitride is a typical hard-to-sinter ceramic, it is difficult to obtain a high-density sintered body without adding a sintering aid.
  • oxygen content of boron nitride that is, boron oxide as a substitute for the sintering aid
  • boron nitride serving as a raw material of the sintered body is inevitably mixed with oxidation.
  • substantially no boron oxide is contained except for boron.
  • the amount of “boringly mixed boron oxide” can vary depending on the specific surface area of boron nitride (for example, it varies depending on the particle size of the boron nitride powder). However, for example, when the boron nitride powder that can be used as the raw material of the sintered body has an average particle size of about 18 ⁇ m, the amount of boron oxide is 1.5 wt% or less, preferably 1.0 wt%, in terms of oxygen content. Hereinafter, it can be more preferably 0.5 wt% or less, and still more preferably 0.3 wt% or less.
  • the oxygen content is very small, it is desirable to use a metal oxide as a sintering aid, and the addition amount of the metal oxide as a sintering aid is preferably 2.5 wt% or more. .
  • the upper limit of boron nitride is preferably 97.5 wt%.
  • the ratio of boron nitride is too high, there is a problem that the hardness of the sintered body is insufficient and it is not suitable as a nozzle or a crucible.
  • the boron nitride ratio is too low, the open porosity of the sintered body becomes too high, which may adversely affect the useful life of the nozzle or crucible.
  • the sintered body obtained from the raw material also inevitably contains boron oxide. Only the amount mixed in can be included substantially.
  • the sintered body constituting the nozzle or the crucible according to the embodiment of the present invention includes Al, Zr, Mg, except for inevitable impurities (that is, impurities that cannot be prevented from being mixed in the manufacturing process). It is desirable that no Si or Hf oxide or nitride be included. This is because oxides and nitrides of such elements are highly reactive to metal neodymium, and if such oxides and nitrides are included, the undesirable effects resulting from the reaction cannot be sufficiently overcome. This is possible.
  • the boron nitride content is obtained by measuring the boron and nitrogen content.
  • the boron nitride sintered body according to the prior art is most commonly used. Do not use boric acid or boric acid-based auxiliaries. For this reason, in the embodiment of the present invention, the sintered body is pulverized and only the boron content is measured, and the boron nitride content can be obtained assuming the BN composition.
  • the components constituting the boron nitride sintered body include, for example, an X-ray fluorescence analyzer (XRF), an energy dispersive X-ray fluorescence analyzer (EDX), an atomic absorption photometer (AAS), and a plasma emission spectrometer (ICP). Etc. can be measured.
  • XRF X-ray fluorescence analyzer
  • EDX energy dispersive X-ray fluorescence analyzer
  • AAS atomic absorption photometer
  • ICP plasma emission spectrometer
  • the useful life of a nozzle is generally determined by the speed of damage associated with the discharge of molten metal. Further, the useful life of a crucible is generally determined by the speed of damage caused by contact with molten metal at a high temperature. For this reason, in order to ensure the abrasion resistance with respect to the molten metal containing neodymium, it is preferable to have the following characteristics in the nozzle and crucible which concern on embodiment of this invention. That is, since the molten metal erodes in the thickness direction from the contact surface with the nozzle or the crucible through the communication pores, that is, the open pores, the nozzle and the crucible are preferably made of a material that is dense and has few open pores.
  • the amount of CaO (calcia) in the boron nitride sintered body is 0.3 wt% or more and 12.5 wt% or less, more preferably 0.6 wt% or more and 12.5 wt% or less, and
  • the amount of Y 2 O 3 (yttria) is 1.0 wt% or more and 40.0 wt% or less, more preferably 1.9 wt% or more and 38.0 wt% or less
  • the boron nitride sintered body having a low open porosity can be obtained.
  • the nozzle or crucible according to the embodiment of the present invention can have an open porosity of preferably 5% or less, more preferably 3% or less.
  • the amount of calcium oxide and the amount of yttrium oxide in the sintered body are respectively equivalent amounts that can be calculated from the amounts of calcium element and yttrium element contained in the sintered body.
  • calcium oxide refers to anhydrous calcium oxide.
  • a range of values (for example, a range indicated by the symbol tilde “ ⁇ ”) has a meaning of “... Or more,..., Or less” including a lower limit value and an upper limit value unless otherwise specified.
  • the ratio of CaO to Y 2 O 3 as a sintering aid is in the range of 0.1 or more and 4.0 or less in terms of molar ratio, more preferably 0.1 The range is from 2.0 to 2.0, and more preferably from 0.2 to 1.5.
  • the sintered body is used as a nozzle. Wear resistance may be inferior.
  • the sintering temperature can be selected according to the composition.
  • the sintering can be performed at a temperature in the range of 1600 ° C. to 2050 ° C.
  • the sintered body according to the embodiment of the present invention can be produced in an inert atmosphere such as a nitrogen atmosphere.
  • the open porosity of the sintered body can be calculated by the Archimedes method in accordance with JIS R 1634: 1998 “Method for measuring sintered ceramic density / open porosity of fine ceramics”.
  • the bulk density can be determined from the dimensions and mass of the boron nitride sintered body, and the total porosity can be calculated from the bulk density and the theoretical density.
  • the total porosity in the sintered body is preferably 25% or less, more preferably 20% or less, and further preferably 10% or more and 20% or less.
  • the closed porosity in the sintered body can be calculated from the difference between the total porosity and the open porosity calculated by the method described above.
  • the Shore hardness is preferably 11 Hs or more, and more preferably 12 Hs or more. If the Shore hardness is too low, the wear resistance of the molten metal as a nozzle becomes too low, and there may be a drawback that the service life is shortened. Although there is no restriction
  • the Shore hardness is not particularly limited, but may be, for example, 70 Hs or less, preferably 60 Hs or less in consideration of workability. In general, since boron nitride sintered bodies have pores, dry machining is adopted. If the Shore hardness is too high, wear of the machining tool becomes intense and productivity is lowered.
  • the nozzle or crucible in a preferred embodiment contains boron nitride in a proportion of 50.0 wt% or more and 97.5 wt% or less, and an oxide or nitridation of Al, Zr, Mg, Si, or Hf except for unavoidable impurities
  • the amount by which the weight ratio of Ca which does not contain a substance and is contained is 0.3 wt% or more and 12.5 wt% or less in terms of CaO, and the weight ratio of Y which is contained is converted to Y 2 O 3 characterized in not more than 1.0 wt% or more 40.0wt%, and (the value of Y 2 O 3 / CaO) ratio of CaO with respect to Y 2 O 3 is 0.2 to 1.5 at a molar ratio You may have the combination of.
  • the nozzle in a preferred embodiment includes boron nitride in a proportion of 50.0 wt% or more and 97.5 wt% or less, and an oxide or nitride of Al, Zr, Mg, Si, or Hf except for unavoidable impurities in an amount not contain, and the weight ratio of Ca containing the is at 12.5 wt% or less than 0.3 wt% in an amount in terms of CaO, and the weight ratio of Y containing the, in terms of Y 2 O 3 and or less 1.0 wt% or more 40.0Wt%, and (the value of Y 2 O 3 / CaO) ratio of CaO with respect to Y 2 O 3 is 0.2 to 1.5 at molar ratio, and Shore You may have the combination of the characteristics that hardness is 11 Hs or more.
  • FIG. 1 is a schematic view showing the structure of an apparatus for producing neodymium alloy powder, mainly focusing on the structure of a nozzle.
  • the metal containing neodymium charged into the melting part (crucible) 2 is melted by the heating part (heater) 3 to become a molten metal (molten metal) 1.
  • the molten metal 1 passes through the nozzle 5 heated by the heating part (heater) 4 and is sent to the cooling part (disk or roll) 6 to be solidified, whereby a neodymium alloy powder is obtained.
  • a support member 7 for supporting the nozzle 5 is also drawn.
  • FIG. 2 is a schematic view showing the structure of an apparatus for producing neodymium alloy powder according to another embodiment of the present invention, and pays particular attention to the structure of a crucible.
  • the melting part (crucible) 12 containing the molten metal 11 is heated by a heating part (heater) 13.
  • a heating part (heater) 13 By tilting the crucible 12 by means of tilting (not shown), the molten metal 11 is sent to a cooling unit (disk or roll, etc.) 16 (for example, via a tundish not shown), and cooled and solidified.
  • a neodymium alloy powder is obtained.
  • the neodymium alloy to be produced preferably contains neodymium (element) at 15 wt% or more and 35 wt% or less, more preferably 18 wt% or more and 35 wt% or less, and more preferably 20 wt% or more. More preferably, it is contained at 35 wt% or less. If the amount of neodymium is too small, the performance expected for the resulting alloy (for example, magnetic force as a neodymium magnet) may be insufficient.
  • a support member for example, a nozzle fixing component for supporting the nozzle described above is used in combination with the nozzle described above.
  • the support member is preferably configured to include a boron nitride sintered body. This is because the nozzle and the support member are made of the same material, so that the support member can be hardly damaged even if it is subjected to thermal expansion due to the high temperature applied when the nozzle is used.
  • the nozzle and the supporting member may be made of a boron nitride sintered body having the same composition, or the supporting member is made of a boron nitride sintered body having another composition having the following preferable physical properties. Also good.
  • the support member preferably has a three-point bending strength measured according to JIS R1601: 2008 of 10 MPa or more, and a linear thermal expansion coefficient measured according to JIS R1618: 2002 of 3 ppm / K or less.
  • a support member made of a boron nitride sintered body having such a three-point bending strength and a linear thermal expansion coefficient can be suitably combined with a nozzle made of a boron nitride sintered body.
  • a neodymium alloy manufacturing apparatus including at least one of the nozzle and the crucible described above and a support member can be provided.
  • the particle size 60 mg of a measurement sample was put in 200 cc of pure water mixed with 2 ml of a 20 wt% aqueous solution of sodium hexametaphosphate, and dispersed for 3 minutes with an ultrasonic homogenizer (trade name “US-300” manufactured by Nippon Seiki Seisakusho). Then, it measured by the micro track (The Nikkiso Co., Ltd. make, brand name "MT3300EXII"). Pure water was used as the solvent for the circulator of the Microtrac and adjusted until the measurement sample had an appropriate concentration.
  • the shore hardness was processed from a prepared boron nitride sintered body into a sample having a width of 4 mm, a length of 40 mm, and a thickness of 3.0 mm, and measured according to JIS Z 2246: 2000 using a D-type manufactured by Shimadzu Corporation. .
  • the amount of oxygen was measured using an O / N simultaneous analyzer (EMGA-620W / C) manufactured by Horiba.
  • the boron nitride sintered body was pulverized in a silicon nitride mortar and briquetted into an Al ring, and then measured using a fluorescent X-ray (XRF) analyzer (Rigaku Corporation, Primus II). The amount of element detected by XRF was calculated in terms of oxide.
  • XRF fluorescent X-ray
  • the thermal shock resistance of the boron nitride sintered body was evaluated as a temperature until a crack was generated by heating a sample from the produced boron nitride sintered body.
  • a ceramic sintered body was processed to obtain a boron nitride sintered body having an outer diameter of 60 mm, an inner diameter of 30 mm, and a height of 150 mm. Further, the remaining part of the boron nitride sintered body obtained by hot press sintering was pulverized with a silicon nitride mortar, and the contained components were measured by XRF. As a result, it was confirmed that the boron nitride sintered body obtained by sintering under the conditions described in Table 1 had amounts of B, Ca, and Y metal elements substantially equal to the amounts shown in Table 1. Other metal elements were not confirmed in the sintered body. This is a result supporting that oxides and nitrides of Al, Zr, Mg, Si, and Hf are not contained in the sintered body.
  • Example a1 The raw materials described in Example a1 in Table 1 were processed under the above hot press conditions and processed into a nozzle shape.
  • the resulting boron nitride nozzle had an open porosity of 0.7% and a Shore hardness of 14 Hs.
  • Examples a2 to a11 The raw materials described in Examples a2 to a11 in Table 1 were processed in the same shape as in Example a1 and processed into a nozzle shape. These nozzles were continuously cast as described in Example a1, and after cooling, the nozzles were cut and the thickness of the nozzles was confirmed.
  • the nozzles of Examples a2 to a9 had an open porosity of 0.2 to 1.0%, a Shore hardness of 15 to 24 Hs, and the wear of the nozzle diameter was 6 to 27%. Further, the nozzle of Example a10 had an open porosity of 1.5%, a Shore hardness of 18Hs, and the wear of the nozzle diameter was 46%. The nozzle of Example a11 had an open porosity of 2.5%, a Shore hardness of 18Hs, and nozzle diameter wear of 52%. From this, it was found that Example a2 to Example a9 can further suppress the wear of the nozzles compared to Example a10 and Example a11, and are more excellent nozzles. In any of the examples, the nozzle was not cracked (deleted), and it was found that there was no major problem in the performance as a nozzle.
  • Comparative examples a1 to a4 The raw materials described in Comparative Examples a1 to a4 in Table 1 were processed in the same manner as in Example a1 to form nozzle shapes.
  • the open porosity was 7.3 to 23.0%, which was higher than that of Examples a1 to a11.
  • Comparative Examples a1 and a3 had a Shore hardness as low as 10 Hs.
  • Comparative Example a1 was 8.5 hours, and Comparative Example a3 was unable to control the discharge amount of the cast after 6 hours of continuous casting, and stable casting could not be maintained.
  • continuous casting was stopped, and after slow cooling, the solidified casting was observed.
  • the nozzle was missing up to 18 mm from the nozzle outlet in the vertical direction. Further, the nozzle was cut, and it was confirmed that the wear of the nozzle diameter at the nozzle tip was 90% to 97%. If the nozzle is cracked (deleted), it cannot be used normally, and there is a big problem in the performance as a nozzle.
  • Comparative Example a2 was 11 hours, and Comparative Example a4 was unable to control the casting discharge amount after 9.5 hours of continuous casting, and stable casting could not be maintained.
  • continuous casting was stopped, and after slow cooling, the solidified casting was observed. As a result, a portion up to 48 mm in the vertical direction from the nozzle outlet was broken and lost. Further, the nozzle was cut, and it was confirmed that the wear of the nozzle diameter at the tip of the nozzle was 38% to 48%.
  • Comparative Example a2 and Comparative Example a4 the hardness of the nozzle was as high as 25Hs and the degree of wear was small, but because the open porosity was large, the metal melt oozes out from the nozzle side surface, Probably missing. Further, Comparative Example a1 and Comparative Example a3 have a Shore hardness of 10 Hs, and the wear of the nozzles proceeds remarkably. As a result, it is considered that the nozzles are defective. Also, since Comparative Example a2 and Comparative Example a4 could not control the discharge amount earlier than other Comparative Examples, it was suggested that Shore hardness is more important than Open Porosity in neodymium alloy casting. The However, since any of the comparative examples had inferior performance compared to the examples, it is understood that a combination of an appropriate range of Shore hardness and open porosity is important in the casting of a neodymium alloy.
  • This sintered body was processed into a crucible shape to obtain a crucible having an outer diameter of 150 mm, an inner diameter of 130 mm, a height of 150 mm, and a bottom thickness of 10 mm. Further, the remaining part of the boron nitride sintered body obtained by hot press sintering was pulverized with a silicon nitride mortar, and the contained components were measured by XRF. As a result, it was confirmed that the boron nitride sintered body obtained by sintering under the conditions shown in Table 2 had an amount of B, Ca, Y metal elements substantially equal to the amounts shown in Table 2. Other metal elements were not confirmed in the sintered body. This is a result supporting that oxides and nitrides of Al, Zr, Mg, Si, and Hf are not contained in the sintered body.
  • Example b1 The raw materials described in Example b1 in Table 2 were processed under the above hot press conditions and processed into the crucible shape described above.
  • the resulting boron nitride crucible had an open porosity of 0.7% and a thermal shock resistance of 1500 ° C.
  • the crucible obtained by processing the above was filled with Nd mixed powder having a mixing ratio of 21.5 wt% Nd-76.5 wt% Fe-1.0 wt% B-1.0 wt% Dy heated to 1350 ° C.
  • the mixed powder filled in the crucible is held at room temperature for 4 hours in a nitrogen gas atmosphere, 20 ° C./min from room temperature to 1000 ° C., 10 ° C./min from 1200 ° C., and 2.5 ° C. from 1400 ° C.
  • the temperature was raised at / min, and further maintained at 1400 ° C. for 32 hours for melting.
  • This melt (molten metal) was discharged to the outside of the crucible by tilting the crucible to 135 ° in an environment with an ambient temperature of 1400 ° C. 15 minutes after the start of discharge of the melt, the heating was stopped, the atmosphere was cooled, and the crucible was recovered.
  • the adhesion rate of the filled Nd mixed powder was 1.3 wt% with respect to the total amount used.
  • the crack of the crucible by heat processing was not confirmed.
  • the crucible was cut, the thickness of the side and bottom of the crucible was measured, and it was found that the thickness of the sintered body after use as a crucible was 10 mm at all measurement points. This means that the thickness of the sintered body is not impaired by the heat treatment.
  • Examples b2 to b7 The raw materials described in Examples b2 to b7 in Table 2 were processed in the same manner as in Example b1 and processed into the crucible shape described above. These crucibles were subjected to the same heat treatment as described in Example b1, and the ratio of the Nd mixed powder adhering to the crucible after cooling, the presence or absence of cracks, and the thickness of the cut crucible were confirmed.
  • the crucibles of Examples b2 to b5 have an open porosity of 0.2 to 1.3%, a thermal shock resistance of 1200 to 1500 ° C., and the adhesion rate of the filled Nd mixed powder is 1.5 to 3.6 wt%.
  • the thickness was 10 mm as before the heat treatment.
  • the crucible of Example b6 has an open porosity of 1.4% and a thermal shock resistance of 1200 ° C., the adhesion rate of the filled Nd mixed powder is 10.7 wt%, and the thickness of the crucible is 10 mm as before the heat treatment. there were.
  • Example b7 had an open porosity of 2.2% and a thermal shock resistance of 1100 ° C., the adhesion rate of the filled Nd mixed powder was 11.5 wt%, and the thickness of the crucible was 10 mm as before the heat treatment. . From this, it was found that Example b2 to Example b5 can further suppress the Nd mixture from adhering to the crucible as compared with Example b6 and Example b7, and are more excellent crucibles.
  • Comparative Examples b1 to b4 The raw materials described in Comparative Examples b1 to b4 in Table 2 were processed in the same manner as in Example b1 and processed into a crucible shape.
  • the open porosity was 9.3 to 28.3%, which was higher than Examples b1 to b7.
  • the thermal shock resistance of Comparative Examples b2 and b3 was as low as 500 to 800 ° C.
  • Example b1 The crucibles according to these comparative examples were subjected to the same heat treatment as in Example b1.
  • Comparative Example b1 was held at 1400 ° C. for 26 hours, and Comparative Example b4 was held for 30 hours, exudation of molten metal was observed on the outer wall of the crucible. This means that the neodymium metal component has flowed to the outside via the outer wall of the crucible, meaning that the function as a crucible cannot be exhibited and stable casting cannot be maintained.
  • the adhesion rate of the filled Nd mixed powder was 19.3 wt%.
  • the heat treatment was stopped, and after slow cooling, the solidified casting was observed.
  • a crack having a size of 2.6 mm was confirmed on the inner wall of the bottom of the crucible.
  • the exudation of the filled material from the crack portion to the outside of the crucible was not confirmed at this point, it was not preferable for safety, and it was confirmed that there was a problem in the product life as a crucible.
  • the adhesion rate of the Nd mixed powder filled in any of Comparative Examples b1 to b4 was 19.3 wt% to 39.3 wt%, which was considerably higher than that of the example. This is not only disadvantageous in the production yield of the neodymium alloy, but is also unfavorable because it may affect the quality of the crucible itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Ceramic Products (AREA)

Abstract

本願はネオジム合金の製造で用いた際に長い耐用寿命を有することができ、効率的かつ安定的なネオジム合金の製造を可能とするネオジム合金製造用ノズルまたは坩堝を提供する。すなわちネオジム合金製造用の、窒化ホウ素を含む焼結体から構成されるノズルまたは坩堝であって、窒化ホウ素を50.0wt%以上97.5wt%以下の割合で含み、不可避的な不純物を除いてAl、Zr、Mg、Si、もしくはHfの酸化物または窒化物を含まないことを特徴とする。

Description

ネオジム合金製造用の窒化ホウ素ノズルおよび窒化ホウ素坩堝、ならびに当該ノズルもしくは坩堝を用いたネオジム合金の製造方法
 本発明は、ネオジム合金を製造する装置において用いられる、製造が容易で長寿命な、溶融金属吐出用のノズルおよび溶融金属製造用の坩堝に関するものである。
 電車・ハイブリッドカー・エレベーターの駆動には、永久磁石同期電動機が必要であり、磁束密度が高く、高い磁力を有する永久磁石を用いると効率が良くなるため、最も強力とされているネオジム合金磁性体(または一般に「ネオジム磁石」とも称する)が使用される。ネオジム磁石は他にもハードディスクドライブ、CDプレーヤー、携帯電話など小型機器での使用例も多く、今後更に適用範囲が拡大していく材料であると考えられている。
 ネオジム磁石の主成分はネオジム、鉄、ホウ素であり、これらの原料溶融金属(金属溶湯)をノズルやスリット、或いはタンディッシュ等から急冷ディスクに供給することで、固体の合金として得られる。ネオジム磁石は、得られた合金を粉砕工程、成形工程、焼結工程、磁化工程で処理することで製造される。そのため、ネオジム磁石の製造工程には、溶融金属を供給するための部材を備えた製造装置が必要である。
 ネオジムを含んだ溶融金属を急冷して得られる合金の効率的な製造は、冷却ディスクに一定量の原料溶融金属を長時間連続して供給することで可能となる。またネオジム磁石の製造では、その原料溶融金属を急冷することによって、強力な磁石となりうる組織を形成している。このため、ネオジムを含んだ合金を一定の品質を保ちつつ得るためには、一定量の原料溶融金属が、原料溶融金属を供給する部材から冷却ディスクへと供給されつづけることが重要である。原料溶融金属を供給する部材は、製品品質の維持のために、定期的に消耗品として交換されることになる。
 原料溶融金属を供給する部材のうちの特にノズルやスリットは、ネオジムを含んだ金属溶湯の吐出に長時間耐えうる材料であることが重要である。このため、耐食性、耐摩耗性に優れるものとして主に窒化ホウ素製のそうした部材が使用されている。また、そうした部材のうちの特に坩堝もまた、金属溶湯と高温で長時間接触しつづけることになるため、耐食性に優れた材料を用いたものとして主に窒化ホウ素製のものが使用されている。
 ネオジム金属は酸素成分との反応性が高いので、ネオジム金属と酸素成分との反応から安定な酸化ネオジムを形成しやすい。その結果、従来技術では製造されるネオジム磁石にタンディッシュを構成する成分由来の金属不純物が混入してしまい、好ましくない。また、反応の進行でタンディッシュが浸食され、安全上の問題も発生する可能性がある。従来技術に係る特許文献1では、溶融シリカの含有量70重量%以上のセラミックスを用いてなるタンディッシュとBN含有量20重量%以上のセラミックス製注入部(ノズル)が開示されている。しかし、このような従来技術に係るタンディッシュおよび注入部であっても、ネオジム金属とタンディッシュを構成する成分由来との反応によって酸化ネオジムが形成され、タンディッシュ由来の不純物がネオジム磁石に混入してしまう可能性が考えられる。
 また均一な組成のネオジム磁石を得るためには、原料溶融金属を均一に冷却する必要があるが、そのように均一な冷却をするには、原料溶融金属の吐出流量を一定にする必要がある。このため、ノズルの吐出口の摩耗或いは閉塞を抑制することが重要である。吐出量が不安定になる原因として、前述のタンディッシュやノズルの摩耗のみならず、他に、金属溶湯とノズルを構成する成分との反応によって生じた反応生成物がノズルの部分的な詰まりを引き起こし、吐出速度の不安定さを招くことも考えられる。従来技術に係る特許文献2では、吐出される合金溶湯の温度を設定して、ノズルの少なくとも合金溶湯の吐出路を構成する表面付近が非酸化物材料から構成されることなどを記載している。しかし特許文献2に記載された技術は、反応性にきわめて富むネオジム金属を含む合金溶湯を考慮したものとは言えず、ネオジム金属からの反応生成物によるノズルの詰まりを防止できないおそれが高い。
 また特許文献3では、アルミナと酸化ホウ素との化合物或いは窒化アルミニウムを添加することで耐溶損性の優れたノズルになることや、酸化ジルコニウムを添加することで高温での耐摩耗性が向上することを見出してはいる。
 しかしながらネオジム磁石の製造を行う場合には、特許文献3に記載の金属酸化物では、特許文献1に記載のものと同様に、ネオジムとの反応性に富むために不純物としてのBやAlが生成物中に混入してしまい、安定的な製造が難しくなるという問題が発生する。より具体的には、窒化アルミニウムおよび窒化珪素は粒子の表面が大気中の酸素や水分によって容易に酸化されるため、表面が酸化された窒化アルミニウム或いは窒化珪素とネオジムが反応して不純物としてのAlやSiがネオジム磁石に混入してしまうという好ましくない特徴を従来技術は有する。
 また、金属溶湯にネオジム金属が含まれていると、上記の特許文献1に記載のタンディッシュのように従来技術に係るセラミックスを用いた坩堝でも問題が生じてしまう。これはつまり、坩堝を構成する成分がネオジム金属と反応してしまうと、製造されるネオジム磁石にその反応由来の金属不純物が混入してしまい、好ましくないという問題があるということである。また、そのような反応の進行によって坩堝が浸食され、安全上の問題も発生する可能性がある。
 ネオジム合金製造分野における坩堝については現在、耐食性等についての定量的な検討が充分にされているとは言えず、坩堝を構成する材料の改良は殆ど進んでいないのが実情であり、効率的な製造方法の確立の上での障害となっている。このため今後、益々適用範囲が広がり、生産量が増加すると考えられているネオジム合金製造分野において大きな問題となっている。
特開2002-336941号公報 特開2002-231547号公報 特開平03-264156号公報
 上述した事情に鑑み、ネオジム合金の製造装置に於いて、窒化ホウ素ノズルの高密度化および高硬度化を図り、溶融金属による窒化ホウ素ノズルの摩耗を防ぐことができ、さらにノズル成分とネオジム金属との反応を抑制し、ノズルの閉塞を防ぐことができる新規な技術が希求されている。さらに、ネオジム合金の製造装置で用いられる坩堝に於いて、ネオジム金属との反応を抑制でき、耐用寿命を長くできる新規な技術も希求されている。
 本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)
 ネオジム合金製造用の、窒化ホウ素を含む焼結体から構成されるノズルまたは坩堝であって、
 窒化ホウ素を50.0wt%以上97.5wt%以下の割合で含み、
 不可避的な不純物を除いてAl、Zr、Mg、Si、もしくはHfの酸化物または窒化物を含まないことを特徴とする。
(2)
 (1)に記載のノズルまたは坩堝であって、含有するCaの重量比率が、CaOに換算した量で0.3wt%以上12.5wt%以下であり、かつ含有するYの重量比率が、Y23に換算した量で1.0wt%以上40.0wt%以下であることを特徴とする。
(3)
 (2)に記載のノズルまたは坩堝であって、Y23に対するCaOの割合(Y23/CaOの値)がモル比にて0.2以上1.5以下であることを特徴とする。
(4)
 (1)から(3)のいずれか一項に記載のノズルまたは坩堝であって、ネオジム元素を15wt%以上35wt%以下で含有するネオジム合金の製造に用いられることを特徴とする。
(5)
 (1)から(4)のいずれか一項に記載のノズルであって、ショア硬度が11Hs以上であることを特徴とする。
(6)
 ネオジム合金の製造方法であって、
 酸素含有量が1.5wt%以下である窒化ホウ素を含んだ原料を焼結し、窒化ホウ素を含む焼結体から構成されるノズルおよび溶融部を作成するステップと、
 前記溶融部にネオジムを含む材料を投入し加熱して溶湯とするステップと、
 前記溶湯を、前記ノズルを通して冷却部へ送るステップと、
 前記冷却部において溶湯を凝固させ、ネオジム合金を得るステップと
を含み、
 前記ノズルおよび前記溶融部のうちの少なくとも一方は、窒化ホウ素を50.0wt%以上97.5wt%以下の割合で含み、かつ、
 前記ノズルおよび溶融部のうちの少なくとも一方は、不可避的な不純物を除いてAl、Zr、Mg、Si、もしくはHfの酸化物または窒化物を含まない
ことを特徴とする、製造方法。
(7)
 前記原料が、前記原料全体の量を基準として、0.3wt%以上12.5wt%以下のCaOと、1.0wt%以上40.0wt%以下のY23を含む、(6)に記載の製造方法。
(8)
 Y23に対するCaOの割合(Y23/CaOの値)がモル比にて0.2以上1.5以下であることを特徴とする、(7)に記載の製造方法。
(9)
 前記ネオジム合金が、ネオジム元素を15wt%以上35wt%以下で含有することを特徴とする、(6)から(8)のいずれか一項に記載の製造方法。
(10)
 前記ノズルのショア硬度が11Hs以上である、(6)から(9)のいずれか一項に記載の製造方法。
(11)
 (1)から(5)のいずれか一項に記載のノズルおよび坩堝のうちの少なくとも一方と、
 前記ノズルを支持するための、窒化ホウ素を含む焼結体から構成される支持部材と
を含む、ネオジム合金製造装置。
(12)
 前記支持部材が、10MPa以上の3点曲げ強さおよび3ppm/K以下の線熱膨張係数を有する、(11)に記載のネオジム合金製造装置。
(13)
 前記支持部材が、前記ノズルまたは前記坩堝と同じ窒化ホウ素を含む焼結体から構成される、(11)または(12)に記載のネオジム合金製造装置。
 本発明の窒化ホウ素製のノズルおよび坩堝は、ネオジムを含んだ金属溶湯に対する耐食性に優れるため、ネオジム合金の製造で用いた際に長い耐用寿命を有することができ、効率的かつ安定的なネオジム合金の製造を可能とする。
図1はネオジム合金粉末を製造する装置の構造を示す概略図であって、主にノズルの構造に注目したものである。 図2はネオジム合金粉末を製造する装置の構造を示す概略図であって、主に坩堝の構造に注目したものである。
 本発明の実施形態に係る溶融金属吐出用ノズルおよび溶融金属製造用坩堝は、耐熱性および耐熱衝撃性を確保するために、窒化ホウ素(BN)を50.0wt%以上含む。窒化ホウ素は、代表的な難焼結性のセラミックスであるため、焼結助剤を添加しないと高密度の焼結体を得ることは困難である。窒化ホウ素が有する酸素量、すなわち酸化ホウ素を焼結助剤の代替として使用することも考えられるが、本発明の実施形態においては焼結体の原料となる窒化ホウ素は、不可避的に混入する酸化ホウ素を除き、酸化ホウ素を実質的に含有しないことが好ましい。なお「不可避的に混入する酸化ホウ素」の量は、窒化ホウ素の比表面積に応じて変化しうる(例えば、窒化ホウ素の粉末の粒径に応じて変化する)ものである。しかし例えば酸化ホウ素の量は、焼結体の原料として使用できる窒化ホウ素の粉末が平均粒径18μm程度の場合には、酸素含有量に換算して1.5wt%以下、好ましくは1.0wt%以下、より好ましくは0.5wt%以下、さらに好ましくは0.3wt%以下とすることができる。そしてこのように酸素含有量が非常に少ない場合には、焼結助剤として金属酸化物を用いることが望ましく、焼結助剤としての金属酸化物の添加量は、2.5wt%以上が好ましい。これに応じて、窒化ホウ素の上限は97.5wt%が好ましい。窒化ホウ素の比率が高すぎると、焼結体の硬度が不足しノズルまたは坩堝として不適となる問題がありえる。また窒化ホウ素の比率が低すぎると、焼結体の開気孔率が高くなりすぎノズルまたは坩堝としての耐用寿命に悪影響が出ることがありえる。また、上記したように、不可避的に混入する量のみしか実質的に含まれない含有量で酸素を有する窒化ホウ素を原料とする場合、その原料から得られる焼結体もまた酸化ホウ素を不可避的に混入する量のみしか実質的に含まないものとすることができる。
 本発明の実施形態に係るノズルまたは坩堝を構成する焼結体は、不可避的な不純物(すなわち、製造工程上の混入の阻止が現実的とは言えない不純物)を除き、Al、Zr、Mg、Si、もしくはHfの酸化物または窒化物を含まないことが望まれる。これは、そうした元素の酸化物や窒化物は金属ネオジムに対する反応性が高いため、そうした酸化物や窒化物が含まれてしまうと当該反応から生じる望ましからざる作用を充分に克服できない問題を有しうるためである。
 窒化ホウ素含有量は、ホウ素と窒素含有量を測定して得られるものであるが、本発明に於いては、後述するように、従来技術に係る窒化ホウ素焼結体では最も一般的に使用されるホウ酸やホウ酸系の助剤を使用しない。このために本発明の実施形態においては、焼結体を粉砕してホウ素含有量のみを測定し、BN組成を仮定して窒化ホウ素含有量を求めることもできる。
 窒化ホウ素焼結体を構成する含有成分は、例えば蛍光X線分析装置(XRF)、エネルギー分散型蛍光X線分析装置(EDX)、原子吸光光度計(AAS)、プラズマ発光分光分析装置(ICP)などによって測定することができる。
 ノズルの耐用寿命は、溶融金属を吐出することにともなう損傷の速さによって定まるのが一般的である。また坩堝の耐用寿命は、溶融金属と高温で接触することにともなう損傷の速さによって定まるのが一般的である。このため本発明の実施形態に係るノズルおよび坩堝では、ネオジムを含んだ金属溶湯に対する耐摩耗性を確保するため、以下のような特徴を有することが好ましい。すなわち溶融金属は、ノズルまたは坩堝との接触表面から連通細孔、すなわち開気孔を通って厚み方向に侵食するため、ノズルおよび坩堝は緻密で開気孔の少ない材質からなることが好ましい。例えば本発明の実施形態では、窒化ホウ素焼結体中のCaO(カルシア)の量が0.3wt%以上12.5wt%以下、より好ましくは0.6wt%以上12.5wt%以下であり、かつY23(イットリア)の量が1.0wt%以上40.0wt%以下、より好ましくは1.9wt%以上38.0wt%以下となるようにすると、開気孔率の低い窒化ホウ素焼結体を得ることができる。本発明の実施形態に係るノズルまたは坩堝は、開気孔率が好ましくは5%以下、より好ましくは3%以下とすることができる。開気孔率が高すぎると、ネオジムを含んだ金属溶湯との接触による摩耗が速すぎ、耐用寿命が短くなってしまう問題が発生しうる。なお、焼結体中の酸化カルシウムの量および酸化イットリウムの量はそれぞれ、焼結体中に含まれるカルシウム元素およびイットリウム元素の量から算出できる換算量である。本明細書中では、別段の断わりがないかぎりは、酸化カルシウムとは無水酸化カルシウムのことを指す。また、本明細書において値の範囲(例えば記号チルダ「~」で示される範囲)は、特段の断わりがないかぎりは下限値と上限値を含む「…以上、…以下」の意味を有する。
 好ましくは、焼結助剤としてのY23に対するCaOの割合(Y23/CaOの値)は、モル比にて0.1以上4.0以下の範囲、より好ましくは0.1以上2.0以下の範囲、さらに好ましくは0.2以上1.5以下の範囲とする。Y23がCaOに対して多すぎる(上記割合が大きすぎる)、またはY23がCaOに対して少なすぎる(上記割合が小さすぎる)と、焼結体をノズルとして使用したときに耐摩耗性が劣るおそれがある。またそのようにY23がCaOに対して多すぎるか少なすぎる焼結体を坩堝として使用したときには、焼結体の開気孔率が高すぎ、ネオジムを含んだ溶湯の漏出につながりかねず坩堝として好ましくないと考えられる。なお、特定の理論に束縛されることを望むものではないが、Y23とCaOのモル比を例えば上記のように適切に設定することで、焼結後に適切な組成のイットリウムとカルシウムの化合物が得られ、焼結体に好ましい物性をもたらすと想定される。また、本発明の実施形態に係る焼結体の製造にあたっては、焼結温度は組成に応じて選択できるが、例えば1600℃以上2050℃以下の範囲の温度で焼結することができる。また本発明の実施形態に係る焼結体の製造にあたっては、窒素雰囲気などの不活性雰囲気下で行うことができる。
 焼結体における開気孔率は、JIS R 1634:1998「ファインセラミックスの焼結体密度・開気孔率の測定方法」に準拠したアルキメデス法により算出することができる。また窒化ホウ素焼結体の寸法と質量から嵩密度を求めることができ、嵩密度と理論密度から全気孔率を算出することができる。焼結体における全気孔率は好ましくは25%以下、より好ましくは20%以下、さらに好ましくは10%以上20%以下の範囲とすることができる。
 また焼結体における閉気孔率は、前述の方法で算出した全気孔率と開気孔率の差から算出できる。
 本発明の実施形態に係るノズルにおいては、ショア硬度が11Hs以上であることが好ましく、12Hs以上であることがさらに好ましい。ショア硬度が低すぎると、溶湯に対するノズルとしての耐摩耗性が低くなりすぎて耐用寿命が短くなってしまう欠点がありえる。ショア硬度の上限には特に制限は無いが、加工性を考慮すると例えば70Hs以下、好ましくは60Hs以下であってもよい。一般的に窒化ホウ素焼結体には気孔が存在するため、乾式加工が採用されており、ショア硬度が高すぎると、加工工具の摩耗が激しくなり生産性が低下する。
 本発明の実施形態に係る坩堝においては、ショア硬度は特に制限は無いが、加工性を考慮すると例えば70Hs以下、好ましくは60Hs以下であってもよい。一般的に窒化ホウ素焼結体には気孔が存在するため、乾式加工が採用されており、ショア硬度が高すぎると、加工工具の摩耗が激しくなり生産性が低下する。
 好ましい実施形態におけるノズルまたは坩堝が、窒化ホウ素を50.0wt%以上97.5wt%以下の割合で含み、かつ不可避的な不純物を除いてAl、Zr、Mg、Si、もしくはHfの酸化物または窒化物を含まず、かつ含有するCaの重量比率が、CaOに換算した量で0.3wt%以上12.5wt%以下であり、かつ含有するYの重量比率が、Y23に換算した量で1.0wt%以上40.0wt%以下であり、かつY23に対するCaOの割合(Y23/CaOの値)がモル比にて0.2以上1.5以下であるという特徴の組み合わせを有していてもよい。また好ましい実施形態におけるノズルが、窒化ホウ素を50.0wt%以上97.5wt%以下の割合で含み、かつ不可避的な不純物を除いてAl、Zr、Mg、Si、もしくはHfの酸化物または窒化物を含まず、かつ含有するCaの重量比率が、CaOに換算した量で0.3wt%以上12.5wt%以下であり、かつ含有するYの重量比率が、Y23に換算した量で1.0wt%以上40.0wt%以下であり、かつY23に対するCaOの割合(Y23/CaOの値)がモル比にて0.2以上1.5以下であり、かつショア硬度が11Hs以上であるという特徴の組み合わせを有していてもよい。
 図1は、ネオジム合金粉末を製造する装置の構造を示す概略図であって、主にノズルの構造に注目したものである。溶融部(坩堝)2に投入されたネオジムを含む金属は、加熱部(ヒーター)3によって溶融され溶融金属(溶湯)1となる。加熱部(ヒーター)4で加熱されるノズル5を、溶融金属1が通り、冷却部(ディスクまたはロール)6に送られて凝固することで、ネオジム合金粉末が得られる。またこの図1に示した態様では、ノズル5を支持するための支持部材7も描いてある。
 図2は、本発明の別の実施形態に係る、ネオジム合金粉末を製造する装置の構造を示す概略図であって、特に坩堝の構造に注目したものである。溶湯11を収めた溶融部(坩堝)12は加熱部(ヒーター)13により加熱される。傾ける手段(不図示)により坩堝12を傾けることで、溶湯11を冷却部(ディスクまたはロールなど)16へと(例えば図示していないタンディッシュなどを介して)送り、冷却して凝固させることで、ネオジム合金粉末が得られる。
 本発明の実施形態においては、製造されるネオジム合金が、ネオジム(元素)を15wt%以上35wt%以下で含有することが好ましく、18wt%以上35wt%以下で含有することがさらに好ましく、20wt%以上35wt%以下で含有することがよりさらに好ましい。ネオジムの量が少なすぎると、得られる合金に期待する性能(例えば、ネオジム磁石としての磁力)が不十分になるおそれがある。
 また本発明の実施形態においては、上述したノズルを支持するための支持部材(例えばノズル固定部品)を、上述したノズルと組み合わせて使用する態様も提供される。この支持部材は好ましくは、窒化ホウ素焼結体を含むように構成される。これは、ノズルと支持部材を同様の材料から構成することで、ノズル使用時に掛かる高温による熱膨張を受けても支持部材が破損しづらいという効果を奏することができるためである。例えば、ノズルと支持部材が同じ組成の窒化ホウ素焼結体から作成されていてもよいし、あるいは支持部材は下記の好ましい物性を有するような他の組成の窒化ホウ素焼結体から作成されていてもよい。
 上記支持部材は、JIS R1601:2008に則って測定される3点曲げ強さが10MPa以上であることが好ましく、またJIS R1618:2002に則って測定される線熱膨張係数が3ppm/K以下であることが好ましい。このような3点曲げ強さと線熱膨張係数を有する窒化ホウ素焼結体製の支持部材は、窒化ホウ素焼結体製のノズルと好適に組み合わせて使用可能である。
 本発明の或る実施形態においては、上述したノズルおよび坩堝のうちの少なくとも一方と、支持部材とを含んだ、ネオジム合金製造装置を提供可能である。
 以下、実施例により、本発明を詳細に説明する。
 粒度は、ヘキサメタリン酸ナトリウムの20wt%水溶液2mlを混ぜた純水200cc中に、測定サンプル60mgを投入し、超音波ホモジナイザー(日本精機製作所製、商品名「US-300」)で3分間分散させた後、マイクロトラック(日機装社製、商品名「MT3300EXII」)により測定した。マイクロトラックの循環器の溶媒には純水を使用し、測定サンプルが適正濃度になるまで調整した。
 ショア硬度は、作製した窒化ホウ素焼結体から幅4mm×長さ40mm×厚さ3.0mmの試料に加工し、島津製作所社製のD型を用いてJIS Z 2246:2000に準じて測定した。
 酸素量は、堀場製作所社製のO/N同時分析機(EMGA-620W/C)を用い測定した。
 窒化ホウ素焼結体を構成する含有成分の分析は以下のように行った。すなわち、窒化ホウ素焼結体を窒化ケイ素乳鉢で粉砕し、Alリングにブリケット成型してから、蛍光X線(XRF)分析装置(リガク社製、PrimusII)を用いて測定した。XRFで検出された元素の量は、酸化物換算にて算出した。
 窒化ホウ素焼結体の耐熱衝撃性は、作製した窒化ホウ素焼結体からのサンプルを加熱し、クラックが生じるまでの温度として評価した。
(実施例a1~a11および比較例a1~a4に共通する製法)
 窒化ホウ素粉末(デンカ株式会社製、酸素含有量1.0wt%、平均粒径20μm)と、CaO粉末(キシダ化学社製、平均粒径30μm)と、Y23粉末(阿南化成社製、平均粒径4.5μm)とを種々の割合で10Lの円柱状樹脂ポットにφ10mmの窒化ケイ素メディアと共に充填し、ボールミルで2時間混合し、表1に示す窒化ホウ素の混合粉末を得た。この混合粉末を一軸成型後、窒素雰囲気下、温度2000℃、加圧力12MPaでホットプレス焼結してセラミックス焼結体を作製した。この焼結体を加工し、外径60mm、内径30mm、高さ150mmの窒化ホウ素焼結体を得た。また、ホットプレス焼結して得られた窒化ホウ素焼結体の残部を窒化ケイ素乳鉢で粉砕し、XRFによる含有成分の測定を行った。その結果、表1記載の条件で焼結して得られた窒化ホウ素焼結体はB、Ca、Yの金属元素を表1に示す量と実質的に等しい量を有することを確認した。その他の金属元素は焼結体中に確認されなかった。これはすなわち、Al、Zr、Mg、Si、およびHfの酸化物および窒化物が、焼結体中に含まれていないことを裏づける結果である。
(実施例a1)
 表1の実施例a1記載の原料は、上記ホットプレス条件にて処理し、ノズルの形状になるよう加工した。得られた窒化ホウ素ノズルの開気孔率は0.7%、ショア硬度は14Hsであった。
 1350℃に加熱した21.5wt%Nd-76.5wt%Fe-1.0wt%B-1.0wt%Dyの配合比のNd混合物を金属溶湯として用いた。この金属溶湯を、窒素ガス雰囲気下にて、1300℃まで予備過熱を行った実施例a1のノズルに通して、15時間連続しての鋳造を行った。実施例a1のノズルを使用した場合、鋳造中にノズルの詰まりは確認されなかった。使用したノズル部の摩耗状態を確認するため、冷えて固まった鋳造物ごとノズルを切断し、使用後のノズルの先端部の厚みを測定した。その結果、ノズル径の摩耗が使用前を基準として23%であることがわかった。
(実施例a2~a11)
 表1の実施例a2~a11記載の原料は、実施例a1と同様の処理を行い、ノズル形状に加工した。これらのノズルを、実施例a1の記載と同様連続鋳造を行い、冷却後にそのノズルを切断し、ノズルの厚みを確認した。
 実施例a2~実施例a9のノズルは開気孔率0.2~1.0%、ショア硬度15~24Hsであり、ノズル径の摩耗は6~27%であった。また、実施例a10のノズルは開気孔率1.5%、ショア硬度18Hs、ノズル径の摩耗は46%であった。実施例a11のノズルは開気孔率2.5%、ショア硬度18Hs、ノズル径の摩耗は52%であった。このことから、実施例a2~実施例a9は、実施例a10および実施例a11に比べてもさらに、ノズルの摩耗をさらに抑制でき、より一層優れたノズルであることがわかった。また、いずれの実施例においてもノズルに割れ(欠損)は無く、ノズルとしての性能に大きな問題はないことがわかった。
(比較例a1~a4)
 表1の比較例a1~a4記載の原料を、実施例a1と同様の処理を行い、ノズル形状に加工した。比較例a1~a4は、開気孔率が7.3~23.0%と実施例a1~a11に比べて高くなった。さらに比較例a1および比較例a3はショア硬度が10Hsと低くなった。
 これらの比較例に係るノズルを、実施例a1と同様の鋳造処理に掛けた。比較例a1は8.5時間、比較例a3は6時間の連続鋳造後に鋳造物の吐出量を制御できなくなり、安定した鋳造を維持することができなかった。ノズルの状態を確認するため、連続鋳造を止め、徐冷した後、固化した鋳造物の観察を行った。その結果、ノズルは、ノズルの吐出口から垂直方向に向かって18mmの部分までが欠損していた。さらにノズルを切断し、ノズル先端部のノズル径の摩耗が90%~97%であることを確認した。ノズルに割れ(欠損)が生じると正常な使用ができないため、ノズルとしての性能には大きな問題があることになる。
 また比較例a2は11時間、比較例a4は9.5時間の連続鋳造後に鋳造物の吐出量を制御できなくなり、安定した鋳造を維持することができなかった。ノズルの状態を確認するため、連続鋳造を止め、徐冷した後、固化した鋳造物の観察を行った。その結果、ノズルの吐出口から垂直方向に向かって48mmの部分までが折れて欠損していた。さらにノズルを切断し、ノズル先端部のノズル径の摩耗が38%~48%であることを確認した。原因を考察すると、比較例a2および比較例a4は、ノズルの硬度が25Hsと高く、摩耗の具合は小さかったが、開気孔率が大きいため、ノズル側面部から金属溶湯の染み出しが発生し、欠損したものと考えられる。また比較例a1および比較例a3は、ショア硬度が10Hsであり、ノズルの摩耗が顕著に進行し、その結果、ノズルの欠損が発生したと考えられる。また比較例a2および比較例a4が他の比較例に比べて早期に吐出量を制御できなくなったことから、ネオジム合金の鋳造では、ショア硬度が開気孔率に比べて重要であることが示唆される。しかしながら、いずれの比較例でも実施例に比べて劣った性能であったことから、ショア硬度と開気孔率の適切な範囲の組み合わせが、ネオジム合金の鋳造において重要であることも理解される。
Figure JPOXMLDOC01-appb-T000001
(実施例b1~b7および比較例b1~b4に共通する製法)
 窒化ホウ素粉末(デンカ株式会社製、酸素含有量1.0wt%、平均粒径20μm)と、CaO粉末(キシダ化学社製、平均粒径30μm)と、Y23粉末(阿南化成社製、平均粒径4.5μm)とを種々の割合で10Lの円柱状樹脂ポットにφ10mmの窒化ケイ素メディアと共に充填し、ボールミルで2時間混合し、表2に示す窒化ホウ素の混合粉末を得た。この混合粉末を一軸成型後、窒素雰囲気下、温度2000℃、加圧力12MPaでホットプレス焼結してセラミックス焼結体を作製した。この焼結体を坩堝の形状に加工して、外径150mm、内径130mm、高さ150mm、底部の厚さが10mmを有する坩堝を得た。また、ホットプレス焼結して得られた窒化ホウ素焼結体の残部を窒化ケイ素乳鉢で粉砕し、XRFによる含有成分の測定を行った。その結果、表2記載の条件で焼結して得られた窒化ホウ素焼結体はB、Ca、Yの金属元素を表2に示す量と実質的に等しい量を有することを確認した。その他の金属元素は焼結体中に確認されなかった。これはすなわち、Al、Zr、Mg、Si、およびHfの酸化物および窒化物が、焼結体中に含まれていないことを裏づける結果である。
(実施例b1)
 表2の実施例b1記載の原料は、上記ホットプレス条件にて処理し、上述した坩堝の形状になるよう加工した。得られた窒化ホウ素坩堝の開気孔率は0.7%、耐熱衝撃性は1500℃であった。
 1350℃に加熱した21.5wt%Nd-76.5wt%Fe-1.0wt%B-1.0wt%Dyの配合比のNd混合粉末を、上記で加工して得られた坩堝に充填した。坩堝に充填した混合粉末は、窒素ガス雰囲気下にて、常温で4時間保持し、常温から1000℃までを20℃/min、1200℃までを10℃/min、1400℃までを2.5℃/minで昇温し、さらに1400℃を32時間保持し、溶融した。この溶融物(溶湯)を、雰囲気温度1400℃の環境下で上記坩堝を135°に傾けることで坩堝の外部へと放出した。溶融物の放出開始から15分後、加熱を止め、雰囲気の冷却を行い、坩堝を回収した。回収した坩堝を確認した結果、充填したNd混合粉末の付着率は使用量全体に対して1.3wt%であった。また、加熱処理による坩堝の割れは確認されなかった。さらに坩堝を切断し、坩堝の側面及び底部の厚みを測定し、測定箇所全てにおいて坩堝として使用した後の焼結体の厚みが10mmであることがわかった。これはすなわち、加熱処理によって焼結体の厚みが減損していないことを意味する。
(実施例b2~b7)
 表2の実施例b2~b7記載の原料は、実施例b1と同様の処理を行い、上述した坩堝の形状に加工した。これらの坩堝を、実施例b1の記載と同様の加熱処理を行い、冷却後にその坩堝に付着したNd混合粉末の割合、クラックの発生の有無、さらに切断した坩堝の厚みを確認した。
 実施例b2~b5の坩堝は開気孔率0.2~1.3%、耐熱衝撃性1200~1500℃であり、充填したNd混合粉末の付着率は1.5~3.6wt%、坩堝の厚みは加熱処理前と同様10mmであった。
 また、実施例b6の坩堝は開気孔率1.4%、耐熱衝撃性1200℃であり、充填したNd混合粉末の付着率は10.7wt%、坩堝の厚みは加熱処理前と同様に10mmであった。
 実施例b7の坩堝は開気孔率2.2%、耐熱衝撃性1100℃であり、充填したNd混合粉末の付着率は11.5wt%、坩堝の厚みは加熱処理前と同様に10mmであった。このことから、実施例b2~実施例b5は、実施例b6および実施例b7に比べて、Nd混合物が坩堝に付着することをさらに抑制でき、より一層優れた坩堝であることがわかった。
(比較例b1~b4)
 表2の比較例b1~b4記載の原料を、実施例b1と同様の処理を行い、坩堝形状に加工した。比較例b1~b4は、開気孔率が9.3~28.3%と実施例b1~b7に比べて高くなった。さらに比較例b2および比較例b3は耐熱衝撃性が500~800℃と低くなった。
 これらの比較例に係る坩堝を、実施例b1と同様の加熱処理に掛けた。比較例b1は1400℃での保持で26時間経過した際に、また比較例b4は30時間の保持後に、それぞれ坩堝の外壁に溶融金属の染み出しが観察された。これはすなわち、ネオジム金属成分が坩堝外壁を経由して外部へ流出したということであり、坩堝としての機能を発揮できなくなり、安定した鋳造を維持することができなくなったことを意味する。
 比較例b1およびb4の坩堝の状態を確認するため、加熱処理を止め、徐冷した後、固化した鋳造物の観察を行った。その結果、坩堝と溶融金属が接する全域で、坩堝外壁部からの染み出しが発生していた。坩堝の割れは確認されなかった。さらに坩堝を切断して観察したところ、坩堝の厚みは実施例同様に変化していなかった。
 また比較例b2については、実施例b1同様の加熱処理を行ったところ、充填したNd混合粉末の付着率が19.3wt%であった。坩堝の状態を確認するため、加熱処理を止め、徐冷した後、固化した鋳造物の観察を行った。その結果、坩堝の底部の内壁に大きさ2.6mmのクラックを確認した。充填した物質の坩堝の外部へのこのクラック部からの染み出しはこの時点では確認されなかったが、安全上好ましくなく、坩堝としての製品寿命に問題があることが確認された。
 また、比較例b1~b4のいずれでも充填したNd混合粉末の付着率が19.3wt%~39.3wt%と実施例に比べて相当多くなった。これは、ネオジム合金の製造の歩留まりにおいて不利であるだけではなく、坩堝自体の品質への影響も考えられ、好ましくない。
Figure JPOXMLDOC01-appb-T000002
1 溶融金属(溶湯)
2 溶融部(坩堝)
3 加熱部(ヒーター)
4 加熱部(ヒーター)
5 ノズル
6 冷却部(ディスク、ロール)
7 支持部材
11 溶融金属(溶湯)
12 溶融部(坩堝)
13 加熱部(ヒーター)
16 冷却部(ディスク、ロール)

Claims (13)

  1.  ネオジム合金製造用の、窒化ホウ素を含む焼結体から構成されるノズルまたは坩堝であって、
     窒化ホウ素を50.0wt%以上97.5wt%以下の割合で含み、
     不可避的な不純物を除いてAl、Zr、Mg、Si、もしくはHfの酸化物または窒化物を含まないことを特徴とする、ネオジム合金製造用のノズルまたは坩堝。
  2.  含有するCaの重量比率が、CaOに換算した量で0.3wt%以上12.5wt%以下であり、かつ含有するYの重量比率が、Y23に換算した量で1.0wt%以上40.0wt%以下であることを特徴とする、請求項1に記載のノズルまたは坩堝。
  3.  Y23に対するCaOの割合(Y23/CaOの値)がモル比にて0.2以上1.5以下であることを特徴とする、請求項2に記載のノズルまたは坩堝。
  4.  ネオジム元素を15wt%以上35wt%以下で含有するネオジム合金の製造に用いられることを特徴とする、請求項1から3のいずれか一項に記載のノズルまたは坩堝。
  5.  ショア硬度が11Hs以上である、請求項1から4のいずれか一項に記載のノズル。
  6.  ネオジム合金の製造方法であって、
     酸素含有量が1.5wt%以下である窒化ホウ素を含んだ原料を焼結し、窒化ホウ素を含む焼結体から構成されるノズルおよび溶融部を作成するステップと、
     前記溶融部にネオジムを含む材料を投入し加熱して溶湯とするステップと、
     前記溶湯を、前記ノズルを通して冷却部へ送るステップと、
     前記冷却部において溶湯を凝固させ、ネオジム合金を得るステップと
    を含み、
     前記ノズルおよび前記溶融部のうちの少なくとも一方は、窒化ホウ素を50.0wt%以上97.5wt%以下の割合で含み、かつ、
     前記ノズルおよび前記溶融部のうちの少なくとも一方は、不可避的な不純物を除いてAl、Zr、Mg、Si、もしくはHfの酸化物または窒化物を含まない
    ことを特徴とする、製造方法。
  7.  前記原料が、前記原料全体の量を基準として、0.3wt%以上12.5wt%以下のCaOと、1.0wt%以上40.0wt%以下のY23を含む、請求項6に記載の製造方法。
  8.  Y23に対するCaOの割合(Y23/CaOの値)がモル比にて0.2以上1.5以下であることを特徴とする、請求項7に記載の製造方法。
  9.  前記ネオジム合金が、ネオジム元素を15wt%以上35wt%以下で含有することを特徴とする、請求項6から8のいずれか一項に記載の製造方法。
  10.  前記ノズルのショア硬度が11Hs以上である、請求項6から9のいずれか一項に記載の製造方法。
  11.  請求項1から5のいずれか一項に記載のノズルおよび坩堝のうちの少なくとも一方と、
     前記ノズルを支持するための、窒化ホウ素を含む焼結体から構成される支持部材と
    を含む、ネオジム合金製造装置。
  12.  前記支持部材が、10MPa以上の3点曲げ強さおよび3ppm/K以下の線熱膨張係数を有する、請求項11に記載のネオジム合金製造装置。
  13.  前記支持部材が、前記ノズルまたは前記坩堝と同じ窒化ホウ素を含む焼結体から構成される、請求項11または12に記載のネオジム合金製造装置。
PCT/JP2017/019949 2016-05-31 2017-05-29 ネオジム合金製造用の窒化ホウ素ノズルおよび窒化ホウ素坩堝、ならびに当該ノズルもしくは坩堝を用いたネオジム合金の製造方法 WO2017209063A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016109403A JP6725325B2 (ja) 2016-05-31 2016-05-31 ネオジム合金製造用の窒化ホウ素ノズルおよび当該ノズルを用いたネオジム合金の製造方法
JP2016-109403 2016-05-31
JP2016-109404 2016-05-31
JP2016109404A JP2017214246A (ja) 2016-05-31 2016-05-31 ネオジム合金製造用の窒化ホウ素坩堝および当該坩堝を用いたネオジム合金の製造方法

Publications (1)

Publication Number Publication Date
WO2017209063A1 true WO2017209063A1 (ja) 2017-12-07

Family

ID=60478056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019949 WO2017209063A1 (ja) 2016-05-31 2017-05-29 ネオジム合金製造用の窒化ホウ素ノズルおよび窒化ホウ素坩堝、ならびに当該ノズルもしくは坩堝を用いたネオジム合金の製造方法

Country Status (1)

Country Link
WO (1) WO2017209063A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231916A (zh) * 2022-07-13 2022-10-25 西安西工大思强科技股份有限公司 一种镁铝尖晶石成型坩埚及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741464A (en) * 1986-05-23 1988-05-03 General Motors Corporation Multiple orifice nozzle for jet casting rapidly solidified molten metal
JPH01246178A (ja) * 1988-03-25 1989-10-02 Denki Kagaku Kogyo Kk 溶鋼用耐火物の製造方法
US5201359A (en) * 1990-09-24 1993-04-13 General Motors Corporation Rapid solidification apparatus
JP2002336941A (ja) * 2001-05-11 2002-11-26 Shin Etsu Chem Co Ltd ストリップキャスト用タンディッシュ、これを用いた希土類合金薄帯の製造方法及び希土類焼結磁石

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741464A (en) * 1986-05-23 1988-05-03 General Motors Corporation Multiple orifice nozzle for jet casting rapidly solidified molten metal
JPH01246178A (ja) * 1988-03-25 1989-10-02 Denki Kagaku Kogyo Kk 溶鋼用耐火物の製造方法
US5201359A (en) * 1990-09-24 1993-04-13 General Motors Corporation Rapid solidification apparatus
JP2002336941A (ja) * 2001-05-11 2002-11-26 Shin Etsu Chem Co Ltd ストリップキャスト用タンディッシュ、これを用いた希土類合金薄帯の製造方法及び希土類焼結磁石

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231916A (zh) * 2022-07-13 2022-10-25 西安西工大思强科技股份有限公司 一种镁铝尖晶石成型坩埚及其制造方法
CN115231916B (zh) * 2022-07-13 2023-08-15 西安西工大思强科技股份有限公司 一种镁铝尖晶石成型坩埚及其制造方法

Similar Documents

Publication Publication Date Title
US7157148B2 (en) Heat-resistant coated member
WO2009122709A1 (ja) R-t-b系焼結磁石およびその製造方法
JPWO2008093577A1 (ja) 複合焼結体
WO2005113466A1 (ja) 高熱伝導性窒化ケイ素焼結体及び窒化ケイ素構造部材
JP5046221B2 (ja) 高い信頼性を持つ高熱伝導窒化ケイ素セラミックスの製造方法
WO2017209063A1 (ja) ネオジム合金製造用の窒化ホウ素ノズルおよび窒化ホウ素坩堝、ならびに当該ノズルもしくは坩堝を用いたネオジム合金の製造方法
EP1493515B1 (en) Ceramic plate as side dam for twin drum type thin-sheet continuous casting
CS275884B6 (en) Manufacturing process of self-supporting ceramic composite structure
JP6725325B2 (ja) ネオジム合金製造用の窒化ホウ素ノズルおよび当該ノズルを用いたネオジム合金の製造方法
WO2001030722A1 (fr) Briquette frittee en ceramique composite a structure de base en wc
JP2017214246A (ja) ネオジム合金製造用の窒化ホウ素坩堝および当該坩堝を用いたネオジム合金の製造方法
JP2007506864A (ja) 金属蒸発用容器及びその製造方法
WO2017209061A1 (ja) 耐食性に優れたbn焼結体
EP2691349B1 (fr) Grains fondus atz
JP2017150040A (ja) アルミニウム合金−セラミックス複合材およびアルミニウム合金−セラミックス複合材の製造方法
JP5028962B2 (ja) El発光層形成用スパッタリングターゲットとその製造方法
EP1435501A1 (en) Heat-resistant coated member
JP5130599B2 (ja) 六方晶系窒化ホウ素焼結体の製造方法及び六方晶系窒化ホウ素焼結体
US6598656B1 (en) Method for fabricating high-melting, wear-resistant ceramics and ceramic composites at low temperatures
JP2005131656A (ja) アルミニウム溶湯用部材
JP2002045957A (ja) 溶融金属に対する耐食性に優れた溶融金属用部材およびその製造方法
JP2013159514A (ja) アルミナジルコニア耐火原料の製造方法、アルミナジルコニア耐火原料およびプレート耐火物
JP3929335B2 (ja) 窒化アルミニウム焼結体およびその製造方法
JP3944700B2 (ja) 希土類合金溶解用坩堝および希土類合金
KR20030096057A (ko) 질화규소 소결체, 절삭 팁, 내마모성 부재, 절삭공구 및질화규소 소결체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806618

Country of ref document: EP

Kind code of ref document: A1