WO2017208496A1 - 浄化ユニット及び浄化装置 - Google Patents

浄化ユニット及び浄化装置 Download PDF

Info

Publication number
WO2017208496A1
WO2017208496A1 PCT/JP2017/003376 JP2017003376W WO2017208496A1 WO 2017208496 A1 WO2017208496 A1 WO 2017208496A1 JP 2017003376 W JP2017003376 W JP 2017003376W WO 2017208496 A1 WO2017208496 A1 WO 2017208496A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
purification unit
contact
purification
electronic connection
Prior art date
Application number
PCT/JP2017/003376
Other languages
English (en)
French (fr)
Inventor
雄也 鈴木
直毅 吉川
亮 釜井
矢口 充雄
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP17806058.8A priority Critical patent/EP3466896A4/en
Priority to US16/304,163 priority patent/US20200317544A1/en
Priority to JP2018520346A priority patent/JP6643642B2/ja
Priority to CN201780032778.2A priority patent/CN109195925A/zh
Publication of WO2017208496A1 publication Critical patent/WO2017208496A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/36Biochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • C02F1/505Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • C02F2001/46166Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a purification unit and a purification device.
  • this invention relates to the purification
  • water treatment methods such as an activated sludge method utilizing aerobic respiration of microorganisms and an anaerobic treatment method utilizing anaerobic respiration of microorganisms are provided.
  • the activated sludge method In the activated sludge method, mud containing microorganisms (activated sludge) and wastewater are mixed in a biological reaction tank, and the air necessary for the microorganisms to oxidize and decompose organic matter in the wastewater is sent to the biological reaction tank and stirred. And the waste water is purified.
  • the activated sludge method requires enormous electric power for aeration of the biological reaction tank.
  • a large amount of sludge (a dead body of microorganisms), which is an industrial waste, is generated.
  • the conventional anaerobic treatment method has a problem that biogas containing a large amount of flammable and odorous odor is generated as a product of anaerobic respiration.
  • the present invention has been made in view of such problems of the conventional technology.
  • the objective of this invention is providing the purification
  • a purification unit includes a first conductor including a catalyst and a second conductor that is in contact with and electrically connected to the first conductor. With body.
  • the first conductor has a joint portion formed of a contact surface with the second conductor and an electronic connection portion that conducts electrons from the joint portion to the catalyst.
  • the second conductor has a joint portion formed of a contact surface with the first conductor, and an electronic connection portion that conducts electrons that have moved from the microorganism to the second conductor to the joint portion.
  • the electronic connection part of the first conductor has a higher electrical resistivity than the joint part of the first conductor, and / or the electronic connection part of the second conductor is the joint of the second conductor. It has a higher electrical resistivity than the part. At least part of the first conductor is in contact with a gas phase containing oxygen, and at least part of the second conductor is in contact with the object to be processed.
  • a purification device includes the above-described purification unit, and a treatment tank for holding therein the waste water to be purified by the purification unit and the purification unit.
  • the purification unit is installed such that at least a part of the first conductor is in contact with the gas phase and at least a part of the second conductor is in contact with the waste water.
  • the purification device includes the purification unit described above.
  • the purification unit is installed such that at least a part of the first conductor is in contact with the gas phase, and at least a part of the second conductor is in contact with the soil to be purified by the purification unit.
  • FIG. 1 is a perspective view showing an example of a purification device according to the first embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is an exploded perspective view showing a purification unit in the purification apparatus.
  • FIG. 4 is a cross-sectional view for explaining an electronic connection portion and a joint portion in the purification unit.
  • FIG. 5 is a cross-sectional view showing an example of the configuration for the electronic connection portion to have a higher electrical resistivity than the joint portion in the purification unit.
  • FIG. 6 is a cross-sectional view showing another example of a configuration for the electronic connection portion to have a higher electrical resistivity than the joint portion in the purification unit.
  • FIG. 7 is a cross-sectional view showing an example of a purification unit according to the second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing an example of a purification unit according to the third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing an example of a purification unit according to the fourth embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing an example of a purification unit according to the fifth embodiment of the present invention.
  • the purification apparatus 100 includes a purification unit 1 as shown in FIGS. 1 and 2.
  • the purification unit 1 includes a purification structure 30 including a positive electrode 10 that is a first conductor and a negative electrode 20 that is a second conductor.
  • the contact surface 10b of the positive electrode 10 and the contact surface 20a of the negative electrode 20 facing each other are in contact with each other and are electrically connected.
  • the gas diffusion layer 12 of the positive electrode 10 is in contact with the contact surface 20a of the negative electrode 20, and the water repellent layer 11 is exposed to the gas phase 40 side.
  • the purification structure 30 is laminated on the cassette base material 50.
  • the cassette base material 50 is a U-shaped frame member along the outer peripheral portion of the surface 10 a of the positive electrode 10, and the upper part is open. That is, the cassette base material 50 is a frame member in which the bottom surfaces of the two first columnar members 51 are connected by the second columnar member 52.
  • the side surface 53 of the cassette substrate 50 is joined to the outer peripheral portion of the surface 10 a of the positive electrode 10, and the side surface 54 opposite to the side surface 53 is the outer periphery of the surface 60 a of the plate member 60. It is joined to the part.
  • the purification unit 1 formed by laminating the purification structure 30, the cassette base material 50 and the plate member 60 is arranged inside the treatment tank 70 so that the gas phase 40 is formed. Inside the treatment tank 70, waste water 80 as an object to be treated is held, and the positive electrode 10 and the negative electrode 20 are immersed in the waste water 80.
  • the positive electrode 10 includes a water repellent layer 11 having water repellency
  • the plate member 60 is made of a flat plate material that does not transmit the waste water 80. Therefore, the waste water 80 held inside the treatment tank 70 is separated from the inside of the cassette base material 50, and the internal space formed by the purification structure 30, the cassette base material 50 and the plate member 60 becomes the gas phase 40. ing.
  • the purification apparatus 100 is configured such that the gas phase 40 is opened to the outside air, or air is supplied to the gas phase 40 from the outside by, for example, a pump.
  • the positive electrode 10 that is the first conductor according to the present embodiment includes a water-repellent layer 11 and a gas diffusion layer 12 that is stacked so as to be in contact with the water-repellent layer 11. It consists of a gas diffusion electrode provided with. By using such a thin plate-like gas diffusion electrode, oxygen in the gas phase 40 can be easily supplied to the catalyst in the positive electrode 10.
  • the water repellent layer 11 in the positive electrode 10 is a layer having both water repellency and oxygen permeability.
  • the water repellent layer 11 is configured to allow oxygen to move from the gas phase 40 toward the liquid phase while favorably separating the gas phase 40 and the liquid phase in the electrochemical system in the purification unit 1. That is, the water-repellent layer 11 can suppress the movement of the waste water 80 toward the gas phase 40 while allowing oxygen in the gas phase 40 to pass through and moving to the gas diffusion layer 12.
  • “separation” here means physical interruption
  • the water repellent layer 11 is in contact with the gas phase 40 having a gas containing oxygen, and diffuses oxygen in the gas phase 40.
  • the water repellent layer 11 supplies oxygen to the gas diffusion layer 12 substantially uniformly. Therefore, the water repellent layer 11 is preferably a porous body so that the oxygen can be diffused.
  • the water repellent layer 11 since the water repellent layer 11 has water repellency, it can suppress that the pores of a porous body are obstruct
  • the waste water 80 hardly permeates into the water repellent layer 11, oxygen can be efficiently circulated from the surface in contact with the gas phase 40 in the water repellent layer 11 to the surface facing the gas diffusion layer 12. Become.
  • the water repellent layer 11 is preferably formed in a sheet shape from a woven fabric or a non-woven fabric.
  • the material constituting the water repellent layer 11 is not particularly limited as long as it has water repellency and can diffuse oxygen in the gas phase 40.
  • Examples of the material constituting the water repellent layer 11 include polyethylene, polypropylene, polybutadiene, nylon, polytetrafluoroethylene (PTFE), ethyl cellulose, poly-4-methylpentene-1, butyl rubber, and polydimethylsiloxane (PDMS). At least one selected from the group can be used. Since these materials are easy to form a porous body and also have high water repellency, they can suppress clogging of pores and improve gas diffusibility.
  • the water repellent layer 11 preferably has a plurality of through holes in the stacking direction X of the water repellent layer 11 and the gas diffusion layer 12.
  • the water repellent layer 11 may be subjected to a water repellent treatment using a water repellent as necessary in order to enhance water repellency.
  • a water repellent such as polytetrafluoroethylene may be attached to the porous body constituting the water repellent layer 11 to improve water repellency.
  • the gas diffusion layer 12 in the positive electrode 10 preferably includes a porous conductive material and a catalyst supported on the conductive material.
  • a catalyst is supported on the gas diffusion layer 12, and the catalyst is preferably an oxygen reduction catalyst.
  • the oxygen reduction reaction by oxygen, a hydrogen ion, and an electron with a catalyst.
  • the gas diffusion layer 12 is preferably a porous body having a large number of pores through which oxygen passes from the surface facing the water repellent layer 11 to the opposite surface.
  • the shape of the gas diffusion layer 12 is particularly preferably a three-dimensional mesh. Such a mesh shape makes it possible to impart high oxygen permeability and conductivity to the gas diffusion layer 12.
  • the water repellent layer 11 is preferably bonded to the gas diffusion layer 12 via an adhesive in order to efficiently supply oxygen to the gas diffusion layer 12.
  • the adhesive is preferably provided on at least a part between the water-repellent layer 11 and the gas diffusion layer 12 from the viewpoint of ensuring the adhesion between the water-repellent layer 11 and the gas diffusion layer 12.
  • the adhesive is used as the water repellent layer 11 and the gas diffusion layer. It is more preferable that it is provided on the entire surface between the two.
  • the adhesive preferably has oxygen permeability, and includes at least one selected from the group consisting of polymethyl methacrylate, methacrylic acid-styrene copolymer, styrene-butadiene rubber, butyl rubber, nitrile rubber, chloroprene rubber, and silicone. Resin can be used.
  • the gas diffusion layer 12 of the positive electrode 10 in the present embodiment will be described in more detail.
  • the gas diffusion layer 12 can be configured to include a porous conductive material and a catalyst supported on the conductive material.
  • the conductive material in the gas diffusion layer 12 can be composed of one or more materials selected from the group consisting of graphite foil, carbon paper, carbon cloth, and stainless steel (SUS). More specifically, the conductive material in the gas diffusion layer 12 can be composed of, for example, one or more materials selected from the group consisting of carbon-based substances, conductive polymers, semiconductors, and metals.
  • the carbon-based material refers to a material containing carbon as a constituent component. Examples of carbon-based materials include, for example, carbon powder such as graphite, activated carbon, carbon black, Vulcan (registered trademark) XC-72R, acetylene black, furnace black, Denka black, graphite felt, carbon wool, carbon woven cloth, etc.
  • Carbon fiber, carbon plate, carbon paper, carbon disk, carbon cloth, carbon foil, and carbon-based material obtained by compression molding carbon particles are included.
  • Examples of the carbon-based material also include fine-structured materials such as carbon nanotubes, carbon nanohorns, and carbon nanoclusters.
  • Conductive polymer is a general term for conductive polymer compounds.
  • the conductive polymer include aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene, or a polymer of two or more monomers having a structural unit as a constituent unit.
  • examples of the conductive polymer include polyaniline, polyaminophenol, polydiaminophenol, polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, and polyacetylene.
  • the metal conductive material include metal materials such as a mesh and a foam. For example, a stainless mesh can be used. In view of availability, cost, corrosion resistance, durability, and the like, the conductive material is preferably a carbon-based material.
  • the shape of the conductive material is preferably a powder shape or a fiber shape. Further, the conductive material may be supported by a support.
  • the support means a member that itself has rigidity and can give a certain shape to the gas diffusion electrode.
  • the support may be an insulator or a conductor.
  • examples of the support include glass, plastic, synthetic rubber, ceramics, water-resistant or water-repellent treated paper, plant pieces such as wood pieces, bone pieces, animal pieces such as shells, and the like.
  • Examples of the porous structure support include porous ceramics, porous plastics, and sponges.
  • the support When the support is a conductor, examples of the support include carbon materials such as carbon paper, carbon fiber, and carbon rod, metals, conductive polymers, and the like.
  • the support When the support is a conductor, the support can also function as a current collector by disposing a conductive material carrying a carbon-based material on the surface of the support.
  • the catalyst in the gas diffusion layer 12 is a platinum-based catalyst, a carbon-based catalyst using iron or cobalt, a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) and zirconium carbonitride (ZrCNO), tungsten
  • a carbide catalyst using activated molybdenum, activated carbon, or the like can be used.
  • the catalyst in the gas diffusion layer 12 is preferably a carbon-based material doped with metal atoms.
  • metal atoms Titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, hafnium, tantalum, tungsten, rhenium, osmium, iridium
  • the carbon-based material exhibits excellent performance as a catalyst for promoting the oxygen reduction reaction. What is necessary is just to set suitably the quantity of the metal atom which carbonaceous material contains so that carbonaceous material may have the outstanding catalyst performance.
  • the carbon-based material is further doped with one or more nonmetallic atoms selected from nitrogen, boron, sulfur, and phosphorus. What is necessary is just to set suitably the quantity of the nonmetallic atom doped by the carbonaceous material so that carbonaceous material may have the outstanding catalyst performance.
  • the carbon-based material is based on a carbon source material such as graphite and amorphous carbon, for example, and the carbon source material is doped with a metal atom and one or more non-metal atoms selected from nitrogen, boron, sulfur and phosphorus. Can be obtained.
  • a carbon source material such as graphite and amorphous carbon, for example, and the carbon source material is doped with a metal atom and one or more non-metal atoms selected from nitrogen, boron, sulfur and phosphorus. Can be obtained.
  • the combination of metal atoms and nonmetal atoms doped in the carbon-based material is appropriately selected.
  • the nonmetallic atom contains nitrogen and the metallic atom contains iron.
  • the carbon-based material can have particularly excellent catalytic activity.
  • the nonmetallic atom may be only nitrogen, and the metallic atom may be only iron.
  • the nonmetallic atom may contain nitrogen, and the metallic atom may contain at least one of cobalt and manganese. Also in this case, the carbon-based material can have a particularly excellent catalytic activity.
  • the nonmetallic atom may be only nitrogen. Further, the metal atom may be only cobalt, only manganese, or only cobalt and manganese.
  • the shape of the carbon-based material is not particularly limited.
  • the carbon-based material may have a particulate shape or may have a sheet shape.
  • the dimension of the carbon-based material having a sheet-like shape is not particularly limited.
  • the carbon-based material may have a minute dimension.
  • the carbon-based material having a sheet shape may be porous. It is preferable that the porous carbon-based material having a sheet shape has a shape such as a woven fabric shape or a nonwoven fabric shape.
  • the carbon-based material configured as a catalyst in the gas diffusion layer 12 can be prepared as follows. First, for example, a mixture containing a nonmetallic compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. And this mixture is heated at the temperature of 800 degreeC or more and 1000 degrees C or less for 45 second or more and less than 600 second. Thereby, the carbonaceous material comprised as a catalyst can be obtained.
  • the carbon source material for example, graphite or amorphous carbon can be used as described above.
  • the metal compound is not particularly limited as long as it is a compound containing a metal atom capable of coordinating with a nonmetal atom doped in the carbon source material.
  • Metal compounds include, for example, metal chlorides, nitrates, sulfates, bromides, iodides, fluorides, etc., inorganic metal salts, organic metal salts such as acetates, inorganic metal salt hydrates, and organic metal salts At least one selected from the group consisting of hydrates can be used.
  • the metal compound preferably contains iron (III) chloride.
  • the metal compound when graphite is doped with cobalt, the metal compound preferably contains cobalt chloride.
  • the metal compound when the carbon source material is doped with manganese, the metal compound preferably contains manganese acetate.
  • the amount of the metal compound used is preferably determined so that, for example, the ratio of the metal atom in the metal compound to the carbon source material is in the range of 5 to 30% by mass, and the ratio is 5 to 20% by mass More preferably, it is determined to be within the range.
  • the nonmetallic compound is preferably at least one nonmetallic compound selected from the group consisting of nitrogen, boron, sulfur and phosphorus.
  • Non-metallic compounds include, for example, pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylenetetramine, ethylenediamine, octylboronic acid, 1,2-bis (diethylphosphinoethane), triphenyl phosphite, benzyldisal
  • At least one compound selected from the group consisting of fido can be used.
  • the amount of the nonmetallic compound used is appropriately set according to the amount of the nonmetallic atom doped into the carbon source material.
  • the amount of the nonmetallic compound used is preferably determined so that the molar ratio of the metal atom in the metal compound to the nonmetallic atom in the nonmetallic compound is in the range of 1: 1 to 1: 2. More preferably, it is determined to be within the range of 1: 1.5 to 1: 1.8.
  • a mixture containing a nonmetallic compound, a metal compound, and a carbon source material when preparing a carbon-based material configured as a catalyst is obtained, for example, as follows. First, a carbon source material, a metal compound, and a nonmetal compound are mixed, and if necessary, a solvent such as ethanol is added to adjust the total amount. These are further dispersed by an ultrasonic dispersion method. Subsequently, after heating them at an appropriate temperature (for example, 60 ° C.), the mixture is dried to remove the solvent. Thereby, the mixture containing a nonmetallic compound, a metal compound, and a carbon source raw material is obtained.
  • the obtained mixture is heated, for example, under a reducing atmosphere or an inert gas atmosphere.
  • a non-metallic atom is doped to a carbon source raw material, and also a metallic atom is doped by the coordinate bond of a non-metallic atom and a metallic atom.
  • the heating temperature is preferably in the range of 800 ° C. to 1000 ° C.
  • the heating time is preferably in the range of 45 seconds to less than 600 seconds. Since the heating time is short, the carbon-based material is efficiently produced, and the catalytic activity of the carbon-based material is further increased.
  • the temperature rising rate of the mixture at the start of heating is preferably 50 ° C./s or more. Such rapid heating further improves the catalytic activity of the carbonaceous material.
  • the carbon-based material may be further acid cleaned.
  • the carbon-based material may be dispersed in pure water with a homogenizer for 30 minutes, and then the carbon-based material may be placed in 2M sulfuric acid and stirred at 80 ° C. for 3 hours. In this case, elution of the metal component from the carbon-based material can be suppressed.
  • the catalyst may be bound to the conductive material using a binder. That is, the catalyst may be supported on the surface of the conductive material and inside the pores using a binder. Thereby, it can suppress that a catalyst detaches
  • the binder for example, at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride (PVDF), and ethylene-propylene-diene copolymer (EPDM) is preferably used. Moreover, it is also preferable to use Nafion (registered trademark) as the binder.
  • the negative electrode 20 which is the second conductor according to this embodiment, carries microorganisms described later, and further generates hydrogen ions and electrons from at least one of organic substances and nitrogen-containing compounds in the wastewater 80 by the catalytic action of the microorganisms. It has a function. For this reason, the negative electrode 20 of the present embodiment is not particularly limited as long as it has such a function.
  • the negative electrode 20 of the present embodiment has a structure in which microorganisms are supported on a conductive sheet having conductivity.
  • the conductor sheet it is possible to use at least one selected from the group consisting of a porous conductor sheet, a woven conductor sheet, and a nonwoven conductor sheet.
  • the conductor sheet may be a laminate in which a plurality of sheets are laminated.
  • hydrogen ions generated in the local battery reaction described later easily move toward the positive electrode 10, and the rate of the oxygen reduction reaction is increased. It becomes possible to raise.
  • the conductor sheet of the negative electrode 20 preferably has a space (void) continuous in the stacking direction X, that is, in the thickness direction.
  • the conductor sheet in the negative electrode 20 at least one selected from the group consisting of graphite foil, graphite brush, and carbon felt can be used.
  • the graphite brush is a carbon fiber bundled with a pattern and has conductivity as a whole.
  • the conductor sheet in the negative electrode 20 may be a metal plate having a plurality of through holes in the thickness direction. Therefore, as a material constituting the conductor sheet of the negative electrode 20, for example, conductive metals such as aluminum, copper, stainless steel, nickel, and titanium can also be used.
  • the microorganism supported on the negative electrode 20 is not particularly limited as long as it is a microorganism capable of decomposing an organic substance or nitrogen-containing compound in the wastewater 80, but for example, an anaerobic microorganism that does not require oxygen for growth is preferably used. Anaerobic microorganisms do not require air for oxidative decomposition of organic matter in the wastewater 80. Therefore, the electric power required for sending air can be significantly reduced. Moreover, since the free energy which microbes acquire is small, it becomes possible to reduce the amount of sludge generation.
  • the microorganism held in the negative electrode 20 is preferably an anaerobic microorganism, for example, an electricity producing bacterium having an extracellular electron transfer mechanism.
  • anaerobic microorganism examples include Geobacter genus bacteria, Shewanella genus bacteria, Aeromonas genus bacteria, Geothrix genus bacteria, and Saccharomyces genus bacteria.
  • Anaerobic microorganisms may be held on the negative electrode 20 by superimposing and fixing a biofilm containing anaerobic microorganisms on the negative electrode 20.
  • anaerobic microorganisms may be held on the surface 20b of the negative electrode 20 opposite to the contact surface 20a.
  • the biofilm generally refers to a three-dimensional structure including a microbial population and an extracellular polymeric substance (EPS) produced by the microbial population.
  • EPS extracellular polymeric substance
  • the anaerobic microorganisms may be held on the negative electrode 20 without depending on the biofilm.
  • the anaerobic microorganisms may be held not only on the surface of the negative electrode 20 but also inside.
  • the anaerobic microorganism is preferably carried on at least one of the surface and the inside of the negative electrode 20.
  • the effect of this embodiment can be exhibited. Therefore, in the purification apparatus 100, it is preferable that at least one of the negative electrode 20 and the waste water 80 holds anaerobic microorganisms.
  • the first conductor has a joint portion formed of a contact surface with the second conductor, and an electronic connection portion that conducts electrons from the joint portion to the catalyst.
  • the second conductor has a joint portion formed of a contact surface with the first conductor, and an electronic connection portion that conducts electrons moved from the microorganism to the second conductor to the joint portion.
  • the gas diffusion layer 12 of the positive electrode 10 serving as the first conductor 10A is a joint portion formed of the contact surface 10b with the negative electrode 20 serving as the second conductor 20A.
  • an electronic connection 15 that conducts electrons from the joint to the catalyst 13.
  • the negative electrode 20 as the second conductor 20A includes a joining portion formed of a contact surface 20a with the gas diffusion layer 12 which is the first conductor 10A, and electrons moved from the microorganism 21 to the second conductor 20A. And an electronic connection portion 25 that conducts to the joint portion.
  • the water repellent layer is omitted from the positive electrode as the first conductor 10 ⁇ / b> A.
  • the electronic connection part 15 of 10 A of 1st conductors has a higher electrical resistivity than the junction part (contact surface 10b) of 10 A of 1st conductors.
  • the electronic connection portion 25 of the second conductor 20A has a higher electrical resistivity than the joint portion (contact surface 20a) of the second conductor 20A.
  • the electronic connection portion 15 of the first conductor 10A has a higher electrical resistivity than the joint portion (contact surface 10b) of the first conductor 10A
  • the electronic connection portion of the second conductor 20A. 25 has a higher electrical resistivity than the joint (contact surface 20a) of the second conductor 20A.
  • the electronic connection part 15 has a higher electrical resistivity than the joint part (contact surface 10b) and / or the electronic connection part.
  • a potential difference is generated when 25 has a higher electrical resistivity than the joint (contact surface 20a). That is, since the electrical resistivity of the electronic connecting portion 15 and / or the electronic connecting portion 25 is relatively high, the supporting portion of the catalyst 13 in the first conductor 10A and the supporting of the microorganisms 21 in the second conductor 20A.
  • the site can be controlled to an appropriate potential. As a result, it is possible to ensure a potential difference between the catalyst 13 supporting site and the microorganism 21 supporting site.
  • the purification unit 1 since the metabolism of microorganisms accompanied by electron conduction is also promoted, it becomes possible to further increase the decomposition efficiency of organic substances and nitrogen-containing compounds in the object to be treated. Further, in the purification unit 1, it is not necessary to provide a wiring such as an external circuit for securing a potential difference and a boosting system, so that a simpler configuration can be achieved and the purification device 100 can be reduced in size. .
  • the electrical resistivity of the joint portion of the first conductor 10A is the electrical resistivity of the contact surface 10b of the first conductor 10A.
  • the electrical resistivity of the joint portion of the second conductor 20A is the electrical resistivity of the contact surface 20a of the second conductor 20A.
  • the electrical resistivity of the junction can be measured by the four-probe method.
  • the electrical resistivity of the electronic connection portion 15 of the first conductor 10A is the electrical resistivity of the portion included in the electronic connection portion 15 in a plane perpendicular to the joint portion (contact surface 10b) of the first conductor 10A. It is. In other words, in this embodiment, the electrical resistivity of the electronic connection portion 15 of the first conductor 10A is equal to the electronic connection portion on the upper surface 10c and the lower surface 10d shown in FIG. 15 is the lowest value among the values measured in the portion included in 15. Further, the electrical resistivity of the electronic connecting portion 15 is a value measured by a four-probe method along the stacking direction (X-axis direction) of the first conductor 10A and the second conductor 20A.
  • the electrical resistivity of the electronic connection portion 25 of the second conductor 20A is the electrical resistivity of the portion included in the electronic connection portion 25 in a plane perpendicular to the joint portion (contact surface 20a) of the second conductor 20A. It is. That is, in this embodiment, the electrical resistivity of the electronic connecting portion 25 of the second conductor 20A is the electronic connecting portion on the upper surface 20c and the lower surface 20d shown in FIG. 4 and on the right side surface 20e and the left side surface 20f shown in FIG. It is the lowest value among the values measured in the part included in 25.
  • the electrical resistivity of the electronic connecting portion 25 is a value measured by a four-probe method along the stacking direction (X-axis direction) of the second conductor 20A and the second conductor 20A.
  • the electronic connection portion 15 of the first conductor 10A has a higher electrical resistivity than the joint portion of the first conductor 10A, and the electronic connection portion 25 of the second conductor 20A is the second conductor.
  • the configuration shown in FIG. 5 is preferable. Specifically, it is preferable to provide a resistance layer 90 having a high electrical resistivity at the joint portion (contact surface 10b) of the first conductor 10A and the joint portion (contact surface 20a) of the second conductor 20A. And it is preferable that the electrical resistivity of the resistance layer 90 is higher than the electronic connection part 15 of 10 A of 1st conductors, and the electronic connection part 25 of 20 A of 2nd conductors.
  • a resistance layer 90 is provided at the interface between the first conductor 10A and the second conductor 20A, the electrical resistance in the stacking direction of the first conductor 10A and the second conductor 20A is improved, and the electronic connection portion It is possible to increase the electrical resistivity of the bonding part.
  • a resistance layer 90 is not particularly limited as long as it has a suitable conductivity and increases electric resistance, but for example, a conductive paste in which at least one of carbon particles and metal is dispersed in a resin is used. Can do.
  • the resistance layer 90 is provided so as to straddle the junction (contact surface 10b) of the first conductor 10A and the junction (contact surface 20a) of the second conductor 20A. It may be done. Such a configuration can be formed, for example, by applying a conductive paste to each of the contact surface 10b of the first conductor 10A and the contact surface 20a of the second conductor 20A, and then bonding the contact surfaces together. it can. Further, as shown in FIG. 5B, the resistance layer 90 may be provided from the joint portion (contact surface 10b) of the first conductor 10A toward the inside.
  • Such a configuration can be formed, for example, by applying a conductive paste to the contact surface 10b of the first conductor 10A and then bonding the contact surfaces together.
  • the resistance layer 90 may be provided from the joint portion (contact surface 20a) of the second conductor 20A toward the inside.
  • Such a configuration can be formed, for example, by applying a conductive paste to the contact surface 20a of the second conductor 20A and then bonding the contact surfaces together.
  • the first conductor it is also preferable to increase the thickness t1 in the stacking direction (X-axis direction) in the electronic connection part 15 of 10A. Specifically, it is preferable to increase the thickness t ⁇ b> 1 of the electronic connection portion 15 that is the distance from the joint portion of the first conductor 10 ⁇ / b> A to the catalyst 13. By increasing the thickness t1 of the electronic connection portion 15, the electron conduction path from the joint portion of the first conductor 10A to the catalyst 13 becomes longer, so that the electrical resistance can be increased.
  • the electronic connection portion 25 of the second conductor 20A In order for the electronic connection portion 25 of the second conductor 20A to have a higher electrical resistivity than the joint portion of the second conductor 20A, as shown in FIG. It is also preferable to increase the thickness t2 in the stacking direction (X-axis direction) of the electronic connecting portion 25. Specifically, it is preferable to increase the thickness t2 of the electronic connecting portion 25, which is the distance from the portion of the second conductor 20A that receives electrons from the microorganism to the junction. By increasing the thickness t2 of the electronic connection part 25, the electron conduction path from the part receiving the electrons from the microorganisms to the joint part in the second conductor 20A becomes longer, so that the electrical resistance can be increased. Become.
  • waste water 80 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the negative electrode 20 that is the second conductor, and air or oxygen is supplied to the positive electrode 10 that is the first conductor. . At this time, air and oxygen are continuously supplied through the gas phase 40.
  • the above-described local battery reaction (half-cell reaction) is represented by the following formula.
  • Negative electrode 20 C 6 H 12 O 6 + 6H 2 O ⁇ 6CO 2 + 24H + + 24e ⁇ ⁇
  • Positive electrode 10 6O 2 + 24H + + 24e ⁇ ⁇ 12H 2 O
  • Negative electrode 20 4NH 3 ⁇ 2N 2 + 12H + + 12e ⁇
  • Positive electrode 10 3O 2 + 12H + + 12e ⁇ ⁇ 6H 2 O
  • hydroxide ions may be generated by a reduction reaction of oxygen. Therefore, the generated hydroxide ions may move through the internal space of the positive electrode 10 and combine with the hydrogen ions generated by the negative electrode 20 to generate water.
  • the purification unit 1 includes the first conductor 10A including the catalyst 13 and the second conductor 20A that is in contact with and electrically connected to the first conductor 10A.
  • the first conductor 10 ⁇ / b> A includes a joint portion formed of a contact surface 10 b with the second conductor 20 ⁇ / b> A, and an electronic connection portion 15 that conducts electrons from the joint portion to the catalyst 13.
  • the second conductor 20A includes a joint portion formed of a contact surface 20a with the first conductor 10A and an electron connection portion 25 that conducts electrons that have moved from the microorganism 21 to the second conductor 20A to the joint portion. Have.
  • the electronic connection portion 15 of the first conductor 10A has a higher electrical resistivity than the joint portion of the first conductor 10A and / or the electronic connection portion 25 of the second conductor 20A is the second conductivity. It has a higher electrical resistivity than the joint of the body 20A. At least a part of the first conductor 10A is in contact with the gas phase 40 containing oxygen, and at least a part of the second conductor 20A is in contact with the object to be processed.
  • the purification device 100 includes the purification unit 1 described above, and a treatment tank 70 for holding therein the waste water 80 to be purified by the purification unit 1 and the purification unit 1.
  • the purification unit 1 is installed such that at least a part of the first conductor 10A is in contact with the gas phase 40 and at least a part of the second conductor 20A is in contact with the waste water 80.
  • the purification device 100 can efficiently oxidize and decompose components (organic substances or nitrogen-containing compounds) contained in the wastewater 80 through an electron transfer reaction. Specifically, organic substances and / or nitrogen-containing compounds contained in the waste water 80 are decomposed and removed by anaerobic microorganism metabolism, that is, microorganism growth. And since this oxidative decomposition process is performed on anaerobic conditions, the conversion efficiency from an organic substance to the new cell of microorganisms can be suppressed low rather than the case where it is performed on an aerobic condition. For this reason, compared with the case where the activated sludge method is used, the proliferation of microorganisms, that is, the generation amount of sludge can be reduced.
  • odorous methane gas is generated in a normal anaerobic process, but in the oxidative decomposition process in the present embodiment, the metabolite is, for example, carbon dioxide gas, and therefore the generation of methane gas can be suppressed.
  • the electronic connection portion 15 of the first conductor 10A has a higher electrical resistivity than the joint portion of the first conductor 10A and / or the electronic connection of the second conductor 20A.
  • the portion 25 has a higher electrical resistivity than the joint portion of the second conductor 20A.
  • the first conductor 10A preferably includes an oxygen reduction catalyst. Accordingly, in the first conductor 10A, the oxygen reduction reaction between oxygen in the gas phase 40 and hydrogen ions and electrons generated in the second conductor 20A is promoted, so that the purification of the object to be processed is more efficient. Can be performed automatically.
  • anaerobic microorganisms are supported on at least one of the surface and the inside of the second conductor 20A.
  • the purification unit 1 when microorganisms come into contact with the positive electrode 10 that is the first conductor, coagulation due to the secretory component, excessive consumption of oxygen by the microorganisms, formation of a local pH gradient, etc. occur. There is a possibility that the amount of reaction accompanying the movement of electrons decreases. Therefore, it is preferable that the adhesion of microorganisms to the positive electrode 10 is inhibited as much as possible.
  • a method for inhibiting the adhesion of microorganisms to the positive electrode 10 there is a method using a resistance layer 90 having pores having a diameter that does not physically pass through microorganisms, or a method using chemical / biological action of the resistance layer 90.
  • Examples of the method utilizing chemical / biological action include a method of fixing a bactericide for sterilizing microorganisms to the resistance layer 90.
  • the bactericidal agent for example, compounds that release bactericidal silver ions and copper ions, and tetracycline can be used.
  • a method in which the resistance layer 90 itself has a local pH that deviates from a pH range in which microorganisms can propagate is mentioned.
  • the microorganisms When applying the method for inhibiting the adhesion of microorganisms to the resistance layer 90, the microorganisms enter the inside of the positive electrode 10 from the upper surface 10c, the lower surface 10d, the right side surface 10e, or the left side surface 10f of the positive electrode 10 without passing through the resistance layer 90. It is preferable to suppress this. That is, even if a method of inhibiting the adhesion of microorganisms is applied to the resistance layer 90, if microorganisms enter from the upper surface 10c, the lower surface 10d, the right side surface 10e, or the left side surface 10f of the positive electrode 10, they enter the positive electrode 10. Microorganisms will adhere.
  • the upper surface 10c, the lower surface 10d, the right side surface 10e, and the left side surface 10f of the positive electrode 10 are sealed with a sealing material so that microorganisms do not enter the inside of the positive electrode 10.
  • the sealing material is preferably made of at least a material that does not allow microorganisms to pass through, for example, a group consisting of epoxy resin, polymethyl methacrylate, methacrylic acid-styrene copolymer, styrene-butadiene rubber, butyl rubber, nitrile rubber, chloroprene rubber, and silicone.
  • a resin containing at least one selected from the above can be used.
  • a method for inhibiting the adhesion of microorganisms to the positive electrode 10 a method of fixing a bactericide for sterilizing microorganisms to the positive electrode 10 can be mentioned. Further, there is a method in which the positive electrode 10 itself has a local pH that is outside the pH range in which microorganisms can propagate.
  • the treatment tank 70 holds the waste water 80 therein, but may be configured such that the waste water 80 circulates.
  • the treatment tank 70 includes a waste water supply port 71 for supplying waste water 80 to the treatment tank 70 and waste water for discharging the treated waste water 80 from the treatment tank 70.
  • a discharge port 72 may be provided.
  • the waste water 80 is preferably continuously supplied through the waste water supply port 71 and the waste water discharge port 72.
  • the negative electrode 20 that is the second conductor according to the present embodiment may be modified with, for example, an electron transfer mediator molecule.
  • the waste water 80 in the treatment tank 70 may contain electron transfer mediator molecules. Thereby, the electron transfer from an anaerobic microorganism to the negative electrode 20 is accelerated
  • the electron transfer mediator molecule for example, at least one selected from the group consisting of neutral red, anthraquinone-2,6-disulfonic acid (AQDS), thionine, potassium ferricyanide, and methylviologen can be used.
  • AQDS anthraquinone-2,6-disulfonic acid
  • thionine thionine
  • potassium ferricyanide potassium ferricyanide
  • methylviologen methylviologen
  • the purification unit includes a first conductor 10B including the catalyst 13 and a second conductor 20B that is in contact with and electrically connected to the first conductor 10B.
  • the first conductor 10 ⁇ / b> B includes a joint portion formed of a contact surface 10 b with the second conductor 20 ⁇ / b> B and an electronic connection portion that conducts electrons from the joint portion to the catalyst 13.
  • the second conductor 20B includes a joint portion formed of a contact surface 20a with the first conductor 10B, and an electronic connection portion that conducts electrons that have moved from the microorganisms to the second conductor 20B to the joint portion.
  • the electronic connection part 15 of the 1st conductor 10B has a higher electrical resistivity than the junction part of the 1st conductor 10B, and / or the electronic connection part 25 of the 2nd conductor 20B is 2nd.
  • the electric resistivity is higher than that of the joint portion of the conductor 20B.
  • the first conductor 10B is exposed from the water surface 80a of the waste water 80, and is in direct contact with air that is a gas phase containing oxygen. Therefore, the purification unit does not need to include the cassette base material 50 and the plate member 60 for forming the gas phase 40 used in the first embodiment. Further, the first conductor 10B need not include the water repellent layer 11 in the positive electrode 10 of the first embodiment. Therefore, the first conductor 10B can have the same configuration as the gas diffusion layer 12 of the positive electrode 10 in the first embodiment, and the second conductor 20B can have the same configuration as the negative electrode 20 in the first embodiment. Can do.
  • the purification unit is a wastewater in which at least a part of the first conductor 10B is in contact with the gas phase 40 containing oxygen, and at least a part of the second conductor 20B is an object to be treated. It is installed in contact with 80.
  • the second conductor 20B since the second conductor 20B is in contact with the waste water 80, the waste water 80 exists in the interior.
  • the second conductor 20 ⁇ / b> B enables movement of hydrogen ions by the internal waste water 80.
  • the first conductor 10B is also in partial contact with the waste water 80, and the waste water 80 exists inside.
  • the waste water 80 can be raised by capillary action and held inside the first conductor 10B.
  • the first conductor 10 ⁇ / b> B also enables movement of hydrogen ions by the internal waste water 80.
  • the purification device of this embodiment can also act in the same manner as the first embodiment. Specifically, during operation of the purification device, waste water 80 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the second conductor 20B, and air or oxygen is supplied to the first conductor 10B. At this time, since the first conductor 10B is exposed to the air, the air is continuously supplied.
  • hydrogen ions and electrons are generated from at least one of organic substances and nitrogen-containing compounds in the wastewater 80 by the catalytic action of microorganisms.
  • the generated hydrogen ions pass through the space inside the second conductor 20B and move to the first conductor 10B side. Further, the generated electrons move to the first conductor 10B through the second conductor 20B.
  • the hydrogen ions and electrons are combined with oxygen by the action of the catalyst supported on the first conductor 10B and consumed as water.
  • the purification device of the present embodiment can efficiently oxidize and decompose organic substances and nitrogen-containing compounds contained in the wastewater 80 through an electron transfer reaction. And since this oxidative decomposition process is performed on anaerobic conditions, the proliferation of microorganisms, ie, the generation amount of sludge, can be reduced rather than the case where the activated sludge method is used. Moreover, in the oxidative decomposition process in this embodiment, since a metabolite is, for example, carbon dioxide gas, the production of methane gas can be suppressed.
  • the first conductor 10B is exposed to the air, so that the water repellent layer 11, the cassette base material 50, and the plate member 60 for forming the gas phase 40 are unnecessary. It becomes. Therefore, it becomes possible to simplify the structure of the purification unit.
  • the purification unit according to the present embodiment is particularly limited as long as at least a part of the first conductor 10B can be exposed from the water surface 80a of the wastewater 80 and the second conductor 20B can be immersed in the wastewater 80.
  • the configuration shown in FIGS. 7A to 7D can be employed.
  • the first conductor 10B is disposed substantially horizontally with respect to the water surface 80a, and the second conductor 20B is disposed substantially perpendicular to the first conductor 10B. ing.
  • the number of the second conductors 20B is not limited to one, and a plurality of second conductors 20B may be connected to one first conductor 10B.
  • the first conductor 10B is disposed substantially horizontally on the water surface 80a, and the second conductor 20B is disposed substantially parallel to the first conductor 10B. .
  • the first conductor 10B is disposed substantially horizontally on the water surface 80a.
  • the second conductor 20B has a substantially T-shaped cross section.
  • the first conductor 10B is disposed substantially horizontally on the water surface 80a.
  • the cross section of the second conductor 20B has a substantially square shape.
  • the first conductor 10B is used to ensure hydrogen ion conductivity to the oxygen reduction catalyst. It is preferable that the waste water 80 is held up to the upper surface 10c. However, by disposing an ion conductive material inside the first conductor 10B, it is possible to conduct hydrogen ions to the oxygen reduction catalyst even if the waste water 80 is not retained.
  • the ion conductive substance for example, Nafion (registered trademark) containing a perfluorosulfonic acid group and Flemion (registered trademark) made of perfluoro vinyl ether containing a carboxylic acid group can be used.
  • the purification unit according to this embodiment has the same configuration as that of the second embodiment.
  • the purification unit includes a first conductor 10C including the catalyst 13 and a second conductor that is in electrical contact with the first conductor 10C as shown in FIG. A body 20C.
  • the first conductor 10 ⁇ / b> C includes a joint portion formed of a contact surface 10 b with the second conductor 20 ⁇ / b> C and an electronic connection portion that conducts electrons from the joint portion to the catalyst 13.
  • the second conductor 20C includes a joint portion formed of a contact surface 20a with the first conductor 10C and an electronic connection portion that conducts electrons transferred from the microorganisms to the second conductor 20C to the joint portion. Have.
  • the electronic connection part 15 of the 1st conductor 10C has a higher electrical resistivity than the junction part of the 1st conductor 10C, and / or the electronic connection part 25 of the 2nd conductor 20C is 2nd.
  • the electric resistivity is higher than that of the joint portion of the conductor 20C.
  • the first conductor 10C and the second conductor 20C are connected in the vertical direction.
  • the first conductor 10C and the second conductor 20C are connected in the vertical direction. A part of the first conductor 10 ⁇ / b> C and the second conductor 20 ⁇ / b> C are immersed in the waste water 80.
  • the first conductor 10C is provided with a cassette base member 50 and a plate member 60 in order to increase the contact area with the gas phase 40. Therefore, it is preferable that the first conductor 10 ⁇ / b> C has the same configuration as the positive electrode 10 including the water repellent layer 11 and the gas diffusion layer 12 in the first embodiment.
  • the second conductor 20C can have the same configuration as the negative electrode 20 in the first embodiment.
  • the first conductor 10C and the second conductor 20C are connected in the vertical direction.
  • the first conductor 10C is exposed in the gas phase 40, and the second conductor 20C is immersed in the waste water 80. Therefore, the first conductor 10C can have the same configuration as the gas diffusion layer 12 of the positive electrode 10 in the first embodiment, and the second conductor 20C can have the same configuration as the negative electrode 20 in the first embodiment. Can do.
  • the waste water 80 can be raised by capillary action and held inside the first conductor 10C.
  • the first conductor 10 ⁇ / b> C enables movement of hydrogen ions by the internal waste water 80.
  • an ion conductive material may be disposed inside the first conductor 10C as described above.
  • the purification device of this embodiment can also act in the same manner as the first and second embodiments. Specifically, during operation of the purification apparatus, waste water 80 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the second conductor 20C, and air or oxygen is supplied to the first conductor 10C. Then, in the second conductor 20C, hydrogen ions and electrons are generated from at least one of the organic matter and the nitrogen-containing compound in the wastewater 80 by the catalytic action of microorganisms. The generated hydrogen ions pass through the space inside the second conductor 20C and move to the first conductor 10C side. Further, the generated electrons move to the first conductor 10C through the second conductor 20C. The hydrogen ions and electrons are combined with oxygen by the action of the catalyst supported on the first conductor 10C and consumed as water.
  • the purification units 1F and 1G are installed in the vertical direction, the installation space in the waste water 80 can be reduced. Therefore, a plurality of purification units 1F and 1G can be installed in a small space, and the waste water 80 can be efficiently purified.
  • the purification unit according to this embodiment has the same configuration as that of the second embodiment.
  • the purification unit includes a first conductor 10D including the catalyst 13 and a second conductor 20D that is in contact with and electrically connected to the first conductor 10D.
  • the first conductor 10 ⁇ / b> D includes a joint portion formed of a contact surface 10 b with the second conductor 20 ⁇ / b> D and an electronic connection portion that conducts electrons from the joint portion to the catalyst 13.
  • the second conductor 20D includes a joint portion formed of a contact surface 20a with the first conductor 10D, and an electronic connection portion that conducts electrons transferred from the microorganisms to the second conductor 20D to the joint portion.
  • the electronic connection part 15 of 1st conductor 10D has a higher electrical resistivity than the junction part of 1st conductor 10D, and / or the electronic connection part 25 of 2nd conductor 20D is 2nd.
  • the electric resistivity is higher than that of the joint portion of the conductor 20D.
  • the first conductor 10D is disposed substantially horizontally with respect to the water surface 80a, and the second conductor 20D is disposed substantially perpendicular to the first conductor 10D. ing.
  • the first conductor 10D is disposed substantially horizontally on the water surface 80a, and the second conductor 20D has a substantially T-shaped cross section.
  • the first conductor 10D is exposed from the water surface 80a of the waste water 80, and is in direct contact with air that is a gas phase containing oxygen.
  • the second conductor 20D is immersed in the waste water 80. Therefore, the first conductor 10D can have the same configuration as the gas diffusion layer 12 of the positive electrode 10 in the first embodiment, and the second conductor 20D can have the same configuration as the negative electrode 20 in the first embodiment. Can do.
  • the waste water 80 can be raised by capillary action and held inside the first conductor 10D.
  • the first conductor 10 ⁇ / b> D enables movement of hydrogen ions by the internal waste water 80.
  • an ion conductive material may be disposed inside the first conductor 10D as described above.
  • the purification unit of this embodiment includes a lid member 110 between the first conductor 10D and the water surface 80a of the waste water 80.
  • the lid member 110 preferably has low oxygen permeability. By providing the lid member 110 having low oxygen permeability, the contact between the waste water 80 and the gas phase 40 can be suppressed, and the amount of oxygen dissolved in the waste water 80 can be reduced. As a result, since the periphery of the second conductor 20D disposed inside the waste water 80 can be an anaerobic atmosphere, it is possible to promote the metabolism of anaerobic microorganisms. Further, in the purification unit 1I of FIG. 9B, since the vicinity of the water surface 80a can be kept anaerobic by providing the lid member 110, the second conductor 20D is brought close to the first conductor 10D. Can be arranged.
  • Such a lid member 110 is preferably made of a resin material having low oxygen permeability. In order to expose the first conductor 10D from the water surface 80a of the waste water 80, it is preferable that the specific gravity of the lid member 110 is made smaller than that of water to generate buoyancy.
  • the purification unit according to this embodiment has the same configuration as that of the third embodiment.
  • the purification unit includes a first conductor 10E including the catalyst 13 and a second conductor 20E that is in contact with and electrically connected to the first conductor 10E.
  • the first conductor 10 ⁇ / b> E has a joint portion formed of a contact surface 10 b with the second conductor 20 ⁇ / b> E and an electronic connection portion that conducts electrons from the joint portion to the catalyst 13.
  • the second conductor 20E includes a joint portion formed of a contact surface 20a with the first conductor 10E, and an electronic connection portion that conducts electrons that have moved from the microorganisms to the second conductor 20E to the joint portion. Have.
  • the electronic connection part 15 of the 1st conductor 10E has a higher electrical resistivity than the junction part of the 1st conductor 10E, and / or the electronic connection part 25 of the 2nd conductor 20E is 2nd.
  • the electric resistivity is higher than that of the joint portion of the conductor 20E.
  • the first conductor 10E is exposed in the gas phase 40, and the second conductor 20E is immersed in the waste water 80. Therefore, since the first conductor 10E is not immersed in the waste water 80, the first conductor 10E can have the same configuration as the gas diffusion layer 12 of the positive electrode 10 in the first embodiment.
  • the conductor 20E can have the same configuration as the negative electrode 20 in the first embodiment.
  • the purification unit 1J of the present embodiment the first conductor 10E and the second conductor 20E are connected in a substantially vertical direction, as in the third embodiment.
  • the purification unit 1J is inclined at an angle ⁇ with respect to the vertical direction, and the waste water 80 flows down with respect to the first conductor 10E. That is, the waste water 80 contacts the upper portion of the first conductor 10E along the arrow B shown in FIG. 10, and after passing through the surface and the inside of the first conductor 10E, the second conductor 20E is immersed. It reaches the collected waste water 80.
  • the waste water 80 is always present on the surface and inside of the first conductor 10E. Therefore, it is possible to allow hydrogen ions to reach the oxygen reduction catalyst via the waste water 80 without providing hydrogen ion conductivity in the first conductor 10E itself.
  • waste water 80 flowing down to the first conductor 10E may circulate the waste water 80 in which the second conductor 20E is immersed.
  • waste water generated from the contamination source may flow down to the first conductor 10E.
  • the object to be treated is not limited to waste water, and for example, soil can be used as the object to be treated.
  • anaerobic microorganisms that are electricity-producing bacteria exist in the soil.
  • electricity producing bacteria such as Geobacter bacteria are potentially present in paddy field soil. Therefore, soil purification can be performed only by inserting the purification unit of the first to fifth embodiments into the soil.
  • the purification unit is preferably used for soil in a wetland where water as a hydrogen ion conductor can enter the first conductor and the second conductor.
  • the first conductor and the second conductor include an ion conductive substance, or supply water to these to provide hydrogen ion conductivity.
  • the purification apparatus includes the above-described purification unit.
  • the purification unit is installed so that at least a part of the first conductor is in contact with the gas phase 40 and at least a part of the second conductor is in contact with the soil to be purified by the purification unit.
  • the purification unit and a purification device it is possible to purify the soil with a simple system while suppressing the generation of biogas.
  • the present embodiment has been described above, the present embodiment is not limited to these, and various modifications are possible within the scope of the gist of the present embodiment.
  • the purification apparatus according to the present embodiment can be widely applied to treatment of liquid containing organic matter and nitrogen-containing compounds, for example, wastewater generated from factories of various industries, organic wastewater such as sewage sludge, and soil purification.
  • the purification device can be used to improve the environment of the water area.
  • the present invention it is possible to obtain a purification unit capable of suppressing the generation of biogas while reducing the amount of sludge generated, and a purification device using the purification unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

浄化ユニット(1,1A)は、第1の導電体(10A)と、第1の導電体に接触する第2の導電体(20A)とを備える。第1の導電体は、第2の導電体との接触面(10b)からなる接合部と、接合部から触媒(13)へ電子を導通する電子接続部(15)とを有する。第2の導電体は、第1の導電体との接触面(20a)からなる接合部と、微生物(21)から第2の導電体に移動した電子を接合部へ導通する電子接続部(25)とを有する。そして、第1の導電体の電子接続部が第1の導電体の接合部よりも高い電気抵抗率を有する、及び/又は、第2の導電体の電子接続部が第2の導電体の接合部よりも高い電気抵抗率を有する。第1の導電体は酸素を含む気相(40)と接触し、第2の導電体は被処理体と接触する。

Description

浄化ユニット及び浄化装置
 本発明は、浄化ユニット及び浄化装置に関する。詳細には本発明は、廃水及び土壌などの被処理体を浄化するための浄化ユニット、及び当該浄化ユニットを用いた浄化装置に関する。
 従来、廃水中に含まれる有機物等を除去するために、種々の水処理方法が提供されている。具体的には、微生物の好気呼吸を利用する活性汚泥法や、微生物の嫌気呼吸を利用する嫌気性処理法などの水処理方法が提供されている。
 活性汚泥法では、微生物を含んだ泥(活性汚泥)と廃水とを生物反応槽で混合し、微生物が廃水中の有機物を酸化分解するために必要な空気を生物反応槽に送り込んで攪拌することで、廃水を浄化している。しかし、活性汚泥法は、生物反応槽のエアレーションに莫大な電力を要する。また、微生物が酸素呼吸をして活発に代謝を行う結果、産業廃棄物である大量の汚泥(微生物の死骸)が発生してしまう。
 これに対し、嫌気性処理法ではエアレーションが不要となることから、活性汚泥法に比べて必要電力量を大幅に低減することができる。また、微生物が獲得する自由エネルギーが小さいので、汚泥発生量が減少する。このような嫌気性処理法を利用した廃水処理装置としては、水素吸蔵合金の粒子を使用した担体に嫌気性微生物を付着させた装置が開示されている(例えば、特許文献1参照)。
特開平1-47494号公報
 しかしながら、従来の嫌気性処理法では、嫌気呼吸の産物として、可燃性で特有の臭気があるメタンガスを多量に含むバイオガスが発生するという問題があった。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、汚泥発生量を低減でき、かつ、バイオガスの発生を抑制することが可能な浄化ユニット及びそれを用いた浄化装置を提供することにある。
 上記課題を解決するために、本発明の第一の態様に係る浄化ユニットは、触媒を含む第1の導電体と、第1の導電体に接触して電気的に接続される第2の導電体とを備える。第1の導電体は、第2の導電体との接触面からなる接合部と、接合部から触媒へ電子を導通する電子接続部とを有する。第2の導電体は、第1の導電体との接触面からなる接合部と、微生物から第2の導電体に移動した電子を接合部へ導通する電子接続部とを有する。そして、第1の導電体の電子接続部が第1の導電体の接合部よりも高い電気抵抗率を有する、及び/又は、第2の導電体の電子接続部が第2の導電体の接合部よりも高い電気抵抗率を有する。第1の導電体の少なくとも一部は酸素を含む気相と接触し、第2の導電体の少なくとも一部は被処理体と接触する。
 本発明の第二の態様に係る浄化装置は、上述の浄化ユニットと、浄化ユニット及び浄化ユニットにより浄化される廃水を内部に保持するための処理槽とを備える。そして、浄化ユニットは、第1の導電体の少なくとも一部が気相と接触し、かつ、第2の導電体の少なくとも一部が廃水と接触するように設置される。
 本発明の第三の態様に係る浄化装置は、上述の浄化ユニットを備える。そして、浄化ユニットは、第1の導電体の少なくとも一部が気相と接触し、かつ、第2の導電体の少なくとも一部が浄化ユニットにより浄化される土壌と接触するように設置される。
図1は、本発明の第一実施形態に係る浄化装置の一例を示す斜視図である。 図2は、図1中のA-A線に沿った断面図である。 図3は、上記浄化装置における浄化ユニットを示す分解斜視図である。 図4は、浄化ユニットにおける電子接続部及び接合部を説明するための断面図である。 図5は、浄化ユニットにおいて、電子接続部が接合部よりも高い電気抵抗率を有するための構成の一例を示す断面図である。 図6は、浄化ユニットにおいて、電子接続部が接合部よりも高い電気抵抗率を有するための構成の他の例を示す断面図である。 図7は、本発明の第二実施形態に係る浄化ユニットの例を示す断面図である。 図8は、本発明の第三実施形態に係る浄化ユニットの例を示す断面図である。 図9は、本発明の第四実施形態に係る浄化ユニットの例を示す断面図である。 図10は、本発明の第五実施形態に係る浄化ユニットの例を示す断面図である。
 以下、本実施形態に係る浄化ユニット及び浄化装置について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
[第一実施形態]
 本実施形態に係る浄化装置100は、図1及び図2に示すように、浄化ユニット1を備えている。浄化ユニット1は、第1の導電体である正極10、第2の導電体である負極20からなる浄化構造体30を備えている。浄化ユニット1では、互いに対向する正極10の接触面10bと負極20の接触面20aとが接触して、電気的に接続されている。そして、正極10のガス拡散層12が負極20の接触面20aと接触し、撥水層11が気相40側に露出している。
 図3に示すように、浄化構造体30は、カセット基材50に積層されている。カセット基材50は、正極10における面10aの外周部に沿うU字状の枠部材であり、上部が開口している。つまり、カセット基材50は、2本の第一柱状部材51の底面を第二柱状部材52で連結した枠部材である。そして、図2に示すように、カセット基材50の側面53は、正極10の面10aの外周部と接合されており、側面53の反対側の側面54は、板部材60の面60aの外周部と接合されている。
 図2に示すように、浄化構造体30、カセット基材50及び板部材60を積層してなる浄化ユニット1は、気相40が形成されるように、処理槽70の内部に配置される。処理槽70の内部には被処理体である廃水80が保持されており、正極10及び負極20は廃水80に浸漬されている。
 後述するように、正極10は撥水性を有する撥水層11を備えており、板部材60は廃水80を透過しない平板状の板材からなる。そのため、処理槽70の内部に保持された廃水80とカセット基材50の内部とは隔てられ、浄化構造体30、カセット基材50及び板部材60により形成された内部空間は気相40となっている。そして、浄化装置100では、この気相40が外気に開放されるか、あるいはこの気相40へ例えばポンプによって外部から空気が供給されるように構成されている。
 (第1の導電体(正極))
 本実施形態に係る第1の導電体である正極10は、図1及び図2に示すように、撥水層11と、撥水層11に接触するように重ねられているガス拡散層12とを備えるガス拡散電極からなる。このような薄板状のガス拡散電極を用いることにより、気相40中の酸素を正極10中の触媒に容易に供給することが可能になる。
 正極10における撥水層11は、撥水性と酸素透過性とを併せ持つ層である。撥水層11は、浄化ユニット1における電気化学系中の気相40と液相とを良好に分離しながら、気相40から液相へ向かう酸素の移動を許容するように構成される。つまり、撥水層11は、気相40中の酸素を透過し、ガス拡散層12へ移動させつつも、廃水80が気相40側に移動することを抑制できる。なお、ここでいう「分離」とは、物理的に遮断することをいう。
 撥水層11は、酸素を含む気体を有する気相40と接触しており、気相40中の酸素を拡散している。そして、撥水層11は、図2に示す構成では、ガス拡散層12に対し酸素を略均一に供給している。そのため、撥水層11は、当該酸素を拡散できるように多孔質体であることが好ましい。なお、撥水層11は撥水性を有するため、結露等により多孔質体の細孔が閉塞し、酸素の拡散性が低下することを抑制できる。また、撥水層11の内部に廃水80が染み込み難いため、撥水層11における気相40と接触する面からガス拡散層12と対向する面にかけて、酸素を効率的に流通させることが可能となる。
 撥水層11は、織布又は不織布によりシート状に形成されていることが好ましい。また、撥水層11を構成する材料は、撥水性を有し、気相40中の酸素を拡散できれば特に限定されない。撥水層11を構成する材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブタジエン、ナイロン、ポリテトラフルオロエチレン(PTFE)、エチルセルロース、ポリ-4-メチルペンテン-1、ブチルゴム及びポリジメチルシロキサン(PDMS)からなる群より選ばれる少なくとも一つを使用することができる。これらの材料は多孔質体を形成しやすく、さらに撥水性も高いため、細孔の閉塞を抑制してガス拡散性を向上させることができる。なお、撥水層11は、撥水層11及びガス拡散層12の積層方向Xに複数の貫通孔を有することが好ましい。
 撥水層11は撥水性を高めるために、必要に応じて撥水剤を用いて撥水処理を施してもよい。具体的には、撥水層11を構成する多孔質体にポリテトラフルオロエチレン等の撥水剤を付着させ、撥水性を向上させてもよい。
 正極10におけるガス拡散層12は、多孔質な導電性材料と、この導電性材料に担持されている触媒とを備えることが好ましい。正極10にこのようなガス拡散層12を備えることで、後述する局部電池反応により生成した電子を負極20と触媒との間で導通させることが可能となる。つまり、後述するように、ガス拡散層12には触媒が担持されており、さらに触媒は好ましくは酸素還元触媒である。そして、電子が負極20からガス拡散層12を通じて触媒に移動することにより、触媒によって、酸素、水素イオン及び電子による酸素還元反応を進行させることが可能となる。
 正極10では、安定的な性能を確保するために、酸素が撥水層11及びガス拡散層12を効率よく透過し、触媒に供給されることが好ましい。そのため、ガス拡散層12は、撥水層11と対向する面から反対側の面にかけて、酸素が透過する細孔を多数有する多孔質体であることが好ましい。また、ガス拡散層12の形状は、三次元のメッシュ状であることが特に好ましい。このようなメッシュ状であることにより、ガス拡散層12に対し、高い酸素透過性及び導電性を付与することが可能となる。
 正極10において、ガス拡散層12に効率的に酸素を供給するために、撥水層11は、接着剤を介してガス拡散層12と接合していることが好ましい。これにより、ガス拡散層12に対し、拡散した酸素が直接供給され、酸素還元反応を効率的に行うことができる。接着剤は、撥水層11とガス拡散層12との間の接着性を確保する観点から、撥水層11とガス拡散層12との間の少なくとも一部に設けられていることが好ましい。ただ、撥水層11とガス拡散層12との間の接着性を高め、長期間に亘り安定的に酸素をガス拡散層12に供給する観点から、接着剤は撥水層11とガス拡散層12との間の全面に設けられていることがより好ましい。
 接着剤としては酸素透過性を有するものが好ましく、ポリメチルメタクリレート、メタクリル酸-スチレン共重合体、スチレン-ブタジエンゴム、ブチルゴム、ニトリルゴム、クロロプレンゴム及びシリコーンからなる群より選ばれる少なくとも一つを含む樹脂を用いることができる。
 ここで、本実施形態における正極10のガス拡散層12について、さらに詳しく説明する。上述のように、ガス拡散層12は、多孔質な導電性材料と、当該導電性材料に担持されている触媒とを備えるような構成とすることができる。
 ガス拡散層12における導電性材料は、グラファイトホイル、カーボンペーパー、カーボンクロス及びステンレス鋼(SUS)からなる群より選ばれる一種以上の材料から構成することができる。より詳細に説明すると、ガス拡散層12における導電性材料は、例えば炭素系物質、導電性ポリマー、半導体及び金属からなる群より選ばれる一種以上の材料から構成することができる。炭素系物質とは、炭素を構成成分とする物質をいう。炭素系物質の例としては、例えば、グラファイト、活性炭、カーボンブラック、バルカン(登録商標)XC-72R、アセチレンブラック、ファーネスブラック、デンカブラックなどのカーボンパウダー、グラファイトフェルト、カーボンウール、カーボン織布などのカーボンファイバー、カーボンプレート、カーボンペーパー、カーボンディスク、カーボンクロス、カーボンホイル、炭素粒子を圧縮成形した炭素系材料が挙げられる。また、炭素系物質の例として、カーボンナノチューブ、カーボンナノホーン、カーボンナノクラスターのような微細構造物質も挙げられる。
 導電性ポリマーとは、導電性を有する高分子化合物の総称である。導電性ポリマーとしては、例えば、アニリン、アミノフェノール、ジアミノフェノール、ピロール、チオフェン、パラフェニレン、フルオレン、フラン、アセチレン若しくはそれらの誘導体を構成単位とする単一モノマー又は2種以上のモノマーの重合体が挙げられる。具体的には、導電性ポリマーとして、例えば、ポリアニリン、ポリアミノフェノール、ポリジアミノフェノール、ポリピロール、ポリチオフェン、ポリパラフェニレン、ポリフルオレン、ポリフラン、ポリアセチレン等が挙げられる。金属製の導電性材料としては、メッシュ及び発泡体等の金属材料が挙げられ、例えばステンレスメッシュを用いることができる。なお、入手の容易性、コスト、耐食性、耐久性等を考慮した場合、導電性材料は炭素系物質であることが好ましい。
 また、導電性材料の形状は、粉末形状又は繊維形状であることが好ましい。また、導電性材料は、支持体に支持されていてもよい。支持体とは、それ自身が剛性を有し、ガス拡散電極に一定の形状を付与することのできる部材をいう。支持体は絶縁体であっても導電体であってもよい。支持体が絶縁体である場合、支持体としては、例えばガラス、プラスチック、合成ゴム、セラミックス、耐水又は撥水処理した紙、木片などの植物片、骨片、貝殻などの動物片等が挙げられる。多孔質構造の支持体としては、例えば多孔質セラミック、多孔質プラスチック、スポンジ等が挙げられる。支持体が導電体である場合、支持体としては、例えばカーボンペーパー、カーボンファイバー、炭素棒などの炭素系物質、金属、導電性ポリマー等が挙げられる。支持体が導電体の場合には、炭素系材料を担持した導電性材料が支持体の表面上に配置されることで、支持体が集電体としても機能し得る。
 ガス拡散層12における触媒は、白金系触媒、鉄又はコバルトを用いた炭素系触媒、部分酸化したタンタル炭窒化物(TaCNO)及びジルコニウム炭窒化物(ZrCNO)等の遷移金属酸化物系触媒、タングステン又はモリブデンを用いた炭化物系触媒、活性炭等を用いることができる。
 ガス拡散層12における触媒は、金属原子がドープされている炭素系材料であることが好ましい。金属原子としては特に限定されないが、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、及び金からなる群より選ばれる少なくとも一種の金属の原子であることが好ましい。この場合、炭素系材料が、特に酸素還元反応を促進させるための触媒として優れた性能を発揮する。炭素系材料が含有する金属原子の量は、炭素系材料が優れた触媒性能を有するように適宜設定すればよい。
 炭素系材料には、更に窒素、ホウ素、硫黄及びリンから選択される一種以上の非金属原子がドープされていることが好ましい。炭素系材料にドープされている非金属原子の量も、炭素系材料が優れた触媒性能を有するように適宜設定すればよい。
 炭素系材料は、例えばグラファイト及び無定形炭素等の炭素源原料をベースとし、この炭素源原料に金属原子と、窒素、ホウ素、硫黄及びリンから選択される一種以上の非金属原子とをドープすることで得られる。
 炭素系材料にドープされている金属原子と非金属原子との組み合わせは、適宜選択される。特に、非金属原子が窒素を含み、金属原子が鉄を含むことが好ましい。この場合、炭素系材料が特に優れた触媒活性を有することができる。なお、非金属原子が窒素のみであってもよく、金属原子が鉄のみであってもよい。
 非金属原子が窒素を含み、金属原子がコバルトとマンガンとのうち少なくとも一方を含んでもよい。この場合も、炭素系材料が特に優れた触媒活性を有することができる。なお、非金属原子が窒素のみであってもよい。また、金属原子がコバルトのみ、マンガンのみ、あるいはコバルト及びマンガンのみであってもよい。
 炭素系材料の形状は特に制限されない。例えば、炭素系材料は、粒子状の形状を有してもよく、またシート状の形状を有してもよい。シート状の形状を有する炭素系材料の寸法は特に制限されず、例えばこの炭素系材料が微小な寸法であってもよい。シート状の形状を有する炭素系材料は、多孔質であってもよい。シート状の形状を有し、かつ、多孔質な炭素系材料は、例えば織布状、不織布状等の形状を有することが好ましい。
 ガス拡散層12における触媒として構成される炭素系材料は、次のように調製することができる。まず、例えば窒素、ホウ素、硫黄及びリンからなる群より選ばれる少なくとも一種の非金属を含む非金属化合物と、金属化合物と、炭素源原料とを含有する混合物を準備する。そして、この混合物を、800℃以上1000℃以下の温度で、45秒以上600秒未満加熱する。これにより、触媒として構成される炭素系材料を得ることができる。
 ここで、炭素源原料としては、上述の通り、例えばグラファイト又は無定形炭素を使用することができる。さらに、金属化合物としては、炭素源原料にドープされる非金属原子と配位結合し得る金属原子を含む化合物であれば、特に制限されない。金属化合物は、例えば金属の塩化物、硝酸塩、硫酸塩、臭化物、ヨウ化物、フッ化物などのような無機金属塩、酢酸塩などの有機金属塩、無機金属塩の水和物、及び有機金属塩の水和物からなる群より選ばれる少なくとも一種を使用することができる。例えばグラファイトに鉄がドープされる場合には、金属化合物は塩化鉄(III)を含有することが好ましい。また、グラファイトにコバルトがドープされる場合には、金属化合物は塩化コバルトを含有することが好ましい。また、炭素源原料にマンガンがドープされる場合には、金属化合物は酢酸マンガンを含有することが好ましい。金属化合物の使用量は、例えば炭素源原料に対する金属化合物中の金属原子の割合が5~30質量%の範囲内となるように決定されることが好ましく、更にこの割合が5~20質量%の範囲内となるように決定されることがより好ましい。
 非金属化合物は、上記の通り、窒素、ホウ素、硫黄及びリンからなる群より選ばれる少なくとも一種の非金属の化合物であることが好ましい。非金属化合物としては、例えば、ペンタエチレンヘキサミン、エチレンジアミン、テトラエチレンペンタミン、トリエチレンテトラミン、エチレンジアミン、オクチルボロン酸、1,2-ビス(ジエチルホスフィノエタン)、亜リン酸トリフェニル、ベンジルジサルフィドからなる群より選ばれる少なくとも一種の化合物を使用することができる。非金属化合物の使用量は、炭素源原料への非金属原子のドープ量に応じて適宜設定される。非金属化合物の使用量は、金属化合物中の金属原子と、非金属化合物中の非金属原子とのモル比が、1:1~1:2の範囲内となるように決定されることが好ましく、1:1.5~1:1.8の範囲内となるように決定されることがより好ましい。
 触媒として構成される炭素系材料を調製する際の、非金属化合物と金属化合物と炭素源原料とを含有する混合物は、例えば次のようにして得られる。まず炭素源原料と金属化合物と非金属化合物とを混合し、更に必要に応じてエタノール等の溶媒を加えて全量を調整する。これらを更に超音波分散法により分散させる。続いて、これらを適宜の温度(例えば60℃)で加熱した後に、混合物を乾燥して溶媒を除去する。これにより、非金属化合物と金属化合物と炭素源原料とを含有する混合物が得られる。
 次に、得られた混合物を、例えば還元性雰囲気下又は不活性ガス雰囲気下で加熱する。これにより、炭素源原料に非金属原子がドープされ、さらに非金属原子と金属原子とが配位結合することで金属原子もドープされる。加熱温度は800℃以上1000℃以下の範囲内であることが好ましく、加熱時間は45秒以上600秒未満の範囲内であることが好ましい。加熱時間が短時間であるため、炭素系材料が効率よく製造され、しかも炭素系材料の触媒活性が更に高くなる。なお、加熱処理における、加熱開始時の混合物の昇温速度は、50℃/s以上であることが好ましい。このような急速加熱は、炭素系材料の触媒活性を更に向上する。
 また、炭素系材料を、更に酸洗浄してもよい。例えば炭素系材料を、純水中、ホモジナイザーで30分間分散させ、その後この炭素系材料を2M硫酸中に入れて、80℃で3時間攪拌してもよい。この場合、炭素系材料からの金属成分の溶出が抑えられる。
 このような製造方法により、不活性金属化合物及び金属結晶の含有量が著しく低く、かつ、導電性の高い炭素系材料が得られる。
 ガス拡散層12において、触媒は結着剤を用いて導電性材料に結着していてもよい。つまり、触媒は結着剤を用いて導電性材料の表面及び細孔内部に担持されていてもよい。これにより、触媒が導電性材料から脱離し、酸素還元特性が低下することを抑制できる。結着剤としては、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、及びエチレン-プロピレン-ジエン共重合体(EPDM)からなる群より選ばれる少なくとも一つを用いることが好ましい。また、結着剤としては、ナフィオン(登録商標)を用いることも好ましい。
 (第2の導電体(負極))
 本実施形態に係る第2の導電体である負極20は、後述する微生物を担持し、さらに微生物の触媒作用により、廃水80中の有機物及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する機能を有する。そのため、本実施形態の負極20は、このような機能を生じさせる構成ならば特に限定されない。
 本実施形態の負極20は、導電性を有する導電体シートに微生物を担持した構造を有する。導電体シートとしては、多孔質の導電体シート、織布状の導電体シート及び不織布状の導電体シートからなる群より選ばれる少なくとも一つを使用することができる。また、導電体シートは複数のシートを積層した積層体でもよい。負極20の導電体シートとして、このような複数の細孔を有するシートを用いることにより、後述する局部電池反応で生成した水素イオンが正極10の方向へ移動しやすくなり、酸素還元反応の速度を高めることが可能となる。また、イオン透過性を向上させる観点から、負極20の導電体シートは、積層方向X、つまり厚さ方向に連続した空間(空隙)を有していることが好ましい。
 負極20における導電体シートは、グラファイトホイル、グラファイトブラシ、及びカーボンフェルトからなる群より選ばれる少なくとも一つを用いることができる。なお、グラファイトブラシは、炭素繊維を束ねて柄をつけたものであり、全体として導電性を有するものである。
 また、負極20における導電体シートは、厚さ方向に複数の貫通孔を有する金属板であってもよい。そのため、負極20の導電体シートを構成する材料としては、例えば、アルミニウム、銅、ステンレス鋼、ニッケル及びチタンなどの導電性金属も用いることができる。
 負極20に担持される微生物としては、廃水80中の有機物又は窒素を含む化合物を分解する微生物であれば特に限定されないが、例えば増殖に酸素を必要としない嫌気性微生物を使用することが好ましい。嫌気性微生物は、廃水80中の有機物を酸化分解するための空気を必要としない。そのため、空気を送り込むために必要な電力を大幅に低減することができる。また、微生物が獲得する自由エネルギーが小さいので、汚泥発生量を減少させることが可能となる。
 負極20に保持される微生物は嫌気性微生物であることが好ましく、例えば細胞外電子伝達機構を有する電気生産細菌であることが好ましい。具体的には、嫌気性微生物として、例えばGeobacter属細菌、Shewanella属細菌、Aeromonas属細菌、Geothrix属細菌、Saccharomyces属細菌が挙げられる。
 負極20に、嫌気性微生物を含むバイオフィルムが重ねられて固定されることで、負極20に嫌気性微生物が保持されていてもよい。例えば、負極20における接触面20aと反対側の面20bに、嫌気性微生物が保持されていてもよい。なお、バイオフィルムとは、一般に、微生物集団と、微生物集団が生産する菌体外重合体物質(extracellular polymeric substance、EPS)とを含む三次元構造体のことをいう。ただ、嫌気性微生物は、バイオフィルムによらずに負極20に保持されていてもよい。また、嫌気性微生物は、負極20の表面だけでなく、内部に保持されていてもよい。
 上述のように、嫌気性微生物は負極20の表面又は内部の少なくとも一方に担持されていることが好ましい。ただ、これらの微生物が廃水80中に含まれているだけでも、本実施形態の効果を発揮することができる。そのため、浄化装置100において、負極20及び廃水80の少なくとも一方は、嫌気性微生物を保持することが好ましい。
 ここで、本実施形態の浄化ユニットにおいて、第1の導電体は、第2の導電体との接触面からなる接合部と、接合部から触媒へ電子を導通する電子接続部とを有している。また、第2の導電体は、第1の導電体との接触面からなる接合部と、微生物から第2の導電体に移動した電子を接合部へ導通する電子接続部とを有している。つまり、図4に示すように、浄化ユニット1Aにおいて、第1の導電体10Aとしての正極10のガス拡散層12は、第2の導電体20Aである負極20との接触面10bからなる接合部と、接合部から触媒13へ電子を導通する電子接続部15とを有している。また、第2の導電体20Aとしての負極20は、第1の導電体10Aであるガス拡散層12との接触面20aからなる接合部と、微生物21から第2の導電体20Aに移動した電子を接合部へ導通する電子接続部25とを有している。なお、図4では、第1の導電体10Aとしての正極は、撥水層を省略している。
 そして、第1の導電体10Aの電子接続部15が第1の導電体10Aの接合部(接触面10b)よりも高い電気抵抗率を有する。または、第2の導電体20Aの電子接続部25が第2の導電体20Aの接合部(接触面20a)よりも高い電気抵抗率を有する。若しくは、第1の導電体10Aの電子接続部15が第1の導電体10Aの接合部(接触面10b)よりも高い電気抵抗率を有し、かつ、第2の導電体20Aの電子接続部25が第2の導電体20Aの接合部(接触面20a)よりも高い電気抵抗率を有する。
 第1の導電体10A及び第2の導電体20Aが導電性を有しつつも、電子接続部15が接合部(接触面10b)よりも高い電気抵抗率を有する、及び/又は、電子接続部25が接合部(接触面20a)よりも高い電気抵抗率を有することにより、電位差が生じる。つまり、電子接続部15及び/又は電子接続部25の電気抵抗率が比較的高くなることにより、第1の導電体10Aにおける触媒13の担持部位と、第2の導電体20Aにおける微生物21の担持部位とを適切な電位に制御できる。その結果、触媒13の担持部位と微生物21の担持部位との間の電位差を確保することが可能となる。また、電子伝導を伴う微生物の代謝も促進されることから、被処理体における有機物及び窒素含有化合物の分解効率をより高めることが可能となる。さらに浄化ユニット1では、電位差を確保するための外部回路などの配線及び昇圧システムなどを設ける必要がないため、より簡易な構成とすることができ、浄化装置100の小型化を達成することができる。
 なお、第1の導電体10Aの接合部の電気抵抗率は、第1の導電体10Aの接触面10bの電気抵抗率である。また、第2の導電体20Aの接合部の電気抵抗率は、第2の導電体20Aの接触面20aの電気抵抗率である。当該接合部の電気抵抗率は、四探針法により測定することができる。
 第1の導電体10Aの電子接続部15の電気抵抗率は、第1の導電体10Aの接合部(接触面10b)に対して垂直な面における電子接続部15に含まれる部分の電気抵抗率である。つまり、本実施形態において、第1の導電体10Aの電子接続部15の電気抵抗率は、図4に示す上面10c及び下面10d、並びに図3に示す右側面10e及び左側面10fにおける電子接続部15に含まれる部分で測定した値のうち、最も低い値である。また、電子接続部15の電気抵抗率は、第1の導電体10A及び第2の導電体20Aの積層方向(X軸方向)に沿って、四探針法により測定した値である。
 第2の導電体20Aの電子接続部25の電気抵抗率は、第2の導電体20Aの接合部(接触面20a)に対して垂直な面における電子接続部25に含まれる部分の電気抵抗率である。つまり、本実施形態において、第2の導電体20Aの電子接続部25の電気抵抗率は、図4に示す上面20c及び下面20d、並びに図3に示す右側面20e及び左側面20fにおける電子接続部25に含まれる部分で測定した値のうち、最も低い値である。また、電子接続部25の電気抵抗率は、第2の導電体20A及び第2の導電体20Aの積層方向(X軸方向)に沿って、四探針法により測定した値である。
 第1の導電体10Aの電子接続部15が第1の導電体10Aの接合部よりも高い電気抵抗率を有し、かつ、第2の導電体20Aの電子接続部25が第2の導電体20Aの接合部よりも高い電気抵抗率を有するためには、図5に示す構成とすることが好ましい。具体的には、第1の導電体10Aの接合部(接触面10b)及び第2の導電体20Aの接合部(接触面20a)に、電気抵抗率が高い抵抗層90を設けることが好ましい。そして、抵抗層90の電気抵抗率は、第1の導電体10Aの電子接続部15及び第2の導電体20Aの電子接続部25よりも高いことが好ましい。第1の導電体10Aと第2の導電体20Aの界面に抵抗層90を設けることにより、第1の導電体10A及び第2の導電体20Aの積層方向の電気抵抗を向上させ、電子接続部の電気抵抗率を接合部よりも高めることが可能となる。このような抵抗層90としては適度な導電性を有しつつも、電気抵抗を高める材料であれば特に限定されないが、例えばカーボン粒子及び金属の少なくとも一方を樹脂に分散させた導電ペーストを用いることができる。
 図5(a)に示すように、抵抗層90は、第1の導電体10Aの接合部(接触面10b)と第2の導電体20Aの接合部(接触面20a)とを跨ぐように設けられていてもよい。このような構成は、例えば第1の導電体10Aの接触面10b及び第2の導電体20Aの接触面20aの各々に導電ペーストを塗布した後、接触面同士を貼り合せることにより形成することができる。また、図5(b)に示すように、抵抗層90は、第1の導電体10Aの接合部(接触面10b)から内部に向けて設けられていてもよい。このような構成は、例えば第1の導電体10Aの接触面10bに導電ペーストを塗布した後、接触面同士を貼り合せることにより形成することができる。さらに、図5(c)に示すように、抵抗層90は、第2の導電体20Aの接合部(接触面20a)から内部に向けて設けられていてもよい。このような構成は、例えば第2の導電体20Aの接触面20aに導電ペーストを塗布した後、接触面同士を貼り合せることにより形成することができる。
 また、第1の導電体10Aの電子接続部15が第1の導電体10Aの接合部よりも高い電気抵抗率を有するためには、図6(a)に示すように、第1の導電体10Aの電子接続部15における積層方向(X軸方向)の厚みt1を大きくすることも好ましい。具体的には、第1の導電体10Aの接合部から触媒13へ至るまでの距離である電子接続部15の厚みt1を大きくすることが好ましい。電子接続部15の厚みt1を大きくすることで、第1の導電体10Aの接合部から触媒13に至るまでの電子伝導パスが長くなるため、電気抵抗を高めることが可能となる。
 第2の導電体20Aの電子接続部25が第2の導電体20Aの接合部よりも高い電気抵抗率を有するためには、図6(b)に示すように、第2の導電体20Aの電子接続部25における積層方向(X軸方向)の厚みt2を大きくすることも好ましい。具体的には、第2の導電体20Aにおける微生物から電子を受け取った部分から接合部へ至るまでの距離である電子接続部25の厚みt2を大きくすることが好ましい。電子接続部25の厚みt2を大きくすることで、第2の導電体20Aにおける微生物から電子を受け取った部分から接合部へ至るまでの電子伝導パスが長くなるため、電気抵抗を高めることが可能となる。
 次に、本実施形態の浄化装置100の作用について説明する。浄化装置100の動作時には、第2の導電体である負極20に有機物及び窒素含有化合物の少なくとも一方を含有する廃水80を供給し、第1の導電体である正極10に空気又は酸素を供給する。この際、空気及び酸素は、気相40を通じて連続的に供給される。
 そして、図1及び図2に示す正極10では、撥水層11を透過してガス拡散層12により空気が拡散する。負極20では、微生物の触媒作用により、廃水80中の有機物及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する。生成した水素イオンは、廃水80が存在する負極20の内部の空間を通過して正極10側へ移動する。また、生成した電子は負極20の導電体シートを通じて正極10のガス拡散層12に移動する。そして、水素イオン及び電子は、ガス拡散層12に担持された触媒13の作用により酸素と結合し、水となって消費される。
 例えば、廃水80が有機物としてグルコースを含有する場合、上述した局部電池反応(半セル反応)は、以下の式で表される。
・負極20:C12+6HO→6CO+24H+24e
・正極10:6O+24H+24e→12H
 また、廃水80が窒素含有化合物としてアンモニアを含有する場合、局部電池反応は、以下の式で表される。
・負極20:4NH→2N+12H+12e
・正極10:3O+12H+12e→6H
 このように、負極20における微生物の触媒作用により、廃水80中の有機物及び窒素含有化合物を分解し、廃水80を浄化することが可能となる。なお、正極10では酸素の還元反応により水酸化物イオンが生成する場合がある。そのため、生成した水酸化物イオンが正極10の内部空間を移動し、負極20で生成した水素イオンと結合して水が生成する場合がある。
 上述のように、本実施形態に係る浄化ユニット1は、触媒13を含む第1の導電体10Aと、第1の導電体10Aに接触して電気的に接続される第2の導電体20Aとを備える。そして、第1の導電体10Aは、第2の導電体20Aとの接触面10bからなる接合部と、接合部から触媒13へ電子を導通する電子接続部15とを有する。第2の導電体20Aは、第1の導電体10Aとの接触面20aからなる接合部と、微生物21から第2の導電体20Aに移動した電子を接合部へ導通する電子接続部25とを有する。第1の導電体10Aの電子接続部15が第1の導電体10Aの接合部よりも高い電気抵抗率を有する、及び/又は、第2の導電体20Aの電子接続部25が第2の導電体20Aの接合部よりも高い電気抵抗率を有する。そして、第1の導電体10Aの少なくとも一部は酸素を含む気相40と接触し、第2の導電体20Aの少なくとも一部は被処理体と接触する。
 浄化装置100は、上述の浄化ユニット1と、浄化ユニット1及び浄化ユニット1により浄化される廃水80を内部に保持するための処理槽70とを備える。そして、浄化ユニット1は、第1の導電体10Aの少なくとも一部が気相40と接触し、かつ、第2の導電体20Aの少なくとも一部が廃水80と接触するように設置される。
 本実施形態の浄化装置100は、電子移動反応を介して、廃水80に含まれる成分(有機物又は窒素含有化合物)を効率的に酸化分解できる。具体的には、廃水80に含まれる有機物及び/又は窒素含有化合物は、嫌気性微生物の代謝、すなわち微生物の増殖によって分解され除去される。そして、この酸化分解処理は嫌気性条件下で行われるため、好気性条件下で行われる場合よりも、有機物から微生物の新しい細胞への変換効率を低く抑えることができる。このため、活性汚泥法を用いる場合よりも、微生物の増殖、すなわち汚泥の発生量を低減できる。また、通常の嫌気性処理では臭気性のメタンガスが生成されるが、本実施形態における酸化分解処理では、代謝生成物は例えば二酸化炭素ガスであるため、メタンガスの生成を抑制できる。
 さらに、浄化ユニット1において、第1の導電体10Aの電子接続部15が第1の導電体10Aの接合部よりも高い電気抵抗率を有する、及び/又は、第2の導電体20Aの電子接続部25が第2の導電体20Aの接合部よりも高い電気抵抗率を有する。これにより、第1の導電体10Aにおける触媒13の担持部位と第2の導電体20Aにおける微生物21の担持部位との間の電位差を確保し、第2の導電体20Aから第1の導電体10Aに電子を流れやすくする。その結果、電子伝導を伴う微生物の代謝も促進されることから、被処理体における有機物及び窒素含有化合物の分解効率をより高めることが可能となる。
 浄化ユニット1において、第1の導電体10Aは酸素還元触媒を含むことが好ましい。これにより、第1の導電体10Aにおいて、気相40中の酸素と、第2の導電体20Aで生成した水素イオン及び電子との酸素還元反応が促進するため、被処理体の浄化をより効率的に行うことが可能となる。
 また、第2の導電体20Aの表面及び内部の少なくとも一方には、嫌気性微生物が担持されていることが好ましい。嫌気性微生物を用いることにより、微生物の増殖、すなわち汚泥の発生量を低減でき、さらにメタンガスの生成も抑制することが可能となる。
 浄化ユニット1において、第1の導電体である正極10に微生物が接触する場合、その分泌成分による凝固物の固着や、微生物による酸素の過剰な消費、局所的なpH勾配の形成などが生じ、電子の移動に伴う反応量が低下する可能性がある。そのため、微生物の正極10への付着は、可能な限り阻害されることが好ましい。
 正極10への微生物の付着を阻害する方法としては、物理的に微生物が通らない孔径の孔を有する抵抗層90を使用する方法、または抵抗層90の化学的・生物的作用を利用する方法が挙げられる。化学的・生物的作用を利用する方法としては、抵抗層90へ微生物を殺菌するための殺菌剤を固定する方法が挙げられる。殺菌剤としては、例えば殺菌性のある銀イオンや銅イオンを放出する化合物、及びテトラサイクリンを用いることができる。また、抵抗層90自体が、微生物が繁殖可能なpH範囲から外れる局所pHを有する方法が挙げられる。
 抵抗層90に微生物の付着を阻害する方法を適用する場合、微生物が抵抗層90を通過せずに、正極10の上面10c、下面10d、右側面10e又は左側面10fから正極10の内部に侵入することを抑制することが好ましい。つまり、たとえ抵抗層90に微生物の付着を阻害する方法を適用したとしても、正極10の上面10c、下面10d、右側面10e又は左側面10fから微生物が侵入した場合には、正極10の内部に微生物が付着してしまう。そのため、微生物が正極10の内部に侵入しないように、正極10の上面10c、下面10d、右側面10e及び左側面10fが封止材料により封止されていることが好ましい。封止材料は少なくとも微生物が通過しない材料からなることが好ましく、例えば、エポキシ樹脂、ポリメチルメタクリレート、メタクリル酸-スチレン共重合体、スチレン-ブタジエンゴム、ブチルゴム、ニトリルゴム、クロロプレンゴム及びシリコーンからなる群より選ばれる少なくとも一つを含む樹脂を用いることができる。
 また、正極10への微生物の付着を阻害する方法としては、正極10へ微生物を殺菌するための殺菌剤を固定する方法が挙げられる。さらに、正極10自体が、微生物が繁殖可能なpH範囲から外れる局所pHを有する方法も挙げられる。
 浄化装置100において、処理槽70は内部に廃水80を保持しているが、廃水80が流通するような構成であってもよい。例えば、図1及び図2に示すように、処理槽70には、廃水80を処理槽70に供給するための廃水供給口71と、処理後の廃水80を処理槽70から排出するための廃水排出口72とが設けられていてもよい。そして、廃水80は、廃水供給口71及び廃水排出口72を通じて連続的に供給されることが好ましい。
 本実施形態に係る第2の導電体である負極20には、例えば、電子伝達メディエーター分子が修飾されていてもよい。あるいは、処理槽70内の廃水80は、電子伝達メディエーター分子を含んでいてもよい。これにより、嫌気性微生物から負極20への電子移動を促進し、より効率的な液体処理を実現できる。
 具体的には、嫌気性微生物による代謝機構では、細胞内あるいは最終電子受容体との間で電子の授受が行われる。廃水80中にメディエーター分子を導入すると、メディエーター分子が代謝の最終電子受容体として作用し、かつ、受け取った電子を負極20へと受け渡す。この結果、負極20における有機物などの酸化分解速度を高めることが可能になる。なお、メディエーター分子が負極20の面20bに担持されていても同様の効果が得られる。このような電子伝達メディエーター分子は、特に限定されない。電子伝達メディエーター分子としては、例えばニュートラルレッド、アントラキノン-2,6-ジスルホン酸(AQDS)、チオニン、フェリシアン化カリウム、及びメチルビオローゲンからなる群より選ばれる少なくとも一つを用いることができる。
[第二実施形態]
 次に、第二実施形態に係る浄化ユニット及び浄化装置について、図面に基づき詳細に説明する。なお、第一実施形態と同一構成には同一符号を付し、重複する説明は省略する。
 本実施形態に係る浄化ユニットは、図7に示すように、触媒13を含む第1の導電体10Bと、第1の導電体10Bに接触して電気的に接続される第2の導電体20Bとを備える。そして、第1の導電体10Bは、第2の導電体20Bとの接触面10bからなる接合部と、接合部から触媒13へ電子を導通する電子接続部とを有する。また、第2の導電体20Bは、第1の導電体10Bとの接触面20aからなる接合部と、微生物から第2の導電体20Bに移動した電子を接合部へ導通する電子接続部とを有する。そして、第1の導電体10Bの電子接続部15が第1の導電体10Bの接合部よりも高い電気抵抗率を有する、及び/又は、第2の導電体20Bの電子接続部25が第2の導電体20Bの接合部よりも高い電気抵抗率を有する。
 図7に示す浄化ユニットにおいて、第1の導電体10Bは廃水80の水面80aから露出しており、酸素を含む気相である空気と直接接触している。そのため、当該浄化ユニットでは、第一実施形態で用いている気相40を形成するためのカセット基材50及び板部材60を備える必要がない。また、第1の導電体10Bは、第一実施形態の正極10における撥水層11も備える必要がない。そのため、第1の導電体10Bは第一実施形態における正極10のガス拡散層12と同じ構成とすることができ、第2の導電体20Bは第一実施形態における負極20と同じ構成とすることができる。
 本実施形態の浄化装置において、浄化ユニットは、第1の導電体10Bの少なくとも一部が酸素を含む気相40と接触し、第2の導電体20Bの少なくとも一部が被処理体である廃水80と接触するように設置されている。この場合、第2の導電体20Bは廃水80と接触していることから、この内部には廃水80が存在している。そのため、第2の導電体20Bは、内部の廃水80により水素イオンの移動を可能としている。また、第1の導電体10Bも廃水80に部分的に接触しており、内部には廃水80が存在している。さらに、例えば第1の導電体10Bが多孔質体である場合には、毛管現象により廃水80を上昇させ、第1の導電体10Bの内部に保持することができる。そのため、第1の導電体10Bも、内部の廃水80により水素イオンの移動を可能としている。
 本実施形態の浄化装置も第一実施形態と同様に作用することができる。具体的には、浄化装置の動作時には、第2の導電体20Bに、有機物及び窒素含有化合物の少なくとも一方を含有する廃水80を供給し、第1の導電体10Bに空気又は酸素を供給する。この際、第1の導電体10Bは空気中に露出しているため、空気は連続的に供給される。
 そして、第2の導電体20Bでは、微生物の触媒作用により、廃水80中の有機物及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する。生成した水素イオンは、第2の導電体20Bの内部の空間を通過して第1の導電体10B側へ移動する。また、生成した電子は第2の導電体20Bを通じて第1の導電体10Bに移動する。そして、水素イオン及び電子は、第1の導電体10Bに担持された触媒の作用により酸素と結合し、水となって消費される。
 第一実施形態と同様に、本実施形態の浄化装置も電子移動反応を介して、廃水80に含まれる有機物及び窒素含有化合物を効率的に酸化分解することができる。そして、この酸化分解処理は嫌気性条件下で行われるため、活性汚泥法を用いる場合よりも微生物の増殖、すなわち汚泥の発生量を低減できる。また、本実施形態における酸化分解処理では、代謝生成物は例えば二酸化炭素ガスであるため、メタンガスの生成を抑制できる。
 また、本実施形態で用いる浄化ユニットにおいて、第1の導電体10Bは空気中に露出しているため、気相40を形成するための撥水層11、カセット基材50及び板部材60が不要となる。そのため、浄化ユニットの構造を簡略化することが可能となる。
 本実施形態に係る浄化ユニットは、第1の導電体10Bの少なくとも一部が廃水80の水面80aから露出でき、第2の導電体20Bが廃水80に浸漬できるような構成であれば特に限定されず、例えば図7(a)~(d)のような構成とすることができる。
 図7(a)の浄化ユニット1Bでは、第1の導電体10Bは水面80aに対して略水平に配置され、第2の導電体20Bは第1の導電体10Bに対して略垂直に配置されている。なお、第2の導電体20Bの数は1つに限定されず、複数の第2の導電体20Bが1つの第1の導電体10Bに接続していてもよい。
 図7(b)の浄化ユニット1Cでは、第1の導電体10Bは水面80aに略水平に配置され、第2の導電体20Bは第1の導電体10Bに対して略平行に配置されている。図7(c)の浄化ユニット1Dでは、第1の導電体10Bは水面80aに略水平に配置されている。そして、第2の導電体20Bは断面が略T字状となっている。図7(d)の浄化ユニット1Eでは、第1の導電体10Bは水面80aに略水平に配置されている。そして、第2の導電体20Bは断面が略Π字状となっている。
 図7(a)に示すように、第1の導電体10Bの上面10cに酸素還元触媒を担持した場合、酸素還元触媒への水素イオン伝導性を確保するために、第1の導電体10Bは上面10cまで廃水80が保持されていることが好ましい。ただ、第1の導電体10Bの内部にイオン伝導性物質を配置することで、廃水80が保持されていなくても酸素還元触媒まで水素イオンを伝導することが可能となる。イオン伝導性物質としては、例えばパーフルオロスルホン酸基を含有するナフィオン(登録商標)、カルボン酸基を含有するパーフルオロ型ビニルエーテルからなるフレミオン(登録商標)を用いることができる。
[第三実施形態]
 次に、第三実施形態に係る浄化ユニット及び浄化装置について、図面に基づき詳細に説明する。なお、第一及び第二実施形態と同一構成には同一符号を付し、重複する説明は省略する。
 本実施形態に係る浄化ユニットも第二実施形態と同様の構成を有している。図8に示すように、浄化ユニットは、図8に示すように、触媒13を含む第1の導電体10Cと、第1の導電体10Cに接触して電気的に接続される第2の導電体20Cとを備える。そして、第1の導電体10Cは、第2の導電体20Cとの接触面10bからなる接合部と、接合部から触媒13へ電子を導通する電子接続部とを有する。また、第2の導電体20Cは、第1の導電体10Cとの接触面20aからなる接合部と、微生物から第2の導電体20Cに移動した電子を接合部へ導通する電子接続部とを有する。そして、第1の導電体10Cの電子接続部15が第1の導電体10Cの接合部よりも高い電気抵抗率を有する、及び/又は、第2の導電体20Cの電子接続部25が第2の導電体20Cの接合部よりも高い電気抵抗率を有する。ただ、本実施形態の浄化ユニットは、第1の導電体10C及び第2の導電体20Cが鉛直方向に接続されている。
 具体的には、図8(a)に示すように、浄化ユニット1Fは、第1の導電体10C及び第2の導電体20Cが鉛直方向に接続されている。そして、第1の導電体10Cの一部及び第2の導電体20Cは、廃水80に浸漬されている。また、第1の導電体10Cには、気相40と接触面積を増やすために、カセット基材50及び板部材60を設けている。そのため、第1の導電体10Cは、第一実施形態における撥水層11及びガス拡散層12を備える正極10と同じ構成とすることが好ましい。また、第2の導電体20Cは第一実施形態における負極20と同じ構成とすることができる。
 図8(b)に示すように、浄化ユニット1Gは、第1の導電体10C及び第2の導電体20Cが鉛直方向に接続されている。そして、第1の導電体10Cは気相40中に露出し、第2の導電体20Cは廃水80に浸漬されている。そのため、第1の導電体10Cは第一実施形態における正極10のガス拡散層12と同じ構成とすることができ、第2の導電体20Cは第一実施形態における負極20と同じ構成とすることができる。
 ここで、例えば第1の導電体10Cが多孔質体である場合には、毛管現象により廃水80を上昇させ、第1の導電体10Cの内部に保持することができる。そのため、第1の導電体10Cは、内部の廃水80により水素イオンの移動を可能としている。ただ、水素イオン伝導性を確保するために、上述のように、第1の導電体10Cの内部にイオン伝導性物質を配置してもよい。
 本実施形態の浄化装置も、第一及び第二実施形態と同様に作用することができる。具体的には、浄化装置の動作時には、第2の導電体20Cに、有機物及び窒素含有化合物の少なくとも一方を含有する廃水80を供給し、第1の導電体10Cに空気又は酸素を供給する。そして、第2の導電体20Cでは、微生物の触媒作用により、廃水80中の有機物及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する。生成した水素イオンは、第2の導電体20Cの内部の空間を通過して第1の導電体10C側へ移動する。また、生成した電子は第2の導電体20Cを通じて第1の導電体10Cに移動する。そして、水素イオン及び電子は、第1の導電体10Cに担持された触媒の作用により酸素と結合し、水となって消費される。
 本実施形態の浄化装置は、浄化ユニット1F,1Gが鉛直方向に設置されていることから、廃水80中の設置スペースを小さくすることができる。そのため、少ないスペースに複数の浄化ユニット1F,1Gを設置することができ、効率的に廃水80の浄化を行うことが可能となる。
[第四実施形態]
 次に、第四実施形態に係る浄化ユニット及び浄化装置について、図面に基づき詳細に説明する。なお、第一乃至第三実施形態と同一構成には同一符号を付し、重複する説明は省略する。
 本実施形態に係る浄化ユニットも第二実施形態と同様の構成を有している。図9に示すように、浄化ユニットは、触媒13を含む第1の導電体10Dと、第1の導電体10Dに接触して電気的に接続される第2の導電体20Dとを備える。そして、第1の導電体10Dは、第2の導電体20Dとの接触面10bからなる接合部と、接合部から触媒13へ電子を導通する電子接続部とを有する。また、第2の導電体20Dは、第1の導電体10Dとの接触面20aからなる接合部と、微生物から第2の導電体20Dに移動した電子を接合部へ導通する電子接続部とを有する。そして、第1の導電体10Dの電子接続部15が第1の導電体10Dの接合部よりも高い電気抵抗率を有する、及び/又は、第2の導電体20Dの電子接続部25が第2の導電体20Dの接合部よりも高い電気抵抗率を有する。
 図9(a)の浄化ユニット1Hでは、第1の導電体10Dは水面80aに対して略水平に配置され、第2の導電体20Dは第1の導電体10Dに対して略垂直に配置されている。また、図9(b)の浄化ユニット1Iでは、第1の導電体10Dは水面80aに略水平に配置され、第2の導電体20Dは断面が略T字状となっている。
 図9に示す浄化ユニットにおいて、第1の導電体10Dは廃水80の水面80aから露出しており、酸素を含む気相である空気と直接接触している。そして、第2の導電体20Dは廃水80に浸漬している。そのため、第1の導電体10Dは第一実施形態における正極10のガス拡散層12と同じ構成とすることができ、第2の導電体20Dは第一実施形態における負極20と同じ構成とすることができる。
 ここで、例えば第1の導電体10Dが多孔質体である場合には、毛管現象により廃水80を上昇させ、第1の導電体10Dの内部に保持することができる。そのため、第1の導電体10Dは、内部の廃水80により水素イオンの移動を可能としている。ただ、水素イオン伝導性を確保するために、上述のように、第1の導電体10Dの内部にイオン伝導性物質を配置してもよい。
 本実施形態の浄化ユニットは、第1の導電体10Dと廃水80の水面80aとの間に蓋部材110を設けている。そして、蓋部材110は酸素透過性が低いことが好ましい。酸素透過性が低い蓋部材110を設けることにより、廃水80と気相40との接触を抑制し、廃水80に溶存する酸素量を低減することができる。その結果、廃水80の内部に配置されている第2の導電体20Dの周囲を嫌気性雰囲気にすることができるため、嫌気性微生物の代謝を促進することが可能となる。また、図9(b)の浄化ユニット1Iにおいて、蓋部材110を設けることにより水面80aの近傍を嫌気性に保つことができるため、第2の導電体20Dを第1の導電体10Dに近接して配置することが可能となる。
 このような蓋部材110は、酸素透過性が低い樹脂材料からなることが好ましい。また、第1の導電体10Dを廃水80の水面80aから露出させるために、蓋部材110の比重を水よりも小さくし、浮力を発生させることが好ましい。
[第五実施形態]
 次に、第五実施形態に係る浄化ユニット及び浄化装置について、図面に基づき詳細に説明する。なお、第一乃至第四実施形態と同一構成には同一符号を付し、重複する説明は省略する。
 本実施形態に係る浄化ユニットも第三実施形態と同様の構成を有している。図10に示すように、浄化ユニットは、触媒13を含む第1の導電体10Eと、第1の導電体10Eに接触して電気的に接続される第2の導電体20Eとを備える。そして、第1の導電体10Eは、第2の導電体20Eとの接触面10bからなる接合部と、接合部から触媒13へ電子を導通する電子接続部とを有する。また、第2の導電体20Eは、第1の導電体10Eとの接触面20aからなる接合部と、微生物から第2の導電体20Eに移動した電子を接合部へ導通する電子接続部とを有する。そして、第1の導電体10Eの電子接続部15が第1の導電体10Eの接合部よりも高い電気抵抗率を有する、及び/又は、第2の導電体20Eの電子接続部25が第2の導電体20Eの接合部よりも高い電気抵抗率を有する。
 そして、第1の導電体10Eは気相40中に露出し、第2の導電体20Eは廃水80に浸漬されている。そのため、第1の導電体10Eは廃水80に浸漬していないことから、第1の導電体10Eは第一実施形態における正極10のガス拡散層12と同じ構成とすることができ、第2の導電体20Eは第一実施形態における負極20と同じ構成とすることができる。
 本実施形態の浄化ユニット1Jは、第三実施形態と同様に、第1の導電体10E及び第2の導電体20Eが略鉛直方向に接続されている。ただ、浄化ユニット1Jは鉛直方向に対して角度θで傾斜しており、さらに廃水80が第1の導電体10Eに対して流下している。つまり、廃水80は、図10に示す矢印Bに沿って第1の導電体10Eの上部に接触し、第1の導電体10Eの表面及び内部を通過した後、第2の導電体20Eが浸漬している溜められた廃水80に至る。
 このように浄化ユニット1Jでは、第1の導電体10Eの表面及び内部に常に廃水80が存在している。そのため、第1の導電体10E自体に水素イオン伝導性を設けなくても、廃水80を介して酸素還元触媒に水素イオンを到達させることが可能となる。
 なお、第1の導電体10Eに流下する廃水80は、第2の導電体20Eが浸漬している廃水80を循環させてもよい。また、汚染源から発生した廃水を第1の導電体10Eに流下させてもよい。
[第六実施形態]
 次に、第六実施形態に係る浄化ユニット及び浄化装置について詳細に説明する。
 第一乃至第五実施形態では、浄化ユニットが浄化する被処理体として、廃水80を用いた場合を説明している。浄化ユニットでは、第2の導電体において微生物により有機物等から水素イオン及び電子を生成し、生成した水素イオン及び電子が第1の導電体に移動し、その後、第1の導電体で酸素還元反応が生じている。そのため、この一連の反応が生じるならば、被処理体は廃水に限定されず、例えば被処理体として土壌を用いることが可能である。また、土壌中には、電気生産細菌である嫌気性微生物が存在している。例えば、水田土壌にはGeobacter属細菌のような電気生産細菌が潜在的に存在している。そのため、第一乃至第五実施形態の浄化ユニットを土壌中に挿入するだけで、土壌浄化を行うことが可能となる。
 上述のように、第1の導電体及び第2の導電体は水素イオン伝導性を有していることが好ましい。そのため、浄化ユニットは、第1の導電体及び第2の導電体の内部に、水素イオン伝導体としての水分が侵入できるような湿地帯の土壌に用いることが好ましい。また、第1の導電体及び第2の導電体の内部にイオン伝導性物質を含ませるか、又は、これらに水分を供給することにより、水素イオン伝導性を持たせることが好ましい。
 このように、本実施形態に係る浄化装置は、上述の浄化ユニットを備えている。そして、当該浄化ユニットは、第1の導電体の少なくとも一部が気相40と接触し、かつ、第2の導電体の少なくとも一部が浄化ユニットにより浄化される土壌と接触するように設置される。このような浄化ユニット及び浄化装置を用いることにより、バイオガスの発生を抑制しつつも、簡易なシステムで土壌を浄化することが可能となる。また、浄化ユニットに対して外部から運転に必要な電力を付与する必要がなく、浄化ユニットを土壌に挿入するだけで運転できるため、電力供給が困難な場所でも土壌浄化を行うことが可能となる。
 以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。また、本実施形態に係る浄化装置は、有機物や窒素含有化合物を含む液体、例えば各種産業の工場などから発生する排水、下水汚泥などの有機性廃水などの処理、さらには土壌浄化に広く適用できる。さらに、浄化装置は、水域の環境改善などにも利用できる。
 特願2016-109901号(出願日:2016年6月1日)の全内容は、ここに援用される。
 本発明によれば、汚泥発生量を低減しつつもバイオガスの発生を抑制することが可能な浄化ユニット、及び当該浄化ユニットを用いた浄化装置を得ることができる。
 1,1A,1B,1C,1D,1E,1F,1G,1H,1I,1J 浄化ユニット
 10A,10B,10C,10D,10E 第1の導電体
 10b 接触面
 13 触媒
 15 電子接続部
 20A,20B,20C,20D,20E 第2の導電体
 20a 接触面
 21 微生物
 25 電子接続部
 40 気相
 70 処理槽
 80 廃水
 100 浄化装置

Claims (5)

  1.  触媒を含む第1の導電体と、
     前記第1の導電体に接触して電気的に接続される第2の導電体と、
     を備え、
     前記第1の導電体は、前記第2の導電体との接触面からなる接合部と、前記接合部から前記触媒へ電子を導通する電子接続部とを有し、前記第2の導電体は、前記第1の導電体との接触面からなる接合部と、微生物から第2の導電体に移動した電子を前記接合部へ導通する電子接続部とを有し、
     前記第1の導電体の電子接続部が前記第1の導電体の接合部よりも高い電気抵抗率を有する、及び/又は、前記第2の導電体の電子接続部が前記第2の導電体の接合部よりも高い電気抵抗率を有し、
     前記第1の導電体の少なくとも一部は酸素を含む気相と接触し、前記第2の導電体の少なくとも一部は被処理体と接触する、浄化ユニット。
  2.  前記第1の導電体は酸素還元触媒を含む、請求項1に記載の浄化ユニット。
  3.  請求項1又は2に記載の浄化ユニットと、
     前記浄化ユニットと前記浄化ユニットにより浄化される廃水とを内部に保持するための処理槽と、
     を備え、
     前記浄化ユニットは、前記第1の導電体の少なくとも一部が前記気相と接触し、かつ、前記第2の導電体の少なくとも一部が前記廃水と接触するように設置される、浄化装置。
  4.  請求項1又は2に記載の浄化ユニットを備え、
     前記浄化ユニットは、前記第1の導電体の少なくとも一部が前記気相と接触し、かつ、前記第2の導電体の少なくとも一部が前記浄化ユニットにより浄化される土壌と接触するように設置される、浄化装置。
  5.  前記第2の導電体の表面及び内部の少なくとも一方には、嫌気性微生物が担持されている、請求項3又は4に記載の浄化装置。
PCT/JP2017/003376 2016-06-01 2017-01-31 浄化ユニット及び浄化装置 WO2017208496A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17806058.8A EP3466896A4 (en) 2016-06-01 2017-01-31 PURIFICATION UNIT AND PURIFICATION DEVICE
US16/304,163 US20200317544A1 (en) 2016-06-01 2017-01-31 Purification unit and purification device
JP2018520346A JP6643642B2 (ja) 2016-06-01 2017-01-31 浄化ユニット及び浄化装置
CN201780032778.2A CN109195925A (zh) 2016-06-01 2017-01-31 净化单元及净化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016109901 2016-06-01
JP2016-109901 2016-06-01

Publications (1)

Publication Number Publication Date
WO2017208496A1 true WO2017208496A1 (ja) 2017-12-07

Family

ID=60479475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003376 WO2017208496A1 (ja) 2016-06-01 2017-01-31 浄化ユニット及び浄化装置

Country Status (5)

Country Link
US (1) US20200317544A1 (ja)
EP (1) EP3466896A4 (ja)
JP (1) JP6643642B2 (ja)
CN (1) CN109195925A (ja)
WO (1) WO2017208496A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111285575A (zh) * 2019-04-13 2020-06-16 广州益禄丰生态环保科技有限责任公司 一种微生物燃料电池修复城市感潮河涌黑臭底泥的方法及设备
CN112547791B (zh) * 2020-11-12 2022-04-12 江苏大地益源环境修复有限公司 一种使用塞贝克效应强化微生物燃料电池的污染物修复方法与装置
CN113461138A (zh) * 2021-06-25 2021-10-01 江西师范大学 用于污水处理的装置和污水处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147494A (ja) 1997-08-08 1999-02-23 Daiko Kagaku Kogyo Kk カーポート用の物干竿掛
JP2014213211A (ja) * 2013-04-22 2014-11-17 パナソニック株式会社 液体処理装置
WO2016047060A1 (ja) * 2014-09-26 2016-03-31 パナソニックIpマネジメント株式会社 液体処理ユニット及び液体処理装置
JP2016109901A (ja) 2014-12-08 2016-06-20 株式会社リコー 定着装置および画像形成装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524402B2 (en) * 2008-05-13 2013-09-03 University Of Southern California Electricity generation using microbial fuel cells
WO2013073284A1 (ja) * 2011-11-16 2013-05-23 国立大学法人豊橋技術科学大学 微生物発電装置、微生物発電装置用電極およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147494A (ja) 1997-08-08 1999-02-23 Daiko Kagaku Kogyo Kk カーポート用の物干竿掛
JP2014213211A (ja) * 2013-04-22 2014-11-17 パナソニック株式会社 液体処理装置
WO2016047060A1 (ja) * 2014-09-26 2016-03-31 パナソニックIpマネジメント株式会社 液体処理ユニット及び液体処理装置
JP2016109901A (ja) 2014-12-08 2016-06-20 株式会社リコー 定着装置および画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3466896A4

Also Published As

Publication number Publication date
CN109195925A (zh) 2019-01-11
EP3466896A4 (en) 2019-05-22
JPWO2017208496A1 (ja) 2019-05-16
US20200317544A1 (en) 2020-10-08
JP6643642B2 (ja) 2020-02-12
EP3466896A1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP6368036B2 (ja) 電極構造体及び微生物燃料電池
JP6438115B2 (ja) 微生物燃料電池システム
JP6902706B2 (ja) 浄化ユニット及び浄化装置
WO2017119419A1 (ja) 微生物燃料電池用ガス拡散電極、及びそれを用いた微生物燃料電池
WO2017208496A1 (ja) 浄化ユニット及び浄化装置
JP6387186B2 (ja) 電極複合体、並びにそれを用いた微生物燃料電池及び水処理装置
JP6438051B2 (ja) 微生物燃料電池システム
JP2019076833A (ja) 液体処理システム
JP2017148776A (ja) 水処理装置
WO2018061058A1 (ja) 微生物燃料電池及び廃液処理装置
WO2017199475A1 (ja) 液体処理ユニット及び液体処理装置
WO2017175260A1 (ja) 電極、燃料電池及び水処理装置
WO2016047060A1 (ja) 液体処理ユニット及び液体処理装置
JP6703859B2 (ja) 微生物燃料電池
WO2017195406A1 (ja) 微生物燃料電池及びそれを用いた液体処理ユニット
JP2020087804A (ja) 微生物燃料電池及び液体処理ユニット
WO2018203455A1 (ja) 液体処理システム
JP2017228411A (ja) 電極複合体及び燃料電池
WO2019064889A1 (ja) 液体処理システム
WO2019078003A1 (ja) 微生物燃料電池、液体処理システム、及び液体処理構造体
WO2019078002A1 (ja) 液体処理システム
JP2020082006A (ja) 液体処理システム
JP2020099853A (ja) 液体処理システム
JP2020099850A (ja) 液体処理システム
JP2019061837A (ja) 電極複合体並びにそれを用いた電極複合体群、微生物燃料電池及び水処理装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520346

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017806058

Country of ref document: EP

Effective date: 20190102