WO2016047060A1 - 液体処理ユニット及び液体処理装置 - Google Patents

液体処理ユニット及び液体処理装置 Download PDF

Info

Publication number
WO2016047060A1
WO2016047060A1 PCT/JP2015/004554 JP2015004554W WO2016047060A1 WO 2016047060 A1 WO2016047060 A1 WO 2016047060A1 JP 2015004554 W JP2015004554 W JP 2015004554W WO 2016047060 A1 WO2016047060 A1 WO 2016047060A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
liquid processing
liquid
processing unit
oxygen
Prior art date
Application number
PCT/JP2015/004554
Other languages
English (en)
French (fr)
Inventor
直毅 吉川
祐基 北出
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP15844252.5A priority Critical patent/EP3199496A4/en
Priority to US15/329,168 priority patent/US20170210653A1/en
Priority to JP2016549921A priority patent/JP6447932B2/ja
Priority to CN201580041269.7A priority patent/CN106573809A/zh
Publication of WO2016047060A1 publication Critical patent/WO2016047060A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a liquid processing unit and a liquid processing apparatus. Specifically, the present invention relates to a liquid processing unit and a liquid processing apparatus for purifying waste water.
  • water treatment methods such as an activated sludge method utilizing aerobic respiration of microorganisms and an anaerobic treatment method utilizing anaerobic respiration of microorganisms are provided.
  • the activated sludge method In the activated sludge method, mud containing microorganisms (activated sludge) and wastewater are mixed in a biological reaction tank, and the air necessary for the microorganisms to oxidize and decompose organic matter in the wastewater is sent to the biological reaction tank and stirred. And the waste water is purified.
  • the activated sludge method requires enormous electric power for aeration of the biological reaction tank.
  • a large amount of sludge (a dead body of microorganisms), which is an industrial waste, is generated.
  • the conventional anaerobic treatment method has a problem that biogas containing a large amount of flammable and odorous odor is generated as a product of anaerobic respiration.
  • An object of the present invention is to provide a liquid processing unit that can reduce the amount of sludge generation and suppress the generation of biogas, and a liquid processing apparatus using the same.
  • the liquid processing unit has a first surface and a second surface, and further, hydrogen is provided between the first surface and the second surface.
  • a conductor having a space in which ions move; and a structure that is disposed on the second surface and adjusts the oxygen supply amount.
  • a liquid processing apparatus includes a liquid processing unit and a processing tank for holding a liquid to be processed, and the first surface of the conductor in the liquid processing unit is located inside the processing tank. positioned.
  • FIG. 1 is a schematic cross-sectional view showing an example of a liquid processing apparatus according to an embodiment of the present invention.
  • the liquid processing apparatus 10 holds a liquid processing unit 1 that decomposes components in the liquid 9 to be processed, such as organic substances, by an electrochemical reaction, and the liquid 9 to be processed. And a treatment tank 7.
  • the liquid processing unit 1 includes a conductor 5 having a first surface 2 and a second surface 3.
  • the liquid processing unit 1 includes a substantially rectangular parallelepiped conductor 5 having a first surface 2 and a second surface 3 opposite to the first surface 2.
  • the 1st surface 2 and the 2nd surface 3 are surfaces which prescribe
  • the first surface 2 is a surface located on the upstream side in the direction of movement of hydrogen ions and electrons inside the conductor 5, and the second surface 3 is a surface located on the downstream side. Further, the first surface 2 and the second surface 3 of the conductor 5 are located inside the treatment tank 7.
  • the conductor 5 has a space 4 between the first surface 2 and the second surface 3 for the movement of hydrogen ions (H + ). That is, since a space (gap) continuous in the thickness direction exists inside the conductor 5, hydrogen ions generated on the first surface 2 can move to the second surface 3.
  • the structure of the conductor 5 is not particularly limited as long as it has a space 4 inside and is electrically connected from the first surface 2 to the second surface 3. Further, the conductor 5 may extend continuously from the first surface 2 toward the second surface 3. Or the conductor 5 may be comprised from the several electrically conductive part electrically connected. For example, the conductor 5 may have a configuration in which a plurality of conductive layers are stacked and electrically connected. When the electrical resistance between the first surface 2 and the second surface 3 of the conductor 5 is kept low, electrons generated by the decomposition of the organic matter are easily moved, and higher processing efficiency is obtained.
  • At least a part of the material constituting the conductor 5 may extend continuously from the first surface 2 toward the second surface 3, and may further extend across the space 4. . That is, at least a part of the material constituting the conductor 5 may extend in a direction perpendicular to the stacking direction of the conductor 5 and the structure 6 described later.
  • the material of the conductor 5 is not particularly limited as long as the conductivity can be ensured.
  • a conductive metal for example, at least one selected from the group consisting of aluminum, copper, stainless steel, nickel, and titanium can be used.
  • the carbon material for example, at least one selected from the group consisting of carbon paper, carbon felt, carbon cloth, and graphite foil can be used.
  • the conductive polymer material at least one selected from the group consisting of polyacetylene, polythiophene, polyaniline, poly (p-phenylene vinylene), polypyrrole and poly (p-phenylene sulfide) can be used.
  • the conductor 5 needs to have a space 4 for hydrogen ions to move between the first surface 2 and the second surface 3. It is preferable to have a space (void) continuous in the stacking direction. In order to ensure such a space, it is preferable that the conductor 5 includes a porous conductor sheet.
  • the conductor 5 is more preferably made of a porous conductor sheet. Since such a porous conductor sheet has a large number of pores therein, hydrogen ions can easily move.
  • the conductor 5 preferably includes at least one of a woven cloth-like conductor sheet and a non-woven cloth-like conductor sheet. Since the woven fabric-like conductor sheet and the nonwoven fabric-like conductor sheet have a large number of pores, the movement of hydrogen ions can be facilitated.
  • the conductor 5 may be a metal plate having a plurality of through holes from the first surface 2 to the second surface 3.
  • the conductor 5 includes a nonwoven fabric-like conductor sheet, and it is particularly preferable that the conductor 5 is made of a nonwoven fabric-like conductor sheet. Since the nonwoven fabric easily changes its thickness and porosity, as will be described later, anaerobic microorganism group 8 is supported on the first surface 2 of the conductor 5, and an oxygen reduction catalyst is supported on the second surface 3. Can be easily obtained.
  • the pore diameter of the space 4 in the conductor 5 is not particularly limited as long as hydrogen ions can move from the first surface 2 to the second surface 3.
  • the anaerobic microorganism group 8 is used to oxidize and decompose organic substances and nitrogen-containing compounds contained in the liquid 9 to be processed. Therefore, it is preferable that the first surface 2 of the conductor 5 carries the anaerobic microorganism group 8. That is, it is preferable that the anaerobic microorganism group 8 is attached to the first surface 2 of the conductor 5. Since the anaerobic microorganism group 8 is supported, the treatment liquid 9 can be efficiently purified by utilizing the local battery reaction, as will be described later.
  • the anaerobic microorganism group 8 does not necessarily have to be carried on the conductor 5 and can exhibit the same effect even when floating in the liquid 9 to be treated in the treatment tank 7.
  • the liquid processing unit 1 includes a structure 6 that is disposed on the second surface 3 of the conductor 5 and adjusts the oxygen supply amount in addition to the conductor 5 described above.
  • the structure 6 has oxygen permeability and has a function of supplying oxygen to the second surface 3 of the conductor 5. Furthermore, the structure 6 has a substantially rectangular parallelepiped shape having a surface 6a facing the second surface 3 of the conductor 5 and a surface 6b opposite to the surface 6a. And the surface 6a which opposes the 2nd surface 3 in the structure 6 is located in the inside of the processing tank 7 as shown in FIG. 1, and the surface 6b on the opposite side is located in the exterior of the processing tank 7.
  • the structure 6 is preferably disposed partially or continuously on the surface of the second surface 3 of the conductor 5. However, in order to promote a local battery reaction described later, it is more preferable that the structure 6 is disposed so as to cover the entire second surface 3 of the conductor 5.
  • the structure 6 is in contact with the conductor 5, as shown in FIG. That is, it is preferable that the surface 6 a facing the second surface 3 in the structure 6 is in contact with the second surface 3 of the conductor 5.
  • a local battery reaction described later easily proceeds.
  • a gap may exist between the second surface 3 of the conductor 5 and the surface 6a of the structure 6. .
  • the structure 6 preferably has water repellency. Furthermore, the structure 6 is more preferably a sheet having water repellency. As shown in FIG. 1, the structure 6 is disposed so as to separate a liquid to be processed (liquid phase) 9 held in a processing tank 7 and a gas phase containing oxygen.
  • “separation” means physically blocking. Thereby, while suppressing that the organic substance and nitrogen-containing compound in the to-be-processed liquid 9 move to the gaseous phase side, it can suppress that the oxygen molecule
  • the entire side surface of the structure 6 is joined to the end 7d of the upper surface 7c of the processing tank 7 as shown in FIG. be able to. Thereby, it can suppress that the to-be-processed liquid 9 leaks out from the edge part 7d of the processing tank 7.
  • the material of the structure 6 is not particularly limited as long as it is a material having a function of adjusting the oxygen supply amount, that is, oxygen permeability, and more preferably water repellency.
  • a material of the structure 6 for example, at least one of silicone rubber and polydimethylsiloxane can be used. Since these materials have high oxygen solubility and oxygen diffusibility derived from the molecular structure of silicone, they are excellent in oxygen permeability. Furthermore, since these materials have small surface free energy, they are excellent in water repellency.
  • a nonwoven fabric such as a waterproof permeable membrane or a nonwoven fabric of polyethylene and polypropylene can be used.
  • Gore-Tex registered trademark
  • Gore-Tex formed by combining a film obtained by stretching polytetrafluoroethylene and a polyurethane polymer can be used.
  • the liquid processing apparatus widely includes an apparatus that decomposes or removes at least a part of components contained in a liquid to be processed (liquid to be processed).
  • the liquid processing apparatus 10 includes the above-described liquid processing unit 1 and a processing tank 7 for holding the liquid 9 to be processed. Further, as shown in FIG. 1, the processing tank 7 includes an upper surface 7 c having an opening, and an end 7 d of the opening is joined to the entire side surface of the structure 6.
  • the processing tank 7 has, for example, an abundance of molecular oxygen. It is kept in low anaerobic conditions. Thereby, in the processing tank 7, it becomes possible to hold
  • the treatment tank 7 may be configured such that the liquid 9 to be treated flows through the treatment tank 7.
  • the treatment tank 7 has a liquid supply port 7 a for supplying the liquid 9 to be treated to the treatment tank 7 and a liquid 9 for discharging the liquid 9 to be treated after the treatment.
  • a liquid discharge port 7b may be provided.
  • the liquid processing apparatus which concerns on this embodiment, it can be set as the liquid containing an organic substance, the compound containing nitrogen (nitrogen containing compound), or both, for example.
  • the liquid to be treated may be an electrolytic solution.
  • the liquid processing apparatus 10 includes a first surface 2 and a second surface 3, and further includes a space 4 in which hydrogen ions move between the first surface 2 and the second surface 3.
  • the liquid processing unit includes a conductor 5 and a structure 6 that is disposed on the second surface 3 and adjusts the oxygen supply amount.
  • the liquid processing apparatus 10 according to the present embodiment includes a liquid processing unit 1 and a processing tank 7 for holding the liquid 9 to be processed.
  • the first surface 2 of the conductor in the liquid processing unit is a processing tank. Located inside.
  • the liquid processing apparatus 10 having such a configuration, at least one of an organic substance and a nitrogen-containing compound contained in the liquid 9 to be processed is used on the first surface 2 side of the conductor 5 by utilizing the metabolism of the anaerobic microorganism group 8.
  • the oxidation reaction is performed. Hydrogen ions (H + ) generated by the oxidation reaction are transferred to the second surface 3 side of the conductor 5 through the space 4 inside the conductor 5. Furthermore, electrons (e ⁇ ) generated by the oxidation reaction are transferred to the second surface 3 side through the conductor 5.
  • oxygen in the air existing outside the liquid processing apparatus 10 is transferred to the second surface 3 side of the conductor 5 through the structure 6.
  • the electron and hydrogen ion which were transferred from the 1st surface 2 side react with the oxygen molecule transferred by the structure 6, and oxygen reduction reaction arises.
  • the oxidation reaction of the organic substance and the nitrogen-containing compound proceeds on the first surface 2 side of the conductor 5, and the oxygen reduction reaction proceeds on the second surface 3 side. Is formed.
  • the liquid processing apparatus 10 of the present embodiment can efficiently oxidize and decompose components (organic matter or nitrogen-containing compound) contained in the liquid 9 to be processed through an electron transfer reaction. Specifically, organic substances and / or nitrogen-containing compounds contained in the liquid 9 to be treated are decomposed and removed by the metabolism of anaerobic microorganisms, that is, the growth of microorganisms. And since this oxidative decomposition process is performed on anaerobic conditions, the conversion efficiency from an organic substance to the new cell of microorganisms can be suppressed low rather than the case where it is performed on an aerobic condition.
  • the proliferation of microorganisms that is, the generation amount of sludge can be reduced.
  • odorous methane gas is generated in the normal anaerobic treatment, but in the oxidative decomposition treatment in the present embodiment, as described later, the metabolite is, for example, carbon dioxide (CO 2 ) gas. Generation can be suppressed.
  • the liquid processing apparatus 10 of the present embodiment it is not necessary to provide wiring such as an external circuit, a current collector, and a booster system that are normally provided in the microbial fuel cell, so that a simpler configuration can be achieved. Moreover, since the structure of the liquid processing unit 1 is also simplified, the overall thickness can be reduced, and the liquid processing apparatus 10 can be reduced in size.
  • the liquid 9 to be processed held in the treatment tank 7 contains components such as organic substances and nitrogen-containing compounds.
  • a part of the component in the liquid 9 to be treated is metabolized by the anaerobic microorganism group 8 in the vicinity of the first surface 2 of the conductor 5.
  • This metabolism generates electrons and releases carbon dioxide and hydrogen ions as metabolites.
  • the generated electrons move from the first surface 2 through the conductor 5 to the second surface 3.
  • the generated hydrogen ions pass through the space 4 inside the conductor 5 and move to the second surface 3 side.
  • the oxygen molecules transferred by the structure 6 are combined with the transferred electrons and hydrogen ions, and water molecules are generated.
  • the above-described local battery reaction (half-cell reaction) is represented by the following formula.
  • First surface 2 of conductor 5 (anode): C 6 H 12 O 6 + 6H 2 O ⁇ 6CO 2 + 24H + + 24e ⁇
  • the liquid processing apparatus 10 it is possible to form two electrodes integrally by making the both ends of the conductor 5 function as two electrodes used for battery reaction.
  • the first surface 2 of the conductor 5 can function as an anode
  • the second surface 3 can function as a cathode.
  • the liquid processing apparatus 10 does not need to be provided with wiring such as an external circuit normally provided in the microbial fuel cell, a current collector, and a boosting system. For this reason, a simpler equipment configuration can be realized.
  • the anode (first surface 2) and the cathode (second surface 3) are short-circuited and power generation is not performed, the processing efficiency of the liquid to be processed can be further improved.
  • the liquid processing unit 1 of the present embodiment it is preferable that at least a part of the surface of the conductor 5 is covered with an electrically insulating material.
  • the portion of the space 4 located between the first surface 2 and the second surface 3 in the surface of the conductor 5 is preferably covered with an electrically insulating material.
  • the entire surface of the conductor 5 other than the first surface 2 and the second surface 3 may be covered with an electrically insulating material.
  • the electrical insulating material is not particularly limited as long as electrical insulating properties can be obtained.
  • natural rubber, synthetic resin, glass fiber, and the like can be used.
  • the oxidation reaction of organic substances and nitrogen-containing compounds contained in the liquid 9 to be processed on the first surface 2 side of the conductor 5 is performed using the anaerobic microorganism group 8.
  • the oxidation reaction of the organic matter contained in the liquid 9 may be performed using a catalyst material such as an oxidation catalyst. That is, the oxidation reaction of the organic matter or the like may be performed using an anaerobic microorganism group or a catalyst material, or may be performed using both an anaerobic microorganism group and a catalyst material.
  • the oxidation catalyst may be supported on the first surface 2 of the conductor 5.
  • the conductor 5 may carry an oxygen reduction catalyst on the second surface 3.
  • the reaction between the oxygen transferred by the structure 6 and the hydrogen ions that have passed through the space 4 inside the conductor 5 and moved to the second surface 3 side is promoted, and the reduction reaction efficiency of oxygen is increased. Therefore, more efficient liquid processing can be realized.
  • the structure 6 transmits oxygen in the air.
  • the oxygen reduction catalyst is supported on the second surface 3, the oxygen is easily consumed by the oxygen reduction catalyst, so that mixing of oxygen into the liquid 9 is further suppressed, and the inside of the treatment tank 7 is high. It becomes possible to keep an anaerobic state.
  • the oxygen reduction catalyst that can be supported on the conductor 5 is not particularly limited, but preferably contains platinum. Further, the oxygen reduction catalyst may include carbon particles doped with at least one nonmetallic atom and metal atom. The atoms doped in the carbon particles are not particularly limited.
  • the nonmetallic atom may be, for example, a nitrogen atom, a boron atom, a sulfur atom, or a phosphorus atom.
  • the metal atom may be, for example, an iron atom or a copper atom.
  • the first surface 2 of the conductor 5 may be modified with, for example, an electron transfer mediator molecule.
  • the to-be-processed liquid 9 in the processing tank 7 may contain the electron transfer mediator molecule.
  • Such a mediator molecule is not particularly limited, and is composed of neutral red, anthraquinone-2,6-disulfonate (AQDS), thionine, potassium ferricyanide, and methylviologen. At least one selected from the group can be used.
  • liquid treatment apparatus can be widely applied to treatment of liquids containing organic substances and nitrogen-containing compounds, for example, wastewater generated from factories of various industries, organic wastewater such as sewage sludge, and the like. It can also be used to improve the water environment.
  • the liquid processing unit and the liquid processing apparatus of the present invention oxidize and decompose organic substances in the liquid to be processed by utilizing a local battery reaction, the amount of sludge generated can be reduced, and flammable methane gas with a specific odor can be generated. Generation of a large amount of biogas can be suppressed. Further, since it is not necessary to provide an external circuit or the like normally provided in the microbial fuel cell, a simple configuration can be achieved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

 液体処理ユニット(1)は、第一の面(2)及び第二の面(3)を有し、さらに第一の面と第二の面との間に水素イオンが移動する空間(4)を有する導電体(5)と、第二の面に配置され、酸素供給量を調整する構造体(6)とを備える。また、液体処理装置(10)は、液体処理ユニットと、被処理液(9)を保持するための処理槽(7)とを備え、液体処理ユニットにおける導電体の第一の面は処理槽の内部に位置している。

Description

液体処理ユニット及び液体処理装置
 本発明は、液体処理ユニット及び液体処理装置に関する。詳細には本発明は、廃水を浄化するための液体処理ユニット及び液体処理装置に関する。
 従来、廃水中に含まれる有機物等を除去するために、種々の水処理方法が提供されている。具体的には、微生物の好気呼吸を利用する活性汚泥法や、微生物の嫌気呼吸を利用する嫌気性処理法などの水処理方法が提供されている。
 活性汚泥法では、微生物を含んだ泥(活性汚泥)と廃水とを生物反応槽で混合し、微生物が廃水中の有機物を酸化分解するために必要な空気を生物反応槽に送り込んで攪拌することで、廃水を浄化している。しかし、活性汚泥法は、生物反応槽のエアレーションに莫大な電力を要する。また、微生物が酸素呼吸をして活発に代謝を行う結果、産業廃棄物である大量の汚泥(微生物の死骸)が発生してしまう。
 これに対し、嫌気性処理法ではエアレーションが不要となることから、活性汚泥法に比べて必要電力量を大幅に低減することができる。また、微生物が獲得する自由エネルギーが小さいので、汚泥発生量が減少する。このような嫌気性処理法を利用した廃水処置装置としては、水素吸蔵合金の粒子を使用した担体に嫌気性微生物を付着させた装置が開示されている(例えば、特許文献1参照)。
特開平1-47494号公報
 しかしながら、従来の嫌気性処理法では、嫌気呼吸の産物として、可燃性で特有の臭気があるメタンガスを多量に含むバイオガスが発生するという問題があった。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、汚泥発生量を低減でき、かつ、バイオガスの発生を抑制することが可能な液体処理ユニット及びそれを用いた液体処理装置を提供することにある。
 上記課題を解決するために、本発明の第一の態様に係る液体処理ユニットは、第一の面及び第二の面を有し、さらに第一の面と第二の面との間に水素イオンが移動する空間を有する導電体と、第二の面に配置され、酸素供給量を調整する構造体とを備える。
 本発明の第二の態様に係る液体処理装置は、液体処理ユニットと、被処理液を保持するための処理槽とを備え、液体処理ユニットにおける導電体の第一の面は処理槽の内部に位置している。
図1は、本発明の実施形態に係る液体処理装置の一例を示す概略断面図である。
 以下、本実施形態に係る液体処理ユニット及びそれを用いた液体処理装置について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
 本実施形態に係る液体処理装置10は、図1に示すように、電気化学反応により被処理液9中の成分、例えば有機物を分解する液体処理ユニット1と、被処理液9を保持するための処理槽7とを備えている。
 液体処理ユニット1は、第一の面2及び第二の面3を有する導電体5を備える。具体的には、液体処理ユニット1は、第一の面2と、第一の面2と反対側の第二の面3とを有する略直方体状の導電体5を備える。第一の面2及び第二の面3は、導電体5の外表面を規定する面であり、例えば導電体5の外表面が多孔質体の表面である場合には、仮想的な面であってもよい。本実施形態では、第一の面2は、導電体5の内部における水素イオン及び電子の移動方向の上流側に位置する面であり、第二の面3は下流側に位置する面である。また、導電体5の第一の面2及び第二の面3は、処理槽7の内部に位置している。
 さらに導電体5は、第一の面2と第二の面3との間に、水素イオン(H)が移動するための空間4を有する。つまり、導電体5の内部には、厚さ方向に連続した空間(空隙)が存在しているため、第一の面2で生成した水素イオンが第二の面3へ移動することができる。
 導電体5の構成は、内部に空間4を有し、さらに第一の面2から第二の面3に向かって電気的に接続されていれば特に限定されない。また、導電体5は、第一の面2から第二の面3に向かって連続して延びていてもよい。あるいは、導電体5は、電気的に接続された複数の導電部分から構成されていてもよい。例えば、導電体5は、複数の導電層を積層し、電気的に接続させた構成であってもよい。導電体5における第一の面2と第二の面3との間の電気抵抗が低く抑えられていると、有機物の分解により生成した電子が移動しやすくなり、より高い処理効率が得られる。
 さらに、導電体5を構成する材料の少なくとも一部は、第一の面2から第二の面3に向かって連続して伸びていてもよく、さらに空間4を横切るように伸びていてもよい。つまり、導電体5を構成する材料の少なくとも一部は、導電体5と後述する構造体6との積層方向に垂直な方向に延びていてもよい。
 導電体5の材料は、導電性を確保できるならば特に限定されないが、例えば導電性金属、炭素材料及び導電性ポリマー材料からなる群より選ばれる少なくとも一種を用いることができる。導電性金属としては、例えば、アルミニウム、銅、ステンレス、ニッケル及びチタンからなる群より選ばれる少なくとも一種を用いることができる。また、炭素材料としては、例えば、カーボンペーパー、カーボンフェルト、カーボンクロス及びグラファイトホイルからなる群より選ばれる少なくとも一種を用いることができる。さらに導電性ポリマー材料としては、ポリアセチレン、ポリチオフェン、ポリアニリン、ポリ(p-フェニレンビニレン)、ポリピロール及びポリ(p-フェニレンスルフィド)からなる群より選ばれる少なくとも一種を用いることができる。
 上述のように、導電体5は、第一の面2と第二の面3との間に水素イオンが移動するための空間4を有する必要があるため、導電体5と構造体6との積層方向に連続した空間(空隙)を有することが好ましい。このような空間を確保するために、導電体5は、多孔質の導電体シートを備えることが好ましい。また、導電体5は、多孔質の導電体シートからなることがより好ましい。このような多孔質の導電体シートは、内部に多数の細孔を有しているため、水素イオンが容易に移動することが可能となる。
 なお、導電体5は、織布状の導電体シート及び不織布状の導電体シートの少なくとも一方を備えることが好ましい。織布状の導電体シート及び不織布状の導電体シートは、多数の細孔を有しているため、水素イオンの移動を容易にすることができる。また、導電体5は、第一の面2から第二の面3にかけて、複数の貫通孔を有する金属板であってもよい。
 なお、導電体5は、不織布状の導電体シートを備えることがより好ましく、不織布状の導電体シートからなることが特に好ましい。不織布はその厚みや空隙率を変更しやすいため、後述するように、導電体5の第一の面2に嫌気性微生物群8を担持し、第二の面3に酸素還元触媒を担持した構成を容易に得ることが可能となる。なお、導電体5における空間4の細孔径は、第一の面2から第二の面3に水素イオンが移動できれば特に限定されない。
 本実施形態の液体処理装置10では、嫌気性微生物群8を利用して、被処理液9に含有されている有機物や窒素含有化合物の酸化分解を行う。そのため、導電体5の第一の面2は、嫌気性微生物群8を担持していることが好ましい。つまり、導電体5の第一の面2に嫌気性微生物群8が付着していることが好ましい。嫌気性微生物群8が担持されていることにより、後述するように、局部電池反応を利用して被処理液9の浄化を効率的に行うことができる。なお、嫌気性微生物群8は、必ずしも導電体5に担持されている必要はなく、処理槽7内の被処理液9に浮遊していても同様の効果を発揮することができる。
 液体処理ユニット1は、上述の導電体5に加え、導電体5の第二の面3に配置され、酸素供給量を調整する構造体6を備えている。構造体6は酸素透過性を有し、導電体5の第二の面3に酸素を供給する機能を有する。さらに構造体6は、導電体5の第二の面3と対向する面6aと、面6aと反対側の面6bとを有する略直方体の形状となっている。そして、構造体6における第二の面3と対向する面6aは、図1に示すように処理槽7の内部に位置し、反対側の面6bは処理槽7の外部に位置している。
 構造体6は、導電体5における第二の面3の表面に、部分的に又は連続的に配置されていることが好ましい。ただ、後述する局部電池反応を促進するために、構造体6は、導電体5における第二の面3の全体を覆うように配置されていることがより好ましい。
 導電体5の第二の面に効率的に酸素を供給するために、図1に示すように、構造体6は、導電体5と接触していることが好ましい。つまり、構造体6における第二の面3と対向する面6aが、導電体5の第二の面3と接触していることが好ましい。これにより、構造体6における第二の面3に直接酸素が供給されるため、後述する局部電池反応が進行しやすくなる。ただ、導電体5の第二の面に効率的に酸素を供給されるならば、導電体5の第二の面3と構造体6の面6aとの間に隙間が存在していてもよい。
 また、構造体6は、撥水性能を有することが好ましい。さらに構造体6は、撥水性能を有するシートであることがより好ましい。図1に示すように、構造体6は、処理槽7の内部に保持された被処理液(液相)9と、酸素を含む気相とを分離するように配置されている。ここでいう「分離」とは、物理的に遮断することをいう。これにより、被処理液9中の有機物や窒素含有化合物が気相側に移動することを抑制するとともに、気相側の酸素分子が被処理液9に過度に移動することを抑制できる。このため、処理槽7内を、より確実に分子状酸素が存在し難い嫌気性条件に保つことができる。この結果、処理槽7内において好気性微生物の繁殖が抑えられるので、確実に嫌気性条件下で液体処理を行うことが可能となる。
 構造体6が被処理液9と気相とを分離する構成としては、図1に示すように、構造体6の側面全体が処理槽7の上面7cの端部7dと接合された構成とすることができる。これにより、処理槽7の端部7dから被処理液9が漏出することを抑制できる。
 構造体6の材料としては、酸素供給量を調整する機能、つまり酸素透過性を有し、さらに好ましくは撥水性能を有する材料であれば特に限定されない。構造体6の材料としては、例えばシリコーンゴム及びポリジメチルシロキサンの少なくともいずれか一方を用いることができる。これらの材料は、シリコーンの分子構造に由来する高い酸素溶解性及び酸素拡散性を有しているため、酸素透過性に優れている。さらにこれらの材料は、表面自由エネルギーが小さいため、撥水性能にも優れている。
 また、構造体6としては、防水透過膜などの不織布や、ポリエチレン及びポリプロピレンの不織布も用いることができる。具体的には、構造体6としては、ポリテトラフルオロエチレンを延伸加工したフィルムとポリウレタンポリマーを複合化してなるゴアテックス(登録商標)を用いることができる。
 本実施形態に係る液体処理装置は、処理しようとする液体(被処理液)に含有されている成分の少なくとも一部を分解又は除去する装置を広く含むものである。そして、液体処理装置10は、上述の液体処理ユニット1と、被処理液9を保持するための処理槽7とを備えている。さらに図1に示すように、処理槽7は開口部を有する上面7cを備え、開口部の端部7dは構造体6の側面全体と接合されている。上述のように、構造体6は、処理槽7の内部に保持された被処理液9と、酸素を含む気相とを分離するため、処理槽7内は、例えば分子状酸素の存在量が少ない嫌気性条件に保たれている。これにより、処理槽7内において、被処理液9を空気中の酸素と接触し難いように保持することが可能となる。
 処理槽7は、その内部を被処理液9が流通するように構成されていてもよい。例えば、図1に示すように、処理槽7には、被処理液9を処理槽7に供給するための液体供給口7aと、処理後の被処理液9を処理槽7から排出するための液体排出口7bとが設けられていてもよい。
 なお、本実施形態に係る液体処理装置で処理する被処理液としては、例えば、有機物、窒素を含む化合物(窒素含有化合物)、又はその両方を含有する液体とすることができる。また、被処理液は電解液であってもよい。
 次に、本実施形態に係る液体処理装置の作用について説明する。本実施形態の液体処理装置10は、第一の面2及び第二の面3を有し、さらに第一の面2と第二の面3との間に水素イオンが移動する空間4を有する導電体5と、第二の面3に配置され、酸素供給量を調整する構造体6とを備える液体処理ユニットを有している。また、本実施形態に係る液体処理装置10は、液体処理ユニット1と、被処理液9を保持するための処理槽7とを備え、液体処理ユニットにおける導電体の第一の面2は処理槽の内部に位置している。このような構成の液体処理装置10では、導電体5の第一の面2側において、嫌気性微生物群8の代謝を利用して、被処理液9に含まれる有機物及び窒素含有化合物の少なくとも一方の酸化反応を行う。酸化反応により生成した水素イオン(H)は、導電体5の内部の空間4を通って、導電体5の第二の面3側に移送される。さらに酸化反応により生成した電子(e)は、導電体5を通って第二の面3側に移送される。
 また、構造体6の内部を通じて、液体処理装置10の外部に存在する空気中の酸素が導電体5の第二の面3側に移送される。そして、導電体5の第二の面3において、第一の面2側から移送された電子及び水素イオンが、構造体6によって移送された酸素分子と反応し、酸素の還元反応が生じる。このように、導電体5の第一の面2側で有機物及び窒素含有化合物の酸化反応が進行し、第二の面3側で酸素の還元反応が進行し、液体処理装置全体として局部電池回路が形成される。
 このように、本実施形態の液体処理装置10は、電子移動反応を介して、被処理液9に含まれる成分(有機物又は窒素含有化合物)を効率的に酸化分解できる。具体的には、被処理液9に含まれる有機物及び/又は窒素含有化合物は、嫌気性微生物の代謝、すなわち微生物の増殖によって分解され除去される。そして、この酸化分解処理は嫌気性条件下で行われるため、好気性条件下で行われる場合よりも、有機物から微生物の新しい細胞への変換効率を低く抑えることができる。このため、活性汚泥法を用いる場合よりも、微生物の増殖、すなわち汚泥の発生量を低減できる。また、通常の嫌気性処理では臭気性のメタンガスが生成されるが、本実施形態における酸化分解処理では、後述するように、代謝生成物は例えば二酸化炭素(CO)ガスであるため、メタンガスの生成を抑制できる。
 さらに本実施形態の液体処理装置10では、微生物燃料電池に通常設けられる外部回路などの配線、集電体及び昇圧システムなどを設ける必要がないため、より簡易な構成とすることができる。また、液体処理ユニット1の構成も簡易なものとなるため、全体の厚みを小さくでき、液体処理装置10の小型化を達成することができる。
 ここで、本実施形態で利用する局部電池反応の一例をより詳しく説明する。処理槽7に保持されている被処理液9は、例えば有機物、窒素含有化合物などの成分を含有している。被処理液9中の当該成分の一部は、導電体5の第一の面2の近傍において、嫌気性微生物群8によって代謝される。この代謝により電子を生成するとともに、代謝産物として二酸化炭素及び水素イオンを放出する。生成した電子は、第一の面2から導電体5を通って、第二の面3へと移動する。また、生成した水素イオンは、導電体5の内部の空間4を通過し、第二の面3側に移動する。一方、導電体5の第二の面3の近傍では、構造体6によって移送された酸素分子が移動してきた電子及び水素イオンと結合し、水分子が生成する。
 例えば、被処理液9が有機物としてグルコースを含有する場合、上述した局部電池反応(半セル反応)は、以下の式で表される。
・導電体5の第一の面2(アノード):C12+6HO→6CO+24H+24e
・導電体5の第二の面3(カソード):6O+24H+24e→12H
 また、被処理液9が窒素含有化合物としてアンモニアを含有する場合、局部電池反応は、以下の式で表される。
・導電体5の第一の面2(アノード):4NH→2N+12H+12e
・導電体5の第二の面3(カソード):3O+12H+12e→6H
 そして、液体処理装置10では、導電体5の両端部を電池反応に用いる2つの電極として機能させることにより、2つの電極を一体的に形成することが可能である。具体的には、導電体5の第一の面2をアノード、第二の面3をカソードとして機能させることができる。また、液体処理装置10には、微生物燃料電池に通常設けられる外部回路などの配線、集電体及び昇圧システムなどを設ける必要がない。このため、より簡易な設備構成を実現できる。さらに本実施形態では、アノード(第一の面2)とカソード(第二の面3)とを短絡し、発電を行わないため、被処理液の処理効率をさらに向上することが可能となる。
 本実施形態の液体処理ユニット1において、導電体5の少なくとも一部の表面は、電気絶縁性材料で覆われていることが好ましい。具体的には、導電体5の表面のうち、第一の面2と第二の面3との間に位置している空間4の部分は、電気絶縁性材料で覆われていることが好ましい。これにより、空間4において、導電体5を通る電子と、空間4を通る水素イオンとの接触をより確実に抑制できる。したがって、電子及び水素イオンが、導電体5の第一の面2側から第二の面3側に移動する間に反応することを抑制でき、電子及び水素イオンを効率よく第二の面3側に導くことができる。なお、導電体5の表面のうち、第一の面2及び第二の面3以外の部分全体が電気絶縁性材料で覆われていてもよい。電気絶縁性材料としては電気絶縁性が得られるならば特に限定されないが、例えば天然ゴム、合成樹脂、ガラス繊維などを用いることができる。
 図1に示す液体処理装置10では、導電体5の第一の面2側における、被処理液9に含まれる有機物及び窒素含有化合物の酸化反応を、嫌気性微生物群8を用いて行っている。しかし、被処理液9に含まれる有機物等の酸化反応は、酸化触媒のような触媒材料を利用して行ってもよい。つまり、当該有機物等の酸化反応は、嫌気性微生物群又は触媒材料を利用して行ってもよく、嫌気性微生物群及び触媒材料の両方を利用して行ってもよい。この場合、酸化触媒は、導電体5の第一の面2に担持してもよい。
 また、導電体5は、第二の面3に酸素還元触媒を担持してもよい。これにより、構造体6によって移送された酸素と、導電体5の内部の空間4を透過し、第二の面3側に移動した水素イオンとの反応を促進し、酸素の還元反応効率を高めることができるので、より効率的な液体処理を実現できる。また、上述のように、構造体6は空気中の酸素を透過する。そして、第二の面3に酸素還元触媒を担持した場合、当該酸素が酸素還元触媒によって消費されやすくなるため、被処理液9への酸素の混入がより抑制され、処理槽7の内部を高い嫌気状態に保つことが可能となる。
 導電体5に担持され得る酸素還元触媒は特に限定されないが、白金を含有することが好ましい。また、酸素還元触媒は、少なくとも一種の非金属原子と金属原子とがドープされた炭素粒子を含んでもよい。炭素粒子にドープされる原子は特に限定されない。非金属原子は、例えば窒素原子、ホウ素原子、硫黄原子、リン原子などであってもよい。また、金属原子は、例えば鉄原子、銅原子などであってもよい。
 ここで、本実施形態に係る導電体5の第一の面2には、例えば、電子伝達メディエーター分子が修飾されていてもよい。あるいは、処理槽7内の被処理液9は、電子伝達メディエーター分子を含んでいてもよい。これにより、嫌気性微生物から導電体5への電子移動を促進し、より効率的な液体処理を実現できる。以下、メディエーター分子による効果をより詳しく説明する。
 嫌気性微生物による代謝機構では、細胞内あるいは最終電子受容体との間で電子の授受が行われる。被処理液9中にメディエーター分子を導入すると、メディエーター分子が代謝の最終電子受容体として作用し、かつ、受け取った電子を導電体5へと受け渡す。この結果、被処理液9における有機物などの酸化分解速度を高めることが可能になる。なお、メディエーター分子が導電体5の第一の面2に担持されていても同様の効果が得られる。
 このようなメディエーター分子は特に限定されないが、ニュートラルレッド(neutral red)、anthraquinone-2,6-disulfonate(AQDS)、チオニン(thionin)、フェリシアン化カリウム(potassium ferricyanide)、及びメチルビオローゲン(methyl viologen)からなる群より選ばれる少なくとも一種を使用することができる。
 以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。また、本実施形態に係る液体処理装置は、有機物や窒素含有化合物を含む液体、例えば各種産業の工場などから発生する排水、下水汚泥などの有機性廃水などの処理に広く適用できる。また、水域の環境改善などにも利用できる。
 特願2014-196977号(出願日:2014年9月26日)の全内容は、ここに援用される。
 本発明の液体処理ユニット及び液体処理装置は、局部電池反応を利用して被処理液中の有機物等を酸化分解するため、汚泥発生量を低減でき、さらに可燃性で特有の臭気があるメタンガスを多量に含むバイオガスの発生を抑制することができる。また、微生物燃料電池に通常設けられる外部回路などを設ける必要がないため、簡易な構成とすることができる。
 1 液体処理ユニット
 2 第一の面
 3 第二の面
 4 空間
 5 導電体
 6 構造体
 7 処理槽
 8 嫌気性微生物群
 9 被処理液
 10 液体処理装置

Claims (8)

  1.  第一の面及び第二の面を有し、さらに前記第一の面と前記第二の面との間に水素イオンが移動する空間を有する導電体と、
     前記第二の面に配置され、酸素供給量を調整する構造体と、
     を備える液体処理ユニット。
  2.  前記導電体は、前記第二の面に酸素還元触媒を担持している請求項1に記載の液体処理ユニット。
  3.  前記導電体は、多孔質の導電体シートを備える請求項1又は2に記載の液体処理ユニット。
  4.  前記導電体は、織布状の導電体シート及び不織布状の導電体シートの少なくとも一方を備える請求項1又は2に記載の液体処理ユニット。
  5.  前記導電体の少なくとも一部の表面は、電気絶縁性材料で覆われている請求項1乃至4のいずれか一項に記載の液体処理ユニット。
  6.  前記構造体は撥水性能を有するシートである請求項1乃至5のいずれか一項に記載の液体処理ユニット。
  7.  請求項1乃至6のいずれか一項に記載の液体処理ユニットと、
     被処理液を保持するための処理槽と、
     を備え、
     前記液体処理ユニットにおける導電体の第一の面は、前記処理槽の内部に位置している液体処理装置。
  8.  前記導電体は、前記第一の面に嫌気性微生物群を担持し、前記第二の面に酸素還元触媒を担持している請求項7に記載の液体処理装置。
PCT/JP2015/004554 2014-09-26 2015-09-08 液体処理ユニット及び液体処理装置 WO2016047060A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15844252.5A EP3199496A4 (en) 2014-09-26 2015-09-08 Liquid processing unit and liquid processing device
US15/329,168 US20170210653A1 (en) 2014-09-26 2015-09-08 Liquid treatment unit and liquid treatment device
JP2016549921A JP6447932B2 (ja) 2014-09-26 2015-09-08 液体処理ユニット及び液体処理装置
CN201580041269.7A CN106573809A (zh) 2014-09-26 2015-09-08 液体处理单元及液体处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-196977 2014-09-26
JP2014196977 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047060A1 true WO2016047060A1 (ja) 2016-03-31

Family

ID=55580611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004554 WO2016047060A1 (ja) 2014-09-26 2015-09-08 液体処理ユニット及び液体処理装置

Country Status (5)

Country Link
US (1) US20170210653A1 (ja)
EP (1) EP3199496A4 (ja)
JP (1) JP6447932B2 (ja)
CN (1) CN106573809A (ja)
WO (1) WO2016047060A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208496A1 (ja) * 2016-06-01 2017-12-07 パナソニックIpマネジメント株式会社 浄化ユニット及び浄化装置
JPWO2017208495A1 (ja) * 2016-06-01 2019-03-22 パナソニックIpマネジメント株式会社 浄化ユニット及び浄化装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141697A (ja) * 1986-12-03 1988-06-14 Kensetsusho Doboku Kenkyu Shocho 嫌気性固定床の形成方法
JP2002270209A (ja) * 2001-03-06 2002-09-20 Sharp Corp 固体高分子型燃料電池
JP2004342412A (ja) * 2003-05-14 2004-12-02 Ebara Corp 有機性物質を利用する発電方法及び装置
JP2005081238A (ja) * 2003-09-08 2005-03-31 Kajima Corp 有機物含有液の嫌気処理方法及び装置
WO2009072564A1 (ja) * 2007-12-07 2009-06-11 Sony Corporation 燃料電池およびその製造方法ならびに電子機器ならびに酵素固定化電極およびその製造方法ならびに撥水剤ならびに酵素固定化材
WO2009113479A1 (ja) * 2008-03-14 2009-09-17 栗田工業株式会社 微生物発電方法および微生物発電装置
JP2012005971A (ja) * 2010-06-25 2012-01-12 Kajima Corp 有機性廃水処理システム及び方法
WO2012115278A1 (ja) * 2011-02-24 2012-08-30 ソニー株式会社 微生物燃料電池、該電池の燃料と微生物、およびバイオリアクタとバイオセンサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL283574A (ja) * 1961-09-25
US4690741A (en) * 1984-10-12 1987-09-01 Cape Cod Research, Inc. Electrolytic reactor and method for treating fluids
US7491453B2 (en) * 2004-07-14 2009-02-17 The Penn State Research Foundation Bio-electrochemically assisted microbial reactor that generates hydrogen gas and methods of generating hydrogen gas
JP2013239292A (ja) * 2012-05-14 2013-11-28 Hitachi Ltd 微生物燃料電池用アノード、微生物燃料電池、微生物燃料電池用アノードの製造方法
JP6065321B2 (ja) * 2013-04-22 2017-01-25 パナソニックIpマネジメント株式会社 液体処理装置
JP6128978B2 (ja) * 2013-06-14 2017-05-17 パナソニック株式会社 燃料電池システムおよび燃料電池システム用モジュール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141697A (ja) * 1986-12-03 1988-06-14 Kensetsusho Doboku Kenkyu Shocho 嫌気性固定床の形成方法
JP2002270209A (ja) * 2001-03-06 2002-09-20 Sharp Corp 固体高分子型燃料電池
JP2004342412A (ja) * 2003-05-14 2004-12-02 Ebara Corp 有機性物質を利用する発電方法及び装置
JP2005081238A (ja) * 2003-09-08 2005-03-31 Kajima Corp 有機物含有液の嫌気処理方法及び装置
WO2009072564A1 (ja) * 2007-12-07 2009-06-11 Sony Corporation 燃料電池およびその製造方法ならびに電子機器ならびに酵素固定化電極およびその製造方法ならびに撥水剤ならびに酵素固定化材
WO2009113479A1 (ja) * 2008-03-14 2009-09-17 栗田工業株式会社 微生物発電方法および微生物発電装置
JP2012005971A (ja) * 2010-06-25 2012-01-12 Kajima Corp 有機性廃水処理システム及び方法
WO2012115278A1 (ja) * 2011-02-24 2012-08-30 ソニー株式会社 微生物燃料電池、該電池の燃料と微生物、およびバイオリアクタとバイオセンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3199496A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208496A1 (ja) * 2016-06-01 2017-12-07 パナソニックIpマネジメント株式会社 浄化ユニット及び浄化装置
CN109195925A (zh) * 2016-06-01 2019-01-11 松下知识产权经营株式会社 净化单元及净化装置
JPWO2017208495A1 (ja) * 2016-06-01 2019-03-22 パナソニックIpマネジメント株式会社 浄化ユニット及び浄化装置

Also Published As

Publication number Publication date
JPWO2016047060A1 (ja) 2017-06-15
EP3199496A1 (en) 2017-08-02
US20170210653A1 (en) 2017-07-27
JP6447932B2 (ja) 2019-01-09
CN106573809A (zh) 2017-04-19
EP3199496A4 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6364529B2 (ja) 電極の製造方法及び電極
JP6368036B2 (ja) 電極構造体及び微生物燃料電池
US9663391B2 (en) Liquid processing apparatus
WO2017119419A1 (ja) 微生物燃料電池用ガス拡散電極、及びそれを用いた微生物燃料電池
JP6902706B2 (ja) 浄化ユニット及び浄化装置
JP6643642B2 (ja) 浄化ユニット及び浄化装置
JP6447932B2 (ja) 液体処理ユニット及び液体処理装置
WO2016114139A1 (ja) 微生物燃料電池システム
WO2017175260A1 (ja) 電極、燃料電池及び水処理装置
JP2017148776A (ja) 水処理装置
WO2017199475A1 (ja) 液体処理ユニット及び液体処理装置
JP7010303B2 (ja) 浄化装置及び浄化電極
WO2018203455A1 (ja) 液体処理システム
WO2019064889A1 (ja) 液体処理システム
WO2017195406A1 (ja) 微生物燃料電池及びそれを用いた液体処理ユニット
JP2020099850A (ja) 液体処理システム
JP2017228410A (ja) 電極及び微生物燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844252

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15329168

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016549921

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015844252

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015844252

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE