WO2017208161A1 - 表示装置、表示モジュール、及び電子機器 - Google Patents

表示装置、表示モジュール、及び電子機器 Download PDF

Info

Publication number
WO2017208161A1
WO2017208161A1 PCT/IB2017/053189 IB2017053189W WO2017208161A1 WO 2017208161 A1 WO2017208161 A1 WO 2017208161A1 IB 2017053189 W IB2017053189 W IB 2017053189W WO 2017208161 A1 WO2017208161 A1 WO 2017208161A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulating layer
layer
transistor
display
Prior art date
Application number
PCT/IB2017/053189
Other languages
English (en)
French (fr)
Inventor
山崎舜平
久保田大介
横山浩平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2017208161A1 publication Critical patent/WO2017208161A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/46Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character is selected from a number of characters arranged one behind the other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Definitions

  • One embodiment of the present invention relates to a display device, a display module, and an electronic device.
  • one embodiment of the present invention is not limited to the above technical field.
  • a semiconductor device e.g., a display device, a light-emitting device, a power storage device, a memory device, an electronic device, a lighting device, an input device (eg, a touch sensor), an input / output device (eg, a touch panel) ), A driving method thereof, or a manufacturing method thereof can be given as an example.
  • a display device for example, a light emitting device having a light emitting element, a liquid crystal display device having a liquid crystal element, and the like have been developed.
  • Patent Document 1 discloses a flexible light emitting device to which an organic EL (Electroluminescence) element is applied.
  • organic EL Electrode
  • Patent Document 2 has a region that reflects visible light and a region that transmits visible light, and can be used as a reflective liquid crystal display device in an environment where sufficient external light is obtained.
  • a transflective liquid crystal display device that can be used as a transmissive liquid crystal display device in an environment where the above cannot be obtained is disclosed.
  • An object of one embodiment of the present invention is to provide a display device with low power consumption.
  • An object of one embodiment of the present invention is to provide a display device with high visibility regardless of ambient brightness.
  • An object of one embodiment of the present invention is to provide an all-weather display device.
  • An object of one embodiment of the present invention is to provide a highly convenient display device.
  • An object of one embodiment of the present invention is to reduce the thickness or weight of a display device.
  • An object of one embodiment of the present invention is to provide a novel display device, an input / output device, an electronic device, or the like.
  • a display device of one embodiment of the present invention includes a first display element, a second display element, an insulating layer, a first transistor, and a second transistor.
  • the first transistor and the second transistor are located on the same plane.
  • the first display element is located above the first transistor.
  • the second display element is located above the second transistor.
  • the first display element has a function of reflecting visible light.
  • the second display element has a function of emitting visible light.
  • the first display element has a first electrode.
  • the second display element includes a second electrode, a light emitting layer on the second electrode, and a third electrode on the light emitting layer.
  • the second electrode is electrically connected to the fourth electrode included in the second transistor.
  • the third electrode has a first opening at a position overlapping with the fifth electrode of the first transistor.
  • the fourth electrode and the fifth electrode each function as a source or a drain.
  • the insulating layer is located on the third electrode, covers the side surface of the first opening, and has the second opening at a position overlapping the fifth electrode and the first opening.
  • the first electrode is electrically connected to the fifth electrode through the second opening.
  • a display device of one embodiment of the present invention includes a first display element, a second display element, a first insulating layer, a second insulating layer, a first transistor, and a second transistor.
  • the first transistor and the second transistor are located on the same plane.
  • the first display element is located above the first transistor.
  • the second display element is located above the second transistor.
  • the first display element has a function of reflecting visible light.
  • the second display element has a function of emitting visible light.
  • the first display element has a first electrode.
  • the second display element includes a second electrode, a light emitting layer on the second electrode, and a third electrode on the light emitting layer.
  • the first insulating layer is located on the third electrode.
  • the second insulating layer is located on the first insulating layer.
  • the second electrode is electrically connected to the fourth electrode included in the second transistor.
  • the third electrode and the first insulating layer have a first opening at a position overlapping with the fifth electrode included in the first transistor.
  • the fourth electrode and the fifth electrode each function as a source or a drain.
  • the second insulating layer covers the side surface of the first opening and has a second opening at a position overlapping the fifth electrode and the first opening.
  • the first electrode is electrically connected to the fifth electrode through the second opening.
  • a display device of one embodiment of the present invention includes a first display element, a second display element, a first inorganic insulating layer, a second inorganic insulating layer, a first transistor, and a second transistor.
  • the first transistor and the second transistor are located on the same plane.
  • the first display element is located above the first transistor.
  • the second display element is located above the second transistor.
  • the first display element has a function of reflecting visible light.
  • the second display element has a function of emitting visible light.
  • the first display element has a first electrode.
  • the second display element includes a second electrode, a light emitting layer on the second electrode, and a third electrode on the light emitting layer.
  • the first inorganic insulating layer covers the end portion of the second electrode.
  • the second electrode is electrically connected to the fourth electrode included in the second transistor.
  • the third electrode has a first opening at a position overlapping with the fifth electrode of the first transistor.
  • the fourth electrode and the fifth electrode each function as a source or a drain.
  • the second inorganic insulating layer is located on the third electrode, covers the side surface of the first opening, and has the second opening at a position overlapping the fifth electrode and the first opening.
  • the first electrode is electrically connected to the fifth electrode through the second opening.
  • a display device of one embodiment of the present invention includes a first display element, a second display element, a first inorganic insulating layer, a second inorganic insulating layer, a third insulating layer, a first transistor, And a second transistor.
  • the first transistor and the second transistor are located on the same plane.
  • the first display element is located above the first transistor.
  • the second display element is located above the second transistor.
  • the first display element has a function of reflecting visible light.
  • the second display element has a function of emitting visible light.
  • the first display element has a first electrode.
  • the second display element includes a second electrode, a light emitting layer on the second electrode, and a third electrode on the light emitting layer.
  • the first inorganic insulating layer covers the end portion of the second electrode.
  • the third inorganic insulating layer is located on the third electrode.
  • the second inorganic insulating layer is located on the third inorganic insulating layer.
  • the second electrode is electrically connected to the fourth electrode included in the second transistor.
  • the third electrode and the third inorganic insulating layer have a first opening at a position overlapping with the fifth electrode included in the first transistor.
  • the fourth electrode and the fifth electrode each function as a source or a drain.
  • the second inorganic insulating layer covers the side surface of the first opening and has a second opening at a position overlapping the fifth electrode and the first opening.
  • the first electrode is electrically connected to the fifth electrode through the second opening.
  • the display device having the configuration of [3] or [4] preferably has an organic insulating layer on the second inorganic insulating layer.
  • the organic insulating layer has a third opening at a position overlapping the fifth electrode, the first opening, and the second opening.
  • the first electrode is electrically connected to the fifth electrode through the third opening.
  • the organic insulating layer may cover the side surface of the first opening via the second inorganic insulating layer.
  • the display device having each configuration described above preferably has a function of displaying an image with one or both of light reflected by the first display element and light emitted by the second display element.
  • the first display element is preferably a reflective liquid crystal element.
  • the second display element is preferably an electroluminescent element.
  • One or both of the first transistor and the second transistor preferably include an oxide semiconductor in a channel formation region.
  • One embodiment of the present invention is a display module including any one of the above-described structures and a circuit board such as a flexible printed circuit board (FPC).
  • FPC flexible printed circuit board
  • One embodiment of the present invention is an electronic device including the display module and at least one of an antenna, a battery, a housing, a camera, a speaker, a microphone, and an operation button.
  • a display device with low power consumption can be provided.
  • a display device with high visibility can be provided regardless of ambient brightness.
  • an all-weather display device can be provided.
  • a highly convenient display device can be provided.
  • a display device can be reduced in thickness or weight.
  • a novel display device, an input / output device, an electronic device, or the like can be provided.
  • FIG. 11 is a block diagram illustrating an example of a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a transistor.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 11 is a block diagram illustrating an example of a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a transistor.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. Sectional drawing which shows an example of a display apparatus. Sectional drawing which shows an example of a display apparatus. Sectional drawing which shows an example of a display apparatus.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 illustrates an example of a display device and an example of a pixel.
  • FIG. 10 is a circuit diagram illustrating an example of a pixel circuit of a display device.
  • FIG. 6 is a circuit diagram illustrating an example of a pixel circuit of a display device and a diagram illustrating an example of a pixel.
  • the perspective view which shows an example of a display apparatus.
  • FIG. 14 illustrates an example of an electronic device.
  • FIG. 14 illustrates an example of an electronic device.
  • film and “layer” can be interchanged with each other depending on the case or circumstances.
  • conductive layer can be changed to the term “conductive film”.
  • insulating film can be changed to the term “insulating layer”.
  • the display device of this embodiment includes a first display element that reflects visible light and a second display element that emits visible light.
  • the display device of this embodiment has a function of displaying an image using one or both of light reflected by the first display element and light emitted by the second display element.
  • the display device of this embodiment includes a first mode in which an image is displayed using only the first display element, a second mode in which an image is displayed using only the second display element, and there is a third mode in which an image is displayed using the first display element and the second display element, and these modes can be used by switching automatically or manually.
  • the first mode an image is displayed using the first display element and external light. Since the first mode does not require a light source, it is an extremely low power consumption mode. For example, when external light is sufficiently incident on the display device (for example, in a bright environment), display can be performed using light reflected by the first display element. For example, it is effective when the external light is sufficiently strong and the external light is white light or light in the vicinity thereof.
  • the first mode is a mode suitable for displaying character information. In the first mode, light that reflects external light is used, so that it is possible to perform display that is kind to the eyes, and there is an effect that the eyes are less tired.
  • the second mode is a mode suitable for displaying vivid images (still images and moving images).
  • the third mode display is performed using both reflected light from the first display element and light emission from the second display element. While displaying more vividly than in the first mode, it is possible to suppress power consumption as compared with the second mode. For example, it is effective when the illuminance is relatively low, such as under room lighting or in the morning or evening hours, or when the chromaticity of outside light is not white. Further, by using light in which reflected light and light emission are mixed, it is possible to display an image that makes it feel as if you are looking at a painting.
  • an element that reflects external light for display can be used. Since such an element does not have a light source (no artificial light source is used), power consumption during display can be extremely reduced.
  • a reflective liquid crystal element can be typically used.
  • a first display element in addition to a shutter type MEMS (Micro Electro Mechanical System) element, an optical interference type MEMS element, a microcapsule type, an electrophoretic type, an electrowetting type, an electronic powder fluid (registered trademark) An element to which a method or the like is applied can be used.
  • a shutter type MEMS Micro Electro Mechanical System
  • an optical interference type MEMS element in addition to a shutter type MEMS (Micro Electro Mechanical System) element, an optical interference type MEMS element, a microcapsule type, an electrophoretic type, an electrowetting type, an electronic powder fluid (registered trademark)
  • An element to which a method or the like is applied can be used.
  • a light-emitting element is preferably used for the second display element.
  • the light emitted from such a display element is not affected by external light in brightness or chromaticity, so that it has high color reproducibility (wide color gamut), high contrast, and vivid display. Can do.
  • a self-luminous light emitting element such as an OLED (Organic Light Emitting Diode), an LED (Light Emitting Diode), or a QLED (Quantum-dot Light Emitting Diode) can be used.
  • OLED Organic Light Emitting Diode
  • LED Light Emitting Diode
  • QLED Quadantum-dot Light Emitting Diode
  • a display device 10 illustrated in FIG. 1 includes a first display element 31, a second display element 32, an insulating layer 234, a transistor 41, a transistor 42, and the like between a pair of substrates (substrate 11 and substrate 12).
  • the transistor 41 and the transistor 42 are located on the same plane.
  • substrate 11 is shown.
  • the first display element 31 is located above the transistor 41.
  • the second display element 32 is located above the transistor 42.
  • the first display element 31 has a function of reflecting visible light.
  • the first display element 31 emits reflected light 22 toward the substrate 12 side.
  • FIG. 1 shows an example in which the first display element 31 is a reflective liquid crystal element.
  • the first display element 31 includes an electrode 221 having a function of reflecting visible light, a liquid crystal layer 222, and an electrode 223 having a function of transmitting visible light.
  • the liquid crystal layer 222 is located between the electrode 221 and the electrode 223.
  • the second display element 32 has a function of emitting visible light.
  • the second display element 32 emits light emission 21 toward the substrate 12 side.
  • FIG. 1 shows an example in which the second display element 32 is an EL element.
  • the second display element 32 includes an electrode 121, an EL layer 122, and an electrode 123.
  • the EL layer 122 is located between the electrode 121 and the electrode 123.
  • the EL layer 122 includes at least a light-emitting substance.
  • the electrode 121 preferably has a function of reflecting visible light.
  • the electrode 123 has a function of transmitting visible light.
  • the second display element 32 is an electroluminescent element that emits light 21 to the substrate 12 side by applying a voltage between the electrode 121 and the electrode 123.
  • the electrode 121 is electrically connected to the source or drain of the transistor 42 through an opening provided in the insulating layer 134. An end portion of the electrode 121 is covered with an insulating layer 135.
  • An insulating layer 125 is preferably provided over the second display element 32.
  • the insulating layer 125 is located on the electrode 123.
  • the insulating layer 134, the insulating layer 135, the EL layer 122, the electrode 123, and the insulating layer 125 have a first opening at a position overlapping with the electrode (source or drain) included in the transistor 41.
  • the insulating layer 234 is located over the insulating layer 125, covers the side surface of the first opening, and has a second opening at a position overlapping with the electrode included in the transistor 41.
  • the second opening is formed at a position overlapping the first opening.
  • the opening of the insulating layer 234 is provided at least inside the opening of the electrode 123.
  • the insulating layer 234 covers the side surface of the first opening, the side surface of the EL layer 122 and the side surface of the electrode 123 exposed when the first opening is provided can be covered. Therefore, the electrode 221 and the electrode 123 can be electrically insulated, and a short circuit can be prevented. Even when the EL layer 122 has high conductivity, the electrode 221 and the EL layer 122 are electrically insulated from each other, so that both the first display element 31 and the second display element 32 are defective. Does not occur.
  • the electrode 221 is electrically connected to the electrode included in the transistor 41 through the second opening provided in the insulating layer 234.
  • the transistor 41 electrically connected to the first display element 31 and the transistor 42 electrically connected to the second display element 32 are located on the same plane. Therefore, the thickness of the display device can be reduced as compared with the case where the two transistors are formed over different surfaces. Further, since the two transistors can be manufactured in the same process, the manufacturing process can be simplified as compared with the case where the two transistors are formed over different surfaces.
  • the first display element Even when the writing operation to the pixel is stopped when displaying a still image using the image 31, the gradation can be maintained. That is, display can be maintained even if the frame rate is extremely small. In one embodiment of the present invention, the frame rate can be extremely small, and driving with low power consumption can be performed.
  • FIG. 2 shows a block diagram of the display device 10.
  • the display device 10 includes a display unit 14.
  • the display unit 14 includes a plurality of pixel units 30 arranged in a matrix.
  • the pixel unit 30 includes a first pixel 31p and a second pixel 32p.
  • FIG. 2 shows an example in which the first pixel 31p and the second pixel 32p have display elements corresponding to three colors of red (R), green (G), and blue (B), respectively.
  • Each of the display elements included in the first pixel 31p is a display element that utilizes reflection of external light.
  • the first pixel 31p includes a first display element 31R corresponding to red (R), a first display element 31G corresponding to green (G), and a first display element 31B corresponding to blue (B). .
  • Each of the display elements included in the second pixel 32p is a light emitting element.
  • the second pixel 32p includes a second display element 32R corresponding to red (R), a second display element 32G corresponding to green (G), and a second display element 32B corresponding to blue (B). .
  • FIGS. 3A to 3C are schematic diagrams illustrating configuration examples of the pixel unit 30.
  • FIG. 3A to 3C are schematic diagrams illustrating configuration examples of the pixel unit 30.
  • the first pixel 31p includes a first display element 31R, a first display element 31G, and a first display element 31B.
  • the first display element 31R reflects external light and emits red light Rr to the display surface side.
  • the first display element 31G and the first display element 31B respectively emit green light Gr or blue light Br to the display surface side.
  • the second pixel 32p includes a second display element 32R, a second display element 32G, and a second display element 32B.
  • the second display element 32R emits red light Rt to the display surface side.
  • the second display element 32G and the second display element 32B each emit green light Gt or blue light Bt to the display surface side.
  • FIG. 3A corresponds to a mode (third mode) in which display is performed by driving both the first pixel 31p and the second pixel 32p.
  • the pixel unit 30 can emit light 35tr of a predetermined color to the display surface side using reflected light (light Rr, light Gr, light Br) and transmitted light (light Rt, light Gt, light Bt). it can.
  • FIG. 3B corresponds to a mode (first mode) in which display is performed using reflected light by driving only the first pixel 31p.
  • the pixel unit 30 uses only light (light Rr, light Gr, and light Br) from the first pixel 31p without driving the second pixel 32p, for example, when external light is sufficiently strong.
  • the light 35r can be emitted to the display surface side. Thereby, driving with extremely low power consumption can be performed.
  • FIG. 3C corresponds to a mode (second mode) in which display is performed using light emission (transmitted light) by driving only the second pixels 32p.
  • the pixel unit 30 uses only light (light Rt, light Gt, and light Bt) from the second pixel 32p without driving the first pixel 31p, for example, when the external light is extremely weak.
  • Light 35t can be emitted to the display surface side. Thereby, a vivid display can be performed. Further, by reducing the luminance when the surroundings are dark, it is possible to suppress glare that the user feels and to reduce power consumption.
  • the color and the number of display elements included in the first pixel 31p and the second pixel 32p are not limited.
  • FIGS. 5A to 5C show configuration examples of the pixel unit 30, respectively.
  • a schematic diagram corresponding to a mode (third mode) in which display is performed by driving both the first pixel 31p and the second pixel 32p is shown.
  • Display can also be performed in a mode in which only the first pixel 31p or the second pixel 32p is driven (first mode and second mode).
  • the second pixel 32p shown in FIGS. 4A, 4C, and 5B is white (in addition to the second display element 32R, the second display element 32G, and the second display element 32B).
  • the second pixel 32p illustrated in FIGS. 4B and 5C exhibits yellow (Y) in addition to the second display element 32R, the second display element 32G, and the second display element 32B.
  • a second display element 32Y is included.
  • the second pixel is compared with the configuration that does not include the second display element 32W and the second display element 32Y.
  • the power consumption in the display mode (second mode and third mode) using 32p can be reduced.
  • the first pixel 31p illustrated in FIG. 4C includes a first display element 31W that exhibits white (W).
  • the structure illustrated in FIG. 4C reduces power consumption in the display mode (the first mode and the third mode) using the first pixel 31p as compared with the structure illustrated in FIG. Can do.
  • the first pixel 31p shown in FIGS. 5A to 5C includes only the first display element 31W that exhibits white.
  • black-and-white display or grayscale display can be performed, and the display mode using the second pixel 32p (second mode).
  • color display can be performed.
  • the aperture ratio of the first pixel 31p can be increased, the reflectance of the first pixel 31p can be improved and brighter display can be performed.
  • the first mode is suitable for displaying information that does not require color display, such as document information.
  • 6A, 6B, 6C, 7A, and 7B show cross-sectional configuration examples of the display device.
  • a display device 10A illustrated in FIG. 6A includes a substrate 11, an adhesive layer 51, an insulating layer 131, a transistor 110a, a transistor 110b, an insulating layer 133, an insulating layer 134, a light-emitting element 120, an insulating layer 135, an insulating layer 125, and coloring.
  • a layer 152, an insulating layer 234, a liquid crystal element 220, an alignment film 224a, an alignment film 224b, and the substrate 12 are included.
  • FIG. 6A illustrates an example in which the transistor 110 a and the transistor 110 b are located over the insulating layer 131. More specifically, the transistor 110a and the transistor 110b are provided in contact with the insulating layer 131.
  • the liquid crystal element 220 is located above the transistor 110a.
  • the light emitting element 120 is located above the transistor 110b.
  • Each of the substrate 11 and the substrate 12 preferably has flexibility.
  • the substrate 11 is bonded to the insulating layer 131 by the adhesive layer 51.
  • An electrode 223 is provided in contact with the surface of the substrate 12 on the substrate 11 side, and an alignment film 224b is provided in contact with the surface of the electrode 223 on the substrate 11 side.
  • the display device 10 ⁇ / b> A can be manufactured by transferring the transistor, the light-emitting element 120, and the like manufactured over the manufacturing substrate onto the substrate 11.
  • a layer to be peeled formed on a substrate with high heat resistance can be transferred to a substrate with low heat resistance, and the production temperature of the layer to be peeled is limited by the substrate with low heat resistance.
  • the display device can be reduced in weight, thickness, and flexibility.
  • the transistor, the light-emitting element 120, and the like can be directly formed over the substrate 11 depending on the heat resistance of the substrate 11 and the formation temperature of the layer to be peeled.
  • a polarizing plate or a circularly polarizing plate may be provided outside the substrate 12.
  • Transistors 110a and 110b illustrated in FIG. 6A are bottom-gate transistors.
  • the transistors 110a and 110b each include a conductive layer 111, an insulating layer 132, a semiconductor layer 112, a conductive layer 113a, and a conductive layer 113b.
  • the conductive layer 111 overlaps with the semiconductor layer 112 with the insulating layer 132 interposed therebetween.
  • the conductive layer 113a and the conductive layer 113b are electrically connected to the semiconductor layer 112.
  • the conductive layer 111 functions as a gate.
  • the insulating layer 132 functions as a gate insulating layer.
  • One of the conductive layer 113a and the conductive layer 113b functions as a source, and the other functions as a drain.
  • the insulating layer 133 can function as a protective layer of the transistor.
  • the transistors 110a and 110b are channel etch types and it is relatively easy to reduce the area occupied by the transistors, the transistors 110a and 110b can be preferably used for a high-definition display device.
  • the semiconductor layer 112 preferably includes an oxide semiconductor.
  • the insulating layer 134 preferably has a planarization function. Thereby, the light emitting element 120 can be formed on a flat surface.
  • the light emitting element 120 emits light emission 21 to the substrate 12 side by applying a voltage between the electrode 121 and the electrode 123.
  • the light-emitting element 120 includes an electrode 121, an EL layer 122, and an electrode 123.
  • the EL layer 122 is located between the electrode 121 and the electrode 123.
  • the EL layer 122 includes at least a light-emitting substance.
  • the electrode 121 preferably has a function of reflecting visible light.
  • the electrode 123 has a function of transmitting visible light.
  • the electrode 121 is disposed for each pixel and functions as a pixel electrode.
  • the EL layer 122 and the electrode 123 are arranged over a plurality of pixels.
  • the electrode 123 is connected to a wiring to which a constant potential is supplied in a region not shown, and functions as a common electrode.
  • the electrode 121 is electrically connected to the conductive layer 113a included in the transistor 110b through an opening provided in the insulating layer 134. An end portion of the electrode 121 is covered with an insulating layer 135.
  • the insulating layer 125 is provided on the electrode 123.
  • the insulating layer 125 By providing the insulating layer 125 over the light-emitting element 120, entry of impurities into the light-emitting element 120 can be suppressed, and the reliability of the light-emitting element 120 can be improved.
  • the insulating layer 125 include an inorganic insulating layer because the reliability of the light-emitting element 120 can be further improved.
  • the coloring layer 152 is provided over the insulating layer 125.
  • the coloring layer 152 is provided at a position overlapping the light emitting region of the light emitting element 120. Light emission of the light emitting element 120 is emitted from the display device through the colored layer 152.
  • the light-emitting element 120 can exhibit various colors by changing the color of the coloring layer 152 depending on pixels.
  • the display device 10 ⁇ / b> A can perform color display using the light emitting element 120.
  • the liquid crystal element 220 emits reflected light 22 toward the substrate 12 side.
  • the alignment of the liquid crystal layer 222 can be controlled by an electric field generated between the electrode 221 and the electrode 223.
  • the liquid crystal element 220 includes an electrode 221 having a function of reflecting visible light, a liquid crystal layer 222, and an electrode 223 having a function of transmitting visible light.
  • the liquid crystal layer 222 is located between the alignment film 224a and the alignment film 224b.
  • the electrode 221 is disposed for each pixel and functions as a pixel electrode.
  • the electrode 223 is arranged over a plurality of pixels.
  • the electrode 223 is connected to a wiring to which a constant potential is supplied in a region not shown, and functions as a common electrode.
  • the liquid crystal element 220 exhibits white.
  • the display device 10 ⁇ / b> A can perform display in black and white or gray scale using the liquid crystal element 220.
  • the insulating layer 133, the insulating layer 134, the insulating layer 135, the EL layer 122, the electrode 123, and the insulating layer 125 have a first opening in a position overlapping with the conductive layer 113a included in the transistor 110a.
  • the insulating layer 234 is located over the insulating layer 125, covers the side surface of the first opening, and has a second opening at a position overlapping with the conductive layer 113a included in the transistor 110a.
  • the second opening is formed at a position overlapping the first opening.
  • the insulating layer 234 either an organic material or an inorganic material may be used.
  • the insulating layer 234 preferably has a planarization function. Thereby, the electrode 221 can be formed on a flat surface.
  • the insulating layer 234 include an organic insulating layer because the flatness of the insulating layer 234 can be improved.
  • the insulating layer 234 covers the side surface of the first opening, the side surface of the EL layer 122 and the side surface of the electrode 123 exposed when the first opening is provided can be covered. Therefore, the electrode 221 and the electrode 123 can be electrically insulated, and a short circuit can be prevented. Even when the EL layer 122 has high conductivity, the electrode 221 and the EL layer 122 are electrically insulated from each other, so that there is no problem in both the light-emitting element 120 and the liquid crystal element 220.
  • the electrode 221 is electrically connected to the conductive layer 113 a included in the transistor 110 a through a second opening provided in the insulating layer 234.
  • the transistor 110a electrically connected to the liquid crystal element 220 and the transistor 110b electrically connected to the light-emitting element 120 are located on the same plane. Therefore, the thickness of the display device 10A can be reduced as compared with the case where the two transistors are formed over different surfaces. Further, since the two transistors can be manufactured in the same process, the manufacturing process can be simplified as compared with the case where the two transistors are formed over different surfaces.
  • a display device 10B illustrated in FIG. 6B is different from the display device 10A in that an insulating layer 151, a coloring layer 152, and an overcoat 153 are provided between the substrate 12 and the electrode 223.
  • the display device 10B is different from the display device 10A in that the display device 10B does not have the colored layer 152 in contact with the insulating layer 125. Since other configurations are the same as those of the display device 10A, detailed description thereof is omitted.
  • An insulating layer 151 is provided in contact with the surface of the substrate 12 on the substrate 11 side.
  • the insulating layer 151 is provided so as to overlap with a display region using the liquid crystal element 220 (hereinafter referred to as a reflective region) and does not overlap with a light emitting region (hereinafter referred to as a transmissive region) of the light emitting element 120.
  • a colored layer 152 is provided in contact with the surface of the substrate 12 on the substrate 11 side and the surface of the insulating layer 151 on the substrate 11 side. Since the insulating layer 151 is provided, the thickness of the colored layer 152 differs between the reflective region and the transmissive region.
  • the thickness of the colored layer 152 can be changed between the reflective region and the transmissive region. Accordingly, it is possible to perform display with favorable color tone in both the display using the liquid crystal element 220 and the display using the light emitting element 120.
  • the thickness of the colored layer 152 in the reflective region is preferably 40% or more and 60% or less of the thickness of the colored layer 152 in the transmissive region.
  • the method for changing the thickness of the colored layer 152 is not limited to the method in which the insulating layer 151 is partially provided.
  • the colored layer 152 may have a stacked structure of two or more layers, and the transmissive region may have a larger number of layers constituting the colored layer 152 than the reflective region.
  • a colored layer having two regions with different thicknesses may be formed using a multi-tone mask.
  • providing a plurality of colored layers 152 also provides good color tone in both the display using the liquid crystal element 220 and the display using the light emitting element 120. Display can be made.
  • a display device 10 ⁇ / b> C illustrated in FIG. 6C is an example including a colored layer 152 provided in contact with the insulating layer 125 and a colored layer 152 provided in contact with the substrate 12.
  • the light emission 21 passes through both the colored layer 152 provided in contact with the insulating layer 125 and the colored layer 152 provided in contact with the substrate 12.
  • the reflected light 22 passes only through the colored layer 152 provided in contact with the substrate 12. Even with such a configuration, a display with favorable color tone can be performed both in the display using the liquid crystal element 220 and the display using the light-emitting element 120.
  • the liquid crystal element 220 and the light-emitting element 120 can exhibit various colors by changing the color of the colored layer 152 depending on pixels.
  • the display device 10B and the display device 10C can perform color display using the liquid crystal element 220, respectively.
  • Each of the display device 10 ⁇ / b> B and the display device 10 ⁇ / b> C can perform color display using the light emitting element 120.
  • the overcoat 153 is preferable because an impurity contained in the colored layer 152 can be prevented from diffusing into the liquid crystal layer 222.
  • Either an organic material or an inorganic material may be used for the insulating layer 151.
  • a material similar to that of the overcoat 153 may be used.
  • ⁇ Configuration example 3> In the display device 10 ⁇ / b> D illustrated in FIG. 7A, in the connection portion 50, the insulating layer 234 does not cover the side surfaces of the openings provided in the insulating layer 133 and the insulating layer 134, and the insulating layer 135, the EL layer 122, and the electrode 123. And the display device 10A in that only the side surface of the opening provided in the insulating layer 125 is covered. Since other configurations are the same as those of the display device 10A, detailed description thereof is omitted.
  • the insulating layer 234 covers at least the side surface of the opening provided in the electrode 123 (more preferably, the EL layer 122). In addition, the opening and the like provided in the insulating layer may not be covered with the insulating layer 234.
  • an opening reaching the conductive layer 113a included in the transistor 110b is provided in the insulating layer 133 and the insulating layer 134, an opening reaching the conductive layer 113a included in the transistor 110a may be provided at the same time. After that, an additional opening is provided in the stacked structure from the insulating layer 135 to the insulating layer 125, whereby the structure illustrated in FIG. 7A can be manufactured.
  • the coverage of the electrode 221 is increased, or the thin film of the conductive layer 113a Can be suppressed.
  • a display device 10E illustrated in FIG. 7B is different from the display device 10D in that the EL layer 122 is separately applied and separated for each color.
  • the display device 10E is different from the display device 10D in that a release layer 62 is provided between the adhesive layer 51 and the insulating layer 131. Since other configurations are the same as those of the display device 10D, detailed description thereof is omitted.
  • the light-emitting element 120 to which the separate coating method is applied it is sufficient that at least one layer (typically, the light-emitting layer) among the layers constituting the EL layer 122 is separated, and all the layers constituting the EL layer are coated. It may be divided.
  • the colored layer 152 over the insulating layer 125 is not necessarily provided.
  • the separation layer 62 may remain on the separation layer side.
  • the peeling layer 62 is located on the side opposite to the display surface of the display device when viewed from the light emitting element 120 and the liquid crystal element 220. Therefore, the transparency of the release layer 62 with respect to visible light is not limited. Therefore, various materials can be used for the release layer 62.
  • the structure of the transistor included in the display device is not particularly limited.
  • a planar transistor, a staggered transistor, or an inverted staggered transistor may be used.
  • any transistor structure of a top gate structure or a bottom gate structure may be employed.
  • gate electrodes may be provided above and below the channel.
  • 8A to 8C illustrate an example of a transistor having a structure different from those of the transistors 110a and 110b.
  • a transistor 110c illustrated in FIG. 8A includes a conductive layer 114 in addition to the structures of the transistors 110a and 110b.
  • the conductive layer 114 is provided over the insulating layer 133 and has a region overlapping with the semiconductor layer 112.
  • an insulating layer 136 is provided so as to cover the conductive layer 114 and the insulating layer 133.
  • the conductive layer 114 is located on the side opposite to the conductive layer 111 with the semiconductor layer 112 interposed therebetween. In the case where the conductive layer 111 is a first gate, the conductive layer 114 can function as a second gate. By applying the same potential to the conductive layer 111 and the conductive layer 114, the on-state current of the transistor 110c can be increased. Alternatively, the threshold voltage of the transistor 110c can be controlled by applying one of the conductive layer 111 and the conductive layer 114 with a potential for controlling the threshold voltage and the other with a potential for driving. it can.
  • a conductive material containing an oxide is preferably used for the conductive layer 114.
  • oxygen can be supplied to the insulating layer 133 by forming the conductive film that forms the conductive layer 114 in an atmosphere containing oxygen.
  • the proportion of oxygen gas in the film forming gas is preferably in the range of 90% to 100%.
  • Oxygen supplied to the insulating layer 133 is supplied to the semiconductor layer 112 by a subsequent heat treatment, so that oxygen vacancies in the semiconductor layer 112 can be reduced.
  • the conductive layer 114 is preferably formed using a low-resistance oxide semiconductor.
  • an insulating film that releases hydrogen for example, a silicon nitride film or the like is preferably used for the insulating layer 136. Hydrogen is supplied into the conductive layer 114 during the formation of the insulating layer 136 or by heat treatment thereafter, so that the electrical resistance of the conductive layer 114 can be effectively reduced.
  • a transistor 110d illustrated in FIG. 8B is a top-gate transistor.
  • the transistor 110d includes a conductive layer 111, an insulating layer 132, a semiconductor layer 112, an insulating layer 133, a conductive layer 113a, and a conductive layer 113b.
  • the conductive layer 111 overlaps with the semiconductor layer 112 with the insulating layer 132 interposed therebetween.
  • the conductive layer 113a and the conductive layer 113b are electrically connected to the semiconductor layer 112.
  • the conductive layer 111 functions as a gate.
  • the insulating layer 132 functions as a gate insulating layer.
  • One of the conductive layer 113a and the conductive layer 113b functions as a source, and the other functions as a drain.
  • the transistor 110d can easily separate a physical distance between the conductive layer 111 and the conductive layer 113a or the conductive layer 113b, parasitic capacitance between the conductive layer 111 and the conductive layer 113a can be reduced.
  • a transistor 110e illustrated in FIG. 8C includes a conductive layer 115 and an insulating layer 137 in addition to the structure of the transistor 110c.
  • the conductive layer 115 is provided over the insulating layer 131 and has a region overlapping with the semiconductor layer 112.
  • the insulating layer 137 is provided so as to cover the conductive layer 115 and the insulating layer 131.
  • the conductive layer 115 functions as a second gate similarly to the conductive layer 114. Therefore, it is possible to increase the on-current, control the threshold voltage, and the like.
  • a thin film (an insulating film, a semiconductor film, a conductive film, or the like) included in the display device is formed by a sputtering method, a chemical vapor deposition (CVD) method, a vacuum evaporation method, or a pulsed laser deposition (PLD: Pulsed Laser Deposition).
  • CVD chemical vapor deposition
  • PLD Pulsed Laser Deposition
  • ALD Atomic Layer Deposition
  • the CVD method may be a plasma enhanced chemical vapor deposition (PECVD) method or a thermal CVD method.
  • PECVD plasma enhanced chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • Thin films (insulating films, semiconductor films, conductive films, etc.) constituting display devices are spin coat, dip, spray coating, ink jet, dispense, screen printing, offset printing, doctor knife, slit coat, roll coat, curtain coat, knife It can be formed by a method such as coating.
  • the thin film can be processed using a lithography method or the like.
  • an island-shaped thin film may be formed by a film formation method using a shadow mask.
  • the thin film may be processed by a nanoimprint method, a sand blast method, a lift-off method, or the like.
  • a photolithography method a resist mask is formed on a thin film to be processed, the thin film is processed by etching or the like, and the resist mask is removed. After forming a photosensitive thin film, exposure and development are performed. And a method for processing the thin film into a desired shape.
  • light used for exposure can be i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or light in which these are mixed.
  • ultraviolet light, KrF laser light, ArF laser light, or the like can be used.
  • exposure may be performed by an immersion exposure technique.
  • extreme ultraviolet light (EUV: Extreme-violet) or X-rays may be used as light used for exposure.
  • an electron beam can be used instead of the light used for exposure. It is preferable to use extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible. Note that a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
  • etching the thin film For etching the thin film, a dry etching method, a wet etching method, a sand blasting method, or the like can be used.
  • the separation layer 62 is formed over the manufacturing substrate 61 (FIG. 9A).
  • the manufacturing substrate 61 is rigid to such an extent that it can be easily transported, and has heat resistance against the temperature required for the manufacturing process.
  • Examples of a material that can be used for the manufacturing substrate 61 include glass, quartz, ceramic, sapphire, resin, semiconductor, metal, and alloy.
  • Examples of the glass include alkali-free glass, barium borosilicate glass, and alumino borosilicate glass.
  • the peeling layer 62 can be formed using an organic material or an inorganic material.
  • the release layer 62 is formed using an organic material
  • a material having photosensitivity is preferable, and a material having photosensitivity and thermosetting is preferably used.
  • a part can be removed by a lithography method using light.
  • heat treatment also referred to as pre-bake treatment
  • pre-bake treatment for removing the solvent is performed after the material is formed, and then exposure is performed using a photomask. Subsequently, unnecessary portions are removed by performing development processing. Thereafter, heat treatment (also referred to as post-bake treatment) is performed.
  • heat treatment also referred to as post-bake treatment
  • heating is preferably performed at a temperature higher than the manufacturing temperature of each layer formed on the release layer 62.
  • the heating temperature is, for example, higher than 350 ° C and preferably 450 ° C or lower, more preferably higher than 350 ° C and lower than 400 ° C, and more preferably higher than 350 ° C and lower than 375 ° C. Accordingly, degassing from the release layer 62 in the transistor manufacturing process can be significantly suppressed.
  • the release layer 62 is preferably formed using a photosensitive polyimide resin (also referred to as “photosensitive polyimide” or “PSPI”).
  • a photosensitive polyimide resin also referred to as “photosensitive polyimide” or “PSPI”.
  • examples of the organic material that can be used for the release layer 62 include acrylic resins, epoxy resins, polyamide resins, polyimide amide resins, siloxane resins, benzocyclobutene resins, and phenol resins.
  • the release layer 62 is preferably formed using a spin coater. By using the spin coating method, a thin film can be uniformly formed on a large substrate.
  • the release layer 62 is preferably formed using a solution having a viscosity of 5 cP or more and less than 500 cP, preferably 5 cP or more and less than 100 cP, more preferably 10 cP or more and 50 cP or less.
  • the lower the viscosity of the solution the easier the application.
  • the lower the viscosity of the solution the more air bubbles can be prevented and the better the film can be formed.
  • the thickness of the release layer 62 is preferably 0.01 ⁇ m or more and less than 10 ⁇ m, more preferably 0.1 ⁇ m or more and 3 ⁇ m or less, and further preferably 0.5 ⁇ m or more and 1 ⁇ m or less. preferable.
  • the thickness of the release layer 62 is not limited to this, and may be 10 ⁇ m or more, for example, 10 ⁇ m or more and 200 ⁇ m or less.
  • examples of the method for forming the release layer 62 include dipping, spray coating, ink jet, dispensing, screen printing, offset printing, doctor knife, slit coating, roll coating, curtain coating, knife coating, and the like.
  • Examples of the inorganic material that can be used for the peeling layer 62 include a metal containing an element selected from tungsten, molybdenum, titanium, tantalum, niobium, nickel, cobalt, zirconium, zinc, ruthenium, rhodium, palladium, osmium, iridium, and silicon. , An alloy containing the element, or a compound containing the element.
  • the crystal structure of the layer containing silicon may be any of amorphous, microcrystalline, and polycrystalline.
  • the thickness of the release layer 62 is 1 nm to 1000 nm, preferably 10 nm to 200 nm, more preferably 10 nm to 100 nm.
  • the release layer 62 can be formed by, for example, a sputtering method, a CVD method, an ALD method, a vapor deposition method, or the like.
  • the insulating layer 131 is formed over the separation layer 62 (FIG. 9B).
  • the insulating layer 131 can be used as a barrier layer that prevents impurities contained in the separation layer 62 from diffusing into a transistor or a display element to be formed later.
  • the insulating layer 131 preferably prevents moisture or the like contained in the separation layer 62 from diffusing into the transistor or the display element when the separation layer 62 is heated. Therefore, the insulating layer 131 preferably has a high barrier property.
  • an inorganic insulating film such as a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon nitride oxide film, an aluminum oxide film, or an aluminum nitride film can be used.
  • a hafnium oxide film, an yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, a neodymium oxide film, or the like may be used. Two or more of the above insulating films may be stacked.
  • a silicon nitride film be formed over the separation layer 62 and a silicon oxide film be formed over the silicon nitride film.
  • the inorganic insulating film is denser and has a higher barrier property as the deposition temperature is higher, and thus it is preferable to form the inorganic insulating film at a high temperature.
  • the substrate temperature during the formation of the insulating layer 131 is preferably room temperature (25 ° C.) or higher and 350 ° C. or lower, more preferably 100 ° C. or higher and 300 ° C. or lower.
  • the transistor 110a and the transistor 110b are formed over the insulating layer 131 (FIG. 9B).
  • a semiconductor material used for the transistor is not particularly limited, and for example, a Group 14 element, a compound semiconductor, or an oxide semiconductor can be used for the semiconductor layer.
  • a semiconductor containing silicon, a semiconductor containing gallium arsenide, an oxide semiconductor containing indium, or the like can be used.
  • An oxide semiconductor is preferably used for the semiconductor of the transistor.
  • a semiconductor material having a wider band gap and lower carrier density than silicon is used, current in an off state of the transistor can be reduced.
  • the conductive layer 111 is formed over the insulating layer 131 (FIG. 9B).
  • the conductive layer 111 can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
  • Each of the conductive layers included in the display device has a single-layer structure of a metal such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, or tungsten, or an alloy containing the metal as a main component, or It can be used as a laminated structure.
  • a metal such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, or tungsten
  • an alloy containing the metal as a main component or It can be used as a laminated structure.
  • a light-transmitting conductive material such as ZnO containing gallium or indium tin oxide containing silicon may be
  • a semiconductor such as polycrystalline silicon or an oxide semiconductor, or a silicide such as nickel silicide, which has been reduced in resistance by containing an impurity element or the like, may be used.
  • a film containing graphene can be used. The film containing graphene can be formed, for example, by reducing a film containing graphene oxide formed in a film shape.
  • a semiconductor such as an oxide semiconductor containing an impurity element may be used.
  • a conductive paste such as silver, carbon, or copper, or a conductive polymer such as polythiophene may be used. The conductive paste is preferable because it is inexpensive.
  • the conductive polymer is preferable because it is easy to apply.
  • an insulating layer 132 is formed (FIG. 9B).
  • an inorganic insulating film that can be used for the insulating layer 131 can be used.
  • the semiconductor layer 112 is formed (FIG. 9B).
  • an oxide semiconductor layer is formed as the semiconductor layer 112.
  • the oxide semiconductor layer can be formed by forming an oxide semiconductor film, forming a resist mask, etching the oxide semiconductor film, and then removing the resist mask.
  • the substrate temperature at the time of forming the oxide semiconductor film is preferably 350 ° C. or lower, more preferably room temperature or higher and 200 ° C. or lower, and further preferably room temperature or higher and 130 ° C. or lower.
  • the oxide semiconductor film can be formed using one or both of an inert gas and an oxygen gas.
  • an inert gas and an oxygen gas.
  • the oxygen flow rate ratio (oxygen partial pressure) in forming the oxide semiconductor film is preferably 0% or more and 30% or less, and is preferably 5% or more and 30% or less. Is more preferably 7% or more and 15% or less.
  • the oxide semiconductor film preferably contains at least indium or zinc. In particular, it is preferable to contain indium and zinc.
  • the oxide semiconductor preferably has an energy gap of 2 eV or more, more preferably 2.5 eV or more, and further preferably 3 eV or more. Thus, an oxide semiconductor having a wide energy gap is used. Thus, the off-state current of the transistor can be reduced.
  • the oxide semiconductor film can be formed by a sputtering method.
  • a PLD method for example, a PECVD method, a thermal CVD method, an ALD method, a vacuum deposition method, or the like may be used.
  • Embodiment 5 Note that an example of an oxide semiconductor is described in Embodiment 5.
  • a conductive layer 113a and a conductive layer 113b are formed (FIG. 9B).
  • the conductive layers 113a and 113b can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
  • the conductive layer 113a and the conductive layer 113b are each connected to the semiconductor layer 112.
  • part of the semiconductor layer 112 that is not covered with the resist mask may be thinned by etching when the conductive layer 113a and the conductive layer 113b are processed.
  • the transistor 110a and the transistor 110b can be manufactured (FIG. 9B).
  • part of the conductive layer 111 functions as a gate
  • part of the insulating layer 132 functions as a gate insulating layer
  • each of the conductive layer 113a and the conductive layer 113b is either a source or a drain. Function as.
  • an insulating layer 133 which covers the transistors 110a and 110b is formed (FIG. 9C).
  • the insulating layer 133 can be formed by a method similar to that of the insulating layer 131.
  • an oxide insulating film such as a silicon oxide film or a silicon oxynitride film formed under an atmosphere containing oxygen is preferably used. Further, an insulating film that hardly diffuses and transmits oxygen such as a silicon nitride film is preferably stacked over the silicon oxide film or the silicon oxynitride film.
  • An oxide insulating film formed in an atmosphere containing oxygen can be an insulating film from which a large amount of oxygen is easily released by heating. By performing heat treatment in a state where such an oxide insulating film that releases oxygen and an insulating film that hardly diffuses and transmits oxygen are stacked, oxygen can be supplied to the oxide semiconductor layer. As a result, oxygen vacancies in the oxide semiconductor layer and defects at the interface between the oxide semiconductor layer and the insulating layer 133 can be repaired and the defect level can be reduced. Thereby, a display device with extremely high reliability can be realized.
  • the insulating layer 134 is formed over the insulating layer 133 (FIG. 9C).
  • the insulating layer 134 is a layer having a formation surface of a display element to be formed later, and thus preferably functions as a planarization layer.
  • a film containing an organic material that can be used for the peeling layer 62 or an inorganic insulating film that can be used for the insulating layer 131 can be given.
  • an opening reaching the conductive layer 113a included in the transistor 110b is formed in the insulating layer 134 and the insulating layer 133.
  • an opening reaching the conductive layer 113a included in the transistor 110a may be formed.
  • the electrode 121 is formed (FIG. 9C). Part of the electrode 121 functions as a pixel electrode of the light-emitting element 120.
  • the electrode 121 can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
  • the conductive layer 113a included in the transistor 110b and the electrode 121 are connected to each other.
  • an insulating layer 135 that covers an end portion of the electrode 121 is formed (FIG. 9C).
  • the insulating layer 135 an organic insulating film or an inorganic insulating film that can be used for the insulating layer 134 can be used.
  • the insulating layer 135 has an opening in a portion overlapping with the electrode 121. At this time, the insulating layer 135 may have an opening reaching the conductive layer 113a included in the transistor 110a.
  • an EL layer 122 and an electrode 123 are formed (FIG. 9D).
  • a part of the electrode 123 functions as a common electrode of the light emitting element 120.
  • the EL layer 122 can be formed by a method such as an evaporation method, a coating method, a printing method, or a discharge method. In the case where the EL layer 122 is separately formed for each pixel, the EL layer 122 can be formed by an evaporation method using a shadow mask such as a metal mask or an inkjet method. In the case where the EL layer 122 is not formed for each pixel, an evaporation method that does not use a metal mask can be used.
  • a low molecular compound or a high molecular compound can be used, and an inorganic compound may be included.
  • Each step performed after the formation of the EL layer 122 is performed so that the temperature applied to the EL layer 122 is equal to or lower than the heat resistant temperature of the EL layer 122.
  • the electrode 123 can be formed using an evaporation method, a sputtering method, or the like.
  • the light-emitting element 120 can be formed (FIG. 9D).
  • the light-emitting element 120 has a structure in which an electrode 121 that partially functions as a pixel electrode, an EL layer 122, and an electrode 123 that partially functions as a common electrode are stacked.
  • top emission light-emitting element is manufactured as the light-emitting element 120
  • one embodiment of the present invention is not limited thereto.
  • the light emitting element may be any of a top emission type, a bottom emission type, and a dual emission type.
  • a conductive film that transmits visible light is used for the electrode from which light is extracted.
  • a conductive film that reflects visible light is preferably used for the electrode from which light is not extracted.
  • an insulating layer 125 is formed so as to cover the electrode 123 (FIG. 9D).
  • the insulating layer 125 functions as a protective layer that suppresses diffusion of impurities such as water into the light-emitting element 120.
  • the light emitting element 120 is sealed with an insulating layer 125.
  • the insulating layer 125 is preferably formed without being exposed to the air.
  • the insulating layer 125 preferably includes, for example, an inorganic insulating film with high barrier properties that can be used for the above-described insulating layer 131.
  • an inorganic insulating film and an organic insulating film may be stacked.
  • the substrate temperature at the time of forming the insulating layer 125 is preferably a temperature equal to or lower than the heat resistance temperature of the EL layer 122.
  • the insulating layer 125 can be formed by an ALD method, a sputtering method, or the like.
  • the ALD method and the sputtering method are preferable because they can be formed at a low temperature. It is preferable to use the ALD method because the coverage of the insulating layer 125 is good.
  • a colored layer 152 is formed over the insulating layer 125 (FIG. 9D).
  • the colored layer 152 a color filter or the like can be used.
  • the coloring layer 152 is disposed so as to overlap with the light emitting region of the light emitting element 120.
  • an opening reaching the conductive layer 113a included in the transistor 110a is provided in the EL layer 122, the electrode 123, and the insulating layer 125 (FIGS. 9E and 10A). Note that in the case where an opening reaching the conductive layer 113a is not formed in the insulating layer 133, the insulating layer 134, and the insulating layer 135 in advance, an opening is also collectively formed in these layers in this step. Can do.
  • openings can be formed in the EL layer 122, the electrode 123, and the insulating layer 125 by an etching method.
  • impurities may enter the EL layer 122 or the EL layer 122 may be lost in the step of removing the resist mask 127.
  • impurities enter the EL layer 122 or the EL layer 122 is dissolved by plasma treatment or a resist stripping solution for removing the resist mask 127.
  • the partition wall 126 is formed on the side surface of the opening by the etching gas (FIG. 9E).
  • the etching gas for example, by using an etching gas containing carbon and fluorine, by-products can be deposited on the side surface of the opening, and the partition wall 126 can be formed.
  • the resist mask 127 is removed (FIG. 10A).
  • the partition 126 protects the EL layer 122, whereby the reliability of the light-emitting element 120 can be improved. Note that part or all of the partition wall 126 may be removed when the resist mask 127 is removed.
  • FIG. 10A shows the case where the partition wall 126 does not remain.
  • an insulating layer 234 having an opening reaching the conductive layer 113a included in the transistor 110a is formed.
  • a photosensitive material 233 is formed, and the insulating layer 234 having the opening is formed by a lithography method using light (FIGS. 10B and 10C).
  • the insulating layer 234 is formed so as to cover the side surface of the opening provided in the electrode 123. Thereby, the electrode 221 and the electrode 123 to be formed later can be electrically insulated, and a short circuit can be prevented.
  • the substrate temperature at the time of forming the insulating layer 234 is preferably a temperature equal to or lower than the heat resistant temperature of the EL layer 122.
  • Examples of the material that can be used for the insulating layer 234 include polyimide resin, acrylic resin, epoxy resin, polyamide resin, polyimide amide resin, siloxane resin, benzocyclobutene resin, and phenol resin.
  • the electrode 221 is formed (FIG. 10D). Part of the electrode 221 functions as a pixel electrode of the liquid crystal element 220.
  • the electrode 221 can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
  • the conductive layer 113a included in the transistor 110a is connected to the electrode 121.
  • a protective layer 71 is formed.
  • the protective layer 71 has a function of protecting the surfaces of the insulating layer 234 and the electrode 221 in the peeling step.
  • a material that can be easily removed can be used for the protective layer 71.
  • An example of the removable protective layer 71 is a water-soluble resin.
  • the applied water-soluble resin covers the surface irregularities and facilitates protection of the surface.
  • a laminate in which an adhesive that can be peeled off by light or heat is laminated on a water-soluble resin may be used.
  • a base material having a property that the adhesive strength is strong in a normal state and the adhesive strength is weakened by applying heat or irradiating light may be used.
  • a heat release tape whose adhesive strength is weakened by heating, or a UV release tape whose adhesive strength becomes weak when irradiated with ultraviolet light may be used.
  • a weak viscous tape etc. with weak adhesive force in a normal state can be used.
  • OCA Optical Clear Adhesive
  • silicone etc.
  • the protective layer 71 may not have transparency to visible light.
  • the separation surface can be in various positions depending on materials such as the separation layer 62 and the manufacturing substrate 61, a formation method, and the like.
  • FIG. 11B illustrates an example in which separation occurs at the interface between the separation layer 62 and the insulating layer 131.
  • the insulating layer 131 is exposed by the separation.
  • a separation starting point may be formed in the release layer 62.
  • irradiation with laser light can weaken the peeling layer 62 or reduce the adhesion between the peeling layer 62 and the insulating layer 131 (or the manufacturing substrate 61).
  • the manufacturing substrate 61 can be peeled by applying a pulling force to the peeling layer 62 in the vertical direction. Specifically, a part of the upper surface of the protective layer 71 is adsorbed and pulled upward, whereby the manufacturing substrate 61 can be peeled off.
  • a separation starting point may be formed by inserting a sharp tool such as a blade between the release layer 62 and the insulating layer 131.
  • the separation layer 62 may be formed by cutting the release layer 62 with a sharp tool from the protective layer 71 side.
  • the substrate 11 is attached to the exposed surface of the insulating layer 131 using the adhesive layer 51 (FIG. 11C).
  • the substrate 11 can function as a support substrate for the display device.
  • the protective layer 71 is removed (FIG. 11C).
  • various curable adhesives such as an ultraviolet curable photocurable adhesive, a reactive curable adhesive, a thermosetting adhesive, and an anaerobic adhesive can be used. Further, an adhesive sheet or the like may be used.
  • the substrate 11 examples include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resin, acrylic resin, polyimide resin, polymethyl methacrylate resin, polycarbonate (PC) resin, polyethersulfone (PES). ) Resin, polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, polytetrafluoroethylene (PTFE) Resin, ABS resin, cellulose nanofiber, etc. can be used.
  • the substrate 11 may be made of various materials such as glass, quartz, resin, metal, alloy, and semiconductor having a thickness that is flexible.
  • an alignment film 224a is formed over the insulating layer 234 and the electrode 221 (FIG. 12A).
  • the alignment film 224a can be formed by performing a rubbing process after forming a thin film of resin or the like.
  • the substrate 12 and the substrate 11 are attached to each other with the liquid crystal layer 222 interposed therebetween (FIG. 12B).
  • the electrode 223 is formed over the substrate 12 and the alignment film 224b is formed over the electrode 223 in advance.
  • the electrode 223 can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
  • the alignment film 224b can be formed by performing a rubbing process after forming a thin film of resin or the like.
  • the display device 10A can be manufactured (FIG. 12B).
  • the display device 10 ⁇ / b> A can be held in a bent state or can be bent repeatedly.
  • FIG. 12C illustrates a cross-sectional configuration example of the display device in the case where the partition wall 126 remains.
  • the display device in this embodiment includes two types of display elements and can be used by switching between a plurality of display modes. Therefore, the display device is highly visible and convenient regardless of the surrounding brightness. High nature.
  • transistors for driving two types of display elements can be formed over the same plane in the same process, the thickness of the display device can be reduced and the manufacturing process of the display device can be simplified.
  • the display device of this embodiment includes a first display element that reflects visible light and a second display element that emits visible light.
  • the display device of this embodiment has a function of displaying an image using one or both of light reflected by the first display element and light emitted by the second display element.
  • the display device of this embodiment includes a first mode in which an image is displayed using only the first display element, a second mode in which an image is displayed using only the second display element, and these modes can be used by switching automatically or manually.
  • a first mode in which an image is displayed using only the first display element
  • a second mode in which an image is displayed using only the second display element
  • a third mode in which an image is displayed using the first display element and the second display element, and these modes can be used by switching automatically or manually.
  • the description in Embodiment Mode 1 can be referred to.
  • Embodiment Mode 1 can be referred to for the first display element and the second display element.
  • a display device 100 illustrated in FIG. 13 includes a first display element 31, a second display element 32, an inorganic insulating layer 234a, an organic insulating layer 234b, a transistor 41, and a pair of substrates (substrate 11 and substrate 12).
  • a transistor 42 and the like are included.
  • the transistor 41 and the transistor 42 are located on the same plane. In FIG. 13, an example located on the substrate 11 is shown.
  • the first display element 31 is located above the transistor 41.
  • the second display element 32 is located above the transistor 42.
  • the first display element 31 has a function of reflecting visible light.
  • the first display element 31 emits reflected light 22 toward the substrate 12 side.
  • FIG. 13 shows an example in which the first display element 31 is a reflective liquid crystal element.
  • the first display element 31 includes an electrode 221 having a function of reflecting visible light, a liquid crystal layer 222, and an electrode 223 having a function of transmitting visible light.
  • the liquid crystal layer 222 is located between the electrode 221 and the electrode 223.
  • the second display element 32 has a function of emitting visible light.
  • the second display element 32 emits light emission 21 toward the substrate 12 side.
  • FIG. 13 shows an example in which the second display element 32 is an EL element.
  • the second display element 32 includes an electrode 121, an EL layer 122, and an electrode 123.
  • the EL layer 122 is located between the electrode 121 and the electrode 123.
  • the EL layer 122 includes at least a light-emitting substance.
  • the electrode 121 preferably has a function of reflecting visible light.
  • the electrode 123 has a function of transmitting visible light.
  • the second display element 32 is an electroluminescent element that emits light 21 to the substrate 12 side by applying a voltage between the electrode 121 and the electrode 123.
  • the electrode 121 is electrically connected to the source or drain of the transistor 42 through an opening provided in the insulating layer 134. An end portion of the electrode 121 is covered with an inorganic insulating layer 138.
  • An insulating layer 125 is preferably provided over the second display element 32.
  • the insulating layer 125 is located on the electrode 123.
  • the insulating layer 125 preferably includes an inorganic insulating layer.
  • the insulating layer 134, the inorganic insulating layer 138, the EL layer 122, the electrode 123, and the insulating layer 125 each have a first opening at a position overlapping with the electrode (source or drain) included in the transistor 41.
  • the inorganic insulating layer 234a is located on the insulating layer 125, covers the side surface of the first opening, and has a second opening at a position overlapping the electrode of the transistor 41.
  • the second opening is formed at a position overlapping the first opening.
  • the opening of the inorganic insulating layer 234 a is provided at least inside the opening of the electrode 123.
  • An organic insulating layer 234b is preferably provided over the inorganic insulating layer 234a.
  • the organic insulating layer 234b is located on the inorganic insulating layer 234a and has a third opening at a position overlapping with the electrode of the transistor 41.
  • the third opening is formed at a position overlapping the first opening and the second opening.
  • the organic insulating layer 234b may cover the side surface of the first opening with the inorganic insulating layer 234a interposed therebetween.
  • the inorganic insulating layer 234a covers the side surface of the first opening, so that the side surface of the EL layer 122 and the side surface of the electrode 123 exposed when the first opening is provided can be covered. Therefore, the electrode 221 and the electrode 123 can be electrically insulated, and a short circuit can be prevented. Even when the EL layer 122 has high conductivity, the electrode 221 and the EL layer 122 are electrically insulated from each other, so that both the first display element 31 and the second display element 32 are defective. Does not occur.
  • An inorganic insulating layer 138 is located below the EL layer 122, and an inorganic insulating layer 234a is located on the side surface and above the EL layer 122. Since the EL layer 122 can be surrounded by the inorganic insulating layer, impurities can be prevented from entering the EL layer 122 and the reliability of the second display element 32 can be improved.
  • the electrode 221 is electrically connected to the electrode included in the transistor 41 through the second opening provided in the inorganic insulating layer 234a and the third opening provided in the organic insulating layer 234b.
  • the organic insulating layer 234b preferably has a planarization function. Thereby, the electrode 221 can be formed on a flat surface. By providing the organic insulating layer 234b, the coverage of the electrode 221 is improved. Note that the organic insulating layer 234b is not necessarily provided, and in that case, in the connection portion 50, the electrode 221 is electrically connected to the electrode included in the transistor 41 through the second opening provided in the inorganic insulating layer 234a. Connected.
  • the transistor 41 electrically connected to the first display element 31 and the transistor 42 electrically connected to the second display element 32 are located on the same plane. Therefore, the thickness of the display device can be reduced as compared with the case where the two transistors are formed over different surfaces. Further, since the two transistors can be manufactured in the same process, the manufacturing process can be simplified as compared with the case where the two transistors are formed over different surfaces.
  • the first display element Even when the writing operation to the pixel is stopped when displaying a still image using the image 31, the gradation can be maintained. That is, display can be maintained even if the frame rate is extremely small. In one embodiment of the present invention, the frame rate can be extremely small, and driving with low power consumption can be performed.
  • FIG. 2 An example of a block diagram of the display device in this embodiment is the same as that in FIG. 2, and thus detailed description thereof is omitted.
  • FIGS. 15A and 15B show cross-sectional configuration examples of the display device. Note that detailed description of the components described in the first embodiment may be omitted.
  • a display device 100A illustrated in FIG. 14A includes a substrate 11, an adhesive layer 51, an insulating layer 131, a transistor 110a, a transistor 110b, an insulating layer 133, an insulating layer 134, a light-emitting element 120, an inorganic insulating layer 138, an insulating layer 125,
  • the coloring layer 152, the inorganic insulating layer 234a, the organic insulating layer 234b, the liquid crystal element 220, the alignment film 224a, the alignment film 224b, and the substrate 12 are included.
  • a display device 100A illustrated in FIG. 14A does not include the insulating layer 135 and the insulating layer 234, but includes an inorganic insulating layer 138, an inorganic insulating layer 234a, and an organic insulating layer 234b. Different from the display device 10A shown. Since other configurations are the same as those of the display device 10A, detailed description thereof is omitted.
  • an end portion of the electrode 121 is covered with an inorganic insulating layer 138.
  • the insulating layer 133, the insulating layer 134, the inorganic insulating layer 138, the EL layer 122, the electrode 123, and the insulating layer 125 have a first opening in a position overlapping with the conductive layer 113a included in the transistor 110a.
  • the inorganic insulating layer 234a is located over the insulating layer 125, covers the side surface of the first opening, and has a second opening at a position overlapping with the conductive layer 113a included in the transistor 110a.
  • the second opening is formed at a position overlapping the first opening.
  • the organic insulating layer 234b is located over the inorganic insulating layer 234a and has a third opening in a position overlapping with the conductive layer 113a included in the transistor 110a.
  • the third opening is formed at a position overlapping the first opening and the second opening.
  • the organic insulating layer 234b may cover the side surface of the first opening with the inorganic insulating layer 234a interposed therebetween.
  • the organic insulating layer 234b preferably has a planarization function. Thereby, the electrode 221 can be formed on a flat surface.
  • the coverage with the electrode 221 is improved as compared with the case where the electrode 221 is provided over the inorganic insulating layer 234a.
  • the inorganic insulating layer 234a covers the side surface of the first opening, so that the side surface of the EL layer 122 and the side surface of the electrode 123 exposed when the first opening is provided can be covered. Therefore, the electrode 221 and the electrode 123 can be electrically insulated, and a short circuit can be prevented. Even when the EL layer 122 has high conductivity, the electrode 221 and the EL layer 122 are electrically insulated from each other, so that there is no problem in both the light-emitting element 120 and the liquid crystal element 220.
  • An inorganic insulating layer 138 is located below the EL layer 122, and an inorganic insulating layer 234a is located on the side surface and above the EL layer 122. Since the EL layer 122 can be surrounded by the inorganic insulating layer, impurities can be prevented from entering the EL layer 122 and the reliability of the light-emitting element 120 can be improved.
  • the electrode 221 is electrically connected to the conductive layer 113a included in the transistor 110a through the second opening provided in the inorganic insulating layer 234a and the third opening provided in the organic insulating layer 234b. Is done.
  • the transistor 110a electrically connected to the liquid crystal element 220 and the transistor 110b electrically connected to the light-emitting element 120 are located on the same plane. Therefore, the thickness of the display device 100A can be reduced as compared with the case where the two transistors are formed over different surfaces. Further, since the two transistors can be manufactured in the same process, the manufacturing process can be simplified as compared with the case where the two transistors are formed over different surfaces.
  • a display device 100B illustrated in FIG. 14B is different from the display device 100A in that an insulating layer 151, a coloring layer 152, and an overcoat 153 are provided between the substrate 12 and the electrode 223.
  • the display device 100B is different from the display device 100A in that the display device 100B does not have the colored layer 152 in contact with the insulating layer 125. Since other configurations are the same as those of the display device 100A, detailed description thereof is omitted.
  • An insulating layer 151 is provided in contact with the surface of the substrate 12 on the substrate 11 side.
  • the insulating layer 151 is provided so as to overlap with a display region using the liquid crystal element 220 (hereinafter referred to as a reflective region) and does not overlap with a light emitting region (hereinafter referred to as a transmissive region) of the light emitting element 120.
  • a colored layer 152 is provided in contact with the surface of the substrate 12 on the substrate 11 side and the surface of the insulating layer 151 on the substrate 11 side. Since the insulating layer 151 is provided, the thickness of the colored layer 152 differs between the reflective region and the transmissive region.
  • the thickness of the colored layer 152 can be changed between the reflective region and the transmissive region. Accordingly, it is possible to perform display with favorable color tone in both the display using the liquid crystal element 220 and the display using the light emitting element 120.
  • the thickness of the colored layer 152 in the reflective region is preferably 40% or more and 60% or less of the thickness of the colored layer 152 in the transmissive region.
  • the method for changing the thickness of the colored layer 152 is not limited to the method in which the insulating layer 151 is partially provided.
  • the colored layer 152 may have a stacked structure of two or more layers, and the transmissive region may have a larger number of layers constituting the colored layer 152 than the reflective region.
  • a colored layer having two regions with different thicknesses may be formed using a multi-tone mask.
  • providing a plurality of colored layers 152 also provides good color tone in both the display using the liquid crystal element 220 and the display using the light emitting element 120. Display can be made.
  • a display device 100 ⁇ / b> C illustrated in FIG. 14C is an example including the colored layer 152 provided in contact with the insulating layer 125 and the colored layer 152 provided in contact with the substrate 12.
  • the light emission 21 passes through both the colored layer 152 provided in contact with the insulating layer 125 and the colored layer 152 provided in contact with the substrate 12.
  • the reflected light 22 travels back and forth through the colored layer 152 provided in contact with the substrate 12. Even with such a configuration, a display with favorable color tone can be performed both in the display using the liquid crystal element 220 and the display using the light-emitting element 120.
  • the liquid crystal element 220 and the light-emitting element 120 can exhibit various colors by changing the color of the colored layer 152 depending on pixels.
  • the display device 100B and the display device 100C can perform color display using the liquid crystal element 220, respectively.
  • Each of the display device 100B and the display device 100C can perform color display using the light-emitting element 120.
  • the overcoat 153 is preferable because an impurity contained in the colored layer 152 can be prevented from diffusing into the liquid crystal layer 222.
  • Either an organic material or an inorganic material may be used for the insulating layer 151.
  • a material similar to that of the overcoat 153 may be used.
  • the display device 100D illustrated in FIG. 15A is a display device in that the inorganic insulating layer 234a and the organic insulating layer 234b do not cover the side surfaces of the openings provided in the insulating layer 133 and the insulating layer 134 in the connection portion 50. Different from the device 100A. Since other configurations are the same as those of the display device 100A, detailed description thereof is omitted.
  • the inorganic insulating layer 234a covers at least a side surface of the opening provided in the electrode 123 (more preferably, the EL layer 122). .
  • the opening or the like provided in the insulating layer may not be covered with the inorganic insulating layer 234a.
  • the inorganic insulating layer 234a covers only the side surfaces of the openings provided in the inorganic insulating layer 138, the EL layer 122, the electrode 123, and the insulating layer 125 is shown.
  • an opening reaching the conductive layer 113a included in the transistor 110b is provided in the insulating layer 133 and the insulating layer 134, an opening reaching the conductive layer 113a included in the transistor 110a may be provided at the same time. After that, an opening is additionally provided in the stacked structure from the inorganic insulating layer 138 to the insulating layer 125, whereby the structure illustrated in FIG. 15A can be manufactured.
  • the coverage of the electrode 221 is increased, or the thin film of the conductive layer 113a Can be suppressed.
  • a display device 100E illustrated in FIG. 15B is different from the display device 100D in that the EL layer 122 is separately applied and separated for each color.
  • the display device 100E is different from the display device 100D in that a peeling layer 62 is provided between the adhesive layer 51 and the insulating layer 131.
  • the display device 100E is different from the display device 100D in that the organic insulating layer 234b does not cover the side surfaces of the openings provided in the inorganic insulating layer 138, the electrode 123, and the insulating layer 125. Since other configurations are the same as those of the display device 100D, detailed description thereof is omitted.
  • the light-emitting element 120 to which the separate coating method is applied it is sufficient that at least one layer (typically, the light-emitting layer) among the layers constituting the EL layer 122 is separated, and all the layers constituting the EL layer are coated. It may be divided.
  • the colored layer 152 over the insulating layer 125 is not necessarily provided.
  • the separation layer 62 may remain on the separation layer side.
  • the peeling layer 62 is located on the side opposite to the display surface of the display device when viewed from the light emitting element 120 and the liquid crystal element 220. Therefore, the transparency of the release layer 62 with respect to visible light is not limited. Therefore, various materials can be used for the release layer 62.
  • the layers from the peeling layer 62 to the electrode 121 of the light-emitting element 120 are formed over the manufacturing substrate 61.
  • Each step is the same as the manufacturing method example of Embodiment 1. Therefore, the description using FIGS. 9A to 9C can be referred to.
  • the separation layer 62 is formed over the manufacturing substrate 61 (FIG. 16A).
  • the insulating layer 131 is formed over the separation layer 62, and the transistor 110a and the transistor 110b are formed over the insulating layer 131 (FIG. 16B).
  • an insulating layer 133 which covers the transistors 110a and 110b is formed (FIG. 16C).
  • the insulating layer 134 is formed over the insulating layer 133 (FIG. 16C).
  • an opening reaching the conductive layer 113a included in the transistor 110b is formed in the insulating layer 134 and the insulating layer 133.
  • an opening reaching the conductive layer 113a included in the transistor 110a may be formed.
  • the electrode 121 is formed (FIG. 16C).
  • an inorganic insulating layer 138 which covers an end portion of the electrode 121 is formed (FIG. 16C).
  • an inorganic insulating film that can be used for the insulating layer 131 can be used as the inorganic insulating layer 138.
  • the inorganic insulating layer 138 has an opening in a portion overlapping with the electrode 121. At this time, the inorganic insulating layer 138 may have an opening reaching the conductive layer 113a included in the transistor 110a.
  • the EL layer 122 and the electrode 123 are formed, and the light-emitting element 120 is formed (FIG. 16C).
  • a part of the electrode 123 functions as a common electrode of the light emitting element 120.
  • the insulating layer 125 is formed so as to cover the electrode 123, and the coloring layer 152 is formed over the insulating layer 125 (FIG. 16C).
  • These steps are similar to those of the manufacturing method example in Embodiment Mode 1. Therefore, the description using FIG. 9D can be referred to.
  • an opening reaching the conductive layer 113a included in the transistor 110a is provided in the EL layer 122, the electrode 123, and the insulating layer 125 (FIGS. 16C to 16E). Note that in the case where an opening reaching the conductive layer 113a is not formed in advance in the insulating layer 133, the insulating layer 134, and the inorganic insulating layer 138, the openings are also collectively formed in these layers in this step. be able to.
  • openings can be formed in the EL layer 122, the electrode 123, and the insulating layer 125 by an etching method.
  • impurities may enter the EL layer 122 or the EL layer 122 may be lost in the step of removing the resist mask 127.
  • impurities enter the EL layer 122 or the EL layer 122 is dissolved by plasma treatment or a resist stripping solution for removing the resist mask 127.
  • the partition wall 126 is formed on the side surface of the opening by the etching gas (FIG. 16D).
  • the etching gas for example, by using an etching gas containing carbon and fluorine, by-products can be deposited on the side surface of the opening, and the partition wall 126 can be formed.
  • the resist mask 127 is removed (FIG. 16E).
  • the partition 126 protects the EL layer 122, whereby the reliability of the light-emitting element 120 can be improved. Note that part or all of the partition wall 126 may be removed when the resist mask 127 is removed.
  • FIG. 17A shows the case where the partition wall 126 does not remain.
  • an inorganic insulating layer 234a is formed (FIG. 17A).
  • the substrate temperature at the time of forming the inorganic insulating layer 234 a is preferably a temperature equal to or lower than the heat resistant temperature of the EL layer 122.
  • the inorganic insulating layer 234a can be formed by an ALD method, a sputtering method, or the like.
  • the ALD method and the sputtering method are preferable because they can be formed at a low temperature.
  • the coverage of the inorganic insulating layer 234a is favorable, which is preferable.
  • the inorganic insulating layer 234 a is formed so as to cover the opening provided in the electrode 123. Thereby, the electrode 221 and the electrode 123 to be formed later can be electrically insulated, and a short circuit can be prevented.
  • an organic insulating layer 234b having an opening overlapping with the conductive layer 113a included in the transistor 110a is formed.
  • a photosensitive material 233 is formed, and the organic insulating layer 234b having the opening is formed by a lithography method using light (FIGS. 17B and 17C).
  • the organic insulating layer 234b is formed at a temperature equal to or lower than the heat resistant temperature of the EL layer 122.
  • Examples of a material that can be used for the organic insulating layer 234b include polyimide resin, acrylic resin, epoxy resin, polyamide resin, polyimide amide resin, siloxane resin, benzocyclobutene resin, and phenol resin.
  • an opening reaching the conductive layer 113a included in the transistor 110a is provided in the inorganic insulating layer 234a using the organic insulating layer 234b as a mask (FIG. 17D).
  • the electrode 221 is formed next (FIG. 18A).
  • a protective layer 71 is formed.
  • the manufacturing substrate 61 and the insulating layer 131 are separated (FIG. 18C).
  • the substrate 11 is attached to the exposed surface of the insulating layer 131 using the adhesive layer 51 (FIG. 19A).
  • the protective layer 71 is removed (FIG. 19A).
  • an alignment film 224a is formed over the organic insulating layer 234b and the electrode 221 (FIG. 19B).
  • the substrate 12 and the substrate 11 are attached to each other with the liquid crystal layer 222 interposed therebetween (FIG. 19C).
  • the display device 100A can be manufactured (FIG. 19C).
  • the display device 100A can be held in a bent state, bent repeatedly, or the like.
  • the display device in this embodiment includes two types of display elements and can be used by switching between a plurality of display modes. Therefore, the display device is highly visible and convenient regardless of the surrounding brightness. High nature.
  • transistors for driving two types of display elements can be formed over the same plane in the same process, the thickness of the display device can be reduced and the manufacturing process of the display device can be simplified.
  • the display device of this embodiment can cover the periphery of the EL layer with an inorganic insulating layer, reliability can be improved.
  • the display device described in this embodiment includes a reflective liquid crystal element and a light-emitting element, and can display in both a transmissive mode and a reflective mode.
  • FIG. 20A is a block diagram of the display device 400.
  • the display device 400 includes a display unit 362, a circuit GD, and a circuit SD.
  • the display portion 362 includes a plurality of pixels 410 arranged in a matrix.
  • the display device 400 includes a plurality of wirings G1, a plurality of wirings G2, a plurality of wirings ANO, a plurality of wirings CSCOM, a plurality of wirings S1, and a plurality of wirings S2.
  • the plurality of wirings G1, the plurality of wirings G2, the plurality of wirings ANO, and the plurality of wirings CSCOM are electrically connected to the plurality of pixels 410 and the circuit GD arranged in the direction indicated by the arrow R, respectively.
  • the plurality of wirings S1 and the plurality of wirings S2 are electrically connected to the plurality of pixels 410 and the circuit SD arranged in the direction indicated by the arrow C, respectively.
  • circuit GD and the circuit SD that drive the liquid crystal element and the circuit GD and the circuit SD that drive the light emitting element are separately provided. May be provided.
  • the pixel 410 includes a reflective liquid crystal element and a light-emitting element.
  • FIGS. 20B1 to 20B3 illustrate structural examples of the electrode 311 included in the pixel 410.
  • FIG. The electrode 311 functions as a reflective electrode of the liquid crystal element.
  • An opening 451 is provided in the electrode 311 in FIGS. 20B1 and 20B2.
  • the connection portion 50 with the transistor for driving the liquid crystal element is provided at a position where the opening 451 and the light emitting element 360 do not overlap.
  • the light-emitting element 360 located in a region overlapping with the electrode 311 is indicated by a broken line.
  • the light emitting element 360 is disposed so as to overlap with the opening 451 included in the electrode 311. Thereby, the light emitted from the light emitting element 360 is emitted to the display surface side through the opening 451.
  • the pixels 410 adjacent in the direction indicated by the arrow R are pixels corresponding to different colors.
  • the openings 451 are provided at different positions so as not to be arranged in a line. Accordingly, the two light-emitting elements 360 can be separated from each other, and a phenomenon (also referred to as crosstalk) in which light emitted from the light-emitting elements 360 enters the colored layer of the adjacent pixel 410 can be suppressed.
  • the two adjacent light emitting elements 360 can be arranged apart from each other, a display device with high definition can be realized even when the EL layer of the light emitting element 360 is separately formed using a shadow mask or the like.
  • the pixels 410 adjacent in the direction indicated by the arrow C are pixels corresponding to different colors.
  • the openings 451 are preferably provided at different positions of the electrode 311 so that they are not arranged in a line.
  • the display using the light emitting element 360 can be brightened.
  • the shape of the opening 451 can be, for example, a polygon, a rectangle, an ellipse, a circle, a cross, or the like. Moreover, it is good also as an elongated streak shape, a slit shape, and a checkered shape. Further, the opening 451 may be arranged close to adjacent pixels. Preferably, the opening 451 is arranged close to other pixels displaying the same color. Thereby, crosstalk can be suppressed.
  • the light-emitting region of the light-emitting element 360 may be located in a portion where the electrode 311 is not provided. Thereby, the light emitted from the light emitting element 360 is emitted to the display surface side.
  • circuit GD Various sequential circuits such as a shift register can be used for the circuit GD.
  • a transistor, a capacitor, or the like can be used for the circuit GD.
  • a transistor included in the circuit GD can be formed in the same process as the transistor included in the pixel 410.
  • the circuit SD is electrically connected to the wiring S1.
  • an integrated circuit can be used for the circuit SD.
  • an integrated circuit formed on a silicon substrate can be used for the circuit SD.
  • the circuit SD can be mounted on a pad electrically connected to the pixel 410 by using a COG (Chip on glass) method, a COF (Chip on Film) method, or the like.
  • COG Chip on glass
  • COF Chip on Film
  • an integrated circuit can be mounted on the pad using an anisotropic conductive film.
  • FIG. 21 is an example of a circuit diagram of the pixel 410. In FIG. 21, two adjacent pixels 410 are shown.
  • the pixel 410 includes a switch SW1, a capacitor C1, a liquid crystal element 340, a switch SW2, a transistor M, a capacitor C2, a light emitting element 360, and the like.
  • a wiring G1, a wiring G2, a wiring ANO, a wiring CSCOM, a wiring S1, and a wiring S2 are electrically connected to the pixel 410.
  • a wiring VCOM1 electrically connected to the liquid crystal element 340 and a wiring VCOM2 electrically connected to the light emitting element 360 are illustrated.
  • FIG. 21 shows an example in which transistors are used for the switch SW1 and the switch SW2.
  • the gate of the switch SW1 is connected to the wiring G1.
  • One of the source and the drain of the switch SW1 is connected to the wiring S1, and the other is connected to one electrode of the capacitor C1 and one electrode of the liquid crystal element 340.
  • the other electrode of the capacitive element C1 is connected to the wiring CSCOM.
  • the other electrode of the liquid crystal element 340 is connected to the wiring VCOM1.
  • the gate of the switch SW2 is connected to the wiring G2.
  • One of the source and the drain of the switch SW2 is connected to the wiring S2, and the other is connected to one electrode of the capacitor C2 and the gate of the transistor M.
  • the other electrode of the capacitor C2 is connected to one of the source and the drain of the transistor M and the wiring ANO.
  • the other of the source and the drain of the transistor M is connected to one electrode of the light emitting element 360.
  • the other electrode of the light emitting element 360 is connected to the wiring VCOM2.
  • FIG. 21 shows an example in which the transistor M has two gates sandwiching a semiconductor and these are connected. As a result, the current that can be passed by the transistor M can be increased.
  • a signal for controlling the switch SW1 to be in a conductive state or a non-conductive state can be supplied to the wiring G1.
  • a predetermined potential can be applied to the wiring VCOM1.
  • a signal for controlling the alignment state of the liquid crystal included in the liquid crystal element 340 can be supplied to the wiring S1.
  • a predetermined potential can be applied to the wiring CSCOM.
  • a signal for controlling the switch SW2 to be in a conductive state or a non-conductive state can be supplied to the wiring G2.
  • the wiring VCOM2 and the wiring ANO can each be supplied with a potential at which a potential difference generated by the light emitting element 360 emits light.
  • a signal for controlling the conduction state of the transistor M can be supplied to the wiring S2.
  • the pixel 410 illustrated in FIG. 21 is driven by a signal supplied to the wiring G1 and the wiring S1, and can display using optical modulation by the liquid crystal element 340.
  • display can be performed by driving the light-emitting element 360 by driving with signals supplied to the wiring G2 and the wiring S2.
  • the driving can be performed by signals given to the wiring G1, the wiring G2, the wiring S1, and the wiring S2.
  • FIG. 21 illustrates an example in which one pixel 410 includes one liquid crystal element 340 and one light emitting element 360
  • the invention is not limited thereto.
  • FIG. 22A illustrates an example in which one pixel 410 includes one liquid crystal element 340 and four light-emitting elements 360 (light-emitting elements 360r, 360g, 360b, and 360w).
  • a pixel 410 illustrated in FIG. 22A can perform full-color display using a light-emitting element in one pixel, unlike FIG.
  • a wiring G3 and a wiring S3 are connected to the pixel 410.
  • liquid crystal element 340 a reflective liquid crystal element exhibiting white can be used. Thereby, when displaying in reflection mode, white display with high reflectance can be performed. In addition, when display is performed in the transmissive mode, display with high color rendering properties can be performed with low power.
  • FIG. 22B illustrates a configuration example of the pixel 410 corresponding to FIG. 22A.
  • the pixel 410 includes a light-emitting element 360w that overlaps with an opening included in the electrode 311 and a light-emitting element arranged around the electrode 311. 360r, a light emitting element 360g, and a light emitting element 360b.
  • the light emitting element 360r, the light emitting element 360g, and the light emitting element 360b preferably have substantially the same light emitting area.
  • the connection portion 50 with the transistor that drives the liquid crystal element is provided at a position that does not overlap the light emitting element.
  • FIGS. 23A and 23B are schematic perspective views of the display device 300.
  • the display device 300 has a structure in which a substrate 351 and a substrate 361 are attached to each other.
  • the substrate 361 is indicated by a broken line.
  • the display device 300 includes a display portion 362, a circuit 364, a wiring 365, a circuit 366, a wiring 367, and the like.
  • the substrate 351 is provided with, for example, a circuit 364, a wiring 365, a circuit 366, a wiring 367, an electrode 311 that functions as a pixel electrode, and the like.
  • FIG. 23A illustrates an example in which an IC 373, an FPC 372, an IC 375, and an FPC 374 are mounted on a substrate 351.
  • FIG. 23B illustrates an example in which an IC 373 and an FPC 372 are mounted on a substrate 351. Therefore, the structure illustrated in FIGS. 23A and 23B can also be referred to as a display module including the display device 300, an IC, and an FPC.
  • a scan line driver circuit can be used.
  • the wiring 365 has a function of supplying a signal and power to the display portion 362 and the circuit 364.
  • the signal and power are input to the wiring 365 from the outside or the IC 373 via the FPC 372.
  • an IC having a scan line driver circuit, a signal line driver circuit, or the like can be used.
  • the display device 300 and the display module may be configured without an IC.
  • the IC may be mounted on the FPC by a COF method or the like.
  • FIG. 23A shows an enlarged view of part of the display portion 362.
  • electrodes 311 included in a plurality of display elements are arranged in a matrix.
  • the electrode 311 has a function of reflecting visible light and functions as a reflective electrode of the liquid crystal element 340.
  • the electrode 311 has an opening. Further, the light-emitting element 360 is provided on the substrate 351 side of the electrode 311. Light from the light emitting element 360 is emitted to the substrate 361 side through the opening of the electrode 311.
  • a display module 8000 illustrated in FIG. 24 includes a touch panel 8004 connected to the FPC 8003, a display panel 8006 connected to the FPC 8005, a frame 8009, a printed circuit board 8010, and a battery 8011 between an upper cover 8001 and a lower cover 8002. .
  • the display device of one embodiment of the present invention can be used for the display panel 8006, for example.
  • the shapes and dimensions of the upper cover 8001 and the lower cover 8002 can be changed as appropriate in accordance with the sizes of the touch panel 8004 and the display panel 8006.
  • a resistive film type or capacitive type touch panel can be used by being overlapped with the display panel 8006.
  • the touch panel 8004 may be omitted, and the display panel 8006 may have a touch panel function.
  • the frame 8009 has a function as an electromagnetic shield for blocking electromagnetic waves generated by the operation of the printed board 8010 in addition to a protective function of the display panel 8006.
  • the frame 8009 may have a function as a heat sink.
  • the printed board 8010 includes a power supply circuit, a signal processing circuit for outputting a video signal and a clock signal.
  • a power supply for supplying power to the power supply circuit an external commercial power supply may be used, or a power supply using a battery 8011 provided separately may be used.
  • the battery 8011 can be omitted when a commercial power source is used.
  • the display module 8000 may be additionally provided with a member such as a polarizing plate, a retardation plate, or a prism sheet.
  • the display device of one embodiment of the present invention can achieve high visibility regardless of the intensity of external light. Therefore, it can be suitably used for a portable electronic device, a wearable electronic device (wearable device), an electronic book terminal, and the like.
  • a portable information terminal 800 illustrated in FIGS. 25A and 25B includes a housing 801, a housing 802, a display portion 803, a display portion 804, a hinge portion 805, and the like.
  • the housing 801 and the housing 802 are connected by a hinge portion 805.
  • the portable information terminal 800 can be expanded from the folded state (FIG. 25A) as shown in FIG.
  • the display device of one embodiment of the present invention can be used for at least one of the display portion 803 and the display portion 804.
  • Each of the display unit 803 and the display unit 804 can display at least one of document information, a still image, a moving image, and the like.
  • the portable information terminal 800 can be used as an electronic book terminal.
  • the portable information terminal 800 can be folded, it has high portability and excellent versatility.
  • the housing 801 and the housing 802 may include a power button, an operation button, an external connection port, a speaker, a microphone, and the like.
  • a portable information terminal 810 illustrated in FIG. 25C includes a housing 811, a display portion 812, operation buttons 813, an external connection port 814, a speaker 815, a microphone 816, a camera 817, and the like.
  • the display device of one embodiment of the present invention can be used for the display portion 812.
  • the portable information terminal 810 includes a touch sensor in the display unit 812. Any operation such as making a call or inputting characters can be performed by touching the display portion 812 with a finger or a stylus.
  • the power can be turned on and off, and the type of image displayed on the display portion 812 can be switched.
  • the mail creation screen can be switched to the main menu screen.
  • the orientation (portrait or landscape) of the portable information terminal 810 is determined, and the screen display orientation of the display unit 812 is changed. It can be switched automatically.
  • the screen display orientation can also be switched by touching the display portion 812, operating the operation buttons 813, or inputting voice using the microphone 816.
  • the portable information terminal 810 has one or more functions selected from, for example, a telephone, a notebook, an information browsing device, or the like. Specifically, it can be used as a smartphone.
  • the portable information terminal 810 can execute various applications such as mobile phone, electronic mail, text browsing and creation, music playback, video playback, Internet communication, and games.
  • a camera 820 illustrated in FIG. 25D includes a housing 821, a display portion 822, operation buttons 823, a shutter button 824, and the like.
  • a removable lens 826 is attached to the camera 820.
  • the display device of one embodiment of the present invention can be used for the display portion 822.
  • the camera 820 is configured such that the lens 826 can be removed from the housing 821 and replaced, but the lens 826 and the housing 821 may be integrated.
  • the camera 820 can capture a still image or a moving image by pressing the shutter button 824.
  • the display portion 822 has a function as a touch panel and can capture an image by touching the display portion 822.
  • the camera 820 can be separately attached with a strobe device, a viewfinder, and the like. Alternatively, these may be incorporated in the housing 821.
  • 26A to 26E are diagrams illustrating electronic devices. These electronic devices include a housing 9000, a display portion 9001, a speaker 9003, operation keys 9005 (including a power switch or operation switch), a connection terminal 9006, and a sensor 9007 (force, displacement, position, velocity, acceleration, angular velocity, Includes functions to measure rotation speed, distance, light, liquid, magnetism, temperature, chemical, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared ), A microphone 9008 and the like.
  • operation keys 9005 including a power switch or operation switch
  • connection terminal 9006 includes a connection terminal 9006
  • a sensor 9007 force, displacement, position, velocity, acceleration, angular velocity, Includes functions to measure rotation speed, distance, light, liquid, magnetism, temperature, chemical, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared
  • a microphone 9008
  • the display device of one embodiment of the present invention can be favorably used for the display portion 9001.
  • the electronic devices illustrated in FIGS. 26A to 26E can have various functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, a function for controlling processing by various software (programs), Wireless communication function, function for connecting to various computer networks using the wireless communication function, function for transmitting or receiving various data using the wireless communication function, and reading and displaying the program or data recorded on the recording medium It can have a function of displaying on the section. Note that the functions of the electronic devices illustrated in FIGS. 26A to 26E are not limited to these, and may have other functions.
  • FIG. 26A is a perspective view illustrating a wristwatch-type portable information terminal 9200
  • FIG. 26B is a perspective view illustrating a wristwatch-type portable information terminal 9201.
  • a portable information terminal 9200 illustrated in FIG. 26A can execute various applications such as a mobile phone, e-mail, text browsing and creation, music playback, Internet communication, and computer games. Further, the display portion 9001 is provided with a curved display surface, and can perform display along the curved display surface. In addition, the portable information terminal 9200 can execute short-range wireless communication with a communication standard. For example, it is possible to talk hands-free by communicating with a headset capable of wireless communication. In addition, the portable information terminal 9200 includes a connection terminal 9006 and can directly exchange data with other information terminals via a connector. Charging can also be performed through the connection terminal 9006. Note that the charging operation may be performed by wireless power feeding without using the connection terminal 9006.
  • a mobile information terminal 9201 illustrated in FIG. 26B is different from the mobile information terminal illustrated in FIG. 26A in that the display surface of the display portion 9001 is not curved.
  • the external shape of the display portion of the portable information terminal 9201 is a non-rectangular shape (a circular shape in FIG. 26B).
  • FIG. 26C to 26E are perspective views showing a foldable portable information terminal 9202.
  • FIG. 26C is a perspective view of a state in which the portable information terminal 9202 is expanded
  • FIG. 26D is a state in which the portable information terminal 9202 is expanded or changed from one of the folded state to the other.
  • FIG. 26E is a perspective view of the portable information terminal 9202 folded.
  • the portable information terminal 9202 is excellent in portability in the folded state, and in the expanded state, the portable information terminal 9202 is excellent in display listability due to a seamless wide display area.
  • a display portion 9001 included in the portable information terminal 9202 is supported by three housings 9000 connected by a hinge 9055. By bending between the two housings 9000 via the hinge 9055, the portable information terminal 9202 can be reversibly deformed from the expanded state to the folded state. For example, the portable information terminal 9202 can be bent with a curvature radius of 1 mm to 150 mm.
  • the CAC-OS is one structure of a material in which an element included in an oxide semiconductor is unevenly distributed with a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof. Note that in the following, in an oxide semiconductor, one or more metal elements are unevenly distributed, and a region including the metal element has a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof.
  • the state mixed with is also referred to as a mosaic or patch.
  • the oxide semiconductor preferably contains at least indium.
  • One kind selected from the above or a plurality of kinds may be included.
  • a CAC-OS in In-Ga-Zn oxide is an indium oxide (hereinafter referred to as InO).
  • X1 (X1 is greater real than 0) and.), or indium zinc oxide (hereinafter, in X2 Zn Y2 O Z2 ( X2, Y2, and Z2 is larger real than 0) and a.), gallium oxide (hereinafter, GaO X3 (X3 is a large real number) than 0.), or gallium zinc oxide (hereinafter, Ga X4 Zn Y4 O Z4 ( X4, Y4, and Z4 is larger real number) than 0 to.) and the like, the material becomes mosaic by separate into, mosaic InO X1 or in X2 Zn Y2 O Z2, is a configuration in which uniformly distributed in the film (hereinafter, click Also called Udo-like.) A.
  • CAC-OS includes a region GaO X3 is the main component, and In X2 Zn Y2 O Z2, or InO X1 is the main component region is a composite oxide semiconductor having a structure that is mixed.
  • the first region indicates that the atomic ratio of In to the element M in the first region is larger than the atomic ratio of In to the element M in the second region. It is assumed that the concentration of In is higher than that in the second region.
  • IGZO is a common name and sometimes refers to one compound of In, Ga, Zn, and O.
  • ZnO ZnO
  • the crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC structure.
  • the CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have c-axis orientation and are connected without being oriented in the ab plane.
  • CAC-OS relates to a material structure of an oxide semiconductor.
  • CAC-OS refers to a region that is observed in the form of nanoparticles mainly composed of Ga in a material structure including In, Ga, Zn, and O, and nanoparticles that are partially composed mainly of In.
  • the region observed in a shape is a configuration in which the regions are randomly dispersed in a mosaic shape. Therefore, in the CAC-OS, the crystal structure is a secondary element.
  • the CAC-OS does not include a stacked structure of two or more kinds of films having different compositions.
  • a structure composed of two layers of a film mainly containing In and a film mainly containing Ga is not included.
  • a region GaO X3 is the main component, and In X2 Zn Y2 O Z2 or InO X1 is the main component region, in some cases clear boundary can not be observed.
  • the CAC-OS includes a region that is observed in a part of a nanoparticle mainly including the metal element and a nanoparticle mainly including In.
  • the region observed in the form of particles refers to a configuration in which each region is randomly dispersed in a mosaic shape.
  • the CAC-OS can be formed by a sputtering method under a condition where the substrate is not intentionally heated, for example.
  • a CAC-OS is formed by a sputtering method
  • any one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas.
  • the flow rate ratio of the oxygen gas to the total flow rate of the deposition gas during film formation is preferably as low as possible.
  • the flow rate ratio of the oxygen gas is 0% or more and less than 30%, preferably 0% or more and 10% or less. .
  • the CAC-OS has a feature that a clear peak is not observed when it is measured using a ⁇ / 2 ⁇ scan by an out-of-plane method which is one of X-ray diffraction (XRD) measurement methods. Have. That is, it can be seen from X-ray diffraction that no orientation in the ab plane direction and c-axis direction of the measurement region is observed.
  • XRD X-ray diffraction
  • an electron diffraction pattern obtained by irradiating an electron beam with a probe diameter of 1 nm (also referred to as a nanobeam electron beam) has a ring-like region having a high luminance and a plurality of bright regions in the ring region. A point is observed. Therefore, it can be seen from the electron beam diffraction pattern that the crystal structure of the CAC-OS has an nc (nano-crystal) structure having no orientation in the planar direction and the cross-sectional direction.
  • a region in which GaO X3 is a main component is obtained by EDX mapping obtained by using energy dispersive X-ray spectroscopy (EDX). It can be confirmed that a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component is unevenly distributed and mixed.
  • EDX energy dispersive X-ray spectroscopy
  • the CAC-OS has a structure different from that of the IGZO compound in which the metal element is uniformly distributed, and has a property different from that of the IGZO compound. That is, in the CAC-OS, a region in which GaO X3 or the like is a main component and a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component are phase-separated from each other, and a region in which each element is a main component. Has a mosaic structure.
  • the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is a region having higher conductivity than a region containing GaO X3 or the like as a main component. That, In X2 Zn Y2 O Z2 or InO X1, is an area which is the main component, by carriers flow, expressed the conductivity of the oxide semiconductor. Accordingly, a region where In X2 Zn Y2 O Z2 or InO X1 is a main component is distributed in a cloud shape in the oxide semiconductor, whereby high field-effect mobility ( ⁇ ) can be realized.
  • areas such as GaO X3 is the main component, as compared to the In X2 Zn Y2 O Z2 or InO X1 is the main component area, it is highly regions insulating. That is, a region containing GaO X3 or the like as a main component is distributed in the oxide semiconductor, whereby leakage current can be suppressed and good switching operation can be realized.
  • CAC-OS is optimal for various semiconductor devices including a display.

Abstract

周囲の明るさによらず、視認性の高い表示装置を提供する。第1の表示素子、 第2の表示素子、 絶縁層、 第1のトランジスタ、 及び第2のトランジスタを有する 表示装置である。 第1のトランジスタと第2のトランジスタは同一面上に位置する。 第1の表示素子 は第1の電極を有する。 第2の表示素子は、 第2の電極と、 第2の電極上の発光層と、 発光層上の第 3の電極と、 を有する。 第2の電極は、 第2のトランジスタが有する第4の電極と電気的に接続される。 第3の電極は、 第1のトランジスタが有する第5の電極と重なる位置に第1の開口を有する。 第4の電極及び第5の電極は、 それぞれ、 ソースまたはドレインとして機能する。 絶縁層は、 第3の電 極上に位置し、 第1の開口の側面を覆い、 かつ、 第5の電極及び第1の開口と重なる位置に第2の開 口を有する。第1の電極は、第2の開口を介して、第5の電極と電気的に接続される。

Description

表示装置、表示モジュール、及び電子機器
本発明の一態様は、表示装置、表示モジュール、及び電子機器に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサなど)、入出力装置(例えば、タッチパネルなど)、それらの駆動方法、またはそれらの製造方法を一例として挙げることができる。
近年、表示装置は様々な用途への応用が期待されている。表示装置としては、例えば、発光素子を有する発光装置、液晶素子を有する液晶表示装置等が開発されている。
例えば、特許文献1に、有機EL(Electroluminescence)素子が適用された可撓性を有する発光装置が開示されている。
特許文献2には、可視光を反射する領域と可視光を透過する領域とを有し、十分な外光が得られる環境下では反射型液晶表示装置として利用することができ、十分な外光が得られない環境下では透過型液晶表示装置として利用することができる、半透過型の液晶表示装置が開示されている。
特開2014−197522号公報 特開2011−191750号公報
本発明の一態様は、消費電力の低い表示装置を提供することを課題の一とする。本発明の一態様は、周囲の明るさによらず、視認性の高い表示装置を提供することを課題の一とする。本発明の一態様は、全天候型の表示装置を提供することを課題の一とする。本発明の一態様は、利便性の高い表示装置を提供することを課題の一とする。本発明の一態様は、表示装置の薄型化または軽量化を課題の一とする。本発明の一態様は、新規な表示装置、入出力装置、または電子機器などを提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
[1]本発明の一態様の表示装置は、第1の表示素子、第2の表示素子、絶縁層、第1のトランジスタ、及び第2のトランジスタを有する。第1のトランジスタと第2のトランジスタは、同一面上に位置する。第1の表示素子は、第1のトランジスタよりも上方に位置する。第2の表示素子は、第2のトランジスタよりも上方に位置する。第1の表示素子は、可視光を反射する機能を有する。第2の表示素子は、可視光を発する機能を有する。第1の表示素子は、第1の電極を有する。第2の表示素子は、第2の電極と、第2の電極上の発光層と、発光層上の第3の電極と、を有する。第2の電極は、第2のトランジスタが有する第4の電極と電気的に接続される。第3の電極は、第1のトランジスタが有する第5の電極と重なる位置に第1の開口を有する。第4の電極及び第5の電極は、それぞれ、ソースまたはドレインとして機能する。絶縁層は、第3の電極上に位置し、第1の開口の側面を覆い、かつ、第5の電極及び第1の開口と重なる位置に第2の開口を有する。第1の電極は、第2の開口を介して、第5の電極と電気的に接続される。
[2]本発明の一態様の表示装置は、第1の表示素子、第2の表示素子、第1の絶縁層、第2の絶縁層、第1のトランジスタ、及び第2のトランジスタを有する。第1のトランジスタと第2のトランジスタは、同一面上に位置する。第1の表示素子は、第1のトランジスタよりも上方に位置する。第2の表示素子は、第2のトランジスタよりも上方に位置する。第1の表示素子は、可視光を反射する機能を有する。第2の表示素子は、可視光を発する機能を有する。第1の表示素子は、第1の電極を有する。第2の表示素子は、第2の電極と、第2の電極上の発光層と、発光層上の第3の電極と、を有する。第1の絶縁層は、第3の電極上に位置する。第2の絶縁層は、第1の絶縁層上に位置する。第2の電極は、第2のトランジスタが有する第4の電極と電気的に接続される。第3の電極及び第1の絶縁層は、第1のトランジスタが有する第5の電極と重なる位置に第1の開口を有する。第4の電極及び第5の電極は、それぞれ、ソースまたはドレインとして機能する。第2の絶縁層は、第1の開口の側面を覆い、かつ、第5の電極及び第1の開口と重なる位置に第2の開口を有する。第1の電極は、第2の開口を介して、第5の電極と電気的に接続される。
[3]本発明の一態様の表示装置は、第1の表示素子、第2の表示素子、第1の無機絶縁層、第2の無機絶縁層、第1のトランジスタ、及び第2のトランジスタを有する。第1のトランジスタと第2のトランジスタは、同一面上に位置する。第1の表示素子は、第1のトランジスタよりも上方に位置する。第2の表示素子は、第2のトランジスタよりも上方に位置する。第1の表示素子は、可視光を反射する機能を有する。第2の表示素子は、可視光を発する機能を有する。第1の表示素子は、第1の電極を有する。第2の表示素子は、第2の電極と、第2の電極上の発光層と、発光層上の第3の電極と、を有する。第1の無機絶縁層は、第2の電極の端部を覆う。第2の電極は、第2のトランジスタが有する第4の電極と電気的に接続される。第3の電極は、第1のトランジスタが有する第5の電極と重なる位置に第1の開口を有する。第4の電極及び第5の電極は、それぞれ、ソースまたはドレインとして機能する。第2の無機絶縁層は、第3の電極上に位置し、第1の開口の側面を覆い、かつ、第5の電極及び第1の開口と重なる位置に第2の開口を有する。第1の電極は、第2の開口を介して、第5の電極と電気的に接続される。
[4]本発明の一態様の表示装置は、第1の表示素子、第2の表示素子、第1の無機絶縁層、第2の無機絶縁層、第3の絶縁層、第1のトランジスタ、及び第2のトランジスタを有する。第1のトランジスタと第2のトランジスタは、同一面上に位置する。第1の表示素子は、第1のトランジスタよりも上方に位置する。第2の表示素子は、第2のトランジスタよりも上方に位置する。第1の表示素子は、可視光を反射する機能を有する。第2の表示素子は、可視光を発する機能を有する。第1の表示素子は、第1の電極を有する。第2の表示素子は、第2の電極と、第2の電極上の発光層と、発光層上の第3の電極と、を有する。第1の無機絶縁層は、第2の電極の端部を覆う。第3の無機絶縁層は、第3の電極上に位置する。第2の無機絶縁層は、第3の無機絶縁層上に位置する。第2の電極は、第2のトランジスタが有する第4の電極と電気的に接続される。第3の電極及び第3の無機絶縁層は、第1のトランジスタが有する第5の電極と重なる位置に第1の開口を有する。第4の電極及び第5の電極は、それぞれ、ソースまたはドレインとして機能する。第2の無機絶縁層は、第1の開口の側面を覆い、かつ、第5の電極及び第1の開口と重なる位置に第2の開口を有する。第1の電極は、第2の開口を介して、第5の電極と電気的に接続される。
[3]または[4]の構成の表示装置は、第2の無機絶縁層上に有機絶縁層を有することが好ましい。有機絶縁層は、第5の電極、第1の開口、及び第2の開口と重なる位置に第3の開口を有する。第1の電極は、第3の開口を介して、第5の電極と電気的に接続される。有機絶縁層は、第2の無機絶縁層を介して、第1の開口の側面を覆っていてもよい。
上記各構成の表示装置は、第1の表示素子が反射する光、及び第2の表示素子が発する光のうち一方または双方により、画像を表示する機能を有することが好ましい。
第1の表示素子は、反射型の液晶素子であることが好ましい。
第2の表示素子は、電界発光素子であることが好ましい。
第1のトランジスタ及び第2のトランジスタのうち一方または双方は、チャネル形成領域に酸化物半導体を有することが好ましい。
本発明の一態様は、上記構成のうちいずれかの表示装置と、フレキシブルプリント基板(FPC)等の回路基板と、を有する表示モジュールである。
本発明の一態様は、上記の表示モジュールと、アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、または操作ボタンの少なくともいずれか一と、を有する、電子機器である。
本発明の一態様により、消費電力の低い表示装置を提供することができる。本発明の一態様により、周囲の明るさによらず、視認性の高い表示装置を提供することができる。本発明の一態様により、全天候型の表示装置を提供することができる。本発明の一態様により、利便性の高い表示装置を提供することができる。本発明の一態様により、表示装置の薄型化または軽量化が可能となる。本発明の一態様により、新規な表示装置、入出力装置、または電子機器などを提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
表示装置の一例を示す断面図。 表示装置の一例を示すブロック図。 画素ユニットの一例を示す図。 画素ユニットの一例を示す図。 画素ユニットの一例を示す図。 表示装置の一例を示す断面図。 表示装置の一例を示す断面図。 トランジスタの一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の一例を示す断面図。 表示装置の一例を示す断面図。 表示装置の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の一例及び画素の一例を示す図。 表示装置の画素回路の一例を示す回路図。 表示装置の画素回路の一例を示す回路図及び画素の一例を示す図。 表示装置の一例を示す斜視図。 表示モジュールの一例を示す図。 電子機器の一例を示す図。 電子機器の一例を示す図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
また、図面において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置について図1~図12を用いて説明する。
本実施の形態の表示装置は、可視光を反射する第1の表示素子と、可視光を発する第2の表示素子とを有する。
本実施の形態の表示装置は、第1の表示素子が反射する光と、第2の表示素子が発する光のうち、いずれか一方、または両方により、画像を表示する機能を有する。
具体的には、本実施の形態の表示装置は、第1の表示素子のみを用いて画像を表示する第1のモード、第2の表示素子のみを用いて画像を表示する第2のモード、並びに、第1の表示素子及び第2の表示素子を用いて画像を表示する第3のモードを有し、これらのモードを自動または手動で切り替えて使用することができる。
第1のモードでは、第1の表示素子と外光を用いて画像を表示する。第1のモードは光源が不要であるため、極めて低消費電力なモードである。例えば、表示装置に外光が十分に入射されるとき(明るい環境下など)は、第1の表示素子が反射した光を用いて表示を行うことができる。例えば、外光が十分に強く、かつ外光が白色光またはその近傍の光である場合に有効である。第1のモードは、文字情報を表示することに適したモードである。また、第1のモードは、外光を反射した光を用いるため、目に優しい表示を行うことができ、目が疲れにくいという効果を奏する。
第2のモードでは、第2の表示素子による発光を利用して画像を表示する。そのため、照度や外光の色度によらず、極めて鮮やかな(コントラストが高く、且つ色再現性の高い)表示を行うことができる。例えば、夜間や暗い室内など、照度が極めて低い場合などに有効である。また周囲が暗い場合、明るい表示を行うと使用者が眩しく感じてしまう場合がある。これを防ぐために、第2のモードでは輝度を抑えた表示を行うことが好ましい。これにより、眩しさを抑えることに加え、消費電力も低減することができる。第2のモードは、鮮やかな画像(静止画及び動画)などを表示することに適したモードである。
第3のモードでは、第1の表示素子による反射光と、第2の表示素子による発光の両方を利用して表示を行う。第1のモードよりも鮮やかな表示をしつつ、第2のモードよりも消費電力を抑えることができる。例えば、室内照明下や、朝方や夕方の時間帯など、照度が比較的低い場合、外光の色度が白色ではない場合などに有効である。また、反射光と発光とを混合させた光を用いることで、まるで絵画を見ているかのように感じさせる画像を表示することが可能となる。
このような構成とすることで、周囲の明るさによらず、視認性が高く利便性の高い表示装置または全天候型の表示装置を実現できる。
第1の表示素子には、外光を反射して表示する素子を用いることができる。このような素子は光源を持たない(人工光源を使用しない)ため、表示の際の消費電力を極めて小さくすることが可能となる。
第1の表示素子には、代表的には反射型の液晶素子を用いることができる。または、第1の表示素子として、シャッター方式のMEMS(Micro Electro Mechanical System)素子、光干渉方式のMEMS素子の他、マイクロカプセル方式、電気泳動方式、エレクトロウェッティング方式、電子粉流体(登録商標)方式等を適用した素子などを用いることができる。
第2の表示素子には、発光素子を用いることが好ましい。このような表示素子が射出する光は、その輝度や色度が外光に左右されることがないため、色再現性が高く(色域が広く)、コントラストの高い、鮮やかな表示を行うことができる。
第2の表示素子には、例えばOLED(Organic Light Emitting Diode)、LED(Light Emitting Diode)、QLED(Quantum−dot Light Emitting Diode)などの自発光性の発光素子を用いることができる。
図1に示す表示装置10は、一対の基板(基板11及び基板12)間に、第1の表示素子31、第2の表示素子32、絶縁層234、トランジスタ41、及びトランジスタ42等を有する。
トランジスタ41とトランジスタ42とは、同一面上に位置する。図1では、基板11上に位置する例を示す。第1の表示素子31は、トランジスタ41よりも上方に位置する。第2の表示素子32は、トランジスタ42よりも上方に位置する。
第1の表示素子31は、可視光を反射する機能を有する。第1の表示素子31は基板12側に反射光22を射出する。
図1では、第1の表示素子31が反射型の液晶素子である例を示す。第1の表示素子31は、可視光を反射する機能を有する電極221と、液晶層222と、可視光を透過する機能を有する電極223と、を有する。液晶層222は、電極221と電極223との間に位置する。
第2の表示素子32は、可視光を発する機能を有する。第2の表示素子32は、基板12側に発光21を射出する。
図1では、第2の表示素子32がEL素子である例を示す。第2の表示素子32は、電極121と、EL層122と、電極123と、を有する。EL層122は、電極121と電極123との間に位置する。EL層122は、少なくとも発光性の物質を含む。電極121は可視光を反射する機能を有することが好ましい。電極123は可視光を透過する機能を有する。
第2の表示素子32は、電極121と電極123との間に電圧を印加することで、基板12側に発光21を射出する電界発光素子である。
電極121は、絶縁層134に設けられた開口を介して、トランジスタ42が有するソースまたはドレインと電気的に接続される。電極121の端部は、絶縁層135によって覆われている。
第2の表示素子32上に、絶縁層125が設けられていることが好ましい。図1では、絶縁層125が、電極123上に位置する。絶縁層125を設けることで、第2の表示素子32に不純物が入り込むことを抑制し、第2の表示素子32の信頼性を高めることができる。
絶縁層134、絶縁層135、EL層122、電極123、及び絶縁層125は、トランジスタ41が有する電極(ソースまたはドレイン)と重なる位置に第1の開口を有する。
絶縁層234は、絶縁層125上に位置し、該第1の開口の側面を覆い、かつ、トランジスタ41が有する該電極と重なる位置に第2の開口を有する。第2の開口は、第1の開口と重なる位置に形成される。絶縁層234の開口は、少なくとも電極123の開口よりも内側に設けられる。
絶縁層234が第1の開口の側面を覆うことで、第1の開口を設けた際に露出したEL層122の側面及び電極123の側面を覆うことができる。したがって、電極221と電極123とを電気的に絶縁することができ、ショートを防止することができる。また、EL層122の導電性が高い場合であっても、電極221とEL層122とは電気的に絶縁されているため、第1の表示素子31と第2の表示素子32の双方に不具合は生じない。
接続部50において、電極221は、絶縁層234に設けられた第2の開口を介して、トランジスタ41が有する該電極と電気的に接続される。
表示装置10では、第1の表示素子31と電気的に接続されるトランジスタ41と、第2の表示素子32と電気的に接続されるトランジスタ42と、が同一面上に位置する。そのため、2つのトランジスタを別々の面上に形成する場合に比べて、表示装置の厚さを薄くすることができる。また、2つのトランジスタを同一の工程で作製できるため、2つのトランジスタを別々の面上に形成する場合に比べて、作製工程を簡略化することができる。
ここで、チャネル形成領域に酸化物半導体を有し、オフ電流が極めて低いトランジスタ41を適用した場合や、トランジスタ41と電気的に接続される記憶素子を適用した場合などでは、第1の表示素子31を用いて静止画を表示する際に画素への書き込み動作を停止しても、階調を維持させることが可能となる。すなわち、フレームレートを極めて小さくしても表示を保つことができる。本発明の一態様では、フレームレートを極めて小さくでき、低消費電力な駆動を行うことができる。
図2に、表示装置10のブロック図を示す。表示装置10は、表示部14を有する。
表示部14は、マトリクス状に配置された複数の画素ユニット30を有する。画素ユニット30は、第1の画素31pと、第2の画素32pを有する。
図2では、第1の画素31p及び第2の画素32pが、それぞれ赤色(R)、緑色(G)、青色(B)の3色に対応する表示素子を有する場合の例を示している。
第1の画素31pが有する表示素子は、それぞれ、外光の反射を利用した表示素子である。第1の画素31pは、赤色(R)に対応する第1の表示素子31R、緑色(G)に対応する第1の表示素子31G、青色(B)に対応する第1の表示素子31Bを有する。
第2の画素32pが有する表示素子は、それぞれ、発光素子である。第2の画素32pは、赤色(R)に対応する第2の表示素子32R、緑色(G)に対応する第2の表示素子32G、青色(B)に対応する第2の表示素子32Bを有する。
図3(A)~(C)は、画素ユニット30の構成例を示す模式図である。
第1の画素31pは、第1の表示素子31R、第1の表示素子31G、第1の表示素子31Bを有する。第1の表示素子31Rは、外光を反射し、赤色の光Rrを表示面側に射出する。第1の表示素子31G、第1の表示素子31Bも同様に、それぞれ緑色の光Grまたは青色の光Brを、表示面側に射出する。
第2の画素32pは、第2の表示素子32R、第2の表示素子32G、第2の表示素子32Bを有する。第2の表示素子32Rは赤色の光Rtを、表示面側に射出する。第2の表示素子32G、第2の表示素子32Bも同様に、それぞれ緑色の光Gtまたは青色の光Btを、表示面側に射出する。
図3(A)は、第1の画素31pと第2の画素32pの両方を駆動させることで表示を行うモード(第3のモード)に対応する。画素ユニット30は、反射光(光Rr、光Gr、光Br)と透過光(光Rt、光Gt、光Bt)とを用いて、所定の色の光35trを表示面側に射出することができる。
図3(B)は、第1の画素31pのみを駆動させることにより、反射光を用いて表示を行うモード(第1のモード)に対応する。画素ユニット30は、例えば外光が十分に強い場合などでは、第2の画素32pを駆動させずに、第1の画素31pからの光(光Rr、光Gr、及び光Br)のみを用いて、光35rを表示面側に射出することができる。これにより、極めて低消費電力な駆動を行うことができる。
図3(C)は、第2の画素32pのみを駆動させることにより、発光(透過光)を用いて表示を行うモード(第2のモード)に対応する。画素ユニット30は、例えば外光が極めて弱い場合などでは、第1の画素31pを駆動させずに、第2の画素32pからの光(光Rt、光Gt、及び光Bt)のみを用いて、光35tを表示面側に射出することができる。これにより鮮やかな表示を行うことができる。また周囲が暗い場合に輝度を低くすることで、使用者が感じる眩しさを抑えると共に消費電力を低減できる。
第1の画素31pと第2の画素32pとが有する表示素子の色、数は、それぞれ限定されない。
図4(A)~(C)、図5(A)~(C)に、それぞれ画素ユニット30の構成例を示す。なおここでは、第1の画素31pと第2の画素32pの両方を駆動させることで表示を行うモード(第3のモード)に対応した模式図を示しているが、上記と同様に、第1の画素31pまたは第2の画素32pのみを駆動させるモード(第1のモード及び第2のモード)でも表示を行うことができる。
図4(A)、(C)、図5(B)に示す第2の画素32pは、第2の表示素子32R、第2の表示素子32G、第2の表示素子32Bに加えて、白色(W)を呈する第2の表示素子32Wを有する。
図4(B)、図5(C)に示す第2の画素32pは、第2の表示素子32R、第2の表示素子32G、第2の表示素子32Bに加えて、黄色(Y)を呈する第2の表示素子32Yを有する。
図4(A)~(C)、図5(B)、(C)に示す構成は、第2の表示素子32W及び第2の表示素子32Yを有さない構成に比べて、第2の画素32pを用いた表示モード(第2のモード及び第3のモード)における消費電力を低減することができる。
図4(C)に示す第1の画素31pは、第1の表示素子31R、第1の表示素子31G、第1の表示素子31Bに加えて、白色(W)を呈する第1の表示素子31Wを有する。
図4(C)に示す構成は、図3(A)に示す構成に比べて、第1の画素31pを用いた表示モード(第1のモード及び第3のモード)における消費電力を低減することができる。
図5(A)~(C)に示す第1の画素31pは、白色を呈する第1の表示素子31Wのみを有する。このとき、第1の画素31pのみを用いた表示モード(第1のモード)では、白黒表示またはグレースケールでの表示を行うことができ、第2の画素32pを用いた表示モード(第2のモード及び第3のモード)では、カラー表示を行うことができる。
このような構成とすることで、第1の画素31pの開口率を高めることができるため、第1の画素31pの反射率を向上させ、より明るい表示を行うことができる。
第1のモードは、例えば、文書情報などのカラー表示を必要としない情報を表示することに適している。
図6(A)、(B)、(C)及び図7(A)、(B)に、表示装置の断面構成例を示す。
<構成例1>
図6(A)に示す表示装置10Aは、基板11、接着層51、絶縁層131、トランジスタ110a、トランジスタ110b、絶縁層133、絶縁層134、発光素子120、絶縁層135、絶縁層125、着色層152、絶縁層234、液晶素子220、配向膜224a、配向膜224b、及び基板12を有する。
トランジスタ110aとトランジスタ110bとは、同一面上に位置する。図6(A)では、トランジスタ110aとトランジスタ110bが絶縁層131上に位置する例を示す。より具体的には、トランジスタ110aとトランジスタ110bが絶縁層131に接して設けられている。液晶素子220は、トランジスタ110aよりも上方に位置する。発光素子120は、トランジスタ110bよりも上方に位置する。
基板11及び基板12は、それぞれ、可撓性を有することが好ましい。基板11は接着層51により絶縁層131と貼り合わされている。基板12の基板11側の面に接して、電極223が設けられ、電極223の基板11側の面に接して、配向膜224bが設けられている。
表示装置10Aは、作製基板上で作製したトランジスタ及び発光素子120等を、基板11上に転置することで作製できる。この方法によれば、例えば、耐熱性の高い作製基板上で形成した被剥離層を、耐熱性の低い基板に転置することができ、被剥離層の作製温度が、耐熱性の低い基板によって制限されない。作製基板に比べて軽い、薄い、または可撓性が高い基板11に被剥離層を転置することで、表示装置の軽量化、薄型化、フレキシブル化を実現できる。なお、基板11の耐熱性及び被剥離層の形成温度によっては、基板11上に直接、トランジスタ及び発光素子120等を作製することもできる。
基板12よりも外側に、偏光板または円偏光板等を設けてもよい。
図6(A)に示すトランジスタ110a、110bは、ボトムゲート構造のトランジスタである。
トランジスタ110a、110bは、それぞれ、導電層111、絶縁層132、半導体層112、導電層113a、及び導電層113bを有する。導電層111は絶縁層132を介して半導体層112と重なる。導電層113a及び導電層113bは、半導体層112と電気的に接続される。
導電層111は、ゲートとして機能する。絶縁層132は、ゲート絶縁層として機能する。導電層113a及び導電層113bのうち、一方はソースとして機能し、他方はドレインとして機能する。絶縁層133は、トランジスタの保護層として機能することができる。
トランジスタ110a、110bは、チャネルエッチ型であり、トランジスタの占有面積を縮小することが比較的容易であるため、高精細な表示装置に好適に用いることができる。
半導体層112は、酸化物半導体を有することが好ましい。
絶縁層134は、平坦化機能を有することが好ましい。これにより、発光素子120を平坦な面上に形成することができる。
発光素子120は、電極121と電極123との間に電圧を印加することで、基板12側に発光21を射出する。
発光素子120は、電極121、EL層122、及び電極123を有する。EL層122は、電極121と電極123との間に位置する。EL層122は、少なくとも発光性の物質を含む。電極121は可視光を反射する機能を有することが好ましい。電極123は可視光を透過する機能を有する。
電極121は、画素毎に配置され、画素電極として機能する。EL層122と電極123は、複数の画素にわたって配置されている。電極123は、図示しない領域で定電位が供給される配線と接続され、共通電極として機能する。
電極121は、絶縁層134に設けられた開口を介して、トランジスタ110bが有する導電層113aと電気的に接続される。電極121の端部は、絶縁層135によって覆われている。
絶縁層125は、電極123上に設けられている。発光素子120上に絶縁層125を設けることで、発光素子120に不純物が入り込むことを抑制し、発光素子120の信頼性を高めることができる。特に、絶縁層125が無機絶縁層を有すると、発光素子120の信頼性をより高めることができ、好ましい。
着色層152は、絶縁層125上に設けられている。着色層152は、発光素子120の発光領域と重なる位置に設けられる。発光素子120の発光は、着色層152を介して表示装置から射出される。
発光素子120は、画素によって着色層152の色を変えることで、様々な色を呈することができる。表示装置10Aは、発光素子120を用いて、カラー表示を行うことができる。
液晶素子220は基板12側に反射光22を射出する。電極221と電極223との間に生じる電界により、液晶層222の配向を制御することができる。
液晶素子220は、可視光を反射する機能を有する電極221と、液晶層222と、可視光を透過する機能を有する電極223と、を有する。液晶層222は、液晶層222は、配向膜224aと配向膜224bとの間に位置する。
電極221は、画素毎に配置され、画素電極として機能する。電極223は、複数の画素にわたって配置されている。電極223は、図示しない領域で定電位が供給される配線と接続され、共通電極として機能する。
液晶素子220は、白色を呈する。表示装置10Aは、液晶素子220を用いて、白黒またはグレースケールでの表示を行うことができる。
絶縁層133、絶縁層134、絶縁層135、EL層122、電極123、及び絶縁層125は、トランジスタ110aが有する導電層113aと重なる位置に第1の開口を有する。
絶縁層234は、絶縁層125上に位置し、該第1の開口の側面を覆い、かつ、トランジスタ110aが有する導電層113aと重なる位置に第2の開口を有する。第2の開口は、第1の開口と重なる位置に形成される。
絶縁層234には、有機材料及び無機材料のどちらを用いてもよい。
絶縁層234は平坦化機能を有することが好ましい。これにより、電極221を平坦な面上に形成することができる。特に、絶縁層234が有機絶縁層を有すると、絶縁層234の平坦性を高めることができ、好ましい。
絶縁層234が第1の開口の側面を覆うことで、第1の開口を設けた際に露出したEL層122の側面及び電極123の側面を覆うことができる。したがって、電極221と電極123とを電気的に絶縁することができ、ショートを防止することができる。また、EL層122の導電性が高い場合であっても、電極221とEL層122とは電気的に絶縁されているため、発光素子120と液晶素子220の双方に不具合は生じない。
接続部50において、電極221は、絶縁層234に設けられた第2の開口を介して、トランジスタ110aが有する導電層113aと電気的に接続される。
本実施の形態の表示装置では、液晶素子220と電気的に接続されるトランジスタ110aと、発光素子120と電気的に接続されるトランジスタ110bと、が同一面上に位置する。そのため、2つのトランジスタを別々の面上に形成する場合に比べて、表示装置10Aの厚さを薄くすることができる。また、2つのトランジスタを同一の工程で作製できるため、2つのトランジスタを別々の面上に形成する場合に比べて、作製工程を簡略化することができる。
<構成例2>
図6(B)に示す表示装置10Bは、基板12と電極223の間に、絶縁層151、着色層152、及びオーバーコート153を有する点で、表示装置10Aと異なる。また、表示装置10Bは、絶縁層125と接する着色層152を有さない点で、表示装置10Aと異なる。その他の構成については、表示装置10Aと同様のため、詳細な説明を省略する。
基板12の基板11側の面に接して、絶縁層151が設けられている。絶縁層151は、液晶素子220を用いた表示領域(以下、反射領域と記す)と重ねて設けられ、発光素子120の発光領域(以下、透過領域と記す)とは重ならない。そして、基板12の基板11側の面と絶縁層151の基板11側の面に接して、着色層152が設けられている。絶縁層151が設けられていることから、着色層152の厚さは、反射領域と透過領域とで異なる。
反射領域では、着色層152中を光が往復して通る(反射光22参照)が、透過領域では、光は一度のみ着色層152中を通る(発光21参照)。そのため、反射領域と透過領域とで、着色層152の厚さが同一であると、表示の色調に差が生じる場合がある。
絶縁層151を設けることで、着色層152の厚さを、反射領域と透過領域とで変えることができる。これにより、液晶素子220を用いた表示と、発光素子120を用いた表示と、の双方で、色調の良好な表示を行うことができる。
反射領域における着色層152の厚さは、透過領域における着色層152の厚さの40%以上60%以下であることが好ましい。
なお、着色層152の厚さを変える方法は、絶縁層151を部分的に設ける方法に限定されない。例えば、着色層152を2層以上の積層構造としてもよく、透過領域が、反射領域よりも着色層152を構成する層数が多い構成としてもよい。または、多階調マスクを用いて互いに厚さの異なる2つの領域を有する着色層を形成してもよい。
また、1つの着色層152の厚さを変える以外に、着色層152を複数設けることでも、液晶素子220を用いた表示と、発光素子120を用いた表示と、の双方で、色調の良好な表示を行うことができる。
図6(C)に示す表示装置10Cは、絶縁層125に接して設けられた着色層152と、基板12に接して設けられた着色層152と、を有する例である。発光21は、絶縁層125に接して設けられた着色層152と、基板12に接して設けられた着色層152との双方を通る。反射光22は、基板12に接して設けられた着色層152のみを通る。このような構成であっても、液晶素子220を用いた表示と、発光素子120を用いた表示と、の双方で、色調の良好な表示を行うことができる。
液晶素子220及び発光素子120は、画素によって着色層152の色を変えることで、様々な色を呈することができる。表示装置10B及び表示装置10Cは、それぞれ、液晶素子220を用いて、カラー表示を行うことができる。表示装置10B及び表示装置10Cは、それぞれ、発光素子120を用いて、カラー表示を行うことができる。
オーバーコート153を設けると、着色層152に含まれる不純物が液晶層222に拡散することを抑制できるため、好ましい。
絶縁層151には、有機材料及び無機材料のどちらを用いてもよい。オーバーコート153と同様の材料を用いてもよい。
<構成例3>
図7(A)に示す表示装置10Dは、接続部50において、絶縁層234が、絶縁層133及び絶縁層134に設けられた開口の側面を覆わず、絶縁層135、EL層122、電極123、及び絶縁層125に設けられた開口の側面のみを覆う点で、表示装置10Aと異なる。その他の構成については、表示装置10Aと同様のため、詳細な説明を省略する。
本発明の一態様では、液晶素子220と発光素子120のショートを防止するために、絶縁層234が、少なくとも電極123(より好ましくは、EL層122も)に設けられた開口の側面を覆う。その他、絶縁層に設けられた開口等については、絶縁層234で覆われていなくても構わない。
例えば、絶縁層133及び絶縁層134に、トランジスタ110bが有する導電層113aに達する開口を設ける際に、同時に、トランジスタ110aが有する導電層113aに達する開口を設けてもよい。その後、絶縁層135から絶縁層125までの積層構造に別途開口を設けることで、図7(A)に示す構造を作製することができる。
絶縁層133から絶縁層125までの積層構造について、一括で開口する場合に比べて、複数回に分けて開口する方が、容易である、電極221の被覆性が高まる、または導電層113aの薄膜化を抑制できる。
<構成例4>
図7(B)に示す表示装置10Eは、EL層122が塗り分けられており、色ごとに分離されている点で、表示装置10Dと異なる。また、表示装置10Eは、接着層51と絶縁層131との間に剥離層62を有する点で、表示装置10Dと異なる。その他の構成については、表示装置10Dと同様のため、詳細な説明を省略する。
EL層122の端部が、接続部50から離れているほど、EL層122に不純物が入り込むことを抑制できるため好ましい。
塗り分け方式が適用された発光素子120は、EL層122を構成する層のうち少なくとも一層(代表的には発光層)が塗り分けられていればよく、EL層を構成する層の全てが塗り分けられていてもよい。
絶縁層125上の着色層152は設けなくてもよい。
作製基板と被剥離層とを分離するために設ける剥離層62の材料によっては、被剥離層側に剥離層62の少なくとも一部が残存することがある。剥離層62は、発光素子120及び液晶素子220からみて、表示装置の表示面とは反対側に位置する。そのため、剥離層62の可視光に対する透過性は問われない。よって、剥離層62として様々な材料を用いることができる。
本発明の一態様において、表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよいし、逆スタガ型のトランジスタとしてもよい。また、トップゲート構造またはボトムゲート構造のいずれのトランジスタ構造としてもよい。または、チャネルの上下にゲート電極が設けられていてもよい。
図8(A)~(C)に、トランジスタ110a、110bとは異なる構造のトランジスタの例を示す。
図8(A)に示すトランジスタ110cは、トランジスタ110a、110bの構成に加えて、導電層114を有する。導電層114は、絶縁層133上に設けられ、半導体層112と重なる領域を有する。また、図8(A)では、絶縁層136が、導電層114及び絶縁層133を覆って設けられている。
導電層114は、半導体層112を挟んで導電層111とは反対側に位置している。導電層111を第1のゲートとした場合、導電層114は、第2のゲートとして機能することができる。導電層111と導電層114に同じ電位を与えることで、トランジスタ110cのオン電流を高めることができる。または、導電層111及び導電層114のうち、一方にしきい値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタ110cのしきい値電圧を制御することができる。
導電層114には、酸化物を含む導電性材料を用いることが好ましい。これにより、導電層114を構成する導電膜の成膜時に、酸素を含む雰囲気下で成膜することで、絶縁層133に酸素を供給することができる。成膜ガス中の酸素ガスの割合を90%以上100%以下の範囲とすることが好ましい。絶縁層133に供給された酸素は、後の熱処理により半導体層112に供給され、半導体層112中の酸素欠損の低減を図ることができる。
特に、導電層114には、低抵抗化された酸化物半導体を用いることが好ましい。このとき、絶縁層136に水素を放出する絶縁膜、例えば窒化シリコン膜等を用いることが好ましい。絶縁層136の成膜中、またはその後の熱処理によって導電層114中に水素が供給され、導電層114の電気抵抗を効果的に低減することができる。
図8(B)に示すトランジスタ110dは、トップゲート構造のトランジスタである。
トランジスタ110dは、導電層111、絶縁層132、半導体層112、絶縁層133、導電層113a、及び導電層113bを有する。導電層111は絶縁層132を介して半導体層112と重なる。導電層113a及び導電層113bは、半導体層112と電気的に接続される。
導電層111は、ゲートとして機能する。絶縁層132は、ゲート絶縁層として機能する。導電層113a及び導電層113bのうち、一方はソースとして機能し、他方はドレインとして機能する。
トランジスタ110dは、導電層111と導電層113aまたは導電層113bとの物理的な距離を離すことが容易なため、これらの間の寄生容量を低減することが可能である。
図8(C)に示すトランジスタ110eは、トランジスタ110cの構成に加えて、導電層115及び絶縁層137を有する。導電層115は絶縁層131上に設けられ、半導体層112と重なる領域を有する。絶縁層137は、導電層115及び絶縁層131を覆って設けられている。
導電層115は、上記導電層114と同様に第2のゲートとして機能する。そのため、オン電流を高めることや、しきい値電圧を制御することなどが可能である。
以下では、図9~図12を用いて、本発明の一態様の表示装置の作製方法について、具体的に説明する。
なお、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、原子層成膜(ALD:Atomic Layer Deposition)法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced Chemical Vapor Deposition)法や、熱CVD法でもよい。熱CVD法の例として、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法を使ってもよい。
表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。
表示装置を構成する薄膜を加工する際には、リソグラフィ法等を用いて加工することができる。または、シャドウマスクを用いた成膜方法により、島状の薄膜を形成してもよい。または、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。フォトリソグラフィ法としては、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法と、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法と、がある。
リソグラフィ法において光を用いる場合、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線やKrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外光(EUV:Extreme Ultra−violet)やX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
薄膜のエッチングには、ドライエッチング法、ウエットエッチング法、サンドブラスト法などを用いることができる。
<作製方法例>
以下では、図6(A)に示す表示装置10Aの作製方法の一例について、図9~図12を用いて説明する。
まず、作製基板61上に剥離層62を形成する(図9(A))。
作製基板61は、搬送が容易となる程度に剛性を有し、かつ作製工程にかかる温度に対して耐熱性を有する。作製基板61に用いることができる材料としては、例えば、ガラス、石英、セラミック、サファイヤ、樹脂、半導体、金属または合金などが挙げられる。ガラスとしては、例えば、無アルカリガラス、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス等が挙げられる。
剥離層62は、有機材料または無機材料を用いて形成することができる。
剥離層62を、有機材料を用いて形成する場合、感光性を有する材料が好ましく、感光性及び熱硬化性を有する材料を用いることが好ましい。
感光性を有する材料を用いることで、光を用いたリソグラフィ法により、一部を除去することができる。具体的には、材料を成膜した後に溶媒を除去するための熱処理(プリベーク処理ともいう)を行い、その後フォトマスクを用いて露光を行う。続いて、現像処理を施すことで、不要な部分を除去する。その後、熱処理(ポストベーク処理ともいう)を行う。ポストベーク処理では、剥離層62上に形成する各層の作製温度よりも高い温度で加熱することが好ましい。加熱温度は、例えば、350℃より高く450℃以下が好ましく、350℃より高く400℃以下がより好ましく、350℃より高く375℃以下がさらに好ましい。これにより、トランジスタの作製工程における、剥離層62からの脱ガスを大幅に抑制することができる。
剥離層62は、感光性のポリイミド樹脂(photo sensitive polyimide、PSPIともいう)を用いて形成されることが好ましい。
そのほか、剥離層62に用いることができる有機材料としては、例えば、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂等が挙げられる。
剥離層62は、スピンコータを用いて形成することが好ましい。スピンコート法を用いることで、大判基板に薄い膜を均一に形成することができる。
剥離層62は、粘度が5cP以上500cP未満、好ましくは5cP以上100cP未満、より好ましくは10cP以上50cP以下の溶液を用いて形成することが好ましい。溶液の粘度が低いほど、塗布が容易となる。また、溶液の粘度が低いほど、気泡の混入を抑制でき、良質な膜を形成できる。
有機材料を用いる場合、剥離層62の厚さは、0.01μm以上10μm未満であることが好ましく、0.1μm以上3μm以下であることがより好ましく、0.5μm以上1μm以下であることがさらに好ましい。低粘度の溶液を用いることで、剥離層62を薄く形成することが容易となる。剥離層62の厚さを上記範囲とすることで、作製のコストを低減することができる。ただし、これに限定されず、剥離層62の厚さは、10μm以上、例えば、10μm以上200μm以下としてもよい。
そのほか、剥離層62の形成方法としては、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコート等が挙げられる。
剥離層62に用いることができる無機材料としては、タングステン、モリブデン、チタン、タンタル、ニオブ、ニッケル、コバルト、ジルコニウム、亜鉛、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、シリコンから選択された元素を含む金属、該元素を含む合金、または該元素を含む化合物等が挙げられる。シリコンを含む層の結晶構造は、非晶質、微結晶、多結晶のいずれでもよい。
無機材料を用いる場合、剥離層62の厚さは、1nm以上1000nm以下、好ましくは10nm以上200nm以下、より好ましくは10nm以上100nm以下である。
無機材料を用いる場合、剥離層62は、例えばスパッタリング法、CVD法、ALD法、蒸着法等により形成できる。
次に、剥離層62上に、絶縁層131を形成する(図9(B))。
絶縁層131は、剥離層62に含まれる不純物が、後に形成するトランジスタや表示素子に拡散することを防ぐバリア層として用いることができる。剥離層62に有機材料を用いる場合、絶縁層131は、剥離層62を加熱した際に、剥離層62に含まれる水分等がトランジスタや表示素子に拡散することを防ぐことが好ましい。そのため、絶縁層131は、バリア性が高いことが好ましい。
絶縁層131としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などの無機絶縁膜を用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。特に、剥離層62上に窒化シリコン膜を形成し、窒化シリコン膜上に酸化シリコン膜を形成することが好ましい。
無機絶縁膜は、成膜温度が高いほど緻密でバリア性の高い膜となるため、高温で形成することが好ましい。
絶縁層131の成膜時の基板温度は、室温(25℃)以上350℃以下が好ましく、100℃以上300℃以下がさらに好ましい。
次に、絶縁層131上に、トランジスタ110a及びトランジスタ110bを形成する(図9(B))。
トランジスタに用いる半導体材料は特に限定されず、例えば、第14族の元素、化合物半導体または酸化物半導体を半導体層に用いることができる。代表的には、シリコンを含む半導体、ガリウムヒ素を含む半導体、またはインジウムを含む酸化物半導体等を適用できる。
ここでは半導体層112として酸化物半導体層を有する、ボトムゲート構造のトランジスタを作製する場合を示す。
トランジスタの半導体には、酸化物半導体を用いることが好ましい。シリコンよりもバンドギャップが広く、且つキャリア密度の小さい半導体材料を用いると、トランジスタのオフ状態における電流を低減できる。
具体的には、まず、絶縁層131上に導電層111を形成する(図9(B))。導電層111は、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することで形成できる。
表示装置が有する導電層には、それぞれ、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、もしくはタングステン等の金属、またはこれを主成分とする合金を単層構造または積層構造として用いることができる。または、酸化インジウム、インジウム錫酸化物(ITO)、タングステンを含むインジウム酸化物、タングステンを含むインジウム亜鉛酸化物、チタンを含むインジウム酸化物、チタンを含むITO、インジウム亜鉛酸化物、酸化亜鉛(ZnO)、ガリウムを含むZnO、またはシリコンを含むインジウム錫酸化物等の透光性を有する導電性材料を用いてもよい。また、不純物元素を含有させる等して低抵抗化させた、多結晶シリコンもしくは酸化物半導体等の半導体、またはニッケルシリサイド等のシリサイドを用いてもよい。また、グラフェンを含む膜を用いることもできる。グラフェンを含む膜は、例えば膜状に形成された酸化グラフェンを含む膜を還元して形成することができる。また、不純物元素を含有させた酸化物半導体等の半導体を用いてもよい。または、銀、カーボン、もしくは銅等の導電性ペースト、またはポリチオフェン等の導電性ポリマーを用いて形成してもよい。導電性ペーストは、安価であり、好ましい。導電性ポリマーは、塗布しやすく、好ましい。
続いて、絶縁層132を形成する(図9(B))。絶縁層132は、絶縁層131に用いることのできる無機絶縁膜を援用できる。
続いて、半導体層112を形成する(図9(B))。本実施の形態では、半導体層112として、酸化物半導体層を形成する。酸化物半導体層は、酸化物半導体膜を成膜した後、レジストマスクを形成し、当該酸化物半導体膜をエッチングした後にレジストマスクを除去することで形成できる。
酸化物半導体膜の成膜時の基板温度は、350℃以下が好ましく、室温以上200℃以下がより好ましく、室温以上130℃以下がさらに好ましい。
酸化物半導体膜は、不活性ガス及び酸素ガスのいずれか一方または双方を用いて成膜することができる。なお、酸化物半導体膜の成膜時における酸素の流量比(酸素分圧)に、特に限定はない。ただし、電界効果移動度が高いトランジスタを得る場合においては、酸化物半導体膜の成膜時における酸素の流量比(酸素分圧)は、0%以上30%以下が好ましく、5%以上30%以下がより好ましく、7%以上15%以下がさらに好ましい。
酸化物半導体膜は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。
酸化物半導体は、エネルギーギャップが2eV以上であることが好ましく、2.5eV以上であることがより好ましく、3eV以上であることがさらに好ましい、このように、エネルギーギャップの広い酸化物半導体を用いることで、トランジスタのオフ電流を低減することができる。
酸化物半導体膜は、スパッタリング法により形成することができる。そのほか、例えばPLD法、PECVD法、熱CVD法、ALD法、真空蒸着法などを用いてもよい。
なお、実施の形態5にて酸化物半導体の一例について説明する。
続いて、導電層113a及び導電層113bを形成する(図9(B))。導電層113a及び導電層113bは、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。導電層113a及び導電層113bは、それぞれ、半導体層112と接続される。
なお、導電層113a及び導電層113bの加工の際に、レジストマスクに覆われていない半導体層112の一部がエッチングにより薄膜化する場合がある。
以上のようにして、トランジスタ110a及びトランジスタ110bを作製できる(図9(B))。トランジスタ110a及びトランジスタ110bにおいて、導電層111の一部はゲートとして機能し、絶縁層132の一部はゲート絶縁層として機能し、導電層113a及び導電層113bは、それぞれソースまたはドレインのいずれか一方として機能する。
次に、トランジスタ110a及びトランジスタ110bを覆う絶縁層133を形成する(図9(C))。絶縁層133は、絶縁層131と同様の方法により形成することができる。
また、絶縁層133として、酸素を含む雰囲気下で成膜した酸化シリコン膜や酸化窒化シリコン膜等の酸化物絶縁膜を用いることが好ましい。さらに、当該酸化シリコン膜や酸化窒化シリコン膜上に窒化シリコン膜などの酸素を拡散、透過しにくい絶縁膜を積層することが好ましい。酸素を含む雰囲気下で形成した酸化物絶縁膜は、加熱により多くの酸素を放出しやすい絶縁膜とすることができる。このような酸素を放出する酸化物絶縁膜と、酸素を拡散、透過しにくい絶縁膜を積層した状態で、加熱処理を行うことにより、酸化物半導体層に酸素を供給することができる。その結果、酸化物半導体層中の酸素欠損、及び酸化物半導体層と絶縁層133の界面の欠陥を修復し、欠陥準位を低減することができる。これにより、極めて信頼性の高い表示装置を実現できる。
次に、絶縁層133上に絶縁層134を形成する(図9(C))。絶縁層134は、後に形成する表示素子の被形成面を有する層であるため、平坦化層として機能することが好ましい。絶縁層134としては、剥離層62に用いることができる有機材料を含む膜、または絶縁層131に用いることのできる無機絶縁膜が挙げられる。
次に、絶縁層134及び絶縁層133に、トランジスタ110bが有する導電層113aに達する開口を形成する。同時に、トランジスタ110aが有する導電層113aに達する開口を形成してもよい。
その後、電極121を形成する(図9(C))。電極121は、その一部が発光素子120の画素電極として機能する。電極121は、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。ここで、トランジスタ110bが有する導電層113aと電極121とが接続する。
次に、電極121の端部を覆う絶縁層135を形成する(図9(C))。絶縁層135は、絶縁層134に用いることのできる有機絶縁膜または無機絶縁膜を援用できる。絶縁層135は、電極121と重なる部分に開口を有する。この時点で、絶縁層135は、トランジスタ110aが有する導電層113aに達する開口を有していてもよい。
次に、EL層122及び電極123を形成する(図9(D))。電極123は、その一部が発光素子120の共通電極として機能する。
EL層122は、蒸着法、塗布法、印刷法、吐出法などの方法で形成することができる。EL層122を画素毎に作り分ける場合、メタルマスクなどのシャドウマスクを用いた蒸着法、またはインクジェット法等により形成することができる。EL層122を画素毎に作り分けない場合には、メタルマスクを用いない蒸着法を用いることができる。
EL層122には、低分子系化合物及び高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。
EL層122の形成後に行う各工程は、EL層122にかかる温度が、EL層122の耐熱温度以下となるように行う。電極123は、蒸着法やスパッタリング法等を用いて形成することができる。
以上のようにして、発光素子120を形成することができる(図9(D))。発光素子120は、一部が画素電極として機能する電極121、EL層122、及び一部が共通電極として機能する電極123が積層された構成を有する。
ここでは、発光素子120として、トップエミッション型の発光素子を作製する例を示したが、本発明の一態様はこれに限られない。
発光素子は、トップエミッション型、ボトムエミッション型、デュアルエミッション型のいずれであってもよい。光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。
次に、電極123を覆って絶縁層125を形成する(図9(D))。絶縁層125は、発光素子120に水などの不純物が拡散することを抑制する保護層として機能する。発光素子120は、絶縁層125によって封止される。電極123を形成した後、大気に曝すことなく、絶縁層125を形成することが好ましい。
絶縁層125は、例えば、上述した絶縁層131に用いることのできるバリア性の高い無機絶縁膜が含まれる構成とすることが好ましい。また、無機絶縁膜と有機絶縁膜を積層して用いてもよい。
絶縁層125の成膜時の基板温度は、EL層122の耐熱温度以下の温度であることが好ましい。絶縁層125は、ALD法やスパッタリング法等を用いて形成することができる。ALD法及びスパッタリング法は低温成膜が可能であるため好ましい。ALD法を用いると絶縁層125のカバレッジが良好となり好ましい。
次に、絶縁層125上に着色層152を形成する(図9(D))。
着色層152として、カラーフィルタ等を用いることができる。着色層152は発光素子120の発光領域と重なるように配置する。
次に、EL層122、電極123、及び絶縁層125に、トランジスタ110aが有する導電層113aに達する開口を設ける(図9(E)、図10(A))。なお、事前に、絶縁層133、絶縁層134、及び絶縁層135に、該導電層113aに達する開口を形成していない場合は、本工程にて、これらの層にも一括で開口を設けることができる。
レジストマスク127を用いて、エッチング法により、EL層122、電極123、及び絶縁層125に、開口を形成することができる。
ここで、開口を形成することでEL層122が露出すると、レジストマスク127の除去工程で、EL層122に不純物が入り込む、または、EL層122が消失する等の恐れがある。具体的には、レジストマスク127を除去するためのプラズマ処理またはレジスト剥離液によって、EL層122に不純物が入り込むこと、または、EL層122が溶解することが考えられる。
そこで、開口を形成する際にドライエッチング法を用いることが好ましい。これにより、開口を形成するのと同時に、エッチングガスにより開口の側面に隔壁126が形成される(図9(E))。例えば、炭素とフッ素を含むエッチングガスを用いることで、開口の側面に副生物を堆積させ、隔壁126を形成することができる。
その後、レジストマスク127を除去する(図10(A))。レジストマスク127を除去する際に、隔壁126がEL層122を保護することで、発光素子120の信頼性を高めることができる。なお、レジストマスク127を除去する際に、隔壁126の一部または全部が除去される場合がある。図10(A)では、隔壁126が残存しない場合を示す。
次に、トランジスタ110aが有する導電層113aに達する開口を有する絶縁層234を形成する。ここでは、感光性を有する材料233を成膜し、光を用いたリソグラフィ法により、該開口を有する絶縁層234を形成する(図10(B)、(C))。
具体的には、感光性を有する材料233を成膜した後に、フォトマスクを用いて露光を行う。続いて、現像処理を施すことで、不要な部分を除去する。
ここで、絶縁層234を、電極123に設けられた開口の側面を覆うように形成する。これにより、後に形成する電極221と、電極123とを電気的に絶縁することができ、ショートを防止することができる。
絶縁層234の成膜時の基板温度は、EL層122の耐熱温度以下の温度であることが好ましい。
絶縁層234に用いることができる材料としては、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂等が挙げられる。
なお、絶縁層234に無機材料を用いる場合、絶縁層125と同様の材料、作製方法を適用することが好ましい。
次に、電極221を形成する(図10(D))。電極221は、その一部が液晶素子220の画素電極として機能する。電極221は、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することで形成できる。ここで、トランジスタ110aが有する導電層113aを電極121とが接続する。
次に、図11(A)に示すように、保護層71を形成する。
保護層71は、剥離工程において、絶縁層234や電極221の表面を保護する機能を有する。保護層71には、容易に除去することのできる材料を用いることができる。
除去可能な保護層71としては、例えば水溶性樹脂をその例に挙げることができる。塗布した水溶性樹脂は表面の凹凸を被覆し、その表面の保護を容易にする。また、除去可能な保護層71として、光または熱により剥離可能な粘着剤を水溶性樹脂に積層したものを用いてもよい。
除去可能な保護層71として、通常の状態ではその接着力が強く、熱を加える、または光を照射することによりその接着力が弱くなる性質を有する基材を用いてもよい。例えば、加熱することにより接着力が弱くなる熱剥離テープや、紫外光を照射することにより接着力が弱くなるUV剥離テープ等を用いてもよい。また、通常の状態で接着力が弱い弱粘性テープ等を用いることができる。また、OCA(Optical Clear Adhesive)やシリコーン等を用いることができる。なお、保護層71は可視光に対する透過性を有していなくてもよい。
次に、作製基板61と絶縁層131とを分離する(図11(B))。
分離面は、剥離層62及び作製基板61等の材料及び形成方法等によって、様々な位置となり得る。
図11(B)では、剥離層62と絶縁層131との界面で分離が生じる例を示す。分離により、絶縁層131が露出する。
分離を行う前に、剥離層62に分離の起点を形成してもよい。例えば、レーザ光を照射することで、剥離層62を脆弱化させる、または剥離層62と絶縁層131(または作製基板61)との密着性を低下させることができる。
例えば、剥離層62に垂直方向に引っ張る力をかけることにより、作製基板61を剥離することができる。具体的には、保護層71の上面の一部を吸着し、上方に引っ張ることにより、作製基板61を引き剥がすことができる。
剥離層62と絶縁層131との間に、刃物などの鋭利な形状の器具を差し込むことで分離の起点を形成してもよい。または、保護層71側から鋭利な形状の器具で剥離層62を切り込み、分離の起点を形成してもよい。
次に、露出した絶縁層131の表面に、接着層51を用いて基板11を貼り合わせる(図11(C))。基板11は、表示装置の支持基板として機能することができる。そして、保護層71を除去する(図11(C))。
接着層51には、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤等の各種硬化型接着剤を用いることができる。また、接着シート等を用いてもよい。
基板11には、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板11には、可撓性を有する程度の厚さのガラス、石英、樹脂、金属、合金、半導体等の各種材料を用いてもよい。
次に、絶縁層234及び電極221上に配向膜224aを形成する(図12(A))。配向膜224aは、樹脂等の薄膜を成膜した後に、ラビング処理を行うことにより形成できる。
そして、基板12と基板11とを液晶層222を挟んで貼り合わせる(図12(B))。
なお、事前に、基板12上に電極223を形成し、電極223上に配向膜224bを形成しておく。電極223は、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することで形成できる。配向膜224bは、樹脂等の薄膜を成膜した後に、ラビング処理を行うことにより形成できる。
以上により、表示装置10Aを作製することができる(図12(B))。表示装置10Aは、曲がった状態に保持することや、繰り返し曲げることなどが可能である。
また、図12(C)に、隔壁126が残存する場合の表示装置の断面構成例を示す。
以上のように、本実施の形態の表示装置は、2種類の表示素子を有し、複数の表示モードを切り替えて使用することができるため、周囲の明るさによらず、視認性が高く利便性の高い。また、2種類の表示素子をそれぞれ駆動するトランジスタを、同一平面上に同一工程で形成することができるため、表示装置の薄膜化と、表示装置の作製工程の簡略化を図ることができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態2)
本実施の形態では、本発明の一態様の表示装置について図13~図19を用いて説明する。
本実施の形態の表示装置は、可視光を反射する第1の表示素子と、可視光を発する第2の表示素子とを有する。
本実施の形態の表示装置は、第1の表示素子が反射する光と、第2の表示素子が発する光のうち、いずれか一方、または両方により、画像を表示する機能を有する。
具体的には、本実施の形態の表示装置は、第1の表示素子のみを用いて画像を表示する第1のモード、第2の表示素子のみを用いて画像を表示する第2のモード、並びに、第1の表示素子及び第2の表示素子を用いて画像を表示する第3のモードを有し、これらのモードを自動または手動で切り替えて使用することができる。各モードについては、実施の形態1の記載を参照できる。
このような構成とすることで、周囲の明るさによらず、視認性が高く利便性の高い表示装置または全天候型の表示装置を実現できる。
第1の表示素子、第2の表示素子については、実施の形態1の記載を参照できる。
図13に示す表示装置100は、一対の基板(基板11及び基板12)間に、第1の表示素子31、第2の表示素子32、無機絶縁層234a、有機絶縁層234b、トランジスタ41、及びトランジスタ42等を有する。
トランジスタ41とトランジスタ42とは、同一面上に位置する。図13では、基板11上に位置する例を示す。第1の表示素子31は、トランジスタ41よりも上方に位置する。第2の表示素子32は、トランジスタ42よりも上方に位置する。
第1の表示素子31は、可視光を反射する機能を有する。第1の表示素子31は基板12側に反射光22を射出する。
図13では、第1の表示素子31が反射型の液晶素子である例を示す。第1の表示素子31は、可視光を反射する機能を有する電極221と、液晶層222と、可視光を透過する機能を有する電極223と、を有する。液晶層222は、電極221と電極223との間に位置する。
第2の表示素子32は、可視光を発する機能を有する。第2の表示素子32は、基板12側に発光21を射出する。
図13では、第2の表示素子32がEL素子である例を示す。第2の表示素子32は、電極121と、EL層122と、電極123と、を有する。EL層122は、電極121と電極123との間に位置する。EL層122は、少なくとも発光性の物質を含む。電極121は可視光を反射する機能を有することが好ましい。電極123は可視光を透過する機能を有する。
第2の表示素子32は、電極121と電極123との間に電圧を印加することで、基板12側に発光21を射出する電界発光素子である。
電極121は、絶縁層134に設けられた開口を介して、トランジスタ42が有するソースまたはドレインと電気的に接続される。電極121の端部は、無機絶縁層138によって覆われている。
第2の表示素子32上に、絶縁層125が設けられていることが好ましい。図13では、絶縁層125が、電極123上に位置する。絶縁層125を設けることで、第2の表示素子32に不純物が入り込むことを抑制し、第2の表示素子32の信頼性を高めることができる。絶縁層125は、無機絶縁層を有することが好ましい。
絶縁層134、無機絶縁層138、EL層122、電極123、及び絶縁層125は、トランジスタ41が有する電極(ソースまたはドレイン)と重なる位置に第1の開口を有する。
無機絶縁層234aは、絶縁層125上に位置し、該第1の開口の側面を覆い、かつ、トランジスタ41が有する該電極と重なる位置に第2の開口を有する。第2の開口は、第1の開口と重なる位置に形成される。無機絶縁層234aの開口は、少なくとも電極123の開口よりも内側に設けられる。
無機絶縁層234a上に、有機絶縁層234bが設けられていることが好ましい。有機絶縁層234bは、無機絶縁層234a上に位置し、トランジスタ41が有する該電極と重なる位置に第3の開口を有する。第3の開口は、第1の開口及び第2の開口と重なる位置に形成される。有機絶縁層234bは、無機絶縁層234aを介して該第1の開口の側面を覆っていてもよい。
無機絶縁層234aが第1の開口の側面を覆うことで、第1の開口を設けた際に露出したEL層122の側面及び電極123の側面を覆うことができる。したがって、電極221と電極123とを電気的に絶縁することができ、ショートを防止することができる。また、EL層122の導電性が高い場合であっても、電極221とEL層122とは電気的に絶縁されているため、第1の表示素子31と第2の表示素子32の双方に不具合は生じない。
EL層122の下側には無機絶縁層138が位置し、EL層122の側面と上側には無機絶縁層234aが位置する。EL層122を無機絶縁層で囲むことができるため、EL層122に不純物が入り込むことを抑制でき、第2の表示素子32の信頼性を高めることができる。
接続部50において、電極221は、無機絶縁層234aに設けられた第2の開口及び有機絶縁層234bに設けられた第3の開口を介して、トランジスタ41が有する該電極と電気的に接続される。有機絶縁層234bは平坦化機能を有することが好ましい。これにより、電極221を平坦な面上に形成することができる。有機絶縁層234bを設けることで、電極221の被覆性が良好となる。なお、有機絶縁層234bは設けなくてもよく、その場合は、接続部50において、電極221は、無機絶縁層234aに設けられた第2の開口を介して、トランジスタ41が有する該電極と電気的に接続される。
表示装置100では、第1の表示素子31と電気的に接続されるトランジスタ41と、第2の表示素子32と電気的に接続されるトランジスタ42と、が同一面上に位置する。そのため、2つのトランジスタを別々の面上に形成する場合に比べて、表示装置の厚さを薄くすることができる。また、2つのトランジスタを同一の工程で作製できるため、2つのトランジスタを別々の面上に形成する場合に比べて、作製工程を簡略化することができる。
ここで、チャネル形成領域に酸化物半導体を有し、オフ電流が極めて低いトランジスタ41を適用した場合や、トランジスタ41と電気的に接続される記憶素子を適用した場合などでは、第1の表示素子31を用いて静止画を表示する際に画素への書き込み動作を停止しても、階調を維持させることが可能となる。すなわち、フレームレートを極めて小さくしても表示を保つことができる。本発明の一態様では、フレームレートを極めて小さくでき、低消費電力な駆動を行うことができる。
本実施の形態の表示装置のブロック図の一例は、図2と同様であるため、詳細な説明は省略する。
図14(A)、(B)、(C)及び図15(A)、(B)に、表示装置の断面構成例を示す。なお、実施の形態1で説明した構成要素については、詳細な説明を省略する場合がある。
<構成例1>
図14(A)に示す表示装置100Aは、基板11、接着層51、絶縁層131、トランジスタ110a、トランジスタ110b、絶縁層133、絶縁層134、発光素子120、無機絶縁層138、絶縁層125、着色層152、無機絶縁層234a、有機絶縁層234b、液晶素子220、配向膜224a、配向膜224b、及び基板12を有する。
図14(A)に示す表示装置100Aは、絶縁層135及び絶縁層234を有さず、無機絶縁層138、無機絶縁層234a、及び有機絶縁層234bを有する点で、図6(A)に示す表示装置10Aと異なる。その他の構成については、表示装置10Aと同様のため、詳細な説明を省略する。
図14(A)において、電極121の端部は、無機絶縁層138によって覆われている。
絶縁層133、絶縁層134、無機絶縁層138、EL層122、電極123、及び絶縁層125は、トランジスタ110aが有する導電層113aと重なる位置に第1の開口を有する。
無機絶縁層234aは、絶縁層125上に位置し、該第1の開口の側面を覆い、かつ、トランジスタ110aが有する導電層113aと重なる位置に第2の開口を有する。第2の開口は、第1の開口を重なる位置に形成される。
有機絶縁層234bは、無機絶縁層234a上に位置し、トランジスタ110aが有する導電層113aと重なる位置に第3の開口を有する。第3の開口は、第1の開口及び第2の開口と重なる位置に形成される。有機絶縁層234bは、無機絶縁層234aを介して該第1の開口の側面を覆っていてもよい。
有機絶縁層234bは平坦化機能を有することが好ましい。これにより、電極221を平坦な面上に形成することができる。有機絶縁層234b上に電極221を設けると、無機絶縁層234a上に電極221を設ける場合に比べて、電極221の被覆性が良好となる。
無機絶縁層234aが第1の開口の側面を覆うことで、第1の開口を設けた際に露出したEL層122の側面及び電極123の側面を覆うことができる。したがって、電極221と電極123とを電気的に絶縁することができ、ショートを防止することができる。また、EL層122の導電性が高い場合であっても、電極221とEL層122とは電気的に絶縁されているため、発光素子120と液晶素子220の双方に不具合は生じない。
EL層122の下側には無機絶縁層138が位置し、EL層122の側面と上側には無機絶縁層234aが位置する。EL層122を無機絶縁層で囲むことができるため、EL層122に不純物が入り込むことを抑制でき、発光素子120の信頼性を高めることができる。
接続部50において、電極221は、無機絶縁層234aに設けられた第2の開口及び有機絶縁層234bに設けられた第3の開口を介して、トランジスタ110aが有する導電層113aと電気的に接続される。
本実施の形態の表示装置では、液晶素子220と電気的に接続されるトランジスタ110aと、発光素子120と電気的に接続されるトランジスタ110bと、が同一面上に位置する。そのため、2つのトランジスタを別々の面上に形成する場合に比べて、表示装置100Aの厚さを薄くすることができる。また、2つのトランジスタを同一の工程で作製できるため、2つのトランジスタを別々の面上に形成する場合に比べて、作製工程を簡略化することができる。
<構成例2>
図14(B)に示す表示装置100Bは、基板12と電極223の間に、絶縁層151、着色層152、及びオーバーコート153を有する点で、表示装置100Aと異なる。また、表示装置100Bは、絶縁層125と接する着色層152を有さない点で、表示装置100Aと異なる。その他の構成については、表示装置100Aと同様のため、詳細な説明を省略する。
基板12の基板11側の面に接して、絶縁層151が設けられている。絶縁層151は、液晶素子220を用いた表示領域(以下、反射領域と記す)と重ねて設けられ、発光素子120の発光領域(以下、透過領域と記す)とは重ならない。そして、基板12の基板11側の面と絶縁層151の基板11側の面に接して、着色層152が設けられている。絶縁層151が設けられていることから、着色層152の厚さは、反射領域と透過領域とで異なる。
反射領域では、着色層152中を光が往復して通る(反射光22参照)が、透過領域では、光は一度のみ着色層152中を通る(発光21参照)。そのため、反射領域と透過領域とで、着色層152の厚さが同一であると、表示の色調に差が生じる場合がある。
絶縁層151を設けることで、着色層152の厚さを、反射領域と透過領域とで変えることができる。これにより、液晶素子220を用いた表示と、発光素子120を用いた表示と、の双方で、色調の良好な表示を行うことができる。
反射領域における着色層152の厚さは、透過領域における着色層152の厚さの40%以上60%以下であることが好ましい。
なお、着色層152の厚さを変える方法は、絶縁層151を部分的に設ける方法に限定されない。例えば、着色層152を2層以上の積層構造としてもよく、透過領域が、反射領域よりも着色層152を構成する層数が多い構成としてもよい。または、多階調マスクを用いて互いに厚さの異なる2つの領域を有する着色層を形成してもよい。
また、1つの着色層152の厚さを変える以外に、着色層152を複数設けることでも、液晶素子220を用いた表示と、発光素子120を用いた表示と、の双方で、色調の良好な表示を行うことができる。
図14(C)に示す表示装置100Cは、絶縁層125に接して設けられた着色層152と、基板12に接して設けられた着色層152と、を有する例である。発光21は、絶縁層125に接して設けられた着色層152と、基板12に接して設けられた着色層152との双方を通る。反射光22は、基板12に接して設けられた着色層152を往復して通る。このような構成であっても、液晶素子220を用いた表示と、発光素子120を用いた表示と、の双方で、色調の良好な表示を行うことができる。
液晶素子220及び発光素子120は、画素によって着色層152の色を変えることで、様々な色を呈することができる。表示装置100B及び表示装置100Cは、それぞれ、液晶素子220を用いて、カラー表示を行うことができる。表示装置100B及び表示装置100Cは、それぞれ、発光素子120を用いて、カラー表示を行うことができる。
オーバーコート153を設けると、着色層152に含まれる不純物が液晶層222に拡散することを抑制できるため、好ましい。
絶縁層151には、有機材料及び無機材料のどちらを用いてもよい。オーバーコート153と同様の材料を用いてもよい。
<構成例3>
図15(A)に示す表示装置100Dは、接続部50において、無機絶縁層234a及び有機絶縁層234bが、絶縁層133及び絶縁層134に設けられた開口の側面を覆っていない点で、表示装置100Aと異なる。その他の構成については、表示装置100Aと同様のため、詳細な説明を省略する。
本発明の一態様では、液晶素子220と発光素子120のショートを防止するために、無機絶縁層234aが、少なくとも電極123(より好ましくは、EL層122も)に設けられた開口の側面を覆う。その他、絶縁層に設けられた開口等については、無機絶縁層234aで覆われていなくても構わない。
表示装置100Dでは、無機絶縁層234aが、無機絶縁層138、EL層122、電極123、及び絶縁層125に設けられた開口の側面のみを覆う例を示す。
例えば、絶縁層133及び絶縁層134に、トランジスタ110bが有する導電層113aに達する開口を設ける際に、同時に、トランジスタ110aが有する導電層113aに達する開口を設けてもよい。その後、無機絶縁層138から絶縁層125までの積層構造に別途開口を設けることで、図15(A)に示す構造を作製することができる。
絶縁層133から絶縁層125までの積層構造について、一括で開口する場合に比べて、複数回に分けて開口する方が、容易である、電極221の被覆性が高まる、または導電層113aの薄膜化を抑制できる。
<構成例4>
図15(B)に示す表示装置100Eは、EL層122が塗り分けられており、色ごとに分離されている点で、表示装置100Dと異なる。また、表示装置100Eは、接着層51と絶縁層131との間に剥離層62を有する点で、表示装置100Dと異なる。また、表示装置100Eは、有機絶縁層234bが、無機絶縁層138、電極123、及び絶縁層125に設けられた開口の側面を覆っていない点で、表示装置100Dと異なる。その他の構成については、表示装置100Dと同様のため、詳細な説明を省略する。
EL層122の端部が、接続部50から離れているほど、EL層122に不純物が入り込むことを抑制できるため好ましい。
塗り分け方式が適用された発光素子120は、EL層122を構成する層のうち少なくとも一層(代表的には発光層)が塗り分けられていればよく、EL層を構成する層の全てが塗り分けられていてもよい。
絶縁層125上の着色層152は設けなくてもよい。
作製基板と被剥離層とを分離するために設ける剥離層62の材料によっては、被剥離層側に剥離層62の少なくとも一部が残存することがある。剥離層62は、発光素子120及び液晶素子220からみて、表示装置の表示面とは反対側に位置する。そのため、剥離層62の可視光に対する透過性は問われない。よって、剥離層62として様々な材料を用いることができる。
<作製方法例>
以下では、図14(A)に示す表示装置100Aの作製方法の一例について、図16~図19を用いて説明する。なお、実施の形態1で説明した構成要素については、詳細な説明を省略する場合がある。
まず、作製基板61上に、剥離層62から発光素子120の電極121までを形成する。各工程は、実施の形態1の作製方法例と同様である。したがって、図9(A)~(C)を用いた説明を参照できる。
具体的には、まず、作製基板61上に剥離層62を形成する(図16(A))。次に、剥離層62上に、絶縁層131を形成し、絶縁層131上に、トランジスタ110a及びトランジスタ110bを形成する(図16(B))。次に、トランジスタ110a及びトランジスタ110bを覆う絶縁層133を形成する(図16(C))。次に、絶縁層133上に絶縁層134を形成する(図16(C))。次に、絶縁層134及び絶縁層133に、トランジスタ110bが有する導電層113aに達する開口を形成する。同時に、トランジスタ110aが有する導電層113aに達する開口を形成してもよい。その後、電極121を形成する(図16(C))。
次に、電極121の端部を覆う無機絶縁層138を形成する(図16(C))。無機絶縁層138は、絶縁層131に用いることのできる無機絶縁膜を援用できる。無機絶縁層138は、電極121と重なる部分に開口を有する。この時点で、無機絶縁層138は、トランジスタ110aが有する導電層113aに達する開口を有していてもよい。
次に、EL層122及び電極123を形成し、発光素子120を形成する(図16(C))。電極123は、その一部が発光素子120の共通電極として機能する。
次に、電極123を覆って絶縁層125を形成し、絶縁層125上に着色層152を形成する(図16(C))。これらの工程は、実施の形態1の作製方法例と同様である。したがって、図9(D)を用いた説明を参照できる。
次に、EL層122、電極123、及び絶縁層125に、トランジスタ110aが有する導電層113aに達する開口を設ける(図16(C)~(E))。なお、事前に、絶縁層133、絶縁層134、及び無機絶縁層138に、該導電層113aに達する開口を形成していない場合は、本工程にて、これらの層にも一括で開口を設けることができる。
レジストマスク127を用いて、エッチング法により、EL層122、電極123、及び絶縁層125に、開口を形成することができる。
ここで、開口を形成することでEL層122が露出すると、レジストマスク127の除去工程で、EL層122に不純物が入り込む、または、EL層122が消失する等の恐れがある。具体的には、レジストマスク127を除去するためのプラズマ処理またはレジスト剥離液によって、EL層122に不純物が入り込むこと、または、EL層122が溶解することが考えられる。
そこで、開口を形成する際にドライエッチング法を用いることが好ましい。これにより、開口を形成するのと同時に、エッチングガスにより開口の側面に隔壁126が形成される(図16(D))。例えば、炭素とフッ素を含むエッチングガスを用いることで、開口の側面に副生物を堆積させ、隔壁126を形成することができる。
その後、レジストマスク127を除去する(図16(E))。レジストマスク127を除去する際に、隔壁126がEL層122を保護することで、発光素子120の信頼性を高めることができる。なお、レジストマスク127を除去する際に、隔壁126の一部または全部が除去される場合がある。図17(A)では、隔壁126が残存しない場合を示す。
次に、無機絶縁層234aを形成する(図17(A))。
無機絶縁層234aの成膜時の基板温度は、EL層122の耐熱温度以下の温度であることが好ましい。無機絶縁層234aは、ALD法やスパッタリング法等を用いて形成することができる。ALD法及びスパッタリング法は低温成膜が可能であるため好ましい。ALD法を用いると無機絶縁層234aのカバレッジが良好となり好ましい。
ここで、無機絶縁層234aを、電極123に設けられた開口を覆うように形成する。これにより、後に形成する電極221と、電極123とを電気的に絶縁することができ、ショートを防止することができる。
次に、トランジスタ110aが有する導電層113aと重なる開口を有する有機絶縁層234bを形成する。ここでは、感光性を有する材料233を成膜し、光を用いたリソグラフィ法により、該開口を有する有機絶縁層234bを形成する(図17(B)、(C))。
具体的には、感光性を有する材料233を成膜した後に、フォトマスクを用いて露光を行う。続いて、現像処理を施すことで、不要な部分を除去する。
有機絶縁層234bは、EL層122の耐熱温度以下の温度で形成する。
有機絶縁層234bに用いることができる材料としては、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂等が挙げられる。
次に、有機絶縁層234bをマスクとして用いて、無機絶縁層234aに、トランジスタ110aが有する導電層113aに達する開口を設ける(図17(D))。
以降の工程は、実施の形態1の作製方法例と同様である。したがって、図10(D)~図12(C)を用いた説明を参照できる。
具体的には、次に、電極221を形成する(図18(A))。次に、図18(B)に示すように、保護層71を形成する。次に、作製基板61と絶縁層131とを分離する(図18(C))。次に、露出した絶縁層131の表面に、接着層51を用いて基板11を貼り合わせる(図19(A))。そして、保護層71を除去する(図19(A))。次に、有機絶縁層234b及び電極221上に配向膜224aを形成する(図19(B))。そして、基板12と基板11とを液晶層222を挟んで貼り合わせる(図19(C))。
以上により、表示装置100Aを作製することができる(図19(C))。表示装置100Aは、曲がった状態に保持することや、繰り返し曲げることなどが可能である。
以上のように、本実施の形態の表示装置は、2種類の表示素子を有し、複数の表示モードを切り替えて使用することができるため、周囲の明るさによらず、視認性が高く利便性の高い。また、2種類の表示素子をそれぞれ駆動するトランジスタを、同一平面上に同一工程で形成することができるため、表示装置の薄膜化と、表示装置の作製工程の簡略化を図ることができる。また、本実施の形態の表示装置は、無機絶縁層によってEL層の周囲を覆うことができるため、信頼性を高めることができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、実施の形態1及び実施の形態2で説明した表示装置の、より具体的な構成例について図20~図23を用いて説明する。
本実施の形態で説明する表示装置は、反射型の液晶素子と発光素子を有し、透過モードと反射モードの両方の表示を行うことができる。
図20(A)は、表示装置400のブロック図である。表示装置400は、表示部362、回路GD、及び回路SDを有する。表示部362は、マトリクス状に配列した複数の画素410を有する。
表示装置400は、複数の配線G1、複数の配線G2、複数の配線ANO、複数の配線CSCOM、複数の配線S1、及び複数の配線S2を有する。複数の配線G1、複数の配線G2、複数の配線ANO、及び複数の配線CSCOMは、それぞれ、矢印Rで示す方向に配列した複数の画素410及び回路GDと電気的に接続する。複数の配線S1及び複数の配線S2は、それぞれ、矢印Cで示す方向に配列した複数の画素410及び回路SDと電気的に接続する。
なお、ここでは簡単のために回路GDと回路SDを1つずつ有する構成を示したが、液晶素子を駆動する回路GD及び回路SDと、発光素子を駆動する回路GD及び回路SDとを、別々に設けてもよい。
画素410は、反射型の液晶素子と、発光素子を有する。
図20(B1)~(B3)に、画素410が有する電極311の構成例を示す。電極311は、液晶素子の反射電極として機能する。図20(B1)、(B2)の電極311には、開口451が設けられている。液晶素子を駆動するトランジスタとの接続部50は、開口451及び発光素子360とは重ならない位置に設けられる。
図20(B1)、(B2)には、電極311と重なる領域に位置する発光素子360を破線で示している。発光素子360は、電極311が有する開口451と重ねて配置されている。これにより、発光素子360が発する光は、開口451を介して表示面側に射出される。
図20(B1)では、矢印Rで示す方向に隣接する画素410が異なる色に対応する画素である。このとき、図20(B1)に示すように、矢印Rで示す方向に隣接する2つの画素において、開口451が一列に配列されないように、電極311の異なる位置に設けられていることが好ましい。これにより、2つの発光素子360を離すことが可能で、発光素子360が発する光が隣接する画素410が有する着色層に入射してしまう現象(クロストークともいう)を抑制することができる。また、隣接する2つの発光素子360を離して配置することができるため、発光素子360のEL層をシャドウマスク等により作り分ける場合であっても、高い精細度の表示装置を実現できる。
図20(B2)では、矢印Cで示す方向に隣接する画素410が異なる色に対応する画素である。図20(B2)においても同様に、矢印Cで示す方向に隣接する2つの画素において、開口451が一列に配列されないように、電極311の異なる位置に設けられていることが好ましい。
非開口部の総面積に対する開口451の総面積の比の値が小さいほど、液晶素子を用いた表示を明るくすることができる。また、非開口部の総面積に対する開口451の総面積の比の値が大きいほど、発光素子360を用いた表示を明るくすることができる。
開口451の形状は、例えば多角形、四角形、楕円形、円形または十字等の形状とすることができる。また、細長い筋状、スリット状、市松模様状の形状としてもよい。また、開口451を隣接する画素に寄せて配置してもよい。好ましくは、開口451を同じ色を表示する他の画素に寄せて配置する。これにより、クロストークを抑制できる。
また、図20(B3)に示すように、電極311が設けられていない部分に、発光素子360の発光領域が位置していてもよい。これにより、発光素子360が発する光は、表示面側に射出される。
回路GDには、シフトレジスタ等の様々な順序回路等を用いることができる。回路GDには、トランジスタ及び容量素子等を用いることができる。回路GDが有するトランジスタは、画素410に含まれるトランジスタと同じ工程で形成することができる。
回路SDは、配線S1と電気的に接続される。回路SDには、例えば、集積回路を用いることができる。具体的には、回路SDには、シリコン基板上に形成された集積回路を用いることができる。
例えば、COG(Chip on glass)方式またはCOF(Chip on Film)方式等を用いて、画素410と電気的に接続されるパッドに回路SDを実装することができる。具体的には、異方性導電膜を用いて、パッドに集積回路を実装できる。
図21は、画素410の回路図の一例である。図21では、隣接する2つの画素410を示している。
画素410は、スイッチSW1、容量素子C1、液晶素子340、スイッチSW2、トランジスタM、容量素子C2、及び発光素子360等を有する。また、画素410には、配線G1、配線G2、配線ANO、配線CSCOM、配線S1、及び配線S2が電気的に接続されている。また、図21では、液晶素子340と電気的に接続する配線VCOM1、及び発光素子360と電気的に接続する配線VCOM2を示している。
図21では、スイッチSW1及びスイッチSW2にトランジスタを用いた場合の例を示している。
スイッチSW1のゲートは、配線G1と接続されている。スイッチSW1のソース及びドレインのうち一方は、配線S1と接続され、他方は、容量素子C1の一方の電極、及び液晶素子340の一方の電極と接続されている。容量素子C1の他方の電極は、配線CSCOMと接続されている。液晶素子340の他方の電極が配線VCOM1と接続されている。
スイッチSW2のゲートは、配線G2と接続されている。スイッチSW2のソース及びドレインのうち一方は、配線S2と接続され、他方は、容量素子C2の一方の電極、及びトランジスタMのゲートと接続されている。容量素子C2の他方の電極は、トランジスタMのソースまたはドレインの一方、及び配線ANOと接続されている。トランジスタMのソースまたはドレインの他方は、発光素子360の一方の電極と接続されている。発光素子360の他方の電極は、配線VCOM2と接続されている。
図21では、トランジスタMが半導体を挟む2つのゲートを有し、これらが接続されている例を示している。これにより、トランジスタMが流すことのできる電流を増大させることができる。
配線G1には、スイッチSW1を導通状態または非導通状態に制御する信号を与えることができる。配線VCOM1には、所定の電位を与えることができる。配線S1には、液晶素子340が有する液晶の配向状態を制御する信号を与えることができる。配線CSCOMには、所定の電位を与えることができる。
配線G2には、スイッチSW2を導通状態または非導通状態に制御する信号を与えることができる。配線VCOM2及び配線ANOには、発光素子360が発光する電位差が生じる電位をそれぞれ与えることができる。配線S2には、トランジスタMの導通状態を制御する信号を与えることができる。
図21に示す画素410は、例えば反射モードの表示を行う場合には、配線G1及び配線S1に与える信号により駆動し、液晶素子340による光学変調を利用して表示することができる。また、透過モードで表示を行う場合には、配線G2及び配線S2に与える信号により駆動し、発光素子360を発光させて表示することができる。また両方のモードで駆動する場合には、配線G1、配線G2、配線S1及び配線S2のそれぞれに与える信号により駆動することができる。
なお、図21では一つの画素410に、一つの液晶素子340と一つの発光素子360とを有する例を示したが、これに限られない。図22(A)は、一つの画素410に一つの液晶素子340と4つの発光素子360(発光素子360r、360g、360b、360w)を有する例を示している。図22(A)に示す画素410は、図21とは異なり、1つの画素で発光素子を用いたフルカラーの表示が可能である。
図22(A)では図21の例に加えて、画素410に配線G3及び配線S3が接続されている。
図22(A)に示す例では、例えば4つの発光素子360に、それぞれ赤色(R)、緑色(G)、青色(B)、及び白色(W)を呈する発光素子を用いることができる。また液晶素子340として、白色を呈する反射型の液晶素子を用いることができる。これにより、反射モードの表示を行う場合には、反射率の高い白色の表示を行うことができる。また透過モードで表示を行う場合には、演色性の高い表示を低い電力で行うことができる。
図22(B)に、図22(A)に対応した画素410の構成例を示す、画素410は、電極311が有する開口部と重なる発光素子360wと、電極311の周囲に配置された発光素子360r、発光素子360g、及び発光素子360bとを有する。発光素子360r、発光素子360g、及び発光素子360bは、発光面積がほぼ同等であることが好ましい。液晶素子を駆動するトランジスタとの接続部50は、発光素子とは重ならない位置に設けられる。
図23(A)、(B)は、表示装置300の斜視概略図である。表示装置300は、基板351と基板361とが貼り合わされた構成を有する。図23(A)、(B)では、基板361を破線で明示している。
表示装置300は、表示部362、回路364、配線365、回路366、配線367等を有する。基板351には、例えば回路364、配線365、回路366、配線367及び画素電極として機能する電極311等が設けられる。図23(A)では基板351上にIC373、FPC372、IC375及びFPC374が実装されている例を示している。図23(B)では基板351上にIC373及びFPC372が実装されている例を示している。そのため、図23(A)、(B)に示す構成は、表示装置300、IC、及びFPCを有する表示モジュールということもできる。
回路364としては、例えば走査線駆動回路を用いることができる。
配線365は、表示部362及び回路364に信号及び電力を供給する機能を有する。当該信号及び電力は、FPC372を介して外部、またはIC373から配線365に入力される。
IC373及びIC375は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお表示装置300及び表示モジュールは、ICを設けない構成としてもよい。ICを、COF方式等により、FPCに実装してもよい。
図23(A)には、表示部362の一部の拡大図を示している。表示部362には、複数の表示素子が有する電極311がマトリクス状に配置されている。電極311は、可視光を反射する機能を有し、液晶素子340の反射電極として機能する。
また、図23(A)に示すように、電極311は開口を有する。さらに電極311よりも基板351側に、発光素子360を有する。発光素子360からの光は、電極311の開口を介して基板361側に射出される。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、本発明の一態様の表示モジュール及び電子機器について説明する。
図24に示す表示モジュール8000は、上部カバー8001と下部カバー8002との間に、FPC8003に接続されたタッチパネル8004、FPC8005に接続された表示パネル8006、フレーム8009、プリント基板8010、及びバッテリ8011を有する。
本発明の一態様の表示装置は、例えば、表示パネル8006に用いることができる。
上部カバー8001及び下部カバー8002は、タッチパネル8004及び表示パネル8006のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチパネル8004としては、抵抗膜方式または静電容量方式のタッチパネルを表示パネル8006に重畳して用いることができる。また、タッチパネル8004を設けず、表示パネル8006に、タッチパネル機能を持たせるようにすることも可能である。
フレーム8009は、表示パネル8006の保護機能の他、プリント基板8010の動作により発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレーム8009は、放熱板としての機能を有していてもよい。
プリント基板8010は、電源回路、ビデオ信号及びクロック信号を出力するための信号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であっても良いし、別途設けたバッテリ8011による電源であってもよい。バッテリ8011は、商用電源を用いる場合には、省略可能である。
また、表示モジュール8000は、偏光板、位相差板、プリズムシートなどの部材を追加して設けてもよい。
本発明の一態様の表示装置は、外光の強さによらず、高い視認性を実現することができる。そのため、携帯型の電子機器、装着型の電子機器(ウェアラブル機器)、及び電子書籍端末などに好適に用いることができる。
図25(A)、(B)に示す携帯情報端末800は、筐体801、筐体802、表示部803、表示部804、及びヒンジ部805等を有する。
筐体801と筐体802は、ヒンジ部805で連結されている。携帯情報端末800は、折り畳んだ状態(図25(A))から、図25(B)に示すように展開させることができる。
本発明の一態様の表示装置は、表示部803及び表示部804のうち少なくとも一方に用いることができる。
表示部803及び表示部804は、それぞれ、文書情報、静止画像、及び動画像等のうち少なくとも一つを表示することができる。表示部に文書情報を表示させる場合、携帯情報端末800を電子書籍端末として用いることができる。
携帯情報端末800は折り畳むことができるため、可搬性が高く、汎用性に優れる。
筐体801及び筐体802は、電源ボタン、操作ボタン、外部接続ポート、スピーカ、マイク等を有していてもよい。
図25(C)に示す携帯情報端末810は、筐体811、表示部812、操作ボタン813、外部接続ポート814、スピーカ815、マイク816、カメラ817等を有する。
本発明の一態様の表示装置は、表示部812に用いることができる。
携帯情報端末810は、表示部812にタッチセンサを備える。電話を掛ける、或いは文字を入力するなどのあらゆる操作は、指やスタイラスなどで表示部812に触れることで行うことができる。
また、操作ボタン813の操作により、電源のON、OFF動作や、表示部812に表示される画像の種類の切り替えを行うことができる。例えば、メール作成画面から、メインメニュー画面に切り替えることができる。
また、携帯情報端末810の内部に、ジャイロセンサまたは加速度センサ等の検出装置を設けることで、携帯情報端末810の向き(縦か横か)を判断して、表示部812の画面表示の向きを自動的に切り替えることができる。また、画面表示の向きの切り替えは、表示部812に触れること、操作ボタン813の操作、またはマイク816を用いた音声入力等により行うこともできる。
携帯情報端末810は、例えば、電話機、手帳または情報閲覧装置等から選ばれた一つまたは複数の機能を有する。具体的には、スマートフォンとして用いることができる。携帯情報端末810は、例えば、移動電話、電子メール、文章閲覧及び作成、音楽再生、動画再生、インターネット通信、ゲームなどの種々のアプリケーションを実行することができる。
図25(D)に示すカメラ820は、筐体821、表示部822、操作ボタン823、シャッターボタン824等を有する。またカメラ820には、着脱可能なレンズ826が取り付けられている。
本発明の一態様の表示装置は、表示部822に用いることができる。
ここではカメラ820を、レンズ826を筐体821から取り外して交換することが可能な構成としたが、レンズ826と筐体821とが一体となっていてもよい。
カメラ820は、シャッターボタン824を押すことにより、静止画、または動画を撮像することができる。また、表示部822はタッチパネルとしての機能を有し、表示部822をタッチすることにより撮像することも可能である。
なお、カメラ820は、ストロボ装置や、ビューファインダーなどを別途装着することができる。または、これらが筐体821に組み込まれていてもよい。
図26(A)~(E)は、電子機器を示す図である。これらの電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)、マイクロフォン9008等を有する。
本発明の一態様の表示装置は、表示部9001に好適に用いることができる。
図26(A)~(E)に示す電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信または受信を行う機能、記録媒体に記録されているプログラムまたはデータを読み出して表示部に表示する機能、等を有することができる。なお、図26(A)~(E)に示す電子機器が有する機能はこれらに限定されず、その他の機能を有していてもよい。
図26(A)は腕時計型の携帯情報端末9200を、図26(B)は腕時計型の携帯情報端末9201を、それぞれ示す斜視図である。
図26(A)に示す携帯情報端末9200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006を有し、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また接続端子9006を介して充電を行うこともできる。なお、充電動作は接続端子9006を介さずに無線給電により行ってもよい。
図26(B)に示す携帯情報端末9201は、図26(A)に示す携帯情報端末と異なり、表示部9001の表示面が湾曲していない。また、携帯情報端末9201の表示部の外形が非矩形状(図26(B)においては円形状)である。
図26(C)~(E)は、折り畳み可能な携帯情報端末9202を示す斜視図である。なお、図26(C)が携帯情報端末9202を展開した状態の斜視図であり、図26(D)が携帯情報端末9202を展開した状態または折り畳んだ状態の一方から他方に変化する途中の状態の斜視図であり、図26(E)が携帯情報端末9202を折り畳んだ状態の斜視図である。
携帯情報端末9202は、折り畳んだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9202が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。ヒンジ9055を介して2つの筐体9000間を屈曲させることにより、携帯情報端末9202を展開した状態から折りたたんだ状態に可逆的に変形させることができる。例えば、携帯情報端末9202は、曲率半径1mm以上150mm以下で曲げることができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
本実施の形態では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
CAC−OSとは、例えば、酸化物半導体を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、酸化物半導体において、一つあるいはそれ以上の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
なお、酸化物半導体は、少なくともインジウムを含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
例えば、In−Ga−Zn酸化物におけるCAC−OS(CAC−OSの中でもIn−Ga−Zn酸化物を、特にCAC−IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸化物(以下、InX2ZnY2Z2(X2、Y2、及びZ2は0よりも大きい実数)とする。)と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、及びZ4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2Z2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。
つまり、CAC−OSは、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、混合している構成を有する複合酸化物半導体である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。
なお、IGZOは通称であり、In、Ga、Zn、及びOによる1つの化合物をいう場合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1−x0)(ZnO)m0(−1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。
上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa−b面においては配向せずに連結した結晶構造である。
一方、CAC−OSは、酸化物半導体の材料構成に関する。CAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。従って、CAC−OSにおいて、結晶構造は副次的な要素である。
なお、CAC−OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。
なお、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。
なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれている場合、CAC−OSは、一部に該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。
CAC−OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
CAC−OSは、X線回折(XRD:X−ray diffraction)測定法のひとつであるOut−of−plane法によるθ/2θスキャンを用いて測定したときに、明確なピークが観察されないという特徴を有する。すなわち、X線回折から、測定領域のa−b面方向、及びc軸方向の配向は見られないことが分かる。
またCAC−OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域と、該リング領域に複数の輝点が観測される。従って、電子線回折パターンから、CAC−OSの結晶構造が、平面方向、及び断面方向において、配向性を有さないnc(nano−crystal)構造を有することがわかる。
また例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、偏在し、混合している構造を有することが確認できる。
CAC−OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC−OSは、GaOX3などが主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域と、に互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。
ここで、InX2ZnY2Z2、またはInOX1が主成分である領域は、GaOX3などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2Z2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化物半導体としての導電性が発現する。従って、InX2ZnY2Z2、またはInOX1が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
一方、GaOX3などが主成分である領域は、InX2ZnY2Z2、またはInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。
従って、CAC−OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、InX2ZnY2Z2、またはInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、及び高い電界効果移動度(μ)を実現することができる。
また、CAC−OSを用いた半導体素子は、信頼性が高い。従って、CAC−OSは、ディスプレイをはじめとするさまざまな半導体装置に最適である。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
10  表示装置
10A  表示装置
10B  表示装置
10C  表示装置
10D  表示装置
10E  表示装置
11  基板
12  基板
14  表示部
21  発光
22  反射光
30  画素ユニット
31  第1の表示素子
31B  第1の表示素子
31G  第1の表示素子
31p  第1の画素
31R  第1の表示素子
31W  第1の表示素子
32  第2の表示素子
32B  第2の表示素子
32G  第2の表示素子
32p  第2の画素
32R  第2の表示素子
32W  第2の表示素子
32Y  第2の表示素子
35r  光
35t  光
35tr  光
41  トランジスタ
42  トランジスタ
50  接続部
51  接着層
61  作製基板
62  剥離層
71  保護層
100  表示装置
100A  表示装置
100B  表示装置
100C  表示装置
100D  表示装置
100E  表示装置
110a  トランジスタ
110b  トランジスタ
110c  トランジスタ
110d  トランジスタ
110e  トランジスタ
111  導電層
112  半導体層
113a  導電層
113b  導電層
114  導電層
115  導電層
120  発光素子
121  電極
122  EL層
123  電極
125  絶縁層
126  隔壁
127  レジストマスク
131  絶縁層
132  絶縁層
133  絶縁層
134  絶縁層
135  絶縁層
136  絶縁層
137  絶縁層
138  無機絶縁層
151  絶縁層
152  着色層
153  オーバーコート
220  液晶素子
221  電極
222  液晶層
223  電極
224a  配向膜
224b  配向膜
233  材料
234  絶縁層
234a  無機絶縁層
234b  有機絶縁層
300  表示装置
311  電極
340  液晶素子
351  基板
360  発光素子
360b  発光素子
360g  発光素子
360r  発光素子
360w  発光素子
361  基板
362  表示部
364  回路
365  配線
366  回路
367  配線
372  FPC
373  IC
374  FPC
375  IC
400  表示装置
410  画素
451  開口
800  携帯情報端末
801  筐体
802  筐体
803  表示部
804  表示部
805  ヒンジ部
810  携帯情報端末
811  筐体
812  表示部
813  操作ボタン
814  外部接続ポート
815  スピーカ
816  マイク
817  カメラ
820  カメラ
821  筐体
822  表示部
823  操作ボタン
824  シャッターボタン
826  レンズ
8000  表示モジュール
8001  上部カバー
8002  下部カバー
8003  FPC
8004  タッチパネル
8005  FPC
8006  表示パネル
8009  フレーム
8010  プリント基板
8011  バッテリ
9000  筐体
9001  表示部
9003  スピーカ
9005  操作キー
9006  接続端子
9007  センサ
9008  マイクロフォン
9055  ヒンジ
9200  携帯情報端末
9201  携帯情報端末
9202  携帯情報端末

Claims (12)

  1.  第1の表示素子、第2の表示素子、絶縁層、第1のトランジスタ、及び第2のトランジスタを有し、
     前記第1のトランジスタと前記第2のトランジスタは、同一面上に位置し、
     前記第1の表示素子は、前記第1のトランジスタよりも上方に位置し、
     前記第2の表示素子は、前記第2のトランジスタよりも上方に位置し、
     前記第1の表示素子は、可視光を反射する機能を有し、
     前記第2の表示素子は、可視光を発する機能を有し、
     前記第1の表示素子は、第1の電極を有し、
     前記第2の表示素子は、第2の電極と、前記第2の電極上の発光層と、前記発光層上の第3の電極と、を有し、
     前記第2の電極は、前記第2のトランジスタが有する第4の電極と電気的に接続され、
     前記第3の電極は、前記第1のトランジスタが有する第5の電極と重なる位置に第1の開口を有し、
     前記第4の電極及び前記第5の電極は、それぞれ、ソースまたはドレインとして機能し、
     前記絶縁層は、前記第3の電極上に位置し、前記第1の開口の側面を覆い、かつ、前記第5の電極及び前記第1の開口と重なる位置に第2の開口を有し、
     前記第1の電極は、前記第2の開口を介して、前記第5の電極と電気的に接続される、表示装置。
  2.  第1の表示素子、第2の表示素子、第1の絶縁層、第2の絶縁層、第1のトランジスタ、及び第2のトランジスタを有し、
     前記第1のトランジスタと前記第2のトランジスタは、同一面上に位置し、
     前記第1の表示素子は、前記第1のトランジスタよりも上方に位置し、
     前記第2の表示素子は、前記第2のトランジスタよりも上方に位置し、
     前記第1の表示素子は、可視光を反射する機能を有し、
     前記第2の表示素子は、可視光を発する機能を有し、
     前記第1の表示素子は、第1の電極を有し、
     前記第2の表示素子は、第2の電極と、前記第2の電極上の発光層と、前記発光層上の第3の電極と、を有し、
     前記第1の絶縁層は、前記第3の電極上に位置し、
     前記第2の絶縁層は、前記第1の絶縁層上に位置し、
     前記第2の電極は、前記第2のトランジスタが有する第4の電極と電気的に接続され、
     前記第3の電極及び前記第1の絶縁層は、前記第1のトランジスタが有する第5の電極と重なる位置に第1の開口を有し、
     前記第4の電極及び前記第5の電極は、それぞれ、ソースまたはドレインとして機能し、
     前記第2の絶縁層は、前記第1の開口の側面を覆い、かつ、前記第5の電極及び前記第1の開口と重なる位置に第2の開口を有し、
     前記第1の電極は、前記第2の開口を介して、前記第5の電極と電気的に接続される、表示装置。
  3.  第1の表示素子、第2の表示素子、第1の無機絶縁層、第2の無機絶縁層、第1のトランジスタ、及び第2のトランジスタを有し、
     前記第1のトランジスタと前記第2のトランジスタは、同一面上に位置し、
     前記第1の表示素子は、前記第1のトランジスタよりも上方に位置し、
     前記第2の表示素子は、前記第2のトランジスタよりも上方に位置し、
     前記第1の表示素子は、可視光を反射する機能を有し、
     前記第2の表示素子は、可視光を発する機能を有し、
     前記第1の表示素子は、第1の電極を有し、
     前記第2の表示素子は、第2の電極と、前記第2の電極上の発光層と、前記発光層上の第3の電極と、を有し、
     前記第1の無機絶縁層は、前記第2の電極の端部を覆い、
     前記第2の電極は、前記第2のトランジスタが有する第4の電極と電気的に接続され、
     前記第3の電極は、前記第1のトランジスタが有する第5の電極と重なる位置に第1の開口を有し、
     前記第4の電極及び前記第5の電極は、それぞれ、ソースまたはドレインとして機能し、
     前記第2の無機絶縁層は、前記第3の電極上に位置し、前記第1の開口の側面を覆い、かつ、前記第5の電極及び前記第1の開口と重なる位置に第2の開口を有し、
     前記第1の電極は、前記第2の開口を介して、前記第5の電極と電気的に接続される、表示装置。
  4.  請求項3において、さらに、第3の無機絶縁層を有し、
     前記第3の無機絶縁層は、前記第3の電極上に位置し、
     前記第2の無機絶縁層は、前記第3の無機絶縁層上に位置し、
     前記第3の無機絶縁層は、前記第5の電極及び前記第1の開口と重なる位置に第3の開口を有し、
     前記第2の無機絶縁層は、前記第1の開口の側面及び前記第3の開口を覆い、かつ、前記第5の電極、前記第1の開口、及び前記第3の開口と重なる位置に第2の開口を有する、表示装置。
  5.  請求項3において、
     前記第2の無機絶縁層上に有機絶縁層を有し、
     前記有機絶縁層は、前記第5の電極、前記第1の開口、及び前記第2の開口と重なる位置に第3の開口を有し、
     前記第1の電極は、前記第3の開口を介して、前記第5の電極と電気的に接続される、表示装置。
  6.  請求項5において、
     前記有機絶縁層は、前記第2の無機絶縁層を介して、前記第1の開口の側面を覆う、表示装置。
  7.  請求項1乃至3のいずれか一に記載の表示装置は、前記第1の表示素子が反射する光、及び前記第2の表示素子が発する光のうち一方または双方により、画像を表示する機能を有する、表示装置。
  8.  請求項1乃至3のいずれか一において、
     前記第1の表示素子は、反射型の液晶素子である、表示装置。
  9.  請求項1乃至3のいずれか一において、
     前記第2の表示素子は、電界発光素子である、表示装置。
  10.  請求項1乃至3のいずれか一において、
     前記第1のトランジスタ及び前記第2のトランジスタのうち一方または双方は、チャネル形成領域に酸化物半導体を有する、表示装置。
  11.  請求項1乃至3のいずれか一に記載の表示装置と、
     回路基板と、を有する表示モジュール。
  12.  請求項11に記載の表示モジュールと、
     アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、または操作ボタンの少なくともいずれか一と、を有する、電子機器。
PCT/IB2017/053189 2016-06-03 2017-05-31 表示装置、表示モジュール、及び電子機器 WO2017208161A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-112032 2016-06-03
JP2016112037 2016-06-03
JP2016112032 2016-06-03
JP2016-112037 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017208161A1 true WO2017208161A1 (ja) 2017-12-07

Family

ID=60479354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/053189 WO2017208161A1 (ja) 2016-06-03 2017-05-31 表示装置、表示モジュール、及び電子機器

Country Status (1)

Country Link
WO (1) WO2017208161A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11210048B2 (en) 2019-10-04 2021-12-28 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003076302A (ja) * 2001-09-06 2003-03-14 Sharp Corp 表示装置
JP2003157030A (ja) * 2001-11-19 2003-05-30 Matsushita Electric Ind Co Ltd 表示装置および表示装置の製造方法
WO2004053819A1 (ja) * 2002-12-06 2004-06-24 Citizen Watch Co., Ltd. 液晶表示装置
JP2007102181A (ja) * 2005-09-09 2007-04-19 Seiko Epson Corp 電気光学装置、電気光学装置用基板、及び電気光学装置の製造方法、並びに電子機器
JP2008277370A (ja) * 2007-04-26 2008-11-13 Sony Corp 半導体装置およびその製造方法、ならびに表示装置およびその製造方法
JP2012248829A (ja) * 2011-05-05 2012-12-13 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP2015109427A (ja) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 酸化物半導体膜の作製方法
WO2016055897A1 (en) * 2014-10-08 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003076302A (ja) * 2001-09-06 2003-03-14 Sharp Corp 表示装置
JP2003157030A (ja) * 2001-11-19 2003-05-30 Matsushita Electric Ind Co Ltd 表示装置および表示装置の製造方法
WO2004053819A1 (ja) * 2002-12-06 2004-06-24 Citizen Watch Co., Ltd. 液晶表示装置
JP2007102181A (ja) * 2005-09-09 2007-04-19 Seiko Epson Corp 電気光学装置、電気光学装置用基板、及び電気光学装置の製造方法、並びに電子機器
JP2008277370A (ja) * 2007-04-26 2008-11-13 Sony Corp 半導体装置およびその製造方法、ならびに表示装置およびその製造方法
JP2012248829A (ja) * 2011-05-05 2012-12-13 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP2015109427A (ja) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 酸化物半導体膜の作製方法
WO2016055897A1 (en) * 2014-10-08 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11210048B2 (en) 2019-10-04 2021-12-28 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device

Similar Documents

Publication Publication Date Title
JP7049784B2 (ja) 表示装置
JP6975562B2 (ja) 表示装置
US10693097B2 (en) Display device including two display elements, display module, electronic device, and method for manufacturing display device
JP2018026549A (ja) 剥離方法、表示装置、表示モジュール、及び電子機器
JP2018025788A (ja) 表示装置の作製方法、表示装置、表示モジュール、及び電子機器
JP2018026563A (ja) 半導体装置の作製方法
JP6871253B2 (ja) 表示装置の作製方法
JP7277636B2 (ja) 表示装置、表示モジュール及び電子機器
US20180033399A1 (en) Electronic device and driving method thereof
JP2018022036A (ja) 表示装置、表示モジュール、及び電子機器
JP6822796B2 (ja) 表示装置
WO2017208161A1 (ja) 表示装置、表示モジュール、及び電子機器
JP6999315B2 (ja) 表示装置の作製方法
JP6799405B2 (ja) 表示装置の作製方法
JP2018032016A (ja) 表示装置、表示モジュール、電子機器、及び表示装置の作製方法
JP2018022031A (ja) 表示装置、表示モジュール、及び電子機器
JP2018013779A (ja) 表示装置、表示モジュール、及び電子機器
JP2018013725A (ja) 表示装置の作製方法、表示装置、表示モジュールおよび電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17805980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP