WO2017206528A1 - 利用尾气回收红土镍矿中镍的方法 - Google Patents

利用尾气回收红土镍矿中镍的方法 Download PDF

Info

Publication number
WO2017206528A1
WO2017206528A1 PCT/CN2017/071933 CN2017071933W WO2017206528A1 WO 2017206528 A1 WO2017206528 A1 WO 2017206528A1 CN 2017071933 W CN2017071933 W CN 2017071933W WO 2017206528 A1 WO2017206528 A1 WO 2017206528A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
ore
tail gas
mixed
powder
Prior art date
Application number
PCT/CN2017/071933
Other languages
English (en)
French (fr)
Inventor
李冀臻
Original Assignee
福安市康齐动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福安市康齐动力科技有限公司 filed Critical 福安市康齐动力科技有限公司
Publication of WO2017206528A1 publication Critical patent/WO2017206528A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/005Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/08Chloridising roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents

Definitions

  • the present invention relates to the field of metal smelting technology, and more particularly to a method for recovering nickel from laterite nickel ore using tail gas.
  • Chlorination roasting refers to a process in which a mineral raw material is mixed with a chlorinating agent, calcined at a certain temperature and atmosphere, and a metal chloride which is converted into a gas phase or a condensed phase by a valuable metal is separated from other components of the material.
  • the method of chlorination roasting combined with magnetic separation can effectively enrich nickel and iron elements in laterite nickel ore and separate from non-magnetic gangue to obtain nickel-iron fine powder, which is a kind of low energy consumption and adaptability. Laterite nickel ore refining process.
  • Laterite nickel ore is also known as oxidized nickel ore. Most of the industrially significant laterite nickel deposits are developed on the peridotite bedrock. They are subjected to large-scale long-term chemical weathering in the tropical or subtropical zone, consisting of iron and aluminum. An ore composed of an aqueous oxide such as silicon. The chemically weathered laterite nickel ore is loose clay-like nickel ore, and the unchemically weathered laterite nickel ore is serpentine-like nickel ore. Most laterite nickel ore is a mixed mineral of clay-like nickel ore and serpentine-like nickel ore.
  • Serpentine-like nickel ore is a layered structure, each composite layer is a regular octahedron, and nickel replaces part of the magnesium ion in the form of a homogeneous image in the octahedral apex of the serpentine lattice, when serpentine
  • the stone When the stone is heated to 600-700 ° C, it will remove the crystal water to form forsterite and amorphous silica, and further increase the temperature of the combination of forsterite and silica to form a pyroxene.
  • the pyrophoric pyroxene is an orthorhombic pyroxene group, which is a complex iron-magnesium silicate solid solution, and the temperature of the chlorination and segregation reaction (about 900 ° C - 1200 ° C) can just make some serpentines build into fire. pyroxene.
  • the laterite nickel ore is separated from the magnetic ore and non-magnetic tailings by chlorination roasting combined with strong magnetic magnetic separation (magnetic induction intensity greater than 3000 Gauss) to further remove the gangue in the magnetic ore and increase the nickel in the magnetic ore.
  • the content of the element can be separated by ferromagnetic magnetic separation (magnetic induction intensity less than 1500 Gauss) to separate the nickel-iron fine powder (the nickel content exceeds 4%) and the magnetic nickel tailings.
  • the magnetic nickel tailings have a certain magnetic property, their nickel content is only equivalent to that of unprocessed laterite nickel ore.
  • the main component is the hard pyroxene formed by the laterite nickel ore after high temperature roasting, such as magnetic
  • the tailings are replaced by traditional chlorination roasting combined with magnetic separation.
  • the iron and nickel elements are difficult to separate from the pyrophoric pyroxene. Therefore, the nickel recovery rate in the magnetic nickel tailings is higher than that of the serpentine nickel ore. The rate is lower.
  • the conventional chlorination roasting combined with magnetic separation method produces a tail gas containing a large amount of hydrochloric acid (H C1 ) during the roasting process, and the hydrochloric acid is a strong acid, which is extremely acidic and corrosive, if directly discharged into the atmosphere. It will cause serious damage to the surrounding environment.
  • the traditional method is to use lime water to absorb hydrochloric acid to form a neutral salt solution and then remove it.
  • long-term discharge of salt solution will also cause salinization of surrounding water bodies, causing damage to the environment.
  • the technical problem to be solved by the present invention is: modifying the serpentine nickel ore and the magnetic nickel tailings by using tail gas generated by chlorination roasting, and improving the nickel recovery of the laterite nickel ore by the chlorination roasting combined with the magnetic separation process. Rate, and solve the problem of the resulting exhaust gas and waste liquid destroying the ecological environment.
  • the technical solution adopted by the present invention is: Providing a method for recovering nickel, nickel ore by using tail gas, comprising:
  • the serpentine nickel ore is crushed and ground and mixed with the magnetic nickel tailings to form a mixed ore.
  • the beneficial effects of the present invention are as follows: Different from the prior art, the present invention utilizes tail gas generated by chlorination roasting to modify serpentine nickel ore and magnetic nickel tailings, and improves chlorination roasting combined with magnetic separation process.
  • the nickel recovery rate of laterite nickel ore solves the problem that the nickel recovery rate of the serpentine ore and magnetic nickel tailings treated by the conventional chlorination roasting combined with the magnetic separation process is low, and the generated exhaust gas and waste liquid destroy the ecological environment.
  • FIG. 1 is a schematic flow chart of a specific embodiment of a method according to the present invention.
  • the most critical idea of the present invention is to modify the serpentine nickel ore and magnetic nickel tailings by using tail gas generated by chlorination roasting, and improve the nickel recovery rate of the laterite nickel ore by the chlorination roasting combined with the magnetic separation process. .
  • the present invention provides a method for recovering laterite nickel ore nickel by using exhaust gas, and the technical solution adopted includes the following steps:
  • Step 1 After the serpentine nickel ore is crushed and ground to below -50 mesh, it is mixed with the magnetic nickel tailings to form a mixed ore.
  • Step 2 The tail gas generated by the chlorination roasting is sent to the flue gas absorption tower, and the hydrochloric acid in the tail gas is absorbed by the water.
  • the concentration of the hydrochloric acid solution reaches 10 ⁇ 3 ⁇ 4 ⁇ 30%, the hydrochloric acid and the mixed ore are taken out. After mixing in a mass ratio of 1:4-1:8, the mixture is allowed to stand for 1 hour or more to modify the mixed ore.
  • carbon (C) and oxygen (0 2 ) are combusted to generate CO or CO 2 , wherein CO and chloride, water vapor can extract desired metals (such as Ne, Mg, Fe, Ca, etc.) and Hcl gas, CO 2 .
  • desired metals such as Ne, Mg, Fe, Ca, etc.
  • Step 3 Mixing the remaining hydrochloric acid solution and the quicklime powder in a mass ratio of 1:2-1:5 to form a sludge additive.
  • Step 4 mixing the mixed ore with hydrochloric acid solution, equivalent to the mixed mineral mass 10 ⁇ 3 ⁇ 4 ⁇ 30 ⁇ 3 ⁇ 4 mud additive and the carbonaceous reducing agent corresponding to the mixed mineral mass 6% ⁇ 8 ⁇ 3 ⁇ 4, evenly mixed, Can be chlorinated according to the ratio
  • the mixture is mixed with the clay-like nickel ore powder of the carbonaceous reducing agent, and is pressed into a square perforated brick with a side length of 10 cm to 30 cm by using a mineral powder pressing machine, or a pellet having a diameter of 2 cm to 5 cm by using a mineral powder pressure ball machine.
  • Step 5 The square porous brick or pellet is placed in a reducing atmosphere sintering furnace for chlorination for 30-90 minutes, and then poured into a pool for water quenching, and after quenching, the ore powder is ground to below -50 mesh.
  • the ore powder is first separated into magnetic or non-magnetic tailings by a strong magnetic separator (magnetic induction intensity greater than 3000 Gauss), and the ore powder is separated into nickel-iron fine powder and magnetic tailings by a weak magnetic separator.
  • Step 6 Return the magnetic tailings to step 1 and make a new mixed ore with serpentine nickel ore.
  • the principle of using a small amount of hydrochloric acid to modify the mixed nickel ore is to use the strong acid portion of hydrochloric acid to capture the more active magnesium and calcium ions in the serpentine and the pyrophoric pyroxene, and destroy the serpentine in the mixed nickel ore.
  • the harder pyroxene has a more stable lattice structure. If a large amount of hydrochloric acid is used to soak the mixed nickel ore, the less active elements such as iron, ferrous iron and nickel will be leached by excess hydrochloric acid and lost with the soaking liquid, resulting in a decrease in the content of iron and nickel in the mixed ore after soaking. Eventually, the nickel recovery rate will drop.
  • the main ion equations are:
  • Ni 2+ +2HCl 2H ++NiCl 2
  • the calcium chloride formed is a chlorine salt, which can be used as a chlorinating agent in the chlorination roasting process; Excess lime will preferentially form calcium silicate with silica in nickel ore at high temperatures to reduce the formation of nickel silicate by the less active nickel oxide in the silica and nickel ore, increasing nickel recovery.
  • present invention can be used for treating serpentine nickel ore as well as for mixing nickel ore of clay-like nickel ore and serpentine nickel ore.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种利用尾气回收红土镍矿镍的方法,包括:破碎并研磨蛇纹石状镍矿石,并与磁性镍尾矿搅拌成混合矿;将盐酸溶液与混合矿搅拌均匀后,对混合矿进行改性;将盐酸溶液与生石灰粉混合搅拌均匀制成泥状添加剂;将改性后的混合矿、泥状添加剂和碳质还原剂混合均匀,并压制成半成品块;将半成品块氯化焙烧后,进行水淬,水淬后将矿粉研磨,并分离出镍铁精粉和磁性镍尾矿。

Description

利用尾气回收红土镍矿中镍的方法 技术领域
[0001] 本发明涉及金属冶炼技术领域, 尤其是涉及一种利用尾气回收红土镍矿中镍的 方法。
背景技术
[0002] 氯化焙烧是指将矿物原料与氯化剂混合, 在一定的温度和气氛下进行焙烧, 有 价金属转变为气相或凝聚相的金属氯化物与物料其他组分分离的过程。 利用氯 化焙烧结合磁选的方法可有效地将红土镍矿中的镍、 铁元素富集并与无磁性的 脉石分离, 获得镍铁精粉, 是一种能耗低、 适应性强的红土镍矿精炼工艺。
[0003] 红土镍矿又称氧化型镍矿, 大多数具有工业意义的红土镍矿床均发育于橄榄岩 基岩之上, 是在热带或亚热带地区经过大规模的长期化学风化, 由铁、 铝、 硅 等含水氧化物组成的矿石。 化学风化的红土镍矿为疏松粘土状镍矿石, 未化学 风化的红土镍矿为蛇纹石状镍矿石, 多数红土镍矿为粘土状镍矿石和蛇纹石状 镍矿石的混合矿。
[0004] 由于粘土状镍矿石经过长期化学风化, 镍矿石中大部分晶格结构已经被破坏, 镍、 铁等金属元素主要以氧化物的形式存在, 通过氯化焙烧可以较容易被还原 并富集为单质金属微粒, 并通过重磁选的方法与脉石分离得到镍铁精矿, 镍元 素的回收率也较高。
[0005] 蛇纹石状镍矿石为层状结构, 每个复合层呈正八面体, 镍以类质同象的形式取 代部分镁离子存在于蛇纹石晶格的八面体顶点处, 当蛇纹石被加热到 600-700°C 吋, 会脱去结晶水生成镁橄榄石与非晶质二氧化硅, 进一步升高温度部分镁橄 榄石与二氧化硅结合生成顽火辉石。 顽火辉石为斜方辉石族, 是一种复杂的铁 镁硅酸盐固溶体, 而氯化离析反应的温度 (约 900°C-1200°C) 恰好能使部分蛇纹 石生成顽火辉石。 在实际生产中, 采用传统氯化焙烧结合磁选的方法, 蛇纹石 状镍矿石的镍、 铁元素由于被生成的顽火辉石包裹, 回收率要大幅低于粘土状 镍矿石的镍回收率。 [0006] 红土镍矿采用氯化焙烧结合强磁磁选 (磁感应强度大于 3000高斯) 的方法分离 出磁性矿和非磁性尾矿后, 为进一步去除磁性矿中的脉石并提高磁性矿中镍元 素的含量, 可以采用弱磁磁选 (磁感应强度小于 1500高斯) 的方法分离出镍铁 精粉 (镍元素含量超过 4%) 和磁性镍尾矿。 这种磁性镍尾矿虽然具有一定的磁 性, 但其镍元素含量只与未加工的红土镍矿含量相当, 其主要成分正是红土镍 矿经过高温焙烧后形成的顽火辉石, 如将磁性尾矿再采用传统氯化焙烧结合磁 选的方法, 铁、 镍元素很难从顽火辉石内分离出来, 因此, 磁性镍尾矿中的镍 回收率比蛇纹石状镍矿的镍回收率更低。
[0007] 此外, 传统的氯化焙烧结合磁选的方法在焙烧过程中会产生含有大量盐酸 (H C1) 的尾气, 盐酸是强酸, 有极强的酸性和腐蚀性, 如果直接排放到大气中会对 周围环境造成严重破坏, 传统的办法是利用石灰水吸收盐酸, 生成中性盐溶液 后排走, 但长期排放含盐溶液同样会造成周边水体的盐碱化, 对环境造成破坏 技术问题
[0008] 本发明所要解决的技术问题是: 利用氯化焙烧产生的尾气对蛇纹石状镍矿和磁 性镍尾矿进行改性, 提高氯化焙烧结合磁选工艺处理红土镍矿的镍回收率, 并 解决所产生的尾气、 废液破坏生态环境的问题。
问题的解决方案
技术解决方案
[0009] 为了解决上述技术问题, 本发明采用的技术方案为: 提供一种利用尾气回收红 土镍矿镍的方法, 包括:
[0010] 破碎并研磨蛇纹石状镍矿石, 并与磁性镍尾矿搅拌成混合矿。
[0011] 利用水吸收氯化焙烧所产生尾气中的盐酸, 生成盐酸溶液;
[0012] 将盐酸溶液与混合矿搅拌均匀后, 对混合矿进行改性;
[0013] 将盐酸溶液与生石灰粉混合搅拌均匀制成泥状添加剂;
[0014] 将改性后的混合矿、 泥状添加剂和碳质还原剂混合均匀, 并压制成半成品块; [0015] 将半成品块氯化焙烧后, 进行水淬, 水淬后将矿粉研磨, 并分离出镍铁精粉和 磁性镍尾矿。 发明的有益效果
有益效果
[0016] 本发明的有益效果在于: 区别于现有技术, 本发明利用氯化焙烧产生的尾气对 蛇纹石状镍矿和磁性镍尾矿进行改性, 提高氯化焙烧结合磁选工艺处理红土镍 矿的镍回收率, 解决传统氯化焙烧结合磁选工艺处理蛇纹石状矿石和磁性镍尾 矿的镍回收率较低, 且所产生的尾气、 废液破坏生态环境的问题。
对附图的简要说明
附图说明
[0017] 图 1为本发明方法具体实施例的流程示意图。
具体实施方式
[0018] 本发明最关键的构思在于:利用氯化焙烧产生的尾气对蛇纹石状镍矿和磁性镍 尾矿进行改性, 提高氯化焙烧结合磁选工艺处理红土镍矿的镍回收率。
[0019] 请参照图 1, 本发明提供一种利用尾气回收红土镍矿镍的方法, 所采用的技术 方案包括如下步骤:
[0020] 步骤 1 : 将蛇纹石状镍矿石破碎并研磨至 -50目以下后, 与磁性镍尾矿搅拌成混 合矿。
[0021] 步骤 2: 将氯化焙烧所产生的尾气送入烟气吸收塔中, 利用水吸收尾气中的盐 酸, 当盐酸溶液的浓度达到 10<¾~30%范围内, 取出盐酸与混合矿按照质量比为 1 : 4-1: 8的范围内搅拌均匀后, 静置 1小吋以上, 对混合矿进行改性。
[0022] 其中, 碳 (C) 与氧气 (0 2) 在燃烧吋可生成 CO或 CO 2, 其中, CO与氯化物 、 水蒸气的高温下可以提取出所需的金属 (如 Ne、 Mg、 Fe、 Ca等) 以及 Hcl气 体、 CO 2
[0023] 步骤 3: 将剩余盐酸溶液与生石灰粉按照质量比为 1 : 2-1: 5的范围内混合搅拌 均匀制成泥状添加剂。
[0024] 步骤 4: 将加入盐酸溶液的混合矿、 相当于混合矿质量 10<¾~30<¾泥状添加剂和 相当于混合矿质量 6%~8<¾的碳质还原剂混合均匀, 也可按照该比例与配好氯化 剂和碳质还原剂的粘土状镍矿粉混合, 用矿粉压砖机压制成边长为 10cm~30cm 的方形多孔砖, 或用矿粉压球机制成直径 2cm~5cm的球团。
[0025] 步骤 5: 将方形多孔砖或球团放入还原气氛烧结炉中氯化焙烧 30-90分钟后, 倒 入水池中进行水淬, 水淬后将矿粉研磨至 -50目以下, 先用强磁磁选机 (磁感应 强度大于 3000高斯) 将矿粉分成磁性矿和非磁性尾矿, 再用弱磁磁选机将矿粉 分成镍铁精粉和磁性尾矿。
[0026] 步骤 6: 将磁性尾矿送回至步骤 1与蛇纹石状镍矿石制成新的混合矿。
[0027] 上述步骤中涉及到的化学方程式如下:
[0028] 氯化焙烧过程中生成盐酸的反应方程式:
[0029] CaCl 2+SiO 2+H 2OCaSiO 3+2HCl
[0030] MgCl 2+SiO 2+H 2OMgSiO 3+2HCl
[0031] 金属氧化物氯化过程反应方程式:
[0032] NiO+2HClNiCl 2+H 20
[0033] 2Fe 20 3+8HC14FeCl 2+4H 20+0 2
[0034] 产生氢气过程反应方程式:
[0035] C+H 2OCO+H 2
[0036] 金属氯化物还原为金属单质过程反应方程式:
[0037] NiCl 2+C+H 2ONi+CO+2HCl
[0038] NiCl 2+H 2Ni+2HCl
[0039] FeCl 2+C+H 2OFe+CO+2HCl
[0040] FeCl 2+H 2Fe+2HCl
[0041] 其中, 使用少量盐酸对混合镍矿进行改性的原理是利用盐酸的强酸性部分夺取 组成蛇纹石和顽火辉石里较为活泼的镁、 钙等离子, 破坏混合镍矿中蛇纹石和 顽火辉石较稳定的晶格结构。 如果采用大量盐酸浸泡混合镍矿, 则会造成铁、 亚铁、 镍等较不活泼的元素被过量的盐酸浸出而随浸泡液流失, 造成浸泡后的 混合矿中铁、 镍等元素含量的下降, 最终造成镍回收率的下降。 主要的离子方 程式为:
[0042] Mg 2++2HCl=2H ++MgCl 2 [0043] Ca 2++2HCl=2H ÷+CaCl 2
[0044] Fe 3++3HCl=3H ++FeCl 3
[0045] Fe 2++2HCl=2H ++FeCl 2
[0046] Ni 2++2HCl=2H ++NiCl 2
[0047] 2H ++SiO 32 =H 20+SiO 2
[0048] 向剩余盐酸溶液中加入过量的生石灰粉, 一方面利用生石灰中和盐酸, 生成的 氯化钙就是一种氯盐, 可在氯化焙烧过程中作为氯化剂使用; 另一方面, 过量 的生石灰在高温下会优先与镍矿中的二氧化硅生成硅酸钙, 以减少二氧化硅与 镍矿中较不活泼的镍元素的氧化物生成硅酸镍, 提高镍的回收率。
[0049] 应当说明的是, 本发明既可用于处理蛇纹石状镍矿石, 也可用于处理粘土状镍 矿石和蛇纹石状镍矿石的混合镍矿石。
[0050]

Claims

权利要求书
[权利要求 1] 一种利用尾气回收红土镍矿中镍的方法, 其特征在于, 包括:
破碎并研磨蛇纹石状镍矿石, 并与磁性镍尾矿搅拌成混合矿; 利用水吸收氯化焙烧所产生尾气中的盐酸, 生成盐酸溶液; 将盐酸溶液与混合矿搅拌均匀后, 对混合矿进行改性;
将盐酸溶液与生石灰粉混合搅拌均匀制成泥状添加剂;
将改性后的混合矿、 泥状添加剂和碳质还原剂混合均匀, 并压制成半 成品块;
将半成品块氯化焙烧后, 进行水淬, 水淬后将矿粉研磨, 并分离出镍 铁精粉和磁性镍尾矿。
[权利要求 2] 根据权利要求 1所述利用尾气回收红土镍矿中镍的方法, 其特征在于
, 破碎蛇纹石状镍矿石后, 研磨至 -50目以下。
[权利要求 3] 根据权利要求 1所述利用尾气回收红土镍矿中镍的方法, 其特征在于
, 将氯化焙烧所产生的尾气送入烟气吸收塔中, 利用水吸收尾气中的 盐酸, 并将盐酸溶液的浓度调制成 10<¾~30<¾。
[权利要求 4] 根据权利要求 1所述利用尾气回收红土镍矿中镍的方法, 其特征在于
, 盐酸与混合矿按照质量比为 1 : 4-1: 8的范围内搅拌均匀后, 静置 1 小吋以上, 对混合矿进行改性。
[权利要求 5] 根据权利要求 1所述利用尾气回收红土镍矿中镍的方法, 其特征在于
, 盐酸溶液与生石灰粉按照质量比为 1 : 2-1: 5的范围内混合搅拌均 匀, 以制成泥状添加剂。
[权利要求 6] 根据权利要求 1所述利用尾气回收红土镍矿中镍的方法, 其特征在于
, 改性后的混合矿、 泥状添加剂和碳质还原剂按照质量比 1 : ( 10%~
30%) : (6%~8%) 混合均匀后, 用矿粉压砖机压制成边长为 10cm~
30cm的方形多孔砖, 或用矿粉压球机制成直径 2cm~5cm的球团。
[权利要求 7] 根据权利要求 6所述利用尾气回收红土镍矿中镍的方法, 其特征在于
, 改性后的混合矿与氯化剂 -碳质还原剂制成粘土状镍矿粉混合均匀
, 其中粘土状镍矿粉包括氯化剂和碳质还原剂, 其质量比为 (10%~3 0%) : (6%~8%) , 再用矿粉压砖机压制成边长为 10cm~30cm的方 形多孔砖, 或用矿粉压球机制成直径 2cm~5cm的球团。
[权利要求 8] 根据权利要求 6或 7所述利用尾气回收红土镍矿中镍的方法, 其特征在 于, 将方形多孔砖或球团放入还原气氛烧结炉中氯化焙烧 30-90分钟 后, 倒入水池中进行水淬, 水淬后将矿粉研磨至 -50目以下, 先用强 磁磁选机将矿粉分成磁性矿和非磁性尾矿, 再用弱磁磁选机将矿粉分 成镍铁精粉和磁性尾矿。
[权利要求 9] 根据权利要求 8所述利用尾气回收红土镍矿中镍的方法, 其特征在于
, 所述强磁磁选机的磁感应强度大于 3000高斯。
[权利要求 10] 根据权利要求 8所述利用尾气回收红土镍矿中镍的方法, 其特征在于 , 回收磁性尾矿, 并与蛇纹石状镍矿石制成新的混合矿。
PCT/CN2017/071933 2016-05-31 2017-01-20 利用尾气回收红土镍矿中镍的方法 WO2017206528A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610377008.9A CN105970002B (zh) 2016-05-31 2016-05-31 利用尾气回收红土镍矿中镍的方法
CN201610377008.9 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017206528A1 true WO2017206528A1 (zh) 2017-12-07

Family

ID=57010555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071933 WO2017206528A1 (zh) 2016-05-31 2017-01-20 利用尾气回收红土镍矿中镍的方法

Country Status (2)

Country Link
CN (1) CN105970002B (zh)
WO (1) WO2017206528A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105970002B (zh) * 2016-05-31 2019-03-26 福安市康齐动力科技有限公司 利用尾气回收红土镍矿中镍的方法
CN115821058A (zh) * 2023-02-15 2023-03-21 矿冶科技集团有限公司 红土镍矿氯化挥发提取镍钴的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761245A (en) * 1970-01-09 1973-09-25 Stone & Webster Eng Corp Nickel segregation process using metallic iron as reductant
CN101418359A (zh) * 2008-10-17 2009-04-29 中南大学 一种从红土镍矿中提取铁及高品位镍铁合金的方法
CN101514401A (zh) * 2009-03-18 2009-08-26 中南大学 一种从低品位红土镍矿高效富集镍钴的方法
CN103215446A (zh) * 2013-03-14 2013-07-24 中国科学院过程工程研究所 一种蛇纹石型红土镍矿盐酸常压浸出清洁生产方法
CN105087905A (zh) * 2015-10-10 2015-11-25 马守栋 一种利用工业酸洗废酸处理过渡型和褐铁矿型红土镍矿的方法
CN105970002A (zh) * 2016-05-31 2016-09-28 福安市康齐动力科技有限公司 利用尾气回收红土镍矿中镍的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101073790B (zh) * 2006-12-22 2010-05-19 昆明贵金属研究所 不同类型红土镍矿的还原-磨选处理方法
CN101323904A (zh) * 2008-07-28 2008-12-17 红河恒昊矿业股份有限公司 回转窑红土镍矿富集镍铁精矿的方法
CN101914691B (zh) * 2010-08-31 2011-09-14 中南大学 一种处理贫镍红土矿提取镍钴的方法
CN102041378B (zh) * 2010-11-11 2012-07-25 中南大学 一种从镍红土矿富集镍钴的氯化离析方法
CN102616867B (zh) * 2012-04-11 2013-07-31 合肥工业大学 一种由蛇纹石及其尾矿中提取制备碳酸镍、硫酸镍和氧化铁红的方法
CN103468958B (zh) * 2013-09-23 2014-12-10 陈启松 一种红土镍矿湿法冶炼尾矿无害化的方法
CN104152686B (zh) * 2014-07-18 2018-06-15 南阳东方应用化工研究所 一种石棉尾矿的分解方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761245A (en) * 1970-01-09 1973-09-25 Stone & Webster Eng Corp Nickel segregation process using metallic iron as reductant
CN101418359A (zh) * 2008-10-17 2009-04-29 中南大学 一种从红土镍矿中提取铁及高品位镍铁合金的方法
CN101514401A (zh) * 2009-03-18 2009-08-26 中南大学 一种从低品位红土镍矿高效富集镍钴的方法
CN103215446A (zh) * 2013-03-14 2013-07-24 中国科学院过程工程研究所 一种蛇纹石型红土镍矿盐酸常压浸出清洁生产方法
CN105087905A (zh) * 2015-10-10 2015-11-25 马守栋 一种利用工业酸洗废酸处理过渡型和褐铁矿型红土镍矿的方法
CN105970002A (zh) * 2016-05-31 2016-09-28 福安市康齐动力科技有限公司 利用尾气回收红土镍矿中镍的方法

Also Published As

Publication number Publication date
CN105970002B (zh) 2019-03-26
CN105970002A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
Xiao et al. Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC
He et al. Hazard-free treatment of electrolytic manganese residue and recovery of manganese using low temperature roasting-water washing process
CN102719676B (zh) 一种还原气氛窑炉中快速还原铜渣生产铁铜合金的方法
You et al. Extraction of manganese from iron rich MnO2 ores via selective sulfation roasting with SO2 followed by water leaching
CN101514401B (zh) 一种从低品位红土镍矿高效富集镍钴的方法
CN112080636B (zh) 一种利用红土镍矿生产电池级硫酸镍盐的方法
Suiyi et al. A novel clinoatacamite route to effectively separate Cu for recycling Ca/Zn/Mn from hazardous smelting waterwork sludge
JP2018115366A (ja) 製鋼スラグからカルシウムを溶出させる方法、および製鋼スラグからカルシウムを回収する方法
Yu et al. One-step extraction of high-purity CuCl2· 2H2O from copper-containing electroplating sludge based on the directional phase conversion
CN107090551B (zh) 一种钒钛磁铁矿的直接提钒的方法
CN102041378B (zh) 一种从镍红土矿富集镍钴的氯化离析方法
CN102242253A (zh) 一种贫锡中矿的处理及回收炼铁原料的方法
CN109957657B (zh) 一种从赤泥中同时资源化利用铁、钠、铝的方法
CN102181627A (zh) 一种拌酸熟化处理原生低品位高磷锰矿的方法
WO2012171481A1 (zh) 全面综合回收和基本无三废、零排放的湿法冶金方法
CN104372173B (zh) 一种从含氟失效铂催化剂中富集铂的方法
CN114875250A (zh) 含锂粘土提纯锂的方法
CN104561551B (zh) 一种硼镁铁共生矿有价组元分离提取的方法
WO2017206528A1 (zh) 利用尾气回收红土镍矿中镍的方法
Zhang et al. Reaction behavior and non-isothermal kinetics of suspension magnetization roasting of limonite and siderite
CN107082428B (zh) 一种利用多金属硫酸渣制备碳化铁的方法
Sun REDUCTION EXTRACTION KINETICS OF TITANOMAGNETITE CONCENTRATE BY CARBON MONOXIDE
WO2017133494A1 (zh) 一种利用盐卤氯化焙烧还原红土镍矿制镍铁精粉的方法
Ding et al. A novel process for extraction of iron from a refractory red mud
CN115821058A (zh) 红土镍矿氯化挥发提取镍钴的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17805479

Country of ref document: EP

Kind code of ref document: A1