WO2017204103A1 - 透明フィルム、透明スクリーンおよび画像表示システムならびに透明ポスター - Google Patents

透明フィルム、透明スクリーンおよび画像表示システムならびに透明ポスター Download PDF

Info

Publication number
WO2017204103A1
WO2017204103A1 PCT/JP2017/018822 JP2017018822W WO2017204103A1 WO 2017204103 A1 WO2017204103 A1 WO 2017204103A1 JP 2017018822 W JP2017018822 W JP 2017018822W WO 2017204103 A1 WO2017204103 A1 WO 2017204103A1
Authority
WO
WIPO (PCT)
Prior art keywords
dot
dots
light
liquid crystal
cumulative distribution
Prior art date
Application number
PCT/JP2017/018822
Other languages
English (en)
French (fr)
Inventor
雄二郎 矢内
永井 道夫
昌 山本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020187033832A priority Critical patent/KR102089204B1/ko
Priority to CN201780032017.7A priority patent/CN109154770B/zh
Priority to JP2018519245A priority patent/JP6606604B2/ja
Publication of WO2017204103A1 publication Critical patent/WO2017204103A1/ja
Priority to US16/197,799 priority patent/US10481311B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F15/00Boards, hoardings, pillars, or like structures for notices, placards, posters, or the like
    • G09F15/02Bills, posters, or the like therefor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • G09F19/18Advertising or display means not otherwise provided for using special optical effects involving the use of optical projection means, e.g. projection of images on clouds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/604Polarised screens

Definitions

  • the present invention relates to a transparent film used for a transparent screen or the like, a transparent screen and an image display system using the transparent film, and a transparent poster.
  • a transparent screen that displays an image by diffusing and / or reflecting projection light from a projector and transmits light from the front and back surfaces is known as one of the screens constituting a projection display device. .
  • Patent Document 1 as a projection-type liquid crystal projection system, a transparent screen using cholesteric liquid crystal that reflects right- or left-circularly polarized red light, green light, and blue light is used, and red light projected onto the transparent screen is used.
  • Projection type liquid crystal projection system that transmits right or left circularly polarized light component of external light irradiated on transparent screen by polarizing green light and blue light to right or left circularly polarized light by ⁇ / 4 plate Is described.
  • the image projected by the projector can be properly displayed as a visible image.
  • the image is displayed via the transparent screen.
  • the background (the other side of the transparent screen) is preferably observable.
  • An object of the present invention is, for example, when used as a transparent screen of an image display system, a transparent film capable of suitably observing the background through the transparent screen during non-image display, a transparent screen and an image display system using the transparent film, And to provide transparent posters.
  • the transparent film of the present invention is a dot formed by two-dimensionally arranging a support and dots formed on one main surface of the support and fixing a cholesteric liquid crystal phase. And an overcoat layer that covers the dot array and is laminated on the support,
  • the dot area where the cumulative distribution is 50% is Xs
  • the dot area where the cumulative distribution is 5% is Ysa
  • the dot area where the cumulative distribution is 95% is 95%.
  • the difference between the average refractive index of the dots and the refractive index of the overcoat layer is preferably 0.1 or less.
  • the dot gives a stripe pattern of a bright part and a dark part in a cross section, and an angle formed by the normal line of the first dark part from the dot surface and the dot surface is 70 to 90 °.
  • the average distance between dots is 10 to 100 ⁇ m, and the average diameter of the dots is 10 to 100 ⁇ m.
  • the dots satisfy at least one of formula (3) and formula (4).
  • the transparent screen of the present invention provides a transparent screen comprising the transparent film of the present invention.
  • the image display system of the present invention provides an image display system having a transparent screen made of a transparent film and a projector.
  • the transparent poster of the present invention provides the transparent poster which is made of the transparent film of the present invention and in which dots are formed like an image in a dot array.
  • a transparent film capable of suitably observing the background through the transparent screen, using this transparent film, the background can be suitably observed during non-image display,
  • a transparent screen and image display system, and a transparent poster are provided.
  • FIG. 1 is a diagram conceptually illustrating an example of the transparent screen of the present invention.
  • FIG. 2 is a diagram conceptually showing the image display system of the present invention using the transparent screen shown in FIG.
  • FIG. 3 is a conceptual diagram for explaining dots of the transparent screen shown in FIG.
  • FIG. 4 is a conceptual diagram for explaining dots of the transparent screen shown in FIG.
  • FIG. 5 is a conceptual diagram for explaining dots of the transparent screen shown in FIG.
  • FIG. 6 is a cumulative distribution diagram of dot areas of the transparent screen of the present invention.
  • FIG. 7 is a cumulative distribution diagram of dot areas of a conventional transparent screen.
  • FIG. 8 is a cumulative distribution diagram of the distance between dots of the transparent screen of the present invention.
  • FIG. 9 is a cumulative distribution diagram of the distance between dots of a conventional transparent screen.
  • FIG. 10 is a diagram conceptually showing another example of the image display system of the present invention.
  • FIG. 11 is a conceptual diagram for explaining the transparent poster of the present invention.
  • FIG. 12 is a conceptual diagram for explaining an embodiment of the present invention.
  • FIG. 13 shows dots in an embodiment of the transparent screen of the present invention.
  • FIG. 14 is a cumulative distribution diagram in an embodiment of the transparent screen of the present invention.
  • FIG. 15 shows dots in the embodiment of the transparent screen of the present invention.
  • FIG. 16 is a cumulative distribution diagram in an embodiment of the transparent screen of the present invention.
  • FIG. 17 shows dots in an embodiment of the transparent screen of the present invention.
  • FIG. 18 is a cumulative distribution diagram in the embodiment of the transparent screen of the present invention.
  • FIG. 19 shows dots in a comparative example of the transparent screen of the present invention.
  • FIG. 20 is a cumulative distribution diagram in a comparative example of the transparent screen of the present invention.
  • FIG. 21 is a diagram of transmitted light in the example and comparative example of the transparent screen of the present invention.
  • FIG. 22 is a conceptual diagram for explaining an example of the transparent poster of the present invention.
  • FIG. 23 is a conceptual diagram for explaining a conventional transparent screen.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • an angle such as “45 °”, “parallel”, “vertical” or “orthogonal” is within a range where the difference from the exact angle is less than 5 ° unless otherwise specified. Means. The difference from the exact angle is preferably less than 4 °, more preferably less than 3 °.
  • “(meth) acrylate” is used to mean “one or both of acrylate and methacrylate”.
  • “same” includes an error range generally allowed in the technical field.
  • visible light is light having a wavelength that can be seen by human eyes among electromagnetic waves, and indicates light having a wavelength range of 380 to 780 nm.
  • Invisible light is light having a wavelength range of less than 380 nm or a wavelength range of more than 780 nm.
  • light in the wavelength range of 420 to 490 nm is blue light
  • light in the wavelength range of 495 to 570 nm is green light
  • wavelength range of 620 to 750 nm The light is red light.
  • retroreflection means reflection in which incident light is reflected in the incident direction.
  • haze means a value measured using a haze meter NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd. Theoretically, haze means a value represented by the following equation. (Scattering transmittance of natural light of 380 to 780 nm) / (scattering transmittance of natural light of 380 to 780 nm + direct transmittance of natural light) ⁇ 100%
  • the scattering transmittance is a value that can be calculated by subtracting the direct transmittance from the obtained omnidirectional transmittance using a spectrophotometer and an integrating sphere unit.
  • the direct transmittance is a transmittance at 0 ° based on a value measured using an integrating sphere unit. That is, the low haze means that the direct transmitted light amount is large in the total transmitted light amount.
  • the average refractive index values of the main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59).
  • the transparent film of the present invention comprises a support, a dot array formed on the surface of the support, in which dots formed by fixing a cholesteric liquid crystal phase are two-dimensionally arranged, and covering the dot array on the support. In the dot arrangement, dots are formed randomly (irregularly) as will be described later.
  • the transparent screen of the present invention is a transparent screen using the transparent film of the present invention, and the image display system of the present invention includes the transparent screen of the present invention and a projector.
  • the transparent poster of the present invention uses the transparent screen of the present invention, and the dots in the dot arrangement are formed like an image, that is, the dots are formed corresponding to some pattern.
  • FIG. 1 conceptually shows an example of the transparent screen of the present invention using the transparent film of the present invention.
  • FIG. 2 conceptually shows an example of the image display system of the present invention using this transparent screen.
  • 1 is a conceptual diagram (front view) when the transparent screen 12 of the present invention is viewed from the front, and FIG. 2 is a direction perpendicular to the side surface, that is, the front (surface direction of the transparent screen 12).
  • FIG. When the transparent screen 12 of the present invention is viewed from the front, in other words, when the transparent screen of the present invention is viewed from the normal direction of the support 14 (perpendicular direction of the support 14).
  • the transparent screen 12 includes a support 14, dots 16 (dots 16) that are two-dimensionally arranged on one main surface of the support 14 and constitute a dot array. 16) and an overcoat layer 18 laminated on the support 14.
  • the overcoat layer 18 which becomes the surface of the transparent screen 12 (surface opposite to the support 14) is omitted in FIG.
  • the image display system 10 shown in FIG. 2 includes such a transparent screen 12 and a projector 24.
  • the image display system 10 displays an image on the transparent screen 12 by reflecting the projection light carrying the image irradiated by the projector 24 by the transparent screen 12 (dot 16 described later).
  • the image display system 10 is a system for displaying a green single-color image (green monochrome image). Therefore, the transparent screen 12 reflects green light, and the projector 24 projects a green monochrome image (green monochrome image) onto the transparent screen 12.
  • the transparent screen 12 shown in FIG. 1 has a support 14, dots 16, and an overcoat layer 18.
  • Each of the supports 14 of the transparent screen 12 supports dots that are dots formed by fixing a cholesteric liquid crystal phase described later.
  • the support 14 preferably has a low light reflectance at the wavelength of light reflected by the dots, and preferably does not include a material that reflects light at the wavelength of light reflected by the dots.
  • the support 14 is preferably transparent in the visible light region. Further, the support 14 may be colored, but is preferably not colored or less colored. Further, the support 14 preferably has a refractive index of about 1.2 to 2.0, and more preferably about 1.4 to 1.8. In the present specification, when it is transparent, specifically, the non-polarized light transmittance (omnidirectional transmittance) at a wavelength of 380 to 780 nm may be 50% or more, preferably 70% or more, and preferably 85% or more. It is more preferable that
  • the haze value of the support 14 is preferably 30% or less, more preferably 0.1 to 25%, and further preferably 0.1 to 10%. Further, by using a support 14 having a high haze like an AG (anti-glare) support, it is possible to make adjustments that deteriorate transparency and improve front luminance and viewing angle characteristics.
  • the thickness of the support 14 may be selected according to the use and is not particularly limited, but may be about 5 to 1000 ⁇ m, preferably 10 to 250 ⁇ m, and more preferably 15 to 150 ⁇ m.
  • the support 14 may be a single layer or a multilayer.
  • Examples of the support 14 in the case of a single layer include a support made of glass, triacetyl cellulose (TAC), polyethylene terephthalate (PET), polycarbonate, polyvinyl chloride, acrylic, polyolefin, and the like.
  • Examples of the support 14 in the case of a multilayer include those in which any one of the above-mentioned single-layer supports is included as a substrate, and another layer is provided on the surface of the substrate.
  • the underlayer is preferably a resin layer, and more preferably a transparent resin layer.
  • the underlayer include a layer for adjusting the shape of the dots when forming the dots, a layer for improving the adhesion characteristics between the support 14 and the dots, and the orientation of the polymerizable liquid crystal compound when forming the dots. Examples thereof include an alignment film for adjusting.
  • the underlayer preferably has a low light reflectance at the wavelength of light reflected by the dots, and preferably does not include a material that reflects light at the wavelength of light reflected by the dots.
  • the underlayer is preferably transparent.
  • the base layer preferably has a refractive index of about 1.2 to 2.0, more preferably about 1.4 to 1.8.
  • the underlayer is also preferably a layer containing a resin obtained by curing a composition containing a polymerizable compound applied directly to the support surface.
  • the polymerizable compound include non-liquid crystalline compounds such as (meth) acrylate monomers and urethane monomers.
  • the thickness of the underlayer is not particularly limited, but is preferably 0.01 to 50 ⁇ m, and more preferably 0.05 to 20 ⁇ m.
  • the dot 16 is, for example, a dot that reflects green right circularly polarized light and transmits other light (reflective dot).
  • the dot is not limited to the dot 16 that reflects green right circularly polarized light and transmits other light. That is, the dot used for the transparent screen (transparent film) of the present invention may be a dot that reflects blue right circularly polarized light and transmits other light, and reflects red right circularly polarized light. Other dots that transmit light may also be used.
  • the dot may be a dot that reflects blue left circularly polarized light and transmits other light, or a dot that reflects green left circularly polarized light and transmits other light, and may be red. It may be a dot that reflects the left circularly polarized light and transmits other light.
  • dot 16 is common to all these dots.
  • the transparent screen (transparent film) of the present invention reflects a dot arrangement of dots that reflects blue right-circularly polarized light and transmits other light, and reflects green right-circularly polarized light. And a dot arrangement of dots that transmit red light of the right circularly polarized light and transmit other light.
  • the transparent screen of the present invention reflects a dot arrangement of dots that reflect blue left circularly polarized light and transmits other light, and reflects green left circularly polarized light and transmits other light. And a dot arrangement of dots that reflect red, left circularly polarized light and transmit other light. This configuration will be described in detail later.
  • the dot is a dot formed by fixing a cholesteric liquid crystal phase, whether it is a dot that reflects any color or a dot that reflects any circularly polarized light. That is, the dot is a dot made of a liquid crystal material having a cholesteric structure.
  • the cholesteric liquid crystal phase that becomes the dot gives a stripe pattern of bright and dark areas in the cross section of the dot observed with a scanning electron microscope, and continues to the maximum height in the direction from the edge of the dot toward the center.
  • the angle between the normal of the line formed by the first dark portion from the surface of the dot opposite to the support 14 and the surface of the dot is 70 to 90 °. It is preferable that it is the range of these. This point will be described in detail later.
  • the arrangement density of the dots 16 on the transparent screen 12 is not particularly limited, and the diffusivity (viewing angle) required for the transparent screen 12 is satisfied as long as the random (irregular) arrangement condition described later is satisfied. And what is necessary is just to set suitably according to transparency etc.
  • the support 14 When viewed from the normal direction of the main surface, the area ratio of dots to the support 14 is preferably 1 to 90.6%, more preferably 2 to 50%, and 4 to 30%. More preferably.
  • the area ratio of a dot measures an area ratio in the area
  • the dots 16 are preferably circular when viewed from the normal direction of the main surface of the support 14.
  • the dots 16 are hemispherical (substantially hemispherical), spherical (not substantially spherical), trapezoidal, or conical.
  • the normal direction of the main surface of the support 14 is also referred to as “support normal direction”.
  • the circular shape does not have to be a perfect circle and may be a substantially circular shape.
  • the dot 16 is referred to as the center, it means the center or the center of gravity of the circle.
  • the dots need only have a circular average shape, and some of the dots may have a shape that does not correspond to a circle.
  • the dots have wavelength selective reflectivity.
  • the dot 16 in the illustrated example reflects green light.
  • the present invention is not limited to this, and the dots may reflect red light or blue light.
  • the transparent screen 12 according to the present invention is basically used as a screen that allows observation by superimposing an image of video light emitted from the projector 24 and a background on the back side of the transparent screen 12, so that dots are selectively reflected.
  • the light exhibiting the property is preferably visible light.
  • the reflection wavelength of the dots may be selected according to the wavelength of light emitted from the projector 24.
  • the dot 16 is a dot formed by fixing the cholesteric liquid crystal phase.
  • the wavelength of light at which the dots 16 exhibit selective reflectivity can be adjusted (selected) by adjusting the helical pitch of the cholesteric liquid crystal phase forming the dots.
  • the cholesteric liquid crystal phase forming the dots 16 in the transparent screen of the present invention is controlled in the direction of the helical axis as will be described later. Therefore, the light incident on the dots 16 is reflected not only in regular reflection but also in various directions.
  • the dots 16 may be colored, but are preferably not colored or less colored. Thereby, the transparency of a transparent screen can be improved.
  • ⁇ Cholesteric liquid crystal phase ⁇ Cholesteric liquid crystal phase
  • the pitch of the cholesteric liquid crystal phase depends on the kind of chiral agent used together with the polymerizable liquid crystal compound or the addition concentration thereof when forming the dots 16, and a desired pitch can be obtained by adjusting these.
  • the cholesteric liquid crystal phase gives a stripe pattern of bright and dark areas in a cross-sectional view of dots observed by a scanning electron microscope.
  • the two bright parts and the dark part 2 in the repetition of the bright part and the dark part correspond to one pitch of the spiral. From this, the pitch can be measured from the SEM sectional view.
  • the normal line of each line of the stripe pattern is the spiral axis direction of the cholesteric liquid crystal phase.
  • the reflected light of the cholesteric liquid crystal phase is circularly polarized light. That is, in the transparent screen 12 of the present invention, the dot 16 reflects right circularly polarized light. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction of the spiral in the cholesteric liquid crystal phase.
  • the selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right circularly polarized light when the twist direction of the spiral of the cholesteric liquid crystal phase is right, and reflects left circularly polarized light when the twist direction of the spiral is left.
  • the dot 16 since the dot 16 reflects right circularly polarized light, the dot 16 is a dot formed by fixing a right-twisted cholesteric liquid crystal phase.
  • the direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound forming the dots 16 or the type of chiral agent added.
  • ⁇ n can be adjusted by the type and mixing ratio of the liquid crystal compounds forming the dots (the right circularly polarized light reflecting layer and the left circularly polarized light reflecting layer), and the temperature at which the orientation is fixed.
  • the half-value width of the reflection wavelength band is adjusted according to the application of the transparent screen 12, and may be, for example, 50 to 500 nm, and preferably 100 to 300 nm.
  • the dot 16 formed by fixing the cholesteric liquid crystal phase gives a stripe pattern of a bright part and a dark part in the cross section.
  • the dot 16 formed by fixing such a cholesteric liquid crystal phase is a line formed by the first dark portion from the surface of the dot 16 on the side opposite to the support 14 when confirmed by a cross-sectional view observed with a scanning electron microscope.
  • the angle formed between the normal line and the surface of the dot opposite to the support 14 is preferably in the range of 70 to 90 °.
  • “the surface of the dot opposite to the support 14” is also simply referred to as “the surface of the dot”.
  • FIG. 3 shows a schematic diagram of a cross section of the dot 16. In FIG.
  • the line formed by the dark portion is indicated by a bold line.
  • the angle ⁇ 1 formed between the normal line (dashed line) of the line Ld 1 formed by the first dark portion and the surface of the dot 16 is preferably 70 to 90 °.
  • the angle ⁇ 1 is at a position of 30 ° and a position of 60 °.
  • the angle formed by the normal of the line Ld 1 formed by the first dark part from the surface of the dot 16 and the surface of the dot 16 is preferably in the range of 70 to 90 °, and at all positions on the surface of the dot 16, More preferably, the angle formed by the normal of the line Ld 1 formed by the first dark portion from the surface of the dot 16 and the surface of the dot 16 is in the range of 70 to 90 °.
  • the dot 16 does not satisfy the angle at a part of the surface of the dot 16, for example, does not intermittently satisfy the angle at a part of the surface of the dot 16, but continuously satisfies the angle. It is preferable.
  • the angle formed by the normal line of the dark portion and the surface of the dot 16 means the angle formed by the tangent line and the normal line of the surface of the dot 16. To do.
  • the angle is shown as an acute angle, which means a range of 70 to 110 ° when the angle formed by the normal line and the surface of the dot 16 is expressed as an angle of 0 to 180 °.
  • the dot 16 preferably has an angle ⁇ 2 formed by the normal of the line Ld 2 formed by the second dark portion from the surface of the dot 16 and the surface of the dot 16 in the range of 70 to 90 °. It is more preferable that the lines formed by the third to fourth dark portions from the surface of 16 are in the range of 70 to 90 ° between the normal line and the surface of the dot 16. More preferably, any of the lines formed by the 5th to 12th dark parts is in the range of 70 to 90 ° between the normal line and the dot 16.
  • the angle formed by the normal line of the dark part and the surface of the dot 16 is more preferably 80 to 90 °, and further preferably 85 to 90 °.
  • Such a cross-sectional view of the dot 16 by SEM shows that on the surface of the dot 16, the spiral axis of the cholesteric liquid crystal phase forms an angle in the range of 70 ° to 90 ° with the surface of the dot 16 (its tangent line). .
  • the light incident on the dots 16 is parallel to the spiral axis direction of the cholesteric liquid crystal phase on the surface of the dots 16 when the light incident from the direction having an angle with respect to the normal direction of the support 14 is obtained. It can be incident at a close angle. Therefore, the light incident on the dots 16 can be reflected in various directions.
  • the dots 16 regularly reflect incident light with reference to the helical axis of the cholesteric liquid crystal phase. Therefore, as conceptually shown in FIG. 4, the reflected light Ir reflected near the center of the dot 16 is parallel to the normal direction of the support with respect to the light In incident from the normal direction of the support 14. Reflected. On the other hand, at a position deviated from the center of the dot 16 (a position where the spiral axis of the cholesteric liquid crystal phase is inclined with respect to the normal direction of the support 14), the reflected light Ir is a direction different from the normal direction of the support 14. Reflected in. Therefore, light incident on the dots 16 can be reflected in various directions, and a wide viewing angle can be obtained.
  • the light Ip that passes through the dots 16 is transmitted in the same direction as the light In, it is possible to reduce the haze by suppressing the scattered light from being scattered, and to increase the transparency. Further, it is preferable that light incident from the normal direction of the support 14 can be reflected in all directions. In particular, it is preferable that the angle (half-value angle) at which the luminance is half of the front luminance (peak luminance) can be made 35 ° or more and has high reflectivity.
  • the height continuously decreases as the height increases continuously.
  • the cross-sectional view is a cross-sectional view in an arbitrary direction including a portion having a height that continuously increases to the maximum height in the direction from the end of the dot 16 to the center, and typically includes the center of the dot. Any cross-sectional view perpendicular to the support may be used.
  • the dots 16 can be obtained by fixing the cholesteric liquid crystal phase in a dot shape.
  • the structure in which the cholesteric liquid crystal phase is fixed may be any structure as long as the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained.
  • any structure may be used as long as it is polymerized and cured by ultraviolet irradiation, heating, or the like to form a layer having no fluidity, and at the same time, the orientation is not changed by an external field or an external force.
  • the cholesteric liquid crystal phase it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained, and the liquid crystal compound may not exhibit liquid crystallinity.
  • the polymerizable liquid crystal compound may have a high molecular weight by a curing reaction and lose liquid crystallinity.
  • a liquid crystal composition containing a liquid crystal compound can be given.
  • the liquid crystal compound is preferably a polymerizable liquid crystal compound.
  • the liquid crystal composition containing the liquid crystal compound used for forming the dots 16 preferably further contains a surfactant.
  • the liquid crystal composition used for forming the dots 16 may further contain a chiral agent and a polymerization initiator.
  • the polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
  • Examples of the rod-like polymerizable liquid crystal compound that forms the cholesteric liquid crystal phase include a rod-like nematic liquid crystal compound.
  • rod-like nematic liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines.
  • Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
  • the polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound.
  • the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and more preferably an ethylenically unsaturated polymerizable group.
  • the polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods.
  • the number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. No.
  • polymerizable liquid crystal compound examples include compounds represented by the following formulas (1) to (11).
  • polymerizable liquid crystal compounds other than the above cyclic organopolysiloxane compounds having a cholesteric phase as disclosed in JP-A-57-165480 can be used.
  • the above-mentioned polymer liquid crystal compound includes a polymer in which a mesogenic group exhibiting liquid crystal is introduced into the main chain, a side chain, or both the main chain and the side chain, and a polymer cholesteric in which a cholesteryl group is introduced into the side chain
  • a liquid crystalline polymer as disclosed in JP-A-9-133810, a liquid crystalline polymer as disclosed in JP-A-11-293252, or the like can be used.
  • the addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 75 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and preferably 80 to 99. More preferably, it is more preferably 85% to 90% by weight.
  • the dot 16 having an angle formed by the surface of the dot 16 and the support 14 of 40 ° or more is formed at the end of the dot 16. That is, by adding a surfactant when forming the dots 16, the contact angle between the dots 16 and the support 14 is formed in an angle range that can achieve both a wide viewing angle and high transparency.
  • the surfactant is preferably a compound capable of functioning as an alignment control agent that contributes to stably or rapidly forming a planar cholesteric liquid crystal phase.
  • the surfactant include a silicone-based surfactant and a fluorine-based surfactant, and a fluorine-based surfactant is preferably exemplified.
  • the surfactant include compounds described in paragraphs [0082] to [0090] of JP-A No. 2014-119605, and compounds described in paragraphs [0031] to [0034] of JP-A No. 2012-203237. , Compounds exemplified in paragraphs [0092] and [0093] of JP-A-2005-99248, paragraphs [0076] to [0078] and paragraphs [0082] to [0085] of JP-A 2002-129162 And the compounds exemplified therein, and fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and the like.
  • 1 type may be used independently and 2 or more types may be used together.
  • fluorine-based surfactant compounds represented by the following general formula (I) described in paragraphs [0082] to [0090] of JP-A-2014-119605 are preferable.
  • L 11 , L 12 , L 13 , L 14 , L 15 , and L 16 are each independently a single bond, —O—, —S—, —CO—, —COO. —, —OCO—, —COS—, —SCO—, —NRCO—, —CONR—
  • R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • NRCO- and -CONR- have the effect of reducing the solubility, and more preferably -O-, -S-, -CO-, -COO-, -OCO- —COS— and —SCO—, and —O—, —CO—, —COO—, and —OCO— are more preferable from the viewpoint of the stability of the compound.
  • the alkyl group that R can take may be linear or branched.
  • the number of carbon atoms is more preferably 1 to 3, and examples thereof include a
  • Sp 11 , Sp 12 , Sp 13 and Sp 14 each independently represents a single bond or an alkylene group having 1 to 10 carbon atoms, more preferably a single bond or an alkylene group having 1 to 7 carbon atoms. More preferably, it is a single bond or an alkylene group having 1 to 4 carbon atoms.
  • the hydrogen atom of the alkylene group may be substituted with a fluorine atom.
  • the alkylene group may or may not be branched, but is preferably a linear alkylene group having no branch. From the viewpoint of synthesis, it is preferable that Sp 11 and Sp 14 are the same, and Sp 12 and Sp 13 are the same.
  • a 11 and A 12 are monovalent to tetravalent aromatic hydrocarbon groups.
  • the aromatic hydrocarbon group preferably has 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, still more preferably 6 to 10 carbon atoms, and still more preferably 6.
  • the aromatic hydrocarbon groups represented by A 11 and A 12 may have a substituent. Examples of such a substituent include an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group, or an ester group. For the explanation and preferred ranges of these groups, the corresponding description of T below can be referred to.
  • Examples of the substituent for the aromatic hydrocarbon group represented by A 11 and A 12 include a methyl group, an ethyl group, a methoxy group, an ethoxy group, a bromine atom, a chlorine atom, and a cyano group.
  • Molecules having many perfluoroalkyl moiety in the molecule it is possible to align the liquid crystal in a small amount, since the lead to haze reduction, A 11, A 12 to have much a perfluoroalkyl group in the molecule It is preferably tetravalent. From the viewpoint of synthesis, A 11 and A 12 are preferably the same.
  • T 11 is the following (X in T 11 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group or an ester group, Ya, Yb, Yc and Yd each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and more preferably
  • the alkyl group that X contained in T 11 can have 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms.
  • the alkyl group may be linear, branched, or cyclic, and is preferably linear or branched. Examples of preferable alkyl groups include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and among them, a methyl group is preferable.
  • the alkyl moiety of the alkoxy group X contained in the T 11 can be taken, it is possible to refer to the description and the preferred range of the alkyl group X contained in the T 11 can take.
  • Examples of the halogen atom that X contained in T 11 can take include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom and a bromine atom are preferable.
  • Examples of the ester group that X contained in T 11 can take include a group represented by R′COO—.
  • Examples of R ′ include an alkyl group having 1 to 8 carbon atoms.
  • Specific examples of the ester include CH 3 COO— and C 2 H 5 COO—.
  • the alkyl group having 1 to 4 carbon atoms which Ya, Yb, Yc and Yd can take may be linear or branched.
  • a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like can be exemplified.
  • the divalent heterocyclic group preferably has a 5-membered, 6-membered or 7-membered heterocyclic ring.
  • a 5-membered ring or a 6-membered ring is more preferable, and a 6-membered ring is more preferable.
  • As the hetero atom constituting the heterocyclic ring a nitrogen atom, an oxygen atom and a sulfur atom are preferable.
  • the heterocyclic group is preferably an aromatic heterocyclic group.
  • heterocyclic rings examples include furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline Ring, pyrazolidine ring, triazole ring, triazane ring, tetrazole ring, pyran ring, thiyne ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperazine ring and triazine ring included.
  • the divalent heterocyclic group may have a substituent.
  • substituents that can be taken by the above-described monovalent to tetravalent aromatic hydrocarbons of A 1 and A 2 .
  • Hb 11 represents a perfluoroalkyl group having 2 to 30 carbon atoms, more preferably a perfluoroalkyl group having 3 to 20 carbon atoms, and still more preferably a perfluoroalkyl group having 3 to 10 carbon atoms.
  • the perfluoroalkyl group may be linear, branched, or cyclic, but is preferably linear or branched, and more preferably linear.
  • m11 and n11 are each independently 0 to 3, and m11 + n11 ⁇ 1.
  • a plurality of structures in parentheses may be the same or different from each other, but are preferably the same.
  • M11 and n11 in the general formula (I) are determined by the valences of A 11 and A 12 , and the preferable range is also determined by the preferable ranges of the valences of A 11 and A 12 .
  • O and p contained in T 11 are each independently an integer of 0 or more, and when o and p are 2 or more, a plurality of X may be the same or different from each other.
  • O contained in T 11 is preferably 1 or 2.
  • P contained in T 11 is preferably an integer of 1 to 4, and more preferably 1 or 2.
  • the compound represented by the general formula (I) may have a symmetrical molecular structure or may have no symmetry.
  • the symmetry means at least one of point symmetry, line symmetry, and rotational symmetry
  • asymmetry means any of point symmetry, line symmetry, and rotational symmetry. Means not applicable.
  • the compound represented by the general formula (I) includes the perfluoroalkyl group (Hb 11 ) and the linking group — (— Sp 11 —L 11 —Sp 12 —L 12 ) m 11 —A 11 —L 13 —. and -L 14 -A 12 - (L 15 -Sp 13 -L 16 -Sp 14 -) n 11 -, and is preferably a compound which is a combination of T is a divalent group having the excluded volume effect.
  • the two perfluoroalkyl groups (Hb 11 ) present in the molecule are preferably the same as each other, and the linking group present in the molecule — (— Sp 11 -L 11 -Sp 12 -L 12 ) m 11 -A 11 -L 13 - and -L 14 -A 12 - (L 15 -Sp 13 -L 16 -Sp 14 -) n 11 - preferably also the same.
  • the terminal Hb 11 -Sp 11 -L 11 -Sp 12 -and -Sp 13 -L 16 -Sp 14 -Hb 11 are preferably groups represented by any one of the following general formulas.
  • a is preferably from 2 to 30, more preferably from 3 to 20, and even more preferably from 3 to 10.
  • b is preferably 0 to 20, more preferably 0 to 10, and still more preferably 0 to 5.
  • a + b is 3 to 30.
  • r is preferably from 1 to 10, and more preferably from 1 to 4.
  • Hb 11 -Sp 11 -L 11 -Sp 12 -L 12 -and -L 15 -Sp 13 -L 16 -Sp 14 -Hb 11 at the terminal of the general formula (I) are any of the following general formulas: It is preferable that it is group represented by these.
  • the addition amount of the surfactant in the liquid crystal composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass, and more preferably 0.02 to 1% with respect to the total mass of the polymerizable liquid crystal compound. More preferred is mass%.
  • the chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the chiral agent may be selected according to the purpose because the twist direction or the spiral pitch of the spiral induced by the compound is different.
  • the chiral agent is not particularly limited, and is a known compound (for example, liquid crystal device handbook, chapter 3-4-3, chiral agent for TN (Twisted Nematic), STN (Super Twisted Nematic), 199 pages, Japan Science Foundation) In the 142nd committee edition, 1989), isosorbide and isomannide derivatives can be used.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom can also be used as the chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Further preferred.
  • the chiral agent may be a liquid crystal compound.
  • the chiral agent has a photoisomerizable group because a pattern having a desired reflection wavelength corresponding to the emission wavelength can be formed by photomask irradiation such as actinic rays after coating and orientation.
  • the photoisomerization group an isomerization site of a compound exhibiting photochromic properties, an azo group, an azoxy group, or a cinnamoyl group is preferable.
  • Specific examples of the compound include JP2002-80478, JP200280851, JP2002-179668, JP2002-179669, JP2002-179670, and JP2002.
  • chiral agent examples include compounds represented by the following formula (12).
  • X is 2 to 5 (integer).
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol%, more preferably 1 mol% to 30 mol%, based on the amount of the polymerizable liquid crystal compound.
  • the liquid crystal composition contains a polymerizable compound, it preferably contains a polymerization initiator.
  • the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics.
  • Group acyloin compounds described in US Pat. No.
  • the content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 12% by mass with respect to the content of the polymerizable liquid crystal compound. .
  • the liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability.
  • a crosslinking agent one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
  • polyfunctional acrylate compounds such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate
  • Glycidyl (meth) acrylate Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane.
  • a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the crosslinking agent is preferably 3 to 20% by mass and more preferably 5 to 15% by mass with respect to the solid content mass of the liquid crystal composition. If content of a crosslinking agent is in the said range, the effect of a crosslinking density improvement will be easy to be acquired, and stability of a cholesteric liquid crystal phase will improve more.
  • the liquid crystal composition may contain a monofunctional polymerizable monomer in order to obtain generally required ink physical properties.
  • the monofunctional polymerizable monomer include 2-methoxyethyl acrylate, isobutyl acrylate, isooctyl acrylate, isodecyl acrylate, octyl / decyl acrylate, and the like.
  • a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, etc. in a range that does not deteriorate the optical performance and the like. Can be added.
  • the liquid crystal composition is preferably used as a liquid when forming dots.
  • the liquid crystal composition may contain a solvent.
  • a solvent There is no restriction
  • the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ketones such as methyl ethyl ketone and methyl isobutyl ketone, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons , Esters, ethers and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are preferable in consideration of environmental load.
  • the above-described components such as the above-mentioned monofunctional polymerizable monomer may function as a solvent.
  • the liquid crystal composition is applied in the form of dots on the support 14 and then cured to form dots 16.
  • the liquid crystal composition may be applied onto the support 14 by a known method, and an ink jet method (droplet ejection of the liquid crystal composition) and a printing method are preferably exemplified.
  • the printing method is not particularly limited, and examples include a gravure printing method, a flexographic printing method, and a screen printing method.
  • inkjet 16 can be suitably formed with dots 16 having random dot areas and / or inter-dot distances described later.
  • the method is preferred.
  • the random formation of the dots 16 by a printing method can also be formed by applying a known printing technique.
  • the liquid crystal composition coated on the support 14 is dried or heated as necessary, and then cured to form dots. It is sufficient that the polymerizable liquid crystal compound in the liquid crystal composition is aligned in the drying and / or heating step.
  • the heating temperature is preferably 200 ° C. or lower, more preferably 130 ° C. or lower.
  • the aligned liquid crystal compound may be further polymerized.
  • the polymerization may be either thermal polymerization or photopolymerization by light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation.
  • the irradiation energy is preferably 20 to 50 J / cm 2 and more preferably 100 to 1,500 mJ / cm 2 .
  • light irradiation may be performed under heating conditions or in a nitrogen atmosphere.
  • the irradiation ultraviolet wavelength is preferably 250 to 430 nm.
  • the polymerization reaction rate is preferably high from the viewpoint of stability, preferably 70% or more, and more preferably 80% or more.
  • the polymerization reaction rate can determine the consumption rate of a polymerizable functional group using an IR (infrared) absorption spectrum.
  • the transparent screen 12 of the present invention displays an image by reflecting the projection light projected by the projector 24 by such dots 16.
  • the transparent screen 12 of the present invention makes the area of the dot 16 and / or the distance from the dot 16 closest to the dot 16 random (irregular).
  • the present invention has such a configuration, so that when the background (the other side of the transparent screen) is observed through the transparent screen 12 in a state where the image is not displayed (when the image is not projected), the color This makes it possible to observe an appropriate background without unevenness.
  • the area of the dots 102 is usually used to display the image appropriately, as in the transparent screen 100 shown in FIG.
  • the dots 102 are formed on the support 104 by making (the size of the dots 102) uniform and making the dots 102 regular, such as in a lattice pattern.
  • the color unevenness of the transmitted light due to such dots is such that the dot 16 gives a striped pattern of bright and dark portions in the cross section as shown in FIG. 3, and the first dark portion from the surface is This is particularly noticeable when the angle ⁇ 1 formed between the normal line (broken line) of the line Ld 1 and the surface of the dot 16 is 70 to 90 °.
  • the present inventors made extensive studies. As a result, instead of regularly forming the dots 16 of the transparent screen, the dots 16 are randomly formed, that is, the area of the dots 16 (dot area), and a certain dot 16 and this dot. Background by causing the light transmitted through the transparent screen to be diffracted light due to the dots 16 by making the distance (inter-dot distance) with the other dots 16 closest to the dots 16 non-uniform to some extent. It has been found that the color unevenness of can be greatly reduced.
  • the transparent screen 12 of the present invention has a cumulative distribution (cumulative) in a cumulative distribution chart in which the area of the dots 16 is on the horizontal axis and the cumulative distribution of dots (cumulative number (cumulative frequency) (%)) is on the vertical axis.
  • the area of the dot 16 where the frequency) is 50% is Xs
  • the area of the dot 16 where the cumulative distribution is 5% is Ysa
  • the area of the dot 16 where the cumulative distribution is 95% is Ysb
  • the horizontal axis indicates the distance between dots, which is the distance between a dot 16 and another dot 16 closest to this dot 16
  • the inter-dot distance at which the cumulative distribution is 50% is Xd
  • Yda is the distance between dots at which 5% is Y
  • Ydb is the distance between dots at which the cumulative distribution is 95%.
  • the dot area Ysa with a cumulative distribution of 5% is not included within ⁇ 15% of the dot area Xs with a cumulative distribution of 50%.
  • Area condition 1 In the cumulative distribution diagram in which the area of the dot 16 is plotted on the horizontal axis, the condition that the dot area Ysb with the cumulative distribution of 95% does not enter within + 15% of the dot area Xs with the cumulative distribution of 50% is the dot area condition 2, In the cumulative distribution diagram in which the horizontal axis represents the distance between dots, which is the distance between a dot 16 and another dot 16 closest to this dot 16, the cumulative distance is -15% of the inter-dot distance Xd of 50%. Within the inter-dot distance condition 1 where the inter-dot distance Yda with a cumulative distribution of 5% is not included.
  • the horizontal distance is within + 15% of the inter-dot distance Xd at which the cumulative distribution is 50%.
  • the inter-dot distance condition 2 where the inter-dot distance Ydb with a cumulative distribution of 95% is not included,
  • the transparent screen 12 of the present invention satisfies at least one of the dot area condition 1, the dot area condition 2, the inter-dot distance condition 1, and the inter-dot distance condition 2.
  • the area of the dot 16 is the area of the dot 16 at the position in contact with the support 14, that is, the area of the dot 16 at the interface between the dot 16 and the support 14, that is, the support. It is the area of the dot when viewed from the body normal direction.
  • the inter-dot distance in FIG. 1 illustrates the inter-dot distance Yd 1 of the dot 16-1 and the inter-dot distance Yd 2 of the dot 16-2 in FIG.
  • the center of the dot 16 at the position in contact with the body 14 (when viewed from the interface between the dot 16 and the support 14 and the normal direction of the support) and the center of the other dot 16 closest to the dot 16 The distance between the centers of the dots. That is, when the dot 16 is circular, the distance between the center of the circle and the center of the circle is the inter-dot distance. If the dot 16 is not circular, a circle C inscribed in the dot 16 may be set and the center O of the circle C may be the center of the dot 16 as conceptually shown in FIG.
  • the dot area Xs in which the cumulative distribution is 50% Is 420 ⁇ m 2 , Xs ⁇ 0.85 is 357 ⁇ m 2 and Xs ⁇ 1.15 is 483 ⁇ m 2 ( ⁇ 15% of the dot area Xs is 357 to 483 ⁇ m 2 ).
  • this transparent screen is represented by the formulas (1) and ( 2) is satisfied together.
  • the dot area Ysa at which the cumulative distribution is 5% is 850 ⁇ m 2
  • the dot area Ysb at which the cumulative distribution is 95% is 940 ⁇ m 2
  • this transparent screen is represented by the formulas (1) and ( Do not satisfy 2) together.
  • the inter-dot distance Xd at which the cumulative distribution is 50% is 39 ⁇ m in the cumulative distribution diagram shown in FIG. ⁇ 0.85 is 33.2 ⁇ m, and Xd ⁇ 1.15 is 44.9 ⁇ m ( ⁇ 15% of the inter-dot distance Xd is 33.2 to 44.9 ⁇ m).
  • the inter-dot distance Yda at which the cumulative distribution is 5% is 26 ⁇ m, and the inter-dot distance Ydb at which the cumulative distribution is 95% is 57 ⁇ m. Satisfy 4) together.
  • the transparent screen (reflective laminate) of Comparative Example 1 as shown in FIG.
  • the inter-dot distance Xd at which the cumulative distribution is 50% is 55 ⁇ m in the cumulative distribution diagram with the inter-dot distance as the horizontal axis.
  • Xd ⁇ 0.85 is 46.8 ⁇ m
  • Xd ⁇ 1.15 is 63.3 ⁇ m ( ⁇ 15% of the inter-dot distance Xd is 46.8 to 63.3 ⁇ m).
  • the inter-dot distance Yda at which the cumulative distribution is 5% is 51 ⁇ m and the inter-dot distance Ydb at which the cumulative distribution is 95% is 59 ⁇ m.
  • Equation (4) is not satisfied.
  • the present invention greatly reduces the color unevenness of the background caused by the light transmitted through the transparent screen becoming diffracted light due to the dots 16, and the image is displayed on the transparent screen. Even when there is a light source on the background side in a state where no is displayed (during non-projection), an appropriate background without color unevenness caused by the dots 16 can be observed.
  • the dot 16 (dot arrangement) only needs to satisfy at least one of the above formulas (1) to (4), but at least the formulas (3) and ( 4) is preferably satisfied, more preferably at least both the expressions (3) and (4) regarding the inter-dot distance are satisfied, and particularly all of the expressions (1) to (4) are satisfied. preferable.
  • the measurement of whether the dot area and the inter-dot distance satisfy the equations (1) to (4) is performed using an optical microscope, a laser microscope, a scanning electron microscope (SEM), and a transmission electron.
  • SEM scanning electron microscope
  • TEM microscope
  • image a region containing 50 or more dots 16 in one screen and measure the dot area and inter-dot distance with 20 or more randomly selected dots.
  • a cumulative distribution diagram with the dot area as the horizontal axis and a cumulative distribution diagram with the distance between dots as the horizontal axis may be created and performed.
  • the number of dots to be measured is larger for both the dot area and the inter-dot distance.
  • an area including 50 or more dots 16 is imaged in a plurality of non-overlapping areas, and similarly, using a plurality of micrographs, similarly, a cumulative distribution with the dot area as the horizontal axis.
  • a cumulative distribution diagram with the horizontal axis representing the distance between dots may be created.
  • the average distance between dots is preferably 10 to 100 ⁇ m, and more preferably 20 to 80 ⁇ m. Furthermore, in the transparent screen 12 of the present invention, the average diameter of the dots 16 is preferably 10 to 100 ⁇ m, and more preferably 20 to 80 ⁇ m.
  • the diameter of the dot 16 is a straight line from an end (dot edge or boundary) to an end in an image obtained by a microscope such as a laser microscope, a scanning electron microscope, or a transmission electron microscope, It can be obtained by measuring the length of a straight line passing through the center of the dot 16.
  • a microscope such as a laser microscope, a scanning electron microscope, or a transmission electron microscope
  • the diameter of this circle C is the dot diameter.
  • the shape of the dot when viewed from the normal direction of the support is the shape of the dot at the interface between the dot 16 and the support 14.
  • the average diameter is obtained by measuring the diameters of 20 randomly selected dots in the above-mentioned image in which the dot area and the inter-dot distance are measured, and calculating the arithmetic average of them.
  • the height of the dot 16 can be confirmed from a cross-sectional view of the dot 16 obtained using a focus position scan by a laser microscope or a microscope such as SEM or TEM.
  • the average maximum height of the dots 16 is preferably 5 to 30 ⁇ m, more preferably 8 to 25 ⁇ m, and even more preferably 10 to 20 ⁇ m.
  • the transparent screen 12 has an overcoat layer 18 that embeds the dots 16 and is laminated on the support 14.
  • the overcoat layer 18 may be provided on the side of the support 14 on which the dots 16 are formed, and the surface of the transparent screen 12 is preferably flattened.
  • the refractive index of the overcoat layer 18 is not particularly limited, but the smaller the difference from the refractive index of the dots 16, the better. Specifically, the difference between the average refractive index of the dots 16 and the refractive index of the overcoat layer 18 is preferably 0.1 or less, and more preferably 0.04 or less. Since the refractive index of the dots 16 is generally about 1.6, a resin layer having a refractive index of about 1.5 to 1.7 is preferable. In the following description, the difference between the average refractive index of the dots 16 and the refractive index of the overcoat layer 18 is also referred to as “the difference in refractive index between the dots 16 and the overcoat layer 18”.
  • the difference in refractive index between the dots 16 and the overcoat layer 18 By making the difference in refractive index between the dots 16 and the overcoat layer 18 to be 0.1 or less, the effect of suppressing the color unevenness of the background when the random dots 16 are not displaying an image can be increased. Moreover, the haze of the transparent screen 12 can also be reduced. Furthermore, by using the overcoat layer 18 having a refractive index close to the refractive index of the dot 16, the angle (polar angle) from the normal line of the light incident on the dot can be reduced. For example, when the overcoat layer 18 having a refractive index of 1.6 is used and light is incident on the transparent screen 12 at a polar angle of 45 °, the polar angle actually incident on the dots can be about 27 °.
  • the overcoat layer 18 may have a function as an antireflection layer or a hard coat layer.
  • the overcoat layer 18 examples include a resin layer obtained by applying a composition containing a monomer to the surface of the support 14 on which the dots are formed, and then curing the coating film.
  • the resin used for the overcoat layer 18 is not particularly limited and may be selected in consideration of the adhesion to the support 14 and the dots 16.
  • a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like can be used. From the viewpoint of durability, solvent resistance, etc., a resin of a type that is cured by crosslinking is preferable, and an ultraviolet curable resin that can be cured in a short time is particularly preferable.
  • Monomers that can be used to form the overcoat layer 18 include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone, polymethylolpropane tri (meth) acrylate, hexanediol (meta ) Acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl Examples include glycol di (meth) acrylate.
  • the thickness of the overcoat layer 18 is not particularly limited and may be determined in consideration of the maximum dot height, may be about 5 to 100 ⁇ m, preferably 10 to 50 ⁇ m, more preferably 20 to 40 ⁇ m. The thickness is the distance from the dot-forming surface of the support where there are no dots to the surface of the overcoat layer on the opposite surface.
  • the image display system 10 shown in FIG. 2 includes a transparent screen 12 on which such dots 16 are randomly formed, and a projector 24.
  • the projector 24 is a projector that projects a green single-color image.
  • the projector 24 is a known projector that displays an image on the transparent screen 12 by performing keystone correction (distortion correction) as necessary and projecting projection light carrying the image onto the transparent screen 12. Accordingly, various projectors such as a DLP (Digital Light Processing) projector, an LCOS (Liquid crystal on silicon) projector, and a laser projector can be used as the projector.
  • DLP Digital Light Processing
  • LCOS Liquid crystal on silicon
  • laser projector can be used as the projector.
  • the projector 24 is preferably a so-called short focus projector having a short focal length.
  • the image display system 10 of the present invention is preferably a so-called front projection type in which the convex side of the dots 16 of the transparent screen 12 is preferably arranged toward the projector 24 side, and an image is observed on the projector 24 side. Is preferred.
  • the projector 24 is arranged so that the incident angle of the light emitted from the projector 24 is 25 to 75 °, particularly 40 to 70 ° with respect to the normal line of the transparent screen 12. It is preferable to do this.
  • the transparent screen 12 of the present invention reflects light by dots formed by fixing a cholesteric liquid crystal phase.
  • the spiral axis of the cholesteric liquid crystal phase is a dot. And an angle in the range of 70-90 °.
  • the transparent screen 12 can reflect not only retroreflection but also various directions on the incident side of light, as shown in FIG.
  • the image display system 10 of the present invention is not projected from the normal direction of the transparent screen, but is arranged below the transparent screen, like a short focus projector, so that it is large relative to the normal of the projection screen. Even when light is projected at an angle, an image can be suitably viewed with a wide viewing angle.
  • the image display system 10 of the present invention is a front projection type, and the projector 24 is arranged near the transparent screen by setting the incident angle of the projector 24 to the normal line of the transparent screen 12 to 25 to 75 °.
  • the image display system can be reduced in size.
  • the optical path from the projector 24 to the observer can be turned back by a transparent screen, so the space for securing the necessary optical distance can be reduced, and the image display system can be further reduced. Can be downsized.
  • the green projection light carrying the image emitted from the projector 24 enters the transparent screen 12 and passes through the overcoat layer 18.
  • the dot 16 is a reflective dot that reflects green right circularly polarized light. Therefore, the green right circularly polarized light incident on the dot 16 is reflected by the dot 16 and a green single color image is displayed (projected) on the transparent screen 12.
  • the background of the green single color image emitted from the projector 24 is displayed via the transparent screen 12. Can also be observed.
  • the transparent screen 12 of the present invention is formed in a random state in which the dots 16 satisfy at least one of the expressions (1) to (4). Therefore, even if a fluorescent lamp or the like is present on the opposite side of the transparent screen 12 for the observer, the color of the background due to the light transmitted through the transparent screen becoming diffracted light due to the dots 16 Since unevenness can be suppressed, the observer can observe an appropriate background without color unevenness through the transparent screen 12.
  • FIG. 10 conceptually shows another example of the image display system of the present invention using another example of the transparent screen of the present invention.
  • the image display system 10 shown in FIG. 2 displays a green single-color image
  • the image display system 30 shown in FIG. 10 is a system that displays a color image.
  • Such an image display system 30 includes the transparent screen 32 of the present invention and the projector 34.
  • the transparent screen 32 includes a blue reflective laminate 36b, a green reflective laminate 36g, and a red reflective laminate 36r. Since the transparent member 32 shown in FIG. 10 uses many of the same members as those of the transparent screen 12 described above, the same members are denoted by the same reference numerals, and the following description mainly focuses on different parts. Further, in order to clearly show the configuration of the transparent screen 32, the support 14 is hatched in FIG.
  • the bonding layer can be made of various known materials as long as the target plate-shaped material (sheet-shaped material) can be bonded.
  • a bonding layer it has fluidity when bonded, and then becomes a solid, adhesive layer, or a gel-like (rubber-like) soft solid when bonded, and a gel-like layer after that.
  • It may be a layer made of a pressure-sensitive adhesive whose state does not change, or a layer made of a material having characteristics of both an adhesive and a pressure-sensitive adhesive.
  • the bonding layer is a known material used for bonding sheet-like materials in optical devices and optical elements, such as optical transparent adhesive (OCA (Optical Clear Adhesive)), optical transparent double-sided tape, and ultraviolet curable resin. What is necessary is just to use.
  • OCA optical Clear Adhesive
  • the blue reflective laminate 36b, the green reflective laminate 36g, and the red reflective laminate 36r are laminated instead of being bonded with a bonding layer, and held by a frame or a jig, etc.
  • a transparent screen may be configured.
  • the blue reflective laminate 36b is laminated on the support 14 so as to cover the support 14, the blue reflective dots 16b formed on one surface of the support 14, and the blue reflective dots 16b (arrangement of blue reflective dots 16b). And an overcoat layer 18.
  • the blue reflective dot 16b is a dot that reflects blue right circularly polarized light and transmits other light.
  • Such a blue reflective dot 16b is a dot formed by fixing the cholesteric liquid crystal phase described together with the dot 16.
  • the blue reflective dots 16b are formed so as to satisfy at least one of the equations (1) to (4), similarly to the dot 16 described above.
  • the green reflective laminate 36g is laminated on the support 14 so as to cover the support 14, the green reflective dots 16g formed on one surface of the support 14, and the green reflective dots 16g (arrangement of green reflective dots 16g). And an overcoat layer 18.
  • the green reflective dot 16g is the same as the dot 16 described above, which reflects green right circularly polarized light and transmits other light, which is formed by fixing a cholesteric liquid crystal phase. That is, the green reflective laminate 36g is the same as the transparent screen 12 shown in FIG.
  • the red reflective laminate 36r is laminated on the support 14 so as to cover the support 14, the red reflective dots 16r formed on one surface of the support 14, and the red reflective dots 16r (arrangement of the red reflective dots 16r). And an overcoat layer 18.
  • the red reflecting dot 16r is a dot that reflects the right-handed circularly polarized red light and transmits other light.
  • Such a red reflective dot 16r is a dot formed by fixing the cholesteric liquid crystal phase described above together with the dot 16.
  • the red reflective dot 16r is formed so as to satisfy at least one of the expressions (1) to (4).
  • the projector 34 is a known projector, similar to the projector 24 described above, except that it emits color projection light.
  • the projection light carrying the image emitted from the projector 24 first enters the blue reflective laminate 36b.
  • the blue reflective laminate 36b among the light transmitted through the overcoat layer 18, the light incident on the blue reflective dot 16b reflects only the blue right circularly polarized light, and other light is reflected by the blue reflective dot. 16b passes through and enters the green reflective laminate 36g.
  • the blue reflective laminate 36b light incident on other than the blue reflective dots 16b is transmitted through the blue reflective laminate 36b and enters the green reflective laminate 36g.
  • the light incident on the green reflective laminate 36g and transmitted through the overcoat layer 18 reflects only green right circularly polarized light, and the other light is green.
  • the light passes through the reflective dots 16g and enters the red reflective laminate 36r.
  • light incident on other than the green reflective dots 16g passes through the green reflective laminate 36g and enters the red reflective laminate 36r.
  • the light that has entered the red reflective laminate 36r and has passed through the overcoat layer 18 the light that has entered the red reflective dot 16r reflects only red, right-polarized light, and the other light is red.
  • the light passes through the reflective dot 16r and passes through the transparent screen 32.
  • light that has entered other than the red reflective dots 16r also passes through the red reflective laminate 36r and through the transparent screen 32.
  • a color image is displayed on the transparent screen 32 by the blue light reflected by the blue reflective dots 16b, the green light reflected by the green reflective dots 16g, and the red light reflected by the red reflective dots 16r.
  • the color image emitted by the projector 34 is displayed.
  • the background can also be observed through the transparent screen 32.
  • the transparent screen 32 of the present invention includes the blue reflective dot 16b of the blue reflective laminate 36b, the green reflective dot 16g of the green reflective laminate 36g, and the red reflective dot 16r of the red reflective laminate 36r.
  • the blue reflective dots 16b, the green reflective dots 16g, and the red reflective dots 16r are formed in a random state satisfying at least one of the formulas (1) to (4). Therefore, even if there is a fluorescent lamp or the like on the opposite side of the transparent screen 12, the light transmitted through the transparent screen is caused by the blue reflective dots 16b, the green reflective dots 16g, and the red reflective dots 16r. Since background color unevenness due to diffracted light can be suppressed, the observer can observe an appropriate background without color unevenness through the transparent screen 32.
  • each of the reflective dots of each laminate of the transparent screen shown in FIG. 10 reflects the right circularly polarized light and transmits the other, but the present invention is not limited to this, and the left circular A color image may be displayed using a laminate having reflective dots that reflect polarized light.
  • FIG. 10 displays a color image by laminating a layer having a blue reflective dot 16b, a layer having a green reflective dot 16g, and three layers having a red reflective dot 16r.
  • the invention is not limited to this.
  • a dot image is formed in one layer, and a color image is displayed by forming a layer having green reflective dots 16g and a red reflective dot 16r in this dot array. You may do it.
  • the transparent film of the present invention is used for a transparent screen for displaying a projected image projected by a projector.
  • the transparent film of the present invention is not limited to this and is used for various applications. Is available.
  • a dot that reflects right-circularly polarized light or left-circularly polarized light obtained by fixing a cholesteric liquid crystal phase in a state satisfying at least one of the expressions (1) to (4) is image-like, that is, an image (picture ) And / or a dot pattern similar to a character, it is usually transparent and can be a transparent poster that displays an image in a state in which the background can be observed by light irradiation.
  • dots are formed at the positions of the pattern.
  • it is usually transparent, and by irradiating light, the light is reflected by the dots, and a transparent poster displaying A, B and C can be produced.
  • a transparent poster can display an arbitrary character or image (picture) depending on the dot formation position.
  • the dot pattern is changed for each color, and a support (laminated body) on which dots of each color are formed is laminated like a transparent screen 32 shown in FIG. Color transparent posters) may be produced.
  • a color image may be formed by changing the dot pattern for each color in a single layer dot arrangement.
  • Such a transparent poster can be produced by drawing with dots, such as an inkjet. Therefore, image-like dots may be formed by ink jetting or printing as described above. In particular, inkjet is preferably used for the same reason as described above.
  • the light irradiating the transparent poster may be either a parallel light source or a diffuse light source, but a diffuse light source is preferable in that it can prevent so-called hot spots.
  • the transparent film, the transparent screen and the image display system, and the transparent poster of the present invention have been described in detail.
  • the present invention is not limited to the above-described examples, and various types can be made without departing from the gist of the present invention. Of course, improvements and changes may be made.
  • a transparent PET film (Toyobo Co., Ltd., Cosmo Shine A4100) having a thickness of 75 ⁇ m that was rubbed in the longitudinal direction was prepared as the support 14.
  • the prepared underlayer solution was applied to the support 14 using a # 2.6 bar coater. Thereafter, the coating film was heated so that the coating film surface temperature became 50 ° C., dried for 60 seconds, and then irradiated with 500 mJ / cm 2 of ultraviolet rays by an ultraviolet irradiation device under a nitrogen purge with an oxygen concentration of 100 ppm or less. Irradiation was performed to advance the cross-linking reaction, and an underlayer was prepared. In addition, it was 0.8% when the haze value of the support body 14 in which the base layer was formed was measured.
  • the cholesteric liquid crystal ink liquid gR is a material that forms dots that reflect light having a central wavelength of 550 nm.
  • the cholesteric liquid crystal ink liquid gR is a material for forming dots that reflect right circularly polarized light. That is, the cholesteric liquid crystal ink liquid gR is a material for forming the green reflective dots 16g.
  • a cholesteric liquid crystal ink liquid rR was prepared in the same manner as the cholesteric liquid crystal ink liquid gR, except that the addition amount of the chiral agent A was 4.7 parts by mass. Further, a cholesteric liquid crystal ink liquid bR was prepared in the same manner as the cholesteric liquid crystal ink liquid gR except that the addition amount of the chiral agent A was 7.02 parts by mass.
  • the cholesteric liquid crystal ink liquid rR is a material for forming the red reflective dots 16r that reflect right circularly polarized light having a center wavelength of 650 nm.
  • the cholesteric liquid crystal ink liquid bR is a material for forming blue reflective dots 16b that reflect right circularly polarized light having a center wavelength of 450 nm.
  • ⁇ Preparation of green reflective laminate 36g> The prepared cholesteric liquid crystal ink liquid gR was loaded into an ink jet printer (Mimaki Engineering Co., Ltd., JV400SUV). At this time, by using the multi-drop function of this ink jet printer, the liquid volume per ink droplet is adjusted randomly in the range of 4 to 40 pl, and the ink droplet ejection interval is also adjusted randomly. The ink droplets were set to be ejected. Under this setting, the cholesteric liquid crystal ink liquid gR was entirely ejected onto the support 14 on which the underlayer was formed by an ink jet printer to form green reflective dots 16g (arrangement of green reflective dots).
  • ⁇ Dot Check Of the produced green reflective dots 16g, one green reflective dot 16g located at the center of the support 14 was cut perpendicularly to the support 14 on the surface including the center of the dot, and the cross section was scanned with a scanning electron microscope. Observed. As a result, a bright and dark stripe pattern as shown in FIGS. 3 and 4 was confirmed inside the dot. Further, as shown in FIG. 3 from the cross-sectional view, the dark portion of the dot is formed at the position where the angle ⁇ 1 with respect to the perpendicular (dotted line) on the surface of the support 14 passing through the center of the dot is 30 ° and 60 °.
  • the angles ⁇ 1 and ⁇ 2 formed by the normal direction of the line and the surface of the dot were measured. As conceptually shown in FIG. 12, the measurement is performed by the line formed by the outermost dark part of the dot (the line Ld 1 (dot end part) formed by the first dark part in FIG. 3) and the innermost dark part of the dot. A line (dot center) and a line formed by three dark portions (between the dot end portion and the center) formed by an intermediate dark portion between the dot end portion and the dot center were performed. As a result, they were 90 °, 89 °, and 90 ° in the order of the dot end, the dot end and the center, and the dot center.
  • the angle between the normal direction of the line formed by the dark part of the dot and the surface of the dot is almost the same whether the dot is near the dot surface, in the center of the dot (innermost), or in the middle part of the dot. Met.
  • the prepared overcoat coating solution 01 was applied onto a support 14 (underlayer) on which 16 g of green reflective dots were formed, using a # 8 bar coater. Then, after heating the coating film so that the coating surface temperature becomes 50 ° C. and drying for 60 seconds, the coating film is irradiated with UV light of 500 mJ / cm 2 by an UV irradiation device to allow the crosslinking reaction to proceed. The coating layer 18 was produced and the green reflective laminated body 36g was produced.
  • a blue reflective laminate 36b was produced in the same manner as the green reflective laminate 36g, except that the cholesteric liquid crystal ink liquid gR was changed to the cholesteric liquid crystal ink liquid bR. Further, a red reflective laminate 36r was produced in the same manner as the green reflective laminate 36g except that the cholesteric liquid crystal ink liquid gR was changed to a cholesteric liquid crystal ink liquid rR.
  • FIG. 13 shows a photomicrograph of the green reflective laminate 36g. From the photographed micrographs, 60 reflective dots were randomly selected, the areas of the selected reflective dots were calculated, arranged in ascending order of area, and a cumulative distribution diagram with the area as the horizontal axis was prepared. In addition, from the photographed micrograph, 60 reflective dots are randomly selected, the inter-dot distance between each selected reflective dot and the closest reflective dot is measured, and the inter-dot distances are arranged in ascending order. A cumulative distribution map with the distance between the horizontal axes was prepared.
  • the upper part of FIG. 14 shows a cumulative distribution diagram of dot areas
  • the lower part of FIG. 14 shows a cumulative distribution diagram of inter-dot distances.
  • the cumulative distribution chart was the same for the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r.
  • the cumulative distribution diagram of dot areas in the upper part of FIG. 14 is the same as the cumulative distribution diagram of dot areas shown in FIG. That is, the dot area Xs at which the cumulative distribution is 50% is 420 ⁇ m 2 , Xs ⁇ 0.85 is 357 ⁇ m 2 , and Xs ⁇ 1.15 is 483 ⁇ m 2 .
  • the dot area Ysa at which the cumulative distribution is 5% is 295 ⁇ m 2
  • the dot area Ysb at which the cumulative distribution is 95% is 1450 ⁇ m 2 . Therefore, this reflective laminate satisfies both the formulas (1) and (2).
  • the refractive index difference between the reflective dots (average refractive index) and the overcoat layer 18 was measured using an Abbe refractometer (NAR-4T, manufactured by Atago Co., Ltd.). As a result, the refractive index difference between the reflective dots and the overcoat layer 18 was 0.09.
  • Example 2 Except for the amount of KAYARAD DPCA-30 (manufactured by Nippon Kayaku Co., Ltd.) being 45 parts by mass and the amount of Compound L being 55 parts by mass, the overcoat coating solution 01 in Example 1 was similarly applied. Liquid 02 was prepared. A green reflective laminate 36g, a blue reflective laminate 36b, and a red reflective laminate 36r were prepared in the same manner as in Example 1 except that this overcoat coating solution 02 was used instead of the overcoat coating solution 01.
  • Example 1 When the dot area and the inter-dot distance were measured in the same manner as in Example 1, the obtained cumulative distribution of the dot area and inter-dot distance was the same as in Example 1, that is, the green reflective laminate 36g and the blue reflective Both the laminated body 36b and the red reflective laminated body 36r satisfy the expressions (1) to (4). Moreover, when the difference in refractive index between the reflective dot and the overcoat layer 18 was measured in the same manner as in Example 1, the refractive index difference was 0.04.
  • Example 2 a transparent screen was produced in the same manner as in Example 1 using the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r.
  • Example 3 Except that the amount of KAYARAD DPCA-30 (manufactured by Nippon Kayaku Co., Ltd.) was 40 parts by mass and the amount of compound L was 60 parts by mass, the overcoat coating solution 01 in Example 1 was similarly applied. Liquid 03 was prepared. A green reflective laminate 36g, a blue reflective laminate 36b, and a red reflective laminate 36r were produced in the same manner as in Example 1 except that this overcoat coating solution 03 was used instead of the overcoat coating solution 01.
  • Example 1 When the dot area and the inter-dot distance were measured in the same manner as in Example 1, the obtained cumulative distribution of the dot area and inter-dot distance was the same as in Example 1, that is, the green reflective laminate 36g and the blue reflective Both the laminated body 36b and the red reflective laminated body 36r satisfy the expressions (1) to (4). Moreover, when the difference in refractive index between the reflective dots and the overcoat layer 18 was measured in the same manner as in Example 1, the difference in refractive index was 0.02.
  • Example 2 a transparent screen was produced in the same manner as in Example 1 using the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r.
  • Example 4 Except that the amount of liquid per ink droplet was changed from random adjustment in the range of 4 to 40 pl to random adjustment in the range of 4 to 20 pl when forming the reflective dots by the ink jet printer. 3, green reflective dots 16g, blue reflective dots 34b, and red reflective dots 16r were formed to produce a green reflective laminate 36g, a blue reflective laminate 36b, and a red reflective laminate 36r.
  • Example 1 Similarly to Example 1, a micrograph was taken to produce a cumulative distribution diagram of dot area and inter-dot distance.
  • FIG. 15 shows a micrograph of the green reflective laminate 36g. Also, the upper part of FIG. 16 shows a cumulative distribution of dot areas, and the lower part of FIG. 16 shows a cumulative distribution of inter-dot distances.
  • the cumulative distribution chart was the same for the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r.
  • the dot area Xs at which the cumulative distribution is 50% is 605 ⁇ m 2
  • Xs ⁇ 0.85 is 514.3 ⁇ m 2
  • Xs ⁇ 1.15 is 695.8 ⁇ m 2
  • the dot area Ysa at which the cumulative distribution is 5% is 250 ⁇ m 2
  • the dot area Ysb at which the cumulative distribution is 95% is 1900 ⁇ m 2 . Therefore, the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r satisfy both the expressions (1) and (2). Further, as shown in the lower part of FIG.
  • the inter-dot distance Xd at which the cumulative distribution is 50% is 54 ⁇ m, so Xd ⁇ 0.85 is 45.9 ⁇ m and Xd ⁇ 1.15 is 62.1 ⁇ m.
  • the inter-dot distance Yda at which the cumulative distribution is 5% is 42 ⁇ m, and the inter-dot distance Ydb at which the cumulative distribution is 95% is 67 ⁇ m. Accordingly, the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r satisfy both the expressions (3) and (4).
  • Example 2 a transparent screen was produced in the same manner as in Example 1 using the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r.
  • Example 5 Except that the amount of liquid per ink droplet was changed from random adjustment in the range of 4 to 40 pl to random adjustment in the range of 4 to 12 pl when forming the reflective dots by the ink jet printer. 3, green reflective dots 16g, blue reflective dots 34b, and red reflective dots 16r were formed to produce a green reflective laminate 36g, a blue reflective laminate 36b, and a red reflective laminate 36r.
  • Example 1 Similarly to Example 1, a micrograph was taken to produce a cumulative distribution diagram of dot area and inter-dot distance.
  • FIG. 17 shows a micrograph of the green reflective laminate 36g. Also, the upper part of FIG. 18 shows a cumulative distribution of dot areas, and the lower part of FIG. 18 shows a cumulative distribution of inter-dot distances.
  • the cumulative distribution chart was the same for the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r.
  • the dot area Xs at which the cumulative distribution is 50% is 650 ⁇ m 2
  • Xs ⁇ 0.85 is 552.5 ⁇ m 2
  • Xs ⁇ 1.15 is 747.5 ⁇ m 2
  • the dot area Ysa at which the cumulative distribution is 5% is 460 ⁇ m 2
  • the dot area Ysb at which the cumulative distribution is 95% is 1405 ⁇ m 2 . Therefore, the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r satisfy both the expressions (1) and (2). Also, as shown in the lower part of FIG.
  • the inter-dot distance Xd at which the cumulative distribution is 50% is 54 ⁇ m, so Xd ⁇ 0.85 is 45.9 ⁇ m and Xd ⁇ 1.15 is 62.1 ⁇ m.
  • the inter-dot distance Yda at which the cumulative distribution is 5% is 42 ⁇ m, and the inter-dot distance Ydb at which the cumulative distribution is 95% is 68 ⁇ m. Accordingly, the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r satisfy both the expressions (3) and (4).
  • Example 2 a transparent screen was produced in the same manner as in Example 1 using the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r.
  • Example 2 Similarly to Example 1, a micrograph was taken to produce a cumulative distribution diagram of dot area and inter-dot distance.
  • FIG. 19 shows a micrograph of the green reflective laminate 36g. Further, the upper part of FIG. 20 shows a cumulative distribution diagram of dot areas, and the lower part of FIG. 20 shows a cumulative distribution diagram of inter-dot distances.
  • the cumulative distribution chart was the same for the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r.
  • the cumulative distribution diagram of the dot area in the upper part of FIG. 20 is the same as the cumulative distribution diagram of the dot area shown in FIG. That is, the dot area Xs cumulative distribution is 50% for 900 .mu.m 2, Xs ⁇ 0.85 is 765 ⁇ m 2, Xs ⁇ 1.15 is 1035 ⁇ m 2.
  • the dot area Ysa at which the cumulative distribution is 5% is 850 ⁇ m 2
  • the dot area Ysb at which the cumulative distribution is 95% is 940 ⁇ m 2 . Therefore, in this cumulative distribution diagram, the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r do not satisfy both the expressions (1) and (2).
  • the cumulative distribution diagram of the inter-dot distance in the lower stage of FIG. 20 is the same as the cumulative distribution diagram of the inter-dot distance shown in FIG. That is, since the inter-dot distance Xd at which the cumulative distribution is 50% is 55 ⁇ m, Xd ⁇ 0.85 is 46.8 ⁇ m, and Xd ⁇ 1.15 is 63.3 ⁇ m.
  • the inter-dot distance Yda at which the cumulative distribution is 5% is 51 ⁇ m, and the inter-dot distance Ydb at which the cumulative distribution is 95% is 59 ⁇ m. Therefore, in this cumulative distribution diagram, the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r do not satisfy the expressions (3) and (4).
  • the refractive index difference between the reflective dots and the overcoat layer 18 was measured in the same manner as in Example 1, the refractive index difference was 0.13.
  • Example 2 a transparent screen was produced in the same manner as in Example 1 using the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r.
  • Example 2 a transparent screen was produced in the same manner as in Example 1 using the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r.
  • the reflective dots do not satisfy the expressions (1) to (4), that is, the comparative examples 1 and 2 in which the reflective dots are regularly formed.
  • the transparent screen of the LED light source observed through the transparent screen suppresses large color unevenness and spread of the transmitted light of the laser beam, that is, when the background is observed through the transparent screen, Color unevenness occurs and the background cannot be observed properly.
  • the transparent screen of the present invention in which the reflective dots (reflective dot arrangement) satisfy the formulas (1) to (4), that is, the reflective dots are randomly formed is shown in Table 1 and the upper part of FIG.
  • the color unevenness of the LED light source observed through the transparent screen and the spread of the transmitted light of the laser light are suppressed, that is, the background can be properly observed through the transparent screen.
  • the haze of the transparent screen can be suppressed by reducing the difference in refractive index between the reflective dots and the overcoat layer.
  • Example 6 In the production of the red reflective laminate 36r of Example 3, the droplets of the cholesteric liquid crystal ink liquid rR forming the red reflective dots 16r were changed to A, B and C patterns as shown in the upper part of FIG. In the same manner as in Example 3, a red reflective laminate 36r was produced. Further, in the production of the blue reflective laminate 36b of Example 3, the droplets of the cholesteric liquid crystal ink liquid bR forming the blue reflective dots 16b were changed to A and C patterns as shown in the middle of FIG. A blue reflective laminate 36b was produced in the same manner as in Example 3.
  • a transparent poster was produced in the same manner as in Example 1 using the green reflective laminate 36g, the blue reflective laminate 36b, and the red reflective laminate 36r.
  • the produced transparent screen was irradiated with diffused light from a diffused light source. as a result.
  • the A, B, and C patterns in which B is red (hatched) and A and C are white are displayed.
  • Image display system 12 32, 100 Transparent screen 14, 104 Support 16, 16-1, 16-2, 102 dots 16b Blue reflective dots 16g Green reflective dots 16r Red reflective dots 18 Overcoat layers 24, 34 Projector 36b blue reflective laminate 36g green reflective laminate 36r red reflective laminate C circle O center an In, Ip light Ir reflected light Ld 1, Ld 2 dark portion Yd 1, Yd 2 distance between dots

Abstract

光を照射されない状態で、色ムラの無い背景を観察可能な透明フィルム、この透明フィルムを利用する透明スクリーンおよび画像表示システム、ならびに、透明ポスターの提供を課題とする。支持体と、支持体の表面にコレステリック液晶相を固定してなるドットを二次元的に配列してなるドット配列と、ドットを覆って支持体に積層されるオーバーコート層を有し、ドットの面積と間隔を、不規則にすることで、課題を解決する。

Description

透明フィルム、透明スクリーンおよび画像表示システムならびに透明ポスター
 本発明は、透明スクリーン等に利用される透明フィルム、この透明フィルムを利用する透明スクリーンおよび画像表示システム、ならびに、透明ポスターに関する。
 近年、投影型の表示装置を構成するスクリーンの一つとして、プロジェクターからの投影光を拡散および/または反射して画像を表示すると共に、表裏面からの光を透過する透明スクリーンが知られている。
 例えば、特許文献1には、投影型の液晶プロジェクションシステムとして、右または左円偏光の赤色光、緑色光および青色光を反射するコレステリック液晶を用いる透明スクリーンを用い、この透明スクリーンに投影する赤色光、緑色光および青色光をλ/4板によって右あるいは左円偏光に偏光することにより、透明スクリーンに照射される外部光の右または左円偏光成分を透過するようにした、投影型液晶プロジェクションシステムが記載されている。
特開平5-107660号公報
 ところで、透明スクリーンを用いる画像表示システムでは、プロジェクターが投影した画像を適正に可視像として表示できることはもちろん、画像を表示していない状態(画像の非投影時)には、透明スクリーンを介して、背景(透明スクリーンの向こう側)が好適に観察できるのが好ましい。
 本発明の目的は、例えば画像表示システムの透明スクリーンとして利用した際に、非画像表示時に透明スクリーンを介して背景を好適に観察できる透明フィルム、この透明フィルムを用いる、透明スクリーンおよび画像表示システム、ならびに、透明ポスターを提供することにある。
 この課題を解決するために、本発明の透明フィルムは、支持体と、支持体の一方の主面に形成される、コレステリック液晶相を固定してなるドットを二次元的に配列してなるドット配列と、ドット配列を覆って支持体に積層されるオーバーコート層と、を有し、
 ドットの面積を横軸にした累積分布図における、累積分布が50%となるドットの面積をXs、累積分布が5%となるドットの面積をYsa、および、累積分布が95%となるドットの面積をYsb、とし、
 ドットと、最も近接する他のドットとの距離であるドット間距離を横軸にした累積分布図における、累積分布が50%となるドット間距離をXd、累積分布が5%なるドット間距離をYda、および、累積分布が95%となるドット間距離をYdb、とし、さらに、
    Xs×0.85>Ysa ・・・ 式(1)
    Xs×1.15<Ysb ・・・ 式(2)
    Xd×0.85>Yda ・・・ 式(3)
    Xd×1.15<Ydb ・・・ 式(4)
とした際に、ドット配列が、式(1)~式(4)の少なくとも1つを満たすことを特徴とする透明フィルムを提供する。
 このような本発明の透明フィルムにおいて、ドットの平均屈折率と、オーバーコート層の屈折率との差が0.1以下であるのが好ましい。
 また、ドットが、断面において、明部と暗部との縞模様を与え、かつ、ドットの表面から1本目の暗部が成す線の法線と、ドットの表面とが成す角度が70~90°であるのが好ましい。
 また、ドットのドット間距離の平均が10~100μmであり、ドットの平均直径が10~100μmであるのが好ましい。
 さらに、ドットが、式(3)および式(4)の少なくとも一方を満たすのが好ましい。
 また、本発明の透明スクリーンは、本発明の透明フィルムからなる透明スクリーンを提供する。
 また、本発明の画像表示システムは、透明フィルムからなる透明スクリーンと、プロジェクターとを有する画像表示システムを提供する。
 さらに、本発明の透明ポスターは、本発明の透明フィルムからなり、ドット配列において、ドットが画像様に形成された透明ポスターを提供する。
 本発明によれば、例えば画像表示システムの透明スクリーンとして利用した際に、透明スクリーンを介して背景を好適に観察できる透明フィルム、この透明フィルムを用いる、非画像表示時に背景を好適に観察できる、透明スクリーンおよび画像表示システム、ならびに、透明ポスターが提供される。
図1は、本発明の透明スクリーンの一例を概念的に示す図である。 図2は、図1に示す透明スクリーンを用いる本発明の画像表示システムを概念的に示す図である。 図3は、図1に示す透明スクリーンのドットを説明するための概念図である。 図4は、図1に示す透明スクリーンのドットを説明するための概念図である。 図5は、図1に示す透明スクリーンのドットを説明するための概念図である。 図6は、本発明の透明スクリーンのドット面積の累積分布図である。 図7は、従来の透明スクリーンのドット面積の累積分布図である。 図8は、本発明の透明スクリーンのドット間距離の累積分布図である。 図9は、従来の透明スクリーンのドット間距離の累積分布図である。 図10は、本発明の画像表示システムの別の例を概念的に示す図である。 図11は、本発明の透明ポスターを説明するための概念図である。 図12は、本発明の実施例を説明するための概念図である。 図13は、本発明の透明スクリーンの実施例におけるドットである。 図14は、本発明の透明スクリーンの実施例における累積分布図である。 図15は、本発明の透明スクリーンの実施例におけるドットである。 図16は、本発明の透明スクリーンの実施例における累積分布図である。 図17は、本発明の透明スクリーンの実施例におけるドットである。 図18は、本発明の透明スクリーンの実施例における累積分布図である。 図19は、本発明の透明スクリーンの比較例におけるドットである。 図20は、本発明の透明スクリーンの比較例における累積分布図である。 図21は、本発明の透明スクリーンの実施例および比較例における透過光の図である。 図22は、本発明の透明ポスターの実施例を説明するための概念図である。 図23は、従来の透明スクリーンを説明するための概念図である。
 以下、本発明の透明フィルム、透明スクリーンおよび画像表示システム、ならびに、透明ポスターについて、添付の図面に示される好適実施例を基に詳細に説明する。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、例えば、「45°」、「平行」、「垂直」あるいは「直交」等の角度は、特に記載がなければ、厳密な角度との差異が5°未満の範囲内であることを意味する。厳密な角度との差異は、4°未満であるのが好ましく、3°未満であるのがより好ましい。
 本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
 本明細書において、「同一」は、技術分野で一般的に許容される誤差範囲を含むものとする。また、本明細書において、「全部」、「いずれも」または「全面」などというとき、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば99%以上、95%以上、または90%以上である場合を含むものとする。
 本明細書において、可視光は、電磁波のうち、ヒトの目で見える波長の光であり、380~780nmの波長域の光を示す。非可視光は、380nm未満の波長域または780nmを超える波長域の光である。
 またこれに限定されるものではないが、可視光のうち、420~490nmの波長域の光は青色光であり、495~570nmの波長域の光は緑色光であり、620~750nmの波長域の光は赤色光である。
 本明細書において、再帰反射は、入射した光が入射方向に反射される反射を意味する。
 本明細書において、「ヘイズ」は、日本電色工業株式会社製のヘーズメーターNDH-2000を用いて測定される値を意味する。
 理論上は、ヘイズは、以下式で表される値を意味する。
(380~780nmの自然光の散乱透過率)/(380~780nmの自然光の散乱透過率+自然光の直透過率)×100%
 散乱透過率は分光光度計と積分球ユニットを用いて、得られる全方位透過率から直透過率を差し引いて算出することができる値である。直透過率は、積分球ユニットを用いて測定した値に基づく場合、0°での透過率である。つまり、ヘイズが低いということは、全透過光量のうち、直透過光量が多いことを意味する。
 本明細書において、屈折率は、アッベ屈折計(NAR-4T、アタゴ社製)を使用し、光源にナトリウムランプ(λ=589nm)を用いて測定する。また、波長依存性を測定する場合は、多波長アッベ屈折計DR-M2(アタゴ社製)にて、干渉フィルタとの組合せで測定できる。
 また、屈折率は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することもできる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。
 本発明の透明フィルムは、支持体と、支持体の表面に形成される、コレステリック液晶相を固定してなるドットを二次元的に配列してなるドット配列と、ドット配列を覆って支持体に積層されるオーバーコート層と、を有するものであり、ドット配列において、ドットを後述するようにランダム(不規則)に形成するものである。
 また、本発明の透明スクリーンは、本発明の透明フィルムを用いる透明スクリーンであり、本発明の画像表示システムは、本発明の透明スクリーンとプロジェクターとを有するものである。さらに、本発明の透明ポスターは、本発明の透明スクリーンを用いるものでありドット配列のドットが画像様に形成、すなわち、ドットが何らかの絵柄に対応して形成されるものである。
 図1に本発明の透明フィルムによる本発明の透明スクリーンの一例と概念的に示す。また、図2に、この透明スクリーンを用いる本発明の画像表示システムの一例を概念的に示す。
 なお、図1は、本発明の透明スクリーン12を正面から見た際の概念図(正面図)であり、図2は、透明スクリーン12を側面すなわち正面と直交する方向(透明スクリーン12の面方向)に見た際の概念図である。本発明の透明スクリーン12を正面から見た際とは、言い換えれば、本発明の透明スクリーンを支持体14の法線方向(支持体14の垂線方向)から見た際である。
 図1および図2に示す例において、透明スクリーン12は、支持体14と、ドット配列を構成する、支持体14の一方の主面に二次元的に配列されたドット16と、ドット16(ドット16の配列)を覆って支持体14に積層されるオーバーコート層18と、を有して構成される。なお、本発明の構成を明確に示すために、図1では、透明スクリーン12の表面(支持体14と逆側の表面)となるオーバーコート層18は省略する。
 図2に示す画像表示システム10は、このような透明スクリーン12と、プロジェクター24とを有して構成される。画像表示システム10は、プロジェクター24が照射した画像を担持する投影光を、透明スクリーン12(後述するドット16)で反射することにより、透明スクリーン12に画像を表示する。
 ここで、画像表示システム10は、緑色の単色画像(緑色のモノクロ画像)を表示するシステムである。従って、透明スクリーン12は、緑色の光を反射するものであり、プロジェクター24は、緑色の単色画像(緑色のモノクロ画像)を透明スクリーン12に投影するものである。
 図1に示す透明スクリーン12は、支持体14と、ドット16と、オーバーコート層18とを有する。
 <支持体>
 透明スクリーン12の支持体14は、いずれも、後述するコレステリック液晶相を固定してなるドットであるドットを支持するものである。
 支持体14は、ドットが反射する光の波長において、光の反射率が低いのが好ましく、ドットが反射する光の波長において光を反射する材料を含んでいないのが好ましい。
 また、支持体14は可視光領域において、透明であるのが好ましい。また、支持体14は、着色していてもよいが、着色していないか、着色が少ないのが好ましい。さらに支持体14は屈折率が1.2~2.0程度であるのが好ましく、1.4~1.8程度であるのがより好ましい。
 なお、本明細書において透明というとき、具体的には波長380~780nmの非偏光透過率(全方位透過率)が50%以上であればよく、70%以上であるのが好ましく、85%以上であるのがより好ましい。
 また、支持体14のヘイズ値は、30%以下が好ましく、0.1~25%がより好ましく、0.1~10%がさらに好ましい。さらに、AG(アンチグレア)支持体のようにヘイズの高い支持体14を用いることで、透明性を悪化させ、正面輝度および視野角特性を良化させるような調節も可能となる。
 支持体14の厚さは、用途に応じて選択すればよく、特に限定されないが、5~1000μm程度であればよく、好ましくは10~250μmであり、より好ましくは15~150μmである。
 支持体14は単層であっても、多層であってもよい。単層である場合の支持体14としては、ガラス、トリアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリ塩化ビニル、アクリル、ポリオレフィン等からなる支持体が挙げられる。多層である場合の支持体14の例としては、前述の単層の支持体のいずれかなどを基板として含み、この基板の表面に他の層を設けたものなどが挙げられる。
 なお、支持体14と後述するドットとの間には、下地層を設けてもよい。下地層は樹脂層であるのが好ましく、透明樹脂層であるのがより好ましい。下地層の例としては、ドットを形成する際のドットの形状を調節するための層、支持体14とドットとの接着特性を改善するための層、ドット形成の際の重合性液晶化合物の配向を調節するための配向膜などが挙げられる。
 また、下地層は、ドットが反射する光の波長において、光の反射率が低いのが好ましく、ドットが反射する光の波長において光を反射する材料を含んでいないのが好ましい。また、下地層は透明であるのが好ましい。さらに下地層は屈折率が1.2~2.0程度であるのが好ましく、1.4~1.8程度であるのがより好ましい。下地層は、支持体表面に直接塗布された重合性化合物を含む組成物の硬化により得られた樹脂を含む層であることも好ましい。重合性化合物の例としては、(メタ)アクリレートモノマー、ウレタンモノマーなどの非液晶性の化合物が挙げられる。
 下地層の厚さは、特に限定されないが、0.01~50μmであるのが好ましく、0.05~20μmであるのがより好ましい。
 <ドット>
 透明スクリーン12において、ドット16は、一例として、緑色の右円偏光の光を反射し、それ以外の光を透過するドット(反射ドット)である。
 なお、本発明の透明スクリーンにおいて、ドットは、緑色の右円偏光の光を反射し、それ以外の光を透過するドット16に限定はされない。すなわち、本発明の透明スクリーン(透明フィルム)に用いられるドットは、青色の右円偏光の光を反射し、それ以外の光を透過するドットでもよく、赤色の右円偏光の光を反射し、それ以外の光を透過するドットでもよい。あるいは、ドットは、青色の左円偏光の光を反射し、それ以外の光を透過するドットでもよく、緑色の左円偏光の光を反射し、それ以外の光を透過するドットでもよく、赤色の左円偏光の光を反射し、それ以外の光を透過するドットでもよい。
 以下のドット16の説明は、これらの全てのドットに共通である。
 また、本発明の透明スクリーン(透明フィルム)は、青色の右円偏光の光を反射し、それ以外の光を透過するドットのドット配列と、緑色の右円偏光の光を反射し、それ以外の光を透過するドットのドット配列と、赤色の右円偏光の光を反射し、それ以外の光を透過するドットのドット配列とを有するものでもよい。
 あるいは、本発明の透明スクリーンは、青色の左円偏光の光を反射し、それ以外の光を透過するドットのドット配列と、緑色の左円偏光の光を反射し、それ以外の光を透過するドットのドット配列と、赤色の左円偏光の光を反射し、それ以外の光を透過するドットのドット配列とを有するものでもよい。
 この構成に関しては、後に詳述する。
 本発明において、ドットは、いずれの色を反射するドットでも、いずれの円偏光を反射するドットでも、コレステリック液晶相を固定してなるドットである。すなわち、ドットは、コレステリック構造を有する液晶材料からなるドットである。
 ここで、ドットとなるコレステリック液晶相は、走査型電子顕微鏡にて観測されるドットの断面において、明部と暗部との縞模様を与え、ドットの端部から中心に向かう方向で最大高さまで連続的に増加する高さを有する部位を含み、この部位において、支持体14と反対側のドットの表面から1本目の暗部が成す線の法線とドットの表面との成す角度は70~90°の範囲であるのが好ましい。
 この点については後に詳述する。
 ここで、透明スクリーン12におけるドット16の配置密度には特に限定はなく、後述するランダム(不規則)な配列の条件を満たすものであれば、透明スクリーン12に求められる拡散性(視野角)、および、透明性等に応じて適宜設定すればよい。
 ホットスポットが抑制できる、広い視野角が得られる、高い透明性を得られる等の観点と、製造時にドットの合一または欠損などの欠陥なく製造できる適切な密度等の観点から、支持体14の主面の法線方向から見た際の、支持体14に対するドットの面積率は、1~90.6%であるのが好ましく、2~50%であるのがより好ましく、4~30%であるのがさらに好ましい。
 なお、ドットの面積率は、レーザー顕微鏡、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)などの顕微鏡で得られる画像において、1×1mmの大きさの領域で面積率を測定し、例えば5箇所の平均値をドットの面積率とすればよい。
 本明細書において、ドットについて説明されるとき、その説明は、本発明の透明フィルムの中のすべてのドットについて適用できるが、説明されるドットを含む本発明の透明フィルムが、本技術分野で許容される誤差またはエラーなどにより同説明に該当しないドットを含むことを許容するものとする。
 ドット16は、支持体14の主面の法線方向から見たとき円形であるのが好ましく、例えば、半球状(略半球状)、球欠状(略球欠状)、球台形状、円錐状、円錐台状等の形状を有するドットである。以下の説明では、支持体14の主面の法線方向を、『支持体法線方向』とも言う。
 円形は正円でなくてもよく、略円形であればよい。ドット16について中心と言うときは、この円形の中心または重心を意味する。ドットは、平均的形状が円形であればよく、一部に円形に該当しない形状のドットが含まれていてもよい。
 <<ドットの光学的性質>>
 本発明の透明スクリーン(透明フィルム)において、ドットは、波長選択反射性を有する。具体的には、図示例のドット16は、緑色の光を反射する。しかしながら、本発明は、これに限定はされず、ドットは、赤色の光を反射するものでも、青色の光を反射するものでもよい。
 本発明の透明スクリーン12は、基本的に、プロジェクター24から出射される映像光による画像と、透明スクリーン12の裏面側の背景とを重畳して観察できるスクリーンとして使用されるので、ドットが選択反射性を示す光は、可視光であるのが好ましい。あるいは、ドットの反射波長は、プロジェクター24から出射される光の波長に従って選択されてもよい。
 前述のように、ドット16は、コレステリック液晶相を固定してなるドットである。
 ドット16が選択反射性を示す光の波長は、ドットを形成するコレステリック液晶相の螺旋ピッチを調節することにより調節(選択)できる。
 また、本発明の透明スクリーンにおいてドット16を形成するコレステリック液晶相は、後述するように螺旋軸方向が制御されている。そのため、ドット16に入射した光は、正反射だけでなく、種々の方向に反射される。
 ドット16は着色していてもよいが、着色していないか、着色が少ないのが好ましい。これにより、透明スクリーンの透明性を向上できる。
 <<コレステリック液晶相>>
 コレステリック液晶相は、特定の波長において選択反射性を示すことが知られている。選択反射の中心波長λは、コレステリック液晶相における螺旋構造のピッチP(=螺旋の周期)に依存し、コレステリック液晶相の平均屈折率nとλ=n×Pの関係に従う。そのため、この螺旋構造のピッチを調節することによって、ドット16の選択反射波長(選択反射中心波長)を調節することができる。コレステリック液晶相のピッチは、ドット16の形成の際、重合性液晶化合物と共に用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調節することによって所望のピッチを得ることができる。
 なお、ピッチの調節については富士フイルム研究報告No.50(2005年)p.60-63に詳細な記載がある。螺旋のセンスおよびピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。
 コレステリック液晶相は走査型電子顕微鏡によって観測されるドットの断面図において、明部と暗部との縞模様を与える。この明部と暗部の繰り返しの、明部2つおよび暗部2が、螺旋1ピッチに相当する。このことから、ピッチは、SEM断面図から測定することができる。ドットにおいては、上記縞模様の各線の法線がコレステリック液晶相の螺旋軸方向となる。
 なお、コレステリック液晶相の反射光は円偏光である。すなわち、本発明の透明スクリーン12において、ドット16は、右円偏光を反射する。反射光が右円偏光であるか左円偏光であるかは、コレステリック液晶相は螺旋の捩れ方向による。コレステリック液晶相による円偏光の選択反射は、コレステリック液晶相の螺旋の捩れ方向が右の場合は右円偏光を反射し、螺旋の捩れ方向が左の場合は左円偏光を反射する。
 図示例の透明スクリーン12においては、一例として、ドット16は右円偏光を反射するものであるので、ドット16は、右捩れのコレステリック液晶相を固定してなるドットである。
 なお、コレステリック液晶相の旋回の方向は、ドット16を形成する液晶化合物の種類または添加されるキラル剤の種類によって調節できる。
 また、選択反射を示す選択反射帯域(円偏光反射帯域)の半値幅Δλ(nm)は、コレステリック液晶相のΔnと螺旋のピッチPとに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯域の幅の制御は、Δnを調節して行うことができる。Δnは、ドット(右円偏光反射層および左円偏光反射層)を形成する液晶化合物の種類およびその混合比率、ならびに、配向固定時の温度により調節できる。反射波長帯域の半値幅は透明スクリーン12の用途に応じて調節され、例えば50~500nmであればよく、好ましくは100~300nmであればよい。
 コレステリック液晶相を固定してなるドット16は、断面において、明部と暗部との縞模様を与える。このようなコレステリック液晶相を固定してなるドット16は、走査型電子顕微鏡で観察される断面図で確認した際、支持体14と反対側のドット16の表面から1本目の暗部が成す線の法線と、支持体14と反対側のドットの表面とが成す角度が70~90°の範囲であるのが好ましい。
 以下の説明では、『支持体14と反対側のドットの表面』を、単に『ドットの表面』とも言う。
 図3にドット16の断面の概略図を示す。図3では、暗部が成す線を太線で示す。図3に示すように、1本目の暗部が成す線Ld1の法線(破線)と、ドット16の表面とが成す角度θ1が、70~90°であるのが好ましい。
 ここで、ドット16の表面の位置を、ドット16の中心を通る支持体14表面の垂線(一点鎖線)に対する角度α1で表したとき、角度α1が30°の位置および60°の位置において、ドット16の表面から1本目の暗部が成す線Ld1の法線とドット16の表面とが成す角度が70~90°の範囲であるのが好ましく、ドット16の表面の全ての位置において、ドット16の表面から1本目の暗部が成す線Ld1の法線とドット16の表面とが成す角度が70~90°の範囲であるのがより好ましい。
 すなわち、ドット16は、ドット16の表面の一部において上記角度を満たすもの、例えば、ドット16の表面の一部において断続的に上記角度を満たすものでなはく、連続的に上記角度を満たすものであるのが好ましい。なお、断面図において、ドット16の表面が曲線であるときは、暗部が成す線の法線とドット16の表面とが成す角度は、ドット16の表面の接線と法線とが成す角度を意味する。また、上記角度は鋭角で示されており、法線とドット16の表面とが成す角度を0~180°の角度で表すときの、70~110°の範囲を意味する。
 ドット16は、断面図において、ドット16の表面から2本目の暗部が成す線Ld2の法線とドット16の表面とが成す角度θ2が70~90°の範囲であるのが好ましく、ドット16の表面から3~4本目までの暗部が成す線が、いずれも、その法線とドット16の表面とが成す角度が70~90°の範囲であるのがより好ましく、ドット16の表面から5~12本目以上の暗部が成す線が、いずれも、その法線とドット16とが成す角度が70~90°の範囲であるのがさらに好ましい。
 さらに、この暗部が成す線の法線と、ドット16の表面とが成す角度は、80~90°であるのがより好ましく、85~90°であるのがさらに好ましい。
 このようなSEMによるドット16の断面図は、ドット16の表面において、コレステリック液晶相の螺旋軸が、ドット16の表面(その接線)と70~90°の範囲の角度を成すことを示している。
 このような構造により、ドット16に入射する光は、支持体14の法線方向に対して角度を有する方向から入射する光を、ドット16の表面において、コレステリック液晶相の螺旋軸方向と平行に近い角度で入射させることができる。そのため、ドット16に入射する光を様々な方向に反射させることができる。
 また、ドット16はコレステリック液晶相の螺旋軸を基準として、入射光を正反射させる。そのため、図4に概念的に示すように、支持体14の法線方向から入射する光Inに対して、ドット16の中心付近で反射される反射光Irは支持体の法線方向に平行に反射される。一方、ドット16の中心からずれた位置(コレステリック液晶相の螺旋軸が支持体14の法線方向に対して傾いている位置)では、反射光Irは支持体14の法線方向とは異なる方向に反射される。したがって、ドット16に入射する光を様々な方向に反射させることができ、広視野角化することができる。また、ドット16を透過する光Ipは、光Inと同方向に透過するので、透過光が散乱されることを抑制してヘイズを小さくすることができ、透明性を高くすることができる。
 また、支持体14の法線方向から入射する光を、全方位に反射できるのが好ましい。特に、正面輝度(ピーク輝度)の半分の輝度となる角度(半値角)が35°以上にでき、高い反射性を有することが好ましい。
 コレステリック液晶相の螺旋軸が、ドット16の表面と70~90°の範囲の角度を成すことにより、表面から1本目の暗部が成す線の法線方向と支持体の法線方向との成す角度は、上記高さが連続的に増加するにしたがって連続的に減少していることが好ましい。
 なお、断面図は、ドット16の端部から中心に向かう方向で最大高さまで連続的に増加する高さを有する部位を含む任意の方向の断面図であり、典型的にはドットの中心を含み支持体に垂直な任意の面の断面図であればよい。
 <<ドットの作製方法>>
 ドット16は、コレステリック液晶相をドット状に固定して得ることができる。
 コレステリック液晶相を固定した構造は、コレステリック液晶相となっている液晶化合物の配向が保持されている構造であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射、加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、外場または外力によって配向形態に変化を生じさせることない状態に変化した構造であればよい。
 なお、コレステリック液晶相を固定した構造においては、コレステリック液晶相の光学的性質が保持されていれば十分であり、液晶化合物は、液晶性を示さなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、液晶性を失っていてもよい。
 コレステリック液晶相を固定してなるドットの形成に用いる材料としては、一例として、液晶化合物を含む液晶組成物が挙げられる。液晶化合物は重合性液晶化合物であるのが好ましい。
 ドット16の形成に用いる液晶化合物を含む液晶組成物は、さらに界面活性剤を含むのが好ましい。また、ドット16の形成に用いる液晶組成物は、さらにキラル剤、重合開始剤を含んでいてもよい。
--重合性液晶化合物--
 重合性液晶化合物は、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物であるのが好ましい。
 コレステリック液晶相を形成する棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
 重合性液晶化合物は、重合性基を液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基がより好ましい。重合性基は種々の方法で、液晶化合物の分子中に導入できる。重合性液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。重合性液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および特開2001-328973号公報などに記載の化合物が含まれる。2種類以上の重合性液晶化合物を併用してもよい。2種類以上の重合性液晶化合物を併用すると、配向温度を低下させることができる。
 重合性液晶化合物の具体例としては、下記式(1)~(11)に示す化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
[化合物(11)において、X1は2~5(整数)である]
 また、上記以外の重合性液晶化合物としては、特開昭57-165480号公報に開示されているようなコレステリック相を有する環式オルガノポリシロキサン化合物等を用いることができる。さらに、前述の高分子液晶化合物としては、液晶を呈するメソゲン基を主鎖、側鎖、あるいは主鎖および側鎖の両方の位置に導入した高分子、コレステリル基を側鎖に導入した高分子コレステリック液晶、特開平9-133810号公報に開示されているような液晶性高分子、特開平11-293252号公報に開示されているような液晶性高分子等を用いることができる。
 また、液晶組成物中の重合性液晶化合物の添加量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、75~99.9質量%であるのが好ましく、80~99質量%であるのがより好ましく、85~90質量%であるのがさらに好ましい。
--界面活性剤--
 本発明者らは、ドット16を形成する際に用いる液晶組成物に界面活性剤を加えることにより、ドット形成時に重合性液晶化合物が空気界面側で水平に配向し、螺旋軸方向が上述のように制御されたドット16が得られることを見出した。
 一般的に、コレステリック液晶相を固定してなるドット16を形成するためには、印刷の際の液滴形状を保つため、表面張力を低下させない必要がある。そのため界面活性剤を加えてもドット16の形成が可能であり、かつ、多方向からの再帰反射性の高いドット16が得られたことは驚くべきことであった。本発明者らの検討によれば、界面活性剤を用いた場合、ドット16の端部で、ドット16の表面と支持体14とが成す角度が40°以上のドット16が形成されている。すなわち、ドット16を形成する際に界面活性剤を加えることにより、ドット16と支持体14との接触角を、広い視野角と、高い透明性とを両立することができる角度範囲に形成することができる。
 界面活性剤は、安定的にまたは迅速にプレーナー配向のコレステリック液晶相とするために寄与する配向制御剤として機能できる化合物が好ましい。界面活性剤としては、例えば、シリコ-ン系界面活性剤およびフッ素系界面活性剤が挙げられ、フッ素系界面活性剤が好ましく例示される。
 界面活性剤の具体例としては、特開2014-119605号公報の段落[0082]~[0090]に記載の化合物、特開2012-203237号公報の段落[0031]~[0034]に記載の化合物、特開2005-99248号公報の段落[0092]および[0093]中に例示されている化合物、特開2002-129162号公報の段落[0076]~[0078]および段落[0082]~[0085]中に例示されている化合物、特開2007-272185号公報の段落[0018]~[0043]等に記載のフッ素(メタ)アクリレート系ポリマー、などが挙げられる。
 なお、水平配向剤としては1種を単独で用いてもよいし、2種以上を併用してもよい。
 フッ素系界面活性剤として、特開2014-119605号公報の段落[0082]~[0090]に記載の下記一般式(I)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003
 一般式(I)において、L11、L12、L13、L14、L15、および、L16は、それぞれ独立して、単結合、-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-、-NRCO-、-CONR-(一般式(I)中におけるRは水素原子または炭素数が1~6のアルキル基を表す)を表し、-NRCO-、-CONR-は溶解性を減ずる効果があり、ドット作製時にヘイズが上昇する傾向があることからより好ましくは-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-であり、化合物の安定性の観点からさらに好ましくは-O-、-CO-、-COO-、-OCO-である。上記のRがとりうるアルキル基は、直鎖状であっても分枝状であってもよい。炭素数は1~3であるのがより好ましく、メチル基、エチル基、n-プロピル基を例示することができる。
 Sp11、Sp12、Sp13、および、Sp14は、それぞれ独立して、単結合または炭素数1~10のアルキレン基を表し、より好ましくは単結合または炭素数1~7のアルキレン基であり、さらに好ましくは単結合または炭素数1~4のアルキレン基である。但し、アルキレン基の水素原子はフッ素原子で置換されていてもよい。アルキレン基には、分枝が有っても無くてもよいが、好ましくは分枝がない直鎖のアルキレン基である。合成上の観点からは、Sp11とSp14が同一であり、かつ、Sp12とSp13が同一であるのが好ましい。
 A11、A12は1~4価の芳香族炭化水素基である。芳香族炭化水素基の炭素数は6~22であるのが好ましく、6~14であるのがより好ましく、6~10であるのがさらに好ましく、6であるのがさらにより好ましい。A11、A12で表される芳香族炭化水素基は置換基を有していてもよい。そのような置換基の例として、炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基またはエステル基を挙げることができる。これらの基の説明と好ましい範囲については、下記のTの対応する記載を参照することができる。A11、A12で表される芳香族炭化水素基に対する置換基としては、例えばメチル基、エチル基、メトキシ基、エトキシ基、臭素原子、塩素原子、および、シアノ基などを挙げることができる。パーフルオロアルキル部分を分子内に多く有する分子は、少ない添加量で液晶を配向させることができ、ヘイズ低下につながることから、分子内にパーフルオロアルキル基を多く有するようにA11、A12は4価であるのが好ましい。合成上の観点からは、A11とA12は同一であるのが好ましい。
 T11は、下記の
Figure JPOXMLDOC01-appb-C000004
で表される二価の基または二価の複素環基を表す(上記T11中に含まれるXは炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基またはエステル基を表し、Ya、Yb、Yc、Ydはそれぞれ独立して水素原子または炭素数1~4のアルキル基を表す)のが好ましく、より好ましくは、
Figure JPOXMLDOC01-appb-C000005
であり、さらに好ましくは、
Figure JPOXMLDOC01-appb-C000006
である。
 上記T11中に含まれるXがとりうるアルキル基の炭素数は1~8であり、1~5であるのが好ましく、1~3であるのがより好ましい。アルキル基は、直鎖状、分枝状、および、環状のいずれであってもよく、直鎖状または分枝状であるのが好ましい。好ましいアルキル基として、メチル基、エチル基、n-プロピル基、イソプロピル基などを例示することができ、その中でもメチル基が好ましい。上記T11中に含まれるXがとりうるアルコキシ基のアルキル部分については、上記T11中に含まれるXがとりうるアルキル基の説明と好ましい範囲を参照することができる。上記T11中に含まれるXがとりうるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができ、塩素原子、臭素原子が好ましい。上記T11中に含まれるXがとりうるエステル基としては、R’COO-で表される基を例示することができる。R’としては炭素数1~8のアルキル基を挙げることができる。R’がとりうるアルキル基の説明と好ましい範囲については、上記T11中に含まれるXがとりうるアルキル基の説明と好ましい範囲を参照することができる。エステルの具体例として、CH3COO-、C25COO-を挙げることができる。Ya、Yb、Yc、Ydがとりうる炭素数1~4のアルキル基は、直鎖状であっても分枝状であってもよい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基などを例示することができる。
 二価の複素環基は、5員、6員または7員の複素環を有することが好ましい。5員環または6員環がより好ましく、6員環がさらに好ましい。複素環を構成する複素原子としては、窒素原子、酸素原子および硫黄原子が好ましい。複素環基は、芳香族複素環基であるのが好ましい。複素環の例には、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環およびトリアジン環が含まれる。二価の複素環基は置換基を有していてもよい。そのような置換基の例の説明と好ましい範囲については、上記のA1とA2の1~4価の芳香族炭化水素が取り得る置換基に関する説明と記載を参照することができる。
 Hb11は炭素数2~30のパーフルオロアルキル基を表し、より好ましくは炭素数3~20のパーフルオロアルキル基であり、さらに好ましくは3~10のパーフルオロアルキル基である。パーフルオロアルキル基は、直鎖状、分枝状、および、環状のいずれであってもよいが、直鎖状または分枝状であるのが好ましく、直鎖状であるのがより好ましい。
 m11、n11はそれぞれ独立に0から3であり、かつm11+n11≧1である。このとき複数存在する括弧内の構造は互いに同一であっても異なっていてもよいが、互いに同一であるのが好ましい。一般式(I)のm11、n11は、A11、A12の価数によって定まり、好ましい範囲もA11、A12の価数の好ましい範囲によって定まる。
 T11中に含まれるoおよびpはそれぞれ独立に0以上の整数であり、oおよびpが2以上であるとき複数のXは互いに同一であっても異なっていてもよい。T11中に含まれるoは1または2であるのが好ましい。T11中に含まれるpは1~4のいずれかの整数であるのが好ましく、1または2であるのがより好ましい。
 一般式(I)で表される化合物は、分子構造が対称性を有するものであってもよいし、対称性を有しないものであってもよい。なお、ここでいう対称性とは、点対称、線対称、および、回転対称のいずれかひとつに少なくとも該当するものを意味し、非対称とは点対称、線対称、および、回転対称のいずれにも該当しないものを意味する。
 一般式(I)で表される化合物は、以上述べたパーフルオロアルキル基(Hb11)、連結基-(-Sp11-L11-Sp12-L12)m11-A11-L13-および-L14-A12-(L15-Sp13-L16-Sp14-)n11-、ならびに好ましくは排除体積効果を持つ2価の基であるTを組み合わせた化合物である。分子内に2つ存在するパーフルオロアルキル基(Hb11)は互いに同一であるのが好ましく、分子内に存在する連結基-(-Sp11-L11-Sp12-L12)m11-A11-L13-および-L14-A12-(L15-Sp13-L16-Sp14-)n11-も互いに同一であるのが好ましい。末端のHb11-Sp11-L11-Sp12-および-Sp13-L16-Sp14-Hb11は、以下のいずれかの一般式で表される基であるのが好ましい。
(Ca2a+1)-(Cb2b)-
(Ca2a+1)-(Cb2b)-O-(Cr2r)-
(Ca2a+1)-(Cb2b)-COO-(Cr2r)-
(Ca2a+1)-(Cb2b)-OCO-(Cr2r)-
 上式において、aは2~30であるのが好ましく、3~20であるのがより好ましく、3~10であるのがさらに好ましい。bは0~20であるのが好ましく、0~10であるのがより好ましく、0~5であるのがさらに好ましい。a+bは3~30である。rは1~10であるのが好ましく、1~4であるのがより好ましい。
 また、一般式(I)の末端のHb11-Sp11-L11-Sp12-L12-および-L15-Sp13-L16-Sp14-Hb11は、以下のいずれかの一般式で表される基であるのが好ましい。
(Ca2a+1)-(Cb2b)-O-
(Ca2a+1)-(Cb2b)-COO-
(Ca2a+1)-(Cb2b)-O-(Cr2r)-O-
(Ca2a+1)-(Cb2b)-COO-(Cr2r)-COO-
(Ca2a+1)-(Cb2b)-OCO-(Cr2r)-COO-
上式におけるa、bおよびrの定義は直上の定義と同じである。
 液晶組成物中における、界面活性剤の添加量は、重合性液晶化合物の全質量に対して0.01~10質量%が好ましく、0.01~5質量%がより好ましく、0.02~1質量%がさらに好ましい。
--キラル剤(光学活性化合物)--
 キラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル剤は、化合物によって誘起する螺旋の捩れ方向または螺旋ピッチが異なるため、目的に応じて選択すればよい。
 キラル剤としては、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN(Twisted Nematic)、STN(Super Twisted Nematic)用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、イソマンニド誘導体を用いることができる。
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であるのが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であるのが好ましく、不飽和重合性基であるのがより好ましく、エチレン性不飽和重合性基であるのがさらに好ましい。
 また、キラル剤は、液晶化合物であってもよい。
 キラル剤が光異性化基を有する場合には、塗布、配向後に活性光線などのフォトマスク照射によって、発光波長に対応した所望の反射波長のパターンを形成することができるので好ましい。光異性化基としては、フォトクロッミック性を示す化合物の異性化部位、アゾ基、アゾキシ基、シンナモイル基が好ましい。具体的な化合物として、特開2002-80478号公報、特開2002-80851号公報、特開2002-179668号公報、特開2002-179669号公報、特開2002-179670号公報、特開2002-179681号公報、特開2002-179682号公報、特開2002-338575号公報、特開2002-338668号公報、特開2003-313189号公報、特開2003-313292号公報に記載の化合物を用いることができる。
 キラル剤の具体例としては以下の式(12)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
式中、Xは2~5(整数)である。
 液晶組成物における、キラル剤の含有量は、重合性液晶化合物量の0.01モル%~200モル%が好ましく、1モル%~30モル%がより好ましい。
--重合開始剤--
 液晶組成物が重合性化合物を含む場合は、重合開始剤を含有しているのが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であるのが好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
 液晶組成物中の光重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1~20質量%であるのが好ましく、0.5~12質量%であるのがさらに好ましい。
--架橋剤--
 液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋剤の含有量は、液晶組成物の固形分質量に対して、3~20質量%が好ましく、5~15質量%がより好ましい。架橋剤の含有量が上記範囲内であれば、架橋密度向上の効果が得られやすく、コレステリック液晶相の安定性がより向上する。
--その他の添加剤--
 ドットの形成に、後述するインクジェット法を用いる場合には、一般的に求められるインク物性を得るために、液晶組成物には単官能重合性モノマーが含まれていてもよい。単官能重合性モノマーとしては、2-メトキシエチルアクリレート、イソブチルアクリレート、イソオクチルアクリレート、イソデシルアクリレート、オクチル/デシルアクリレート等が挙げられる。
 また、液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、金属酸化物微粒子等を、光学的性能等を低下させない範囲で添加することができる。
 液晶組成物は、ドットを形成する際には、液体として用いられることが好ましい。
 液晶組成物は溶媒を含んでいてもよい。溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
 有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルエチルケトン、メチルイソブチルケトン等のケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、エーテル類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が好ましい。上述の単官能重合性モノマーなどの上述の成分が溶媒として機能していてもよい。
 液晶組成物は、支持体14上にドット状に塗布されて、その後、硬化されドット16を形成する。
 ドット16を形成する際には、支持体14上への液晶組成物の塗布は、公知の方法で行えばよく、インクジェット法(液晶組成物の打滴)および印刷法が好適に例示される。印刷法は特に限定はされず、グラビア印刷法、フレキソ印刷法およびスクリーン印刷法が例示される。中でも、インク液滴の吐出量および/またはインク液滴の打滴位置を調節することで、後述するランダムなドット面積および/またはドット間距離を有するドット16を、好適に形成できる点で、インクジェット法が好ましい。なお、印刷法によるドット16のランダムな形成も、公知の印刷技術を応用して形成できる。
 支持体14上に塗布された液晶組成物は、必要に応じて乾燥または加熱され、その後、硬化され、ドットを形成する。この乾燥および/または加熱の工程で、液晶組成物中の重合性液晶化合物が配向していればよい。加熱を行う場合、加熱温度は、200℃以下が好ましく、130℃以下がより好ましい。
 配向させた液晶化合物は、さらに重合させればよい。重合は、熱重合、および、光照射による光重合のいずれでもよいが、光重合が好ましい。光照射は、紫外線を用いることが好ましい。照射エネルギーは、20~50J/cm2が好ましく、100~1,500mJ/cm2がより好ましい。光重合反応を促進するため、加熱条件下または窒素雰囲気下で光照射を実施してもよい。照射紫外線波長は250~430nmが好ましい。重合反応率は安定性の観点から、高いのが好ましく70%以上が好ましく、80%以上がより好ましい。
 重合反応率は、重合性の官能基の消費割合を、IR(赤外線)吸収スペクトルを用いて決定することができる。
 前述のように、本発明の透明スクリーン12は、プロジェクター24が投影した投影光を、このようなドット16によって反射することにより、画像を表示する。
 ここで、本発明の透明スクリーン12は、ドット16の面積、および/または、ドット16と最も近接する他のドット16との距離を、ランダム(不規則)にする。本発明は、このような構成を有することにより、画像を表示していない状態(画像の非投影時)において、透明スクリーン12を介して背景(透明スクリーンの向こう側)を観察した際に、色ムラのない、適正な背景の観察を可能にしている。
 プロジェクターが投影した画像を、透明スクリーンに形成したドットで反射して画像を表示する透明スクリーンでは、通常、画像を適正に表示するために、図23に示す透明スクリーン100ように、ドット102の面積(ドット102のサイズ)を均一にして、かつ、ドット102を格子状などのように規則的にして、支持体104にドット102を形成する。
 ところが、本発明者らの検討によれば、光を反射するドットをコレステリック液晶相を固定することによって形成した透明スクリーンでは、画像を表示していない状態で透明スクリーンの背景を観察すると、透明スクリーンを透過した光がドットによって回折された回折光のようになってしまい、その結果、観察される背景に色ムラ(輝度ムラ)を生じたような状態になってしまい、背景を適正に観察することができない。特に、背景側に蛍光灯や電球などの光源が有る場合には、光源の周辺に、光源からの光が拡散したような色ムラが顕著に生じてしまう(図21の下段参照)。
 また、このようなドットによる透過光の色ムラは、前述の図3に示すような、ドット16が、断面において、明部と暗部との縞模様を与え、かつ、表面から1本目の暗部が成す線Ld1の法線(破線)と、ドット16の表面とが成す角度θ1が、70~90°である場合には、特に顕著に生じる。
 このような透明スクリーンを透過した光がドット16に起因して回折光のようになってしまうことによる背景の色ムラは、ドットの配列に起因するモアレ、ドットや支持体等が有する色ムラ、透明スクリーン面内で反射率が異なることによる色ムラ、散乱の波長依存性に起因する色ムラなど、従来より周知の色ムラとは異なる現象であり、コレステリック液晶を固定してなるドットによって光を反射して画像を表示する透明スクリーン(透明フィルム)に特有の、新規な知見である。
 この問題を解決するために、本発明者らは、鋭意検討を重ねた。その結果、透明スクリーンのドット16を、規則的に形成するのではなく、ドット16をランダムに形成することにより、すなわち、ドット16の面積(ドット面積)、および、或るドット16と、このドット16に最も近接する他のドット16との距離(ドット間距離)を、ある程度、不均一にすることで、透明スクリーンを透過した光がドット16に起因して回折光のようになることによる背景の色ムラを大幅に低減できることを見出した。
 具体的には、本発明の透明スクリーン12は、ドット16の面積を横軸、ドットの累積分布(累積個数(累積度数)(%))を縦軸にした累積分布図における、累積分布(累積度数)が50%となるドット16の面積をXs、累積分布が5%となるドット16の面積をYsa、および、累積分布が95%となるドット16の面積をYsb、とし、
 或るドット16と、このドット16に最も近接する他のドット16との距離であるドット間距離を横軸にした累積分布図における、累積分布が50%となるドット間距離をXd、累積分布が5%となるドット間距離をYda、および、累積分布が95%となるドット間距離をYdb、とし、さらに、
    Xs×0.85>Ysa ・・・ 式(1)
    Xs×1.15<Ysb ・・・ 式(2)
    Xd×0.85>Yda ・・・ 式(3)
    Xd×1.15<Ydb ・・・ 式(4)
とした際に、ドット16(ドットの配列)が、式(1)~式(4)の少なくとも1つを満たす。
 言い換えれば、ドット16の面積を横軸にした累積分布図において、累積分布が50%となるドット面積Xsの-15%以内に、累積分布が5%となるドット面積Ysaが入らない条件をドット面積条件1、
 ドット16の面積を横軸にした累積分布図において、累積分布が50%となるドット面積Xsの+15%以内に、累積分布が95%となるドット面積Ysbが入らない条件をドット面積条件2、
 或るドット16と、このドット16に最も近接する他のドット16との距離であるドット間距離を横軸にした累積分布図において、累積分布が50%となるドット間距離Xdの-15%以内に、累積分布が5%となるドット間距離Ydaが入らない条件をドット間距離条件1、
 或るドット16と、このドット16に最も近接する他のドット16との距離であるドット間距離を横軸にした累積分布図において、累積分布が50%となるドット間距離Xdの+15%以内に、累積分布が95%となるドット間距離Ydbが入らない条件をドット間距離条件2、
 とした際に、本発明の透明スクリーン12は、ドット面積条件1、ドット面積条件2、ドット間距離条件1、および、ドット間距離条件2の、少なくとも1つを満たす。
 なお、本発明において、ドット16の面積とは、支持体14に接触する位置におけるドット16の面積であり、すなわち、ドット16と支持体14との界面におけるドット16の面積であり、すなわち、支持体法線方向から見た際のドットの面積である。
 また、本発明において、ドット間距離とは、図1において、ドット16-1のドット間距離Yd1、および、ドット16-2のドット間距離Yd2を例示するように、すなわちドット16の支持体14に接触する位置(ドット16と支持体14との界面、支持体法線方向から見た際)における、ドット16の中心と、このドット16に最も近接する他のドット16の中心との、ドットの中心間距離である。すなわち、ドット16が円形である場合には、円の中心と円の中心との距離がドット間距離となる。なお、ドット16が円形ではない場合には、図5に概念的に示すように、ドット16を内接する円Cを設定して、この円Cの中心Oをドット16の中心とすればよい。
 より具体的には、後述する実施例1の透明スクリーン(反射積層体)における、図6に示す、ドット16の面積を横軸にした累積分布図では、累積分布が50%となるドット面積Xsは420μm2であるので、Xs×0.85は357μm2、Xs×1.15は483μm2となる(ドット面積Xsの±15%は、357~483μm2)。この累積分布図において、累積分布が5%となるドット面積Ysaは295μm2で、累積分布が95%となるドット面積Ysbは1450μm2であるので、この透明スクリーンは、式(1)および式(2)を、共に満たす。
 他方、後述する比較例1の透明スクリーン(反射積層体)における、図7に示す、ドット16の面積を横軸にした累積分布図では、累積分布が50%となるドット面積Xsは900μm2であるので、Xs×0.85は765μm2、Xs×1.15は1035μm2となる(ドット面積Xsの±15%は、765~1035μm2)。この累積分布図において、累積分布が5%となるドット面積Ysaは850μm2で、累積分布が95%となるドット面積Ysbは940μm2であるので、この透明スクリーンは、式(1)および式(2)を、共に満たさない。
 同じく実施例1の透明スクリーン(反射積層体)において、図8に示す、ドット間距離を横軸にした累積分布図では、累積分布が50%となるドット間距離Xdは39μmであるので、Xd×0.85は33.2μm、Xd×1.15は44.9μmとなる(ドット間距離Xdの±15%は、33.2~44.9μm)。この累積分布図において、累積分布が5%となるドット間距離Ydaは26μmで、累積分布が95%となるドット間距離Ydbは57μmであるので、この透明スクリーンは、式(3)および式(4)を、共に満たす。
 他方、同じく比較例1の透明スクリーン(反射積層体)において、図9に示す、ドット間距離を横軸にした累積分布図では、累積分布が50%となるドット間距離Xdは55μmであるので、Xd×0.85は46.8μm、Xd×1.15は63.3μmとなる(ドット間距離Xdの±15%は、46.8~63.3μm)。ここで、この累積分布図において、累積分布が5%となるドット間距離Ydaは51μmで、累積分布が95%となるドット間距離Ydbは59μmであるので、この透明スクリーンは、式(3)および式(4)を、共に満たさない。
 本発明は、このような構成を有することにより、透明スクリーンを透過した光がドット16に起因して回折光のようになることで生じる背景の色ムラを大幅に低減して、透明スクリーンに画像を表示していない状態(非投影時)において、背景側に光源が有る場合でも、ドット16に起因する色ムラのない、適正な背景を観察できる。
 本発明の透明スクリーン12においては、ドット16(ドット配列)は、前述の式(1)~式(4)の少なくとも1つを満たせばよいが、少なくともドット間距離に関する式(3)および式(4)のいずれかを満たすのが好ましく、少なくともドット間距離に関する式(3)および式(4)の両者を満たすのがより好ましく、式(1)~式(4)の全てを満たすのが特に好ましい。
 本発明の透明スクリーン12において、ドット面積およびドット間距離が式(1)~式(4)を満たすか否かの測定は、光学顕微鏡、レーザー顕微鏡、走査型電子顕微鏡(SEM)および透過型電子顕微鏡(TEM)などを用い、1画面中でドット16が50個以上含まれる領域を撮影して、ドット面積およびドット間距離を測定することを、無作為に選択した20個以上のドットで行い、ドット面積を横軸とする累積分布図、および、ドット間距離を横軸とする累積分布図を作成して、行えばよい。
 なお、ドット面積およびドット間距離は、共に、計測するドットの数は多いほど好ましい。また、必要に応じて、ドット16が50個以上含まれる領域の撮影を、重複しない複数の領域で行って、複数枚の顕微鏡写真を用いて、同様に、ドット面積を横軸とする累積分布図、および、ドット間距離を横軸とする累積分布図を作成してもよい。
 本発明の透明スクリーン12において、ドット間距離の平均が10~100μmであるのが好ましく、20~80μmであるのがより好ましい。
 さらに、本発明の透明スクリーン12において、ドット16の平均直径が10~100μmであるのが好ましく、20~80μmであるのがより好ましい。
 ドット16の直径は、同様に、レーザー顕微鏡、走査型電子顕微鏡、透過型電子顕微鏡などの顕微鏡で得られる画像において、端部(ドットのへりまたは境界部)から端部までの直線であって、ドット16の中心を通る直線の長さを測定することにより得ることができる。
 支持体法線方向から見た際のドットの形状が円形以外の場合には、ドット16の中心と同様、図5に概念的に示すように、ドット16を内接する円Cを設定して、この円Cの直径をドットの直径とする。支持体法線方向から見た際のドットの形状とは、すなわち、ドット16と支持体14との界面におけるドットの形状である。
 平均直径は、ドット面積およびドット間距離を測定した上記画像において、無作為に選択した20個のドットの直径を上記方法により測定し、それらを算術平均して求める。
 ドット16の高さは、レーザー顕微鏡による焦点位置スキャン、またはSEMもしくはTEMなどの顕微鏡を用いて得られるドット16の断面図から確認することができる。
 ドット16の平均最大高さは、5~30μmが好ましく、8~25μmがより好ましく、10~20μmがさらに好ましい。
 <オーバーコート層>
 透明スクリーン12は、ドット16を包埋して、支持体14に積層されるオーバーコート層18を有する。
 オーバーコート層18は、支持体14のドット16が形成された面側に設けられていればよく、透明スクリーン12の表面を平坦化しているのが好ましい。
 オーバーコート層18の屈折率は、特に限定されないが、ドット16の屈折率との差が小さいほど好ましい。具体的には、ドット16の平均屈折率とオーバーコート層18の屈折率との差は、0.1以下であるのが好ましく、0.04以下であるのがより好ましい。ドット16の屈折率は、一般的に、1.6程度であるので、屈折率が1.5~1.7程度の樹脂層であるのが好ましい。
 以下の説明では、ドット16の平均屈折率とオーバーコート層18の屈折率との差を、『ドット16とオーバーコート層18との屈折率の差』とも言う。
 ドット16とオーバーコート層18との屈折率の差を0.1以下とすることにより、前述のランダムなドット16による、画像を表示していない状態における背景の色ムラの抑制効果を大きくできると共に、透明スクリーン12のヘイズも低減できる。
 さらに、ドット16の屈折率に近い屈折率を有するオーバーコート層18を用いることによって、ドットに入射する光の法線からの角度(極角)を小さくすることができる。例えば、屈折率が1.6のオーバーコート層18を用い、極角45°で透明スクリーン12に光を入射させたとき、ドットに実際に入射する極角は27°程度とすることができる。そのため、オーバーコート層18を用いることによっては透明スクリーン12が再帰反射性を示す光の極角を広げることが可能であり、ドットの表面と支持体14とが成す角度が小さい場合であっても、より広い範囲で、高い再帰反射性が得られる。また、オーバーコート層18は、反射防止層、ハードコート層としての機能を有していてもよい。
 オーバーコート層18の例としては、モノマーを含む組成物を、支持体14のドットが形成された面側に塗布し、その後、塗布膜を硬化して得られる樹脂層などが挙げられる。
 オーバーコート層18に利用される樹脂は、特に限定されず、支持体14やドット16との密着性などを考慮して選択すればよい。例えば、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等を用いることができる。耐久性、耐溶剤性等の点からは、架橋により硬化するタイプの樹脂が好ましく、特に、短時間での硬化が可能である紫外線硬化性樹脂が好ましい。オーバーコート層18の形成に用いることができるモノマーとしては、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。
 オーバーコート層18の厚さは、特に限定されず、ドットの最大高さを考慮して決定すればよく、5~100μm程度であればよく、好ましくは10~50μmであり、より好ましくは20~40μmである。厚さは、ドットが無い部分の支持体のドット形成表面から対向する面にあるオーバーコート層表面までの距離である。
 図2に示す画像表示システム10は、このようなドット16をランダムに形成した透明スクリーン12と、プロジェクター24とを有する。
 図2に示す画像表示システム10において、プロジェクター24は、緑色の単色画像を投影するプロジェクターである。
 プロジェクター24は、必要に応じて台形補正(歪み補正)を行って、画像を担持する投影光を透明スクリーン12に投影することにより、透明スクリーン12に画像を表示させる、公知のプロジェクターである。
 従って、プロジェクターは、DLP(Digital Light Processing)プロジェクター、LCOS(Liquid crystal on silicon)プロジェクターおよびレーザープロジェクター等の各種のプロジェクターが利用可能である。
 本発明の画像表示システム10においては、プロジェクター24は、焦点距離が短い、いわゆる短焦点プロジェクターを用いるのが好ましい。
 また、本発明の画像表示システム10は、透明スクリーン12のドット16の凸側をプロジェクター24側に向けて配置するのが好ましく、かつ、プロジェクター24側で画像を観察する、いわゆるフロント投影型であるのが好ましい。
 さらに、本発明の画像表示システム10は、透明スクリーン12の法線に対して、プロジェクター24からの出射光の入射角度が25~75°、特に40~70°となるように、プロジェクター24を配置するのが好ましい。
 前述のように、本発明の透明スクリーン12は、コレステリック液晶相を固定してなるドットによって光を反射するものであり、好ましくは、図2に示すように、コレステリック液晶相の螺旋軸が、ドットの表面と70~90°の範囲の角度を成す。これにより、透明スクリーン12は、図3に示すように、ドットに入射した光を、再帰反射のみならず、光の入射側の様々な方向に反射できる。
 そのため、本発明の画像表示システム10は、透明スクリーンの法線方向からの投影ではなく、短焦点プロジェクターのように、透明スクリーンの下方にプロジェクターを配置して、投影スクリーンの法線に対して大きな角度で光を投影しても、広い視野角で好適に画像を視認できる。
 従って、本発明の画像表示システム10は、フロント投影型にして、かつ、透明スクリーン12の法線に対するプロジェクター24の入射角度を25~75°とすることにより、プロジェクター24を透明スクリーンの近くに配置して、画像表示システムを小型化できる。加えて、フロント投影型とすることにより、プロジェクター24から観察者までの光路を透明スクリーンによる折り返しの光路にできるので、必要な光学距離を確保するための空間を小さくして、さらに画像表示システムを小型化できる。
 以上の点に関しては、後述する図10に示す画像表示システム30も、同様である。
 以下、図2に示す画像表示システム10の作用を説明する。
 プロジェクター24を駆動すると、プロジェクター24が出射した画像を担持する緑色の投影光は、透明スクリーン12に入射して、オーバーコート層18を透過する。
 前述のように、ドット16は、緑色の右円偏光の光を反射する反射ドットである。従って、ドット16に入射した緑色の右円偏光の光は、ドット16によって反射されて、透明スクリーン12に緑色の単色画像が表示(投影)される。
 また、ドット16以外の領域や、緑色の右円偏光以外の光は、透明スクリーン12を透過できるので、プロジェクター24が出射した緑色の単色画像が表示した状態で、透明スクリーン12を介して、背景も観察できる。
 プロジェクター24からの投影光の出射を止めると、透明スクリーン12には、何も表示されない、背景のみが観察される状態となる。
 ここで、本発明の透明スクリーン12は、前述のように、ドット16が、式(1)~式(4)の少なくとも1つを満たす、ランダムな状態で形成される。
 従って、観察者に対して、透明スクリーン12の逆側に蛍光灯等が存在しても、透明スクリーンを透過した光がドット16に起因して回折光のようになってしまうことによる背景の色ムラを抑制できるので、観察者は、透明スクリーン12を介して、色ムラの無い適正な背景を観察できる。
 図10に、本発明の透明スクリーンの別の例を用いる、本発明の画像表示システムの別の例を概念的に示す。
 図2に示す画像表示システム10は、緑色の単色画像を表示するものであるが、図10に示す画像表示システム30は、カラー画像を表示するシステムである。
 このような画像表示システム30は、本発明の透明スクリーン32と、プロジェクター34とを有する。
 透明スクリーン32は、青色反射積層体36bと、緑色反射積層体36gと、赤色反射積層体36rとを有する。
 図10に示す、透明スクリーン32は、前述の透明スクリーン12と同じ部材を多く用いているので、同じ部材には同じ符号を付し、以下の説明は、異なる部位を主に行う。また、透明スクリーン32の構成を明確に示すために、図10においては、支持体14に斜線を付している。
 なお、青色反射積層体36bと緑色反射積層体36g、および、緑色反射積層体36gと赤色反射積層体36rは、共に、図示しない貼合層によって貼り合わされている。
 本発明において、貼合層は、対象となる板状物(シート状物)を貼り合わせられる物であれば、公知の各種の材料からなるものが利用可能である。貼合層としては、貼り合わせる際には流動性を有し、その後、固体になる、接着剤からなる層でも、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない、粘着剤からなる層でも、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。従って、貼合層は、光学透明接着剤(OCA(Optical Clear Adhesive))、光学透明両面テープ、および、紫外線硬化型樹脂等の、光学装置および光学素子でシート状物の貼り合わせに用いられる公知のものを用いればよい。
 あるいは、貼合層で貼り合わせるのではなく、青色反射積層体36bと、緑色反射積層体36gと、赤色反射積層体36rとを積層して、枠体または治具等で保持して、本発明の透明スクリーンを構成してもよい。あるいは、オーバーコート層18を貼合層として作用させて、各反射積層体を貼り合わせてもよい。
 青色反射積層体36bは、支持体14と、支持体14の一方の表面に形成される青色反射ドット16bと、青色反射ドット16b(青色反射ドット16bの配列)を覆って支持体14に積層されるオーバーコート層18と、を有して構成される。
 青色反射ドット16bは、青色の右円偏光を反射し、それ以外の光を透過するドットである。このような青色反射ドット16bは、先にドット16と共に説明した、コレステリック液晶相を固定してなるドットである。
 また、青色反射ドット16bも、前述のドット16と同様、式(1)~式(4)の少なくとも1つを満たすように形成される。
 緑色反射積層体36gは、支持体14と、支持体14の一方の表面に形成される緑色反射ドット16gと、緑色反射ドット16g(緑色反射ドット16gの配列)を覆って支持体14に積層されるオーバーコート層18を有して構成される。
 緑色反射ドット16gは、コレステリック液晶相を固定してなる、緑色の右円偏光を反射し、それ以外の光を透過する、前述のドット16と同様の物である。すなわち、緑色反射積層体36gは、図1に示す透明スクリーン12と同様のものである。
 赤色反射積層体36rは、支持体14と、支持体14の一方の表面に形成される赤色反射ドット16rと、赤色反射ドット16r(赤色反射ドット16rの配列)を覆って支持体14に積層されるオーバーコート層18を有して構成される。
 赤色反射ドット16rは、赤色の右円偏光を反射し、それ以外の光を透過するドットである。このような赤色反射ドット16rは、先にドット16と共に説明した、コレステリック液晶相を固定してなるドットである。
 また、赤色反射ドット16rも、前述のドット16と同様、式(1)~式(4)の少なくとも1つを満たすように形成される。
 プロジェクター34は、カラーの投影光を出射する以外は、前述のプロジェクター24と同様、公知のプロジェクターである。
 以下、画像表示システム30の作用を説明する。
 プロジェクター34を駆動すると、プロジェクター24が出射した画像を担持する投影光は、まず、青色反射積層体36bに入射する。
 青色反射積層体36bにおいては、オーバーコート層18を透過した光のうち、青色反射ドット16bに入射した光は、青色の右円偏光の光のみが反射され、それ以外の光は、青色反射ドット16bを透過して、緑色反射積層体36gに入射する。また、青色反射積層体36bにおいて、青色反射ドット16b以外に入射した光は、青色反射積層体36bを透過して、緑色反射積層体36gに入射する。
 緑色反射積層体36gに入射して、オーバーコート層18を透過した光のうち、緑色反射ドット16gに入射した光は、緑色の右円偏光の光のみが反射され、それ以外の光は、緑色反射ドット16gを透過して、赤色反射積層体36rに入射する。また、緑色反射積層体36gにおいて、緑色反射ドット16g以外に入射した光は、緑色反射積層体36gを透過して、赤色反射積層体36rに入射する。
 赤色反射積層体36rに入射して、オーバーコート層18を透過した光のうち、赤色反射ドット16rに入射した光は、赤色の右円偏光の光のみが反射され、それ以外の光は、赤色反射ドット16rを透過して、透明スクリーン32を透過する。また、赤色反射積層体36rにおいて、赤色反射ドット16r以外に入射した光も、赤色反射積層体36rを透過して、透明スクリーン32を透過する。
 この青色反射ドット16bで反射された青色光、緑色反射ドット16gで反射された緑色光、および、赤色反射ドット16rで反射された赤色光によって、透明スクリーン32には、カラー画像が表示される。
 また、各反射ドット以外に入射した光、左円偏光の光、および、各反射ドットで反射されない波長の光は、透明スクリーン32を透過できるので、プロジェクター34が出射したカラー画像を表示した状態で、透明スクリーン32を介して、背景も観察できる。
 プロジェクター34からの投影光の出射を止めると、透明スクリーン32には、何も表示されない、背景のみが観察される状態となる。
 ここで、本発明の透明スクリーン32は、前述のように、青色反射積層体36bの青色反射ドット16b、緑色反射積層体36gの緑色反射ドット16g、および、赤色反射積層体36rの赤色反射ドット16rが、いずれも、式(1)~式(4)の少なくとも1つを満たす、ランダムな状態で形成される。
 従って、観察者に対して、透明スクリーン12の逆側に蛍光灯等が存在しても、透明スクリーンを透過した光が、青色反射ドット16b、緑色反射ドット16gおよび赤色反射ドット16rに起因して回折光のようになることによる背景の色ムラを抑制できるので、観察者は、透明スクリーン32を介して、色ムラの無い適正な背景を観察できる。
 なお、図10に示す透明スクリーンの各積層体の反射ドットは、いずれも、右円偏光を反射し、それ以外を透過するものであるが、本発明は、これに限定はされず、左円偏光を反射する反射ドットを有する積層体を用いて、カラー画像を表示するものでもよい。
 図10に示す例は、青色反射ドット16bを有する層、緑色反射ドット16gを有する層、および、赤色反射ドット16rを有する3つの層を積層することで、カラー画像を表示しているが、本発明は、これに限定はされない。
 例えば、図1および図2に示すように、ドット配列を1層にして、このドット配列に、緑色反射ドット16gを有する層、および、赤色反射ドット16rを形成することで、カラー画像を表示するようにしてもよい。
 以上の例は、本発明の透明フィルムを、プロジェクターが投影した投影画像を表示するための透明スクリーンに利用した例であるが、本発明の透明フィルムは、これに限定されず、各種の用途に利用可能である。
 例えば、式(1)~式(4)の少なくとも1つを満たす状態で、コレステリック液晶相を固定してなる、右円偏光または左円偏光を反射するドットを、画像様すなわち表示する画像(絵柄)および/または文字と同様のドットパターンに形成することで、通常は透明で、光の照射によって背景を観察可能な状態で画像を表示する透明ポスターとすることができる。
 一例として、図11に示すような、A、BおよびCを有する絵柄に応じて、この絵柄の位置にドットを形成する。これにより、通常は透明で、光を照射することにより、ドットによって光が反射されて、A、BおよびCを表示する透明ポスターを作製できる。
 このような透明ポスターは、ドットの形成位置によって、任意の文字や画像(絵柄)を表示できる。
 また、この際においては、ドットパターンを色毎に変えて作成し、各色のドットを形成した支持体(積層体)を、図10に示す透明スクリーン32のように積層することにより、カラー画像(カラーの透明ポスター)を作製してもよい。
 あるいは、1層のドット配列において、ドットパターンを色毎に変えて作成することで、カラー画像を形成してもよい。
 このように、光を照射することで文字や画像が見え、光を照射しない場合には透明であることから、拡張現実感を利用した演出が簡単にできる。
 このような透明ポスターは、例えばインクジェットのように、ドットによる描画を行うことで作製できる。従って、画像様のドットは、前述のように、インクジェットや印刷法によって、形成すればよい。特に、先と同様の理由で、インクジェットは好適に利用される。
 また、透明ポスターに照射する光は、平行光源でも拡散光源でも良いが、いわゆるホットスポットを防止できる点で、拡散光源が好ましい。
 以上、本発明の透明フィルム、透明スクリーンおよび画像表示システム、ならびに、透明ポスターについて詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、試薬、使用量、物質量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 [実施例1]
  <下地層の作製>
 下記に示す成分を、25℃に保温された容器中にて、攪拌、溶解させ、下地層溶液を調製した。
(下地層溶液)
   下記の棒状液晶化合物の混合物A   100質量部
   IRGACURE 819 (BASF社製)   3質量部
   下記の化合物A   0.6質量部
   メチルエチルケトン   932.4質量部
棒状液晶化合物の混合物A
Figure JPOXMLDOC01-appb-C000008
 数値は質量%である。また、Rは酸素で結合する基である。
化合物A
Figure JPOXMLDOC01-appb-C000009
 支持体14として、長手方向にラビング処理を施した厚さ75μmの透明なPETフィルム(東洋紡株式会社製、コスモシャインA4100)を用意した。
 この支持体14に、調製した下地層溶液を#2.6のバーコーターを用いて塗布した。その後、塗膜面温度が50℃になるように塗膜を加熱し、60秒間乾燥した後に、酸素濃度100ppm以下の窒素パージ下で、紫外線照射装置により、500mJ/cm2の紫外線を塗膜に照射して、架橋反応を進行させ、下地層を作製した。
 なお、下地層を形成した支持体14のヘイズ値を測定したところ、0.8%であった。
  <コレステリック液晶インク液gRの調製>
 下記に示す成分を、25℃に保温された容器中にて、攪拌、溶解させ、コレステリック液晶インク液gR(液晶組成物)を調製した。
  (液晶組成物)
   シクロペンタノン   139.6質量部
   前述の棒状液晶化合物の混合物A   100質量部
   IRGACURE 907 (BASF社製)   3.0質量部
   カヤキュアーDETX(日本化薬社製)   1質量部
   下記のキラル剤A   5.78質量部
   下記の界面活性剤   0.08質量部
キラル剤A
Figure JPOXMLDOC01-appb-C000010
界面活性剤
Figure JPOXMLDOC01-appb-C000011
 コレステリック液晶インク液gRは、中心波長550nmの光を反射するドットを形成する材料である。また、コレステリック液晶インク液gRは、右円偏光を反射するドットを形成する材料である。すなわち、コレステリック液晶インク液gRは、緑色反射ドット16gを形成するための材料である。
  <コレステリック液晶インク液rRおよびコレステリック液晶インク液bRの調製>
 キラル剤Aの添加量を4.7質量部とする以外は、コレステリック液晶インク液gRと同様にして、コレステリック液晶インク液rRを調製した。また、キラル剤Aの添加量を7.02質量部とする以外はコレステリック液晶インク液gRと同様にして、コレステリック液晶インク液bRを調製した。
 コレステリック液晶インク液rRは、中心波長650nmの右円偏光を反射する赤色反射ドット16rを形成するための材料である。また、コレステリック液晶インク液bRは、中心波長450nmの右円偏光を反射する青色反射ドット16b形成するための材料である。
  <緑色反射積層体36gの作製>
 調製したコレステリック液晶インク液gRを、インクジェットプリンター(ミマキエンジニアリング社製、JV400SUV)に装填した。
 この時、このインクジェットプリンターが有するマルチドロップ機能を用いて、インク液滴1滴あたりの液量を4~40plの範囲でランダムに調節し、かつ、インク液滴の打滴間隔もランダムに調節して、インク液滴に吐出するように設定した。
 この設定の下、インクジェットプリンターによって、コレステリック液晶インク液gRを、下地層を形成した支持体14に全面的に打滴して、緑色反射ドット16g(緑色反射ドットの配列)を形成した。
  <<ドットの確認>>
 なお、作製した緑色反射ドット16gのうち、支持体14の中央に位置する1つの緑色反射ドット16gについて、ドット中心を含む面で、支持体14に垂直に切削し、断面を走査型電子顕微鏡で観察した。その結果、ドット内部に図3および図4に示すような明部と暗部の縞模様が確認された。
 さらに、断面図から、図3に示すように、ドットの中心を通る支持体14の表面の垂線(一点鎖線)に対する角度α1が30°の位置および60°の位置において、ドットの暗部が成す線の法線方向と、ドットの表面とが成す角度θ1およびθ2を測定した。測定は、図12に概念的に示すように、ドットの最も外側の暗部が成す線(図3における1本目の暗部が成す線Ld1(ドット端部))、ドットの最も内側の暗部が成す線(ドット中央)、および、ドット端部とドット中央との中間の暗部が成す線(ドット端部と中央の間)の、3本の暗部が成す線に対して行った。
 その結果、ドット端部、ドット端部と中央の間、ドット中央の順に、90°、89°および90°であった。すなわち、このドットは、ドットの暗部が成す線の法線方向と、ドットの表面とが成す角度が、ドットの表面近傍でも、ドットの中央(最内部)でも、ドットの中間部でも、ほぼ同じであった。
  <オーバーコート層18の形成>
 下記に示す成分を、25℃に保温された容器中にて、攪拌、溶解させ、オーバーコート用塗布液01を調製した。
(オーバーコート用塗布液01)
   メチルエチルケトン   103.6質量部
   KAYARAD DPCA-30(日本化薬社製)   50質量部
   下記の化合物L   50質量部
   前述の化合物A   0.6質量部
   IRGACURE 127(BASF社製)   3質量部
化合物L
Figure JPOXMLDOC01-appb-C000012
 調製したオーバーコート用塗布液01を、緑色反射ドット16gを形成した支持体14(下地層)の上に、#8のバーコーターを用いて塗布した。
 その後、塗膜面温度が50℃になるように塗膜を加熱し、60秒間乾燥した後に、紫外線照射装置により、500mJ/cm2の紫外線を塗膜に照射し、架橋反応を進行させ、オーバーコート層18を作製し、緑色反射積層体36gを作製した。
  <青色反射積層体36bおよび赤色反射積層体36rの作製>
 コレステリック液晶インク液gRを、コレステリック液晶インク液bRに変更した以外は、緑色反射積層体36gと同様にして、青色反射積層体36bを作製した。
 また、コレステリック液晶インク液gRを、コレステリック液晶インク液rRに変更した以外は、緑色反射積層体36gと同様にして、赤色反射積層体36rを作製した。
  <<ドット面積およびドット間距離の測定>>
 作製した緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rについて、光学顕微鏡(ニコン社製、ECLIPSE)によって撮影した。撮影は、反射ドットが60個以上入るようにして行った。図13に、緑色反射積層体36gの顕微鏡写真を示す。
 撮影した顕微鏡写真より、60個の反射ドットを無作為に選択して、選択した各反射ドットの面積を算出し、面積の小さい順に並べて、面積を横軸とする累積分布図を作製した。また、撮影した顕微鏡写真より、60個の反射ドットを無作為に選択して、選択した各反射ドットと最も近接する反射ドットとのドット間距離を測定し、ドット間距離を小さい順に並べて、ドット間距離を横軸とする累積分布図を作製した。
 図14の上段にドット面積の累積分布図を、図14の下段にドット間距離の累積分布図を示す。なお、累積分布図は、緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rで、同一であった。
 図14の上段にドット面積の累積分布図は、前述の図6に示すドット面積の累積分布図と同様である。
 すなわち、累積分布が50%となるドット面積Xsは420μm2で、Xs×0.85は357μm2、Xs×1.15は483μm2である。また、累積分布が5%となるドット面積Ysaは295μm2で、累積分布が95%となるドット面積Ysbは1450μm2である。従って、この反射積層体は、式(1)および式(2)を共に満たす。
 また、図14の下段のドット間距離の累積分布図は、前述の図8に示すドット間距離の累積分布図と同様である。
 すなわち、累積分布が50%となるドット間距離Xdは39μmであるので、Xd×0.85は33.2μm、Xd×1.15は44.9μmである。また、累積分布が5%となるドット間距離Ydaは26μmで、累積分布が95%となるドット間距離Ydbは57μmである。従って、この反射積層体は、式(3)および式(4)も共に満たす。
 また、アッベ屈折計(アタゴ社製、NAR-4T)を用いて、反射ドット(平均屈折率)とオーバーコート層18との屈折率差を測定した。その結果、反射ドットとオーバーコート層18との屈折率差は0.09であった。
 <透明スクリーン32の作製>
 作製した緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rを、青色反射積層体36b、緑色反射積層体36g、および、赤色反射積層体36rの順で積層し、粘着剤(総研化学社製、SKダイン)を用いて貼り合わせ、図10に示すような透明スクリーンを作製した。
 [実施例2]
 KAYARAD DPCA-30(日本化薬社製)の量を45質量部、化合物Lの量を55質量部とした以外は、実施例1におけるオーバーコート用塗布液01を同様にして、オーバーコート用塗布液02を調製した。
 オーバーコート用塗布液01に変えて、このオーバーコート用塗布液02を用いた以外は、実施例1と同様に緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rを作製した。
 実施例1と同様にドット面積およびドット間距離を測定したところ、得られたドット面積およびドット間距離の累積分布図は、実施例1と同様であり、すなわち、緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rは、いずれも、式(1)~式(4)を満たすものであった。
 また、実施例1と同様に反射ドットとオーバーコート層18との屈折率差を測定したところ、屈折率差は0.04であった。
 次いで、この緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rを用いて、実施例1と同様に透明スクリーンを作製した。
 [実施例3]
 KAYARAD DPCA-30(日本化薬社製)の量を40質量部、化合物Lの量を60質量部とした以外は、実施例1におけるオーバーコート用塗布液01を同様にして、オーバーコート用塗布液03を調製した。
 オーバーコート用塗布液01に変えて、このオーバーコート用塗布液03を用いた以外は、実施例1と同様に緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rを作製した。
 実施例1と同様にドット面積およびドット間距離を測定したところ、得られたドット面積およびドット間距離の累積分布図は、実施例1と同様であり、すなわち、緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rは、いずれも、式(1)~式(4)を満たすものであった。
 また、実施例1と同様に反射ドットとオーバーコート層18との屈折率差を測定したところ、屈折率差は0.02であった。
 次いで、この緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rを用いて、実施例1と同様に透明スクリーンを作製した。
 [実施例4]
 インクジェットプリンターによる反射ドットの形成において、インク液滴1滴あたりの液量を、4~40plの範囲でのランダムな調節から、4~20plの範囲でのランダムな調節に変更した以外は、実施例3と同様にして、緑色反射ドット16g、青色反射ドット34bおよび赤色反射ドット16rを形成して、緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rを作製した。
 実施例1と同様に、顕微鏡写真を撮影してドット面積およびドット間距離の累積分布図を作製した。
 図15に、緑色反射積層体36gの顕微鏡写真を示す。また、図16の上段にドット面積の累積分布図を、図16の下段にドット間距離の累積分布図を示す。なお、累積分布図は、緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rで、同一であった。
 図16の上段に示すように、累積分布が50%となるドット面積Xsは605μm2であるので、Xs×0.85は514.3μm2、Xs×1.15は695.8μm2である。また、累積分布が5%となるドット面積Ysaは250μm2で、累積分布が95%となるドット面積Ysbは1900μm2である。従って、この緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rは、式(1)および式(2)を、共に満たす。
 また、図16の下段に示すように、累積分布が50%となるドット間距離Xdは54μmであるので、Xd×0.85は45.9μm、Xd×1.15は62.1μmである。また、累積分布が5%となるドット間距離Ydaは42μmで、累積分布が95%となるドット間距離Ydbは67μmである。従って、この緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rは、式(3)および式(4)も、共に満たす。
 次いで、この緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rを用いて、実施例1と同様に透明スクリーンを作製した。
 [実施例5]
 インクジェットプリンターによる反射ドットの形成において、インク液滴1滴あたりの液量を、4~40plの範囲でのランダムな調節から、4~12plの範囲でのランダムな調節に変更した以外は、実施例3と同様にして、緑色反射ドット16g、青色反射ドット34bおよび赤色反射ドット16rを形成して、緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rを作製した。
 実施例1と同様に、顕微鏡写真を撮影してドット面積およびドット間距離の累積分布図を作製した。
 図17に、緑色反射積層体36gの顕微鏡写真を示す。また、図18の上段にドット面積の累積分布図を、図18の下段にドット間距離の累積分布図を示す。なお、累積分布図は、緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rで、同一であった。
 図18の上段に示すように、累積分布が50%となるドット面積Xsは650μm2であるので、Xs×0.85は552.5μm2、Xs×1.15は747.5μm2である。また、累積分布が5%となるドット面積Ysaは460μm2で、累積分布が95%となるドット面積Ysbは1405μm2である。従って、この緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rは、式(1)および式(2)を、共に満たす。
 また、図18の下段に示すように、累積分布が50%となるドット間距離Xdは54μmであるので、Xd×0.85は45.9μm、Xd×1.15は62.1μmである。また、累積分布が5%となるドット間距離Ydaは42μmで、累積分布が95%となるドット間距離Ydbは68μmである。従って、この緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rは、式(3)および式(4)も、共に満たす。
 次いで、この緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rを用いて、実施例1と同様に透明スクリーンを作製した。
 [比較例1]
 KAYARAD DPCA-30(日本化薬社製)の量を60質量部、化合物Lの量を40質量部とした以外は、実施例1におけるオーバーコート用塗布液01を同様にして、オーバーコート用塗布液04を調製した。
 インクジェットプリンターによる反射ドットの形成において、インク液滴1滴あたりの液量を、4~40plの範囲でのランダムな調節から、4~8plの範囲でのランダムな調節に変更した以外は、実施例1と同様にして、緑色反射ドット16g、青色反射ドット34bおよび赤色反射ドット16rを形成し、さらに、オーバーコート用塗布液01に変えて、オーバーコート用塗布液04を用いた以外は、実施例1と同様にして、緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rを作製した。
 実施例1と同様に、顕微鏡写真を撮影してドット面積およびドット間距離の累積分布図を作製した。
 図19に、緑色反射積層体36gの顕微鏡写真を示す。また、図20の上段にドット面積の累積分布図を、図20の下段にドット間距離の累積分布図を示す。なお、累積分布図は、緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rで、同一であった。
 図20の上段にドット面積の累積分布図は、前述の図7に示すドット面積の累積分布図と同様である。
 すなわち、累積分布が50%となるドット面積Xsは900μm2で、Xs×0.85は765μm2、Xs×1.15は1035μm2である。また、累積分布が5%となるドット面積Ysaは850μm2で、累積分布が95%となるドット面積Ysbは940μm2である。従って、この累積分布図は、緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rは、式(1)および式(2)を、共に満たさない。
 また、図20の下段のドット間距離の累積分布図は、前述の図9に示すドット間距離の累積分布図と同様である。
 すなわち、累積分布が50%となるドット間距離Xdは55μmであるので、Xd×0.85は46.8μm、Xd×1.15は63.3μmである。また、累積分布が5%となるドット間距離Ydaは51μmで、累積分布が95%となるドット間距離Ydbは59μmである。従って、この累積分布図は、緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rは、式(3)および式(4)も、共に満たさない。
 また、実施例1と同様に反射ドットとオーバーコート層18との屈折率差を測定したところ、屈折率差は0.13であった。
 次いで、この緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rを用いて、実施例1と同様に透明スクリーンを作製した。
 [比較例2]
 オーバーコート用塗布液04に変えて、実施例3で用いたオーバーコート用塗布液03を用いた以外は、比較例1と同様に緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rを作製し、さらに、実施例1と同様に透明スクリーンを作製した。
 実施例1と同様にドット面積およびドット間距離を測定したところ、得られたドット面積およびドット間距離の累積分布図は、比較例1と同様であり、すなわち、緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rは、いずれも、式(1)~式(4)を満たさないものであった。
 また、実施例1と同様に反射ドットとオーバーコート層18との屈折率差を測定したところ、屈折率差は0.02であった。
 次いで、この緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rを用いて、実施例1と同様に透明スクリーンを作製した。
 [評価]
 <ヘイズ>
 作製した透明スクリーンについて、日本電色工業株式会社製のヘーズメーターNDH-2000を用いて、ヘイズを測定した。
 <透過光の色ムラ>
 LED(Light Emitting Diode)点光源を点灯して、作製した透明スクリーンを介して、LED点光源を目視で観察し、LED光源の透過光の周辺の色ムラを評価した。評価は、以下のとおりである。
 5点  色ムラがほとんど無い。
 4点  若干の色ムラが認められる。
 3点  色ムラが認められる。
 2点  大きな色ムラが認められる。
 1点  非常に大きな色ムラが認められる。
 <透過光の広がり>
 レーザーポインター(日本システムス社製、LP110S-CW)によって、レーザー光を反射ドットの凸側から透明スクリーンに入射し、30cm離れた位置に白紙を起き、その白紙に写る透過光の広がりを、定規によって測定した。
 結果を下記の表1に示す。
 また、図21の上段に、透過光の色ムラ評価における実施例1で撮影した写真を、図21の下段に、透過光の色ムラ評価における比較例2で撮影した写真を、それぞれ示す。
Figure JPOXMLDOC01-appb-T000013
 表1および図21の下段に示されるように、反射ドット(反射ドットの配列)が式(1)~式(4)を満たさない、すなわち、反射ドットを規則的に形成した比較例1および2の透明スクリーンは、透明スクリーンを介して観察したLED光源に大きな色ムラやレーザー光の透過光の広がりが生じており抑制しており、すなわち、透明スクリーンを介して、背景を観察した際に、色むら等を生じ、背景を適正に観察できない。
 これに対し、反射ドット(反射ドットの配列)が式(1)~式(4)を満たす、すなわち、反射ドットをランダムに形成した本発明の透明スクリーンは、表1および図21の上段に示されるように、いずれも、透明スクリーンを介して観察したLED光源の色ムラやレーザー光の透過光の広がりを抑制しており、すなわち、透明スクリーンを介して、背景を適正に観察できることが分かる。
 また、実施例1~3より、反射ドットとオーバーコート層との屈折率の差を小さくすることにより、透明スクリーンのヘイズを抑制できる。
 [実施例6]
 実施例3の赤色反射積層体36rの作製おいて、赤色反射ドット16rを形成するコレステリック液晶インク液rRの打滴を、図22の上段に示すようなA、BおよびCの絵柄にした以外は、実施例3と同様にして赤色反射積層体36rを作製した。
 また、実施例3の青色反射積層体36bの作製において、青色反射ドット16bを形成するコレステリック液晶インク液bRの打滴を、図22の中段に示すようなAおよびCの絵柄にした以外は、実施例3と同様にして青色反射積層体36bを作製した。
 さらに、実施例3の緑色反射積層体36gの作製において、緑色反射ドット16gを形成するコレステリック液晶インク液gRの打滴を、図22の中段に示すようなAおよびCの絵柄にした以外は、実施例3と同様にして緑色反射積層体36gを作製した。
 次いで、この緑色反射積層体36g、青色反射積層体36bおよび赤色反射積層体36rを用いて、実施例1と同様に透明ポスターを作製した。
 作製した透明スクリーンに、拡散光源から拡散光を照射した。その結果。図22の下段に示すように、Bが赤色(斜線)で、AおよびCが白色のA、BおよびCの絵柄が表示された。
 また、拡散光を照射しない状態では、実施例3の透明スクリーンと同様、ヘイズの低い良好な透明性を有するフィルムであった。
 以上の結果より、本発明の効果は明らかである。
 10,30 画像表示システム
 12,32,100 透明スクリーン
 14,104 支持体
 16,16-1,16-2,102 ドット
 16b 青色反射ドット
 16g 緑色反射ドット
 16r 赤色反射ドット
 18 オーバーコート層
 24,34 プロジェクター
 36b 青色反射積層体
 36g 緑色反射積層体
 36r 赤色反射積層体
 C 円
 O 中心
 In,Ip 光
 Ir 反射光
 Ld1,Ld2 暗部
 Yd1,Yd2 ドット間距離

Claims (8)

  1.  支持体と、前記支持体の一方の主面に形成される、コレステリック液晶相を固定してなるドットを二次元的に配列してなるドット配列と、前記ドット配列を覆って前記支持体に積層されるオーバーコート層と、を有し、
     前記ドットの面積を横軸にした累積分布図における、累積分布が50%となる前記ドットの面積をXs、累積分布が5%となる前記ドットの面積をYsa、および、累積分布が95%となる前記ドットの面積をYsb、とし、
     前記ドットと、最も近接する他の前記ドットとの距離であるドット間距離を横軸にした累積分布図における、累積分布が50%となる前記ドット間距離をXd、累積分布が5%なる前記ドット間距離をYda、および、累積分布が95%となる前記ドット間距離をYdb、とし、さらに、
        Xs×0.85>Ysa ・・・ 式(1)
        Xs×1.15<Ysb ・・・ 式(2)
        Xd×0.85>Yda ・・・ 式(3)
        Xd×1.15<Ydb ・・・ 式(4)
    とした際に、前記ドット配列が、前記式(1)~前記式(4)の少なくとも1つを満たすことを特徴とする透明フィルム。
  2.  前記ドットの平均屈折率と、前記オーバーコート層の屈折率との差が0.1以下である請求項1に記載の透明フィルム。
  3.  前記ドットが、断面において、明部と暗部との縞模様を与え、かつ、
     前記ドットの表面から1本目の暗部が成す線の法線と、前記ドットの表面とが成す角度が70~90°である請求項1または2に記載の透明フィルム。
  4.  前記ドットの前記ドット間距離の平均が10~100μmであり、前記ドットの平均直径が10~100μmである請求項1~3のいずれか1項に記載の透明フィルム。
  5.  前記ドットが、前記式(3)および前記式(4)の少なくとも一方を満たす請求項1~4のいずれか1項に記載の透明フィルム。
  6.  請求項1~5のいずれか1項に記載の透明フィルムからなる透明スクリーン。
  7.  請求項1~5のいずれか1項に記載の透明フィルムからなる透明スクリーンと、プロジェクターとを有する画像表示システム。
  8.  請求項1~5のいずれか1項に記載の透明フィルムからなり、前記ドット配列において、前記ドットが画像様に形成された透明ポスター。
PCT/JP2017/018822 2016-05-24 2017-05-19 透明フィルム、透明スクリーンおよび画像表示システムならびに透明ポスター WO2017204103A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187033832A KR102089204B1 (ko) 2016-05-24 2017-05-19 투명 필름, 투명 스크린 및 화상 표시 시스템과 투명 포스터
CN201780032017.7A CN109154770B (zh) 2016-05-24 2017-05-19 透明薄膜、透明屏幕及图像显示系统以及透明海报
JP2018519245A JP6606604B2 (ja) 2016-05-24 2017-05-19 透明フィルム、透明スクリーンおよび画像表示システムならびに透明ポスター
US16/197,799 US10481311B2 (en) 2016-05-24 2018-11-21 Transparent film, transparent screen, image display system, and transparent poster

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-103555 2016-05-24
JP2016103555 2016-05-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/197,799 Continuation US10481311B2 (en) 2016-05-24 2018-11-21 Transparent film, transparent screen, image display system, and transparent poster

Publications (1)

Publication Number Publication Date
WO2017204103A1 true WO2017204103A1 (ja) 2017-11-30

Family

ID=60411376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018822 WO2017204103A1 (ja) 2016-05-24 2017-05-19 透明フィルム、透明スクリーンおよび画像表示システムならびに透明ポスター

Country Status (5)

Country Link
US (1) US10481311B2 (ja)
JP (1) JP6606604B2 (ja)
KR (1) KR102089204B1 (ja)
CN (1) CN109154770B (ja)
WO (1) WO2017204103A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190079380A1 (en) * 2016-05-02 2019-03-14 Fujifilm Corporation Transparent screen and image display system
WO2020071169A1 (ja) * 2018-10-01 2020-04-09 富士フイルム株式会社 ディスプレイ
WO2020143996A1 (en) 2019-01-07 2020-07-16 Saint-Gobain Glass France Vehicle glazing and display system
WO2021197795A1 (de) 2020-04-02 2021-10-07 Saint-Gobain Glass France Verfahren zur herstellung einer verbundscheibe mit displayfolie
DE202020005730U1 (de) 2020-10-14 2022-03-10 Saint-Gobain SEKURIT Deutschland GmbH Tischanordnung mit Projektionsanordnung umfassend eine Verbundscheibe
DE102020126937A1 (de) 2020-10-14 2022-04-14 Saint-Gobain SEKURIT Deutschland GmbH Tischanordnung mit Projektionsanordnung umfassend eine Verbundscheibe
WO2022228985A1 (de) 2021-04-29 2022-11-03 Saint-Gobain Glass France Verbundscheibe mit funktionsfolie und sammelleiter
WO2022268606A1 (de) 2021-06-24 2022-12-29 Saint-Gobain Glass France Verbundscheibe mit diffus reflektierendem element und elektrochromem funktionselement
WO2023021847A1 (ja) * 2021-08-17 2023-02-23 株式会社ジャパンディスプレイ 液晶光学素子
WO2023020778A1 (de) 2021-08-17 2023-02-23 Saint-Gobain Glass France Projektionsanordnung für ein kraftfahrzeug

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6676159B2 (ja) * 2016-05-18 2020-04-08 富士フイルム株式会社 投影部材、投影システム、投影部材の製造方法
WO2017221527A1 (ja) * 2016-06-20 2017-12-28 パナソニックIpマネジメント株式会社 透明スクリーン、及び、映像表示システム
JPWO2017221528A1 (ja) * 2016-06-20 2019-04-25 パナソニックIpマネジメント株式会社 透明スクリーン、及び、映像表示システム
WO2018116931A1 (ja) * 2016-12-21 2018-06-28 富士フイルム株式会社 光学フィルム
CN110010088B (zh) * 2019-05-20 2022-01-11 京东方科技集团股份有限公司 透明显示模组和透明显示装置
US20230416608A1 (en) * 2020-12-03 2023-12-28 The Regents Of The University Of California Devices comprising a liquid crystal layer and uses thereof
CN113624458B (zh) * 2021-08-19 2024-04-30 中国科学院合肥物质科学研究院 基于双路全投射光的薄膜均匀性检测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008932A (ja) * 2007-06-28 2009-01-15 Dainippon Printing Co Ltd 画像投影システム
WO2016067572A1 (en) * 2014-10-31 2016-05-06 Sharp Kabushiki Kaisha Transparent display including a screen with patterned light deflective elements
WO2016204067A1 (ja) * 2015-06-15 2016-12-22 富士フイルム株式会社 3d表示用透明スクリーンおよび3d表示システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107660A (ja) 1991-10-18 1993-04-30 Fujitsu General Ltd 投射型液晶プロジエクシヨンシステム
JP2001242315A (ja) 2000-02-29 2001-09-07 Fuji Photo Film Co Ltd コレステリック液晶カラーフィルター及びその製造方法並びにそれを用いた表示装置
JP2005283839A (ja) * 2004-03-29 2005-10-13 Nitto Denko Corp 光学フィルムおよび画像表示装置
US7213930B2 (en) * 2005-04-18 2007-05-08 Quach Cang V Polarized projection display
KR20070002774A (ko) * 2005-06-30 2007-01-05 엘지.필립스 엘시디 주식회사 콜레스테릭 액정을 이용한 액정표시장치
JP2008165385A (ja) * 2006-12-27 2008-07-17 Dainippon Printing Co Ltd 赤外線反射パターン印刷透明シート
CN101477296B (zh) * 2008-12-25 2011-05-25 清华大学深圳研究生院 一种投影设备及投影方法
JP6153895B2 (ja) * 2013-07-22 2017-06-28 富士フイルム株式会社 液晶表示装置
CN104298063B (zh) * 2014-10-24 2017-03-29 苏州大学 透明投影屏幕
WO2016133223A1 (ja) * 2015-02-20 2016-08-25 富士フイルム株式会社 透明スクリーン
CN107615165B (zh) * 2015-04-30 2020-07-14 富士胶片株式会社 透明屏幕
WO2016194327A1 (ja) * 2015-05-29 2016-12-08 富士フイルム株式会社 投映像表示用部材および投映システム
JP6612109B2 (ja) 2015-11-20 2019-11-27 富士フイルム株式会社 光学部材およびその製造方法、ディスプレイ、ならびに画像表示装置
JP6676154B2 (ja) * 2016-04-25 2020-04-08 富士フイルム株式会社 透明スクリーンおよび画像表示システム
WO2017191778A1 (ja) * 2016-05-02 2017-11-09 富士フイルム株式会社 透明スクリーンおよび画像表示システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008932A (ja) * 2007-06-28 2009-01-15 Dainippon Printing Co Ltd 画像投影システム
WO2016067572A1 (en) * 2014-10-31 2016-05-06 Sharp Kabushiki Kaisha Transparent display including a screen with patterned light deflective elements
WO2016204067A1 (ja) * 2015-06-15 2016-12-22 富士フイルム株式会社 3d表示用透明スクリーンおよび3d表示システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10642145B2 (en) * 2016-05-02 2020-05-05 Fujifilm Corporation Transparent screen and image display system
US20190079380A1 (en) * 2016-05-02 2019-03-14 Fujifilm Corporation Transparent screen and image display system
US11275271B2 (en) 2018-10-01 2022-03-15 Fujifilm Corporation Display comprising a transparent screen having a cholesteric liquid crystal layer exhibiting selective reflectivity attached to a light guide plate
WO2020071169A1 (ja) * 2018-10-01 2020-04-09 富士フイルム株式会社 ディスプレイ
JPWO2020071169A1 (ja) * 2018-10-01 2021-09-02 富士フイルム株式会社 ディスプレイ
WO2020143996A1 (en) 2019-01-07 2020-07-16 Saint-Gobain Glass France Vehicle glazing and display system
WO2021197795A1 (de) 2020-04-02 2021-10-07 Saint-Gobain Glass France Verfahren zur herstellung einer verbundscheibe mit displayfolie
DE202020005730U1 (de) 2020-10-14 2022-03-10 Saint-Gobain SEKURIT Deutschland GmbH Tischanordnung mit Projektionsanordnung umfassend eine Verbundscheibe
DE102020126937A1 (de) 2020-10-14 2022-04-14 Saint-Gobain SEKURIT Deutschland GmbH Tischanordnung mit Projektionsanordnung umfassend eine Verbundscheibe
WO2022228985A1 (de) 2021-04-29 2022-11-03 Saint-Gobain Glass France Verbundscheibe mit funktionsfolie und sammelleiter
WO2022268606A1 (de) 2021-06-24 2022-12-29 Saint-Gobain Glass France Verbundscheibe mit diffus reflektierendem element und elektrochromem funktionselement
WO2023021847A1 (ja) * 2021-08-17 2023-02-23 株式会社ジャパンディスプレイ 液晶光学素子
WO2023020778A1 (de) 2021-08-17 2023-02-23 Saint-Gobain Glass France Projektionsanordnung für ein kraftfahrzeug

Also Published As

Publication number Publication date
JP6606604B2 (ja) 2019-11-13
KR102089204B1 (ko) 2020-03-13
CN109154770A (zh) 2019-01-04
US20190094432A1 (en) 2019-03-28
CN109154770B (zh) 2021-02-26
US10481311B2 (en) 2019-11-19
JPWO2017204103A1 (ja) 2019-03-22
KR20180133514A (ko) 2018-12-14

Similar Documents

Publication Publication Date Title
JP6606604B2 (ja) 透明フィルム、透明スクリーンおよび画像表示システムならびに透明ポスター
JP6453450B2 (ja) 透明スクリーン
JP6481018B2 (ja) 透明スクリーン
JP6586518B2 (ja) 透明スクリーンおよび画像表示システム
US10908491B2 (en) Optical film
US10310260B2 (en) Member for displaying projected image and projection system
JP6670326B2 (ja) 透明スクリーン
CN113168016A (zh) 导光元件、图像显示装置及传感装置
US10254639B2 (en) Transparent screen for 3D display and 3D display system
US10663827B2 (en) Transparent screen comprising a plurality of dot arrays having different selective reflective wavelengths, the plurality of dot arrays obtained by immobilizing a cholesteric liquid crystalline phase
JP2018045210A (ja) 車両用の投映像表示用システム
WO2016129645A1 (ja) 光学部材、光学素子、液晶表示装置および近接眼光学部材
WO2017188251A1 (ja) 透明スクリーンおよび画像表示システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018519245

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187033832

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802695

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802695

Country of ref document: EP

Kind code of ref document: A1