WO2017204096A1 - 積層型二次電池、及び袋状セパレータ - Google Patents
積層型二次電池、及び袋状セパレータ Download PDFInfo
- Publication number
- WO2017204096A1 WO2017204096A1 PCT/JP2017/018767 JP2017018767W WO2017204096A1 WO 2017204096 A1 WO2017204096 A1 WO 2017204096A1 JP 2017018767 W JP2017018767 W JP 2017018767W WO 2017204096 A1 WO2017204096 A1 WO 2017204096A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separator
- bag
- secondary battery
- positive electrode
- electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0459—Cells or batteries with folded separator between plate-like electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/463—Separators, membranes or diaphragms characterised by their shape
- H01M50/466—U-shaped, bag-shaped or folded
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a laminated secondary battery and a bag-like separator, and more particularly to a cell structure of a laminated secondary battery in which a positive electrode and a negative electrode are laminated via a separator.
- a separator using a bag-like separator is known as a separator for a laminated secondary battery.
- a bag-like shape is formed by heat-sealing the peripheral portions of two separators, and a structure in which a positive electrode with a material coated on both sides is formed in the bag-like separator is formed. ing. Furthermore, in patent document 1, it is set as the structure which laminated
- This bag-like separator has a structure in which heat and pressure are applied to a part of the periphery of two separators. This structure has the effect of preventing the separator from contracting when the cell is exposed to high temperatures, exposing the positive electrode, and contacting the positive electrode with the negative electrode to cause an internal short circuit, improving the safety performance of the cell. There is.
- Non-patent document 1 also describes the high temperature characteristics of the separator.
- the performance varies greatly depending on the base material of the separator, the presence or absence of coating, the coating material and method, etc., but basically the manufacturing process is used to form an opening in the separator that allows lithium ions to move between the positive and negative electrodes.
- JP 2008-91100 A Japanese Patent No. 4124972 Japanese Patent No. 3511443 JP-A-9-147914
- the bubbles 1160 generated by the active material of the positive electrode 1103 during the activation of the cell or the initial charge cause the positive electrode 1103 and the separator 1101 may accumulate.
- the bubbles 1160 due to the generated gas do not collect at the central portion of the electrode and cannot be removed, and a gap is formed between the positive electrode 1103 and the separator 1101, thereby obstructing battery operation and non-uniform activation of the electrode. was there.
- FIG. 12 shows the case where the interval between the heat fusion portions 1202 is wide. Bubbles between the positive electrode 1203 and the separator 1201 are easily removed, but when the separator 1201 contracts in a contraction direction with a large contraction rate at a high temperature of 130 ° C. or higher, the outer shape of the separator 1201 is a dotted line 1201-2 in FIG. It can be considered that the shape is as follows. When such a contraction of the separator 1201 occurs, the positive electrode 1203 is exposed and short-circuited with the negative electrode, which becomes a trigger, and there is a high possibility that the cell is ruptured or ignited. That is, in the structure of the background art shown in FIG. 11 and FIG. 12, there is a problem that it is difficult to achieve both the degassing effect and the cell safety performance at high temperatures.
- a material that is more than double the capacity of the lithium ion battery of the background technology is a material expected for next-generation secondary batteries for electric vehicles, drones, robots, etc. with long cruising distances .
- a positive electrode is formed from this material, there is a tendency that a large amount of gas is generated from the positive electrode material during cell activation or initial charge / discharge, and this problem is remarkable.
- An object of the present invention is to provide a stacked secondary battery and a bag-shaped separator that can prevent a phenomenon that gas generated in an electrode material or the like inside a cell accumulates between the electrode and the separator and becomes difficult to escape as bubbles. There is to do.
- a laminated secondary battery according to the present invention is a laminated secondary battery in which a positive electrode and a negative electrode are laminated via a bag-shaped separator, One of the positive electrode and the negative electrode is accommodated in the bag-shaped separator, and the other of the positive electrode and the negative electrode is accommodated in the bag-shaped separator in which the one electrode is accommodated.
- the bag-like separator has a uniaxial shrinkage characteristic at a high temperature and has a slit formed along a shrinkage direction having a large shrinkage rate.
- the bag-shaped separator according to the present invention is a bag-shaped separator used for a stacked secondary battery in which a positive electrode and a negative electrode are stacked, It has a uniaxial shrinkage characteristic at a high temperature and has a slit formed along the shrinkage direction with a large shrinkage rate.
- the present invention it is possible to prevent a phenomenon in which gas generated in the electrode material or the like inside the cell of the laminated secondary battery accumulates between the electrode and the separator and becomes difficult to escape as bubbles.
- FIG. 2 is a cross-sectional view taken along line AA in FIG. It is a disassembled perspective view for demonstrating the manufacturing method of the laminated type secondary battery of 1st Embodiment of this invention. It is a disassembled perspective view for demonstrating the manufacturing method of the laminated type secondary battery of 1st Embodiment of this invention. It is a top view for demonstrating the structure of the laminated type secondary battery of 2nd Embodiment of this invention. It is a top view for demonstrating the structure of the laminated secondary battery of 3rd Embodiment of this invention.
- FIG. 10 is a cross-sectional view taken along line BB in FIG. 9. It is a top view of the lamination type secondary battery for explaining a subject of background art. It is a top view of the lamination type secondary battery for explaining a subject of background art.
- FIG. 1 is a plan view for explaining the configuration of the multilayer secondary battery according to the first embodiment of the present invention.
- FIG. 2 is a sectional view taken along line AA in FIG.
- FIG. 3 is an exploded perspective view for explaining the method for manufacturing the laminated secondary battery according to the first embodiment of the present invention.
- FIG. 4 is an exploded perspective view for explaining the method for manufacturing the laminated secondary battery according to the first embodiment of the present invention.
- the stacked secondary battery according to the present embodiment is a stacked secondary battery in which a positive electrode and a negative electrode are stacked via a bag-shaped separator.
- the positive electrode of the positive electrode and the negative electrode is housed in a bag-like separator, and the negative electrode of the positive electrode and the negative electrode is laminated on a bag-like separator containing the positive electrode.
- a secondary battery will be described as an example.
- FIG. 1 shows a positive electrode 103 contained in a bag-like separator of a stacked secondary battery according to the first embodiment of the present invention.
- the bag-like separator has a slit running in the lateral direction at the center.
- the slit of the bag-like separator is formed by partial overlap of the upper half portion 101-1 of the bag-like separator and the lower half portion 101-2 of the bag-like separator. .
- the slit of the bag-like separator is formed in parallel with the shrinkage direction of the bag-like separator at a high temperature shown in FIG.
- FIGS. 1 and 2 represents the distance of the overlapping portion of the bag-like separator. That is, the distance d in FIGS. 1 and 2 represents the distance of the overlapping portion between the upper half portion 101-1 of the bag-shaped separator and the lower half portion 101-2 of the bag-shaped separator.
- the separators are fused at the heat-sealed portion 102 to form a bag-like separator. Further, a heat-sealing portion 102a is provided in an overlapping portion between the upper half portion 101-1 of the bag-shaped separator of FIG. 1 and the lower half portion 101-2 of the bag-shaped separator.
- the positive electrode 103 is inserted inside the bag-shaped separator.
- the positive electrode 103 has a structure in which a positive electrode active material is applied to both surfaces of a metal foil.
- gas bubbles are generated from the positive electrode active material during battery activation or initial charge / discharge, in the stacked secondary battery of this embodiment, gas easily escapes through the slit formed by the overlap of the separators. It has become.
- the positive electrode 103 is difficult to be exposed even if the separator shrinks in the shrinking direction when the cell is exposed to a high temperature. ing.
- the bag-like separator of the laminated secondary battery of this embodiment has a uniaxial shrinkage characteristic with respect to the shrinkage axis at a high temperature as shown in the shrinkage direction of FIG.
- This uniaxial shrinkage characteristic means a shrinkage characteristic that has a large shrinkage rate in one direction (shrinkage axis) at a high temperature, but has a small shrinkage rate in a direction orthogonal to the shrinkage axis.
- a bag-shaped separator has the slit formed along the shrinkage direction with a large shrinkage rate. More specifically, the bag-shaped separator has a slit formed in a direction substantially parallel to the contraction axis.
- the slit is formed in parallel with the shrinkage direction of the separator, even if the separator shrinks at a high temperature or the like, the slit is difficult to open.
- a structure in which the positive electrode 103 is more difficult to be exposed can be obtained by reducing the interval s between the heat fusion portions 102 shown in FIG. In that case, due to the presence of the slit, the escape of gas does not worsen.
- FIG. 3 shows a diagram of a method for forming a bag-shaped separator from a positive electrode and a separator.
- FIG. 4 shows a diagram of a method for forming a structure in which a bag-like separator containing a positive electrode is sandwiched between negative electrodes.
- FIG. 3 shows one positive electrode 103 and four separators 101-1, 101-2, 101-3, and 101-4.
- the positive electrode 103 is substantially rectangular having a length of about 15 cm and a width of about 7 cm, and has a structure in which a lithium transition metal oxide is applied to both sides of an aluminum foil having a thickness of about 20 ⁇ m to a thickness of about 200 ⁇ m.
- the four separators 101-1, 101-2, 101-3, and 101-4 are formed of a polypropylene porous thin film having a thickness of about 30 ⁇ m.
- the shrinking direction (shrinking axis) of the separator at a high temperature (130 ° C. or higher) is parallel to the rectangular short-side direction of the positive electrode 103 as shown in FIG.
- the bag-shaped separator 404 with the positive electrode formed as described above is stacked with the negative electrodes 405-1 and 405-2 sandwiched therebetween to constitute a stacked secondary battery.
- the negative electrodes 405-1 and 405-2 have a structure in which, for example, graphite is applied to both sides of a copper foil having a thickness of about 15 ⁇ m to a thickness of about 100 ⁇ m.
- the gas generated in the positive electrode material at the time of activation of the battery or at the initial charge / discharge does not escape as bubbles between the electrode and the separator, forming a gap. It is possible to prevent the movement of (lithium) ions between the positive electrode and the negative electrode. As a result, the active material on the electrode surface is uniformly activated. For this reason, uniform operation on the surface of the electrode is possible, and the original performance of the battery is exhibited. In addition, since the periphery of the bag-like separator is fixed by thermal fusion, the positive electrode is difficult to be exposed even when the separator contracts at a high temperature, and a short circuit with the negative electrode is unlikely to occur. That is, a secondary battery structure having a structure that can sufficiently exhibit the original performance of the battery and high safety performance at high temperatures can be provided.
- the interval s between the heat-sealed portions, the number of slits in the separator, the division of the positive electrode, and the like can be appropriately selected depending on the application.
- the configuration for this will be described below as second to fifth embodiments.
- FIG. 5 is a plan view for explaining the configuration of the multilayer secondary battery according to the second embodiment of the present invention.
- FIG. 5 shows the positive electrode 503 contained in the bag-like separator of the multilayer secondary battery of this embodiment.
- FIG. 5 shows a case in which the interval s is set in the case of the first embodiment within the range where the positive electrode is not exposed due to the shrinkage of the separator at a high temperature when a separator whose thermal contraction rate of the separator is not so high at a high temperature is used.
- An example of setting a larger value is shown. This is an example in which the effect of escaping gas from the periphery of the positive electrode is enhanced.
- the bag-like separator has a slit running in the lateral direction at the center.
- the slit of the bag-like separator is formed by a partial overlap between the upper half portion 501-1 of the bag-like separator and the lower half portion 501-2 of the bag-like separator.
- the slit of the bag-like separator is formed along the shrinking direction with a large shrinkage rate. More specifically, the slit of the bag-shaped separator is formed in parallel with the shrinking direction of the bag-shaped separator at a high temperature. The separators are fused with each other at the heat fusion portion 502 to form a bag-like separator.
- a heat-sealed portion 502a is provided in an overlapping portion between the upper half portion 501-1 of the bag-like separator of FIG. 5 and the lower half portion 501-2 of the bag-like separator. By having at least one heat fusion part in the overlapping part of the separator, the upper half part 501-1 of the separator and the lower half part 501-2 of the separator are not separated.
- the gas generated in the electrode material or the like inside the cell of the stacked secondary battery accumulates between the electrode and the separator, and prevents the phenomenon that it becomes difficult to escape as a bubble. Can be increased. Furthermore, when using a separator whose thermal shrinkage rate is not so high at a high temperature, the interval s is larger than that in the first embodiment in a range where the positive electrode is not exposed due to the shrinkage of the separator at a high temperature. It is set. Thereby, the effect of releasing the gas from the periphery of the positive electrode 503 can be enhanced.
- FIG. 6 is a plan view for explaining the configuration of the multilayer secondary battery according to the third embodiment of the present invention.
- FIG. 6 is an example in which the effect of escaping the gas at the center of the positive electrode is enhanced by increasing the number of divisions of the bag-shaped separator and providing a large number of slits.
- the bag-like separator is formed with a slit that runs in the lateral direction.
- a plurality of slits running in the lateral direction are formed, and in FIG. 6, three slits running in the lateral direction are formed.
- one slit of the bag-shaped separator is formed by partial overlap of the first portion 601-1 and the second portion 601-2 of the bag-shaped separator.
- another slit of the bag-like separator is formed by partial overlap of the second portion 601-2 and the third portion 601-3 of the bag-like separator.
- another slit of the bag-like separator is formed by partial overlap of the third portion 601-3 and the fourth portion 601-4 of the bag-like separator.
- Each slit of the bag-like separator is formed along the shrinkage direction having a large shrinkage rate, as in the first embodiment. More specifically, each slit of the bag-shaped separator is formed in parallel with the shrinking direction of the bag-shaped separator at a high temperature.
- the separators are fused with each other at a heat fusion portion 602 to form a bag-like separator.
- a heat-sealing portion 602a is provided at an overlapping portion between the first portion 601-1 and the second portion 601-2 of the bag-like separator of FIG. Further, a heat-sealing portion 602a is provided in an overlapping portion between the second portion 601-2 and the third portion 601-3 of the bag-like separator of FIG. Further, a heat-sealing portion 602a is provided in an overlapping portion between the third portion 601-3 and the fourth portion 601-4 of the bag-like separator of FIG.
- the phenomenon that gas generated in the electrode material or the like inside the cell of the stacked secondary battery collects between the electrode and the separator and becomes a bubble is difficult to escape. While preventing, the safety performance under high temperature can be improved.
- the effect of escaping the gas at the center of the positive electrode 603 can be enhanced by increasing the number of divisions of the bag-shaped separator and providing more slits.
- FIG. 7 is a plan view for explaining the configuration of the multilayer secondary battery according to the fourth embodiment of the present invention.
- the positive electrode is divided into two in the vertical direction, and the separator is heat-sealed between the positive electrode and the positive electrode so that the positive electrode is more exposed due to the shrinkage of the separator at a high temperature. This is an example in which the safety performance is improved with a difficult structure.
- the positive electrode is divided into two in the vertical direction.
- the stacked secondary battery of the present embodiment has a positive electrode 703-1 and a positive electrode 703-2 that are divided into two in the vertical direction.
- the bag-like separator is formed with a slit running in the lateral direction at the center. As shown in FIG. 7, the slit of the bag-like separator is formed by partial overlap between the upper half portion 701-1 of the bag-like separator and the lower half portion 701-2 of the bag-like separator. Similar to the first embodiment, the slit of the bag-like separator is formed along the shrinking direction with a large shrinkage rate.
- the slit of the bag-shaped separator is formed in parallel with the shrinking direction of the bag-shaped separator at a high temperature.
- the separators are fused at the heat-sealed portion 702 to form a bag-like separator.
- a heat-sealing portion 702a is provided in an overlapping portion between the upper half portion 701-1 of the bag-like separator and the lower half portion 701-2 of the bag-like separator in FIG.
- the upper half portion 701-1 of the bag-like separator and the lower half portion 701-2 of the bag-like separator are overlapped between the positive electrode 703-1 and the positive electrode 703-2 that are divided in the vertical direction.
- the part is provided with a heat fusion part 702b.
- the upper half part 701-1 of the separator and the lower half part 701-2 of the separator are not separated.
- the effect of suppressing separation is further enhanced by providing a heat-sealed portion 702b in the overlapping portion of the separator between the positive electrode 703-1 and the positive electrode 703-2 that are divided into two in the vertical direction.
- the phenomenon that gas generated in the electrode material or the like inside the cell of the stacked secondary battery collects between the electrode and the separator and becomes a bubble is difficult to escape. While preventing, the safety performance under high temperature can be improved.
- the positive electrode is divided in the vertical direction, and by providing the heat fusion part of the separator between the divided positive electrode and the positive electrode, the separator contracts at a high temperature,
- the safety performance can be enhanced by making the structure in which the positive electrode is less exposed.
- FIG. 8 is a plan view for explaining the configuration of the laminated secondary battery according to the fifth embodiment of the invention.
- the positive electrode is divided so that the positive electrode does not overlap the slit portion.
- shrinkage also occurs in a direction perpendicular to the shrinkage direction where the shrinkage rate is high at a higher temperature, and even if the slit part is opened, the positive electrode electrode is not easily exposed, and the safety performance is enhanced. It is an example.
- the positive electrode is divided into two in the horizontal direction.
- the stacked secondary battery of the present embodiment includes the positive electrode 803-1 and the positive electrode 803-2 that are divided into two in the horizontal direction.
- the bag-like separator is formed with a slit that runs in the lateral direction at the center. As shown in FIG. 8, the slit of the bag-like separator is formed by partial overlap of the upper half portion 801-1 of the bag-like separator and the lower half portion 801-2 of the bag-like separator. Similar to the first embodiment, the slit of the bag-like separator is formed along the shrinking direction with a large shrinkage rate.
- the slit of the bag-shaped separator is formed in parallel with the shrinking direction of the bag-shaped separator at a high temperature.
- the separators are fused with each other at a heat fusion portion 802 to form a bag-like separator.
- a heat-sealing portion 802a is provided in an overlapping portion between the upper half portion 801-1 of the bag-like separator of FIG. 8 and the lower half portion 801-2 of the bag-like separator. Due to the presence of the heat fusion part in the overlapping part of the separator, the upper half part 801-1 of the separator and the lower half part 801-2 of the separator are not separated.
- the positive electrode 803-1 and the positive electrode 803-2 that are divided into two in the horizontal direction are configured so as not to overlap the slits of the bag-shaped separator.
- the phenomenon that gas generated in the electrode material or the like inside the cell of the stacked secondary battery collects between the electrode and the separator and becomes a bubble is difficult to escape. While preventing, the safety performance under high temperature can be improved.
- the positive electrode is divided, and the divided positive electrodes 803-1 and 803-2 are both arranged so as not to overlap the slits of the bag-like separator.
- the divided positive electrodes 803-1 and 803-2 are configured so as not to overlap the overlapping portion of the upper half portion 801-1 of the bag-shaped separator and the lower half portion 801-2 of the bag-shaped separator. ing.
- shrinkage also occurs in a direction perpendicular to the shrinkage direction where the shrinkage rate is high at a higher temperature, and it is difficult to expose the positive electrode 803-1 and the positive electrode 803-2 even if the slit portion is opened. Can improve safety performance.
- FIG. 9 is a perspective view showing the cell structure of the laminated secondary battery according to the sixth embodiment of the present invention.
- 10 is a cross-sectional view taken along line BB in FIG.
- bag-like separators 1001 containing positive electrodes 1003 and negative electrodes 1005 formed by the method shown in the manufacturing method of the first embodiment are alternately laminated.
- the extraction of the positive electrode 1003 and the extraction of the negative electrode 1005 are collectively welded by ultrasonic waves, drawn out as tabs 920 and 930 in FIG. 9, and finally packed entirely with a laminate sheet 1010.
- the cell structure shown in FIG. 9 is obtained by injecting and filling the electrolyte solution 1040 into the inside packed with the laminate sheet 1010.
- the laminate sheet for example, aluminum foil coated with polyethylene on both sides is used, and as the electrolytic solution, for example, lithium hexafluorophosphate (LiPF 6 ) melted in a concentration of 1 mol / l in diethyl carbonate organic solvent is used. Is possible.
- the gas discharge port 950 of the cell shown in FIG. 9 is activated while being pulled with a vacuum pump, so that the gas generated from the positive electrode 1003 passes through the slit to the outside of the bag-like separator 1001 and further to the outside of the cell. To escape efficiently.
- the gas discharge port 950 is closed by thermal fusion, and an excess portion is cut to complete the final stacked secondary battery cell.
- the present invention is not limited to this.
- the direction of the slit is not necessarily completely parallel to the shrinking direction of the separator.
- the positive electrode of the positive electrode and the negative electrode is accommodated in the bag-shaped separator, and the negative electrode of the positive electrode and the negative electrode is laminated on the bag-shaped separator in which the positive electrode is accommodated.
- the present invention is not limited to this. That is, a negative electrode of the positive electrode and the negative electrode is housed in a bag-shaped separator, and the positive electrode of the positive electrode and the negative electrode is stacked on a bag-shaped separator in which the negative electrode is housed.
- each separator in the overlapping portion of the two separators is made thinner than the thickness of the other part of each separator.
- the surrounding part of the said bag-shaped separator is a laminated type secondary battery of Additional remark 2 formed by heat-seal
- the said slit is a laminated type secondary battery of Additional remark 1 currently formed of the overlap part of two separators which comprise a part of said bag-shaped separator.
- the said slit is formed by the overlap part of the 1st part which comprises a part of said bag-shaped separator, and the 2nd part adjacent to the said 1st part, The lamination type 2 of Additional remark 4 Next battery.
- the stacked secondary battery according to supplementary note 5 wherein the slit is further formed by an overlapping portion of the second portion and a third portion adjacent to the second portion.
- the one electrode is substantially rectangular, and the plurality of the one electrodes are accommodated in the bag-shaped separator so that the long sides of the rectangle are substantially parallel to each other.
- the laminated secondary battery according to appendix 9. (Supplementary note 12) The bag-like separator is heat-sealed at a location located between the plurality of one electrodes accommodated in the bag-like separator so that the long sides of the rectangle are substantially parallel to each other.
- (Supplementary note 14) A bag-like separator used for a laminated secondary battery in which a positive electrode and a negative electrode are laminated, and has a uniaxial shrinkage characteristic at a high temperature along a shrinkage direction having a large shrinkage rate.
- the bag-shaped separator of Additional remark 14 which has comprised the rectangle whose two sides are parallel to the said shrinkage
- the said slit is a bag-shaped separator of Additional remark 14 formed of the overlap part of two separators.
- the said slit is a bag-shaped separator of Additional remark 17 formed of the overlap part of the 1st part which comprises some separators, and the 2nd part adjacent to the said 1st part.
- the bag-like separator according to supplementary note 18, wherein the slit is further formed by an overlapping portion of the second portion and a third portion adjacent to the second portion.
- a positive electrode is formed of a material that can obtain a capacity more than double that of a lithium-ion battery of the background art called a lithium-excess positive electrode material
- a cell that can sufficiently exhibit performance and has high safety performance can be formed. Therefore, as an application example of the present invention, for example, an electric vehicle, a drone, a robot, or the like having a long cruising distance can be considered.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
セル内部の電極材料等で発生したガスが電極とセパレータの間にたまり、気泡となって抜けにくくなる現象を防ぐと共に、高温下における安全性能を高めることができる積層型二次電池を提供する。積層型二次電池は、正極電極と負極電極とが、袋状セパレータを介して積層された積層型二次電池であって、上記正極電極と上記負極電極のうちの一方の電極が上記袋状セパレータに収められ、上記正極電極と上記負極電極のうちの他方の電極が、上記一方の電極が収められた上記袋状セパレータに積層され、上記袋状セパレータは、高温下で一軸性の収縮特性を有し、収縮率の大きい収縮方向に沿って形成されたスリットを有する。
Description
本発明は、積層型二次電池、及び袋状セパレータに関し、特に、正極と負極とがセパレータを介して積層された積層型二次電池のセル構造に関する。
積層型二次電池のセパレータとして、袋状セパレータを用いたものが知られている。特許文献1では、まず2枚のセパレータの周囲部を熱融着することにより袋状の形状を形成し、その袋状セパレータの中に両面に材料が塗布された正極を入れた構造を形成している。さらに特許文献1では、上記正極が入れられた袋状セパレータと材料が両面に塗布されている負極とを交互に積層した構造としている。
この袋状セパレータは、2枚のセパレータの周囲部の一部に熱と圧力をかけて融着させた構造である。この構造は、セルが高温に曝された場合にセパレータが収縮して正極が露出し、正極と負極が接触して内部短絡が起こるのを防ぐことに効果があり、セルの安全性能向上に効果がある。
セパレータの高温特性については、非特許文献1にも記述がある。セパレータの基体材料やコーティングの有無、コーティング材料・方法等によってその性能は大きく異なるが、基本的にはセパレータにリチウムイオンが正極と負極の間を移動できるような開口部を形成するため、製造工程中にセパレータを引き延ばす(延伸)工程がある。セパレータが高温に曝されると、主としてその延伸方向に収縮が起こるというものである。
上記袋状セパレータを形成する際の熱融着パターンとしては、これまでもさまざまな工夫がなされている。特許文献1のように、セパレータの周囲や正極のタブのある辺を除いて連続的に融着部を形成することや、融着部が設けられている箇所に非融着部を形成するものがある。また、特許文献2のように、連続した線状の熱融着部と間欠的な熱融着部とを併用するものがある。また、特許文献3のように、4隅のみを熱融着するものもある。特許文献4では、正極が4片に分割されており、熱融着部分によってそれぞれの正極が分離されている。これにより、袋状のセパレータの強度を増し、安全性能を高めることができる。
S.S.Zhang, "A review on the separators of liquid electrolyte Li-ion batteries", Journal of Power Sources 164, pp.351-364, 2007.
しかしながら、上述した積層型二次電池には以下のような課題がある。背景技術の積層型二次電池の課題について、図面を参照して説明する。
図11に示すように、セパレータ1101の熱融着部分1102の間隔sが小さいと、セルの活性化時や初回充電時に正極1103の活材料などから発生したガスによる気泡1160が、正極1103とセパレータ1101との間にたまることがある。特に、発生したガスによる気泡1160が電極の中央部に集まって抜けなくなり、正極1103とセパレータ1101の間に隙間を形成するため、電池動作を阻害し、電極の活性化が不均一になるという課題があった。
図12は逆に、熱融着部分1202の間隔が広い場合を示す。正極1203とセパレータ1201との間の気泡は抜けやすくなるが、130℃以上の高温において、セパレータ1201が収縮率の大きい収縮方向に収縮した場合、セパレータ1201の外形が図12中の点線1201-2のような形状となることが考えられる。セパレータ1201のこのような収縮が発生すると、正極1203が露出して負極と短絡し、それがトリガーとなって、セルの破裂・発火などが引き起こされる可能性が高くなる。つまり、図11や図12に示される背景技術の構造においては、ガス抜き効果と高温におけるセルの安全性能との両立が難しいという課題があった。
リチウム過剰正極材料と呼ばれる背景技術のリチウムイオン電池の倍以上の容量が得られる材料は、航続距離の長い電気自動車、ドローン、ロボット等のための次世代二次電池に期待されている材料である。その一方で、この材料により正極を形成した場合、セルの活性化時、あるいは初期充放電時に正極材料から発生するガスが多い傾向にあり、この問題が顕著である。
本発明の目的は、セル内部の電極材料等で発生したガスが電極とセパレータの間にたまり、気泡となって抜けにくくなる現象を防ぐことができる積層型二次電池、及び袋状セパレータを提供することにある。
前記目的を達成するため、本発明に係る積層型二次電池は、正極電極と負極電極とが、袋状セパレータを介して積層された積層型二次電池であって、
上記正極電極と上記負極電極のうちの一方の電極が上記袋状セパレータに収められ、上記正極電極と上記負極電極のうちの他方の電極が、上記一方の電極が収められた上記袋状セパレータに積層され、
上記袋状セパレータは、高温下で一軸性の収縮特性を有し、収縮率の大きい収縮方向に沿って形成されたスリットを有する。
上記正極電極と上記負極電極のうちの一方の電極が上記袋状セパレータに収められ、上記正極電極と上記負極電極のうちの他方の電極が、上記一方の電極が収められた上記袋状セパレータに積層され、
上記袋状セパレータは、高温下で一軸性の収縮特性を有し、収縮率の大きい収縮方向に沿って形成されたスリットを有する。
本発明に係る袋状セパレータは、正極電極と負極電極とが積層された積層型二次電池に用いられる袋状セパレータであって、
高温下で一軸性の収縮特性を有し、収縮率の大きい収縮方向に沿って形成されたスリットを有する。
高温下で一軸性の収縮特性を有し、収縮率の大きい収縮方向に沿って形成されたスリットを有する。
本発明によれば、積層型二次電池のセル内部の電極材料等で発生したガスが電極とセパレータの間にたまり、気泡となって抜けにくくなる現象を防ぐことができる。
本発明の好ましい実施形態について、図面を参照しながら詳細に説明する。
〔第1実施形態〕
本発明の第1実施形態による積層型二次電池について、説明する。図1は、本発明の第1実施形態の積層型二次電池の構成を説明するための平面図である。図2は、図1のA-A線に沿った断面図である。図3は、本発明の第1実施形態の積層型二次電池の製造方法を説明するための分解斜視図である。図4は、本発明の第1実施形態の積層型二次電池の製造方法を説明するための分解斜視図である。
本発明の第1実施形態による積層型二次電池について、説明する。図1は、本発明の第1実施形態の積層型二次電池の構成を説明するための平面図である。図2は、図1のA-A線に沿った断面図である。図3は、本発明の第1実施形態の積層型二次電池の製造方法を説明するための分解斜視図である。図4は、本発明の第1実施形態の積層型二次電池の製造方法を説明するための分解斜視図である。
[構造]
本実施形態による積層型二次電池は、正極電極と負極電極とが、袋状セパレータを介して積層された積層型二次電池である。本実施形態では、正極電極と負極電極のうちの正極電極が袋状セパレータに収められ、正極電極と負極電極のうちの負極電極が、正極電極が収められた袋状セパレータに積層された積層型二次電池を一例として、説明する。
本実施形態による積層型二次電池は、正極電極と負極電極とが、袋状セパレータを介して積層された積層型二次電池である。本実施形態では、正極電極と負極電極のうちの正極電極が袋状セパレータに収められ、正極電極と負極電極のうちの負極電極が、正極電極が収められた袋状セパレータに積層された積層型二次電池を一例として、説明する。
図1は、本発明の第1の実施形態である積層型二次電池の袋状セパレータに入った正極電極103を示す。図1において、袋状セパレータには中央部に横方向に走るスリットが形成されている。袋状セパレータのスリットは図1及び図2に示すように、袋状セパレータの上半分部分101-1と、袋状セパレータの下半分部分101-2との、部分的な重なりによって形成されている。袋状セパレータのスリットは図1に示す、袋状セパレータの高温における収縮方向と平行に形成されている。
図1及び図2の距離dは、袋状セパレータの重なり部分の距離を表している。すなわち、図1及び図2の距離dは、袋状セパレータの上半分部分101-1と、袋状セパレータの下半分部分101-2との重なり部分の距離を表している。セパレータ同士は熱融着部分102で融着され、袋状のセパレータが形成されている。さらに、図1の袋状セパレータの上半分部分101-1と、袋状セパレータの下半分部分101-2との重なり部分に、熱融着部分102aを設けている。セパレータの重なり部分に少なくとも1箇所の熱融着部分があることによって、セパレータの上半分部分101-1とセパレータの下半分部分101-2とが分離することはない。
袋状セパレータの内部には、正極電極103が挿入されている。正極電極103は、金属箔の両面に正極活材料が塗布された構造となっている。電池の活性化時、または初期充放電時に正極活材料からガスによる気泡が発生した場合、本実施形態の積層型二次電池では、セパレータの重なりで形成された上記スリットをガスが通って逃げやすくなっている。また、袋状セパレータの周囲部が熱融着部分102で固定されているため、セルが高温に曝された場合にセパレータが収縮方向に収縮しても、正極電極103が露出しにくい構造となっている。
本実施形態の積層型二次電池の袋状セパレータは、図1の収縮方向に示すような、高温下で収縮軸に関して一軸性の収縮特性を有する。この一軸性の収縮特性とは、高温下で1方向(収縮軸)に大きな収縮率を持つが、収縮軸と直交する方向の収縮率は小さい収縮特性を指す。そして、本実施形態の積層型二次電池では、袋状セパレータが、収縮率の大きい収縮方向に沿って形成されたスリットを有する。より具体的には、袋状セパレータが、上記収縮軸と実質的に平行な方向に形成されたスリットを有する。スリットをセパレータの収縮方向と平行に形成しているので、高温下などでセパレータの収縮が発生しても、スリットが開口しにくい構造となっている。図1に示す、熱融着部分102の間隔sを小さくすることでさらに正極電極103が露出しにくい構造とすることができる。その場合、スリットの存在のため、ガスの抜けが悪くなることはない。
[製造方法]
次に、図3、図4を参照して第1の実施形態の積層型二次電池の製造方法を説明する。図3は、正極電極とセパレータから袋状セパレータを形成する方法の図を示している。図4は正極電極入りの袋状セパレータを負極電極で挟んだ構造を形成する方法の図を示している。
次に、図3、図4を参照して第1の実施形態の積層型二次電池の製造方法を説明する。図3は、正極電極とセパレータから袋状セパレータを形成する方法の図を示している。図4は正極電極入りの袋状セパレータを負極電極で挟んだ構造を形成する方法の図を示している。
図3は、1枚の正極電極103と、4枚のセパレータ101-1、101-2、101-3、101-4を示している。正極電極103は縦15cm、横7cm程度の実質的に矩形で、約20μmの厚さのアルミニウム箔の両面に、リチウム遷移金属酸化物をそれぞれ約200μmの厚さに塗布した構造となっている。4枚のセパレータ101-1、101-2、101-3、101-4は、厚さ約30μmのポリプロピレン製の多孔性薄膜で形成されている。セパレータの高温(130℃以上)における収縮方向(収縮軸)は、図3中に示すように、正極電極103の矩形の短辺方向と平行にしてある。
1mm程度の距離dの重なり部分を持つ2枚のセパレータ(101-1、101-2)と、同様の2枚のセパレータ(101-3、101-4)とで、正極電極103のそれぞれ上下から挟む。さらに正極電極103から外側に僅かに離れた距離でセパレータ同士(101-1と101-3、101-2と101-4)を熱融着して、袋状セパレータを形成する。熱融着部分は図1の熱融着部分102に示したように、約1mm角の大きさで、2mm程度の間隔sで形成されている。この際、2枚のセパレータ(101-1、101-2)の重なり部分、また、2枚のセパレータ(101-3、101-4)の重なり部分に、図1に示すような少なくとも1箇所の熱融着部分102aを設ける。これにより2枚のセパレータ(101-1、101-2)が分離してしまうことはなく、2枚のセパレータ(101-3、101-4)が分離してしまうことはない。
次に、図4に示すように、上記のように形成した正極電極入り袋状セパレータ404を、負極電極405-1、405-2で挟んで積層し、積層型二次電池を構成する。負極電極405-1、405-2は例えば約15μmの厚さの銅箔の両面にそれぞれ100μm程度の厚さに黒鉛を塗布した構造である。
[効果]
本実施形態の積層型二次電池によれば、電池の活性化時、あるいは初期充放電時に正極材料で発生したガスが電極とセパレータとの間に気泡となって抜けなくなり、隙間を形成して正極と負極との間の(リチウム)イオンの動きを阻害することを防止できる。これにより、電極表面上の活材料が均一に活性化するようになる。このため、電極の表面上で均一な動作が可能となり、電池本来の性能が発揮されるようになる。また、袋状セパレータの周囲部を熱融着によって固定しているため、高温においてセパレータが収縮しても正極が露出しにくく、負極とのショートが起こりにくい構造となっている。つまり、電池本来の性能を十分に発揮できる構造であり、高温時における安全性能が高い二次電池構造を提供することができる。
本実施形態の積層型二次電池によれば、電池の活性化時、あるいは初期充放電時に正極材料で発生したガスが電極とセパレータとの間に気泡となって抜けなくなり、隙間を形成して正極と負極との間の(リチウム)イオンの動きを阻害することを防止できる。これにより、電極表面上の活材料が均一に活性化するようになる。このため、電極の表面上で均一な動作が可能となり、電池本来の性能が発揮されるようになる。また、袋状セパレータの周囲部を熱融着によって固定しているため、高温においてセパレータが収縮しても正極が露出しにくく、負極とのショートが起こりにくい構造となっている。つまり、電池本来の性能を十分に発揮できる構造であり、高温時における安全性能が高い二次電池構造を提供することができる。
上記実施形態において、熱融着部分の間隔sや、セパレータのスリットの数、また、正極の分割などは用途によって適当に選ぶことができる。そのための構成を、以下、第2から第5の実施形態として説明する。
〔第2実施形態〕
本発明の第2実施形態による積層型二次電池について、説明する。図5は、本発明の第2実施形態の積層型二次電池の構成を説明するための平面図である。図5は、本実施形態の積層型二次電池の袋状セパレータに入った正極電極503を示す。
本発明の第2実施形態による積層型二次電池について、説明する。図5は、本発明の第2実施形態の積層型二次電池の構成を説明するための平面図である。図5は、本実施形態の積層型二次電池の袋状セパレータに入った正極電極503を示す。
図5は、高温におけるセパレータの熱収縮率がそれほど大きくないセパレータを使用した場合に、高温下でセパレータの収縮による正極電極の露出が起きない範囲で、間隔sを第1の実施形態の場合に比べ大きく設定した例を示す。これにより、正極電極周囲からのガスを逃がす効果を高めている例である。
図5において、第1実施形態と同様に、袋状セパレータには中央部に横方向に走るスリットが形成されている。袋状セパレータのスリットは図5に示すように、袋状セパレータの上半分部分501-1と、袋状セパレータの下半分部分501-2との、部分的な重なりによって形成されている。袋状セパレータのスリットは第1実施形態と同様に、収縮率の大きい収縮方向に沿って形成されている。より具体的には、袋状セパレータのスリットは、袋状セパレータの高温における収縮方向と平行に形成されている。セパレータ同士は熱融着部分502で融着され、袋状のセパレータが形成されている。図5の袋状セパレータの上半分部分501-1と、袋状セパレータの下半分部分501-2との重なり部分に、熱融着部分502aを設けている。セパレータの重なり部分に少なくとも1箇所の熱融着部分があることによって、セパレータの上半分部分501-1とセパレータの下半分部分501-2とが分離することはない。
本実施形態によれば、積層型二次電池のセル内部の電極材料等で発生したガスが電極とセパレータの間にたまり、気泡となって抜けにくくなる現象を防ぐと共に、高温下における安全性能を高めることができる。さらに、高温におけるセパレータの熱収縮率がそれほど大きくないセパレータを使用した場合に、高温下でセパレータの収縮による正極電極の露出が起きない範囲で、間隔sを第1の実施形態の場合に比べ大きく設定している。これにより、正極電極503周囲からのガスを逃がす効果を高めることができる。
〔第3実施形態〕
本発明の第3実施形態による積層型二次電池について、説明する。図6は、本発明の第3実施形態の積層型二次電池の構成を説明するための平面図である。図6は、袋状セパレータの分割数を増やし、スリットを多く設けることで、正極電極中央部のガスを逃がす効果を高めている例である。
本発明の第3実施形態による積層型二次電池について、説明する。図6は、本発明の第3実施形態の積層型二次電池の構成を説明するための平面図である。図6は、袋状セパレータの分割数を増やし、スリットを多く設けることで、正極電極中央部のガスを逃がす効果を高めている例である。
図6において、第1実施形態と同様に、袋状セパレータには横方向に走るスリットが形成されている。本実施形態の袋状セパレータでは横方向に走る複数のスリットが形成されており、図6では横方向に走る三つのスリットが形成されている。袋状セパレータの一つのスリットは図6に示すように、袋状セパレータの第1部分601-1と第2部分601-2との、部分的な重なりによって形成されている。袋状セパレータのもう一つのスリットは図6に示すように、袋状セパレータの第2部分601-2と第3部分601-3との、部分的な重なりによって形成されている。袋状セパレータのさらにもう一つのスリットは図6に示すように、袋状セパレータの第3部分601-3と第4部分601-4との、部分的な重なりによって形成されている。袋状セパレータの各スリットは第1実施形態と同様に、収縮率の大きい収縮方向に沿って形成されている。より具体的には、袋状セパレータの各スリットは、袋状セパレータの高温における収縮方向と平行に形成されている。
セパレータ同士は熱融着部分602で融着され、袋状のセパレータが形成されている。図6の袋状セパレータの第1部分601-1と第2部分601-2との重なり部分に、熱融着部分602aを設けている。さらに図6の袋状セパレータの第2部分601-2と第3部分601-3との重なり部分に、熱融着部分602aを設けている。さらに図6の袋状セパレータの第3部分601-3と第4部分601-4との重なり部分に、熱融着部分602aを設けている。セパレータの重なり部分に熱融着部分602aがあることによって、セパレータの各部分が分離することはない。
本実施形態によれば、第2実施形態などと同様に、積層型二次電池のセル内部の電極材料等で発生したガスが電極とセパレータの間にたまり、気泡となって抜けにくくなる現象を防ぐと共に、高温下における安全性能を高めることができる。
さらに本実施形態によれば、袋状セパレータの分割数を増やし、スリットを多く設けることで、正極電極603中央部のガスを逃がす効果を高めることができる。
〔第4実施形態〕
本発明の第4実施形態による積層型二次電池について、説明する。図7は、本発明の第4実施形態の積層型二次電池の構成を説明するための平面図である。図7は、正極電極を縦方向に2分割し、正極電極と正極電極との間にもセパレータの熱融着部分を設けることにより、高温下でのセパレータの収縮によって、より正極電極が露出しにくい構造にして安全性能を高めた例である。
本発明の第4実施形態による積層型二次電池について、説明する。図7は、本発明の第4実施形態の積層型二次電池の構成を説明するための平面図である。図7は、正極電極を縦方向に2分割し、正極電極と正極電極との間にもセパレータの熱融着部分を設けることにより、高温下でのセパレータの収縮によって、より正極電極が露出しにくい構造にして安全性能を高めた例である。
図7においては、正極電極が縦方向に2分割されている。言い換えると、本実施形態の積層型二次電池は、縦方向に2分割された正極電極703-1と、正極電極703-2とを有する。本実施形態では第1実施形態と同様に、袋状セパレータには中央部に横方向に走るスリットが形成されている。袋状セパレータのスリットは図7に示すように、袋状セパレータの上半分部分701-1と、袋状セパレータの下半分部分701-2との、部分的な重なりによって形成されている。袋状セパレータのスリットは第1実施形態と同様に、収縮率の大きい収縮方向に沿って形成されている。より具体的には、袋状セパレータのスリットは、袋状セパレータの高温における収縮方向と平行に形成されている。セパレータ同士は熱融着部分702で融着され、袋状のセパレータが形成されている。図7の袋状セパレータの上半分部分701-1と、袋状セパレータの下半分部分701-2との重なり部分に、熱融着部分702aを設けている。
さらに縦方向に2分割された正極電極703-1と、正極電極703-2との間の、袋状セパレータの上半分部分701-1と、袋状セパレータの下半分部分701-2との重なり部分に、熱融着部分702bを設けている。セパレータの重なり部分に少なくとも1箇所の熱融着部分があることによって、セパレータの上半分部分701-1とセパレータの下半分部分701-2とが分離することはない。さらに縦方向に2分割された正極電極703-1と、正極電極703-2との間の、セパレータの重なり部分に熱融着部分702bを設けることにより、分離抑制効果をさらに高めている。
本実施形態によれば、第2実施形態などと同様に、積層型二次電池のセル内部の電極材料等で発生したガスが電極とセパレータの間にたまり、気泡となって抜けにくくなる現象を防ぐと共に、高温下における安全性能を高めることができる。
さらに本実施形態によれば、正極電極を縦方向に分割し、分割された正極電極と正極電極との間にもセパレータの熱融着部分を設けることにより、高温下でのセパレータの収縮によって、より正極電極が露出しにくい構造にして安全性能を高めることができる。
〔第5実施形態〕
本発明の第5実施形態による積層型二次電池について、説明する。図8は、本発明の第5実施形態の積層型二次電池の構成を説明するための平面図である。図8は、正極電極を分割してスリット部には正極電極が重ならないようにしたものである。この場合、さらに高い高温下で収縮率の大きい収縮方向に垂直な方向にも収縮が起こり、スリット部が開孔したとしても、正極電極が露出しにくい構造であって、安全性能を高めている例である。
本発明の第5実施形態による積層型二次電池について、説明する。図8は、本発明の第5実施形態の積層型二次電池の構成を説明するための平面図である。図8は、正極電極を分割してスリット部には正極電極が重ならないようにしたものである。この場合、さらに高い高温下で収縮率の大きい収縮方向に垂直な方向にも収縮が起こり、スリット部が開孔したとしても、正極電極が露出しにくい構造であって、安全性能を高めている例である。
図8においては、正極電極が横方向に2分割されている。言い換えると、本実施形態の積層型二次電池は、横方向に2分割された正極電極803-1と、正極電極803-2とを有する。本実施形態では第1実施形態などと同様に、袋状セパレータには中央部を横方向に走るスリットが形成されている。袋状セパレータのスリットは図8に示すように、袋状セパレータの上半分部分801-1と、袋状セパレータの下半分部分801-2との、部分的な重なりによって形成されている。袋状セパレータのスリットは第1実施形態と同様に、収縮率の大きい収縮方向に沿って形成されている。より具体的には、袋状セパレータのスリットは、袋状セパレータの高温における収縮方向と平行に形成されている。セパレータ同士は熱融着部分802で融着され、袋状のセパレータが形成されている。さらに図8の袋状セパレータの上半分部分801-1と、袋状セパレータの下半分部分801-2との重なり部分に、熱融着部分802aを設けている。セパレータの重なり部分に熱融着部分があることによって、セパレータの上半分部分801-1とセパレータの下半分部分801-2とが分離することはない。
本実施形態では、横方向に2分割された正極電極803-1と、正極電極803-2とは、袋状セパレータのスリットに重ならない配置で構成している。
本実施形態によれば、第2実施形態などと同様に、積層型二次電池のセル内部の電極材料等で発生したガスが電極とセパレータの間にたまり、気泡となって抜けにくくなる現象を防ぐと共に、高温下における安全性能を高めることができる。
さらに本実施形態によれば、正極電極を分割し、分割された正極電極803-1、803-2がいずれも、袋状セパレータのスリットに重ならない配置で構成している。言い換えると、分割された正極電極803-1、803-2は、袋状セパレータの上半分部分801-1と、袋状セパレータの下半分部分801-2との重なり部分に重ならない配置で構成している。これにより、さらに高い高温下で収縮率の大きい収縮方向に垂直な方向にも収縮が起こり、スリット部が開孔したとしても、正極電極803-1や正極電極803-2を露出しにくくすることができ、安全性能を高めることができる。
〔第6実施形態〕
次に、本発明の第6実施形態による積層型二次電池の製造方法を説明する。図9は、本発明の第6実施形態の積層型二次電池のセル構造を示す斜視図である。図10は、図9のB-B線に沿った断面図である。
次に、本発明の第6実施形態による積層型二次電池の製造方法を説明する。図9は、本発明の第6実施形態の積層型二次電池のセル構造を示す斜視図である。図10は、図9のB-B線に沿った断面図である。
まず、図10に示すように、第1の実施形態の製造方法で示した方法により形成された正極電極1003入りの袋状セパレータ1001と、負極電極1005とを、交互に積層する。次に、正極電極1003の取り出しと負極電極1005の取り出しをまとめて超音波により溶接し、図9のタブ920、930として引き出し、最後に全体をラミネートシート1010によりパッキングする。さらにラミネートシート1010でパッキングされた内部に電解液1040を注入して満たすことにより、図9で示したセル構造を得る。ラミネートシートとしては、例えば両面をポリエチレンでコーティングされたアルミニウム箔が、電解液としては例えばジエチルカーボネート有機溶媒中に六フッ化リン酸リチウム(LiPF6)を1mol/lの濃度に溶融したものが使用可能である。このセルを活性化するため、タブの間に適当な電圧をかけて数サイクル充放電を行う。その際に図9に示したセルのガス排出口950を真空ポンプで引きながら活性化することによって、正極電極1003などから発生したガスがスリットを通り袋状セパレータ1001の外へ、さらにセルの外部へ効率よく逃がすことができる。活性化が終了後、ガス排出口950を熱融着によって塞いで、余分な部分を切断することによって最終的な積層型二次電池セルが完成する。
以上、本発明の好ましい実施形態を説明したが、本発明はこれに限定されるものではない。例えば、スリットの方向はセパレータの収縮方向と必ずしも完全に平行でなくてもよい。上述した実施形態では、正極電極と負極電極のうちの正極電極が袋状セパレータに収められ、正極電極と負極電極のうちの負極電極が、正極電極が収められた袋状セパレータに積層された積層型二次電池を説明したが、これに限られない。すなわち、正極電極と負極電極のうちの負極電極が袋状セパレータに収められ、正極電極と負極電極のうちの正極電極が、負極電極が収められた袋状セパレータに積層された積層型二次電池を構成することも考えられる。2枚のセパレータの重なり部の各々のセパレータの厚さは、各々のセパレータのその他の部分の厚さよりも薄く構成することも考えられる。請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲に含まれることはいうまでもない。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)正極電極と負極電極とが、袋状セパレータを介して積層された積層型二次電池であって、前記正極電極と前記負極電極のうちの一方の電極が前記袋状セパレータに収められ、前記正極電極と前記負極電極のうちの他方の電極が、前記一方の電極が収められた前記袋状セパレータに積層され、前記袋状セパレータは、高温下で一軸性の収縮特性を有し、収縮率の大きい収縮方向に沿って形成されたスリットを有する、積層型二次電池。
(付記2)前記袋状セパレータは、その二辺が前記収縮方向と平行である矩形をなしている、付記1に記載の積層型二次電池。
(付記3)前記袋状セパレータの周囲部は、前記収縮方向と実質的に直交する辺の少なくとも一部が熱融着されて形成されている、付記2に記載の積層型二次電池。
(付記4)前記スリットは、前記袋状セパレータの一部を構成する2枚のセパレータの重なり部で形成されている、付記1に記載の積層型二次電池。
(付記5)前記スリットは、前記袋状セパレータの一部を構成する第1部分と前記第1部分に隣接する第2部分との重なり部で形成されている、付記4に記載の積層型二次電池。
(付記6)前記スリットは、前記第2部分と前記第2部分に隣接する第3部分との重なり部でさらに形成されている、付記5に記載の積層型二次電池。
(付記7)前記2枚のセパレータの重なり部の少なくとも1部に熱融着部分を有する、付記4乃至付記6のいずれか一つに記載の積層型二次電池。
(付記8)前記2枚のセパレータの重なり部の各々のセパレータの厚さは、各々のセパレータのその他の部分の厚さよりも薄い、付記4乃至付記7のいずれか一つに記載の積層型二次電池。
(付記9)前記袋状セパレータに収められる前記一方の電極は、複数個である、付記1乃至付記8のいずれか一つに記載の積層型二次電池。
(付記10)前記一方の電極は実質的に矩形をなしており、前記複数個の前記一方の電極は、前記矩形の短辺が実質的に平行になるように、前記袋状セパレータに収められる、付記9に記載の積層型二次電池。
(付記11)前記一方の電極は実質的に矩形をなしており、前記複数個の前記一方の電極は、前記矩形の長辺が実質的に平行になるように、前記袋状セパレータに収められる、付記9に記載の積層型二次電池。
(付記12)前記矩形の長辺が実質的に平行になるように、前記袋状セパレータに収められた前記複数個の前記一方の電極間に位置する箇所で、前記袋状セパレータは熱融着されている、付記11に記載の積層型二次電池。
(付記13)前記複数個の前記一方の電極間に位置する箇所の、前記2枚のセパレータの重なり部の少なくとも1部に熱融着部分を有する、付記9乃至付記12のいずれか一つに記載の積層型二次電池。
(付記14)正極電極と負極電極とが積層された積層型二次電池に用いられる袋状セパレータであって、高温下で一軸性の収縮特性を有し、収縮率の大きい収縮方向に沿って形成されたスリットを有する、袋状セパレータ。
(付記15)その二辺が前記収縮方向と平行である矩形をなしている、付記14に記載の袋状セパレータ。
(付記16)周囲部は、前記収縮方向と実質的に直交する辺の少なくとも一部が熱融着されて形成されている、付記15に記載の袋状セパレータ。
(付記17)前記スリットは、2枚のセパレータの重なり部で形成されている、付記14に記載の袋状セパレータ。
(付記18)前記スリットは、セパレータの一部を構成する第1部分と前記第1部分に隣接する第2部分との重なり部で形成されている、付記17に記載の袋状セパレータ。
(付記19)前記スリットは、前記第2部分と前記第2部分に隣接する第3部分との重なり部でさらに形成されている、付記18に記載の袋状セパレータ。
(付記20)前記2枚のセパレータの重なり部の少なくとも1部に熱融着部分を有する、付記17乃至付記19のいずれか一つに記載の袋状セパレータ。
(付記21)前記2枚のセパレータの重なり部の各々のセパレータの厚さは、各々のセパレータのその他の部分の厚さよりも薄い、付記17乃至付記20のいずれか一つに記載の袋状セパレータ。
(付記1)正極電極と負極電極とが、袋状セパレータを介して積層された積層型二次電池であって、前記正極電極と前記負極電極のうちの一方の電極が前記袋状セパレータに収められ、前記正極電極と前記負極電極のうちの他方の電極が、前記一方の電極が収められた前記袋状セパレータに積層され、前記袋状セパレータは、高温下で一軸性の収縮特性を有し、収縮率の大きい収縮方向に沿って形成されたスリットを有する、積層型二次電池。
(付記2)前記袋状セパレータは、その二辺が前記収縮方向と平行である矩形をなしている、付記1に記載の積層型二次電池。
(付記3)前記袋状セパレータの周囲部は、前記収縮方向と実質的に直交する辺の少なくとも一部が熱融着されて形成されている、付記2に記載の積層型二次電池。
(付記4)前記スリットは、前記袋状セパレータの一部を構成する2枚のセパレータの重なり部で形成されている、付記1に記載の積層型二次電池。
(付記5)前記スリットは、前記袋状セパレータの一部を構成する第1部分と前記第1部分に隣接する第2部分との重なり部で形成されている、付記4に記載の積層型二次電池。
(付記6)前記スリットは、前記第2部分と前記第2部分に隣接する第3部分との重なり部でさらに形成されている、付記5に記載の積層型二次電池。
(付記7)前記2枚のセパレータの重なり部の少なくとも1部に熱融着部分を有する、付記4乃至付記6のいずれか一つに記載の積層型二次電池。
(付記8)前記2枚のセパレータの重なり部の各々のセパレータの厚さは、各々のセパレータのその他の部分の厚さよりも薄い、付記4乃至付記7のいずれか一つに記載の積層型二次電池。
(付記9)前記袋状セパレータに収められる前記一方の電極は、複数個である、付記1乃至付記8のいずれか一つに記載の積層型二次電池。
(付記10)前記一方の電極は実質的に矩形をなしており、前記複数個の前記一方の電極は、前記矩形の短辺が実質的に平行になるように、前記袋状セパレータに収められる、付記9に記載の積層型二次電池。
(付記11)前記一方の電極は実質的に矩形をなしており、前記複数個の前記一方の電極は、前記矩形の長辺が実質的に平行になるように、前記袋状セパレータに収められる、付記9に記載の積層型二次電池。
(付記12)前記矩形の長辺が実質的に平行になるように、前記袋状セパレータに収められた前記複数個の前記一方の電極間に位置する箇所で、前記袋状セパレータは熱融着されている、付記11に記載の積層型二次電池。
(付記13)前記複数個の前記一方の電極間に位置する箇所の、前記2枚のセパレータの重なり部の少なくとも1部に熱融着部分を有する、付記9乃至付記12のいずれか一つに記載の積層型二次電池。
(付記14)正極電極と負極電極とが積層された積層型二次電池に用いられる袋状セパレータであって、高温下で一軸性の収縮特性を有し、収縮率の大きい収縮方向に沿って形成されたスリットを有する、袋状セパレータ。
(付記15)その二辺が前記収縮方向と平行である矩形をなしている、付記14に記載の袋状セパレータ。
(付記16)周囲部は、前記収縮方向と実質的に直交する辺の少なくとも一部が熱融着されて形成されている、付記15に記載の袋状セパレータ。
(付記17)前記スリットは、2枚のセパレータの重なり部で形成されている、付記14に記載の袋状セパレータ。
(付記18)前記スリットは、セパレータの一部を構成する第1部分と前記第1部分に隣接する第2部分との重なり部で形成されている、付記17に記載の袋状セパレータ。
(付記19)前記スリットは、前記第2部分と前記第2部分に隣接する第3部分との重なり部でさらに形成されている、付記18に記載の袋状セパレータ。
(付記20)前記2枚のセパレータの重なり部の少なくとも1部に熱融着部分を有する、付記17乃至付記19のいずれか一つに記載の袋状セパレータ。
(付記21)前記2枚のセパレータの重なり部の各々のセパレータの厚さは、各々のセパレータのその他の部分の厚さよりも薄い、付記17乃至付記20のいずれか一つに記載の袋状セパレータ。
本発明によれば、リチウム過剰正極材料と呼ばれる背景技術のリチウムイオン電池の倍以上の容量が得られる材料により正極を形成した場合においても、十分に性能が発揮でき、かつ安全性能も高いセルが形成できる。よって、本発明の活用例として、例えば航続距離の長い電気自動車、ドローン、ロボット等が考えられる。
以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
この出願は、2016年5月26日に出願された日本出願特願2016-105071号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
101、1001 セパレータ
102、102a、502、502a、602、602a、702、702a、702b、802、802a 熱融着部分
103、503、603、703、803、1003 正極電極
404 正極電極入り袋状セパレータ
405、1005 負極電極
910、1010 ラミネートシート
920、930 タブ
1040 電解液
950 ガス排出口
1160 発生したガスによる気泡
102、102a、502、502a、602、602a、702、702a、702b、802、802a 熱融着部分
103、503、603、703、803、1003 正極電極
404 正極電極入り袋状セパレータ
405、1005 負極電極
910、1010 ラミネートシート
920、930 タブ
1040 電解液
950 ガス排出口
1160 発生したガスによる気泡
Claims (21)
- 正極電極と負極電極とが、袋状セパレータを介して積層された積層型二次電池であって、
前記正極電極と前記負極電極のうちの一方の電極が前記袋状セパレータに収められ、前記正極電極と前記負極電極のうちの他方の電極が、前記一方の電極が収められた前記袋状セパレータに積層され、
前記袋状セパレータは、高温下で一軸性の収縮特性を有し、収縮率の大きい収縮方向に沿って形成されたスリットを有する、積層型二次電池。 - 前記袋状セパレータは、その二辺が前記収縮方向と平行である矩形をなしている、請求項1に記載の積層型二次電池。
- 前記袋状セパレータの周囲部は、前記収縮方向と実質的に直交する辺の少なくとも一部が熱融着されて形成されている、請求項2に記載の積層型二次電池。
- 前記スリットは、前記袋状セパレータの一部を構成する2枚のセパレータの重なり部で形成されている、請求項1に記載の積層型二次電池。
- 前記スリットは、前記袋状セパレータの一部を構成する第1部分と前記第1部分に隣接する第2部分との重なり部で形成されている、請求項4に記載の積層型二次電池。
- 前記スリットは、前記第2部分と前記第2部分に隣接する第3部分との重なり部でさらに形成されている、請求項5に記載の積層型二次電池。
- 前記2枚のセパレータの重なり部の少なくとも1部に熱融着部分を有する、請求項4乃至請求項6のいずれか一項に記載の積層型二次電池。
- 前記2枚のセパレータの重なり部の各々のセパレータの厚さは、各々のセパレータのその他の部分の厚さよりも薄い、請求項4乃至請求項7のいずれか一項に記載の積層型二次電池。
- 前記袋状セパレータに収められる前記一方の電極は、複数個である、請求項1乃至請求項8のいずれか一項に記載の積層型二次電池。
- 前記一方の電極は実質的に矩形をなしており、前記複数個の前記一方の電極は、前記矩形の短辺が実質的に平行になるように、前記袋状セパレータに収められる、請求項9に記載の積層型二次電池。
- 前記一方の電極は実質的に矩形をなしており、前記複数個の前記一方の電極は、前記矩形の長辺が実質的に平行になるように、前記袋状セパレータに収められる、請求項9に記載の積層型二次電池。
- 前記矩形の長辺が実質的に平行になるように、前記袋状セパレータに収められた前記複数個の前記一方の電極間に位置する箇所で、前記袋状セパレータは熱融着されている、請求項11に記載の積層型二次電池。
- 前記複数個の前記一方の電極間に位置する箇所の、前記2枚のセパレータの重なり部の少なくとも1部に熱融着部分を有する、請求項9乃至請求項12のいずれか一項に記載の積層型二次電池。
- 正極電極と負極電極とが積層された積層型二次電池に用いられる袋状セパレータであって、
高温下で一軸性の収縮特性を有し、収縮率の大きい収縮方向に沿って形成されたスリットを有する、袋状セパレータ。 - その二辺が前記収縮方向と平行である矩形をなしている、請求項14に記載の袋状セパレータ。
- 周囲部は、前記収縮方向と実質的に直交する辺の少なくとも一部が熱融着されて形成されている、請求項15に記載の袋状セパレータ。
- 前記スリットは、2枚のセパレータの重なり部で形成されている、請求項14に記載の袋状セパレータ。
- 前記スリットは、セパレータの一部を構成する第1部分と前記第1部分に隣接する第2部分との重なり部で形成されている、請求項17に記載の袋状セパレータ。
- 前記スリットは、前記第2部分と前記第2部分に隣接する第3部分との重なり部でさらに形成されている、請求項18に記載の袋状セパレータ。
- 前記2枚のセパレータの重なり部の少なくとも1部に熱融着部分を有する、請求項17乃至請求項19のいずれか一項に記載の袋状セパレータ。
- 前記2枚のセパレータの重なり部の各々のセパレータの厚さは、各々のセパレータのその他の部分の厚さよりも薄い、請求項17乃至請求項20のいずれか一項に記載の袋状セパレータ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018519241A JPWO2017204096A1 (ja) | 2016-05-26 | 2017-05-19 | 積層型二次電池、及び袋状セパレータ |
US16/303,997 US20200321588A1 (en) | 2016-05-26 | 2017-05-19 | Stacked secondary battery and bag-like separator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-105071 | 2016-05-26 | ||
JP2016105071 | 2016-05-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017204096A1 true WO2017204096A1 (ja) | 2017-11-30 |
Family
ID=60412764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/018767 WO2017204096A1 (ja) | 2016-05-26 | 2017-05-19 | 積層型二次電池、及び袋状セパレータ |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200321588A1 (ja) |
JP (1) | JPWO2017204096A1 (ja) |
WO (1) | WO2017204096A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4961626U (ja) * | 1972-09-09 | 1974-05-30 | ||
JPH09147914A (ja) * | 1995-11-24 | 1997-06-06 | Sony Corp | リチウムイオン二次電池 |
JP2003092100A (ja) * | 2001-09-19 | 2003-03-28 | Nec Corp | 積層型電池 |
WO2011096334A1 (ja) * | 2010-02-05 | 2011-08-11 | Necエナジーデバイス株式会社 | 積層型二次電池 |
JP2012079466A (ja) * | 2010-09-30 | 2012-04-19 | Gs Yuasa Corp | 電池 |
JP2013109946A (ja) * | 2011-11-21 | 2013-06-06 | Hitachi Ltd | 積層型電池 |
JP2013161634A (ja) * | 2012-02-03 | 2013-08-19 | Toyota Industries Corp | 電極収納セパレータ、電極体、蓄電装置及び車両 |
JP2013251206A (ja) * | 2012-06-01 | 2013-12-12 | Toyota Industries Corp | 蓄電装置 |
JP2014188776A (ja) * | 2013-03-27 | 2014-10-06 | Nec Corp | 樹脂フィルムの融着接合構造、及び樹脂フィルムの融着接合構造形成方法 |
JP2016085976A (ja) * | 2014-10-24 | 2016-05-19 | 株式会社半導体エネルギー研究所 | 蓄電装置 |
-
2017
- 2017-05-19 US US16/303,997 patent/US20200321588A1/en not_active Abandoned
- 2017-05-19 JP JP2018519241A patent/JPWO2017204096A1/ja active Pending
- 2017-05-19 WO PCT/JP2017/018767 patent/WO2017204096A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4961626U (ja) * | 1972-09-09 | 1974-05-30 | ||
JPH09147914A (ja) * | 1995-11-24 | 1997-06-06 | Sony Corp | リチウムイオン二次電池 |
JP2003092100A (ja) * | 2001-09-19 | 2003-03-28 | Nec Corp | 積層型電池 |
WO2011096334A1 (ja) * | 2010-02-05 | 2011-08-11 | Necエナジーデバイス株式会社 | 積層型二次電池 |
JP2012079466A (ja) * | 2010-09-30 | 2012-04-19 | Gs Yuasa Corp | 電池 |
JP2013109946A (ja) * | 2011-11-21 | 2013-06-06 | Hitachi Ltd | 積層型電池 |
JP2013161634A (ja) * | 2012-02-03 | 2013-08-19 | Toyota Industries Corp | 電極収納セパレータ、電極体、蓄電装置及び車両 |
JP2013251206A (ja) * | 2012-06-01 | 2013-12-12 | Toyota Industries Corp | 蓄電装置 |
JP2014188776A (ja) * | 2013-03-27 | 2014-10-06 | Nec Corp | 樹脂フィルムの融着接合構造、及び樹脂フィルムの融着接合構造形成方法 |
JP2016085976A (ja) * | 2014-10-24 | 2016-05-19 | 株式会社半導体エネルギー研究所 | 蓄電装置 |
Also Published As
Publication number | Publication date |
---|---|
US20200321588A1 (en) | 2020-10-08 |
JPWO2017204096A1 (ja) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5618010B2 (ja) | 多方向性リード−タブ構造を有するリチウム二次電池 | |
KR102157892B1 (ko) | 파우치형 이차전지 | |
JP5541514B2 (ja) | 積層型二次電池 | |
KR101216422B1 (ko) | 실링부의 절연성이 향상된 이차전지 | |
JP2019536254A (ja) | ボタン電池及びその製造方法 | |
JP5451315B2 (ja) | 組電池 | |
JP6146232B2 (ja) | 二次電池 | |
US8709639B2 (en) | Rechargeable battery | |
KR20130133639A (ko) | 전극 조립체, 전지셀, 전극 조립체의 제조방법 및 전지셀의 제조 방법 | |
JP6423134B2 (ja) | 二次電池 | |
JP7304330B2 (ja) | 二次電池 | |
KR101737174B1 (ko) | 비정형 이차전지 및 제조방법 | |
KR101663351B1 (ko) | 전기화학소자용 셀 및 이의 제조 방법 | |
KR102065102B1 (ko) | 향상된 냉각구조를 갖는 배터리 모듈 | |
JP6146231B2 (ja) | 二次電池 | |
JP6793458B2 (ja) | 電気化学セル及び電気化学セルの製造方法 | |
JP2018055904A (ja) | 電気化学セルおよび電気化学セルの製造方法 | |
KR20150038945A (ko) | 분리막의 열 수축성이 억제된 전지셀 | |
KR102256465B1 (ko) | 지그재그 형상으로 폴딩된 전극조립체 | |
WO2017204096A1 (ja) | 積層型二次電池、及び袋状セパレータ | |
KR102504792B1 (ko) | 이차 전지 | |
JP2018190547A (ja) | 二次電池および集電端子 | |
JP6103178B2 (ja) | 蓄電装置、及び蓄電装置の製造方法 | |
JP2017162777A (ja) | 電気化学セル及び電気化学セルの製造方法 | |
US9786886B2 (en) | Nonaqueous battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018519241 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17802688 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17802688 Country of ref document: EP Kind code of ref document: A1 |