WO2017203646A1 - 撮像制御装置、影位置特定装置、撮像システム、移動体、撮像制御方法、影位置特定方法、及びプログラム - Google Patents

撮像制御装置、影位置特定装置、撮像システム、移動体、撮像制御方法、影位置特定方法、及びプログラム Download PDF

Info

Publication number
WO2017203646A1
WO2017203646A1 PCT/JP2016/065537 JP2016065537W WO2017203646A1 WO 2017203646 A1 WO2017203646 A1 WO 2017203646A1 JP 2016065537 W JP2016065537 W JP 2016065537W WO 2017203646 A1 WO2017203646 A1 WO 2017203646A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
shadow
uav
moving body
imaging device
Prior art date
Application number
PCT/JP2016/065537
Other languages
English (en)
French (fr)
Inventor
稔 八尋
Original Assignee
エスゼット ディージェイアイ テクノロジー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスゼット ディージェイアイ テクノロジー カンパニー リミテッド filed Critical エスゼット ディージェイアイ テクノロジー カンパニー リミテッド
Priority to JP2017514707A priority Critical patent/JP6265576B1/ja
Priority to PCT/JP2016/065537 priority patent/WO2017203646A1/ja
Publication of WO2017203646A1 publication Critical patent/WO2017203646A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms

Definitions

  • the present invention relates to an imaging control device, a shadow position specifying device, an imaging system, a moving body, an imaging control method, a shadow position specifying method, and a program.
  • Patent Document 1 discloses that an azimuth angle in an arbitrary direction in an image is calculated from the direction of sunlight shadow.
  • Patent Document 2 discloses calculating the possibility that a shadow is detected in an imaging region based on the travel point and travel time of a vehicle.
  • Patent Document 1 Japanese Patent Laid-Open No. 2014-185908 Patent Document 2 International Publication No. 2013/129095
  • imaging When imaging with an imaging device mounted on a moving body, it may be required to control the positional relationship between the imaging range and the shadow of the moving body. Moreover, it may be required to accurately specify the position of the shadow of the moving object.
  • the imaging control device moves based on the first acquisition unit that acquires position information indicating the position of the moving body, the second acquisition unit that acquires date information indicating the date and time, and the position information and the date and time information.
  • a first specifying unit for specifying a direction from the body to the shadow of the moving body, and a control for controlling an imaging range of the first imaging device mounted on the moving body based on the direction from the moving body to the shadow of the moving body.
  • the control unit may control the imaging range of the first imaging device by changing at least one of the imaging direction of the first imaging device, the angle of view of the first imaging device, and the position of the moving body. .
  • the control unit may control the imaging range of the first imaging device so that the shadow of the moving object is not included in the imaging range of the first imaging device.
  • the control unit controls the imaging range of the first imaging device so that the shadow of the moving body is not included in the imaging range of the first imaging device, and the moving body moves to the imaging range of the first imaging device. May be switched to the second mode for controlling the imaging range of the first imaging device so that the shadow of the first imaging device is included.
  • the control unit operates by switching between the first mode, the second mode, and the third mode for controlling the imaging range of the first imaging device without depending on whether or not the shadow of the moving object is included. Good.
  • the imaging control apparatus may include a third acquisition unit that acquires three-dimensional information indicating a three-dimensional shape of an object existing around the moving body.
  • the imaging control apparatus may include a second specifying unit that specifies a position where the shadow of the moving object exists based on the direction from the moving object to the shadow of the moving object and the three-dimensional information.
  • the control unit may control the imaging range of the first imaging device mounted on the moving body based on the position where the shadow of the moving body exists.
  • the imaging control device may include a fourth acquisition unit that acquires orientation information indicating the orientation of the moving object.
  • the imaging control apparatus may include a third specifying unit that specifies the shape of the shadow of the moving object based on the position information, the date information, and the orientation information.
  • the imaging control device may include a fifth acquisition unit that acquires an image captured by the first imaging device or the second imaging device mounted on the moving body.
  • the imaging control apparatus may include a fourth specifying unit that specifies the position of the shadow of the moving body by comparing the object in the image with the shape of the shadow.
  • the control unit may control the imaging range of the first imaging device mounted on the moving body based on the position where the shadow of the moving body exists.
  • the imaging control device captures an imaging range based on the first acquisition unit that acquires imaging information indicating an imaging range to be captured by the first imaging device mounted on the moving body, and the imaging information.
  • a second acquisition unit that acquires position information indicating a position where the moving body should sometimes exist, and an imaging range and movement that the first imaging device should image when the moving body exists at the position indicated by the position information.
  • the first specifying unit that specifies the date and time when the shadow of the body has a predetermined positional relationship, and the date and time specified by the first specifying unit, the moving body is moved to the position indicated by the position information, and the first imaging A control unit that causes the first imaging device to image an imaging range to be imaged by the device.
  • the first specifying unit may specify a date and time when a shadow of the moving object is not included in the imaging range to be imaged by the first imaging device when the moving object exists at the position indicated by the position information.
  • the shadow position specifying device includes a first acquisition unit that acquires position information indicating the position of the moving object, a second acquisition unit that acquires date information indicating the date and time, and an object existing around the moving object.
  • a third acquisition unit that acquires three-dimensional information indicating a three-dimensional shape, and a first specifying unit that specifies the position of the shadow of the moving object based on the position information, the date information, and the three-dimensional information.
  • the imaging control device controls the imaging range of the first imaging device mounted on the moving body based on the shadow position specifying device and the position where the shadow of the moving body specified by the first specifying unit exists.
  • a control unit controls the imaging range of the first imaging device mounted on the moving body based on the shadow position specifying device and the position where the shadow of the moving body specified by the first specifying unit exists.
  • the shadow position specifying device includes a first acquisition unit that acquires position information indicating the position of the moving object, a second acquisition unit that acquires date information indicating the date and time, and direction information indicating the direction of the moving object.
  • the image is picked up by the third acquisition unit to be acquired, the first specifying unit for specifying the shape of the shadow of the moving body based on the position information, the date information, and the orientation information, and the first imaging device mounted on the moving body.
  • a fourth acquisition unit that acquires an image and a second specifying unit that specifies the position of the shadow of the moving object by comparing the shape of the object and the shadow in the image.
  • the imaging control device is mounted on the imaging range or the moving body of the first imaging device based on the shadow position specifying device and the position where the shadow of the moving object specified by the second specifying unit exists. And a control unit that controls an imaging range of the second imaging device.
  • the imaging system includes an imaging control device and a first imaging device.
  • the moving body moves with an imaging system.
  • the imaging control method includes a step of acquiring position information indicating the position of the moving object, a step of acquiring date information indicating the date and time, and a shadow of the moving object from the moving object based on the position information and the date and time information. And a step of controlling the imaging range of the first imaging device mounted on the moving body based on the direction from the moving body to the shadow of the moving body.
  • the imaging control method acquires the imaging information indicating the imaging range to be imaged by the first imaging device mounted on the moving body, and moves when imaging the imaging range based on the imaging information.
  • the step of acquiring position information indicating the position where the body should be present, and when the moving body is present at the position indicated by the position information, the imaging range to be imaged by the first imaging device and the shadow of the moving body are determined in advance.
  • a step of specifying a date and time when the positional relationship is determined, and a step of moving the moving body to the position indicated by the position information at the specified date and time and causing the first imaging device to image the imaging range indicated by the imaging information With.
  • the program causes the computer to execute the imaging control method.
  • the shadow position specifying method includes a step of acquiring position information indicating the position of the moving object, a step of acquiring date and time information indicating the date and time, and three-dimensional information indicating a three-dimensional shape of an object existing around the moving object. And a step of specifying the position of the shadow of the moving object based on the position information, the date information, and the three-dimensional information.
  • the shadow position specifying method includes a step of acquiring position information indicating the position of the moving object, a step of acquiring date information indicating the date and time, a step of acquiring direction information indicating the direction of the moving object, and a position. Identifying the shape of the shadow of the moving object based on the information, date and time information, and orientation information; acquiring an image captured by the first imaging device mounted on the moving object; and an object in the image And identifying the position of the shadow of the moving body by comparing the shape of the shadow with the shape of the shadow.
  • the program causes a computer to execute a shadow position specifying method.
  • UAV external appearance of UAV.
  • UAV functional block of UAV.
  • UAV control part It is a figure which shows an example of the positional relationship of UAV, the angle of view of an imaging device, and a to-be-photographed object.
  • UAV positional relationship of UAV, the angle of view of an imaging device, and a to-be-photographed object.
  • UAV positional relationship of UAV, the angle of view of an imaging device, and a to-be-photographed object.
  • UAV positional relationship of UAV, the angle of view of an imaging device, and a to-be-photographed object.
  • FIG. 1 shows an example of the appearance of an unmanned aerial vehicle (UAV) 100.
  • the UAV 100 includes a UAV main body 102, a gimbal 200, an imaging device 220, and a plurality of imaging devices 230.
  • the UAV 100 is an example of a moving body that moves with an imaging system.
  • the moving body is a concept including, in addition to UAV, other aircraft that moves in the air, vehicles that move on the ground, ships that move on the water, and the like.
  • the UAV main body 102 includes a plurality of rotor blades.
  • the UAV main body 102 flies the UAV 100 by controlling the rotation of a plurality of rotor blades.
  • the UAV main body 102 causes the UAV 100 to fly using four rotary wings.
  • the number of rotor blades is not limited to four.
  • the UAV 100 may be a fixed wing aircraft that does not have a rotating wing.
  • the imaging device 220 is an imaging camera that images a subject included in a desired imaging range.
  • the plurality of imaging devices 230 are sensing cameras that image the surroundings of the UAV 100 in order to control the flight of the UAV 100.
  • Two imaging devices 230 may be provided on the front surface that is the nose of the UAV 100.
  • Two other imaging devices 230 may be provided on the bottom surface of the UAV 100.
  • the two imaging devices 230 on the front side may be paired and function as a so-called stereo camera.
  • the two imaging devices 230 on the bottom side may also be paired and function as a stereo camera.
  • Three-dimensional spatial data around the UAV 100 may be generated based on images captured by the plurality of imaging devices 230.
  • the number of imaging devices 230 included in the UAV 100 is not limited to four.
  • the UAV 100 only needs to include at least one imaging device 230.
  • the UAV 100 may include at least one imaging device 230 on each of the nose, the tail, the side surface, the bottom surface, and the ceiling surface of the UAV 100.
  • the angle of view that can be set by the imaging device 230 may be wider than the angle of view that can be set by the imaging device 220.
  • the imaging device 230 may have a single focus lens or a fisheye lens.
  • FIG. 2 shows an example of functional blocks of the UAV100.
  • the UAV 100 includes a UAV control unit 110, a communication interface 150, a memory 160, a gimbal 200, a rotating blade mechanism 210, an imaging device 220, an imaging device 230, a GPS receiver 240, an inertial measurement device (IMU) 250, a magnetic compass 260, and an atmospheric pressure.
  • An altimeter 270 is provided.
  • the communication interface 150 communicates with an external transmitter.
  • the communication interface 150 receives various commands for the UAV control unit 110 from a remote transmitter.
  • the memory 160 stores programs necessary for the UAV control unit 110 to control the gimbal 200, the rotary blade mechanism 210, the imaging device 220, the imaging device 230, the GPS receiver 240, the IMU 250, the magnetic compass 260, and the barometric altimeter 270.
  • the memory 160 may be a computer-readable recording medium and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 160 may be provided inside the UAV main body 102. It may be provided so as to be removable from the UAV main body 102.
  • the gimbal 200 supports the imaging device 220 to be rotatable about at least one axis.
  • the gimbal 200 may support the imaging device 220 rotatably about the yaw axis, pitch axis, and roll axis.
  • the gimbal 200 may change the imaging direction of the imaging device 220 by rotating the imaging device 220 about at least one of the yaw axis, the pitch axis, and the roll axis.
  • the rotary blade mechanism 210 includes a plurality of rotary blades and a plurality of drive motors that rotate the plurality of rotary blades.
  • the imaging device 220 captures a subject within a desired imaging range and generates image data.
  • the image data of the imaging device 220 is stored in the memory included in the imaging device 220 or the memory 160.
  • the imaging device 230 captures the surroundings of the UAV 100 and generates image data. Image data of the imaging device 230 is stored in the memory 160.
  • the GPS receiver 240 receives a plurality of signals indicating times transmitted from a plurality of GPS satellites.
  • the GPS receiver 240 calculates the position of the GPS receiver 240, that is, the position of the UAV 100, based on the received signals.
  • the inertial measurement device (IMU) 250 detects the posture of the UAV 100. As the posture of the UAV 100, the IMU 250 detects the acceleration in the three axial directions of the UAV 100 in the front, rear, left, and right directions, and the angular velocity in the three axial directions of pitch, roll, and yaw.
  • the magnetic compass 260 detects the heading of the UAV 100.
  • the barometric altimeter 270 detects the altitude at which the UAV 100 flies.
  • the UAV control unit 110 controls the flight of the UAV 100 in accordance with a program stored in the memory 160.
  • the UAV control unit 110 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like.
  • the UAV control unit 110 controls the flight of the UAV 100 according to a command received from a remote transmitter via the communication interface 150.
  • the UAV control unit 110 functions as an imaging control device or a shadow position specifying device by reading a program for flight control and imaging control from the memory 160 and executing the program.
  • the UAV control unit 110 may specify the environment around the UAV 100 by analyzing a plurality of images captured by the plurality of imaging devices 230.
  • the UAV control unit 110 controls the flight while avoiding obstacles based on the environment around the UAV 100, for example.
  • the UAV control unit 110 may generate three-dimensional spatial data around the UAV 100 based on a plurality of images captured by the plurality of imaging devices 230, and control the flight based on the three-dimensional spatial data.
  • the UAV control unit 110 and the imaging device 220 are an example of an imaging system.
  • the imaging system may include other configurations such as a gimbal 200.
  • FIG. 3 shows an example of functional blocks of the UAV control unit 110.
  • the UAV control unit 110 includes a control unit 112, a date and time information acquisition unit 114, a position information acquisition unit 116, an imaging information acquisition unit 118, a three-dimensional information acquisition unit 120, an orientation information acquisition unit 122, an image acquisition unit 124, and a shadow direction specification unit 126.
  • Each unit included in the UAV control unit 110 may be configured by any one of hardware, firmware, and software.
  • the function of the UAV control unit 110 is controlled by at least one or more control units.
  • the position information acquisition unit 116 is an example of a first acquisition unit and a second acquisition unit.
  • the imaging information acquisition unit 118 is an example of a second acquisition unit and a first acquisition unit.
  • the date / time information acquisition unit 114 is an example of a second acquisition unit.
  • the three-dimensional information acquisition unit 120 is an example of a third acquisition unit.
  • the orientation information acquisition unit 122 is an example of a third acquisition unit and a fourth acquisition unit.
  • the image acquisition unit 124 is an example of a fourth acquisition unit and a fifth acquisition unit.
  • the shadow direction specifying unit 126 is an example of a first specifying unit.
  • the date / time specifying unit 128 is an example of a first specifying unit.
  • the shadow position specifying unit 130 is an example of a first specifying unit, a second specifying unit, and a fourth specifying unit.
  • the shadow shape specifying unit 132 is an example of a first specifying unit and a third specifying unit.
  • the date information acquisition unit 114 acquires date information indicating the current date.
  • the date information acquisition unit 114 may acquire date information indicating the current date from the GPS receiver 240.
  • the date and time information acquisition unit 114 may acquire date and time information indicating the current date and time from a timer mounted on the UAV 100.
  • the position information acquisition unit 116 acquires position information indicating the position of the UAV 100.
  • the position information acquisition unit 116 may acquire position information indicating the longitude, latitude, and altitude where the UAV 100 exists from the GPS receiver 240.
  • the position information acquisition unit 116 may acquire latitude and longitude information indicating the latitude and longitude where the UAV 100 exists from the GPS receiver 240 and altitude information indicating the altitude where the UAV 100 exists from the barometric altimeter 270 as position information.
  • the orientation information acquisition unit 122 acquires orientation information indicating the orientation of the UAV 100 from the magnetic compass 260. In the direction information, for example, an orientation corresponding to the nose direction of the UAV 100 is indicated.
  • the position information acquisition unit 116 may acquire position information indicating a position where the UAV 100 should be present when the imaging device 220 images an imaging range to be imaged.
  • the position information acquisition unit 116 may acquire position information indicating the position where the UAV 100 should exist from the memory 160.
  • the position information acquisition unit 116 may acquire position information indicating a position where the UAV 100 should exist from another device such as a transmitter via the communication interface 150.
  • the position information acquisition unit 116 refers to the three-dimensional map database, specifies a position where the UAV 100 can exist in order to capture an imaging range to be imaged, and indicates the position where the UAV 100 should exist. It may be acquired as information.
  • the imaging information acquisition unit 118 acquires imaging information indicating the imaging ranges of the imaging device 220 and the imaging device 230, respectively.
  • the imaging information acquisition unit 118 acquires angle-of-view information indicating the angle of view of the imaging device 220 and the imaging device 230 from the imaging device 220 and the imaging device 230 as parameters for specifying the imaging range.
  • the imaging information acquisition unit 118 acquires information indicating the imaging directions of the imaging device 220 and the imaging device 230 as parameters for specifying the imaging range.
  • the imaging information acquisition unit 118 acquires attitude information indicating the attitude state of the imaging apparatus 220 from the gimbal 200 as information indicating the imaging direction of the imaging apparatus 220, for example.
  • the imaging information acquisition unit 118 acquires information indicating the orientation of the UAV 100 from the orientation information acquisition unit 122.
  • Information indicating the posture state of the imaging device 220 indicates a rotation angle from the reference rotation angle of the pitch axis and yaw axis of the gimbal 200.
  • the imaging information acquisition unit 118 further acquires position information indicating the position where the UAV 100 is present from the position information acquisition unit 116 as a parameter for specifying the imaging range.
  • the imaging information acquisition unit 118 demarcates an imaging range indicating a geographical range to be imaged by the imaging device 220 based on the angle of view and imaging direction of the imaging device 220 and the imaging device 230, and the position where the UAV 100 exists. Imaging information may be acquired by generating imaging information indicating a range.
  • the imaging information acquisition unit 118 may acquire imaging information indicating an imaging range to be imaged by the imaging device 220.
  • the imaging information acquisition unit 118 may acquire imaging information to be captured by the imaging device 220 from the memory 160.
  • the imaging information acquisition unit 118 may acquire imaging information to be captured by the imaging device 220 from another device such as a transmitter via the communication interface 150.
  • the three-dimensional information acquisition unit 120 acquires three-dimensional information indicating the three-dimensional shape of an object existing around the UAV 100.
  • the object is a part of a landscape such as a building, a road, a car, and a tree.
  • the three-dimensional information is, for example, three-dimensional space data.
  • the three-dimensional information acquisition unit 120 may acquire the three-dimensional information by generating three-dimensional information indicating the three-dimensional shape of the object existing around the UAV 100 from the images obtained from the plurality of imaging devices 230.
  • the three-dimensional information acquisition unit 120 may acquire three-dimensional information indicating the three-dimensional shape of an object existing around the UAV 100 by referring to a three-dimensional map database stored in the memory 160.
  • the three-dimensional information acquisition unit 120 may acquire three-dimensional information related to the three-dimensional shape of an object existing around the UAV 100 by referring to a three-dimensional map database managed by a server existing on the network.
  • the image acquisition unit 124 acquires images captured by the imaging device 220 and the imaging device 230.
  • the shadow direction specifying unit 126 specifies the direction from the UAV 100 to the shadow of the UAV 100 based on the position information and the date / time information.
  • the shadow direction specifying unit 126 refers to a function stored in the memory 160 that indicates the relationship between the date and time, the latitude and longitude, and the altitude and direction of the sun, and the altitude and direction of the sun at the date and time indicated in the date and time information. May be specified.
  • the shadow direction specifying unit 126 refers to a table stored in the memory 160 in which the date and time, the latitude and the longitude, and the altitude and direction of the sun are associated with each other. The direction may be specified.
  • the shadow direction specifying unit 126 specifies the shadow direction of the UAV 100 based on the altitude and direction of the sun and the latitude, longitude, and altitude of the UAV 100.
  • the direction of the shadow is indicated by the azimuth from the UAV 100 and the depression angle from the UAV 100.
  • the shadow position specifying unit 130 specifies the position where the shadow of the UAV 100 exists based on the direction from the UAV 100 to the shadow of the UAV 100 and the three-dimensional information indicating the three-dimensional shape of the object existing around the UAV 100.
  • the shadow position specifying unit 130 specifies the three-dimensional shape of an object such as a building that exists in the direction of the shadow of the UAV 100 with reference to the three-dimensional information.
  • the shadow position specifying unit 130 specifies the position where the shadow of the UAV 100 exists based on the three-dimensional shape.
  • the UAV control unit 110 controls the imaging range of the imaging device 220 based on the position where the shadow of the UAV 100 exists.
  • the position where the shadow of the UAV 100 exists indicates a geographical range where the shadow of the UAV 100 exists.
  • the position where the shadow of the UAV 100 exists may indicate a range defined by latitude, longitude, and altitude.
  • the position where the shadow of the UAV 100 exists may be a range in three-dimensional spatial data defined by latitude, longitude, and altitude.
  • the shadow shape specifying unit 132 specifies the shadow shape of the UAV 100 based on the position information of the UAV 100, the current date and time information, and the orientation information of the UAV 100.
  • the shadow shape specifying unit 132 generates a shadow shape of the UAV 100 based on the 3D image of the UAV 100 stored in the memory 160, the size information of the UAV 100, the shadow direction of the UAV 100, and the heading orientation of the UAV 100. Also good.
  • the shadow shape specifying unit 132 is based on the UAV 100 type information, the UAV 100 shadow direction, and the UAV 100 nose direction from among a plurality of UAV 100 shadow shape samples stored in the memory 160. The shape of the shadow may be specified.
  • the shadow position specifying unit 130 may specify the shadow position of the UAV 100 by comparing the object in the image captured by the imaging device 230 with the shape of the shadow of the UAV 100. Based on the direction of the shadow of the UAV 100 and the imaging range of the imaging device 230, the shadow position specifying unit 130 specifies an area where there is a high probability that the shadow of the UAV 100 exists from the image captured by the imaging device 230. The position of the shadow of the UAV 100 may be specified by pattern matching between the object in the region and the shape of the shadow of the UAV 100.
  • the shadow position specifying unit 130 may track the object specified as the shadow of the UAV 100 in the image picked up by the image pickup device 230 while moving the UAV 100. As a result of tracking, if the object has moved in the same direction as the UAV 100 in the image, the shadow position specifying unit 130 may continue to determine that the object in the image is a shadow of the UAV 100. . On the other hand, as a result of tracking, if the object has moved in a direction different from the UAV 100 in the image, it is determined that the object is not a shadow of the UAV 100, and pattern matching may be performed again. The shadow position specifying unit 130 may specify the position of the shadow of the UAV 100 by comparing the object in the image captured by the imaging device 220 with the shape of the shadow of the UAV 100.
  • the date and time specifying unit 128 specifies the date and time when the imaging range to be imaged by the imaging device 220 and the shadow of the UAV 100 are in a predetermined positional relationship when the UAV 100 exists at the position where the UAV 100 should exist.
  • the date / time specifying unit 128 may specify the date / time when the imaging range to be captured by the imaging device 220 does not include the shadow of the UAV 100.
  • the date / time specifying unit 128 may specify the date / time when the imaging range to be imaged by the imaging device 220 includes the shadow of the UAV 100.
  • the control unit 112 controls the gimbal 200, the rotary blade mechanism 210, the imaging device 220, and the imaging device 230.
  • the control unit 112 controls the imaging range of the imaging device 220 by changing the imaging direction or angle of view of the imaging device 220.
  • the control unit 112 controls the imaging range of the imaging device 220 supported by the gimbal 200 by controlling the rotation mechanism of the gimbal 200.
  • the imaging range refers to a geographical range captured by the imaging device 220 or the imaging device 230.
  • the imaging range is defined by latitude, longitude, and altitude.
  • the imaging range may be a range in three-dimensional spatial data defined by latitude, longitude, and altitude.
  • the imaging range is specified based on the angle of view and imaging direction of the imaging device 220 or the imaging device 230, and the position where the UAV 100 exists.
  • the imaging directions of the imaging device 220 and the imaging device 230 are defined from the azimuth and the depression angle in which the front surface where the imaging lenses of the imaging device 220 and the imaging device 230 are provided is directed.
  • the imaging direction of the imaging device 220 is a direction specified from the nose direction of the UAV 100 and the posture state of the imaging device 220 with respect to the gimbal 200.
  • the imaging direction of the imaging device 230 is a direction specified from the heading of the UAV 100 and the position where the imaging device 230 is provided.
  • the control unit 112 controls the flight of the UAV 100 by controlling the rotary wing mechanism 210. That is, the control unit 112 controls the position including the latitude, longitude, and altitude of the UAV 100 by controlling the rotary blade mechanism 210.
  • the control unit 112 may control the imaging ranges of the imaging device 220 and the imaging device 230 by controlling the flight of the UAV 100.
  • the control unit 112 may control the angle of view of the imaging device 220 by controlling a zoom lens included in the imaging device 220.
  • the control unit 112 may control the angle of view of the imaging device 220 by digital zoom using the digital zoom function of the imaging device 220.
  • the control unit 112 controls at least one of the angle of view of the imaging device 220, the imaging direction of the imaging device 220, and the position of the UAV 100 based on the direction from the UAV 100 to the shadow of the UAV 100, thereby capturing the image of the imaging device 220. Control the range.
  • the control unit 112 may control the imaging range of the imaging device 220 so that the shadow of the UAV 100 is not included in the imaging range of the imaging device 220.
  • the control unit 112 controls the imaging range of the imaging apparatus 220 so that the shadow of the UAV 100 is not included in the imaging range of the imaging apparatus 220, and the shadow of the UAV 100 is included in the imaging range of the imaging apparatus 220.
  • the second mode for controlling the imaging range of the imaging device 220 may be switched to operate.
  • the control unit 112 may operate by switching between the first mode, the second mode, and the third mode for controlling the imaging range of the imaging device 220 without depending on whether or not the shadow of the UAV 100 is included.
  • the shadow of the UAV 100 is not included in the imaging range of the imaging device 220 means that the entire shadow of the UAV 100 is not completely included in the imaging range.
  • the fact that the shadow of the UAV 100 is not included in the imaging range of the imaging device 220 may be a case where a part of the shadow of the UAV 100 is included in the imaging range to the extent that it cannot be recognized.
  • the shadow of the UAV 100 is included in the imaging range of the imaging device 220 is a case where the entire shadow of the UAV 100 is completely included in the imaging range. That the shadow of the UAV 100 is included in the imaging range of the imaging device 220 may be a case where a part of the shadow of the UAV 100 is included to be recognized.
  • the control unit 112 may operate by switching between the first mode, the second mode, and the third mode based on an instruction from the user.
  • the control unit 112 may operate by switching between the first mode, the second mode, and the third mode based on setting information received from the transmitter via the communication interface 150. Further, the control unit 112 may automatically switch between the first mode or the second mode and the third mode according to the weather around the UAV 100.
  • the control unit 112 may determine the weather around the UAV 100 based on weather information received from an external server via the communication interface 150.
  • the control unit 112 operates in the first mode or the second mode when the weather around the UAV 100 is highly likely to cause a shadow, and when the weather is unlikely to appear as a shadow, It may operate in 3 modes.
  • the control unit 112 may automatically switch between the first mode or the second mode and the third mode based on the intensity of illuminance around the UAV 100.
  • the control unit 112 moves the UAV 100 to a position where the UAV 100 should exist at the date and time specified by the date and time specifying unit 128. Then, the control unit 112 controls the imaging device 220 and the gimbal 200 to set the angle of view and the imaging direction of the imaging device 220 that realizes the imaging range to be imaged. Thereafter, the control unit 112 causes the imaging device 220 to capture an imaging range to be imaged. As described above, the control unit 112 may cause the UAV 100 to fly at an appropriate date and time when the desired imaging range and the shadow of the UAV 100 are in the desired positional relationship and cause the imaging device 220 to capture images.
  • the UAV control unit 110 accurately identifies the position where the shadow of the UAV 100 exists based on the direction from the UAV 100 to the shadow of the UAV 100 and the stereoscopic information indicating the solid shape of the object existing around the UAV 100. it can. Further, the UAV control unit 110 can accurately specify the position where the shadow of the UAV 100 exists by comparing the shape of the shadow of the UAV 100 and the image captured by the imaging device 230.
  • the UAV control unit 110 determines the shadow of the UAV 100 and the shadow of the imaging device 220 based on the shadow direction of the UAV 100, the angle of view and the imaging direction of the imaging device 220, the position of the UAV 100, and the stereoscopic information of the objects existing around the UAV 100.
  • the imaging range of the imaging device 220 is controlled so that the imaging range has a desired positional relationship.
  • the UAV control unit 110 moves the UAV 100 to a specific position at a specific date and time when the shadow of the UAV 100 and the imaging range of the imaging device 220 have a desired positional relationship. Then, the UAV control unit 110 causes the imaging device 220 to image a desired imaging range.
  • the UAV control unit 110 can control the positional relationship between the imaging range and the shadow of the UAV 100.
  • the UAV control unit 110 can cause the imaging device 220 to capture an image in a state where the shadow of the UAV 100 and the imaging range of the imaging device 220 have a desired positional relationship. Therefore, for example, the UAV control unit 110 can cause the imaging device 220 to intentionally capture an image that does not include the shadow of the UAV 100 or an image that includes the shadow of the UAV 100.
  • the UAV control unit 110 moves the UAV 100 to a specific position at the date and time specified by the date and time specifying unit 128 in a desired environment.
  • a desired imaging range can be captured by the imaging device 220.
  • the UAV control unit 110 moves the UAV 100 to a specific position at the date and time specified by the date and time specifying unit 128.
  • Each unit included in the UAV control unit 110 may be provided in an external device.
  • each unit included in the UAV control unit 110 may be provided in a transmitter such as a remote controller for operating the UAV 100 or a server such as a cloud server connected to the UAV 100 via a network. That is, at least one of hardware, firmware, and software that implements the functions of the units illustrated in FIG. 3 is installed in a device such as a transmitter or a server that is external to the UAV 100. In this manner, each unit included in the UAV control unit 110 may function as an imaging control device or a shadow position specifying device.
  • FIGS. 4 to 8 show an example of the positional relationship between the UAV 100, the angle of view of the imaging device 220, and the subject 300.
  • FIG. For example, in the case of the positional relationship as shown in FIGS. 4 and 5, the subject 300 and the shadow 400 of the UAV 100 exist within the angle of view 310 of the imaging device 220. Therefore, when the subject 300 is imaged by the imaging device 220 in such a positional relationship, an image including the shadow of the subject 300 and the UAV 100 is obtained.
  • the shadow of the UAV 100 does not exist in the angle of view 310 of the imaging device 220. Therefore, when the subject 300 is imaged by the imaging device 220 in such a positional relationship, an image that does not include the shadow of the UAV 100 is obtained.
  • the UAV control unit 110 determines the position of the UAV 100 and the imaging direction and angle of view of the imaging device 220 in consideration of the presence or absence of the three-dimensional object 320 and the shape and size of the three-dimensional object 320. As a result, an image that does not include the shadow of the UAV 100 or an image that includes the shadow of the UAV 100 can be more reliably captured by the imaging device 220.
  • FIG. 9 is a flowchart illustrating an example of an imaging control procedure.
  • the position information acquisition unit 116 acquires position information indicating the position of the UAV 100 via the GPS receiver 240.
  • the date and time information acquisition unit 114 acquires date and time information indicating the current date and time via the GPS receiver 240.
  • the imaging information acquisition unit 118 acquires imaging information indicating the imaging range of the imaging device 220.
  • the three-dimensional information acquisition unit 120 acquires three-dimensional information indicating the three-dimensional shape of an object existing around the UAV 100 (S100).
  • the shadow direction specifying unit 126 specifies the direction from the UAV 100 to the shadow of the UAV 100 based on the position information and the date and time information (S102).
  • the shadow position specifying unit 130 specifies the position where the shadow of the UAV 100 exists based on the shadow direction of the UAV 100 and the stereoscopic information (S104).
  • the UAV control unit 110 determines whether the shadow of the UAV 100 is included in the imaging range of the imaging device 220 based on the shadow position of the UAV 100 (S106). When the latitude, longitude, and altitude range indicating the imaging range of the imaging device 220 overlaps with the latitude, longitude, and altitude range where the shadow of the UAV 100 exists, the UAV control unit 110 captures the imaging range of the imaging device 220. It may be determined that the shadow of the UAV control unit 110 is included.
  • the UAV control unit 110 starts imaging with the imaging device 220 (S110).
  • the UAV control unit 110 captures the imaging direction of the imaging device 220 so that the shadow of the UAV 100 is not included in the imaging range of the imaging device 220. At least one of the angle of view and the position of the UAV 100 is changed (S108). Thereafter, the UAV control unit 110 starts imaging with the imaging device 220 (S110).
  • the UAV control unit 110 can cause the imaging device 220 to intentionally capture an image that does not include the shadow of the UAV 100.
  • the UAV control unit 110 determines in step S106 that the shadow of the UAV control unit 110 is not included in the imaging range of the imaging device 220.
  • at least one of the imaging direction, the angle of view, and the position of the UAV 100 may be changed so that the shadow of the UAV 100 is included in the imaging range of the imaging device 220.
  • the shadow direction specifying unit 126 specifies the shadow direction of the UAV 100 based on the position information and the date and time information (S202).
  • the shadow shape specifying unit 132 specifies the shadow shape of the UAV 100 based on the shadow direction and orientation information of the UAV 100 (S204).
  • the shadow shape specifying unit 132 specifies the shape of the UAV 100 shadow in consideration of the three-dimensional image of the UAV 100, the size of the UAV 100, the direction of the shadow of the UAV 100, and the direction of the nose of the UAV 100, and the shape of the shadow of the UAV 100 May be generated.
  • the image acquisition unit 124 acquires an image from the imaging device 230, which is a sensing camera (S206).
  • the shadow position specifying unit 130 specifies the position where the shadow of the UAV 100 exists by comparing the object in the image with the shape of the shadow of the UAV 100 (S208). For example, based on the direction of the shadow of the UAV 100, the shadow position specifying unit 130 specifies an area where there is a high possibility that the shadow of the UAV 100 exists in the image.
  • the shadow position specifying unit 130 specifies an area where the shadow of the UAV 100 exists in the image by pattern matching the object included in the specified area with the shape of the shadow of the UAV 100.
  • the shadow position identification unit 130 identifies the position where the shadow of the UAV 100 exists by comparing the stereoscopic information from the stereoscopic information acquisition unit 120 with the area where the shadow of the UAV 100 exists in the image.
  • the shadow position specifying unit 130 may specify the position where the shadow of the UAV 100 exists by comparing the three-dimensional space data or the three-dimensional map database with the region where the shadow of the UAV 100 exists in the image.
  • the UAV control unit 110 determines whether or not the shadow of the UAV 100 is included in the imaging range of the imaging device 220 that is an imaging camera (S210). When the shadow of the UAV control unit 110 is not included in the imaging range of the imaging device 220, the UAV control unit 110 starts imaging with the imaging device 220 (S214). When the shadow of the UAV control unit 110 is included in the imaging range of the imaging device 220, the UAV control unit 110 changes the imaging range of the imaging device 220 so that the shadow of the UAV 100 is not included in the imaging range of the imaging device 220 ( S212).
  • the UAV control unit 110 changes at least one of the imaging direction, the angle of view, and the UAV position of the imaging device 220 so that the UAV shadow is not included in the imaging range of the imaging device 220, so that the imaging device 220. Change the imaging range. Thereafter, the UAV control unit 110 starts imaging with the imaging device 220 (S214).
  • the UAV control unit 110 can cause the imaging device 220 to intentionally capture an image that does not include the shadow of the UAV 100.
  • the UAV control unit 110 that has received the imaging command in the second mode, when the determination in step S210 is “N”, the imaging direction of the imaging device 220 so that the shadow of the UAV 100 is included in the imaging range of the imaging device 220, At least one of the angle of view and the position of the UAV 100 may be changed.
  • FIG. 11 is a flowchart showing another example of the imaging control procedure.
  • the imaging information acquisition unit 118 acquires imaging information indicating an imaging range to be imaged by the imaging device 220 (S300).
  • the imaging device 220 may acquire imaging information stored in the memory 160 in advance.
  • the imaging device 220 may acquire imaging information from an external device such as a transmitter via the communication interface 150.
  • the position information acquisition unit 116 acquires position information indicating the position where the UAV 100 should exist based on the imaging information (S302).
  • the position information acquisition unit 116 acquires position information indicating a position where the imaging apparatus 220 can image an imaging range to be imaged as position information indicating a position where the UAV 100 should be present.
  • the position information acquisition unit 116 refers to the 3D map database, and the imaging device 220 can image the imaging range to be imaged.
  • the position information acquisition unit 116 can acquire position information by specifying a position indicating a position where the UAV 100 can exist.
  • the position information acquisition unit 116 may acquire position information indicating the position where the UAV 100 corresponding to the imaging range to be imaged should exist from the memory 160.
  • the position information acquisition unit 116 may acquire position information indicating the position where the UAV 100 corresponding to the imaging range to be imaged should exist via the communication interface 150.
  • the date and time specifying unit 128 is a position in which an imaging range and a position where a shadow of the UAV 100 exists are determined in advance based on position information indicating a position where the UAV 100 should exist and an imaging range that the imaging device 220 should image.
  • the date and time to be related is specified (S304).
  • the date / time specifying unit 128 specifies a date / time in a positional relationship such that the shadow of the UAV 100 is not included in the imaging range of the imaging device 220.
  • the date / time specifying unit 128 specifies the date / time that is in a positional relationship such that the shadow of the UAV 100 is included in the imaging range of the imaging device 220.
  • the date and time specifying unit 128 may specify a date and time having a positional relationship such that the shadow of the UAV 100 is included in the imaging range of the imaging device 220 from a predetermined period and time zone.
  • the UAV control unit 110 moves the UAV 100 to a position where the UAV 100 should exist at the specified date and time, and causes the imaging device 220 to capture an imaging range to be imaged (S306).
  • the UAV control unit 110 moves the UAV 100 to a specific position at the date and time specified by the date and time specifying unit 128, so that an image that does not include the UAV 100 shadow or an image that includes the UAV 100 shadow is included. Can be intentionally captured by the imaging device 220.
  • At least one of the plurality of steps shown in the above embodiment may be implemented by hardware or a program instructing related hardware.
  • the program may be stored in a computer readable recording medium.
  • the recording medium may include at least one of a ROM, a magnetic disk, and an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)

Abstract

移動体に搭載された撮像装置で撮像する場合、撮像範囲と移動体の影との位置関係を制御することが要求される場合がある。また、移動体の影の位置を特定することが要求される場合がある。撮像制御装置は、移動体の位置を示す位置情報を取得する第1取得部と、日時を示す日時情報を取得する第2取得部と、位置情報及び日時情報に基づいて、移動体から移動体の影への方向を特定する第1特定部と、移動体から移動体の影への方向に基づいて、移動体に搭載された撮像装置の撮像範囲を制御する制御部とを備える。

Description

撮像制御装置、影位置特定装置、撮像システム、移動体、撮像制御方法、影位置特定方法、及びプログラム
 本発明は、撮像制御装置、影位置特定装置、撮像システム、移動体、撮像制御方法、影位置特定方法、及びプログラムに関する。
 特許文献1には、太陽光の影の方向から画像における任意の方向の方位角を算出することが開示されている。特許文献2には、車両の走行地点及び走行時刻に基づいて、撮像領域内に影が検出される可能性を算出することが開示されている。
 特許文献1 特開2014-185908号公報
 特許文献2 国際公開2013/129095号公報
 移動体に搭載された撮像装置で撮像する場合、撮像範囲と移動体の影との位置関係を制御することが要求される場合がある。また、移動体の影の位置を正確に特定することが要求される場合がある。
 一態様において、撮像制御装置は、移動体の位置を示す位置情報を取得する第1取得部と、日時を示す日時情報を取得する第2取得部と、位置情報及び日時情報に基づいて、移動体から移動体の影への方向を特定する第1特定部と、移動体から移動体の影への方向に基づいて、移動体に搭載された第1の撮像装置の撮像範囲を制御する制御部とを備える。
 制御部は、第1の撮像装置の撮像方向、第1の撮像装置の画角、及び移動体の位置の少なくとも1つを変更することによって、第1の撮像装置の撮像範囲を制御してよい。
 制御部は、第1の撮像装置の撮像範囲に移動体の影が含まれないように第1の撮像装置の撮像範囲を制御してよい。
 制御部は、第1の撮像装置の撮像範囲に移動体の影が含まれないように第1の撮像装置の撮像範囲を制御する第1モードと、第1の撮像装置の撮像範囲に移動体の影が含まれるように第1の撮像装置の撮像範囲を制御する第2モードとを切り替えて動作してよい。
 制御部は、第1モードと、第2モードと、移動体の影が含まれるか否かに依存せずに第1の撮像装置の撮像範囲を制御する第3モードとを切り替えて動作してよい。
 撮像制御装置は、移動体の周囲に存在するオブジェクトの立体形状を示す立体情報を取得する第3取得部を備えてよい。撮像制御装置は、移動体から移動体の影への方向及び立体情報に基づいて、移動体の影が存在する位置を特定する第2特定部を備えてよい。制御部は、移動体の影が存在する位置に基づいて、移動体に搭載された第1の撮像装置の撮像範囲を制御してよい。
 撮像制御装置は、移動体の向きを示す向き情報を取得する第4取得部を備えてよい。撮像制御装置は、位置情報、日時情報、及び向き情報に基づいて、移動体の影の形状を特定する第3特定部を備えてよい。撮像制御装置は、第1の撮像装置又は移動体に搭載された第2の撮像装置によって撮像された画像を取得する第5取得部を備えてよい。撮像制御装置は、画像内のオブジェクトと影の形状とを比較することにより、移動体の影の位置を特定する第4特定部を備えてよい。制御部は、移動体の影が存在する位置に基づいて、移動体に搭載された第1の撮像装置の撮像範囲を制御してよい。
 一態様において、撮像制御装置は、移動体に搭載される第1の撮像装置が撮像すべき撮像範囲を示す撮像情報を取得する第1取得部と、撮像情報に基づいて、撮像範囲を撮像するときに移動体が存在すべき位置を示す位置情報を取得する第2取得部と、位置情報で示される位置に移動体が存在する場合に、第1の撮像装置が撮像すべき撮像範囲と移動体の影とが予め定められた位置関係になる日時を特定する第1特定部と、第1特定部が特定した日時に、位置情報で示される位置に移動体を移動させ、第1の撮像装置が撮像すべき撮像範囲を第1の撮像装置に撮像させる制御部とを備える。
 第1特定部は、位置情報で示される位置に移動体が存在する場合に、第1の撮像装置が撮像すべき撮像範囲に移動体の影が含まれない日時を特定してよい。
 一態様において、影位置特定装置は、移動体の位置を示す位置情報を取得する第1取得部と、日時を示す日時情報を取得する第2取得部と、移動体の周囲に存在するオブジェクトの立体形状を示す立体情報を取得する第3取得部と、位置情報、日時情報、及び立体情報に基づいて、移動体の影の位置を特定する第1特定部とを備える。
 一態様において、撮像制御装置は、影位置特定装置と、第1特定部が特定した移動体の影が存在する位置に基づいて、移動体に搭載された第1の撮像装置の撮像範囲を制御する制御部とを備える。
 一態様において、影位置特定装置は、移動体の位置を示す位置情報を取得する第1取得部と、日時を示す日時情報を取得する第2取得部と、移動体の向きを示す向き情報を取得する第3取得部と、位置情報、日時情報、及び向き情報に基づいて、移動体の影の形状を特定する第1特定部と、移動体に搭載された第1の撮像装置によって撮像された画像を取得する第4取得部と、画像内のオブジェクトと影の形状とを比較することにより、移動体の影の位置を特定する第2特定部とを備える。
 一態様において、撮像制御装置は、影位置特定装置と、第2特定部が特定した移動体の影が存在する位置に基づいて、第1の撮像装置の撮像範囲、又は移動体に搭載された第2の撮像装置の撮像範囲を制御する制御部とを備える。
 一態様において、撮像システムは、撮像制御装置と、第1の撮像装置とを備える。
 一態様において、移動体は、撮像システムを備えて移動する。
 一態様において、撮像制御方法は、移動体の位置を示す位置情報を取得する段階と、日時を示す日時情報を取得する段階と、位置情報及び日時情報に基づいて、移動体から移動体の影への方向を特定する段階と、移動体から移動体の影への方向に基づいて、移動体に搭載された第1の撮像装置の撮像範囲を制御する段階とを備える。
 一態様において、撮像制御方法は、移動体に搭載される第1の撮像装置が撮像すべき撮像範囲を示す撮像情報を取得する段階と、撮像情報に基づいて、撮像範囲を撮像するときに移動体が存在すべき位置を示す位置情報を取得する段階と、位置情報で示される位置に移動体が存在する場合に、第1の撮像装置が撮像すべき撮像範囲と移動体の影とが予め定められた位置関係になる日時を特定する段階と、特定された日時に、位置情報で示される位置に移動体を移動させ、撮像情報で示される撮像範囲を第1の撮像装置に撮像させる段階とを備える。
 一態様において、プログラムは、撮像制御方法をコンピュータに実行させる。
 一態様において、影位置特定方法は、移動体の位置を示す位置情報を取得する段階と、日時を示す日時情報を取得する段階と、移動体の周囲に存在するオブジェクトの立体形状を示す立体情報を取得する段階と、位置情報、日時情報、及び立体情報に基づいて、移動体の影の位置を特定する段階とを備える。
 一態様において、影位置特定方法は、移動体の位置を示す位置情報を取得する段階と、日時を示す日時情報を取得する段階と、移動体の向きを示す向き情報を取得する段階と、位置情報、日時情報、及び向き情報に基づいて、移動体の影の形状を特定する段階と、移動体に搭載された第1の撮像装置によって撮像された画像を取得する段階と、画像内のオブジェクトと影の形状とを比較することにより、移動体の影の位置を特定する段階とを備える。
 一態様において、プログラムは、影位置特定方法をコンピュータに実行させる。
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
UAVの外観の一例を示す図である。 UAVの機能ブロックの一例を示す図である。 UAV制御部の機能ブロックの一例を示す図である。 UAV、撮像装置の画角、及び被写体の位置関係の一例を示す図である。 UAV、撮像装置の画角、及び被写体の位置関係の一例を示す図である。 UAV、撮像装置の画角、及び被写体の位置関係の一例を示す図である。 UAV、撮像装置の画角、及び被写体の位置関係の一例を示す図である。 UAV、撮像装置の画角、及び被写体の位置関係の一例を示す図である。 撮像制御の手順の一例を示すフローチャートを示す図である。 撮像制御の手順の他の例を示すフローチャートを示す図である。 撮像制御の手順の他の例を示すフローチャートを示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 請求の範囲、明細書、図面、及び要約書には、著作権による保護の対象となる事項が含まれる。著作権者は、これらの書類の何人による複製に対しても、特許庁のファイルまたはレコードに表示される通りであれば異議を唱えない。ただし、それ以外の場合、一切の著作権を留保する。
 図1は、無人航空機(UAV)100の外観の一例を示す。UAV100は、UAV本体102、ジンバル200、撮像装置220、及び複数の撮像装置230を備える。UAV100は、撮像システムを備えて移動する移動体の一例である。移動体とは、UAVの他、空中を移動する他の航空機、地上を移動する車両、水上を移動する船舶等を含む概念である。
 UAV本体102は、複数の回転翼を備える。UAV本体102は、複数の回転翼の回転を制御することでUAV100を飛行させる。UAV本体102は、例えば、4つの回転翼を用いてUAV100を飛行させる。回転翼の数は、4つには限定されない。また、UAV100は、回転翼を有さない固定翼機でもよい。
 撮像装置220は、所望の撮像範囲に含まれる被写体を撮像する撮像用のカメラである。複数の撮像装置230は、UAV100の飛行を制御するためにUAV100の周囲を撮像するセンシング用のカメラである。2つの撮像装置230が、UAV100の機首である正面に設けられてよい。さらに他の2つの撮像装置230が、UAV100の底面に設けられてよい。正面側の2つの撮像装置230はペアとなり、いわゆるステレオカメラとして機能してよい。底面側の2つの撮像装置230もペアとなり、ステレオカメラとして機能してよい。複数の撮像装置230により撮像された画像に基づいて、UAV100の周囲の3次元空間データが生成されてよい。なお、UAV100が備える撮像装置230の数は4つには限定されない。UAV100は、少なくとも1つの撮像装置230を備えていればよい。UAV100は、UAV100の機首、機尾、側面、底面、及び天井面のそれぞれに少なくとも1つの撮像装置230を備えてもよい。撮像装置230で設定できる画角は、撮像装置220で設定できる画角より広くてよい。撮像装置230は、単焦点レンズ又は魚眼レンズを有してもよい。
 図2は、UAV100の機能ブロックの一例を示す。UAV100は、UAV制御部110、通信インタフェース150、メモリ160、ジンバル200、回転翼機構210、撮像装置220、撮像装置230、GPS受信機240、慣性計測装置(IMU)250、磁気コンパス260、及び気圧高度計270を備える。
 通信インタフェース150は、外部の送信機と通信する。通信インタフェース150は、遠隔の送信機からUAV制御部110に対する各種の命令を受信する。メモリ160は、UAV制御部110がジンバル200、回転翼機構210、撮像装置220、撮像装置230、GPS受信機240、IMU250、磁気コンパス260、及び気圧高度計270を制御するのに必要なプログラム等を格納する。メモリ160は、コンピュータ読み取り可能な記録媒体でよく、SRAM、DRAM、EPROM、EEPROM、及びUSBメモリ等のフラッシュメモリの少なくとも1つを含んでよい。メモリ160は、UAV本体102の内部に設けられてよい。UAV本体102から取り外し可能に設けられてよい。
 ジンバル200は、少なくとも1つの軸を中心に撮像装置220を回転可能に支持する。ジンバル200は、ヨー軸、ピッチ軸、及びロール軸を中心に撮像装置220を回転可能に支持してよい。ジンバル200は、ヨー軸、ピッチ軸、及びロール軸の少なくとも1つを中心に撮像装置220を回転させることで、撮像装置220の撮像方向を変更してよい。回転翼機構210は、複数の回転翼と、複数の回転翼を回転させる複数の駆動モータとを有する。
 撮像装置220は、所望の撮像範囲の被写体を撮像して画像データを生成する。撮像装置220の画像データは、撮像装置220が有するメモリ、又はメモリ160に格納される。撮像装置230は、UAV100の周囲を撮像して画像データを生成する。撮像装置230の画像データは、メモリ160に格納される。
 GPS受信機240は、複数のGPS衛星から発信された時刻を示す複数の信号を受信する。GPS受信機240は、受信された複数の信号に基づいてGPS受信機240の位置、つまりUAV100の位置を算出する。慣性計測装置(IMU)250は、UAV100の姿勢を検出する。IMU250は、UAV100の姿勢として、UAV100の前後、左右、及び上下の3軸方向の加速度と、ピッチ、ロール、及びヨーの3軸方向の角速度とを検出する。磁気コンパス260は、UAV100の機首の方位を検出する。気圧高度計270は、UAV100が飛行する高度を検出する。
 UAV制御部110は、メモリ160に格納されたプログラムに従ってUAV100の飛行を制御する。UAV制御部110は、CPU又はMPU等のマイクロプロセッサ、MCU等のマイクロコントローラ等により構成されてよい。UAV制御部110は、通信インタフェース150を介して遠隔の送信機から受信した命令に従って、UAV100の飛行を制御する。UAV制御部110は、飛行制御及び撮像制御のためのプログラムをメモリ160から読み出して実行することにより、撮像制御装置、又は影位置特定装置として機能する。
 UAV制御部110は、複数の撮像装置230により撮像された複数の画像を解析することで、UAV100の周囲の環境を特定してよい。UAV制御部110は、UAV100の周囲の環境に基づいて、例えば、障害物を回避して飛行を制御する。UAV制御部110は、複数の撮像装置230により撮像された複数の画像に基づいてUAV100の周囲の3次元空間データを生成し、3次元空間データに基づいて飛行を制御してよい。UAV制御部110及び撮像装置220は、撮像システムの一例である。撮像システムは、ジンバル200等の他の構成を含んでもよい。
 図3は、UAV制御部110の機能ブロックの一例を示す。UAV制御部110は、制御部112、日時情報取得部114、位置情報取得部116、撮像情報取得部118、立体情報取得部120、向き情報取得部122、画像取得部124、影方向特定部126、日時特定部128、影位置特定部130、及び影形状特定部132を備える。UAV制御部110が備える各部は、ハードウェア、ファームウェア、及びソフトウェアのいずれかで構成されてよい。UAV制御部110の機能は、少なくとも1つの以上の制御部で制御される。位置情報取得部116は、第1取得部及び第2取得部の一例である。撮像情報取得部118は、第2取得部及び第1取得部の一例である。日時情報取得部114は、第2取得部の一例である。立体情報取得部120は、第3取得部の一例である。向き情報取得部122は、第3取得部及び第4取得部の一例である。画像取得部124は、第4取得部及び第5取得部の一例である。影方向特定部126は、第1特定部の一例である。日時特定部128は、第1特定部の一例である。影位置特定部130は、第1特定部、第2特定部、及び第4特定部の一例である。影形状特定部132は、第1特定部及び第3特定部の一例である。
 日時情報取得部114は、現在の日時を示す日時情報を取得する。日時情報取得部114は、GPS受信機240から現在の日時を示す日時情報を取得してもよい。日時情報取得部114は、UAV100に搭載されたタイマから現在の日時を示す日時情報を取得してもよい。位置情報取得部116は、UAV100の位置を示す位置情報を取得する。位置情報取得部116は、GPS受信機240から、UAV100が存在する経度、緯度、及び高度を示す位置情報を取得してよい。位置情報取得部116は、GPS受信機240からUAV100が存在する緯度及び経度を示す緯度経度情報、並びに気圧高度計270からUAV100が存在する高度を示す高度情報をそれぞれ位置情報として取得してもよい。向き情報取得部122は、磁気コンパス260からUAV100の向きを示す向き情報を取得する。向き情報には、例えば、UAV100の機首の向きに対応する方位が示される。
 また、位置情報取得部116は、撮像装置220が撮像すべき撮像範囲を撮像するときにUAV100が存在すべき位置を示す位置情報を取得してよい。位置情報取得部116は、UAV100が存在すべき位置を示す位置情報をメモリ160から取得してもよい。位置情報取得部116は、UAV100が存在すべき位置を示す位置情報を通信インタフェース150を介して送信機等の他の装置から取得してもよい。位置情報取得部116は、3次元地図データベースを参照して、撮像すべき撮像範囲を撮像するために、UAV100が存在可能な位置を特定して、その位置をUAV100が存在すべき位置を示す位置情報として取得してもよい。
 撮像情報取得部118は、撮像装置220及び撮像装置230のそれぞれの撮像範囲を示す撮像情報を取得する。撮像情報取得部118は、撮像範囲を特定するためのパラメータとして、撮像装置220及び撮像装置230の画角を示す画角情報を撮像装置220及び撮像装置230から取得する。撮像情報取得部118は、撮像範囲を特定するためのパラメータとして、撮像装置220及び撮像装置230の撮像方向を示す情報を取得する。撮像情報取得部118は、例えば、撮像装置220の撮像方向を示す情報として、ジンバル200から撮像装置220の姿勢の状態を示す姿勢情報を取得する。さらに、撮像情報取得部118は、UAV100の向きを示す情報を向き情報取得部122から取得する。撮像装置220の姿勢の状態を示す情報は、ジンバル200のピッチ軸及びヨー軸の基準回転角度からの回転角度を示す。撮像情報取得部118は、さらに、撮像範囲を特定するためのパラメータとして、UAV100が存在する位置を示す位置情報を位置情報取得部116から取得する。撮像情報取得部118は、撮像装置220及び撮像装置230の画角及び撮像方向、並びにUAV100が存在する位置に基づいて、撮像装置220が撮像する地理的な範囲を示す撮像範囲を画定し、撮像範囲を示す撮像情報を生成することで、撮像情報を取得してよい。
 また、撮像情報取得部118は、撮像装置220が撮像すべき撮像範囲を示す撮像情報を取得してよい。撮像情報取得部118は、メモリ160から撮像装置220が撮像すべき撮像情報を取得してよい。撮像情報取得部118は、通信インタフェース150を介して送信機等の他の装置から撮像装置220が撮像すべき撮像情報を取得してもよい。
 立体情報取得部120は、UAV100の周囲に存在するオブジェクトの立体形状を示す立体情報を取得する。オブジェクトは、例えば、建物、道路、車、木等の風景の一部である。立体情報は、例えば、3次元空間データである。立体情報取得部120は、複数の撮像装置230から得られたそれぞれの画像から、UAV100の周囲に存在するオブジェクトの立体形状を示す立体情報を生成することで、立体情報を取得してよい。立体情報取得部120は、メモリ160に格納された3次元地図データベースを参照することで、UAV100の周囲に存在するオブジェクトの立体形状を示す立体情報を取得してもよい。立体情報取得部120は、ネットワーク上に存在するサーバが管理する3次元地図データベースを参照することで、UAV100の周囲に存在するオブジェクトの立体形状に関する立体情報を取得してもよい。
 画像取得部124は、撮像装置220及び撮像装置230により撮像された画像を取得する。影方向特定部126は、位置情報及び日時情報に基づいて、UAV100からUAV100の影への方向を特定する。影方向特定部126は、メモリ160に格納された、日時と、緯度及び経度と、太陽の高度及び方位との関係を示す関数を参照して、日時情報に示される日時における太陽の高度及び方位を特定してよい。影方向特定部126は、メモリ160に格納された、日時と、緯度及び経度と、太陽の高度及び方位とを対応付けたテーブルを参照することで、日時情報に示される日時における太陽の高度及び方位を特定してよい。影方向特定部126は、太陽の高度及び方位と、UAV100の緯度、経度、及び高度とに基づいて、UAV100の影の方向を特定する。影の方向は、UAV100からの方位と、UAV100からの俯角とにより示される。
 影位置特定部130は、UAV100からUAV100の影への方向と、UAV100の周囲に存在するオブジェクトの立体形状を示す立体情報とに基づいて、UAV100の影が存在する位置を特定する。影位置特定部130は、立体情報を参照して、UAV100の影の方向に存在する建物等のオブジェクトの立体形状を特定する。影位置特定部130は、立体形状に基づいてUAV100の影が存在する位置を特定する。UAV制御部110は、UAV100の影が存在する位置に基づいて、撮像装置220の撮像範囲を制御する。ここで、UAV100の影が存在する位置は、UAV100の影が存在する地理的な範囲を示す。UAV100の影が存在する位置は、緯度、経度、及び高度により画定される範囲を示してよい。UAV100の影が存在する位置は、緯度、経度、及び高度により定義される3次元空間データにおける範囲でもよい。
 影形状特定部132は、UAV100の位置情報、現在の日時情報、及びUAV100の向き情報に基づいて、UAV100の影の形状を特定する。影形状特定部132は、メモリ160に格納されたUAV100の3D画像、UAV100の大きさの情報、UAV100の影の方向、及びUAV100の機首の方位に基づいてUAV100の影の形状を生成してもよい。影形状特定部132は、メモリ160に格納された複数のUAV100の影の形状のサンプルの中から、UAV100の種類の情報、UAV100の影の方向、及びUAV100の機首の方位に基づいて、UAV100の影の形状を特定してもよい。
 影位置特定部130は、撮像装置230により撮像された画像内のオブジェクトと、UAV100の影の形状とを比較することにより、UAV100の影の位置を特定してもよい。影位置特定部130は、UAV100の影の方向と、撮像装置230の撮像範囲とに基づいて、撮像装置230により撮像される画像内からUAV100の影が存在する確率が高い領域を特定し、その領域内のオブジェクトと、UAV100の影の形状とのパターンマッチングによりUAV100の影の位置を特定してよい。
 影位置特定部130は、UAV100を移動させながら、撮像装置230により撮像された画像内でUAV100の影として特定されたオブジェクトを追跡してよい。追跡の結果、当該オブジェクトが画像内で相対的にUAV100と同一方向に移動していた場合には、影位置特定部130は、画像内の当該オブジェクトを引き続きUAV100の影であると判断してよい。一方、追跡の結果、当該オブジェクトが画像内で相対的にUAV100と異なる方向に移動していた場合には、当該オブジェクトはUAV100の影ではないと判断し、パターンマッチングを再度行なってよい。なお、影位置特定部130は、撮像装置220により撮像された画像内のオブジェクトと、UAV100の影の形状とを比較することにより、UAV100の影の位置を特定してもよい。
 日時特定部128は、UAV100が存在すべき位置にUAV100が存在する場合に、撮像装置220が撮像すべき撮像範囲とUAV100の影とが予め定められた位置関係になる日時を特定する。日時特定部128は、位置情報で示される位置にUAV100が存在する場合に、撮像装置220が撮像すべき撮像範囲にUAV100の影が含まれない日時を特定してよい。日時特定部128は、位置情報で示される位置にUAV100が存在する場合に、撮像装置220が撮像すべき撮像範囲にUAV100の影が含まれる日時を特定してよい。
 制御部112は、ジンバル200、回転翼機構210、撮像装置220、及び撮像装置230を制御する。制御部112は、撮像装置220の撮像方向又は画角を変更することによって、撮像装置220の撮像範囲を制御する。制御部112は、ジンバル200の回転機構を制御することで、ジンバル200に支持されている撮像装置220の撮像範囲を制御する。
 本明細書で、撮像範囲は、撮像装置220又は撮像装置230により撮像される地理的な範囲をいう。撮像範囲は、緯度、経度、及び高度で定義される。撮像範囲は、緯度、経度、及び高度で定義される3次元空間データにおける範囲でもよい。撮像範囲は、撮像装置220又は撮像装置230の画角及び撮像方向、並びにUAV100が存在する位置に基づいて特定される。撮像装置220及び撮像装置230の撮像方向は、撮像装置220及び撮像装置230の撮像レンズが設けられた正面が向く方位と俯角とから定義される。撮像装置220の撮像方向は、UAV100の機首の方位と、ジンバル200に対する撮像装置220の姿勢の状態とから特定される方向である。撮像装置230の撮像方向は、UAV100の機首の方位と、撮像装置230が設けられた位置とから特定される方向である。
 制御部112は、回転翼機構210を制御することで、UAV100の飛行を制御する。つまり、制御部112は、回転翼機構210を制御することで、UAV100の緯度、経度、及び高度を含む位置を制御する。制御部112は、UAV100の飛行を制御することで、撮像装置220及び撮像装置230の撮像範囲を制御してよい。制御部112は、撮像装置220が備えるズームレンズを制御することで、撮像装置220の画角を制御してよい。制御部112は、撮像装置220のデジタルズーム機能を利用して、デジタルズームにより、撮像装置220の画角を制御してもよい。
 制御部112は、UAV100からUAV100の影への方向に基づいて、撮像装置220の画角、撮像装置220の撮像方向、及びUAV100の位置の少なくとも1つを制御することで、撮像装置220の撮像範囲を制御する。制御部112は、撮像装置220の撮像範囲にUAV100の影が含まれないように撮像装置220の撮像範囲を制御してよい。制御部112は、撮像装置220の撮像範囲にUAV100の影が含まれないように撮像装置220の撮像範囲を制御する第1モードと、撮像装置220の撮像範囲にUAV100の影が含まれるように撮像装置220の撮像範囲を制御する第2モードとを切り替えて動作してよい。制御部112は、第1モードと、第2モードと、UAV100の影が含まれるか否かに依存せずに撮像装置220の撮像範囲を制御する第3モードとを切り替えて動作してよい。
 撮像装置220の撮像範囲にUAV100の影が含まれないとは、UAV100の影の全体が完全に撮像範囲に含まれない場合である。撮像装置220の撮像範囲にUAV100の影が含まれないとは、UAV100の影の一部が認識できない程度に撮像範囲に含まれている場合でもよい。撮像装置220の撮像範囲にUAV100の影が含まれるとは、UAV100の影の全体が完全に撮像範囲に含まれている場合である。撮像装置220の撮像範囲にUAV100の影が含まれるとは、UAV100の影の一部が認識できる程度に含まれている場合でもよい。
 制御部112は、ユーザからの指示に基づいて、第1モード、第2モード、及び第3モードを切り替えて動作してよい。制御部112は、通信インタフェース150を介して送信機から受信した設定情報に基づいて、第1モード、第2モード、及び第3モードを切り替えて動作してよい。また、制御部112は、UAV100の周囲の天候に応じて、第1モード又は第2モードと、第3モードとを自動的に切り替えてもよい。制御部112は、通信インタフェース150を介して外部のサーバから受信した気象情報に基づいてUAV100の周囲の天候を判断してよい。制御部112は、UAV100の周囲の天候が、影が現れる可能性が高い天候の場合には、第1モード又は第2モードで動作し、影が現れる可能性が低い天候の場合には、第3モードで動作してよい。制御部112は、UAV100の周囲の照度の大きさに基づいて、第1モード又は第2モードと、第3モードとを自動的に切り替えてもよい。
 UAV100の位置、撮像装置220の画角及び撮像方向の少なくとも1つが変更されても、現時点では、撮像装置220の撮像範囲とUAV100の影とを所望の位置関係にすることができない場合がある。この場合、制御部112は、日時特定部128が特定した日時に、UAV100が存在すべき位置にUAV100を移動させる。そして、制御部112は、撮像装置220及びジンバル200を制御して撮像すべき撮像範囲を実現する撮像装置220の画角及び撮像方向に設定する。その後、制御部112は、撮像すべき撮像範囲を撮像装置220に撮像させる。このように、制御部112は、所望の撮像範囲とUAV100の影とが所望の位置関係になる適切な日時に、UAV100を飛行させて、撮像装置220により撮像させてもよい。
 以上の通り、UAV制御部110は、UAV100からUAV100の影への方向と、UAV100の周囲に存在するオブジェクトの立体形状を示す立体情報とに基づいて、UAV100の影が存在する位置を正確に特定できる。また、UAV制御部110は、UAV100の影の形状と撮像装置230により撮像された画像との比較により、UAV100の影が存在する位置を正確に特定できる。
 UAV制御部110は、UAV100の影の向き、撮像装置220の画角及び撮像方向、UAV100の位置、並びにUAV100の周囲に存在するオブジェクトの立体情報等に基づいて、UAV100の影と撮像装置220の撮像範囲とが所望の位置関係になるように撮像装置220の撮像範囲を制御する。または、UAV制御部110は、UAV100の影と撮像装置220の撮像範囲とが所望の位置関係になる特定の日時に、特定の位置にUAV100を移動させる。そして、UAV制御部110は、撮像装置220により所望の撮像範囲を撮像させる。これにより、UAV制御部110は、撮像範囲とUAV100の影との位置関係を制御できる。UAV制御部110は、UAV100の影と撮像装置220の撮像範囲とが所望の位置関係になった状態で、撮像装置220に撮像させることができる。よって、UAV制御部110は、例えば、UAV100の影が含まれない画像、またはUAV100の影が含まれる画像を意図的に撮像装置220に撮像させることができる。
 撮像装置220がUAV100に固定され、撮像装置220を動かせない場合、UAV制御部110は、日時特定部128により特定された日時に、特定の位置にUAV100を移動させることで、所望の環境下で所望の撮像範囲を撮像装置220に撮像させることができる。あるいは撮像装置220がズーム機能を有さず、撮像装置220の画角を変更できない場合でも、UAV制御部110は、日時特定部128により特定された日時に、特定の位置にUAV100を移動させることで、所望の環境下で所望の撮像範囲を撮像装置220に撮像させることができる。
 UAV制御部110が備える各部は、外部の装置に設けられてもよい。例えば、UAV制御部110が備える各部は、UAV100を遠隔操作する送信機、又はUAV100とネットワークを介して接続されるクラウドサーバ等のサーバに設けられてもよい。すなわち、送信機、サーバ等UAV100の外部にある装置に、図3に示す各部の機能を実現するハードウェア、ファームウェア、及びソフトウェアの少なくとも1つを実装する。このようにして、UAV制御部110が備える各部を撮像制御装置、又は影位置特定装置として機能させてもよい。
 図4から図8は、UAV100、撮像装置220の画角、及び被写体300の位置関係の一例を示す。例えば、図4及び図5に示すような位置関係の場合、撮像装置220の画角310内に被写体300及びUAV100の影400が存在する。したがって、このような位置関係で撮像装置220により被写体300を撮像すると、被写体300及びUAV100の影を含む画像が得られる。
 例えば、図6に示すような位置関係の場合、撮像装置220の画角310内にUAV100の影は存在しない。したがって、このような位置関係で撮像装置220により被写体300を撮像すると、UAV100の影を含まない画像が得られる。
 図7及び図8に示すように、撮像装置220の画角310内に立体物320が存在する場合と、画角310内に立体物320が存在しない場合とで、UAV100の影が存在する位置が異なる。したがって、立体物320の有無、及び立体物320の形状及び大きさを考慮して、UAV制御部110は、UAV100の位置、並びに撮像装置220の撮像方向及び画角を決定する。これにより、UAV100の影を含まない画像、またはUAV100の影を含む画像をより確実に撮像装置220により撮像させることができる。
 図9は、撮像制御の手順の一例を示すフローチャートである。例えば、UAV制御部110が送信機から第1モードによる撮像命令を受信すると、位置情報取得部116が、GPS受信機240を介してUAV100の位置を示す位置情報を取得する。日時情報取得部114が、GPS受信機240を介して現在の日時を示す日時情報を取得する。撮像情報取得部118は、撮像装置220の撮像範囲を示す撮像情報を取得する。立体情報取得部120は、UAV100の周囲に存在するオブジェクトの立体形状を示す立体情報を取得する(S100)。
 影方向特定部126は、位置情報及び日時情報に基づいて、UAV100からUAV100の影への方向を特定する(S102)。影位置特定部130は、UAV100の影の方向及び立体情報に基づいて、UAV100の影が存在する位置を特定する(S104)。UAV制御部110は、UAV100の影の位置に基づいて撮像装置220の撮像範囲にUAV100の影が含まれるか否かを判定する(S106)。UAV制御部110は、撮像装置220の撮像範囲を示す緯度、経度、及び高度の範囲と、UAV100の影が存在する緯度、経度、及び高度の範囲とが重複する場合、撮像装置220の撮像範囲にUAV制御部110の影が含まれると判定してよい。
 撮像装置220の撮像範囲にUAV制御部110の影が含まれない場合、UAV制御部110は、撮像装置220により撮像を開始する(S110)。一方、撮像装置220の撮像範囲にUAV制御部110の影が含まれる場合、UAV制御部110は、撮像装置220の撮像範囲にUAV100の影が含まれないように、撮像装置220の撮像方向、画角、及びUAV100の位置の少なくとも1つを変更する(S108)。その後、UAV制御部110は、撮像装置220により撮像を開始する(S110)。
 以上の手順により、UAV制御部110は、UAV100の影が含まれない画像を意図的に撮像装置220に撮像させることができる。UAV制御部110が送信機から第2モードによる撮像命令を受信した場合には、UAV制御部110は、ステップS106で、撮像装置220の撮像範囲にUAV制御部110の影が含まれないと判断された場合に、撮像装置220の撮像範囲にUAV100の影が含まれるように、撮像装置220の撮像方向、画角、及びUAV100の位置の少なくとも1つを変更すればよい。
 図10は、撮像制御の手順の他の例を示すフローチャートである。例えば、UAV制御部110が送信機から第1モードによる撮像命令を受信すると、位置情報取得部116が、GPS受信機240を介してUAV100の位置を示す位置情報を取得する。日時情報取得部114が、GPS受信機240を介して現在の日時を示す日時情報を取得する。撮像情報取得部118が、撮像装置220の撮像範囲を示す撮像情報を取得する。また、向き情報取得部122が、磁気コンパス260を介してUAV100の機首の向きを示す向き情報を取得する(S200)。
 影方向特定部126は、位置情報及び日時情報に基づいてUAV100の影の方向を特定する(S202)。影形状特定部132は、UAV100の影の方向、及び向き情報に基づいて、UAV100の影の形状を特定する(S204)。影形状特定部132は、UAV100の3次元画像、UAV100の大きさ、UAV100の影の方向、及びUAV100の機首の向きを考慮して、UAV100の影の形状を特定し、UAV100の影の形状を生成してよい。
 画像取得部124は、センシング用のカメラである撮像装置230から画像を取得する(S206)。影位置特定部130は、画像内のオブジェクトとUAV100の影の形状とを比較することにより、UAV100の影が存在する位置を特定する(S208)。例えば、影位置特定部130は、UAV100の影の方向に基づいて、画像内でUAV100の影が存在している可能性が高い領域を特定する。影位置特定部130は、特定された領域に含まれるオブジェクトと、UAV100の影の形状とをパターマッチングすることで、画像内のUAV100の影が存在する領域を特定する。影位置特定部130は、立体情報取得部120からの立体情報と、画像内のUAV100の影が存在する領域とを比較することで、UAV100の影が存在する位置を特定する。影位置特定部130は、3次元空間データ又は3次元地図データベースと、画像内のUAV100の影が存在する領域とを比較することで、UAV100の影が存在する位置を特定してよい。
 次いで、UAV制御部110は、撮像用のカメラである撮像装置220の撮像範囲にUAV100の影が含まれるか否かを判定する(S210)。撮像装置220の撮像範囲にUAV制御部110の影が含まれない場合、UAV制御部110は、撮像装置220により撮像を開始する(S214)。撮像装置220の撮像範囲にUAV制御部110の影が含まれる場合、UAV制御部110は、撮像装置220の撮像範囲にUAV100の影が含まれないように撮像装置220の撮像範囲を変更する(S212)。UAV制御部110は、撮像装置220の撮像範囲にUAVの影が含まれないように、撮像装置220の撮像方向、画角、及びUAVの位置の少なくとも1つを変更することで、撮像装置220の撮像範囲を変更する。その後、UAV制御部110は、撮像装置220により撮像を開始する(S214)。
 以上の手順により、UAV制御部110は、UAV100の影が含まれない画像を意図的に撮像装置220に撮像させることができる。第2モードによる撮像命令を受信したUAV制御部110は、ステップS210の判断が「N」の場合に、撮像装置220の撮像範囲にUAV100の影が含まれるように、撮像装置220の撮像方向、画角、及びUAV100の位置の少なくとも1つを変更すればよい。
 図11は、撮像制御の手順の他の例を示すフローチャートである。撮像情報取得部118が、撮像装置220が撮像すべき撮像範囲を示す撮像情報を取得する(S300)。撮像装置220は、予めメモリ160に格納されている撮像情報を取得してよい。撮像装置220は、通信インタフェース150を介して送信機等の外部の装置から撮像情報を取得してよい。
 次いで、位置情報取得部116が、撮像情報に基づいてUAV100が存在すべき位置を示す位置情報を取得する(S302)。位置情報取得部116は、撮像すべき撮像範囲を撮像装置220が撮像できる位置を示す位置情報を、UAV100が存在すべき位置を示す位置情報として取得する。位置情報取得部116は、3次元地図データベースを参照して、撮像すべき撮像範囲を撮像装置220が撮像できる。位置情報取得部116は、UAV100が存在できる位置を示す位置を特定することで、位置情報を取得できる。位置情報取得部116は、撮像すべき撮像範囲に対応するUAV100が存在すべき位置を示す位置情報をメモリ160から取得してよい。位置情報取得部116は、通信インタフェース150を介して、撮像すべき撮像範囲に対応するUAV100が存在すべき位置を示す位置情報を取得してよい。
 日時特定部128は、UAV100が存在すべき位置を示す位置情報と、撮像装置220が撮像すべき撮像範囲とに基づいて、撮像範囲と、UAV100の影が存在する位置とが予め定められた位置関係になる日時を特定する(S304)。UAV100が第1モードで動作している場合、日時特定部128は、UAV100の影が撮像装置220の撮像範囲に含まれないような位置関係にある日時を特定する。UAV100が第2モードで動作している場合、日時特定部128は、UAV100の影が撮像装置220の撮像範囲に含まれるような位置関係にある日時を特定する。日時特定部128は、予め定められた期間及び時間帯の中から、UAV100の影が撮像装置220の撮像範囲に含まれるような位置関係にある日時を特定してよい。その後、UAV制御部110は、特定された日時に、UAV100が存在すべき位置にUAV100を移動させ、撮像装置220に撮像させるべき撮像範囲を撮像装置220に撮像させる(S306)。
 以上の手順により、UAV制御部110は、日時特定部128により特定された日時に、特定の位置にUAV100を移動させることで、UAV100の影が含まれない画像、またはUAV100の影が含まれる画像を意図的に撮像装置220に撮像させることができる。
 上記の実施形態に示される複数の段階の少なくとも1つの段階は、ハードウェア、又は関連するハードウェアに命令するプログラムによって実装されてよい。プログラムは、コンピュータ可読記録媒体に格納されてよい。記録媒体は、ROM、磁気ディスク、及び光ディスクの少なくとも1つを含んでよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現可能である。請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
100 UAV
102 UAV本体
110 UAV制御部
112 制御部
114 日時情報取得部
116 位置情報取得部
118 撮像情報取得部
120 立体情報取得部
122 向き情報取得部
124 画像取得部
126 影方向特定部
128 日時特定部
130 影位置特定部
132 影形状特定部
150 通信インタフェース
160 メモリ
200 ジンバル
210 回転翼機構
220 撮像装置
230 撮像装置
240 GPS受信機
260 磁気コンパス
270 気圧高度計

Claims (21)

  1.  移動体の位置を示す位置情報を取得する第1取得部と、
     日時を示す日時情報を取得する第2取得部と、
     前記位置情報及び前記日時情報に基づいて、前記移動体から前記移動体の影への方向を特定する第1特定部と、
     前記移動体から前記移動体の影への方向に基づいて、前記移動体に搭載された第1の撮像装置の撮像範囲を制御する制御部と
    を備える撮像制御装置。
  2.  前記制御部は、前記第1の撮像装置の撮像方向、前記第1の撮像装置の画角、及び前記移動体の位置の少なくとも1つを変更することによって、前記第1の撮像装置の撮像範囲を制御する、請求項1に記載の撮像制御装置。
  3.  前記制御部は、前記第1の撮像装置の撮像範囲に前記移動体の影が含まれないように前記第1の撮像装置の撮像範囲を制御する、請求項1又は2に記載の撮像制御装置。
  4.  前記制御部は、前記第1の撮像装置の撮像範囲に前記移動体の影が含まれないように前記第1の撮像装置の撮像範囲を制御する第1モードと、前記第1の撮像装置の撮像範囲に前記移動体の影が含まれるように前記第1の撮像装置の撮像範囲を制御する第2モードとを切り替えて動作する、請求項3に記載の撮像制御装置。
  5.  前記制御部は、前記第1モードと、前記第2モードと、前記移動体の影が含まれるか否かに依存せずに前記第1の撮像装置の撮像範囲を制御する第3モードとを切り替えて動作する、請求項4に記載の撮像制御装置。
  6.  前記移動体の周囲に存在するオブジェクトの立体形状を示す立体情報を取得する第3取得部と、
     前記移動体から前記移動体の影への方向及び前記立体情報に基づいて、前記移動体の影が存在する位置を特定する第2特定部と
    をさらに備え、
     前記制御部は、前記移動体の影が存在する位置に基づいて、前記移動体に搭載された第1の撮像装置の撮像範囲を制御する、請求項1から4のいずれか一項に記載の撮像制御装置。
  7.  前記移動体の向きを示す向き情報を取得する第4取得部と、
     前記位置情報、前記日時情報、及び前記向き情報に基づいて、前記移動体の影の形状を特定する第3特定部と、
     前記第1の撮像装置又は前記移動体に搭載された第2の撮像装置によって撮像された画像を取得する第5取得部と、
     前記画像内のオブジェクトと前記影の形状とを比較することにより、前記移動体の影の位置を特定する第4特定部と
    をさらに備え、
     前記制御部は、前記移動体の影が存在する位置に基づいて、前記移動体に搭載された第1の撮像装置の撮像範囲を制御する、請求項1から6のいずれか一項に記載の撮像制御装置。
  8.  移動体に搭載される第1の撮像装置が撮像すべき撮像範囲を示す撮像情報を取得する第1取得部と、
     前記撮像情報に基づいて、前記撮像範囲を撮像するときに前記移動体が存在すべき位置を示す位置情報を取得する第2取得部と、
     前記位置情報で示される位置に前記移動体が存在する場合に、前記第1の撮像装置が撮像すべき前記撮像範囲と前記移動体の影とが予め定められた位置関係になる日時を特定する第1特定部と、
     前記第1特定部が特定した日時に、前記位置情報で示される位置に前記移動体を移動させ、前記第1の撮像装置が撮像すべき前記撮像範囲を前記第1の撮像装置に撮像させる制御部と
    を備える撮像制御装置。
  9.  前記第1特定部は、前記位置情報で示される位置に前記移動体が存在する場合に、前記第1の撮像装置が撮像すべき前記撮像範囲に前記移動体の影が含まれない日時を特定する、請求項8に記載の撮像制御装置。
  10.  移動体の位置を示す位置情報を取得する第1取得部と、
     日時を示す日時情報を取得する第2取得部と、
     前記移動体の周囲に存在するオブジェクトの立体形状を示す立体情報を取得する第3取得部と、
     前記位置情報、前記日時情報、及び前記立体情報に基づいて、前記移動体の影の位置を特定する第1特定部と
    を備える影位置特定装置。
  11.  請求項10に記載の影位置特定装置と、
     前記第1特定部が特定した前記移動体の影が存在する位置に基づいて、前記移動体に搭載された第1の撮像装置の撮像範囲を制御する制御部と
    を備える撮像制御装置。
  12.  移動体の位置を示す位置情報を取得する第1取得部と、
     日時を示す日時情報を取得する第2取得部と、
     前記移動体の向きを示す向き情報を取得する第3取得部と、
     前記位置情報、前記日時情報、及び前記向き情報に基づいて、前記移動体の影の形状を特定する第1特定部と、
     前記移動体に搭載された第1の撮像装置によって撮像された画像を取得する第4取得部と、
     前記画像内のオブジェクトと前記影の形状とを比較することにより、前記移動体の影の位置を特定する第2特定部と
    を備える影位置特定装置。
  13.  請求項12に記載の影位置特定装置と、
     前記第2特定部が特定した前記移動体の影が存在する位置に基づいて、前記第1の撮像装置の撮像範囲、又は前記移動体に搭載された第2の撮像装置の撮像範囲を制御する制御部と
    を備える撮像制御装置。
  14.  請求項1から9、11、及び13のいずれか一項に記載の撮像制御装置と、
     前記第1の撮像装置と
    を備える撮像システム。
  15.  請求項14に記載の撮像システムを備えて移動する移動体。
  16.  移動体の位置を示す位置情報を取得する段階と、
     日時を示す日時情報を取得する段階と、
     前記位置情報及び前記日時情報に基づいて、前記移動体から前記移動体の影への方向を特定する段階と、
     前記移動体から前記移動体の影への方向に基づいて、前記移動体に搭載された第1の撮像装置の撮像範囲を制御する段階と
    を備える撮像制御方法。
  17.  移動体に搭載される第1の撮像装置が撮像すべき撮像範囲を示す撮像情報を取得する段階と、
     前記撮像情報に基づいて、前記撮像範囲を撮像するときに前記移動体が存在すべき位置を示す位置情報を取得する段階と、
     前記位置情報で示される位置に前記移動体が存在する場合に、前記第1の撮像装置が撮像すべき前記撮像範囲と前記移動体の影とが予め定められた位置関係になる日時を特定する段階と、
     特定された前記日時に、前記位置情報で示される位置に前記移動体を移動させ、前記撮像情報で示される撮像範囲を前記第1の撮像装置に撮像させる段階と
    を備える撮像制御方法。
  18.  請求項16又は17に記載の撮像制御方法をコンピュータに実行させるためのプログラム。
  19.  移動体の位置を示す位置情報を取得する段階と、
     日時を示す日時情報を取得する段階と、
     前記移動体の周囲に存在するオブジェクトの立体形状を示す立体情報を取得する段階と、
     前記位置情報、前記日時情報、及び前記立体情報に基づいて、前記移動体の影の位置を特定する段階と
    を備える影位置特定方法。
  20.  移動体の位置を示す位置情報を取得する段階と、
     日時を示す日時情報を取得する段階と、
     前記移動体の向きを示す向き情報を取得する段階と、
     前記位置情報、前記日時情報、及び前記向き情報に基づいて、前記移動体の影の形状を特定する段階と、
     前記移動体に搭載された第1の撮像装置によって撮像された画像を取得する段階と、
     前記画像内のオブジェクトと前記影の形状とを比較することにより、前記移動体の影の位置を特定する段階と
    を備える影位置特定方法。
  21.  請求項19又は20に記載の影位置特定方法をコンピュータに実行させるためのプログラム。
PCT/JP2016/065537 2016-05-26 2016-05-26 撮像制御装置、影位置特定装置、撮像システム、移動体、撮像制御方法、影位置特定方法、及びプログラム WO2017203646A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017514707A JP6265576B1 (ja) 2016-05-26 2016-05-26 撮像制御装置、影位置特定装置、撮像システム、移動体、撮像制御方法、影位置特定方法、及びプログラム
PCT/JP2016/065537 WO2017203646A1 (ja) 2016-05-26 2016-05-26 撮像制御装置、影位置特定装置、撮像システム、移動体、撮像制御方法、影位置特定方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065537 WO2017203646A1 (ja) 2016-05-26 2016-05-26 撮像制御装置、影位置特定装置、撮像システム、移動体、撮像制御方法、影位置特定方法、及びプログラム

Publications (1)

Publication Number Publication Date
WO2017203646A1 true WO2017203646A1 (ja) 2017-11-30

Family

ID=60412297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065537 WO2017203646A1 (ja) 2016-05-26 2016-05-26 撮像制御装置、影位置特定装置、撮像システム、移動体、撮像制御方法、影位置特定方法、及びプログラム

Country Status (2)

Country Link
JP (1) JP6265576B1 (ja)
WO (1) WO2017203646A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019506012A (ja) * 2017-01-23 2019-02-28 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co.,Ltd. スマート飛行機器の撮影方法、スマート飛行機器、プログラム及び記録媒体
JP2019117330A (ja) * 2017-12-27 2019-07-18 株式会社リコー 撮影装置、及び撮影システム
CN110770667A (zh) * 2018-06-19 2020-02-07 深圳市大疆创新科技有限公司 控制装置、移动体、控制方法以及程序
CN116767537A (zh) * 2023-08-22 2023-09-19 山西正合天科技股份有限公司 一种共轴无人机及其使用方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300181A (ja) * 2006-04-27 2007-11-15 Denso Corp 周辺認識装置、周辺認識方法、プログラム
JP2008199525A (ja) * 2007-02-15 2008-08-28 Toyota Motor Corp 車両用撮影装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300181A (ja) * 2006-04-27 2007-11-15 Denso Corp 周辺認識装置、周辺認識方法、プログラム
JP2008199525A (ja) * 2007-02-15 2008-08-28 Toyota Motor Corp 車両用撮影装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019506012A (ja) * 2017-01-23 2019-02-28 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co.,Ltd. スマート飛行機器の撮影方法、スマート飛行機器、プログラム及び記録媒体
US10419662B2 (en) 2017-01-23 2019-09-17 Beijing Xiaomi Mobile Software Co., Ltd. Photographing method for intelligent flight device and intelligent flight device
JP2019117330A (ja) * 2017-12-27 2019-07-18 株式会社リコー 撮影装置、及び撮影システム
CN110770667A (zh) * 2018-06-19 2020-02-07 深圳市大疆创新科技有限公司 控制装置、移动体、控制方法以及程序
CN116767537A (zh) * 2023-08-22 2023-09-19 山西正合天科技股份有限公司 一种共轴无人机及其使用方法
CN116767537B (zh) * 2023-08-22 2023-10-20 山西正合天科技股份有限公司 一种共轴无人机及其使用方法

Also Published As

Publication number Publication date
JPWO2017203646A1 (ja) 2018-06-07
JP6265576B1 (ja) 2018-01-24

Similar Documents

Publication Publication Date Title
US11644839B2 (en) Systems and methods for generating a real-time map using a movable object
WO2018120350A1 (zh) 对无人机进行定位的方法及装置
KR101896654B1 (ko) 드론을 이용한 3d 영상 처리 시스템 및 방법
JP6265576B1 (ja) 撮像制御装置、影位置特定装置、撮像システム、移動体、撮像制御方法、影位置特定方法、及びプログラム
JP6281720B2 (ja) 撮像システム
US11122209B2 (en) Three-dimensional shape estimation method, three-dimensional shape estimation system, flying object, program and recording medium
JPWO2018193574A1 (ja) 飛行経路生成方法、情報処理装置、飛行経路生成システム、プログラム及び記録媒体
US20200304719A1 (en) Control device, system, control method, and program
CN111567032B (zh) 确定装置、移动体、确定方法以及计算机可读记录介质
JP6384000B1 (ja) 制御装置、撮像装置、撮像システム、移動体、制御方法、及びプログラム
WO2020237422A1 (zh) 航测方法、飞行器及存储介质
WO2018092283A1 (ja) 制御装置、撮像システム、移動体、制御方法、およびプログラム
JP7501535B2 (ja) 情報処理装置、情報処理方法、情報処理プログラム
JP2019191428A (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
JP6481228B1 (ja) 決定装置、制御装置、撮像システム、飛行体、決定方法、及びプログラム
JP6790318B2 (ja) 無人航空機、制御方法、及びプログラム
KR101876829B1 (ko) 소형 드론의 실내 비행제어를 위한 유도 제어 시스템
JP2021097268A (ja) 制御装置、移動体および制御方法
JP6515423B2 (ja) 制御装置、移動体、制御方法、及びプログラム
JP2020050261A (ja) 情報処理装置、飛行制御指示方法、プログラム、及び記録媒体
US11066182B2 (en) Control apparatus, camera apparatus, flying object, control method and program
JP6260803B2 (ja) 撮像システム、移動体、撮像方法、及びプログラム
WO2018163300A1 (ja) 制御装置、撮像装置、撮像システム、移動体、制御方法、及びプログラム
JP2019220836A (ja) 制御装置、移動体、制御方法、及びプログラム
CN111213369B (zh) 控制装置、方法、摄像装置、移动体以及计算机可读存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017514707

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903128

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.02.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16903128

Country of ref document: EP

Kind code of ref document: A1