WO2017203620A1 - バースト光受信器 - Google Patents

バースト光受信器 Download PDF

Info

Publication number
WO2017203620A1
WO2017203620A1 PCT/JP2016/065432 JP2016065432W WO2017203620A1 WO 2017203620 A1 WO2017203620 A1 WO 2017203620A1 JP 2016065432 W JP2016065432 W JP 2016065432W WO 2017203620 A1 WO2017203620 A1 WO 2017203620A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
switch
circuit
apd
level
Prior art date
Application number
PCT/JP2016/065432
Other languages
English (en)
French (fr)
Inventor
聡 吉間
大介 三田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/065432 priority Critical patent/WO2017203620A1/ja
Priority to JP2018518857A priority patent/JP6415785B2/ja
Priority to CN201680085876.8A priority patent/CN109155675A/zh
Priority to US16/088,590 priority patent/US20200235822A1/en
Publication of WO2017203620A1 publication Critical patent/WO2017203620A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02027Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for devices working in avalanche mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver

Definitions

  • the present invention relates to a burst optical receiver applied to an optical communication system.
  • a one-to-many optical communication system to which time division multiplexing is applied has a configuration in which a plurality of slave station devices are connected to one master station device, and each slave station device has a transmission opportunity in time division. Given.
  • the optical signal received by the master station device in the upstream direction from the slave station device to the master station device becomes a burst signal having different received power due to a difference in distance to each slave station device. Therefore, a wide dynamic range is required for the receiver of the master station device.
  • the optical transmitter of the master station device in order to increase the number of branches and prolong the transmission distance, the optical transmitter of the master station device has increased output and the optical receiver has increased sensitivity. In many cases, an avalanche photodiode (APD) using an avalanche effect is used.
  • APD avalanche photodiode
  • the current multiplication factor corresponding to the voltage applied to the APD is usually set to 1 or more.
  • the voltage applied to the APD is dropped (Patent Document 1) and the current path to the APD is changed to a different path (Patent Document 2). It was done.
  • the optical input power level is determined by the preamplifier output. Therefore, taking into account the delay inside the preamplifier, it is said that the delay until the APD driving circuit actually operates after detecting the light over-input in the case of the light over-input when excessively high power light is input is said to be large. There is a problem, that is, since the time required for lowering the voltage applied to the APD is large, there is a possibility that the bit error rate will increase and the possibility that the APD will fail.
  • a decoupling capacitor is inserted in the immediate vicinity of the APD.
  • the burst response is delayed by the decoupling capacitor, so that a resistor having a large value cannot be mounted.
  • the amount of voltage drop of the voltage applied to the APD is limited to a few volts. That is, when a large value resistor cannot be mounted, it is necessary to pass several tens of mA through the current path path to generate a voltage drop of several tens of volts in order to protect the APD in the event of excessive light input.
  • the output current of the constant voltage source that generates the voltage to be applied is limited to a few mA. For this reason, there has been a problem that the APD cannot be protected when light is excessively input.
  • the present invention has been made in view of the above, and an object thereof is to obtain a burst optical receiver with improved protection performance of an avalanche photodiode.
  • a burst optical receiver is provided between a booster circuit that generates a voltage to be applied to an avalanche photodiode, and the booster circuit and the avalanche photodiode.
  • a path selection unit that controls the switch circuit to connect the booster circuit to the second path when the current value is less than the second threshold value.
  • the burst optical receiver according to the present invention has an effect that the protection performance of the avalanche photodiode can be enhanced.
  • FIG. 1 is a diagram illustrating a configuration example of a burst optical receiver according to a first embodiment.
  • 1 is a diagram illustrating an example of a detailed configuration of a circuit of a burst optical receiver according to a first embodiment;
  • the figure which shows the operation example of a hysteresis comparator when the optical input level to APD changes from a normal level to an abnormal level The figure which shows the operation example of a hysteresis comparator when the optical input level to APD changes from an abnormal level to a normal level
  • FIG. 1 is a diagram of a configuration example of a burst optical receiver according to the first embodiment of the present invention.
  • the burst optical receiver 100 according to the first embodiment includes a booster circuit 1, a resistor 2, a current detection circuit 3, a switch circuit 4, a high resistor 5, a decoupling capacitor 6, an avalanche photodiode (APD) 7, and an impedance conversion amplifier ( A TIA (Trans Impedance Amplifier) circuit 8 is provided.
  • a TIA Trans Impedance Amplifier
  • the booster circuit 1 generates a voltage to be applied to the APD 7.
  • the resistor 2 is a current detection resistor for detecting a current flowing from the booster circuit 1 to the APD 7.
  • the current detection circuit 3 detects a current flowing through the resistor 2 and controls the switch circuit 4 based on the detected current.
  • the switch circuit 4 is provided to switch the path of the current flowing from the booster circuit 1 to the APD 7, and the first path 11, which is a path where the high resistance 5 is inserted, and the path where the high resistance 5 is not inserted. Any one of the second paths 12 is selected as a path of a current flowing from the booster circuit 1 to the APD 7.
  • the high resistance 5 reduces the voltage from the booster circuit 1 and applies it to the APD 7 when the first path 11 is selected by the switch circuit 4.
  • the high resistance 5 is a resistance for stepping down the voltage applied from the booster circuit 1 to the APD 7.
  • the current detection circuit 3 is a path selection unit that controls the switch circuit 4 based on the value of the current flowing through the resistor 2 and selects the path of the current flowing from the booster circuit 1 to the APD 7.
  • the decoupling capacitor 6 removes noise to the APD 7.
  • the APD 7 converts the incident optical signal into a current corresponding to the current multiplication factor determined by the voltage applied from the booster circuit 1 and the intensity of the incident optical signal, and outputs the current to the TIA circuit 8.
  • the TIA circuit 8 converts the current output from the APD 7 into a voltage signal.
  • the booster circuit 1 In the burst optical receiver 100 configured as described above, the booster circuit 1 generates a voltage at which the current multiplication factor of the APD 7 is 1 or more in order to achieve high sensitivity.
  • the current detection circuit 3 causes the current path from the booster circuit 1 to the APD 7 when the current flowing from the booster circuit 1 to the APD 7 is equal to or greater than a predetermined value.
  • the switch circuit 4 is controlled so that the high resistance 5 is included.
  • the second path 12 does not include a circuit element that drops the voltage applied to the APD 7, but the second path 12 is lower than the high resistance 5. It is good also as a structure which inserted another resistance of resistance value.
  • the decoupling capacitor 6 is positioned in the immediate vicinity of the APD 7.
  • a configuration in which a resistor is inserted in front of the APD 7, that is, a configuration in which a resistor is inserted between the decoupling capacitor 6 and the APD 7 is also possible.
  • it is not necessary to limit the number of decoupling capacitors to one, and a configuration in which decoupling capacitors are inserted at a plurality of locations may be adopted.
  • FIG. 2 is a diagram illustrating an example of a detailed configuration of the circuit of the burst optical receiver according to the first embodiment, and illustrates a specific example of a circuit that realizes the current detection circuit 3 and the switch circuit 4 illustrated in FIG. Yes.
  • the current detection circuit 3 of the burst optical receiver 100 includes a hysteresis comparator circuit 31, a first switch drive buffer circuit 32, and a second switch drive buffer circuit 33.
  • the hysteresis comparator circuit 31 includes resistors 311 to 314 and a hysteresis comparator 315 having a hysteresis amount.
  • the resistors 311 to 314 are a group of resistors that determine the voltage division ratio between the positive side input (+) and the negative side input ( ⁇ ) of the hysteresis comparator 315.
  • the hysteresis comparator 315 compares a positive voltage, which is a voltage applied to the positive input, with a negative voltage, which is a voltage applied to the negative input, and switches the level of the output signal according to the comparison result.
  • the level of the output signal is set to high level. Switch to. Further, when the hysteresis comparator 315 detects that the positive side voltage is lower than the negative side voltage by the second value when the level of the output signal is in the high level state, the hysteresis comparator 315 switches the level of the output signal to the low level.
  • the first value and the second value may be the same value or different values.
  • the positive side voltage to the hysteresis comparator 315 is lower than the negative side voltage.
  • the constants of resistors 311 to 314 are set so that the magnitude relationship between the positive side voltage and the negative side voltage to the comparator 315 is reversed. Therefore, the hysteresis comparator 315 sets the level of the output signal to Low when the level of the optical signal input to the APD 7 is low and the current flowing through the resistor 2 is small.
  • the hysteresis comparator 315 sets the level of the output signal to high when the current flowing through the resistor 2 increases.
  • the first switch drive buffer circuit 32 includes a buffer 321, resistors 322 and 324, and NPN transistors 323 and 325.
  • the buffer 321 receives the signal output from the hysteresis comparator 315, performs waveform shaping, level conversion, and the like, and outputs the result to the subsequent NPN transistors 323 and 325.
  • the buffer 321 outputs a high level signal when the level of the received signal is high.
  • the level of the output signal is set to a level at which the NPN transistors 323 and 325 can be driven, that is, a level that is ON.
  • the buffer 321 outputs a low level signal when the level of the received signal is low.
  • the level of the output signal is set to a level at which the NPN transistors 323 and 325 cannot be driven, that is, a level that is OFF.
  • the resistors 322 and 324 drop the voltage of the line for applying a voltage from the booster circuit 1 to the APD 7.
  • the second switch drive buffer circuit 33 includes a buffer 331, resistors 332 and 334, and NPN transistors 333 and 335.
  • the buffer 331 receives the signal output from the hysteresis comparator 315, performs waveform shaping, level conversion, and the like, and outputs the resultant signal to the subsequent NPN transistors 333 and 335.
  • the buffer 331 outputs a signal at a level at which the NPN transistors 333 and 335 cannot be driven when the level of the received signal is High, and a level at which the NPN transistors 323 and 325 can be driven when the level of the received signal is Low.
  • the signal is output.
  • the signal output from the buffer 331 corresponds to the inverted signal output from the buffer 321 of the first switch drive buffer circuit 32.
  • Resistors 332 and 334 drop the voltage of the line to which the voltage is applied from the booster circuit 1 to the APD 7.
  • the switch circuit 4 includes CMOS (Complementary Metal Oxide Semiconductor) switches 4A and 4B connected in parallel.
  • the first switch, CMOS switch 4A includes an n-channel metal oxide semiconductor NMOS (N-Channel Metal Oxide Semiconductor) 41 and a p-channel metal oxide semiconductor PMOS (P-Channel Metal Oxide Semiconductor) 42. Composed.
  • the CMOS switch 4A is turned on when an abnormality occurs, specifically, when the level of the optical signal input to the APD 7 is equal to or higher than a specified level, and when normal, that is, when the level of the optical signal input to the APD 7 is lower than the specified level. It will be in the OFF state.
  • the prescribed level is a level at which the possibility that the APD 7 will break down is increased.
  • the prescribed level can be determined based on the bit error rate that deteriorates due to the influence of waveform distortion that occurs when the level of the optical signal input to the APD 7 is increased. For example, a level at which the bit error rate starts to deteriorate due to the influence of waveform distortion is obtained by simulation or the like, and this level is set as a specified level. Further, a level where the bit error rate is just within the range required by the system may be obtained and set as a specified level.
  • the CMOS switch 4B which is the second switch, includes an NMOS 43 and a PMOS 44. The CMOS switch 4B performs the reverse operation of the CMOS switch 4A, and is turned on when normal and turned off when abnormal.
  • the operation of the burst optical receiver 100 will be described. First, the operation when the level of the optical signal received by the burst optical receiver 100 is normal, that is, the operation when the level of the optical signal input to the APD 7 is less than the specified level will be described.
  • the level of the optical signal input to the APD 7 is less than the specified level.
  • the current flowing through the resistor 2 does not exceed a predetermined threshold, and the level of the input signal to the positive input terminal of the hysteresis comparator 315 is lower than the level of the input signal to the negative input terminal. It becomes a state. Therefore, the hysteresis comparator 315 outputs a low level signal. Accordingly, the buffer 321 in the first switch drive buffer circuit 32 is set to Low output, and the buffer 331 in the second switch drive buffer circuit 33 is set to High output.
  • the NMOS 43 and the PMOS 44 of the CMOS switch 4B are turned on, and the current from the booster circuit 1 flows through the path where the CMOS switch 4B is inserted, but the NMOS 41 and the PMOS 42 of the CMOS switch 4A are turned off and the CMOS switch 4A and the high resistance The current from the booster circuit 1 does not flow through the path in which 5 is inserted.
  • a configuration of the burst optical receiver 100 specifically, a path in which a high resistance for dropping a voltage is inserted and a path in which no high resistance is inserted, and a switch for switching these paths are provided in a normal state.
  • the level of the optical signal input to the APD 7 is equal to or higher than a specified level.
  • the current flowing through the resistor 2 is increased, and the magnitude relationship of the input signals to the positive and negative input terminals of the hysteresis comparator 315 is reversed.
  • the level of the input signal to the positive input terminal of the hysteresis comparator 315 is higher than the level of the input signal to the negative input terminal plus the first hysteresis, the hysteresis comparator 315 operates.
  • the hysteresis comparator 315 outputs a high level signal.
  • the buffer 321 in the first switch drive buffer circuit 32 is set to High output
  • the buffer 331 in the second switch drive buffer circuit 33 is set to Low output.
  • the NMOS 43 and the PMOS 44 of the CMOS switch 4B through which current has flowed so far are turned off, and the current from the booster circuit 1 does not flow.
  • the NMOS 41 and the PMOS 42 of the CMOS switch 4A are in the NO state, and the current from the booster circuit 1 flows through the path where the CMOS switch 4A is inserted.
  • the high resistance 5 is connected between the CMOS switch 4A and the APD 7, the amount of current flowing through this path is slight and the voltage is greatly reduced, and the voltage applied to the APD 7 is also reduced. . Along with this, the current multiplication factor M also decreases. Therefore, it is possible to avoid the APD 7 from being broken due to an input of an optical signal having an excessively high level.
  • the voltage on the cathode side of the APD 7 can be made higher than the voltage on the anode side by appropriately setting the resistance value of the high resistance 5. Therefore, it is possible to avoid the reverse bias voltage from being applied to the APD 7 and to prevent the reverse bias voltage from being applied to the APD 7 and failing.
  • the hysteresis comparator 315 When the hysteresis comparator 315 operates, the path of the current flowing from the booster circuit 1 to the APD 7 is switched. As a result, the amount of current flowing through the resistor 2 is reduced, and the hysteresis comparator 315 is supplied to the positive and negative input terminals. The input signal level also changes. The values of the resistors 311 to 314 are set so that the level of the output signal of the hysteresis comparator 315 does not switch from High to Low with this change in current amount.
  • the hysteresis comparator 315 switches the level of the output signal from Low to High when the current flowing through the resistor 2 is less than the first threshold value or higher than the first threshold value, and the current flowing through the resistor 2 is the second current value.
  • the level of the output signal is switched from High to Low.
  • the second threshold value ⁇ the first threshold value.
  • FIG. 3 and 4 are diagrams showing the operation of the hysteresis comparator 315 according to the first embodiment shown in FIG.
  • FIG. 3 shows a simulation waveform of a change in the level of the signal output from the hysteresis comparator 315 and the voltage applied to the APD 7 when the optical input level to the APD 7 changes from a normal level to an abnormal level, that is, a specified level or higher.
  • FIG. 4 shows a simulation waveform of a change in the level of the signal output from the hysteresis comparator 315 and the voltage applied to the APD 7 when the optical input level to the APD 7 changes from an abnormal level to a normal level.
  • a broken line indicates a control signal that is a signal output from the hysteresis comparator 315
  • a solid line indicates an APD applied voltage (Vapd) that is a voltage applied to the APD 7.
  • the APD applied voltage is about 40V, and the output voltage of the hysteresis comparator 315 is 0V.
  • the output voltage of the hysteresis comparator 315 transitions to 1.0V.
  • the APD applied voltage is reduced to about 5V. It can be seen from the simulation results that the switching time is about 10 ns. As a result, it can be seen that the APD applied voltage can be instantaneously reduced when the light input level to the APD 7 becomes an abnormal level, and the APD 7 can be protected.
  • the APD applied voltage is about 7V and the output voltage of the hysteresis comparator 315 is 1.0V.
  • the output voltage of the hysteresis comparator 315 transitions to 0V.
  • the APD applied voltage increases to about 40 V, which is the same as in normal operation. It can be seen from the simulation results that the switching time is about 20 ns. Thus, it can be seen that the burst signal can be received by instantaneously increasing the APD application voltage after the state where the optical input level to the APD 7 is an abnormal level is completed.
  • the optical burst receiver includes the first path and the second path that flow current from the booster circuit that generates the voltage to be applied to the APD to the APD, the first path, A switch circuit that selects the second path; and a current detection circuit that controls the switch circuit based on a value of a current flowing from the booster circuit to the APD.
  • the first path steps down a voltage applied to the APD.
  • the current detection circuit controls the switch circuit to select the first path when the current flowing from the booster circuit to the APD becomes equal to or higher than the first threshold, and the current flowing from the booster circuit to the APD When it becomes less than the second threshold, the switch circuit is controlled to select the second path.
  • the current detection circuit is configured such that when the optical input level to the APD is a normal level, the current from the booster circuit to the APD passes through the second path, and when the optical input level to the APD is an abnormal level, The switch circuit is controlled so that the current to the APD passes through the first path.
  • a current flows to the APD through the second path in which no high resistance is inserted, so that high sensitivity can be realized and a decoupling capacitor is provided. Even in the case of the configuration, when the optical input level to the APD changes to an abnormal level, it is possible to prevent an increase in the time required until the level change is detected.
  • the optical burst receiver when an optical signal having an abnormal level is input to the APD, the voltage applied to the APD is decreased to decrease the current multiplication factor. It is possible to shorten the time required for the APD, and it is possible to sufficiently increase the resistance value for lowering the voltage applied to the APD, so that the protection performance of the APD can be improved.
  • Embodiment 2 FIG. In the first embodiment described above, the burst optical receiver having the configuration using the hysteresis comparator circuit 31 with respect to a predetermined fixed threshold value has been described. On the other hand, in the second embodiment, a burst optical receiver capable of changing the operating point of the hysteresis comparator in consideration of individual variation of APD and temperature dependency characteristics will be described.
  • FIG. 5 is a diagram of a configuration example of the burst optical receiver according to the second embodiment.
  • the hysteresis comparator circuit 31 of the burst optical receiver 100 according to the first embodiment is replaced with a hysteresis comparator circuit 31a.
  • the hysteresis comparator circuit 31a has a configuration in which the resistor 312 of the hysteresis comparator circuit 31 according to the first embodiment is a variable resistor 312a.
  • the burst optical receiver 100a is the same as the burst optical receiver 100 except for the variable resistor 312a.
  • the resistor 312 is a variable resistor 312a, the input voltage value on the positive side (+ side) of the comparator 315 having a hysteresis amount can be adjusted. As a result, it is possible to compensate for variations in the path switching threshold by the switch circuit 4 due to individual variations in the APD 7 and temperature dependence, and current from the booster circuit 1 to the APD 7 at an appropriate timing with respect to variations in the optical input level to the APD 7. It is possible to switch the route through which the current flows.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • Booster circuit 2,311,312,313,314,322,324,332,334 Resistance, 3 Current detection circuit, 4 Switch circuit, 4A, 4B CMOS switch, 5 High resistance, 6 Decoupling capacitor, 7 Avalanche photo Diode (APD), 8 impedance conversion amplifier circuit, 11 first path, 12 second path, 31, 31a hysteresis comparator circuit, 32 first switch drive buffer circuit, 33 second switch drive buffer circuit, 41, 43 NMOS, 42, 44 PMOS, 321, 331 buffer, 323, 325, 333, 335 NPN transistor.
  • APD Avalanche photo Diode

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)

Abstract

バースト光遮断器(100)は、アバランシェフォトダイオード(7)に印加する電圧を生成する昇圧回路(1)と、昇圧回路が生成した電圧を降圧するための抵抗(5)が挿入された第1の経路(11)と、第1の経路と並列に設けられた第2の経路(12)と、昇圧回路と第1の経路および第2の経路との間に設けられ、第1の経路または第2の経路を選択するスイッチ回路(4)と、昇圧回路からアバランシェフォトダイオードに流れる電流の値が第1の閾値以上になると昇圧回路を第1の経路に接続し、電流が第2の閾値未満になると昇圧回路を第2の経路に接続するようにスイッチ回路を制御する電流検出回路(3)と、を備える。

Description

バースト光受信器
 本発明は、光通信システムに適用されるバースト光受信器に関する。
 時分割多重方式を適用した1対多の光通信システムでは、1台の親局装置に対して複数の子局装置が接続された構成をとり、各子局装置には送信機会が時分割で与えられる。子局装置から親局装置への上り方向において親局装置が受信する光信号は、各子局装置までの距離の違いなどの原因により、受信パワーがそれぞれ異なるバースト信号となる。そのため、親局装置の受信器には広ダイナミックレンジが求められる。1対多の光通信システムでは分岐数の増加および伝送距離の長延化を図るため、親局装置の光送信器では高出力化を、光受信器では高感度化を図っており、受光素子としてアバランシェ効果を用いたアバランシェフォトダイオード(APD:Avalanche Photo Diode)を用いることが多い。
 APDでは、高感度化を実現するためにAPDへの印加電圧に応じた電流増倍率を通常1以上に設定している。その結果、高パワーの光が入力した場合には波形歪みが生じてビット誤りが発生する可能性があり、場合によってはAPDが故障する可能性もある。この問題を回避するために、従来、高パワーの光が入力した時にはAPDへの印加電圧を落とす(特許文献1)、APDへの電流パスを違う経路にする(特許文献2)、といった対策が行われていた。
特開2007-129639号公報 特開2008-028537号公報
 特許文献1に記載の発明では、プリアンプ出力で光入力パワーのレベル判定を行う構成としている。そのため、プリアンプ内部での遅延を加味すると、過度に大きなパワーの光が入力した場合である光過入力時に、光過入力を検知してからAPD駆動回路が実際に動作するまでの遅延が大きいという問題、すなわち、APDへの印加電圧を下げるまでの所要時間が大きいために、ビット誤り率が上昇する可能性およびAPDが故障する可能性が高くなるという問題点があった。
 また、一般的にAPDの直近にはデカップリングコンデンサが挿入されている。この場合、APDを保護するために定電圧源からAPDに直列に印加されている抵抗の値を大きくするとデカップリングコンデンサによりバースト応答が遅くなるため、大きな値の抵抗を実装することができない。その結果、APDへの印加電圧の電圧降下量が数ボルトに限定されるという問題があった。すなわち、大きな値の抵抗を実装できない場合、光過入力時にAPDを保護するために数10Vの電圧降下を発生させようとすると、電流パス経路に数10mAを流す必要があるが、通常、APDへ印加する電圧を生成する定電圧源の出力電流は数mAでリミットされている。そのため、光過入力時にAPDを保護出来ないという問題があった。
 また、特許文献2に記載の発明においても、特許文献1に記載の発明と同様に、定電圧源からAPDに直列に印加されている抵抗の上限値がバースト応答速度の観点から制限されてしまうため、大きな値の抵抗を実装出来ない。したがって、特許文献1に記載の発明と同様の問題、すなわち、上述した、光過入力時にAPDを保護出来ないという問題がある。
 本発明は、上記に鑑みてなされたものであって、アバランシェフォトダイオードの保護性能を高めたバースト光受信器を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかるバースト光受信器は、アバランシェフォトダイオードに印加する電圧を生成する昇圧回路と、昇圧回路とアバランシェフォトダイオードとの間に設けられ、昇圧回路が生成した電圧を降圧するための抵抗が挿入された第1の経路と、第1の経路と並列に設けられた第2の経路と、昇圧回路と第1の経路および第2の経路との間に設けられ、昇圧回路を第1の経路または第2の経路に接続するスイッチ回路と、昇圧回路からアバランシェフォトダイオードに流れる電流の値が第1の閾値以上になると昇圧回路を第1の経路に接続し、電流の値が第2の閾値未満になると昇圧回路を第2の経路に接続するようにスイッチ回路を制御する経路選択部と、を備える。
 本発明にかかるバースト光受信器は、アバランシェフォトダイオードの保護性能を高めることができる、という効果を奏する。
実施の形態1にかかるバースト光受信器の構成例を示す図 実施の形態1にかかるバースト光受信器の回路の詳細構成の一例を示す図 APDへの光入力レベルが正常レベルから異常レベルに変化する場合のヒステリシスコンパレータの動作例を示す図 APDへの光入力レベルが異常レベルから正常レベルに変化する場合のヒステリシスコンパレータの動作例を示す図 実施の形態2にかかるバースト光受信器の構成例を示す図
 以下に、本発明の実施の形態にかかるバースト光受信器を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかるバースト光受信器の構成例を示す図である。実施の形態1にかかるバースト光受信器100は、昇圧回路1、抵抗2、電流検出回路3、スイッチ回路4、高抵抗5、デカップリングコンデンサ6、アバランシェフォトダイオード(APD)7およびインピーダンス変換増幅器(TIA:Trans Impedance Amplifier)回路8を備える。
 昇圧回路1は、APD7に印加する電圧を生成する。抵抗2は、昇圧回路1からAPD7に流れる電流を検出するための電流検出用抵抗である。電流検出回路3は、抵抗2に流れる電流を検出し、検出した電流に基づいてスイッチ回路4を制御する。スイッチ回路4は、昇圧回路1からAPD7へ流れる電流の経路を切り替えるために設けられており、高抵抗5が挿入されている経路である第1の経路11と高抵抗5が挿入されていない経路である第2の経路12とのいずれか一方を昇圧回路1からAPD7へ流れる電流の経路として選択する。高抵抗5は、スイッチ回路4により第1の経路11が選択された場合、昇圧回路1からの電圧を低下させてAPD7に印加する。すなわち、高抵抗5は、昇圧回路1からAPD7に印加される電圧を降圧するための抵抗である。また、電流検出回路3は、抵抗2に流れる電流の値に基づいてスイッチ回路4を制御し、昇圧回路1からAPD7に流れる電流の経路を選択する経路選択部である。デカップリングコンデンサ6は、APD7への雑音を除去する。APD7は、入射した光信号を、昇圧回路1から印加されている電圧により決まる電流増倍率と入射した光信号の強度とに応じた電流に変換し、TIA回路8に出力する。TIA回路8は、APD7から出力された電流を電圧信号に変換する。
 上記構成のバースト光受信器100では、高感度化を実現するために、APD7の電流増倍率が1以上となる電圧を昇圧回路1が生成する。
 また、詳細については後述するが、バースト光受信器100において、電流検出回路3は、昇圧回路1からAPD7に流れる電流が予め決められた値以上の場合、昇圧回路1からAPD7までの電流経路に高抵抗5が含まれるようにスイッチ回路4を制御する。
 なお、スイッチ回路4が切り替える2つの経路のうち、第2の経路12はAPD7に印加する電圧を降下させる回路要素を含まないこととしたが、この第2の経路12に高抵抗5よりも低い抵抗値の別の抵抗を挿入した構成としてもよい。また、図1中ではデカップリングコンデンサ6は、APD7の直近に位置しているが、APD7の前に抵抗を挿入した構成、すなわち、デカップリングコンデンサ6とAPD7の間に抵抗を挿入した構成としてもよい。また、デカップリングコンデンサの数を1個に限定する必要はなく、複数個所にデカップリングコンデンサを挿入した構成としてもよい。
 図2は、実施の形態1にかかるバースト光受信器の回路の詳細構成の一例を示す図であり、図1に示した電流検出回路3およびスイッチ回路4を実現する回路の具体例を示している。
 図2に示したように、バースト光受信器100の電流検出回路3は、ヒステリシスコンパレータ回路31、第1のスイッチ駆動バッファ回路32および第2のスイッチ駆動バッファ回路33から構成される。
 ヒステリシスコンパレータ回路31は、抵抗311から314と、ヒステリシス量をもつヒステリシスコンパレータ315とにより構成される。抵抗311から314は、ヒステリシスコンパレータ315の正側入力(+)および負側入力(-)の分圧比を決定する抵抗群である。ヒステリシスコンパレータ315は、正側入力に印加される電圧である正側電圧と負側入力に印加される電圧である負側電圧とを比較し、比較結果に応じて、出力信号のレベルを切り替える。具体的には、ヒステリシスコンパレータ315は、出力信号のレベルがLowレベルの状態の時に正側電圧が負側電圧よりも第1の値だけ高くなったことを検出すると、出力信号のレベルをHighレベルに切り替える。また、ヒステリシスコンパレータ315は、出力信号のレベルがHighレベルの状態の時に正側電圧が負側電圧よりも第2の値だけ低くなったことを検出すると、出力信号のレベルをLowレベルに切り替える。第1の値と第2の値は同じ値でもよいし異なる値でもよい。
 図2に示した回路は、抵抗2に流れる電流、すなわち昇圧回路1からAPD7に流れる電流が小さい状態ではヒステリシスコンパレータ315への正側電圧が負側電圧よりも低くなり、電流が大きくなると、ヒステリシスコンパレータ315への正側電圧と負側電圧との大小関係が逆転するように、抵抗311から314の定数が設定されているものとする。そのため、ヒステリシスコンパレータ315は、APD7に入力する光信号のレベルが低く、抵抗2に流れる電流が少ない状態では、出力信号のレベルをLowにする。また、ヒステリシスコンパレータ315は、抵抗2に流れる電流が多くなると出力信号のレベルをHighにする。
 第1のスイッチ駆動バッファ回路32は、バッファ321と、抵抗322および324と、NPNトランジスタ323および325とにより構成される。バッファ321は、ヒステリシスコンパレータ315から出力された信号を受け取り、波形整形およびレベル変換等を行って後段のNPNトランジスタ323および325へ出力する。バッファ321は、受け取った信号のレベルがHighの場合にHighレベルの信号を出力するが、この出力信号のレベルはNPNトランジスタ323および325を駆動できるレベルすなわちONとなるレベルとする。また、バッファ321は、受け取った信号のレベルがLowの場合にLowレベルの信号を出力するが、この出力信号のレベルはNPNトランジスタ323および325を駆動できないレベルすなわちOFFとなるレベルとする。抵抗322および324は、昇圧回路1からAPD7へ電圧を印加するラインの電圧をドロップさせる。
 第2のスイッチ駆動バッファ回路33は、バッファ331と、抵抗332および334と、NPNトランジスタ333および335とにより構成される。バッファ331は、ヒステリシスコンパレータ315から出力された信号を受け取り、波形整形およびレベル変換等を行って後段のNPNトランジスタ333および335へ出力する。バッファ331は、受け取った信号のレベルがHighの場合にはNPNトランジスタ333および335を駆動できないレベルの信号を出力し、受け取った信号のレベルがLowの場合にはNPNトランジスタ323および325を駆動できるレベルの信号を出力する。バッファ331から出力される信号は、第1のスイッチ駆動バッファ回路32のバッファ321から出力される信号を反転させたものに相当する。抵抗332および334は、昇圧回路1からAPD7へ電圧を印加するラインの電圧をドロップさせる。
 スイッチ回路4は、並列に接続されたCMOS(Complementary Metal Oxide Semiconductor)スイッチ4Aおよび4Bより構成される。第1のスイッチであるCMOSスイッチ4Aは、nチャネル金属酸化膜半導体であるNMOS(N-Channel Metal Oxide Semiconductor)41とpチャネル金属酸化膜半導体であるPMOS(P-Channel Metal Oxide Semiconductor)42とで構成される。CMOSスイッチ4Aは、異常時に、具体的には、APD7に入力する光信号のレベルが規定レベル以上の時にON状態となり、正常時、すなわち、APD7に入力する光信号のレベルが規定レベル未満の時にOFF状態となる。規定レベルとは、APD7が故障する可能性が高まるレベルとする。規定レベルは、APD7に入力する光信号のレベルを高めた場合に生じる波形歪の影響を受けて悪化するビット誤り率に基づいて決定することができる。例えば、ビット誤り率が波形歪の影響を受けて悪化し出すレベルをシミュレーションなどにより求め、このレベルを規定レベルとする。また、ビット誤り率がシステムで要求される範囲内にぎりぎり収まるレベルを求めてこれを規定レベルとしてもよい。第2のスイッチであるCMOSスイッチ4Bは、NMOS43およびPMOS44で構成される。CMOSスイッチ4Bは、CMOSスイッチ4Aとは逆の動作を行い、正常時にON状態となり、異常時にOFF状態となる。
 次に、バースト光受信器100の動作について説明する。まず、バースト光受信器100が受信する光信号のレベルが正常な場合の動作、すなわち、APD7に入力する光信号のレベルが規定レベル未満の場合の動作について説明する。
 バースト光受信器100に通常動作する光入力パワー範囲の信号が入力された場合、APD7に入力する光信号のレベルは規定レベル未満である。このとき、抵抗2に流れる電流は予め決められた閾値以上とはならず、ヒステリシスコンパレータ315の正側の入力端子への入力信号のレベルは負側の入力端子への入力信号のレベルよりも低い状態となる。そのため、ヒステリシスコンパレータ315はLowレベルの信号を出力する。これに伴い第1のスイッチ駆動バッファ回路32内のバッファ321はLow出力、第2のスイッチ駆動バッファ回路33内のバッファ331はHigh出力にそれぞれ設定される。この結果、CMOSスイッチ4BのNMOS43およびPMOS44はON状態となりCMOSスイッチ4Bが挿入された経路を昇圧回路1からの電流が流れるが、CMOSスイッチ4AのNMOS41およびPMOS42はOFF状態となりCMOSスイッチ4Aおよび高抵抗5が挿入された経路には昇圧回路1からの電流が流れなくなる。
 バースト光受信器100の構成、具体的には、電圧を降下させるための高抵抗が挿入された経路および高抵抗が挿入されていない経路と、これらの経路を切り替えるスイッチとを備え、通常時は高抵抗が挿入されていない経路を選択する構成をバースト光受信器に適用することにより、図2に示した抵抗2に相当する抵抗の値をある程度小さくしておけば、図2に示したデカップリングコンデンサ6に相当するコンデンサが挿入されたとしても、高速バースト応答が可能となる。
 つづいて、バースト光受信器100が受信する光信号のレベルが異常な場合の動作、すなわち、APD7に入力する光信号のレベルが規定レベル以上の場合の動作について説明する。
 バースト光受信器100に通常動作する光入力パワー範囲の上限値以上の光パワーの信号が入力された場合、APD7に入力する光信号のレベルは規定レベル以上である。この場合、抵抗2に流れる電流が大きくなり、ヒステリシスコンパレータ315の正側および負側の各入力端子への入力信号の大小関係が逆転する。ヒステリシスコンパレータ315の正側の入力端子への入力信号のレベルが、負側の入力端子への入力信号のレベルに第1のヒステリシスを加えた値よりも高い状態になると、ヒステリシスコンパレータ315が動作し、ヒステリシスコンパレータ315はHighレベルの信号を出力する。これに伴い第1のスイッチ駆動バッファ回路32内のバッファ321はHigh出力、第2のスイッチ駆動バッファ回路33内のバッファ331はLow出力にそれぞれ設定される。この結果、これまで電流が流れていたCMOSスイッチ4BのNMOS43およびPMOS44はOFF状態となり昇圧回路1からの電流が流れなくなる。一方、CMOSスイッチ4AのNMOS41およびPMOS42はNO状態となりCMOSスイッチ4Aが挿入されている経路を昇圧回路1からの電流が流れるようになる。しかし、CMOSスイッチ4AとAPD7との間には高抵抗5が接続されているため、この経路を流れる電流の増加量がわずかであって大幅に電圧が低下し、APD7に印加される電圧も下がる。これに伴い電流増倍率Mも低下する。したがって、過度に高いレベルの光信号が入力することによりAPD7が故障してしまうのを回避することが可能となる。ここで、高抵抗5の抵抗値を適切に設定することで、APD7のカソード側の電圧をアノード側の電圧よりも高くすることが可能である。そのため、APD7に逆バイアス電圧がかかることを避けることができ、逆バイアス電圧がAPD7にかかって故障するのを回避可能である。
 なお、ヒステリシスコンパレータ315が動作すると、昇圧回路1からAPD7へ流れる電流の経路が切り替わり、その結果、抵抗2に流れる電流の量が減少し、ヒステリシスコンパレータ315の正側および負側の各入力端子への入力信号のレベルも変化する。この電流量の変化に伴いヒステリシスコンパレータ315の出力信号のレベルがHighからLowに切り替わらないように、抵抗311から314の値を設定しておく。したがって、ヒステリシスコンパレータ315は、抵抗2に流れる電流が第1の閾値未満の状態から第1の閾値以上の状態になると出力信号のレベルをLowからHighに切り替え、抵抗2に流れる電流が第2の閾値以上の状態から第2の閾値未満の状態になると出力信号のレベルをHighからLowに切り替える。ただし、第2の閾値<第1の閾値とする。
 図3および図4は、図2に示した実施の形態1にかかるヒステリシスコンパレータ315の動作を示す図である。図3は、APD7への光入力レベルが正常レベルから異常レベルすなわち規定レベル以上に変化する場合における、ヒステリシスコンパレータ315が出力する信号のレベルおよびAPD7に印加される電圧の変化シミュレーション波形を示す。図4は、APD7への光入力レベルが異常レベルから正常レベルに変化する場合における、ヒステリシスコンパレータ315が出力する信号のレベルおよびAPD7に印加される電圧の変化シミュレーション波形を示す。図3および図4において、破線が、ヒステリシスコンパレータ315が出力する信号である制御信号を示し、実線が、APD7に印加される電圧であるAPD印加電圧(Vapd)を示す。
 図3において、APD7への光入力レベルが正常レベルとなっている通常動作の時、APD印加電圧は約40V、ヒステリシスコンパレータ315の出力電圧は0Vである。APD7への光入力レベルが異常レベルとなったことをヒステリシスコンパレータ315が検知した後は、ヒステリシスコンパレータ315の出力電圧が1.0Vへと遷移する。その結果、APD印加電圧は約5Vへと低下する。この間の切替時間が約10nsだということが、シミュレーションの結果から分かる。これにより、APD7への光入力レベルが異常レベルとなる光過入力時に瞬時にAPD印加電圧を低下させて、APD7の保護を行うことが可能であることが分かる。
 一方、図4において、APD7への光入力レベルが異常レベルとなっている異常動作の時、APD印加電圧は約7V、ヒステリシスコンパレータ315の出力電圧は1.0Vである。APD7への光入力レベルが異常レベルから正常レベルとなったことをヒステリシスコンパレータ315が検知した後は、ヒステリシスコンパレータ315の出力電圧が0Vへと遷移する。その結果、APD印加電圧は通常動作時と同じ約40Vへと増加する。この間の切替時間が約20nsだということが、シミュレーションの結果から分かる。これにより、APD7への光入力レベルが異常レベルとなっている状態が終了した後は瞬時にAPD印加電圧を増加させて、バースト信号を受信可能であることが分かる。
 以上のように、本実施の形態にかかる光バースト受信器は、APDに印加する電圧を生成する昇圧回路からAPDへの電流を流す第1の経路および第2の経路と、第1の経路または第2の経路を選択するスイッチ回路と、昇圧回路からAPDへ流れる電流の値に基づいてスイッチ回路を制御する電流検出回路と、を備え、第1の経路にはAPDに印加する電圧を降圧するための高抵抗が挿入され、電流検出回路は、昇圧回路からAPDへ流れる電流が第1の閾値以上になると第1の経路を選択するようスイッチ回路を制御し、昇圧回路からAPDへ流れる電流が第2の閾値未満になると第2の経路を選択するようスイッチ回路を制御する。すなわち、電流検出回路は、APDへの光入力レベルが正常レベルの場合は昇圧回路からAPDへの電流が第2の経路を経由し、APDへの光入力レベルが異常レベルの場合は昇圧回路からAPDへの電流が第1の経路を経由するようにスイッチ回路を制御する。これにより、APDへの光入力レベルが正常レベルの場合は高抵抗が挿入されていない第2の経路を介してAPDへ電流が流れるため、高感度化を実現できるとともに、デカップリングコンデンサを備えた構成の場合でも、APDへの光入力レベルが異常レベルに変化した場合にレベルの変化を検出するまでの所要時間が長くなるのを防止することができる。一方、APDへの光入力レベルが異常レベルの場合は高抵抗が挿入されている第1の経路を介してAPDへ電流が流れ、APDには高抵抗で降圧された後の電圧が印加されるため、APDを保護することができる。このように、本実施の形態にかかる光バースト受信器によれば、APDに異常レベルの光信号が入力されるようになってからAPDへの印加電圧を降下させて電流増倍率を低くするまでの所要時間を短くすることが可能であり、また、APDへの印加電圧を降下させるための抵抗の値を十分に大きくすることが可能であるため、APDの保護性能を高めることができる。
実施の形態2.
 以上の実施の形態1では、あらかじめ決めた固定閾値に対するヒステリシスコンパレータ回路31を用いた構成のバースト光受信器について説明を行った。これに対して、実施の形態2では、APDの個体ばらつきおよび温度依存特性などを考慮してヒステリシスコンパレータの動作ポイントを変更可能なバースト光受信器について説明を行う。
 図5は、実施の形態2にかかるバースト光受信器の構成例を示す図である。実施の形態2にかかるバースト光受信器100aは、実施の形態1にかかるバースト光受信器100のヒステリシスコンパレータ回路31をヒステリシスコンパレータ回路31aとしたものである。ヒステリシスコンパレータ回路31aは、実施の形態1にかかるヒステリシスコンパレータ回路31の抵抗312を可変抵抗312aとした構成である。バースト光受信器100aは、可変抵抗312a以外の構成要素はバースト光受信器100と同様である。
 抵抗312を可変抵抗312aとしたことにより、ヒステリシス量を持つコンパレータ315の正側(+側)の入力電圧値を調整することが可能となる。これによりAPD7の個体ばらつきおよび温度依存によるスイッチ回路4による経路切替閾値の変動量を補償することが可能となり、APD7への光入力レベルの変動に対して適切なタイミングで昇圧回路1からAPD7へ電流が流れる経路を切り替えることが可能となる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 昇圧回路、2,311,312,313,314,322,324,332,334 抵抗、3 電流検出回路、4 スイッチ回路、4A,4B CMOSスイッチ、5 高抵抗、6 デカップリングコンデンサ、7 アバランシェフォトダイオード(APD)、8 インピーダンス変換増幅器回路、11 第1の経路、12 第2の経路、31,31a ヒステリシスコンパレータ回路、32 第1のスイッチ駆動バッファ回路、33 第2のスイッチ駆動バッファ回路、41,43 NMOS、42,44 PMOS、321,331 バッファ、323,325,333,335 NPNトランジスタ。

Claims (7)

  1.  アバランシェフォトダイオードに印加する電圧を生成する昇圧回路と、
     前記昇圧回路と前記アバランシェフォトダイオードとの間に設けられ、前記昇圧回路が生成した前記電圧を降圧するための抵抗が挿入された第1の経路と、
     前記第1の経路と並列に設けられた第2の経路と、
     前記昇圧回路と前記第1の経路および前記第2の経路との間に設けられ、前記昇圧回路を前記第1の経路または前記第2の経路に接続するスイッチ回路と、
     前記昇圧回路から前記アバランシェフォトダイオードに流れる電流の値が第1の閾値以上になると前記昇圧回路を前記第1の経路に接続し、前記電流の値が第2の閾値未満になると前記昇圧回路を前記第2の経路に接続するように前記スイッチ回路を制御する経路選択部と、
     を備えることを特徴とするバースト光受信器。
  2.  前記第2の経路には前記昇圧回路が生成した前記電圧を降下させる回路要素が含まれていないことを特徴とする請求項1に記載のバースト光受信器。
  3.  前記第1の閾値は前記第2の閾値よりも大きいことを特徴とする請求項1または2に記載のバースト光受信器。
  4.  前記第1の経路および前記第2の経路と前記アバランシェフォトダイオードとの間にデカップリングコンデンサを備える、
     ことを特徴とする請求項1から3のいずれか一つに記載のバースト光受信器。
  5.  前記経路選択部は、
     前記電流の値が前記第1の閾値未満の状態から前記第1の閾値以上の状態に変化するとHighレベルの信号の出力を開始し、前記電流の値が前記第2の閾値以上の状態から前記第2の閾値未満の状態に変化するとLowレベルの信号の出力を開始するヒステリシスコンパレータ回路、
     を備えることを特徴とする請求項1から4のいずれか一つに記載のバースト光受信器。
  6.  前記電流の値を検出するための電流検出用抵抗、を備え、
     前記ヒステリシスコンパレータの正側の入力端子には前記電流検出用抵抗の前記昇圧回路側の端子の電圧が分圧されて印加され、前記ヒステリシスコンパレータの負側の入力端子には前記電流検出用抵抗の前記アバランシェフォトダイオード側の端子の電圧が分圧されて印加され、
     前記正側の入力端子に印加される電圧の分圧比を可変とする、
     ことを特徴とする請求項5に記載のバースト光受信器。
  7.  前記スイッチ回路は、
     並列に接続された第1のスイッチおよび第2のスイッチを備え、前記第1のスイッチおよび前記第2のスイッチはnチャネル金属酸化膜半導体およびpチャネル金属酸化膜半導体によりそれぞれ構成され、
     前記第1のスイッチには前記第1の経路が接続され、
     前記第2のスイッチには前記第2の経路が接続され、
     前記経路選択部は、
     前記ヒステリシスコンパレータがLowレベルの信号を出力した場合に前記第1のスイッチをOFFにさせ、前記ヒステリシスコンパレータがHighレベルの信号を出力した場合に前記第1のスイッチをONにさせる第1のスイッチバッファ回路と、
     前記ヒステリシスコンパレータがLowレベルの信号を出力した場合に前記第2のスイッチをONにさせ、前記ヒステリシスコンパレータがHighレベルの信号を出力した場合に前記第2のスイッチをOFFにさせる第2のスイッチバッファ回路と、
     を備えることを特徴とする請求項5または6に記載のバースト光受信器。
PCT/JP2016/065432 2016-05-25 2016-05-25 バースト光受信器 WO2017203620A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/065432 WO2017203620A1 (ja) 2016-05-25 2016-05-25 バースト光受信器
JP2018518857A JP6415785B2 (ja) 2016-05-25 2016-05-25 バースト光受信器
CN201680085876.8A CN109155675A (zh) 2016-05-25 2016-05-25 突发光接收器
US16/088,590 US20200235822A1 (en) 2016-05-25 2016-05-25 Burst light receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065432 WO2017203620A1 (ja) 2016-05-25 2016-05-25 バースト光受信器

Publications (1)

Publication Number Publication Date
WO2017203620A1 true WO2017203620A1 (ja) 2017-11-30

Family

ID=60412778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065432 WO2017203620A1 (ja) 2016-05-25 2016-05-25 バースト光受信器

Country Status (4)

Country Link
US (1) US20200235822A1 (ja)
JP (1) JP6415785B2 (ja)
CN (1) CN109155675A (ja)
WO (1) WO2017203620A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596680A (zh) * 2019-10-21 2019-12-20 苏州玖物互通智能科技有限公司 激光雷达apd电压式闭环随温调节系统
CN110596681A (zh) * 2019-10-21 2019-12-20 苏州玖物互通智能科技有限公司 基于fpga芯片的电压式闭环随温调节系统
JPWO2021161382A1 (ja) * 2020-02-10 2021-08-19

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016220492A1 (de) * 2016-10-19 2018-04-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ladungslawinen-Photodetektor-System
JP7162204B2 (ja) * 2019-03-28 2022-10-28 パナソニックIpマネジメント株式会社 光検出器
CN112117743B (zh) * 2020-10-12 2022-08-30 武汉海达数云技术有限公司 Apd保护电路和激光扫描仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015671A (ja) * 2002-06-10 2004-01-15 Optoelectronics Co Ltd 信号検出処理回路
JP2006179981A (ja) * 2004-12-20 2006-07-06 Sumitomo Electric Ind Ltd 光受信器
WO2008099507A1 (ja) * 2007-02-16 2008-08-21 Fujitsu Limited 光受信装置
US8188418B1 (en) * 2010-02-17 2012-05-29 Lockheed Martin Coherent Technologies, Inc. Switchable hybrid receiver for coherent and direct optical detection
JP2015115644A (ja) * 2013-12-09 2015-06-22 三菱電機株式会社 Apd回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260719A (ja) * 1996-03-21 1997-10-03 Hirakawa Hewtec Kk 光受信回路
GB0423669D0 (en) * 2004-10-25 2004-11-24 Bookham Technology Plc Optical detector
CN2790003Y (zh) * 2005-04-15 2006-06-21 海信集团有限公司 Apd器件工作保护电路
JP2010028340A (ja) * 2008-07-17 2010-02-04 Mitsubishi Electric Corp 光受信器
CN202978951U (zh) * 2012-11-05 2013-06-05 深圳市共进电子股份有限公司 用于增大光突发接收机的接收动态范围的补偿电路
US9525495B2 (en) * 2013-02-19 2016-12-20 Mitsubishi Electric Corporation Burst-mode receiver, and method of bias voltage control for APD of burst-mode receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015671A (ja) * 2002-06-10 2004-01-15 Optoelectronics Co Ltd 信号検出処理回路
JP2006179981A (ja) * 2004-12-20 2006-07-06 Sumitomo Electric Ind Ltd 光受信器
WO2008099507A1 (ja) * 2007-02-16 2008-08-21 Fujitsu Limited 光受信装置
US8188418B1 (en) * 2010-02-17 2012-05-29 Lockheed Martin Coherent Technologies, Inc. Switchable hybrid receiver for coherent and direct optical detection
JP2015115644A (ja) * 2013-12-09 2015-06-22 三菱電機株式会社 Apd回路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596680A (zh) * 2019-10-21 2019-12-20 苏州玖物互通智能科技有限公司 激光雷达apd电压式闭环随温调节系统
CN110596681A (zh) * 2019-10-21 2019-12-20 苏州玖物互通智能科技有限公司 基于fpga芯片的电压式闭环随温调节系统
JPWO2021161382A1 (ja) * 2020-02-10 2021-08-19
WO2021161382A1 (ja) * 2020-02-10 2021-08-19 三菱電機株式会社 光受信器
JP7248154B2 (ja) 2020-02-10 2023-03-29 三菱電機株式会社 光受信器

Also Published As

Publication number Publication date
JP6415785B2 (ja) 2018-10-31
CN109155675A (zh) 2019-01-04
JPWO2017203620A1 (ja) 2018-10-11
US20200235822A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
JP6415785B2 (ja) バースト光受信器
KR100885141B1 (ko) 출력 회로를 구비하는 반도체 집적 회로
US7542684B2 (en) Light emitting diode driving device and optical transmission device including the same
US8660158B2 (en) Semiconductor laser drive circuit and semiconductor laser apparatus
JP4833124B2 (ja) トランスインピーダンスアンプ及びトランスインピーダンスアンプの制御方法
JP5864025B2 (ja) バースト光受信器、バースト光受信器のapdのバイアス電圧制御方法
WO2006009242A1 (ja) Led駆動回路
US8736307B2 (en) Bidirectional transceiver and method
US20200182965A1 (en) Fault tolerant digital input receiver circuit
US8803561B2 (en) Semiconductor circuit and semiconductor device
US9559655B2 (en) Amplification circuit
US10804691B2 (en) Circuit providing reverse current protection for high-side driver
US10205034B2 (en) Optical module
US20170373651A1 (en) Trans-impedance amplifier arrangement and control module
US8129671B2 (en) Power supply dependent optical receiver and amplifier and photocoupler using the same
US12040837B2 (en) Laser emitting system
US20080118252A1 (en) Optical coupler with reduced pulse width distortion
US20180254771A1 (en) Voltage comparator
JP5964001B2 (ja) パワーモニタ装置および受信装置
JP5231118B2 (ja) 受光アンプ回路
CN103401139B (zh) 适用连续和突发模式的激光器监测光功率采样电路及方法
US20200036351A1 (en) Signal level detection and overrange signal limiter and clamp for electronic circuits
JP3656100B2 (ja) 光装置
US20100062720A1 (en) Signal transmission system and signal transmission method thereof
KR100810328B1 (ko) 전류 구동형 광원 구동 회로

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518857

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903102

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903102

Country of ref document: EP

Kind code of ref document: A1