WO2017200292A1 - 가소제 조성물, 수지 조성물 및 이들의 제조 방법 - Google Patents

가소제 조성물, 수지 조성물 및 이들의 제조 방법 Download PDF

Info

Publication number
WO2017200292A1
WO2017200292A1 PCT/KR2017/005109 KR2017005109W WO2017200292A1 WO 2017200292 A1 WO2017200292 A1 WO 2017200292A1 KR 2017005109 W KR2017005109 W KR 2017005109W WO 2017200292 A1 WO2017200292 A1 WO 2017200292A1
Authority
WO
WIPO (PCT)
Prior art keywords
dibenzoate
terephthalate
based material
plasticizer
weight
Prior art date
Application number
PCT/KR2017/005109
Other languages
English (en)
French (fr)
Inventor
김현규
이미연
조윤기
문정주
김주호
정석호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170059725A external-priority patent/KR20170130291A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780003003.2A priority Critical patent/CN107922671B/zh
Priority to US15/753,609 priority patent/US11427699B2/en
Priority to EP17799649.3A priority patent/EP3321315A4/en
Publication of WO2017200292A1 publication Critical patent/WO2017200292A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/261,4 - Benzenedicarboxylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/80Phthalic acid esters
    • C07C69/82Terephthalic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids

Definitions

  • the present invention relates to a plasticizer composition, a resin composition and a method for producing the same.
  • plasticizers react with alcohols to polycarboxylic acids such as phthalic acid and adipic acid to form the corresponding esters.
  • polycarboxylic acids such as phthalic acid and adipic acid
  • plasticizer compositions that can replace phthalate-based plasticizers such as terephthalate-based, trimellitate-based, and other polymer-based plastics continue.
  • the plasticizer is appropriately added with various additives such as resins such as polyvinyl chloride (PVC), fillers, stabilizers, pigments, and antifog additives to give a variety of processing properties, such as extrusion, injection molding, calendaring, etc. It is used in a variety of products, from pipes, flooring, wallpaper, sheets, artificial leather, tarpaulins, tapes and food packaging.
  • resins such as polyvinyl chloride (PVC)
  • fillers such as polyvinyl chloride (PVC)
  • stabilizers such as polyvinyl chloride (PVC)
  • plasticizers should be used in consideration of discoloration, transferability, and mechanical properties.
  • plasticizers, fillers, stabilizers, viscosity-reducing agents, dispersants, antifoaming agents, foaming agents, etc. are blended with PVC resins according to the characteristics required for different industries such as tensile strength, elongation, light resistance, transition, gelling or absorption rate. Done.
  • the present inventors are plasticizer compositions that can improve poor physical properties caused by structural limitations while continuing research on plasticizers, and are environmentally friendly when mixed with resin compositions, while improving workability by improving absorption rate and plasticization efficiency. It is possible to reduce the total amount of the plasticizer to be applied to improve the physical properties such as the transfer characteristics and heating loss, and to improve the tensile strength and elongation to confirm the plasticizer composition excellent in mechanical properties and to complete the present invention.
  • a terephthalate-based material having 9 or 10 carbon atoms of the alkyl group bonded to the diester group; And a dibenzoate-based material including at least one dibenzoate-based compound represented by Formula 1, wherein the weight ratio of the terephthalate-based material and the dibenzoate-based material is 99: 1 to 1:99.
  • a phosphorus plasticizer composition is provided.
  • R is an alkylene group having 2 to 4 carbon atoms
  • n is an integer of 1 to 3.
  • At least one resin 100 selected from the group consisting of ethylene vinyl acetate, polyethylene, polypropylene, polyketone, polyvinyl chloride, polystyrene, polyurethane, and thermoplastic elastomer
  • a resin composition comprising 5 to 150 parts by weight of the above-described plasticizer composition, based on parts by weight, is provided.
  • Plasticizer composition according to an embodiment of the present invention when used in the resin composition, while improving the eco-friendliness, the workability can be improved by improving the absorption rate and plasticization efficiency, and improved physical properties such as transfer characteristics and heating loss It is possible to reduce the total amount of plasticizer applied, and to improve mechanical strength by improving tensile strength and elongation.
  • distillation is performed under reduced pressure for 0.5 to 4 hours to remove unreacted raw materials.
  • steam extraction is performed under reduced pressure using steam for 0.5 to 3 hours, the reaction solution temperature is cooled to about 90 ° C., and neutralization is performed using an alkaline solution. .
  • washing with water may be performed, and then the reaction solution is dehydrated to remove moisture. Filtration was added to the reaction solution from which the water had been removed, followed by stirring for a predetermined time, followed by filtration to obtain 1326.7 g (yield: 99.0%) of di (2-propylheptyl) terephthalate.
  • Di (2-propylheptyl) terephthalate and diethylene glycol dibenzoate (DEGDB) prepared in Preparation Example 1 were mixed at a weight ratio of 70:30 to obtain a plasticizer composition.
  • DPGDB dipropylene glycol dibenzoate
  • TAGDB triethylene glycol dibenzoate
  • the plasticizers of Examples 1 to 6 and Comparative Examples 1 to 3 were used as experimental specimens.
  • the specimen was prepared by referring to ASTM D638, 40 parts by weight of plasticizer, 40 parts by weight of plasticizer, 3 parts by weight of stabilizer (LOX 912 NP) were mixed with a mixer, and the roll mill was operated at 170 ° C. for 4 minutes, and the press was pressed. 1T and 3T sheets were produced by working at 180 to 2.5 minutes (low pressure) and 2 minutes (high pressure). Each specimen was used to perform the following physical property tests and the results are summarized in Table 2 below.
  • Shore hardness (Shore “D”) 3T 10s at 25 ° C. was measured using ASTM D2240.
  • Tensile Strength (kgf / mm2) Load Value (kgf) / Thickness (mm) x Width (mm)
  • Elongation (%) calculated after elongation / initial length x 100.
  • test specimens having a thickness of 2 mm or more were obtained, and a glass plate was attached to both sides of the test specimens, and a load of 1 kgf / cm 2 was applied thereto.
  • the test piece was left in a hot air circulation oven (80 ° C.) for 72 hours and then taken out and cooled at room temperature for 4 hours. Then, after removing the glass plate attached to both sides of the test piece, the weight loss was measured before and after leaving the glass plate and specimen plate in the oven, and the transfer loss was calculated by the following equation.
  • % Of transfer loss ⁇ (initial weight of test piece at room temperature-weight of test piece after leaving the oven) / initial weight of test piece at room temperature ⁇ x 100
  • Absorption rate was evaluated by measuring the time required for the resin and the ester compound to be mixed to stabilize the torque of the mixer by using a Planatary mixer (Brabender, P600) under the conditions of 77 °C, 60rpm.
  • Example 1 49.0 265.4 322.1 2.56 1.12 5:40
  • Example 2 47.8 260.5 320.8 2.11 0.84 5:20
  • Example 3 48.8 258.4 315.4 2.03 0.95 5:45
  • Example 4 47.5 255.0 318.6 1.86 1.18 5:10
  • Example 5 48.8 262.4 332.7 2.10 0.78 5:55
  • Example 6 49.2 275.0 318.9 1.77 0.98 5:15
  • Comparative Example 3 45.5 204.5 256.0 5.20 11.20 2:10
  • Comparative Example 2 Compared with Examples 1 to 6, it can be seen that the elongation and tensile strength of Comparative Examples 1 to 3 greatly reduced. Specifically, in Comparative Example 2 and Comparative Example 3 using a terephthalate having a carbon number other than 9 or 10, it is confirmed that the tensile strength and elongation are lower than 10% compared to the Examples, in particular, in Comparative Example 3 It can be seen that the heat loss and the transfer loss are considerably poor, and that the workability is degraded because the absorption rate is too fast to have an adequate gelling induction time.
  • Comparative Example 1 which does not add a dibenzoate-based material is very slow absorption rate may cause a problem of a long mixing time or a problem of increasing the mixing temperature, thereby leading to an increase in energy usage It can adversely affect the processability and production speed.
  • the tensile strength and elongation also represent a level that is difficult to satisfy.
  • the present invention has a technical feature to provide a plasticizer composition that can improve the poor physical properties caused by the structural limitations.
  • a plasticizer composition further comprises a terephthalate-based material.
  • the terephthalate-based material is selected from the range of 1 to 99% by weight, 30 to 99% by weight, 40 to 99% by weight, 50 to 95% by weight or 60 to 90% by weight based on the total weight of the plasticizer composition Content may be applied.
  • the terephthalate-based material may be one having, for example, an end group independently selected from alkyl groups having 1 to 12 carbon atoms, 3 to 11 carbon atoms, 4 to 10 carbon atoms, 8 to 10 carbon atoms, 8 to 9 carbon atoms, or 8 carbon atoms.
  • the alkyl group bonded to the diester group of the terephthalate-based material has 9 or 10 carbon atoms.
  • the carbon number is less than 9, for example, when the butyl group having 4 carbon atoms is bonded to the diester group, heating loss or transition loss may be poor, and it may be difficult to improve mechanical properties such as tensile strength or elongation. have.
  • the octyl group or 2-ethylhexyl group having 8 carbon atoms is bonded to the diester group, mechanical properties such as tensile strength and elongation may be difficult to be satisfied. Therefore, it may be preferable to use 9 or 10 carbon atoms of the alkyl group bonded to the diester group.
  • the terephthalate-based material may be at least one selected from the group consisting of diisononyl terephthalate (DINTP), diisodecyl terephthalate (DIDTP), and di (2-propylheptyl) terephthalate (DPHTP).
  • DINTP diisononyl terephthalate
  • DIDTP diisodecyl terephthalate
  • DPHTP di (2-propylheptyl) terephthalate
  • a plasticizer composition further comprising a dibenzoate-based material comprising at least one dibenzoate-based compound in addition to the terephthalate-based material.
  • the dibenzoate-based compound may be represented by Formula 1 below.
  • R is an alkylene group having 2 to 4 carbon atoms
  • n is an integer of 1 to 3.
  • the dibenzoate-based compound represented by Formula 1 may be a compound in which an alkylene group and a dibenzoate group are sequentially bonded to both sides based on a central ether group.
  • n 2 or more
  • the number of carbon atoms of the alkylene group represented by R may be the same or different.
  • the same alkylene group is bonded, and may have 2 to 4 carbon atoms, and an alkyl group having 1 to 3 carbon atoms as a branch. Can be combined.
  • the carbon number of the branches is preferably smaller than the carbon number of the main chain bonded to the dibenzoate group.
  • n 2 or more
  • a non-hybrid dibenzoate compound when the alkylene groups bonded by R are the same as each other, it may be referred to as a non-hybrid dibenzoate compound, and when different from each other, it may be referred to as a hybrid dibenzoate compound.
  • a non-hybrid dibenzoate-based compound when used as a plasticizer composition, a non-hybrid dibenzoate-based compound may be more common than a hybrid dibenzoate-based compound, and in the present specification, when there is no mention of hybrid or non-hybridization, all of the Rs are the same non-hybrid dibenzoate-based compound. Can be treated as a compound.
  • R may be any one selected from the group consisting of ethylene, propylene, isopropylene, butylene, and isobutylene, but is not limited thereto. More preferably, the dibenzoate-based compound represented by Formula 1 may be diethylene glycol dibenzoate, dipropylene glycol dibenzoate, or triethylene glycol dibenzoate.
  • the dibenzoate-based material containing at least one dibenzoate-based compound may be the diethylene glycol dibenzoate, diisopropylene glycol dibenzoate or triethylene glycol dibenzoate, or a mixture thereof.
  • the mixture may further include a dibenzoate-based compound meeting the definition of R.
  • the terephthalate-based material and the dibenzoate-based material in the plasticizer composition may be included in a weight ratio of 99: 1 to 1:99, and the upper limit of the weight ratio range is 99: 1. , 95: 5, 90:10, 85:15, 80:20, 70:30 or 60:40 can be applied, and the lower limit is 1:99, 5:95, 10:90, 15:85, 20: 80, 30:70 or 40:60 may apply.
  • the method of preparing the plasticizer composition may be applied to a blending method, and the blending manufacturing method is as follows, and the description of the terephthalate-based material and the dibenzoate-based material itself is described above. As described above, the description thereof is omitted.
  • the plasticizer composition may be prepared by preparing a terephthalate-based material and a dibenzoate-based material, and blending the terephthalate-based material and the dibenzoate-based material in a specific ratio such as 99: 1 to 1:99 by weight.
  • the terephthalate-based material and the dibenzoate-based material may be a single compound or a mixture.
  • the terephthalate-based material may be a terephthalate-based material through any ester selected from the group consisting of isononyl alcohol, isodecyl alcohol and 2-propylheptyl alcohol, and a direct esterification reaction of terephthalic acid; have.
  • the direct esterification may include adding terephthalic acid to an alcohol, then adding a catalyst and reacting under a nitrogen atmosphere; Removing unreacted alcohol and neutralizing unreacted acid; And dehydration and filtration by distillation under reduced pressure.
  • the alcohol may be used in the range of 150 to 500 mol%, 200 to 400 mol%, 200 to 350 mol%, 250 to 400 mol%, or 270 to 330 mol% based on 100 mol% of terephthalic acid.
  • the catalyst is, for example, acid catalysts such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, paratoluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, alkyl sulfuric acid, aluminum lactic acid, lithium fluoride, potassium chloride, cesium chloride, Metal salts such as calcium chloride, iron chloride, aluminum phosphate, metal oxides such as heteropolyacids, natural / synthetic zeolites, cation and anion exchange resins, tetraalkyl titanate and organic metals such as polymers thereof. .
  • the catalyst may use tetraalkyl titanate.
  • the amount of the catalyst used may vary depending on the type, for example, in the case of a homogeneous catalyst, 0.01 to 5% by weight, 0.01 to 3% by weight, 1 to 5% by weight or 2 to 4% by weight based on 100% by weight of the total reactants. And, in the case of heterogeneous catalysts, it may be in the range of 5 to 200%, 5 to 100%, 20 to 200%, or 20 to 150% by weight of the total amount of reactants.
  • reaction temperature may be in the range of 180 to 280 ° C, 200 to 250 ° C, or 210 to 230 ° C.
  • the starting material in the preparation of the terephthalate-based material, may be prepared through a transester reaction in which the starting material is reacted with alcohol using terephthalate.
  • trans-esterification reaction refers to a reaction in which an alcohol reacts with an ester as shown in Scheme 1, where R " of the ester is interchanged with R ′ of the alcohol as shown in Scheme 1 below:
  • the trans-esterification reaction has an advantage that does not cause a waste water problem compared to the acid-alcohol esterification reaction, and can be carried out under a catalyst, it is possible to solve the problem when using an acid catalyst, it is carried out under a metal catalyst In this case, by-products can be reduced and the reaction time can be shortened.
  • diisononyl terephthalate may be prepared by the trans esterification reaction to obtain diisononyl terephthalate having a purity of 98% or more.
  • the metal catalyst may be, for example, an organometallic catalyst, a metal oxide catalyst, a metal salt catalyst, or the metal itself.
  • the metal component may be any one selected from the group consisting of tin, titanium and zirconium, or a mixture of two or more thereof.
  • the method may further include distilling off the unreacted alcohol and reaction by-products, for example, an ester compound after the trans-esterification reaction.
  • the direct esterification and trans esterification reactions can also be applied to prepare the dibenzoate-based materials described above.
  • the dibenzoate-based material is prepared through a direct esterification reaction or a trans esterification reaction, the contents may be applied in the same manner as the content used to prepare the terephthalate-based material.
  • the plasticizer composition thus prepared is 5 to 150 parts by weight, 40 to 100 parts by weight based on 100 parts by weight of a resin selected from ethylene vinyl acetate, polyethylene, polypropylene, polyvinyl chloride, polyketone, polystyrene, polyurethane, and thermoplastic elastomer. Or, it may be included in the range of 40 to 50 parts by weight to provide a resin composition effective for all of the compound formulation, sheet formulation and plastisol formulation.
  • the plasticizer composition can be applied to the production of wires, flooring, automotive interior, film, sheet, wallpaper or tube.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 가소제 조성물, 수지 조성물 및 이들의 제조 방법에 관한 것으로, 수지 조성물의 가소제로서 사용시 수지 조성물에 사용할 경우, 친환경성을 확보하면서, 흡수 속도 및 가소화 효율의 향상으로 가공성이 개선될 수 있고, 이행 특성 및 가열 감량 등의 물성이 향상되어 적용되는 가소제의 총량을 줄일 수 있으며, 인장강도와 신율의 향상으로 기계적 물성까지도 우수한 가소제를 제공할 수 있다.

Description

가소제 조성물, 수지 조성물 및 이들의 제조 방법
관련출원과의 상호인용
본 출원은 2016년 05월 18일자 한국 특허 출원 제10-2016-0060831호 및 2017년 05월 15일자 한국 특허 출원 제10-2017-0059725호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 가소제 조성물, 수지 조성물 및 이들의 제조 방법에 관한 것이다.
통상적으로 가소제는 알코올이 프탈산 및 아디프산과 같은 폴리카복시산과 반응하여 이에 상응하는 에스터를 형성한다. 또한 인체에 유해한 프탈레이트계 가소제의 국내외 규제를 고려하여, 테레프탈레이트계, 트리멜리테이트계, 기타 고분자계 등의 프탈레이트계 가소제를 대체할 수 있는 가소제 조성물들에 대한 연구가 계속되고 있다.
일반적으로 가소제는 폴리염화비닐(PVC)등의 수지와 충진재, 안정제, 안료, 방담제 등 여러가지 첨가제를 적절하게 첨가하여 다양한 가공물성을 부여하여 압출성형, 사출성형, 캘린더링 등의 가공법에 의하여 전선, 파이프, 바닥재, 벽지, 시트, 인조가죽, 타포린, 테이프 및 식품 포장재 업종의 제품에 이르기까지 다양한 제품들의 소재로 사용된다.
한편, 바닥재, 벽지, 연질 및 경질 시트 등의 플라스티졸 업종, 캘린더링 업종, 압출/사출 컴파운드 업종을 막론하고, 이러한 친환경 제품에 대한 요구가 증대고 있으며, 이에 대한 완제품별 품질 특성, 가공성 및 생산성을 강화하기 위하여 변색 및 이행성, 기계적 물성 등을 고려하여 적절한 가소제를 사용하여야 한다.
이러한 다양한 사용 영역에서 업종별 요구되는 특성인 인장강도, 신율, 내광성, 이행성, 겔링성 혹은 흡수속도 등에 따라 PVC 수지에 가소제, 충전제, 안정제, 점도저하제, 분산제, 소포제, 발포제 등의 부원료등을 배합하게 된다.
현재 가소제 시장 상황은 프탈레이트 가소제에 대한 환경 이슈로 인해 친환경 가소제의 개발이 업계에서 경쟁적으로 진행되고 있으며, 최근에는 친환경 가소제 중에서 범용 제품으로 사용중에 있는 디(2-에틸헥실)테레프탈레이트(DEHTP)의 가소화 효율, 이행성 등의 품질 열세를 극복하기 위한 신규 제품들의 개발이 이루어지고 있다.
이에 상기 디(2-에틸헥실)테레프탈레이트보다 우수한 신규 조성물의 제품을 개발함으로써, 염화비닐계 수지에 대한 가소제로서 최적 적용할 수 있는 기술에 대한 연구가 계속 필요한 실정이다.
이에 본 발명자들은 가소제에 대한 연구를 계속하던 중 구조적인 한계로 인해 발생되던 불량한 물성들을 개선할 수 있는 가소제 조성물로, 수지 조성물에 혼용시 친환경적이면서도, 흡수 속도 및 가소화 효율의 향상으로 가공성이 개선될 수 있고, 이행 특성 및 가열 감량 등의 물성이 향상되어 적용되는 가소제의 총량을 줄일 수 있으며, 인장강도와 신율의 향상으로 기계적 물성까지도 우수한 가소제 조성물을 확인하고 본 발명을 완성하기에 이르렀다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 디에스테르기에 결합된 알킬기의 탄소수가 9 또는 10인 테레프탈레이트계 물질; 및 하기 화학식 1로 표시되는 디벤조에이트계 화합물을 1 이상 포함하는 디벤조에이트계 물질;을 포함하고, 상기 테레프탈레이트계 물질 및 디벤조에이트계 물질의 중량비는 99:1 내지 1:99인 것인 가소제 조성물이 제공된다.
[화학식 1]
Figure PCTKR2017005109-appb-I000001
상기 화학식 1에서, R은 탄소수 2 내지 4의 알킬렌기이며, n은 1 내지 3의 정수이다.
상기 과제를 해결하기 위하여 본 발명의 또 다른 일 실시예에 따르면, 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리스타이렌, 폴리우레탄 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상의 수지 100 중량부에 대하여, 전술한 가소제 조성물을 5 내지 150 중량부로 포함하는 것인 수지 조성물이 제공된다.
본 발명의 일 실시예에 따른 가소제 조성물은, 수지 조성물에 사용할 경우, 친환경성을 확보하면서, 흡수 속도 및 가소화 효율의 향상으로 가공성이 개선될 수 있고, 이행 특성 및 가열 감량 등의 물성이 향상되어 적용되는 가소제의 총량을 줄일 수 있으며, 인장강도와 신율의 향상으로 기계적 물성까지도 우수할 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
제조예 1: 디(2-프로필헵틸)테레프탈레이트의 제조
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 3 리터 반응기에 정제 테레프탈산(purified terephthalic acid; TPA) 498.0 g, 2-프로필헵틸 알코올(2-PH) 1248 g (TPA: 2-PH의 몰비 (1.0): (3.0)), 촉매로써 티타늄계 촉매 (TIPT, tetra isopropyl titanate)를 1.54 g(TPA 100 중량부에 대해 0.31 중량부)을 투입하고, 약 170℃까지 서서히 승온시켰다. 약 170℃ 근처에서 생성수 발생이 시작되었으며, 반응 온도 약 220℃, 상압 조건에서 질소 가스를 계속 투입하면서 약 4.5 시간 동안 에스테르 반응을 수행하고 산가가 0.01에 도달하면 반응을 종결한다.
반응 완료 후, 미반응 원료를 제거하기 위해서 감압하에서 증류추출을 0.5 내지 4시간 동안 실시한다. 일정 함량 수준 이하로 미반응 원료를 제거하기 위해 스팀을 사용하여 감압하에서 0.5 내지 3 시간 동안 스팀추출을 시행하고, 반응액 온도를 약 90℃로 냉각하여, 알카리 용액을 이용하여 중화 처리를 실시한다. 추가로, 수세를 실시할 수도 있으며, 이후 반응액을 탈수하여 수분을 제거한다. 수분이 제거된 반응액에 여재를 투입하여 일정시간 교반한 다음, 여과하여 최종적으로 디(2-프로필헵틸)테레프탈레이트 1326.7 g(수율: 99.0 %)을 얻었다.
제조예 2: DEGDB의 제조
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 2 리터 반응기에 정제 벤조산(Benzoic acid; BA) 1221 g, 디에틸렌 글리콜 530.5 g (BA: DEG의 몰비 (2.0):(1.0)), 촉매로써 티타늄계 촉매 (TIPT, tetraisopropyl titanate)를 2.0 g, Xylene을 소량 투입하고, 약 170℃까지 서서히 승온시켰다. 약 170℃ 근처에서 생성수 발생이 시작되면 생성수의 제거가 원할하도록 Xyxlene의 양을 조절하여 주고, 반응물중 중간체인 모노벤조에이트의 함량이 5% 이하에서 반응을 종결한다. 이후, 제조예 1과 유사한 방법으로 최종 제품인 디에틸렌 글리콜 벤조에이트 1,530g(수율: 98%)을 얻었다.
실시예 1
상기 제조예 1에서 제조된 디(2-프로필헵틸)테레프탈레이트와 디에틸렌 글리콜 디벤조에이트(DEGDB)를 70:30의 중량비로 혼합하여 가소제 조성물을 얻었다.
실시예 2 내지 6 및 비교예 1 내지 3
실시예 2 내지 6과 비교예 1 내지 3은 아래 표 1과 같이 구성하였다.
이하에서 디프로필렌 글리콜 디벤조에이트는 "DPGDB"로, 트리에틸렌 글리콜 디벤조에이트는 "TEGDB"로 기재한다.
TP계 물질 벤조에이트계 물질 혼합 중량비
실시예 1 DPHTP DEGDB 7:3
실시예 2 DPHTP DEGDB 5:5
실시예 3 DINTP DEGDB 8:2
실시예 4 DINTP DEGDB 6:4
실시예 5 DIDTP DPGDB 8:2
실시예 6 DIDTP TEGDB 6:4
비교예 1 GL300* (DEHTP)
비교예 2 DEHTP DEGDB 75:25
비교예 3 DBTP DEGDB 6:4
* GL300TM: DEHTP, (주)LG화학 제품
실험예 1: 시편 제작 및 성능 평가
실시예 1 내지 6 및 비교예 1 내지 3의 가소제를 실험용 시편으로 사용하였다. 상기 시편 제작은 ASTM D638을 참조하여, PVC 100 중량부에 가소제 40 중량부, 안정제(LOX 912 NP) 3 중량부를 믹서로 배합한 다음 롤 밀을 170℃에서 4 분간 작업하였고, 프레스(press)를 이용하여 180에서 2.5분(저압) 및 2분(고압)으로 작업하여 1T 및 3T 시트를 제작하였다. 각 시편을 사용하여 다음과 같은 물성 시험을 수행하고 결과를 하기 표 2에 정리하였다.
<시험 항목>
경도(hardness)
ASTM D2240을 이용하여, 25℃에서의 쇼어 경도(Shore "D") 3T 10s를 측정하였다.
인장강도(tensile strength)
ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:
인장 강도(kgf/㎟) = 로드 (load)값(kgf) / 두께(㎜) x 폭(㎜)
신율(elongation rate) 측정
ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:
신율 (%) = 신장 후 길이 / 초기 길이 x 100으로 계산하였다.
이행 손실(migration loss) 측정
KSM-3156에 따라 두께 2 mm 이상의 시험편을 얻었고, 시험편 양면에 Glass Plate를 붙인 후 1kgf/cm2 의 하중을 가하였다. 시험편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 Glass Plate를 제거한 후 Glass Plate와 Specimen Plate를 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래와 같은 식에 의하여 계산하였다.
이행손실량(%) = {(상온에서의 시험편의 초기 중량 - 오븐 방치후 시험편의 중량) / 상온에서의 시험편의 초기 중량} x 100
가열 감량(volatile loss) 측정
상기 제작된 시편을 100℃에서 72시간 동안 작업한 후, 시편의 무게를 측정하였다.
가열 감량 (중량%) = 초기 시편 무게 - (100℃, 72시간 작업 후 시편 무게) / 초기 시편 무게 x 100으로 계산하였다.
흡수 속도 측정
흡수속도는 77℃, 60rpm의 조건 하에서, Planatary mixer(Brabender, P600)를 사용하여 수지와 에스테르 화합물이 서로 혼합되어 믹서의 토크가 안정화되는 상태가 되는데 까지 소요된 시간을 측정하여 평가하였다.
경도(Shore D) 인장 강도(kg/cm2) 신율(%) 이행손실(%) 가열감량(%) 흡수 속도(m:s)
실시예 1 49.0 265.4 322.1 2.56 1.12 5:40
실시예 2 47.8 260.5 320.8 2.11 0.84 5:20
실시예 3 48.8 258.4 315.4 2.03 0.95 5:45
실시예 4 47.5 255.0 318.6 1.86 1.18 5:10
실시예 5 48.8 262.4 332.7 2.10 0.78 5:55
실시예 6 49.2 275.0 318.9 1.77 0.98 5:15
비교예 1 48.9 236.7 288.6 3.21 1.63 7:15
비교예 2 48.8 237.5 293.5 2.87 2.23 5:20
비교예 3 45.5 204.5 256.0 5.20 11.20 2:10
상기 표 2를 참조하면, 실시예 1 내지 6에 비하여, 비교예 1 내지 3의 신율 및 인장강도가 크게 저하됨을 확인할 수 있다. 구체적으로, 탄소수가 9 또는 10이 아닌 테레프탈레이트를 사용한 비교예 2와 비교예 3의 경우, 인장강도와 신율이 실시예들에 비하여 10% 이상으로 낮은 수준임이 확인되며, 특히 비교예 3의 경우 가열 감량 및 이행손실이 상당히 열악함을 알 수 있고, 흡수속도가 너무 빨라서 적절한 겔링 유도시간을 갖지 못함으로 인해 가공성이 저하된다는 점을 유추할 수 있다. 또한, 디벤조에이트계 물질을 첨가하지 않은 비교예 1은 흡수 속도가 워낙 느리기 때문에 배합 시간이 길어지는 문제 또는 배합 온도를 상승시켜야 하는 문제가 발생할 수 있고 이에 따라 에너지 사용량 증가의 문제로 연결될 수 있어서 가공성과 생산 속도에 악영향을 미칠 수 있다. 나아가, 인장강도 및 신율 역시 만족하기 어려운 수준을 나타내고 있음을 확인할 수 있다.
이를 통해서, 탄소수가 9 또는 10으로 제어된 테레프탈레이트와 디벤조에이트계 물질을 혼합하여 가소제로 적용하는 경우에는 우수한 물성을 나타내는 수지를 제조할 수 있음을 확인할 수 있다.
이하, 본 발명에 대하여 상세하게 설명한다.
우선, 본 발명에서는 구조적인 한계로 인해 발생되던 불량한 물성들을 개선할 수 있는 가소제 조성물을 제공하는데 기술적 특징을 갖는다.
본 발명의 일 실시예에 따르면 테레프탈레이트계 물질이 더 포함된 가소제 조성물을 제공할 수 있다. 구체적으로, 상기 테레프탈레이트계 물질은 가소제 조성물 총 중량을 기준으로 1 내지 99 중량%, 30 내지 99 중량%, 40 내지 99 중량%, 50 내지 95 중량% 또는 60 내지 90 중량% 등의 범위에서 선택된 함량이 적용될 수 있다.
상기 테레프탈레이트계 물질은 일례로, 탄소수 1 내지 12, 탄소수 3 내지 11, 탄소수 4 내지 10, 탄소수 8 내지 10, 탄소수 8 내지 9, 혹은 탄소수 8인 알킬기 중에서 독립적으로 선택된 말단 기를 갖는 것일 수 있다.
다만, 본 발명에서는 상기 테레프탈레이트계 물질의 디에스테르기에 결합되는 알킬기의 탄소수가 9 또는 10인 것이 바람직할 수 있다. 탄소수가 9 보다 작은 경우, 예를 들면 탄소수가 4인 부틸기가 디에스테르기에 결합되는 경우에는 가열감량이나 이행손실 등이 열악한 수준일 수 있고, 인장강도 또는 신율과 같은 기계적 물성을 개선하는 것이 어려울 수 있다. 또한, 탄소수가 8인 옥틸기 또는 2-에틸헥실기가 디에스테르기에 결합되는 경우에도 인장강도와 신율과 같은 기계적 물성이 만족하기 어려운 수준으로 나타날 수 있다. 이에, 상기 디에스테르기에 결합되는 알킬기의 탄소수를 9 또는 10인 것을 사용하는 것이 바람직할 수 있다.
상기 테레프탈레이트계 물질은 디이소노닐테레프탈레이트(DINTP), 디이소데실테레프탈레이트(DIDTP) 및 디(2-프로필헵틸)테레프탈레이트(DPHTP)로 이루어진 군에서 선택된 1 이상일 수 있다.
또한, 본 발명의 일 실시예에 따르면 상기 테레프탈레이트계 물질에 더하여 1종 이상의 디벤조에이트계 화합물을 포함하는 디벤조에이트계 물질을 더 포함하는 가소제 조성물을 제공할 수 있다. 상기 디벤조에이트계 화합물은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Figure PCTKR2017005109-appb-I000002
상기 화학식 1에서, R은 탄소수 2 내지 4의 알킬렌기이며, n은 1 내지 3의 정수이다.
구체적으로, 상기 화학식 1로 표시되는 디벤조에이트계 화합물은 중심의 에테르기를 기준으로 양측에 알킬렌기와 디벤조에이트기가 순차로 결합되어 있는 화합물일 수 있다. n이 2 이상인 경우에는 R로 표시되는 알킬렌기의 탄소수는 동일하거나 상이할 수 있으나, 바람직하게는 동일한 알킬렌기가 결합되고, 탄소수가 2 내지 4일 수 있으며, 가지로서 탄소수가 1 내지 3인 알킬기가 결합될 수 있다. 가지가 결합되는 경우 가지의 탄소수는 디벤조에이트기와 결합되는 주쇄의 탄소수보다 작은 것이 바람직하다.
이 때, 상기 n이 2 이상인 경우, R로 결합되는 알킬렌기가 서로 동일한 경우에는 비혼성 디벤조에이트계 화합물이라고 칭하여 질 수 있고, 서로 상이한 경우에는 혼성 디벤조에이트계 화합물이라고 칭하여 질 수 있다. 다만, 가소제 조성물로 사용시 혼성 디벤조에이트계 화합물 보다는 비혼성 디벤조에이트계 화합물이 일반적일 수 있고, 본 명세서에서 혼성 또는 비혼성의 언급이 없는 경우에는 상기 R은 모두 동일한 비혼성 디벤조에이트계 화합물로 취급될 수 있다.
상기 화학식 1에서 R은 에틸렌, 프로필렌, 이소프로필렌, 부틸렌 및 이소부틸렌으로 이루어진 군에서 선택된 어느 하나인 것이 바람직할 수 있으나, 이에 한정되는 것은 아니다. 보다 바람직하게, 상기 화학식 1로 표시되는 디벤조에이트계 화합물은 디에틸렌 글리콜 디벤조에이트, 디프로필렌 글리콜 디벤조에이트, 또는 트리에틸렌 글리콜 디벤조에이트일 수 있다.
이와 같은 디벤조에이트계 화합물을 1 종 이상 포함하는 디벤조에이트계 물질은 상기 디에틸렌 글리콜 디벤조에이트, 디이소프로필렌 글리콜 디벤조에이트 또는 트리에틸렌 글리콜 디벤조에이트일 수 있고, 이들의 혼합물일 수도 있으며, 이에 상기 R의 정의에 맞는 디벤조에이트계 화합물을 더 포함하는 혼합물일 수도 있다.
본 발명의 일 실시예에 따르면 상기 가소제 조성물 내에 테레프탈레이트계 물질과 디벤조에이트계 물질은 중량비로 99:1 내지 1:99로 포함되는 것일 수 있고, 상기 중량비 범위의 상한으로는, 99:1, 95:5, 90:10, 85:15, 80:20, 70:30 또는 60:40이 적용될 수 있고, 하한으로는 1:99, 5:95, 10:90, 15:85, 20:80, 30:70 또는 40:60이 적용될 수 있다. 바람직하게는 90:10 내지 20:80, 더 바람직하게는 90:10 내지 30:70일 수 있다.
본 발명에서와 같이 테레프탈레이트계 물질과, 디벤조에이트계 물질을 혼합하여 가소제 조성물에 적용할 경우, 친환경성을 확보하면서도, 흡수 속도, 가소화 효율, 이행성, 가열감량 및 인장강도와 신율 등의 물성이 개선될 수 있다.
본 발명에서 상기 가소제 조성물을 제조하는 방식은, 블렌딩 방식을 적용할 수 있는 것으로, 상기 블렌딩 제조 방식은 일례로 다음과 같으며, 테레프탈레이트계 물질과 디벤조에이트계 물질 자체에 관한 설명은 전술한 바와 같으므로 그 기재를 생략한다.
테레프탈레이트계 물질과 디벤조에이트계 물질을 준비하고, 상기 테레프탈레이트계 물질과 디벤조에이트계 물질을 중량비로서, 99:1 내지 1:99 등의 특정 비율로 블렌딩하여 상기 가소제 조성물을 제조할 수 있으며, 상기 테레프탈레이트계 물질과 상기 디벤조에이트계 물질은 단일 화합물일 수도 있고 혼합물일 수도 있다.
상기 테레프탈레이트계 물질은, 이소노닐 알코올, 이소데실 알코올 및 2-프로필헵틸 알코올로 이루어진 군에서 선택된 어느 하나의 알코올과, 테레프탈산이 반응하는 직접 에스테르화 반응;을 통하여 테레프탈레이트계 물질을 제조할 수 있다.
상기 직접 에스테르화 반응은, 알코올에 테레프탈산을 투입한 다음 촉매를 첨가하고 질소분위기 하에서 반응시키는 단계; 미반응 알코올을 제거하고, 미반응 산을 중화시키는 단계; 및 감압증류에 의해 탈수 및 여과하는 단계;로 준비될 수 있다.
또한 상기 알코올은, 테레프탈산 100 몰% 기준으로 150 내지 500 몰%, 200 내지 400 몰%, 200 내지 350 몰%, 250 내지 400 몰%, 혹은 270 내지 330 몰% 범위 내로 사용될 수 있다.
한편, 상기 촉매는 일례로, 황산, 염산, 인산, 질산, 파라톨루엔술폰산, 메탄술폰산, 에탄술폰산, 프로판술폰산, 부탄술폰산, 알킬 황산 등의 산 촉매, 유산 알루미늄, 불화리튬, 염화칼륨, 염화세슘, 염화칼슘, 염화철, 인산알루미늄 등의 금속염, 헤테로폴리산 등의 금속 산화물, 천연/합성 제올라이트, 양이온 및 음이온 교환수지, 테트라알킬 티타네이트(tetra alkyl titanate) 및 그 폴리머 등의 유기금속 중에서 선택된 1종 이상일 수 있다. 구체적인 예로, 상기 촉매는 테트라알킬 티타네이트를 사용할 수 있다.
촉매의 사용량은 종류에 따라 상이할 수 있으며, 일례로 균일 촉매의 경우에는 반응물 총 100 중량%에 대하여 0.01 내지 5 중량%, 0.01 내지 3 중량%, 1 내지 5 중량% 혹은 2 내지 4 중량% 범위 내, 그리고 불균일 촉매의 경우에는 반응물 총량의 5 내지 200 중량%, 5 내지 100 중량%, 20 내지 200 중량%, 혹은 20 내지 150 중량% 범위 내일 수 있다.
이때 상기 반응 온도는 180 내지 280℃, 200 내지 250℃, 혹은 210 내지 230℃ 범위 내일 수 있다.
또한, 상기 테레프탈레이트계 물질의 제조에 있어서, 출발물질을 테레프탈레이트로 하여 알코올과 반응시키는 트란스에스테르 반응을 통하여 제조할 수 있다.
본 발명에서 사용되는 "트랜스-에스테르화 반응"은 하기 반응식 1과 같이 알코올과 에스테르가 반응하여 이하 반응식 1에서 나타나듯이 에스테르의 R"가 알코올의 R'와 서로 상호교환되는 반응을 의미한다:
[반응식 1]
Figure PCTKR2017005109-appb-I000003
본 발명의 일 실시예에 따르면, 상기 트랜스-에스테르화 반응이 이루어지면 알코올의 알콕사이드가 에스테르계 화합물에 존재하는 두 개의 에스테르(RCOOR")기의 탄소를 공격할 경우; 에스테르계 화합물에 존재하는 한 개의 에스테르(RCOOR")기의 탄소를 공격할 경우; 반응이 이루어지지 않은 미반응인 경우;와 같이, 세 가지의 경우에 수에 의해서 3 종의 에스테르 조성물이 생성될 수 있다.
또한, 상기 트랜스-에스테르화 반응은 산-알코올간 에스테르화 반응과 비교하여 폐수 문제가 야기되지 않는 장점이 있으며, 무촉매하에서 진행될 수 있으므로, 산촉매 사용시의 문제점을 해결할 수 있고, 금속촉매 하에서 실시되는 경우 부산물이 저감될 수 있으며 반응 시간이 단축될 수 있는 장점이 있다.
예컨대, 디메틸테레프탈레이트와 이소노닐 알코올의 경우 상기 트랜스 에스테르화 반응으로 디이소노닐테레프탈레이트를 제조하면, 순도 98% 이상의 디이소노닐테레프탈레이트를 얻을 수 있다.
상기 금속 촉매는 일례로 유기금속 촉매, 금속 산화물 촉매, 금속염 촉매 또는 금속 자체일 수 있다.
상기 금속 성분은 일례로 주석, 티탄 및 지르코늄으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
또한, 상기 트랜스-에스테르화 반응 후 미반응 알코올과 반응 부산물, 예를 들면 에스테르계 화합물을 증류시켜 제거하는 단계를 더 포함할 수 있다.
상기 직접 에스테르화 반응과 트랜스 에스테르화 반응은 전술한 디벤조에이트계 물질을 제조하는 데에도 적용될 수 있다. 이와 같이, 디벤조에이트계 물질을 직접 에스테르화 반응 또는 트랜스 에스테르화 반응을 통해서 제조하는 경우에는 상기 테레프탈레이트계 물질을 제조하는 데에 적용된 내용과 동일하게 그 내용들이 적용될 수 있다.
이같이 제조된 가소제 조성물은 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리케톤, 폴리스타이렌, 폴리우레탄, 및 열가소성 엘라스토머 중에서 선택된 수지 100 중량부에 대하여, 5 내지 150 중량부, 40 내지 100 중량부, 혹은 40 내지 50 중량부 범위 내로 포함하여 컴파운드 처방, 시트 처방 및 플라스티졸 처방에 모두 효과적인 수지 조성물을 제공할 수 있다.
일례로, 상기 가소제 조성물은 전선, 바닥재, 자동차 내장재, 필름, 시트, 벽지 혹은 튜브 제조에 적용할 수 있다.

Claims (6)

  1. 디에스테르기에 결합된 알킬기의 탄소수가 9 또는 10인 테레프탈레이트계 물질; 및
    하기 화학식 1로 표시되는 디벤조에이트계 화합물을 1 이상 포함하는 디벤조에이트계 물질;을 포함하고,
    상기 테레프탈레이트계 물질 및 디벤조에이트계 물질의 중량비는 99:1 내지 1:99인 것인 가소제 조성물:
    [화학식 1]
    Figure PCTKR2017005109-appb-I000004
    상기 화학식 1에서,
    R은 탄소수 2 내지 4의 알킬렌기이며, n은 1 내지 3의 정수이다.
  2. 제2항에 있어서,
    상기 테레프탈레이트계 물질 대 디벤조에이트계 물질의 중량비는 90:10 내지 30:70인 것인 가소제 조성물.
  3. 제1항에 있어서,
    상기 테레프탈레이트계 물질은 디이소노닐테레프탈레이트(DINTP), 디이소데실테레프탈레이트(DIDTP) 및 디(2-프로필헵틸)테레프탈레이트(DEHTP)로 이루어진 군에서 선택된 1 이상인 것인 가소제 조성물.
  4. 제1항에 있어서,
    상기 화학식 1로 표시되는 디벤조에이트계 화합물은 디에틸렌 글리콜 디벤조에이트(DEGDB), 디프로필렌 글리콜 디벤조에이트(DPGDB) 및 트리에틸렌글리콜 디벤조에이트(TEGDB)로 이루어진 군에서 선택된 1종 이상인 것인 가소제 조성물.
  5. 수지 100 중량부; 및 제1항의 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물.
  6. 제5항에 있어서,
    상기 수지는 에틸렌 초산 비닐, 폴리에틸렌, 폴리케톤, 폴리프로필렌, 폴리염화비닐, 폴리스타이렌, 폴리우레탄 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물.
PCT/KR2017/005109 2016-05-18 2017-05-17 가소제 조성물, 수지 조성물 및 이들의 제조 방법 WO2017200292A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780003003.2A CN107922671B (zh) 2016-05-18 2017-05-17 增塑剂组合物、树脂组合物以及它们的制备方法
US15/753,609 US11427699B2 (en) 2016-05-18 2017-05-17 Plasticizer composition, resin composition and methods of preparing the same
EP17799649.3A EP3321315A4 (en) 2016-05-18 2017-05-17 Plasticizer composition, resin composition, and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160060831 2016-05-18
KR10-2016-0060831 2016-05-18
KR1020170059725A KR20170130291A (ko) 2016-05-18 2017-05-15 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR10-2017-0059725 2017-05-15

Publications (1)

Publication Number Publication Date
WO2017200292A1 true WO2017200292A1 (ko) 2017-11-23

Family

ID=60325271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005109 WO2017200292A1 (ko) 2016-05-18 2017-05-17 가소제 조성물, 수지 조성물 및 이들의 제조 방법

Country Status (1)

Country Link
WO (1) WO2017200292A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100116176A (ko) * 2008-01-28 2010-10-29 에보니크 옥세노 게엠베하 테레프탈산의 디이소노닐 에스테르의 혼합물, 이의 제조 방법 및 이의 용도
KR20130119947A (ko) * 2010-11-24 2013-11-01 에보니크 옥세노 게엠베하 열가소성 물질 응용물을 위한 가소제로서의 디이소노닐 테레프탈레이트 (dint)
US20130310473A1 (en) * 2010-11-24 2013-11-21 Evonik Oxeno Gmbh Dint in expanded pvc pastes
WO2015101569A1 (en) * 2014-01-03 2015-07-09 Tarkett Gdl Improved phtalate-free polyvinyl chloride plastisol compositions
KR20150123346A (ko) * 2010-12-30 2015-11-03 에메랄드 칼라마 케미칼, 엘엘씨 디벤조에이트 가소제의 블렌드

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100116176A (ko) * 2008-01-28 2010-10-29 에보니크 옥세노 게엠베하 테레프탈산의 디이소노닐 에스테르의 혼합물, 이의 제조 방법 및 이의 용도
KR20130119947A (ko) * 2010-11-24 2013-11-01 에보니크 옥세노 게엠베하 열가소성 물질 응용물을 위한 가소제로서의 디이소노닐 테레프탈레이트 (dint)
US20130310473A1 (en) * 2010-11-24 2013-11-21 Evonik Oxeno Gmbh Dint in expanded pvc pastes
KR20150123346A (ko) * 2010-12-30 2015-11-03 에메랄드 칼라마 케미칼, 엘엘씨 디벤조에이트 가소제의 블렌드
WO2015101569A1 (en) * 2014-01-03 2015-07-09 Tarkett Gdl Improved phtalate-free polyvinyl chloride plastisol compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3321315A4 *

Similar Documents

Publication Publication Date Title
KR102079234B1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
US11427699B2 (en) Plasticizer composition, resin composition and methods of preparing the same
WO2018048169A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2015119355A1 (ko) 가소제, 수지 조성물 및 이들의 제조 방법
KR20180092888A (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018008914A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR102019938B1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2020222500A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2011010825A2 (ko) 에스테르계 가소제
WO2017222232A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2018056666A1 (ko) 복합 가소제 조성물, 이의 제조방법, 및 이를 이용한 고분자 수지 조성물
KR102122466B1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR20200106142A (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
KR101742434B1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017074057A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017074055A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017018841A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2019112293A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021145643A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017074056A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017200292A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017018741A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2021145642A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017200293A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016153236A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15753609

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE