WO2017199448A1 - インターコネクト構造及び固体酸化物形燃料電池 - Google Patents

インターコネクト構造及び固体酸化物形燃料電池 Download PDF

Info

Publication number
WO2017199448A1
WO2017199448A1 PCT/JP2016/065101 JP2016065101W WO2017199448A1 WO 2017199448 A1 WO2017199448 A1 WO 2017199448A1 JP 2016065101 W JP2016065101 W JP 2016065101W WO 2017199448 A1 WO2017199448 A1 WO 2017199448A1
Authority
WO
WIPO (PCT)
Prior art keywords
interconnect structure
fuel cell
joint
glass
conductive
Prior art date
Application number
PCT/JP2016/065101
Other languages
English (en)
French (fr)
Inventor
聖一 須田
ファン パウロ ウィフ
Original Assignee
FCO Power株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FCO Power株式会社 filed Critical FCO Power株式会社
Priority to JP2018518062A priority Critical patent/JPWO2017199448A1/ja
Priority to PCT/JP2016/065101 priority patent/WO2017199448A1/ja
Publication of WO2017199448A1 publication Critical patent/WO2017199448A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This specification relates to an interconnect structure and a solid oxide fuel cell.
  • SOFC solid oxide fuel cell
  • a fuel cell (generally hydrogen gas) is used as a fuel electrode and an oxidizing gas (generally air) is used as air for a single cell having a laminated structure of a fuel electrode, a solid electrolyte and an air electrode. Electric power is supplied to the poles.
  • an oxidizing gas generally air
  • Electric power is supplied to the poles.
  • a solid oxide fuel cell in order to supply two kinds of gases to one device, the flow paths of the fuel gas and the oxidizing gas are separated using a separator containing a dense metal material or ceramic material.
  • examples of the element for realizing high-temperature conduction and adhesion required for the interconnector include metal materials, ceramic materials, and glass.
  • metals such as metals, ceramic materials, silver, platinum, etc. with relatively low melting points are required.
  • Glass hereinafter referred to as oxide
  • conductive oxide materials such as glass in which metal fine particles are dispersed
  • lanthanum strontium manganite ((La, Sr) MnO 3 , LSM)
  • the oxide-dispersed glass has a problem that it is difficult to improve the conductivity.
  • a relatively high temperature is generally required for sintering of an oxide material having high conductivity and excellent chemical stability. Therefore, in order for the oxide particles dispersed in the glass to sinter and exhibit high conductivity, a heat treatment at a relatively high temperature is required, but considering the temperature suitable for melting the glass is sufficient. This is because it is difficult to ensure high-temperature heat treatment.
  • This specification provides an interconnect structure with excellent conductivity and adhesion.
  • the present specification also provides a solid oxide fuel cell having an excellent interconnect structure.
  • the present inventors have reviewed the structure of a conventional interconnector in a solid oxide fuel cell or the like, and have a portion for a conductive function (hereinafter also referred to as a conductive portion) and a portion for a bonding function (hereinafter, referred to as a conductive portion). These functions can be made efficient at the same time by arranging them according to the requirements of conductivity and adhesion in the device elements to which both conductivity and adhesion should be imparted. I got the knowledge that it can be realized. Based on such knowledge, the disclosure of the present specification provides the following means.
  • An interconnect structure for conductively connecting two or more devices A first joint having one or more conductivity, including a conductive material; One or more second joints having a lower conductivity than the first joint; An interconnect structure that is separated from each other.
  • the one or more first joints and the one or more second joints have a common height on the surface of one of the two or more devices.
  • the interconnect structure according to any one of (1) to (4) which forms a layer having the height on the device surface.
  • (6) The interconnect structure according to any one of (1) to (5), wherein the one or more first joint portions and the one or more second joint portions do not contain a metal material.
  • (7) The interconnect structure according to any one of (1) to (6), wherein each of the one or two or more first joint portions and the one or two or more second joint portions includes a glass material. .
  • the one or more first joints include a conductive ceramic material and a first viscous glass material, and the one or more second joints are the first viscosity.
  • the interconnect structure according to (7) comprising a lower second viscosity glass material.
  • each of the two or more devices has a dense inorganic material surface and is introduced between these surfaces.
  • the two or more devices are devices used in a high temperature range of 600 ° C. to 900 ° C.
  • the interconnect structure according to any one of (1) to (9), wherein the two or more devices are a stack of a solid oxide fuel cell or a cell having a separator structure for blocking gas.
  • a solid oxide fuel cell comprising the interconnect structure according to any one of (1) to (9).
  • the solid oxide fuel cell includes a solid fired body of a cell including a fuel electrode material, an air electrode material, a solid electrolyte, and a separator structure that blocks gas. Oxide fuel cell. (14) The solid oxide fuel cell is provided with a layer having the interconnect structure in at least one of the cells. (13) The solid oxide fuel cell. (15) The solid oxide fuel cell according to any one of (12) to (14), wherein the solid oxide fuel cell is a flat plate type.
  • a method of manufacturing a joined body of two or more devices The first connection part having one or two or more conductivities each containing a conductive material at each of the conductive connection demanding part and the adhesion demanding part on at least one surface of the two or more devices, and the first A step of separating and arranging one or two or more second joints having lower conductivity than the joints of Heat treating the one or more first joints and the one or more second joints simultaneously to join the two or more devices;
  • a method comprising:
  • FIGS. 4A to 4D are diagrams showing arrangement patterns of a first joint portion and a second joint portion in the interconnect structure disclosed in this specification.
  • FIGS. It is a figure which shows the temperature dependence of the electrical conductivity of the electrically-conductive member containing glass and LSC from which viscosity differs. It is a figure which shows evaluation of the viscosity in the fusion temperature by a deformation
  • the interconnect structure disclosed in this specification (hereinafter, also simply referred to as the present interconnect structure) includes a first joint portion that includes a conductive material and has conductivity, and has a lower conductivity than the first joint portion.
  • the second joint can be provided separately from each other.
  • the present interconnect structure by adopting such a configuration, it is possible to separate a portion mainly responsible for conductive bonding and a portion mainly responsible for bonding from each other, and arrange materials suitable for each in place. Thereby, it is possible to achieve both the conductivity and the bondability that could not be realized with a conductive glass material such as a metal dispersion material or an oxide dispersion material. As a result, gas sealability and mechanical strength can be ensured.
  • the material and arrangement of the first joint can be selected from the viewpoint of the conductive function.
  • positioning of a 2nd junction part can be selected from a viewpoint of a bondability function.
  • an oxide-based material that does not contain a metal material for both the first joint portion and the second joint portion it is possible to construct an interconnect structure that does not include a metal material having a significantly different thermal expansion coefficient. .
  • the device is not particularly limited, but is preferably a device for which conductive connection is suitable or required.
  • examples of such devices include thermoelectric conversion elements and modules, temperature rising operation type storage batteries such as NAS batteries, and multilayer capacitors.
  • the device is preferably a device manufactured and / or used in a high temperature range of 500 ° C. or higher and 1400 ° C. or lower.
  • the lower limit temperature is 550 ° C. or higher, more preferably 600 ° C. or higher, further preferably 700 ° C. or higher, still more preferably 800 ° C. or higher, and still more preferably 900 ° C. or higher.
  • the upper limit temperature is preferably 1350 ° C. or less, more preferably 1300 ° C. or less, further preferably 1250 ° C. or less, still more preferably 1200 ° C. or less, and still more preferably 1100 ° C. or less.
  • a high temperature range as use temperature Preferably it is 550 degreeC or more, More preferably, it is 600 degreeC or more, More preferably, it is 650 degreeC or more. Further, it is preferably 900 ° C. or lower, more preferably 800 ° C. or lower, further preferably 750 ° C. or lower, and more preferably 700 ° C. or lower.
  • interconnect structures applied to devices used in high temperature ranges are also exposed to high temperatures.
  • the difference in the thermal expansion coefficient of the material may cause cracking and peeling of the joint, but by providing the joint in a distributed manner as in this interconnect structure, the difference in the thermal expansion coefficient of the material Stress can be relaxed.
  • this interconnect structure since it can be set as a metal material non-contained structure, the metal fatigue and corrosion in the interconnect structure in a high temperature range can be suppressed.
  • the two or more devices that are conductively connected in this interconnect structure may be the same type or different types.
  • this interconnect structure has a single-cell and single-cell conductive connection with a separator structure that blocks gas, and a stack of stacks of single cells. Suitable for conductive connection.
  • a solid oxide fuel cell including this interconnect structure will be described in detail later.
  • the device may be a conductive dense material such as a metal material or a dense conductive ceramic material, or a porous material, as the conductive connection portion.
  • the surface of the device constituting such a conductive connection site can be provided with a conductive material such as a separator material such as a solid oxide fuel cell.
  • the interconnect structure includes one or two or more first joint portions.
  • the first bonding portion includes a conductive material and has conductivity. Although it does not specifically limit as a conductive material of a 1st junction part, The mixture of a conductive ceramic material and a glass material can be used.
  • the conductive ceramic material for the first joint is not particularly limited, and a material used as an air electrode material or a ceramic separator material in a known solid oxide fuel cell can be used.
  • a metal oxide made of Co, Fe, Ni, Cr, Mn, or the like having a perovskite structure can be used.
  • oxides such as La, Sr) (Fe, Co, Ni) O 3 , preferably (La, Sr) CoO 3 and (La, Sr) MnO 3 .
  • the ceramic material mentioned above can be used individually by 1 type or in mixture of 2 or more types.
  • the glass material used for the first joint can be selected from various glass materials without any particular limitation. For example, soda lime glass, alkali-free glass, borosilicate glass, silica glass, alkali barium glass, alumino It can be appropriately selected from borosilicate glass, borate glass and the like.
  • the glass material can be selected so that suitable conductivity can be obtained when the device is bonded at the first bonding portion. According to the present inventors, the selection can be made in consideration of the sintering temperature of the conductive ceramic material to be used. Specifically, the glass material is selected so as not to inhibit the sintering of the conductive ceramic material at the sintering temperature of the conductive ceramic material.
  • the selection of the glass material is based on the viscosity of the glass material at the sintering temperature of the conductive ceramic material (for example, the softening temperature (the temperature at which the glass begins to soften and deform under its own weight, and the viscosity is 10 7.6 dPa ⁇
  • the temperature corresponding to the viscosity of s (for example, it can be measured by the method specified in JIS R3103-1, 2001), the temperature at which the viscosity is 10 4 dPa ⁇ s), etc. It can be determined by evaluating the deformation and softening of the glass pellets during the heat treatment in the vicinity of the sintering temperature of the potential ceramic material candidate.
  • a preferable glass material can be selected by combining the conductive ceramic material candidate with two or more glass materials having different viscosities at the sintering temperature of the conductive ceramic material candidate and evaluating the conductivity. .
  • a medium-viscosity glass material having a viscosity of 10 4 dPa ⁇ s of 900 to 1000 ° C. or a softening point temperature of about 850 ° C. to 900 ° C. (for example, , G018-381, manufactured by Shot) or the like can be used.
  • a high-viscosity glass material for example, HHR1010, manufactured by Asahi Glass Co., Ltd.
  • HHR1010 manufactured by Asahi Glass Co., Ltd.
  • a suitable glass material is, for example, heat treated pellets by uniaxial pressure molding of the glass material candidate for a predetermined time (for example, about 1 hour) near the sintering temperature of the conductive ceramic material candidate, and near the sintering temperature.
  • the viscosity of the glass material candidate can be evaluated and selected.
  • the blending ratio of the conductive ceramic material and the glass material in the first joint is not particularly limited, and can be set so as to obtain a suitable conductivity.
  • a person skilled in the art can determine a suitable blending ratio by combining the conductive ceramic material candidate and the glass material candidate at various blending ratios and evaluating the electrical conductivity.
  • the glass material may be 10% by mass to 30% by mass with respect to the conductive ceramic material, and may be 10% by mass to 20% by mass.
  • an increase in the compounding ratio of the glass material results in a decrease in conductivity, and a decrease in the ratio tends to cause a decrease in conductivity at the interface with the device and a decrease in bondability and mechanical strength.
  • the present interconnect structure can include one or more second joints.
  • the second joint can be less conductive than the first joint.
  • the second bonding portion can be a bonding portion intended to be bonded more than the first bonding portion. Therefore, it is preferable that a 2nd junction part contains the glass material suitable for joining.
  • the glass material of the second joint portion can be selected from various glass materials without limitation as in the case of the first joint portion.
  • soda lime glass, alkali-free glass, borosilicate glass, silica glass , Alkali barium glass, aluminoborosilicate glass, borate glass and the like can be appropriately selected and used.
  • the glass material of the second bonding portion exhibits sufficient bondability (fusion property) near the bonding temperature of this interconnect structure, that is, the sintering temperature of the conductive ceramic material used for the first bonding portion. I just need it. Therefore, the glass material used for the second joint can be selected to have a lower viscosity than the glass material used for the first joint.
  • a material having a lower viscosity than the glass material used for the first joint can be used in the vicinity of the sintering temperature of the conductive ceramic material used for the first joint. By doing so, it is possible to impart sufficient interconnectivity, mechanical strength, and adhesiveness to the interconnect structure with only the first joint portion.
  • the softening point temperature is 850 ° C. or more and 900
  • a medium-viscosity glass material having a temperature of 0 ° C. or lower can be used.
  • both the first joint portion and the second joint portion can be made to contain no metal material. By doing so, inconveniences caused by the metal material, particularly at high temperatures, can be eliminated.
  • the first joint portion and the second joint portion can be provided separately from each other between the devices in an arbitrary number and arrangement. By separating them from each other, each function can be realized at the most suitable site. In addition, various stress relaxations can be expected by dispersing the joint.
  • separating the first joint and the second joint from each other means that the first joint and the second joint do not contact each other directly or indirectly. This means that the gaps are arranged without being joined. The gaps between the first joint and the second joint may not all be the same. The gap is appropriately set according to the area for bonding between devices, conductivity, mechanical strength, and the like.
  • the arrangement pattern of the first bonding portion and the second bonding portion is not particularly limited, but the first bonding portion is suitable for conductive connection in a region where conductive connection between devices is preferable. It can arrange
  • the number and pattern of the first joints that can provide the necessary conductive connection are arbitrary. For example, as shown in FIGS. 1A to 1C, there may be one or a plurality of first joints. . Further, they can be arranged in a predetermined arrangement (array) or matrix. Further, although not shown, they can be provided in the reverse pattern, that is, in a grid shape.
  • the second joint part supplements the joint strength of the first joint part, and can impart mechanical strength, gas sealability, and heat resistance cycle to the interconnect structure. For this reason, it can arrange
  • a pattern surrounding at least a part of the periphery of the first joint or surrounding the periphery can be preferably used. That is, it is preferable to configure a segment having a pattern in which the second joint continuous around one or two or more first joints surrounds in an arbitrary outer peripheral form.
  • the pattern illustrated in FIG. 1A is a form having a single segment surrounded by a second joint continuous with one first joint
  • the pattern illustrated in FIG. 1D is a form in which a plurality of segments surrounded by a continuous second joint are surrounded by a matrix
  • the pattern illustrated in FIG. 1D is the periphery of the array of first joints arranged in a row. Are arranged in a plurality of segments surrounded by the second joint.
  • the pattern shown in FIG. 1B is a form in which at least a part of the periphery of the first joint portion, here, two second joint portions are provided so as to face each other with one first joint portion interposed therebetween.
  • the first joint portion can be provided so as to surround the periphery of the second joint portion provided in the reverse pattern, that is, a matrix shape or the like.
  • the aspect in the height direction of the present interconnect structure (that is, the direction along the distance between the devices) of the first junction and the second junction is not particularly limited as long as the conductive connection between the devices is possible. Not what you want. It is preferable that the first bonding portion and the second bonding portion have a common height on the surface of one of the devices to be connected and constitute a layer having the height on the device surface. By doing so, it is possible to easily stack a plurality of devices having excellent overall shape and integrity by stacking the devices.
  • the 1st junction part and the 2nd junction part are formed separately, even if it is the device surface which has a curved surface or is bent, for example, it is to a curved surface etc. It is possible to easily configure the interconnect structure while avoiding or suppressing being restricted by the followability.
  • the manufacturing method of the joined body of two or more devices disclosed in the present specification includes a conductive material in each of the conductive connection requesting portion and the adhesion requesting portion on at least one surface of the device. A step of separating and arranging the first bonding portion having the above conductivity and one or more second bonding portions having lower conductivity than the first bonding portion; A step of simultaneously heat-treating the first joining portion and the one or more second joining portions to join the two or more devices. According to this manufacturing method, two or more devices can be easily conductively connected while ensuring mechanical strength and adhesiveness.
  • the arrangement process of the 1st junction part and the 2nd junction part can be carried out based on the grant process of conventionally well-known conductive ceramic material and glass material.
  • the raw material composition of a 1st junction part and the raw material composition of a 2nd junction part are respectively one side of a device by well-known application methods, such as spray drawing, tape casting, and screen printing. These raw material composition layers can be formed by supplying a predetermined arrangement pattern on the surface.
  • the device on which the raw material composition layer is formed and the other device are stacked in a form to be bonded, and the conductive ceramic material for the first bonding portion is sintered to a temperature at which the conductivity can be exhibited.
  • Heat treatment for a predetermined time Those skilled in the art can set the heat treatment conditions in consideration of the sintering temperature of the conductive ceramic material.
  • the two devices can be conductively connected while ensuring mechanical strength and adhesiveness. That is, the raw material composition layer for the first bonding portion mainly secures the conductive connection as the first bonding portion by the heat treatment, and the raw material composition layer for the second bonding portion becomes the second by the heat treatment. As a joint portion, mechanical strength and adhesiveness can be mainly secured.
  • the present interconnect structure is suitable for a device manufactured in a high temperature range and / or operating in a high temperature range, it is suitable for an interconnect structure of a solid oxide fuel cell.
  • This interconnect structure includes a single cell of a solid oxide fuel cell, a fuel electrode and an air electrode with a solid electrolyte sandwiched therebetween, and further conductively connects single cells having a dense conductive separator in the outermost layer. It is suitable for.
  • this interconnect structure is suitable as an interconnect structure for further conductively connecting a solid oxide fuel cell stack in which a plurality of such single cells are stacked. That is, the present interconnect structure can be provided for a separator that blocks at least one gas in the stacking direction of the cells or stacks of such a solid oxide fuel cell.
  • the solid oxide fuel cell having this interconnect structure can be applied without particular limitation as long as it is a conventionally known solid oxide fuel cell. Further, it may be a flat plate type or a cylindrical type.
  • the present interconnect structure is suitable for conductive connection of stacked solid oxide fuel cells and stacks disclosed in, for example, RE-2009 / 119971. This is because this interconnect structure can be secured as a layer having a stacking height in the height direction of about 5 ⁇ m to 200 ⁇ m. In addition, this interconnect structure can provide a mechanical strength suitable for this type of stacked solid oxide fuel cell. Furthermore, since the interconnect structure can be heat-treated at the sintering temperature of the conductive ceramic material, the interconnect structure can be integrated by heat treatment simultaneously with the heat treatment of the solid oxide fuel cell or the stack. Because.
  • a stacked solid oxide fuel cell includes a batch fired body of a cell having a separator structure for blocking gas, and at least a separator having such a separator structure can have this interconnect structure.
  • the present interconnect structure has the interconnect structure in which the first joint portion and the second joint portion are connected to the conductive material portion to be joined to the device, for example, the separator of the solid oxide fuel cell. It is also possible to configure an interconnector provided in advance. According to such an interconnector, conductive connection can be established between the cells and stacks of the solid oxide fuel cell.
  • the viscosity of the glass used in the conductive part was examined.
  • the conductive oxide needs to be sintered by heat treatment to maintain conductivity in a direction perpendicular to the film.
  • the glass may hinder the sintering of the conductive oxide. Therefore, two types of glass with different viscosities at high temperatures were used for optimization.
  • the glasses used were low viscosity glass (Shot, G018-881), medium viscosity glass (Shot, G018-385) and high viscosity glass (Asahi Glass, HHR1010).
  • This low-viscosity glass has a viscosity of 962 ° C. at a viscosity of 10 4 dPas, whereas the medium-viscosity glass has 1266 ° C.
  • La 0.2 Sr 0.8 CoO 3 - ⁇ was used as the conductive oxide, and the difference in conductivity between low-viscosity glass and medium-viscosity glass was examined.
  • the LSC was subjected to a fusing treatment at 900 ° C. for 1 hour in air with 30% by mass of each glass added. The conductivity was measured for this sample. The result is shown in FIG.
  • the conductivity of the conductive material varies greatly depending on the viscosity of the glass. Among them, it has been found that it is important to optimize the sintering temperature of the conductive ceramic material and the softening temperature of the glass as parameters. As a conductive ceramic material, it was found that low viscosity glass having a softening point temperature of 850 to 900 ° C. is more suitable for LSC having a relatively low sintering temperature. Furthermore, as a result of examining other conductive oxides, it was found that for LSM having a high sintering temperature, a highly viscous glass having a softening temperature in the vicinity of 1000 ° C. is preferable.
  • the sintering temperature of the conductive ceramic material that is, the viscosity of the glass near the fusion temperature was evaluated by deformation from the pellet.
  • the glasses used are medium viscosity glass (Shot, G018-385) and high viscosity glass (Asahi Glass, HHR1010). After producing pellets of these glass powders by uniaxial pressure molding, they were heat-treated in air at 1000 ° C. for 1 hour. The result is shown in FIG.
  • the viscosity of the high-temperature state can be estimated by using a glass pellet and changing the shape by heat treatment.
  • the details of the viscosity near the fusing temperature were not always clear.
  • the results in FIG. 3 show that the viscosity near the fusion temperature is clearly higher than that of the medium viscosity glass. Therefore, it has been found that by performing such a heat treatment test, it is possible to evaluate the viscosity characteristics of the glass material in a high temperature range and determine whether or not the present interconnect structure can be used for the first joint portion and the second joint portion.
  • the change in conductivity was small at 10-30 mass%, but a significant decrease in conductivity was observed at 50%. Therefore, even when glass having a viscosity at a high temperature adapted to the sinterability of the conductive oxide is used, the characteristics of the conductive member vary greatly depending on the mixing ratio.
  • the mixing ratio was found to be in the range of 10 to 30 mass%, preferably 10 to 20 mass% with respect to the conductive member.
  • the mixing ratio of the glass is small, sufficient adhesion, denseness, and mechanical strength cannot be obtained at the interface after fusion.
  • the mixing ratio of the glass is large, the conductivity is significantly lowered.
  • FIG. 6 shows the results for a sample that has been fused in air for 10 hours. As shown in FIG. 6, it was found that the heat treatment at a high temperature promotes the sintering of LSM and increases the conductivity.
  • glasses having different viscosities at high temperatures at the conductive part and the fused part have different viscosities at high temperatures at the conductive part and the fused part.
  • LSM low-viscosity glass
  • a medium viscosity having a lower viscosity at high temperature is used for the glass material of the fused portion. It has been found preferable to use glass.
  • the enclosure type flat-plate interconnect structure shown in FIG. 1A was constructed, and its electrical conductivity was examined. That is, a flat interconnect structure was manufactured using LSM and 10 mass% high-viscosity glass (made by Asahi Glass as described above) for the conductive part, and medium-viscosity glass (made by Shot as described above) for the fused part. The fusion (heat treatment) conditions were 1000 ° C. for 1 hour in air. The obtained flat interconnector was repeatedly raised and lowered between 200 ° C. and 850 ° C., and the interface resistance (ASR) at 850 ° C. of each cycle was examined. The result is shown in FIG.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

2以上のデバイスを導電接続するためのインターコネクト構造を、導電性材料を含む1又は2以上の導電性を有する第1の接合部と、前記第1の接合部よりも低導電性の1又は2以上の第2の接合部と、を、相互に分離して備えるようにする。

Description

インターコネクト構造及び固体酸化物形燃料電池
 本明細書は、インターコネクト構造及び固体酸化物形燃料電池に関する。
 600℃~900℃程度の高温域で使用するデバイスにおいて、導電性と接着性との双方を実現する要素が必要なことがある。こうしたデバイスとして、例えば、固体酸化物形燃料電池(SOFC)がある。
 固体酸化物形燃料電池においては、燃料極、固体電解質及び空気極の積層構造を有する単セルに対して、燃料ガス(一般には水素ガス)を燃料極に、酸化ガス(一般には空気)を空気極に供給して発電する。固体酸化物形燃料電池においては、2種のガスを1つのデバイスに供給するために、燃料ガス及び酸化ガスの流路を緻密な金属材料やセラミック材料を含むセパレータを用いて分離する。また、固体酸化物形燃料電池においては、両端にガスを遮断するセパレータを含む単セル又は単セルを積層したスタックから導通をとる必要がある。
 固体酸化物形燃料電池において、セル及びスタック間の導通と密着を実現するための要素として、インターコネクタがある。
 また、インターコネクタに求められる高温での導通と接着性を実現するための要素としては、金属材料、セラミックス材料、ガラス等が挙げられる。なかでも、固体酸化物形燃料電池の性能向上のためには、高い電子導電性と高温で安定的な密着性が必要であるため、融点が比較的低い金属、セラミック材料、銀や白金等の金属微粒子を分散させたガラス(以下、金属分散ガラスともいう。)やランタンストロンチウムマンガナイト((La, Sr)MnO、LSM)などの導電性酸化物材料を分散させたガラス(以下、酸化物分散ガラスともいう。)が用いられている(例えば、特許文献1等)。
特開2015-82433号公報
 しかしながら、高温で高い導電性を示す金属分散ガラスであっても、大きな課題があった。すなわち、金属分散ガラスでは,金属とガラスとでは熱膨張率の差が大きいため、使用する際の熱処理や数回の昇降温で亀裂やはく離が生じることがあった。
 また、酸化物分散ガラスにおいては、導電性を向上させるのが困難であるという問題があった。例えば、導電性が高く化学安定性に優れた酸化物材料の焼結には、一般に比較的高い温度が必要となる。したがって、ガラス中に分散させた酸化物粒子が焼結して高い導電性を示すためには、比較的高い温度での熱処理が必要となるが、ガラスの溶融に適した温度を考慮すると十分な高温の熱処理を確保しにくいためである。
 以上のことから、これまでのところ、インターコネクタ及びセパレータとして機能することができる材料、すなわち、高導電性かつ優れた接着性を発揮できるほか、機械的強度、耐熱サイクル特性を十分に備えた信頼性の高い材料は知られていない。
 本明細書は、導電性及び接着性に優れるインターコネクト構造を提供する。また、本明細書は、優れたインターコネクト構造を備える固体酸化物形燃料電池を提供する。
 本発明者らは、固体酸化物形燃料電池等における従来のインターコネクタの構造を再検討し、導電機能のための部分(以下、導電部ともいう。)と接着機能のための部分(以下、シール部ともいう。)とを分離して、それぞれ、導電性及び接着性の双方を付与すべきデバイス要素における導電性及び接着性の要求に応じて配置することで、これらの機能を同時に効率的に実現できるという知見を得た。こうした知見に基づき、本明細書の開示は、以下の手段を提供する。
(1)2以上のデバイスを導電接続するためのインターコネクト構造であって、
 導電性材料を含む1又は2以上の導電性を有する第1の接合部と、
 前記第1の接合部よりも低導電性の1又は2以上の第2の接合部と、
を、相互に分離して備える、インターコネクト構造。
(2)前記2以上の第1の接合部を、マトリックス状に備える、(1)に記載のインターコネクト構造。
(3)前記1つの第2の接合部が、前記1又は2以上の第1の接合部を包囲するパターンを有するセグメントを少なくとも1つ備える、(1)又は(2)に記載のインターコネクト構造。
(4)前記セグメントを複数備える、(3)に記載のインターコネクト構造。
(5)前記1又は2以上の第1の接合部及び前記1又は2以上の第2の接合部は、2以上のデバイスのうちの1つのデバイスの表面において、共通する高さを有してそのデバイス表面において前記高さを有する層を構成する、(1)~(4)いずれかに記載のインターコネクト構造。
(6)前記1又は2以上の第1の接合部及び前記1又は2以上の第2の接合部は、金属材料を含有しない、(1)~(5)のいずれかに記載のインターコネクト構造。
(7)前記1又は2以上の第1の接合部及び前記1又は2以上の第2の接合部は、いずれもガラス材料を含む、(1)~(6)のいずれかに記載のインターコネクト構造。
(8)前記1又は2以上の第1の接合部は、導電性セラミックス材料と第1の粘性のガラス材料とを含み、前記1又は2以上の第2の接合部は、前記第1の粘性よりも低い第2の粘性のガラス材料を含む、(7)に記載のインターコネクト構造。
(9)前記2以上のデバイスは、それぞれ緻密質無機材料表面を有し、これらの表面の間に導入するための、(1)~(8)いずれかに記載のインターコネクト構造。
(10)前記2以上のデバイスは、600℃以上900℃以下の高温域で使用するデバイスである、(1)~(8)のいずれかに記載のインターコネクト構造。
(11)前記2以上のデバイスは、固体酸化物形燃料電池のスタック又はガスを遮断するセパレータ構造を備えたセルである、(1)~(9)のいずれかに記載のインターコネクト構造。
(12)(1)~(9)のいずれかに記載のインターコネクト構造を備える、固体酸化物形燃料電池。
(13)前記固体酸化物形燃料電池は、燃料極材料、空気極材料と、固体電解質と、ガスを遮断するセパレータ構造と、を備えるセルの一括焼成体を含む、(12)に記載の固体酸化物形燃料電池。
(14)前記固体酸化物形燃料電池は、前記セルの少なくとも一方に、前記インターコネクト構造を有する層を備える、(13)固体酸化物形燃料電池。
(15)前記固体酸化物形燃料電池は、平板型である、(12)~(14)のいずれかに記載の固体酸化物形燃料電池。
(16)2以上のデバイスの接合体の製造方法であって、
 前記2以上のデバイスが備える少なくとも1つの表面上の導電接続要求部位と接着要求部位とに、それぞれ、導電性材料を含む1又は2以上の導電性を有する第1の接合部と、前記第1の接合部よりも低導電性の1又は2以上の第2の接合部と、を分離して配置する工程と、
 前記1又は2以上の第1の接合部と前記1又は2以上の第2の接合部とを、同時に熱処理して、前記2以上のデバイスを接合する工程と、
を備える、方法。
本明細書に開示されるインターコネクト構造における第1の接合部と第2の接合部との配置パターンを示す図A~Dである。 粘性の異なるガラスとLSCを含む導電部材の導電率の温度依存性を示す図である。 ガラスペレットの変形による融着温度における粘性の評価を示す図である。 LSMと高粘性ガラスの混合割合と導電性との関係を示す図である。 LSMと高粘性ガラスの融着温度による微細構造の違いを示す図である。 様々な温度で融着した導電部材の導電率の温度依存性を示す図である。 導電部(LSM+10mass%高粘性ガラス)と融着部(中粘性ガラス)からなるインターコネクトの熱サイクル変化を示す図である。
 本明細書は、2以上のデバイスを導電接続するためのインターコネクト構造及びその利用に関する。本明細書に開示されるインターコネクト構造(以下、単に、本インターコネクト構造ともいう。)は、導電性材料を含み導電性を有する第1の接合部と、第1の接合部よりも低導電性の第2の接合部とを、相互に分離して備えることができる。本インターコネクト構造によれば、こうした構成を採ることで、主として導電性接合を担う部分と、主として接合を担う部分とを相互に分離して、それぞれに適した材料を適所に配置することができる。これにより、従来、金属分散材料や酸化物分散材料などの導電性ガラス材料では実現できなかった導電性と接合性との双方を両立できる。この結果、ガスシール性及び機械的強度も確保することができる。
 本インターコネクト構造においては、第1の接合部の材料やその配置を、導電性機能の観点から選択することができる。また、第2の接合部の材料やその配置を、接合性機能の観点から選択することができる。特に、第1の接合部及び第2の接合部を、いずれも金属材料非含有の酸化物系材料を用いることで、熱膨張係数が大きく異なる金属材料を含まないインターコネクト構造を構築することができる。
 なお、以下、本インターコネクト構造及び本インターコネクト構造を用いたデバイスについて説明する。
 本明細書において、デバイスとは、特に限定するものではないが、導電接続が好適若しくは要請されるデバイスであることが好ましい。こうしたデバイスとしては、熱電変換素子及びモジュール、NAS電池等昇温作動型蓄電池、積層コンデンサ等が挙げられる。
 デバイスとしては、500℃以上1400℃以下の高温域で製造され及び/又は使用されるデバイスであることが好ましい。好ましくは、下限温度は、550℃以上であり、より好ましくは600℃以上であり、さらに好ましくは700℃以上であり、なお好ましくは800℃以上であり、一層好ましくは900℃以上である。また、上限温度は、好ましくは1350℃以下であり、より好ましくは1300℃以下であり、さらに好ましくは1250℃以下であり、なお好ましくは1200℃以下であり、一層好ましくは1100℃以下である。特に限定するものではないが、使用温度としての高温域としては、好ましくは550℃以上であり、より好ましくは600℃以上であり、さらに好ましくは650℃以上である。また、好ましくは900℃以下であり、より好ましくは800℃以下であり、さらに好ましくは750℃以下であり、より好ましくは700℃以下である。
 一般に、高温域で使用等されるデバイスに適用されるインターコネクト構造も高温に曝される。インターコネクト構造においては、材料の熱膨張率の相違が接合部の亀裂や剥離を引き起こしたりするが、本インターコネクト構造のように、接合部を分散して備えることで、材料の熱膨張率の相違による応力を緩和することができる。また、本インターコネクト構造によれば、金属材料非含有構成とすることができるため、高温域でのインターコネクト構造中の金属疲労や腐食を抑制することができる。
 本インターコネクト構造で導電接続される2以上のデバイスは、同種であってもよいし、異種で、あってもよい。例えば、デバイスが団体酸化物形燃料電池のとき、本インターコネクト構造は、ガスを遮断するセパレータ構造を備えた単セルと単セルの導電接続のほか、単セルが複数積層されたスタックとスタックとの導電接続に好適で、ある。なお、後段にて、本インターコネクト構造 を備える固体酸化物形燃料電池について詳述する。
 また、本明細書において、デバイスは、導電接続部位として、金属材料、緻密質導電性セラミックス材料などの、導電性緻密質材料であってもよいし、多孔質材料でもよい。こうした導電性接続部位を構成するデバイス表面は、例えば、固体酸化物形燃料電池などのセパレータ材料などの導電性材料を備えることができる。
(本インターコネクト構造)
 本インターコネクト構造は、例えば、図1に示すように、1又は2以上の第1の接合部を備えている。第1の接合部は、導電性材料を含んで導電性を有している。第1の接合部の導電性材料としては、特に限定するものではないが導電性セラミックス材料とガラス材料との混合物を用いることができる。
 第1の接合部の導電性セラミックス材料としては、特に限定しないで公知の固体酸化物形燃料電池において空気極材料やセラミックセパレータ材料として用いられているものを用いることができる。例えば、ペロブスカイト型構造等を有するCo、Fe、Ni、Cr又はMnなどからなる金属酸化物を用いることができる。具体的には(Sm,Sr)CoO3,(La,Sr)MnO3,(La,Sr)CoO3,(La,Sr)CrO3,(La,Sr)(Fe,Co)O3,(La,Sr)(Fe,Co,Ni)O3などの酸化物が挙げられ、好ましくは、(La,Sr)CoO3、(La,Sr)MnO3である。上述したセラミックス材料は、1種を単独で又は2種以上を混合して使用することができる。
 第1の接合部に用いるガラス材料としては、特に限定しないで種々のガラス材料から選択することができるが、例えば、ソーダライムガラス、無アルカリガラス、ボロシリケートガラス、シリカガラス、アルカリバリウムガラス、アルミノホウケイ酸塩ガラス、ホウ酸塩ガラス等から適宜選択して用いることができる。ガラス材料は、第1の接合部でデバイスを接合した際に好適な導電性を得られるように選択することができる。本発明者らによれば、用いる導電性セラミックス材料の焼結温度を考慮して選択することができる。具体的には、ガラス材料が導電性セラミックス材料の焼結温度において導電性セラミックス材料の焼結を阻害しないように選択する。本発明者らによれば、ガラス材料の選択は、導電性セラミックス材料の焼結温度におけるガラス材料の粘性(例えば、軟化温度(ガラスが自重で軟化変形し始める温度で、粘度が107.6dPa・sの粘度に相当する温度(例えば、JIS R3103-1、2001に規定される方法により測定できる。)や粘度が104dPa・sとなる温度でもよい。)等や、後述するように、導電性セラミックス材料候補の焼結温度近傍での熱処理でのガラスペレットの変形や軟化を評価して決定することができる。
 例えば、導電性セラミックス材料候補に、その導電性セラミック材料候補の焼結温度において異なる粘性を示す2以上のガラス材料を組み合わせて、導電率を評価することで、好ましいガラス材料を選択することができる。
 例えば、導電性セラミックス材料として、LSCを用いる場合には、粘度が104dPa・sとなる温度が900~1000℃又は軟化点温度が850℃以上900℃以下程度である中粘性ガラス材料(例えば、G018-381、ショット製)等を用いることができる。また、導電性セラミックス材料として、LSMを用いる場合には、上記軟化点が900℃超1100℃など1000℃近傍にある高粘性ガラス材料(例えば、HHR1010、旭硝子製)等を用いることができる。
 好適なガラス材料は、例えば、導電性セラミックス材料候補の焼結温度近傍で所定時間(例えば、1時間程度)、ガラス材料候補の一軸加圧成形等によるペレットを熱処理して、焼結温度近傍におけるガラス材料候補の粘性を評価して、選択することができる。
 第1の接合部における導電性セラミックス材料とガラス材料との配合比率は、特に限定するものではなく、好適な導電率が得られるように設定することができる。当業者であれば、導電性セラミックス材料候補とガラス材料候補を種々の配合比で組み合わせて導電率を評価することで、好適な配合比率を決定することができる。例えば、導電性セラミックス材料に対してガラス材料10質量%以上30質量%以下とすることができ、また、10質量%以上20質量%以下とすることもできる。概して、ガラス材料の配合比率の増大は、導電性の低下をもたらし、同比率の低下は、デバイスとの界面における導電性の低下や接合性や機械的強度の低下をもたらす傾向がある。
 本インターコネクト構造は、1又は2以上の第2の接合部を備えることができる。第2の接合部は、第1の接合部よりも低導電性とすることができる。第2の接合部は、第1の接合部に比して、より接合を意図した接合部とすることができる。したがって、第2の接合部は、接合に好適なガラス材料を含むことが好ましい。
 第2の接合部のガラス材料も、第1の接合部と同様、特に限定しないで種々のガラス材料から選択することができるが、例えば、ソーダライムガラス、無アルカリガラス、ボロシリケートガラス、シリカガラス、アルカリバリウムガラス、アルミノホウケイ酸塩ガラス、ホウ酸塩ガラス等から適宜選択して用いることができる。第2の接合部のガラス材料は、本インターコネクト構造の接合温度、すなわち、第1の接合部に用いる導電性セラミックス材料の焼結温度近傍において、十分な接合性(融着性)を呈するものであればよい。したがって、第2の接合部に用いるガラス材料は、第1の接合部に用いるガラス材料よりも低粘性のものを選択することができる。特に、第1の接合部に用いる導電性セラミックス材料の焼結温度近傍において、第1の接合部に用いるガラス材料よりも低粘性を呈するものを用いることができる。こうすることで、第1の接合部のみでは不十分な接合性や機械的強度、接着性を本インターコネクト構造に付与することができる。
 第2の接合部のガラス材料は、例えば、第1の接合部がLSMと軟化点温度が900℃超~1100℃付近の高粘性ガラス材料を用いる場合には、軟化点温度が850℃以上900℃以下の中粘性ガラス材料を用いることができる。
 以上説明したように、第1の接合部及び第2の接合部は、いずれも金属材料を非含有とすることができる。こうすることで、金属材料による特に高温での不都合を排除することができる。
(第1の接合部及び第2の接合部の配置パターン)
 例えば、図1に示すように、第1の接合部と第2の接合部とは、それぞれ任意の個数及び配置でデバイス間において互いに離間して備えることができる。相互に離間させることで、それぞれの機能を最も好適な部位で実現させることができる。また、接合部が分散することで、種々の応力緩和も期待できる。
 ここで、第1の接合部と第2の接合部とを相互に離間するとは、第1の接合部と第2の接合部とは、互いに接触することなく、直接的にも間接的にも接合されることなく、ギャップを置いて配置されることを意味している。第1の接合部と第2の接合部のギャップは、全て同一でなくてもよい。ギャップは、デバイス間の接合のための面積、導電性、機械的強度等に応じて適宜設定される。
 第1の接合部と第2の接合部の配置パターンは特に限定するものではないが、第1の接合部は、デバイス間の導電性接続が好適な領域に、導電性接続のために好適な接合面を得られるように配置することができる。必要な導電接続が得られる第1の接合部の個数及びパターンは任意であるが、例えば、図1A~図1Cに示すように、1個であってもよいし、複数個であってもよい。また、所定の配列(アレイ)又はマトリックス状に配置することもできる。また、図示はしないが、これらの逆のパターン、すなわち、グリッド(格子)状に設けることもできる。
 第2の接合部は、第1の接合部による接合強度を補足し、本インターコネクト構造に機械的強度、ガスシール性、耐熱サイクルを付与することができる。このため、こうした機能を発揮する領域に配置することができる。例えば、機械的強度やガスシール性を意図する場合等には、第1の接合部の周囲の少なくとも一部に、あるいはその周囲を包囲するパターンを好ましく用いることができる。すなわち、1又は2以上の第1の接合部の周囲を連続する第2の接合部が任意の外周形態で包囲するパターンを有するセグメントを構成するようにすることが好ましい。
 例えば、図1Aに例示するパターンは、一つの第1の接合部を連続する第2の接合部が包囲する単一のセグメントを有する形態であり、図1Cに例示するパターンは、一つの第1の接合部を連続する第2の接合部が包囲するセグメントを複数個マトリックス状に備える形態であり、図1Dに例示すパターンは、複数個一列に配列された第1の接合部のアレイの周囲を第2の接合部が包囲するセグメントを複数個配列して備える形態である。また、図1Bに示すパターンは、第1の接合部の周囲の少なくとも一部、ここでは、1つの第1の接合部を挟んで対向状に2つの第2の接合部を備える形態である。
 なお、本インターコネクト構造において求められる導電性及び融着性等に応じて、任意のパターンを採ることができる。図示はしないが、これらの逆のパターン、すなわち、マトリック状等に設けた第2の接合部の周囲を包囲するように第1の接合部を設けることもできる。
 第1の接合部及び第2の接合部の、本インターコネクト構造の高さ方向(すなわち、デバイスとデバイスとの距離に沿う方向)における態様は、デバイス間の導電接続が可能であればよく特に限定するものではない。第1の接合部及び第2の接合部は、接続される一方のデバイスの表面において、共通する高さを有してそのデバイス表面において前記高さを有する層を構成することが好ましい。こうすることで、デバイスとデバイスとを積層して、優れた全体形状及び一体性の複数のデバイスの積層体を容易に得ることができる。
 なお、第1の接合部と第2の接合部とは、分離して形成されているために、例えば、曲面を有したり屈曲したりしているデバイス表面であっても、曲面等への追従性に制限されることを回避又は抑制して、容易にインターコネクト構造を構成することができる。
(2以上のデバイスの接合体の製造方法)
 本明細書に開示される、2以上のデバイスの接合体の製造方法は、デバイスが備える少なくとも1つの表面上の導電接続要求部位と接着要求部位とに、それぞれ、導電性材料を含む1又は2以上の導電性を有する第1の接合部と、前記第1の接合部よりも低導電性の1又は2以上の第2の接合部と、を分離して配置する工程と、前記1又は2以上の第1の接合部と前記1又は2以上の第2の接合部とを、同時に熱処理して、前記2以上のデバイスを接合する工程と、を備えることができる。本製造方法によれば、2つ以上のデバイスを機械的強度や接着性を確保しつつ容易に導電接続することができる。
 本製造方法における、第1の接合部、第2の接合部、その配置等については、既に、本インターコネクト構造において説明したこれらの態様を適用することができる。
 第1の接合部及び第2の接合部の配置工程は、従来公知の導電性セラミックス材料やガラス材料の付与工程に基づいて実施することができる。特に限定するものではないが、第1の接合部の原料組成物及び第2の接合部の原料組成物を、それぞれ、スプレー描画、テープキャスティング、スクリーン印刷等公知の適用方法にてデバイスの一方の表面に所定の配置パターンで供給して、これらの原料組成物層を形成することができる。
 次いで、これら原料組成物層を形成したデバイスともう一方のデバイスを接合すべき形態で積層し、第1の接合部のための導電性セラミックス材料が焼結して導電性を発揮可能な温度で所定時間熱処理する。熱処理条件は、当業者であれば、導電性セラミックス材料の焼結温度等を考慮して設定することができる。
 以上の工程により、2つのデバイスを機械的強度や接着性を確保して導電接続することができる。すなわち、第1の接合部のための原料組成物層が、熱処理により第1の接合部として主として導電接続を確保するとともに、第2の接合部のための原料組成物層が、熱処理により第2の接合部として主として機械的強度、接着性を確保することができる。
(固体酸化物形燃料電池)
 本インターコネクト構造は、高温域で製造され、及び/又は高温域で作動するデバイスに好適であることから、固体酸化物形燃料電池のインターコネクト構造に好適である。本インターコネクト構造は、固体酸化物形燃料電池の単セル、固体電解質を挟んで燃料極と気極とをそれぞれ備え、さらに最外層に緻密質な導電性セパレータを備える単セル間を導電接続するのに好適である。また、本インターコネクト構造は、こうした単セルが複数個積層されてなる固体酸化物形燃料電池スタックをさらに導電接続するためのインターコネクト構造として好適である。すなわち、こうした固体酸化物形燃料電池のセル又はスタックの積層方向の少なくとも1つのガスを遮断するセパレータに対して本インターコネクト構造を備えることができる。
 本インターコネクト構造を備える固体酸化物形燃料電池は、従来公知の固体酸化物形燃料電池であれば、特に限定しないで適用することができる。また、平板型であっても円筒型等であってもよい。
 特に限定するものではないが、本インターコネクト構造は、例えば、再表2009/119771号公報に開示される積層型固体酸化物形燃料電池やスタックの導電接続に好適である。本インターコネクト構造は、その高さ方向の積層高さが5μm以上200μm以下程度の層として確保することができるからである。また、本インターコネクト構造は、この種の積層型固体酸化物形燃料電池に好適な機械的強度を提供することができるからである。さらに、本インターコネクト構造は、導電性セラミックス材料の焼結温度での熱処理が可能であるため、固体酸化物形燃料電池セル又はスタックの熱処理とともに本インターコネクト構造も同時に熱処理して一体化することができるからである。こうした積層型固体酸化物形燃料電池のいては、ガスを遮断するセパレータ構造を備えるセルの一括焼成体を含み、少なくともかかるセパレータ構造のセパレータが本インターコネクト構造を備えることができる。
(インターコネクタ)
 以上説明したことから、本インターコネクト構造は、デバイスの接合すべき導電性材料部位、例えば、固体酸化物形燃料電池のセパレータに対して第1の接合部と第2の接合部とを本インターコネクト構造の形態で予め備えたインターコネクタを構成することもできる。こうしたインターコネクタによれば、固体酸化物形燃料電池のセルやスタック間を導電接続することができる。
 以下、本明細書の開示を以下の実施例を具体例を挙げて説明する。しかしながら、以下の実施例は、本明細書の開示を限定するものではない。
(ガラスの粘性と導電性との関係)
 導電部で用いるガラスの粘性について検討を行った。導電性酸化物とガラスとを混合して導電部を構築する際には、熱処理によって導電性酸化物が焼結し、膜に垂直な方向の導電性を保持する必要がある。しかし、高温におけるガラスの状態によっては、ガラスが導電性酸化物の焼結を阻害する可能性がある。そこで、高温における粘性が異なる2種類のガラスを用いて、最適化を行った。用いたガラスは、低粘性ガラス(ショット製、G018-381)と中粘性ガラス(ショット製、G018-385)と高粘性ガラス(旭硝子製、HHR1010)とした。この低粘性ガラスは、10 dPasの粘度となる温度が962℃であるのに対して、中粘性ガラスは、1266℃である。
 導電性酸化物としてLa0.2Sr0.8CoO3-δ(LSC)を用い、低粘性ガラスを用いたときと中粘性ガラスを用いたときの導電性の違いを検討した。LSCに対して、それぞれのガラスを30mass%添加した粉末を空気中900℃、1時間の融着処理を行った。この試料について導電率を計測した。その結果を図2に示す。
 図2に示すように、ガラスの粘性によって導電性材料の導電性が大きく異なることが分かった。その中でも、導電性セラミックス材料の焼結温度とガラスの軟化温度とをパラメータとして最適化することが重要であることが分かった。導電性セラミックス材料としては、焼結温度が比較的低いLSCについては、軟化点温度が850~900℃にある低粘性ガラスの方が適していることがわかった。さらに、ほかの導電性酸化物についても検討した結果、焼結温度が高いLSMについては、軟化温度が1000℃付近にある高粘性ガラスの方が好ましいことがわかった。
(高温でのガラス成分の粘性評価)
 導電性セラミックス材料の焼結温度、すなわち、融着温度付近におけるガラスの粘性をペレットからの変形により評価した。用いたガラスは、中粘性ガラス(ショット製、G018-385)と高粘性ガラス(旭硝子製、HHR1010)である。これらガラスの粉末を一軸加圧成形によりペレットを作製した後、空気中、1000℃で1時間熱処理を行った。その結果を図3に示す。
 図3に示すように、ガラスのペレットを用いて、熱処理による形状変化により、高温状態における粘性の高低を見積もることができることがわかった。ここで用いた高粘性ガラスについては、融着温度付近での粘性の詳細は必ずしも明らかではなかった。しかしながら、図3の結果により、中粘性ガラスと比較しても、融着温度付近での粘性は明らかに高いことが分かった。したがって、こうした熱処理試験を行うことで、ガラス材料の高温域での粘性特性を評価して、本インターコネクト構造の第1の接合部及び第2の接合部への使用可否を決定できることがわかった。
(導電性酸化物とガラス成分の混合割合最適化)
 次に、導電性酸化物としてLSMを用いた際の、ガラスとLSMの混合割合について検討した。LSMを導電性酸化物として用いた際には、ガラスとしては高粘性ガラスを用いた方が導電部材としての導電性が高いことがこれまでの結果により明らかになっている。そこで、LSMに対して10~50mass%の割合で、高粘性ガラス粉末を添加し、空気中1000℃で1時間、溶融処理した導電部材について、導電率の温度依存性を調べた。その結果を図4に示す。
 図4に示すように、10~30mass%では導電性の変化は小さいが、50%とすることによって著しい導電性の低下がみられた。従って、導電性酸化物の焼結性に適応した高温での粘性を有するガラスを用いた時でも、その混合割合によって導電部材の特性が大きく異なる。混合割合としては、導電部材に対して10~30mass%の範囲で、好ましくは10~20mass%であることが分かった。ガラスの混合割合が少ないと、融着後の界面で、十分な密着性、緻密性、機械的強度を得ることができない。それに対して、ガラスの混合割合が多いと、導電性の著しい低下をもたらす。
(導電部材の熱処理条件最適化)
 上記の導電性セラミックス材料とガラス材料の種類及び混合割合の最適化の後に、熱処理温度について検討を行った。それぞれ950℃から1100℃の間で1時間熱処理した。得られた導電部の微細構造を図5に示す。図5に示すように、950℃の熱処理では、導電性酸化物(LSM)の焼結が不十分であり、導電性についても機械的強度についても不十分であることが分かった。また、焼成温度を1100℃まで上昇させると、導電部材中で、ガラス成分と導電性酸化物の部分で分離している様子が見られた。この分離は、融着後の機械的強度の不均一性をもたらす。従って、本導電部材については、1000~1050℃の範囲で熱処理することが好ましいことが分かった。
 そこで、測定可能な機械的が得られた1000℃から1100℃の範囲で得られた第1の接合部に相当する導電性材料の導電性を評価した。図6に、空気中で10時間融着処理した試料についての結果を示す。図6に示すように、高温で熱処理した方が、LSMの焼結が進み、導電性が上昇することがわかった。
(導電部と融着部との分離)
 以上の結果より、導電性材料については、比較的高温で熱処理した方が高い導電性が得られる一方、ガラス材料との分離によって、機械的な接着性に問題が生じることを見いだすことができた。また、導電性材料については、導電性セラミックス材料と高温でのガラスの粘性との最適化が重要であることが分かった。これらの結果より、高い導電性と十分な接着性を実現させるインターコネクタとしては、高い導電性を担う導電部(本インターコネクタにおける第1の接合部に相当)と高い機械的強度を担う融着部(本インターコネクト構造における第2の接合部に相当)を分離することが望ましいとの結論に至った。
 すなわち、導電部と融着部で高温での粘性が異なるガラスを用いることが重要であった。とくに、導電性セラミックス材料としてLSMを用いた際には、ガラス材料に高温での粘性が相対的に高い高粘性ガラスを用い、融着部のガラス材料に、高温での粘性がより低い中粘性ガラスを使用することが好適であることがわかった。また、これらの各部のガラス材料が高温で混合しないように、2mm以上のギャップを製造時に備えることが重要であることが分かった。融着時に両ガラスの混合が起こると、その導電率が著しく低下してしまったからである。
 以上の知見をもとに、図1Aに示す囲い型の平板型インターコネクト構造を構築し、その導電性等を検討した。すなわち、導電部にLSMと10mass%の高粘性ガラス(既述の旭硝子製)、さらに融着部に中粘性ガラス(既述のショット製)を用いて、平板型インターコネクト構造を作製した。融着(熱処理)条件は、空気中、1000℃、1時間とした。得られた平板型インターコネクタを200℃と850℃の間で昇降温を繰り返し、そのときの各サイクルの850℃における界面抵抗(ASR)を調べた。その結果を、図7に示す。
 図7に示すように、十分に低い界面抵抗と熱サイクルに対する耐久性を備えていることが分かった。このことは、作製したインターコネクト構造が好適な導電性を備えるとともに、良好なシール性(密着性)と機械的強度を有しており、しかも、金属材料を含まないために、熱膨張係数の相違もなく安定してインターコネクト構造が維持できたことによるものと考えられた。

Claims (16)

  1.  2以上のデバイスを導電接続するためのインターコネクト構造であって、
     導電性材料を含む1又は2以上の導電性を有する第1の接合部と、
     前記第1の接合部よりも低導電性の1又は2以上の第2の接合部と、
    を、相互に分離して備える、インターコネクト構造。
  2.  前記2以上の第1の接合部を、マトリックス状に備える、請求項1に記載のインターコネクト構造。
  3.  前記1つの第2の接合部が、前記1又は2以上の第1の接合部を包囲するパターンを有するセグメントを少なくとも1つ備える、請求項1又は2に記載のインターコネクト構造。
  4.  前記セグメントを複数備える、請求項3に記載のインターコネクト構造。
  5.  前記1又は2以上の第1の接合部及び前記1又は2以上の第2の接合部は、2以上のデバイスのうちの1つのデバイスの表面において、共通する高さを有してそのデバイス表面において前記高さを有する層を構成する、請求項1~4のいずれかに記載のインターコネクト構造。
  6.  前記1又は2以上の第1の接合部及び前記1又は2以上の第2の接合部は、金属材料を含有しない、請求項1~5のいずれかに記載のインターコネクト構造。
  7.  前記1又は2以上の第1の接合部及び前記1又は2以上の第2の接合部は、いずれもガラス材料を含む、請求項1~6のいずれかに記載のインターコネクト構造。
  8.  前記1又は2以上の第1の接合部は、導電性セラミックス材料と第1の粘性のガラス材料とを含み、前記1又は2以上の第2の接合部は、前記第1の粘性よりも低い第2の粘性のガラス材料を含む、請求項7に記載のインターコネクト構造。
  9.  前記2以上のデバイスは、それぞれ緻密質無機材料表面を有し、これらの表面の間に導入するための、請求項1~8のいずれかに記載のインターコネクト構造。
  10.  前記2以上のデバイスは、600℃以上900℃以下の高温域で使用するデバイスである、請求項1~8のいずれかに記載のインターコネクト構造。
  11.  前記2以上のデバイスは、固体酸化物形燃料電池のスタック又はセルである、請求項1~9のいずれかに記載のインターコネクト構造。
  12.  請求項1~9のいずれかに記載のインターコネクト構造を備える、固体酸化物形燃料電池。
  13.  前記固体酸化物形燃料電池は、燃料極材料、空気極材料と、固体電解質と、ガスを遮断するセパレータ構造と、を備えるセルの一括焼成体を含む、請求項12に記載の固体酸化物形燃料電池。
  14.  前記固体酸化物形燃料電池は、前記セルの少なくとも一方に、前記インターコネクト構造を有する層を備える、請求項13の固体酸化物形燃料電池。
  15.  前記固体酸化物形燃料電池は、平板型である、請求項12~14のいずれかに記載の固体酸化物形燃料電池。
  16.  2以上のデバイスの接合体の製造方法であって、
     前記2以上のデバイスが備える少なくとも1つの表面上の導電接続要求部位とガスシール要求部位とに、それぞれ、導電性材料を含む1又は2以上の導電性を有する第1の接合部と、前記第1の接合部よりも低導電性の1又は2以上の第2の接合部と、を分離して配置する工程と、
     前記1又は2以上の第1の接合部と前記1又は2以上の第2の接合部とを、同時に熱処理して、前記2以上のデバイスを接合する工程と、
    を備える、方法。
PCT/JP2016/065101 2016-05-20 2016-05-20 インターコネクト構造及び固体酸化物形燃料電池 WO2017199448A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018518062A JPWO2017199448A1 (ja) 2016-05-20 2016-05-20 インターコネクト構造及び固体酸化物形燃料電池
PCT/JP2016/065101 WO2017199448A1 (ja) 2016-05-20 2016-05-20 インターコネクト構造及び固体酸化物形燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065101 WO2017199448A1 (ja) 2016-05-20 2016-05-20 インターコネクト構造及び固体酸化物形燃料電池

Publications (1)

Publication Number Publication Date
WO2017199448A1 true WO2017199448A1 (ja) 2017-11-23

Family

ID=60326487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065101 WO2017199448A1 (ja) 2016-05-20 2016-05-20 インターコネクト構造及び固体酸化物形燃料電池

Country Status (2)

Country Link
JP (1) JPWO2017199448A1 (ja)
WO (1) WO2017199448A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133293A (ja) * 1998-09-16 2000-05-12 Sof Co 固体酸化物燃料電池用の接続孔充填式接続体
JP2003132914A (ja) * 2001-10-19 2003-05-09 Mcdermott Technol Inc 集積流路を有する高性能セラミック燃料電池のインターコネクト及びその作製方法
JP2008135360A (ja) * 2006-10-24 2008-06-12 Ngk Insulators Ltd 固体酸化物型燃料電池の単セル用の薄板体
WO2010007722A1 (ja) * 2008-07-14 2010-01-21 株式会社村田製作所 インターコネクタ用材料、セル間分離構造体および固体電解質形燃料電池
WO2011138915A1 (ja) * 2010-05-07 2011-11-10 株式会社 村田製作所 高温構造材料、固体電解質形燃料電池用構造体および固体電解質形燃料電池
JP2016024996A (ja) * 2014-07-22 2016-02-08 株式会社デンソー 固体酸化物形燃料電池セル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133293A (ja) * 1998-09-16 2000-05-12 Sof Co 固体酸化物燃料電池用の接続孔充填式接続体
JP2003132914A (ja) * 2001-10-19 2003-05-09 Mcdermott Technol Inc 集積流路を有する高性能セラミック燃料電池のインターコネクト及びその作製方法
JP2008135360A (ja) * 2006-10-24 2008-06-12 Ngk Insulators Ltd 固体酸化物型燃料電池の単セル用の薄板体
WO2010007722A1 (ja) * 2008-07-14 2010-01-21 株式会社村田製作所 インターコネクタ用材料、セル間分離構造体および固体電解質形燃料電池
WO2011138915A1 (ja) * 2010-05-07 2011-11-10 株式会社 村田製作所 高温構造材料、固体電解質形燃料電池用構造体および固体電解質形燃料電池
JP2016024996A (ja) * 2014-07-22 2016-02-08 株式会社デンソー 固体酸化物形燃料電池セル

Also Published As

Publication number Publication date
JPWO2017199448A1 (ja) 2019-03-22

Similar Documents

Publication Publication Date Title
Lessing A review of sealing technologies applicable to solid oxide electrolysis cells
JP5318345B2 (ja) 固体酸化物電気化学デバイスを製造する方法および固体酸化物電気化学デバイス
JP5154570B2 (ja) 燃料電池スタックおよび燃料電池スタック用シール、ならびにその製造方法
JP4353795B2 (ja) 燃料電池用ガスセパレータプレート
EP2941405B1 (en) High temperature substrate attachment glass
JP5451653B2 (ja) ガスシール材
US20110017254A1 (en) Thermoelectric modules with improved contact connection
CN109075363B (zh) 固体氧化物燃料电池
CA2626828C (en) A holding member for holding an electrochemical cell, a holding structure for the same, an electrochemical system and a connecting member for electrochemical cells
JP5255327B2 (ja) 反応装置
EP2017914B1 (en) Reactor
JP5158200B2 (ja) 熱電変換モジュールおよび熱電変換モジュールの製造方法
JP5000158B2 (ja) 固体酸化物形燃料電池スタック及びその作製方法
US20160197359A1 (en) Solid oxide fuel cell stack and manufacturing method therefor
WO2017199448A1 (ja) インターコネクト構造及び固体酸化物形燃料電池
JP2012084508A (ja) 燃料電池及びその製造方法
JPH0878040A (ja) 固体電解質燃料電池の接続構造
US10615434B2 (en) Composition for solid oxide fuel cell sealant, sealant using same and method for preparing same
JP6756549B2 (ja) 電気化学反応単位および電気化学反応セルスタック
KR102114627B1 (ko) 연료 전지 발전 단위 및 연료 전지 스택
WO2016140111A1 (ja) 燃料電池ユニット
KR20090029381A (ko) 고체산화물 연료전지용 밀봉재 및 이를 이용한 가스켓 제조 방법
JP6773470B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP6675218B2 (ja) セパレータ付電気化学反応単セルの製造方法
KR101131704B1 (ko) 연료전지용 금속 연결재 및 이의 형성방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518062

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902467

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902467

Country of ref document: EP

Kind code of ref document: A1