WO2017198226A1 - 自移动设备及其控制方法 - Google Patents

自移动设备及其控制方法 Download PDF

Info

Publication number
WO2017198226A1
WO2017198226A1 PCT/CN2017/085161 CN2017085161W WO2017198226A1 WO 2017198226 A1 WO2017198226 A1 WO 2017198226A1 CN 2017085161 W CN2017085161 W CN 2017085161W WO 2017198226 A1 WO2017198226 A1 WO 2017198226A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile device
self
sensor
track
moving
Prior art date
Application number
PCT/CN2017/085161
Other languages
English (en)
French (fr)
Inventor
柴斯托那罗安德列
安德罗保罗
高振东
焦石平
杜江
冉沅忠
唐修睿
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to EP17798789.8A priority Critical patent/EP3459334B1/en
Publication of WO2017198226A1 publication Critical patent/WO2017198226A1/zh
Priority to US16/195,204 priority patent/US11099572B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/065Multi-track vehicles, i.e. more than two tracks
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D67/00Undercarriages or frames specially adapted for harvesters or mowers; Mechanisms for adjusting the frame; Platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/16Mud-guards or wings; Wheel cover panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • A01D69/02Driving mechanisms or parts thereof for harvesters or mowers electric

Definitions

  • the invention relates to a self-mobile device, in particular to a crawler type intelligent lawn mower.
  • the bottom of the housing of the intelligent mower has a distance from the ground, which allows the human foot or hand to reach below the casing and approach A cutting blade or the like of a cutting element.
  • the wheeled intelligent lawn mower is designed to completely cover the top cover of the casing to prevent the human hand or foot from projecting into the lower side of the casing from the front or the rear of the intelligent lawn mower and contacting the cutting element.
  • the top cover of the fully covered casing in the wheel type requires a predetermined spatial distance from the wheeled running gear and the casing in order to achieve the above object.
  • the top cover of the wheeled intelligent lawn mower is directly used for the crawler type intelligent lawn mower, in order to achieve the goal of ensuring the operator's personal safety, the top cover needs to be a predetermined space distance from the crawler traveling mechanism and the housing. This design will affect the climbing and obstacle-blocking performance of the tracked smart mower. Therefore, the crawler type intelligent lawn mower needs to adopt other structural designs to prevent a person's foot or hand from reaching below the casing and approaching the blade as a cutting element.
  • the crawler type intelligent lawn mower needs to provide a close-distance obstacle detecting structure for detecting obstacles in a close distance and preventing the crawler from directly running over the object in front of it.
  • the quality and speed of crawler mowers are larger than those of ordinary automatic lawn mowers, the impact force will be much greater when colliding with obstacles.
  • the track has a good ability to overcome obstacles, when it encounters an obstacle (including the human body), it will not stop moving immediately.
  • the crawler mower Further movement causes crushing damage on the one hand, and on the other hand, cutting parts (such as blades) directly contact the obstacle and cause damage.
  • the climbing performance of the vehicle is highly correlated with the center of gravity of the intelligent mower, and the lower the center of gravity, the better the climbing performance of the vehicle.
  • the structure of the crawler type intelligent lawn mower needs to be designed to reduce the center of gravity.
  • the crawler will generate tension, which will exert tension on the cantilever connecting the driving wheel and the guiding wheel to the housing, thereby easily causing the cantilever to be connected to the wheel and the housing.
  • Strength fracture The tension causes deformation of the housing and the axle, so that the track is easily dislocated from the drive and guide wheels.
  • the track wound between the guide wheel and the driving wheel will be in contact with the working surface.
  • the track can easily slip off between the driving wheel and the guiding wheel, that is, the off Tooth phenomenon.
  • the pressure of the two points of force will be large, and the intelligent lawn mower will wear excessively on the lawn during walking.
  • the crawler type intelligent lawn mower When the crawler type intelligent lawn mower is walking, the intermediate gap between the track shoe and the crawler wheel will be brought into the mud or grass. When the track is running for a period of time, it will be caught between the track shoe and the track wheel to increase the driving resistance. When it is difficult to climb, it needs to stop, rinse with high-pressure water pump, and then continue to run. Sometimes it is necessary to disassemble the track plate, clean it, and then re-install the track plate to start the vehicle. Especially for the crawler type intelligent lawn mower, there is continuous grass cutting, it is easy to store grass between the track shoe and the track wheel, which not only affects the walking of the vehicle, but also wastes power consumption and affects work efficiency, and even makes The risk of the track shoe coming off the track wheel.
  • the crawler type intelligent lawn mower wants to share the market with the wheeled intelligent lawn mower, and must solve the above problems from the structural aspect.
  • the invention provides a self-moving device, and the structural design of the self-moving device not only satisfies the off-road performance such as climbing, but also has good safety performance, and avoids problems such as grass pressing during operation.
  • a technical solution adopted by the present invention is: a self-moving device comprising: a housing provided with a motor; a moving module comprising a crawler belt, the crawler belt being driven by the motor to move from the mobile device; a working module that operates in a moving state and/or a non-moving state; a control module that controls movement of the moving module and a working module; and a first sensor and a second sensor that detect an obstacle from the moving direction of the mobile device; a sensor for detecting the first area in the moving direction, The second sensor is configured to detect a second area in a moving direction, where the first area and the second area are arranged perpendicular to a moving direction; the control module controls the sensing result according to the first sensor and the second sensor How mobile devices move.
  • the first area and the second area are disposed along a height direction of the mobile device.
  • the first area and the second area at least partially overlap.
  • the upper boundary of the first region is not less than 150 mm, and the lower boundary of the second region is not higher than 150 mm.
  • the control module controls the self-mobile device to avoid an obstacle.
  • the first sensor is a non-contact sensor and the second sensor is a contact sensor.
  • the self-moving device further comprises a crawler gear for protecting the crawler, and the second sensor is disposed on the crawler gear.
  • the self-moving device further comprises a crawler gear for protecting the crawler, and the second sensor is disposed on the crawler gear.
  • the number of the track stops is four, corresponding to the front upper sides of the two ends of the crawler belts on both sides of the casing.
  • the track guard has a height distance of 40 mm to 70 mm from the working surface at the lowermost end in the vertical direction.
  • the track guard has a lowermost end in the vertical direction lower than a half of the height of the track end in the vertical direction.
  • the short distance of the track stop from the track under the track stop is less than or equal to 50 mm.
  • the track guard has a lateral width greater than a lateral width of the track.
  • the outer side of the track guard is at a distance of 5 mm or more from the outer side of the track.
  • the touch sensor comprises a Hall sensor, a magnetic signal sensing sensor or a micro switch.
  • the track stop is a cover plate of a predetermined shape.
  • the track stop is a blocking lever.
  • the bar includes a wire member that is wound in a predetermined manner into a body having a height and a width.
  • the self-moving device includes a top cover movably coupled to the housing, the track stop being disposed at an end corner of the top cover.
  • the touch sensor detects displacement of the top cover relative to the housing.
  • the maximum value of the momentum when moving from the mobile device is greater than 5 kg ⁇ m/s.
  • the mass of the self-mobile device is greater than 12 kg.
  • the maximum speed of movement from the mobile device is greater than 0.45 m/s.
  • the housing comprises an upper cover, the upper cover partially covering the crawler; at a front end of the moving direction of the mobile device, the lower edge of the upper cover is spaced from the working plane by a distance greater than the distance between the center of rotation of the rotary motion of the track and the working plane.
  • the effective detection width of the non-contact sensor covers the width range of the track in a width direction in a direction parallel to the working plane of the mobile device and perpendicular to the moving direction of the mobile device.
  • the effective detection width of the non-contact sensor is greater than the width of the self-moving device.
  • the control module controls to stop the movement from the mobile device.
  • control module delay time T controls the movement from the mobile device to stop.
  • the non-contact sensor is an ultrasonic sensor.
  • the ultrasonic sensor does not detect the presence of the obstacle, and the first distance is less than or equal to the second distance.
  • control module optionally controls the deceleration, or steering, or retreat from the mobile device.
  • At least one of the non-contact sensors is disposed on a front side from a moving direction of the mobile device.
  • the non-contact sensor is an ultrasonic sensor, or an optical sensor.
  • the present invention provides a solution: a self-mobile device control method, the self-mobile device includes a mobile module, the mobile module includes a crawler, and the crawler is driven by a drive motor Driving the mobile device, wherein the self-mobile device control method comprises the steps of: detecting whether there is an obstacle in the moving direction of the mobile device using the first sensor and the second sensor; and detecting the movement from the mobile device If there is an obstacle in the direction, adjust the self-moving The manner in which the device moves; wherein the detection area of the second sensor covers the detection dead zone of the first sensor.
  • the maximum value of the momentum when controlling the movement from the mobile device is greater than 5 kg ⁇ m/s.
  • the maximum value of the speed of movement controlled from the mobile device is greater than 0.45 m/s.
  • the control stops moving from the mobile device.
  • the delay time T controls to stop moving from the mobile device.
  • the first sensor is an ultrasonic sensor, and when there is an obstacle in the second distance from the front of the mobile device, the ultrasonic sensor does not detect the presence of the obstacle, and the first distance is less than or equal to the second distance.
  • the mobile device may be selectively controlled to decelerate, or turn, or retreat.
  • the crawler stop by providing a crawler stop on the front upper side of the end of the crawler, when there is an obstacle in front of the crawler, the crawler stop first collides with the obstacle, the collision detecting sensor detects the collision, and transmits the collision information to the control module.
  • the control module controls the intelligent lawn mower to turn or retreat.
  • a technical solution adopted by the present invention is: a self-mobile device, in particular, a smart lawn mower, comprising: a housing; a working module, located at the bottom of the housing, The utility model is configured to perform a cutting work; the walking module is located at two sides of the casing, and the walking module of each side comprises a crawler belt; wherein the bottom of the casing is provided with a guard, the guard is located in front of the working module Or / and rear, for obscuring the working module, the extension of the guard covering at least a majority of the length between the tracks on both sides.
  • the guard has a predetermined height in a vertical direction.
  • the distance of the free end of the guard in the vertical direction from the working surface is 40 mm to 70 mm.
  • the shortest distance of the side end of the guard from the track of the corresponding side end is less than or equal to 20 mm.
  • the overall shape of the guard member is comb-shaped, and includes a plurality of comb teeth.
  • the interval width between the adjacent comb teeth is less than or equal to 20 mm.
  • the guard is located at the front end and/or the rear end of the bottom of the housing.
  • the shortest distance of the guard to the working module is greater than or equal to 10 mm.
  • the overall shape of the guard is in the shape of a plate.
  • the guide member comprises a guide wheel or a guide support.
  • the drive member comprises a drive wheel.
  • the housing includes a base, and the guard is disposed at a bottom of the base.
  • the intelligent lawn mower further includes a top cover movably connected to the housing, the top cover including a main body portion for covering the housing, the lowest point of the main body portion in the vertical direction is from the height of the working surface More than 70 mm.
  • the invention provides a protective member by providing a guard at the bottom of the housing, and the guard is located at the front or/and the rear of the working module to form a protective barrier, thereby effectively protecting the human hand or foot from contacting the working module from the front or the rear of the housing, effectively Improve the safety performance of intelligent mowers.
  • a technical solution adopted by the present invention is: a self-mobile device, in particular, an intelligent lawn mower, comprising: a casing, wherein the casing is hollow to form a receiving cavity; the control module , in the receiving cavity, controlling the intelligent mower to work automatically and automatically; the walking module is located on both sides of the casing, and the walking module on each side comprises a front support member, a rear support member and a crawler belt.
  • the track is wound around the front support and the rear support; wherein the intelligent lawn mower further comprises a frame module coupled to the housing, the frame module fixing and supporting the walking module.
  • the frame module includes a mounting portion for mounting the front support and a rear support, and a bracket forming an outline of the frame module.
  • the front support comprises a front wheel and the rear support comprises a rear wheel.
  • the mounting portion includes a first central shaft and a second central shaft, the front wheel is mounted on the first central shaft, and the rear wheel is mounted on the second central shaft.
  • the first central axis and the second central axis are longitudinally spaced apart by a predetermined distance.
  • the distance between the first central axis and the second central axis is longitudinally spaced from 200 mm to 800 mm.
  • the bracket includes a first fixing plate for connecting the housing.
  • the bracket includes a second fixing plate for shielding the track from the mating portion of the front support member and the rear support member.
  • the bracket includes a second fixing plate for shielding the contour of the track.
  • the frame module supports lateral ends of the front support or/and the rear support.
  • the invention adopts a frame module to fix and support the walking module, and is connected to the housing through the frame module.
  • a technical solution adopted by the present invention is: a self-mobile device, in particular, an intelligent lawn mower, comprising: a casing, wherein the casing is hollow to form a receiving cavity; the control module , in the receiving cavity, controlling the intelligent mower to work automatically and automatically; the walking module is located on both sides of the casing, and the walking module on each side comprises a crawler; wherein the intelligent mower is further A lower support member is included for supporting the contact surface of the track with the work surface.
  • the type of friction between the lower support and the inner surface of the track is rolling friction.
  • the lower support comprises a wheeled structure.
  • the number of the wheeled structures is plural.
  • the plurality of wheeled structures are arranged at equal intervals.
  • the wheel structure comprises an axle and a support roller, and the support roller is mounted on the axle.
  • the invention supports the contact surface of the crawler belt and the working surface by providing the lower support member, thereby increasing the stress point of the crawler belt and the working surface, effectively dispersing the pressure on the lawn during the walking of the crawler belt, thereby avoiding the crawler type intelligent lawn mower The problem of grass pressing.
  • a technical solution adopted by the present invention is: a self-mobile device, in particular, a smart lawn mower, comprising: a housing; a working module, located at the bottom of the housing, The utility model is configured to perform a cutting work; the walking module is located at two sides of the casing, and the walking module of each side comprises a first wheel, a second wheel and a crawler belt, wherein the crawler belt is in the first wheel and the second wheel Winding at both ends; wherein the outer diameter of the first wheel is smaller than the outer diameter of the second wheel, the first wheel is a driving wheel, and the second wheel is a guiding wheel.
  • the ratio of the outer diameter of the first wheel to the outer diameter of the second wheel ranges from 1:1.5 to 1:5.
  • the drive wheel has an outer diameter ranging from 50 mm to 180 mm.
  • the guide wheel has an outer diameter ranging from 100 mm to 400 mm.
  • the axle of the drive wheel has a wheel axle distance of 200 mm to 800 mm in the longitudinal direction to the guide wheel.
  • the intelligent lawn mower further comprises a motor for driving the driving wheel, the center of gravity of the motor being from the working surface to a distance of 25 mm to 90 mm.
  • the intelligent lawn mower further comprises an energy module, the energy module being disposed at another end away from the motor.
  • the invention has different outer diameters of the front support member and the rear support member, so that the heights of the two end portions of the crawler belt are different, and a good balance is obtained between reducing the height of the center of gravity of the intelligent lawn mower and maintaining the obstacle-obstacle ability, effectively Improve the performance of the entire intelligent mower.
  • a technical solution adopted by the present invention is: a self-moving device, in particular, an intelligent lawn mower, comprising: a casing, wherein the casing is hollow to form a receiving cavity; the working module Located at the bottom of the housing for performing a cutting operation; the walking module is located at two sides of the housing, and the walking module of each side comprises a first wheel, a second wheel and a crawler, the track is One wheel and the second wheel are wound around the two ends; an energy module is located in the receiving cavity; a motor module is located in the receiving cavity, and includes a working motor for driving the working module and driving the driving The driving motor of the wheel; wherein, in the vertical direction, the center of gravity of the intelligent lawn mower is not higher than the center of the wheel of the first wheel and the wheel center of the second wheel.
  • the center of gravity of the intelligent lawn mower is located between the center of the wheel of the first wheel and the wheel center of the second wheel.
  • the height of the center of gravity of the intelligent lawn mower is from 25 mm to 160 mm from the working surface.
  • the height of the first wheel is smaller than the height of the second wheel.
  • the height ratio of the first wheel and the second wheel ranges from 1:1.5 to 1:5.
  • the height of the first wheel ranges from 50 mm to 180 mm.
  • the height of the second wheel ranges from 100 mm to 400 mm.
  • the center of gravity of the drive motor is from 25 mm to 90 mm from the working surface.
  • the energy module is disposed at another end away from the drive motor.
  • the first wheel is a driving wheel
  • the second wheel is a guiding wheel
  • the axle of the drive wheel has a wheel axle distance of 200 mm to 800 mm in the longitudinal direction to the guide wheel.
  • the invention limits the height of the center of gravity of the intelligent lawn mower to 25 mm to 160 mm, specifically by means of different heights at both ends of the crawler belt, and arranging components of the mass in the receiving cavity, thereby effectively improving the climbing of the intelligent lawn mower. Slope performance.
  • the present invention provides a crawler wheel comprising two rims and a connecting portion connecting the two rims between the two rims, the rim including the first first
  • the first side of the two rims are adjacent to each other and disposed opposite to each other, and the two rims are provided with a matching groove, and at least one of the rims is provided with the matching a through hole penetrating through the groove and the second side.
  • the mud or grass when mud or grass enters the meshing position of the track and the track wheel, the mud or grass can enter the matching groove and be discharged to the second side of the rim through the through hole, thereby avoiding mud or grass on the track wheel to ensure the track.
  • the wheel continues to operate normally.
  • the through holes are formed in both of the rims.
  • the rim includes a bottom plate and a flange disposed at an edge of the bottom plate, and the through hole is defined in the bottom plate.
  • the bottom plate of the rim is provided with a reinforcing frame, the reinforcing frame includes a hollow cavity, and the through hole communicates with the hollow cavity.
  • the stiffening frame is stepped and includes a root closer to the center of the bottom plate and a top portion spaced from the center of the bottom plate and joined to the flange.
  • the track wheel further includes a hub disposed at a center of the rim, and the hub is provided with a connecting hole at the center.
  • a crawler running mechanism comprising a crawler and a crawler wheel, the crawler wheel, the crawler wheel comprising a drive wheel and a guide wheel, the track being wrapped on the drive wheel and the guide wheel.
  • a crawler running mechanism comprising a crawler and a crawler wheel, the crawler wheel comprising two rims connected to each other, the crawler is wrapped around the crawler wheel, and at least one of the rims of the crawler wheel is provided a discharge passage communicating with the track and the rim engagement and communicating with the outside of the track wheel.
  • a crawler type smart lawn mower includes the above crawler belt running mechanism, a body mounted to the crawler belt running mechanism, and a working member for mowing, and the working member is mounted to the body.
  • the crawler wheel and crawler type traveling mechanism of the present invention when mud or grass enters the meshing portion of the crawler belt and the crawler wheel, the mud or grass can enter the matching groove and be discharged through the through hole to the second side of the rim to avoid the crawler wheel. Grinding mud or grass to ensure the continuous operation of the track wheel.
  • the invention also discloses a crawler running mechanism and a crawler type intelligent lawn mower comprising the above crawler wheel.
  • FIG. 1 is a perspective view of a crawler type intelligent lawn mower provided by an embodiment of the present invention
  • FIG. 2 is a partial exploded view of the crawler type intelligent lawn mower shown in FIG. 1.
  • Figure 3 is a side elevational view of the walking module of the embodiment of Figure 1.
  • FIG. 4 is a schematic exploded view of a frame module in accordance with an embodiment of the present invention.
  • Figure 5 is a front elevational view of the embodiment of Figure 1.
  • Figure 6 is a schematic illustration of the left side portion of the embodiment of Figure 5.
  • Figure 7 is a bottom plan view of the embodiment of Figure 1.
  • Figure 8 is a structural view of an automatic lawn mower according to an embodiment of the present invention.
  • Fig. 9 is a view showing a detection range of a non-contact type sensor according to an embodiment of the present invention.
  • Figure 10 is a schematic view showing the movement mode of the automatic lawn mower according to the embodiment of the present invention.
  • Figure 11 is a perspective view of a crawler wheel in accordance with an embodiment of the present invention.
  • Figure 12 is a side elevational view of the track wheel of Figure 11;
  • Figure 13 is a front elevational view of the track wheel of Figure 11;
  • Figure 14 is a cross-sectional view of the track wheel of Figure 11;
  • first fixing plate 403 first fixing plate 403
  • second fixing plate 405 first central axis
  • the present invention provides a self-mobile device, and specifically can be a self-moving device such as a smart lawn mower, an automatic snow sweeper, and a smart sweeper.
  • This embodiment provides an intelligent lawn mower 100.
  • the intelligent lawn mower 100 includes a housing 10, a walking module 20 on both sides of the housing 10, a working module 108 at the bottom of the housing 10, a motor 102 located inside the housing 10, and an intelligent lawn mower 100 that automatically operates and automatically A walking control module 104, and an energy module 106 that provides energy.
  • a Cartesian coordinate system is established in the orientation of the intelligent mower 100 shown in FIG.
  • the direction of the y-axis is defined as the longitudinal direction of the intelligent mower 100, and the positive direction toward the y-axis is defined as intelligence.
  • the negative direction toward the y-axis is defined as the rear of the intelligent lawn mower 100;
  • the direction of the x-axis is defined as the lateral direction of the intelligent lawn mower 100, and the positive direction toward the x-axis is defined as the intelligent lawn mower 100.
  • the negative direction toward the x-axis is defined as the left side of the intelligent lawn mower 100; the direction of the z-axis is defined as the vertical direction of the intelligent lawn mower 100, and the positive direction toward the z-axis is defined as the intelligent lawn mower 100 Above, the negative direction toward the z-axis is defined as below the intelligent lawn mower 100.
  • the housing 10 includes an upper cover 12 and a base 14, and the upper cover 12 and the base 14 define an inner cavity receiving cavity.
  • a motor 102, a control module 104, an energy module 106 and the like are mounted in the receiving cavity to jointly support various functions of the intelligent lawn mower 100.
  • sensors may be provided on the housing 10 or within the housing 10 to assist the smart mower 100 in performing various functions.
  • a walking module 20 is disposed on each side of the housing 10, and is symmetrical to each other with respect to the housing 10.
  • the walking module 20 includes a front support 203, a rear support 201, and a track 210.
  • the track 210 has a front support member 203 and a rear support member 201 which are both ends and are disposed on both sides.
  • the track 210 connects the rear support member 201 and the front support member 203, which is the landing portion of the entire smart lawn mower 100.
  • the front support member 203 is specifically formed as a drive wheel
  • the rear support member 201 is specifically in the form of a guide wheel.
  • the front support member 203 is rotated by the motor 102 to drive the track 210 to continuously rotate around the rear support member 201 and the front support member 203, thereby driving the intelligent lawn mower 100 to advance.
  • the rear support member 201 may also be in the form of the embodiment shown in FIG. 1, such as a guide support portion or a set of wheel sets, and only the end of the track 210 may be supported.
  • the track 210 can be divided into four segments from a spatial perspective.
  • the portion where the crawler strap 210 is mated with the rear support member 201 is defined as a first segment 211;
  • the portion where the crawler strap 210 is mated with the front support member 203 is defined as a second segment 213;
  • the upper portion between the second segments 213 is defined as the upper segment 215;
  • the lower portion between the first segment 211 and the second segment 213 is defined as the lower segment 217.
  • the first segment 211 can also be defined as the portion where the track 210 is mated with the front support member 203
  • the second segment 213 is defined as the portion where the track 210 is mated with the rear support member 201.
  • the rear support member 201 has a guide wheel as an embodiment
  • the front support member 203 has a drive wheel as an embodiment
  • the first segment 211 is an arc portion of the track 210 and the guide wheel
  • the second segment 213 is an arc portion of the track 210 that is coupled to the drive wheel.
  • the driving wheel is located in front of the longitudinal direction of the intelligent lawn mower as a front wheel; the guiding wheel is located behind the longitudinal direction of the intelligent lawn mower as a rear wheel.
  • the positional relationship between the drive wheel and the guide wheel in the longitudinal direction is not limited, that is, the guide wheel can be used as the front wheel and is located in front of the longitudinal direction of the intelligent lawn mower.
  • the walking module 20 is coupled to the housing 10 by the axles of the drive and guide wheels.
  • the crawler belt 210 will generate a reverse direction to the driving wheel.
  • the first tension force F1, and the second tension force F2 that is the same as the forward direction is generated for the guide wheel.
  • the first tension F1 acts on the axle of the drive wheel and the second tension F2 acts on the axle of the guide wheel.
  • the tensioning force acts on the axle to form a torque, which causes the casing 10 and the axle to be deformed, so that the joint of the casing and the axle is easily broken, and the deformation of the axle causes the gear to be dislocated.
  • the present invention employs the frame module 40 to support and secure the walking module 20.
  • the walking module 20 is supported and fixed by the frame module 40 and is coupled to the housing 10 by the frame module 40.
  • the frame module 40 includes a bracket and a mounting portion.
  • the bracket is a body portion of the frame module 40 for securing the wheel set mounting portion, and to the housing 10, and forming the contour of the frame module 40.
  • the specific form of the mounting portion varies depending on the structural form of the front support member and the rear support member. In this embodiment, both the front support member and the rear support member are in the form of a wheel set, so the mounting portion is specifically in the form of a wheel set mounting portion.
  • the wheel set mounting portion is used to mount the drive wheel and the guide wheel.
  • the track 210 is wound around the drive wheel and the guide wheel.
  • the walking module 20 and the frame module 40 form an integral module that can be modularly coupled to the housing 10.
  • the walking module 20 is supported and fixed by the frame module 40 and is coupled to the housing by the frame module 40.
  • the frame module 40 is coupled to the housing 10 by various types of mechanical connections such as screwing, riveting, or welding.
  • the frame module 40 supports the lateral ends of the front support or/and the rear support, that is, both ends of the axle of the guide wheel and both ends of the axle of the drive wheel are supported by the frame module 40. Due to the supporting action of the frame module 40, the tension generated by the track 210 no longer forms a cantilever with the axle to generate torque, thereby preventing the casing 10 from being deformed and the track 210 from being dislocated.
  • the frame module 40 includes a wheel set mounting portion and a bracket.
  • the bracket includes a first fixed plate 401 and a second fixed plate 403 which are spaced apart, oppositely disposed.
  • the first fixing plate 401 and the second fixing plate 403 are parallel to each other.
  • the wheel assembly mounting portion includes a first central shaft 405 and a second central shaft 407.
  • the first central shaft 405 and the second central shaft 407 are both disposed between the first fixing plate 401 and the second fixing plate 403, and the two are along the shell.
  • the longitudinal direction of the bodies 10 is spaced apart by a predetermined distance.
  • the guide wheel is mounted on the first central shaft 405, and the guide wheel rotates about the first central axis 405 as the smart mower 100 travels.
  • the drive wheel is mounted on the second central shaft 407, and the drive wheel rotates about the second central axis 407 as the smart mower travels.
  • the distance from the first central axis 405 to the second central axis 407 is from 200 mm to 800 mm.
  • the walking module 20 is coupled to the housing 10 by the frame module 40 such that the smart mower 100 can be modularly assembled by mounting the walking module 20 and the frame module 40 as a unit to the housing 10.
  • the user When assembling, the user assembles the driving wheel and the guiding wheel to the second central shaft 407 and the first central shaft 405 respectively; and then the first fixing plate 401 and the second fixing plate 403 are integrally connected;
  • the fixed plate 401 is fixedly coupled to the side of the casing 10 by screw riveting, snapping, or the like.
  • the track tension does not generate torque to the first central axis and the second central axis due to the support restraining action of the first fixed plate 401 and the second fixed plate 403. Therefore, the technical solution of the frame module 40 to the walking module 20 to the housing 10 is less likely to cause a tooth removal phenomenon, and the housing 10 and the first fixing plate 401 are not easily broken at the joint.
  • the force points of the track 210 and the ground/working surface are only two positions where the driving wheel and the guiding wheel are in contact with the ground, so that the pressure at the two positions is large, and it is easy to grind the lawn. Pressure damage. Also, since the crawler belt 210 and the ground/working surface are subjected to only two positions, the remaining portion of the crawler belt 210 that is in contact with the ground/working surface is prone to uneven force during operation, resulting in slippage or tooth removal.
  • the smart lawn mower 100 further includes a lower support 410.
  • the lower support member 410 is used to support the portion of the track that is in contact with the ground/working surface, increasing the number of points of force on the track 210 and the ground/working surface, and dispersing the pressure of the track 210 against the ground/working surface.
  • the specific configuration of the track support portion 410 may be a support block disposed along the lower track portion 217. More preferably, in order to reduce the friction between the track 210 and the lower support 410, the structure of the lower support 410 may adopt a wheel structure, a floating structure, a spherical structure or the like.
  • the lower support 410 is disposed between the first central axis 405 and the second central axis 407 of the frame module 40.
  • the lower support member 410 includes a plurality of support shafts 411 disposed between the first fixed plate 401 and the second fixed plate 403, and a support roller 413 rotatably movable about the support shaft 411.
  • the support roller 413 is in mating contact with the inner surface of the lower track section 217.
  • the lower support 410 can also have a structure that supports the upper section 215.
  • the lower support member 410 can also adopt other structures, and only the joint between the lower support member 410 and the crawler belt 210 can be rolled and rubbed, and the specific shape can be a roller, a ball, a ball, an arc, or the like.
  • the lower support member 410 increases the stress point of the lower section 217 and the working surface/ground, so that the crawler belt 210 is not easily slipped from between the driving wheel and the guide wheel, that is, the tooth removal phenomenon is less likely to occur. Since the force point of the crawler belt 210 increases, the pressure of the whole section 217 on the working surface/ground is dispersed to the respective force points, so that the pressure of each force point is relatively small, and the intelligent lawn mower is walking. The wear of the lawn will not be too large during the process.
  • the frame module 40 of the present invention is remote from the outside of the housing 10.
  • the protective device may specifically be a closed protective plate.
  • the guard may also be a separate component that does not belong to the frame module 40 and is mated to the side of the frame module 40 that is remote from the outside of the housing 10.
  • the second fixing plate 403 of the frame module 40 away from the outer side of the housing 10 is a fully enclosed plate shape for covering the hollow portion of the inner ring of the track 210.
  • the second fixing plate 403 covers the working module 108 at the bottom 14 of the housing from the side to prevent the human hand or foot from contacting the working module 108 from the side of the housing 10.
  • the second fixing plate 403 covers the portion where the crawler belt and the wheel set cooperate from the side to prevent the hand or foot from being caught in the track running process.
  • the second fixing plate 403 can also adopt other types of specific shapes, and it is only necessary to prevent the human hand or the foot from directly contacting the working module 108 and the rod portion of the track and the wheel set.
  • the intelligent mower 100 is an automatic working and walking machine that needs to adapt to various types of lawn terrain. From the wheeled walking structure to the crawler walking structure, the terrain adaptability of the intelligent mower 100 has been greatly improved. As a crawler type intelligent lawn mower, the terrain adaptability can be further improved by the structural setting. The lower the center of gravity of the intelligent mower, the better its climbing performance and cornering performance. The smaller the radius of the wheel mower of the intelligent mower, the lower the height of the overall fuselage, and the lower the center of gravity of the intelligent mower. At the same time, intelligent lawn mowers need certain obstacles to overcome obstacles such as potholes and bumps on the lawn. The larger the radius of the wheel of the intelligent lawn mower, the larger the maximum size that can pass the obstacle, that is, the better the obstacle resistance.
  • the former support and the rear support of the crawler type intelligent lawn mower are the crawler belts which are arranged at both ends, and the height of the front support member is different from the height of the rear support member, so that the height of the two ends of the crawler belt It is different.
  • the two ends of the crawler belt are a first segment 211 and a second segment 213, respectively.
  • the height of the first segment 211 is H1
  • the height of the second segment is H2.
  • the rear support member employs a guide wheel
  • the front support member employs a drive wheel.
  • the crawler belts 210 are respectively disposed on both ends of the guide wheel and the driving wheel.
  • the height of the first section 211 of the track corresponds to the diameter of the guide wheel or drive wheel it is wound around
  • the height of the second section 213 of the track corresponds to the diameter of the drive wheel or guide wheel it is wound around.
  • the heights of the two ends of the track 210 are different, which corresponds to the different diameters of the drive wheel and the guide wheel.
  • the size of the wheel diameter does not affect its function as a guiding function or a driving function, and therefore, the guide wheel and the driving wheel in the walking module 20 are separately named as the first wheel 202 and the second wheel 204.
  • the intelligent lawn mower 100 has small diameter wheels so that the overall center of gravity can be lowered downwards; at the same time, the intelligent lawn mower 100 also has large diameter wheels, thereby still having the advantage of being obscured.
  • the ratio of the diameter of the first wheel 202 to the diameter of the second wheel 204 ranges from 1:1.5 to 1:5.
  • the diameter of the first wheel 202 has a specific value ranging from 50 mm to 180 mm.
  • the diameter of the second wheel 204 has a specific value ranging from 75 mm to 400 mm.
  • the first wheel 202 of small diameter may be used as the drive wheel 203, or the second wheel 204 of large diameter may be used as the drive wheel 203.
  • the premise that the whole machine can climb or cross the obstacle is that the front wheel can pass obstacles or uphill, so the obstacle climbing ability is closely related to the front wheel.
  • the second wheel 204 having a larger size is used as the front wheel (in comparison with the forward direction of the intelligent lawn mower), and the first wheel 202 having a smaller size is used as the rear wheel, which can significantly improve the whole machine. The ability to overcome obstacles and climb.
  • the factors affecting the height of the center of the intelligent mower 100 are mainly the height of the center of gravity of various heavy-duty parts.
  • This type of heavy-duty components mainly includes a motor that drives the drive wheels, a reduction gearbox for adjusting the speed of the drive motor, a motor that drives the work module, and an energy storage module for storing energy. Therefore, one of the methods of controlling the height of the center of gravity of the intelligent lawn mower 100 can be achieved by controlling the arrangement and height of such components.
  • a high speed and small volume motor is generally used as the drive motor.
  • the motor 102 generally decelerates through the reduction gearbox 105 and then drives the drive wheel to rotate at a preset speed.
  • the speed reducer 105 may specifically be a transmission mechanism that changes a rate ratio such as a planetary gear.
  • the motor 102, the reduction box 105 and the driving wheel are generally arranged coaxially or coaxially in parallel.
  • the height of the center of gravity of the corresponding motor 102 and the reduction box 105 also decreases as the diameter of the driving wheel decreases.
  • the center of gravity of the motor 102 is from 25 mm to 90 mm from the working surface/ground; the center of gravity of the reduction box 105 is from 25 mm to 90 mm from the working surface/ground.
  • the height of the center of gravity of the intelligent mower 100 is 25 mm to 160 mm.
  • the motor that drives the work module 108 is located at an intermediate portion of the containment chamber.
  • other weighting members such as the energy module 106 are installed in the vicinity of the receiving chamber near the guide wheel 201.
  • the center of gravity of the intelligent lawn mower is not higher than the center of the wheel of the first wheel 202 and the center of the wheel of the second wheel 204, that is, the center of gravity of the whole machine is lower than that of the larger wheel. Wheel center to obtain good obstacle climbing performance and sports performance.
  • the center of gravity of the whole machine should not be lower than the center of the wheel of the smaller wheel.
  • the small-diameter driving wheel can also be provided as a front wheel, which is disposed in front of the longitudinal direction; and a large-diameter guiding wheel is provided as a rear wheel, which is disposed rearward in the longitudinal direction.
  • the crawler type smart mower 100 Since the crawler type smart mower 100 has a strong climbing ability, if the track 210 can directly contact an object in front of it, the track will directly fly over the object in front, whether the object in front is an obstacle, or a human foot, or Tree pole piles, etc.
  • the intelligent lawn mower 100 includes a track stop 52 at the end of the track 210.
  • the track type smart mower is provided with a track stop 52 at each of the four ends of the track.
  • the obstacle first hits the track stopper 52.
  • the intelligent lawn mower 100 also includes a crash sensor 60 for detecting whether a track stop 52 has a collision event.
  • the collision sensor 60 senses the collision event and transmits the detection result to the control module 104, and the control module 104 controls the intelligent lawn mower 100 to turn or retreat to prevent the track 210 from directly running over. The object in front of it.
  • the track stopper 52 is disposed on the top cover 50.
  • the top cover 50 is movably coupled to the top of the housing 10.
  • the collision sensor 60 detects the relative displacement of the top cover 50 and the housing 10, and transmits the detection result to the control module 104.
  • the control module 104 determines that there is an obstacle ahead, and controls the intelligent lawn mower 100 to turn or retreat.
  • the track stop 52 has a certain width and a certain height and a certain distance from the outer surface of the track arc. Since the four track members 52 all need to satisfy the same design conditions in terms of height, width, and spacing, the following description takes a track stopper 52 as an example.
  • the track stopper 52 in order to detect the obstacle in front of the track, the track stopper 52 needs to cover less than half of the diameter of its corresponding track arc in the vertical direction. Specifically, the height d of the crawler shutter 52 at the free end in the vertical direction from the work surface/ground ranges from 40 mm to 70 mm.
  • the track stop 52 When the distance between the track guard 52 and the outer surface of the end of the track is too large, when the intelligent mower 100 climbs the slope, the track stop 52 first contacts the upper slope, and the collision sensor 60 senses the collision event. And transmitting the sensing result to the control module 104.
  • the control module 104 determines that the front is an obstacle, thereby controlling the intelligent lawn mower 100 to turn or retreat, affecting the climbing ability of the whole machine.
  • the distance W of the track stopper 52 from the inner surface of the end portion of the crawler needs to be 50 mm or less.
  • the track stopper 52 is a cover plate of a predetermined shape.
  • the track stop 52 can also be a brace similar to a bumper.
  • the bar includes a wire member that is wound in a predetermined manner into a body having a height and a width.
  • the track stopper 52 is a wire member and a wire member. Extending from the housing 10 or the floating cover 50 toward the track side, the front end of the end of the track 210 is surrounded by a predetermined shape such as a paper clip shape, a rectangular shape, a circle shape or the like.
  • the predetermined shape has a certain height and width to form a stop barrier in front of the end of the track 210.
  • the collision sensor 60 may specifically be a Hall element, a micro switch, or a magnetic signal sensor or the like.
  • the wheeled smart lawn mower is designed to prevent the hand or foot from contacting the work module 108 from the front or the rear.
  • the wheeled smart lawn mower is provided with a top cover that is movable relative to the housing.
  • the front end portion and the rear end portion of the top cover are greater in longitudinal length than the longitudinal length of the housing, and the top cover extends downwardly at a distance in the vertical direction to form a front and rear protective barrier.
  • the front end and the rear end of the top cover may only slightly exceed the longitudinal length of the casing, or be equal to or smaller than the longitudinal length of the casing.
  • the top cover does not extend downward a distance to form a protective barrier for the front and rear ends.
  • the top cover is used to cover the free end of the main body portion of the housing in the vertical direction, and the height of the working surface is greater than 70 mm, so as not to affect the climbing performance of the crawler type intelligent lawn mower.
  • a guard 30 is provided on the housing base 14.
  • the guard 30 is located in front of the work module 108 and a protective barrier is formed in front of the work module 108 to prevent a person's hand or foot from contacting the work module 108.
  • One end of the guard 30 is coupled to the housing base 14 and the other end is a free end, forming a barrier having a predetermined height in the vertical direction.
  • the free end of the guard 30 is between 40 mm and 70 mm from the ground or working surface.
  • the guard 30 is laterally disposed on the housing base 14 and has a left end 31 and a right end 32 forming a barrier having a predetermined length in the lateral direction.
  • the lateral length of the guard 30 is greater than the lateral length of the working module 108.
  • the guard The lateral length of 30 is greater than the sum of the lateral lengths of the plurality of working modules 108.
  • the shortest distance of the left end 31 of the guard 30 from the left edge of the housing base 14 is less than or equal to 20 mm; the right end 32 of the guard 30 is from the right edge of the housing base 14.
  • the shortest distance is greater than or equal to 10 mm.
  • the lateral arrangement of the guards 30 only defines the direction in which the guards 30 are disposed at the bottom 14 of the housing and does not define the arrangement of the guards 30.
  • the lateral arrangement of the guard 30 is arranged along the lateral shape of the housing bottom 14.
  • the guard 30 can also be laterally disposed on the bottom 14 of the housing in other shapes, such as a linear shape, an arc shape, an irregular shape, and the like.
  • the guard 30 is located in front of the work module 108 and forms a distance in the longitudinal direction from the work module 108 to better block human or foot contact.
  • the shortest distance s of the guard 30 to the working module 108 is greater than or equal to 10 mm. As shown in FIG. 7, in this embodiment, the shortest distance from the guard 30 to the working module 108 is specifically the distance from the end of the cutting element 1083 to the longitudinal rear end of the guard 30.
  • the specific structure of the guard 30 may be a plate shape.
  • the guard 30 is provided with a recess in the vertical direction.
  • the guard 30 is entirely in the shape of a comb or a fence.
  • the guard 30 includes a plurality of combs (fences), and there is a gap between the combs (the fence), and the grass can pass through or partially through the gap, thereby effectively reducing the degree of grass pressing and avoiding the work module 108 not contacting the grass. .
  • the guard 30 still needs to have a protective function, so the spacing S between adjacent comb teeth cannot be too large. In this embodiment, the separation distance S between adjacent comb teeth is 20 mm or less.
  • the guard 30 can also be disposed behind the working module 108.
  • the specific structure and setting mode are similar to the above description, and details are not described herein again.
  • the housing base 14 can be provided with a plurality of guards 30, specifically disposed in front of and behind the working module 108, or around the working module 108.
  • the specific structure and setting mode are similar to the above description, and are not described herein again.
  • FIG. 8 is a structural view of an automatic lawn mower according to another embodiment of the present invention.
  • the automatic mower 100 includes a housing, and a moving module including a crawler belt 210 driven by a drive motor to drive the automatic mower 100 to move.
  • the mobile module further includes a front wheel 204 and a rear wheel 202, and the track is wound around the front wheel 204 and the rear wheel 202.
  • the mobile module may not include the front or rear wheels as long as a drive mechanism that drives the crawler movement and a support mechanism that supports the movement of the track are provided.
  • the automatic mower includes two sets of crawlers 210, which are respectively disposed on both sides of the moving direction of the automatic mower.
  • the automatic mower also includes a cutting module (not shown) that performs mowing work.
  • the cutting module includes a blade.
  • the automatic mower also includes a control module that controls the movement and operation of the automatic mower, and the control module includes a processor and a control circuit.
  • the moving module, the cutting module and the control module are all mounted to the housing.
  • the automatic mower also includes an energy module that includes a battery pack that provides energy for the movement and operation of the automatic mower.
  • the movement of the automatic lawn mower referred to in this embodiment includes the steering motion of the automatic lawn mower.
  • the intelligent lawn mower includes a first sensor for detecting a first area in a moving direction and a second sensor for detecting a second area in a moving direction.
  • the first area and the second area are arranged perpendicular to the moving direction.
  • the intelligent lawn mower is moving, the whole machine is located in a space formed by the first area and the second area.
  • the first area and the second area are disposed along the longitudinal direction of the smart mower 100 and at least partially overlap to prevent vertical detection blind spots of the two sensors when the smart mower is in a slope (ie, when tilted).
  • the upper boundary of the first region is not less than 150 mm
  • the lower boundary of the second region is not higher than 150 mm.
  • the first sensor and the second sensor may be two identical contact sensors or non-contact sensors, and of course the above contact sensors (ie, the aforementioned collision sensor 60) and a non-contact sensor may be selected.
  • the above contact sensor and a non-contact sensor 9 are selected.
  • the control module controls the smart mower 100 to avoid obstacles, specifically turning or retreating; if the contact sensor detects an obstacle, then the smart cutting The grass machine 100 has been in contact with the obstacle, so the control module first controls the intelligent lawn mower to retreat before it can make a turning action or maintain a backward movement.
  • the non-contact sensor 9 detects an obstacle in the moving direction of the automatic mower; if the non-contact sensor 9 detects that there is an obstacle in the moving direction of the automatic mower, the control module adjusts automatically. How the mower moves. Specifically, if the non-contact sensor 9 detects that there is an obstacle in the moving direction of the automatic mower, the control module will control the automatic mower to stop moving before hitting the obstacle.
  • the non-contact sensor 9 is electrically connected to the control module.
  • the control module When the non-contact sensor 9 detects that there is an obstacle in the moving direction of the automatic mower, the control module generates a signal, the control module processes the electrical signal, and controls the mobile module to adjust the automatic cutting. The way the grass machine moves.
  • the automatic lawn mower in this embodiment uses the crawler belt 210 to drive the automatic lawn mower to move, so that the automatic cutting machine The grass machine has good climbing ability and obstacle resistance.
  • the automatic mower uses a non-contact sensor 9 to detect obstacles in the moving direction, so that the automatic mower detects the presence of an obstacle before contacting the obstacle, thereby being able to adjust the movement in time to avoid obstacles, especially It is the human body that causes shock and injury.
  • the automatic lawn mower in this embodiment ensures safety while improving performance.
  • the automatic lawn mower in this embodiment has a large mass, and the automatic lawn mower has a large inertia and has a strong ability to move on a rough surface. In this embodiment, the mass of the automatic lawn mower is greater than 12 kg.
  • the mass of the automatic lawn mower is between 16 and 18 kg.
  • the high quality of the automatic mower is related to the structural characteristics of the crawler automatic mower on the one hand.
  • the automatic lawn mower has a large moving speed, and is embodied in a strong ability to overcome external forces, including self-gravity work, and can well overcome the resistance during movement, such as the resistance when moving on a slope.
  • the maximum value of the moving speed of the automatic mower is greater than 0.45 m/s.
  • the maximum moving speed of the automatic mower is between 0.45 and 0.6 m/s. Due to the obstacles and climbing ability of the track 210, the automatic mower can maintain a large moving speed during the movement.
  • the maximum value of the product of mass and speed when the automatic mower moves is greater than 5 kg ⁇ m/s, preferably, the momentum of the automatic mower when moving The maximum value is between 7.2-10.8 kg ⁇ m/s.
  • the greater the momentum of the automatic mower when moving the greater the impulse when the automatic mower collides with the obstacle.
  • the impact force on the collision is greater for a specific obstacle.
  • the automatic The maximum impact force when the mower hits the tree is greater than 200N.
  • the quality and moving speed of the automatic mower is large, which means that the automatic mower has a large kinetic energy and a strong damage capability when hitting an obstacle. Therefore, in the movement process of the automatic mower of the embodiment, it is particularly important to avoid the direct collision of the automatic mower to the obstacle, and the non-contact sensor 9 is used to detect the obstacle in the moving direction of the automatic mower. Especially valuable and meaningful.
  • the crawler belt 3 at the front end of the automatic lawn mower is at least partially exposed. Specifically, at the front end of the moving direction of the automatic lawn mower, at least the track 3 is rotated. The part below the center of rotation of the movement is exposed. As shown in Fig. 1, the crawler belt 3 of the automatic lawn mower is driven by a drive motor to perform a rotary motion to drive the automatic lawn mower to move. In the present embodiment, the crawler belt 3 is wound around the front wheel 204 and the rear wheel 202, and is driven by the rear wheel 202 to perform a swinging motion. In the front end of the mower automatically moving direction, i.e., in the A side in FIG.
  • the rotational center of the rotary movement of the track 210 is a front wheel rotational center O 1 204, track 210, at least 204 at the center of rotation O of the front wheel 1 or less Partially exposed.
  • the automatic lawn mower may not include a front or rear wheel, and may include other drive or support structures, only to ensure that the front end of the automatic mower is moving, the center of rotation of the track 210 in its swivel motion The following sections are exposed.
  • the casing of the automatic mower includes an upper cover 12, and the upper cover 12 partially covers the crawler. At the front end of the automatic mower, the lower edge of the upper cover 12 is separated from the working plane by a distance greater than the rotation of the track 210.
  • the upper cover 12 of the housing covers a portion of the track 210, such as a portion that is disposed between the front wheel 204 and the rear wheel 202 that does not contact the work surface, protecting it from sun exposure or rain.
  • the coverage of the upper cover 12 is restricted, and the upper cover 12 is at the front end of the moving direction of the automatic mower.
  • the automatic lawn mower may not include the front wheel, and the upper cover 12 may be not lower than the rotation center of the rotary motion of the crawler belt 210 at the front end of the automatic mower moving direction.
  • the portion of the upper cover 12 covering the width range of the crawler belt 210 may satisfy the above conditions.
  • the track 210 can be exposed as much as possible, that is, the distance from the lower edge of the upper cover 12 to the working plane is as large as possible.
  • the upper cover 12 It is also possible not to cover the track 210.
  • the crawler belt 210 since the portion below the rotation center of the rotary motion of the crawler belt 210 is exposed at the front end of the automatic lawn mower, the crawler belt 210 can contact the obstacle in the moving direction of the automatic lawn mower and pass over the obstacle, greatly The ground has improved the ability of the automatic mower to overcome obstacles.
  • the crawler belt 210 can contact the obstacle in the moving direction of the automatic mower and has the ability to climb over the obstacle, when the obstacle in the moving direction of the automatic mower is the human body, or the obstacle such as the tree is erected.
  • the track 210 may cause crushing damage to the obstacle, and since the automatic mower can further move forward after contacting the obstacle, the obstacle will contact automatically.
  • the blade under the lawn mower causes damage. Therefore, in the movement of the automatic mower in the embodiment, it is particularly important to detect the obstacle in the moving direction of the automatic mower by using the non-contact sensor 9, and the non-contact sensor 9 can recognize the erected obstacle.
  • the automatic mower adjusts the movement mode in time, so that the safety of the automatic mower is improved while the performance of the automatic mower is improved.
  • the effective detection range of the proximity sensor 9 in order to protect the obstacle in the moving direction of the automatic mower from the damage of the track 210, the effective detection range of the proximity sensor 9 must be made to cover the area directly in front of the track 210. Specifically, in a direction parallel to the working plane of the automatic mower and perpendicular to the moving direction of the automatic mower, the effective detecting width of the non-contact sensor 9 covers the width range of the crawler belt 210. As shown in Fig. 9, the effective detection range of the non-contact sensor 9 covers at least the width range of the shaded portion.
  • the effective detection width of the non-contact sensor 9 is greater than the width of the automatic mower, that is, the effective detection width of the non-contact sensor 9 covers the width range of the track 210 and the width range between the tracks 210.
  • the non-contact sensor 9 has the above-mentioned effective detection range, so that the non-contact sensor 9 can detect the obstacle directly in front of the movement of the automatic mower, and avoid the automatic mower colliding with the obstacle during the movement, especially avoiding the obstacle It is protected by the crushing of the track 210, thus ensuring the safety of the automatic mower.
  • the non-contact sensor 9 also has a detection dead zone, such as the area under the baffle (or because the distance is too close), and the detection signal cannot be reached due to the shielding of the guard. Within this area. Therefore, the foregoing collision sensor can be used in combination with the non-contact sensor, and the detection area of the collision sensor can cover at least the blind zone to ensure that obstacles can be detected in the forward direction, so that the control module can timely control the intelligent lawn mower. Avoid obstacles, avoid damage to people or animals, and protect the smart mower itself from damage caused by intense collisions. In other embodiments, the crash sensor can also be other forms of touch sensors.
  • the control module adjusts the movement mode of the automatic mower. Specifically, after the distance between the automatic lawn mower and the obstacle detected by the non-contact sensor 9 is less than or equal to the predetermined first distance, the control module controls the automatic lawn mower to stop moving. As shown in FIG. 10, when the non-contact sensor 9 detects that there is an obstacle in the moving direction of the automatic mower, it does not stop moving immediately, but continues to travel after a certain distance.
  • the non-contact sensor 9 is an ultrasonic sensor.
  • the ultrasonic sensor When an obstacle exists in the second distance in front of the automatic mower, the ultrasonic sensor does not detect the presence of an obstacle, and the area where the ultrasonic sensor does not detect the obstacle is called It is a blind spot for the ultrasonic sensor.
  • the distance between the automatic mower and the obstacle when the automatic mower stops moving is less than the second distance, that is, the braking distance of the automatic mower is smaller than the dead zone distance of the ultrasonic sensor.
  • the ultrasonic sensor detects that there is an obstacle in the moving direction of the automatic mower, and the control module controls the automatic mower to continue moving, when the distance between the automatic mower and the obstacle reaches the first At two distances, the ultrasonic sensor detects no obstacles and controls the mode.
  • the block judges that the obstacle enters the blind zone of the ultrasonic sensor. Since the blind zone distance is known, the automatic mower can continue to move for a certain distance, and the moving speed of the automatic mower is known. Therefore, the automatic mower is controlled by controlling the delay time T.
  • the distance to continue moving, after the delay time T the control module controls the automatic mower to stop moving.
  • the control module determines that the first distance that causes the automatic mower to stop moving may be equal to the second distance or less than the second distance. After the control module determines that the distance between the automatic mower and the obstacle reaches the first distance, the automatic mower brake can be directly controlled, and the automatic mower brake can be controlled after the delay time T.
  • the control module adjusts the movement of the automatic mower to ensure the safety of the automatic mower while allowing the automatic mower to move as close as possible to the obstacle.
  • the control module causes the automatic mower to continue moving at the original traveling speed and stops moving before hitting the obstacle.
  • the control module can also control the automatic mower to reduce the driving speed, or control the automatic mower steering, or control the automatic mower to retreat, or can choose The combination of various driving strategies is not repeated here.
  • At least one of the non-contact sensors 9 is disposed on the front side of the moving direction of the automatic mower, so that an obstacle in the moving direction of the automatic mower can be detected.
  • the non-contact sensor 9 can also be disposed in multiple orientations of the automatic mower to detect obstacles at multiple angles and assist various driving strategies of the automatic mower.
  • the non-contact sensor 9 can also be set to have an adjustable detection angle to flexibly adapt to the movement and operation of the automatic mower.
  • the non-contact sensor 9 is an ultrasonic sensor, and the ultrasonic sensor has strong anti-interference ability and stable performance.
  • the non-contact sensor 9 can also be an optical sensor, such as an infrared sensor or camera, etc., as long as the presence of an obstacle can be detected before the automatic mower hits an obstacle.
  • a track wheel 1000 is also provided, that is, a drive wheel or guide wheel as previously described.
  • a track reel 1000 in accordance with an embodiment of the present invention includes two rims 1020 and a connecting portion 1040 connecting the two rims 1020 between the two rims 1020.
  • the rim 1020 includes a relative The first side 10201 and the second side 1021, the first side 10201 of the two rims 1020 are adjacent to each other and disposed opposite to each other.
  • a matching groove 1060 is disposed between the two rims 1020, and at least one rim 1020 is provided with a matching
  • the through hole 1022 penetrates through the groove 1060 and the second side 1021 so that an object in the fitting groove 1060 can pass through the through hole 1022.
  • the through holes 1022 are defined in the two rims 1020. That is It is said that at least one rim 1020 of the track wheel 1000 is provided with a discharge passage that communicates with the track and the rim 1020 and communicates with the outside of the track wheel 1000 so as to be mixed with the mud at the meshing of the track and the rim 1020 or Grass or the like is discharged to the outside of the crawler wheel 1000.
  • the track cooperates with the rim 1020 to be wound around the track wheel 1020.
  • the mud or grass can enter the mating groove 1060 and be discharged to the rim through the through hole 1022.
  • the second side 1021 of the 1020 that is, the outer side of the track wheel 1000, prevents mud or grass from being caught on the track wheel 1000, and ensures continuous normal operation of the track wheel 1000.
  • the rim 1020 includes a bottom plate 1024 and a flange 1026 disposed at an edge of the bottom plate 1024.
  • the through hole 1022 is defined in the bottom plate 1024, and the track is engaged with the flange 1026 of the rim 1020.
  • the bottom plate 1024 of the rim 1020 is provided with a reinforcing frame 1028.
  • the reinforcing frame 1028 includes a hollow cavity, and the through hole 1022 communicates with the hollow cavity.
  • the rim 1020 is provided with a plurality of spaced reinforcing frames 1028. The strength of the rim 1020 can be enhanced by providing a stiffening frame 1028 that not only reduces the weight of the rim 1020, but also discharges mud or grass out of the track wheel 1000 by communicating with the through holes 1022.
  • the through hole 1022 may not communicate with the hollow cavity of the reinforcing frame 1028, but directly communicate with the second side 1021 of the rim 1020, but the through hole 1022 communicates with the hollow cavity of the reinforcing frame 1028 and is discharged from the reinforcing frame 1028.
  • the mud or grass will be discharged to the outer position of the crawler wheel 1000, which is more conducive to the discharge of mud or grass.
  • the stiffening frame 1028 is stepped and includes a root 10282 that is closer to the center of the bottom plate 1024 and a top portion 10284 that is distal from the center of the bottom plate 1024 and that is coupled to the flange 1026.
  • the top portion 10284 is disposed obliquely, and the side remote from the root portion 10282 is angled toward one side of the flange 1026, and correspondingly, the hollow cavity of the reinforcing frame 1028 is also inclined with the top portion 10284.
  • the crawler wheel 1000 further includes a hub 1090 disposed at the center of the rim 1020.
  • the hub 1090 is provided with a connecting hole at the center to mount the crawler wheel 1000 to the frame of the crawler running mechanism.
  • the present invention also provides a crawler track mechanism comprising a track and the track wheel 1000, the track wheel 1000 including a drive wheel and a guide wheel, the track being wrapped around the drive wheel and the guide wheel.
  • the present invention also provides a crawler type intelligent lawn mower comprising the above-mentioned crawler running mechanism, a body mounted to the crawler running mechanism, and a working part for mowing, and the working component is mounted to the body.
  • the present invention may have other implementations, such as a specific structural design that does not use a crawler type intelligent lawn mower as a carrier, but other types of tracked services.
  • the mobile device is a carrier, such as a clean self-mobile device, a self-mobile device, a snow-swept self-mobile device, etc., but as long as the technical essence employed is the same or similar to the present invention, or any changes made based on the present invention and Substitutions are all within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Harvester Elements (AREA)

Abstract

本发明提供了一种自移动设备,包括:壳体,设置有马达;移动模块,包括履带,履带在马达驱动下移动自移动设备;工作模块;控制模块,控制移动模块移动及工作模块工作;第一传感器及第二传感器,检测自移动设备在移动方向上的障碍物;所述第一传感器用于检测移动方向上的第一区域,所述第二传感器用于检测移动方向上的第二区域,所述第一区域及第二区域垂直于移动方向进行布置;所述控制模块根据第一传感器及第二传感器的感测结果控制自移动设备的移动方式。

Description

自移动设备及其控制方法 技术领域
本发明涉及一种自移动设备,尤其涉及一种履带式智能割草机。
背景技术
随着计算机技术和人工智能技术的不断进步,类似于智能自移动设备的智能割草机已经开始慢慢的走进人们的生活。智能割草机能够自动在用户的草坪中割草、充电,无需用户干涉。这种自动工作系统一次设置之后就无需再投入精力管理,将用户从清洁、草坪维护等枯燥且费时费力的家务工作中解放出来。
传统的智能割草机都采用轮式行走结构,而轮式行走结构在爬坡、越障等性能方面不佳,无法适应复杂地形。针对轮式行走结构存在的问题,很多商家尝试采用履带式行走结构。履带式行走结构具有很好的爬坡和越障性能,能够适应复杂的地形。行走结构由轮式转变为履带式势必会引起智能割草机外形结构的变化,从而需要克服一些结构设计难题。
为了减小草面和机身的摩擦带来的行走阻力,智能割草机的壳体底部距离地面会有一段距离,这段距离使得人的脚或手能够伸入到壳体下方并接近作为切割元件的刀条等。为了保证操作者的人身安全,轮式智能割草机中设计一完全覆盖壳体的顶盖来阻止人手或脚从智能割草机的前方或后方伸入壳体下方且接触到切割元件。轮式中的全覆盖壳体的顶盖为了实现上述目的,结构上需要距离轮式行走机构和壳体预定空间距离。如果将轮式智能割草机中的顶盖直接用于履带式智能割草机,为了达到保证操作者的人身安全的目标,顶盖需要距离履带行走机构和壳体仍然需要预定空间距离,而该设计就会影响履带式智能割草机的爬坡和越障性能。因此,履带式智能割草机需要采用其他结构设计来防止人的脚或手伸入壳体下方并接近作为切割元件的刀片。
如果在智能割草机在行走过程中,履带可以直接接触其前方的物体,则由于履带式智能割草机的爬坡性能较好,履带会直接碾过前方的物体,无论前方的物体是障碍物、或人脚、或树杆桩部等。因此,履带式智能割草机需要设置一近距离的障碍物检测结构,用于检测近距离内的障碍物,防止履带直接碾过其前方的物体。另外,由于履带割草机的质量和速度都比普通的自动割草机大,在碰撞到障碍物时产生冲击力将大得多。更重要的是,由于履带具有良好的越障能力,在碰到障碍物(也包括人体)时,不会立刻停止运动,履带割草机的 进一步运动一方面对障碍物造成了碾压伤害,另一方面,切割部件(例如刀片)会直接接触到障碍物,造成损伤。
如本领域技术人员所知,车辆的爬坡性能与智能割草机的重心高度相关,当重心越低时,车辆的爬坡性能越好。为了使履带式智能割草机的爬坡性能更进一步,需要对履带式智能割草机结构进行设计使其重心降低。
履带式智能割草机在行走过程中,履带会产生张力,该张力会对驱动轮和导向轮与壳体相连接的悬臂产生张紧力,从而容易导致轮组与壳体连接的悬臂处产生强度断裂。张紧力会引起壳体和轮轴发生形变,从而履带容易从驱动轮和导向轮上脱齿。
履带式智能割草机在行走过程中,绕设于导向轮和驱动轮之间的履带会与工作表面接触。当履带的受力点只存在两个受力点(即导向轮与工作表面接触点和驱动轮与工作表面接触的点)时,履带很容易从驱动轮和导向轮之间滑脱,即发生脱齿现象。而且由于履带的受力点只存在两个受力点,该两个受力点的压强就会较大,智能割草机在行走过程中会对草坪的磨损过大。
履带式智能割草机在行走中,履带板与履带轮啮合的中间间隙会带入泥或草,当履带运行一段时间后会卡在履带板和履带轮之间,增大行车阻力。当增加到行走困难时需要停车,用高压水泵冲洗干净,方可继续运行,有时候甚至需要将履带板拆卸下来,清除干净后,再重新安装履带板后才能启动车辆。特别是对于履带式智能割草机而言,不断有草割除,很容易在履带板和履带轮之间存积草,不但影响车辆的行走,还会浪费功耗影响工作效率,甚至还有使履带板脱离履带轮的风险。
因此,履带式智能割草机想要与轮式智能割草机分享市场,必须要从结构方面解决上述问题。
发明内容
本发明提供一种自移动设备,该自移动设备的结构设计既满足爬坡等越野性能,又具备很好的安全性能,且避免运行过程中的压草等问题。
为解决现有技术存在的问题,本发明采用的一种技术方案是:一种自移动设备,包括:壳体,设置有马达;移动模块,包括履带,履带在马达驱动下移动自移动设备;工作模块,在移动状态和/或非移动状态进行工作;控制模块,控制移动模块移动及工作模块工作;第一传感器及第二传感器,检测自移动设备在移动方向上的障碍物;所述第一传感器用于检测移动方向上的第一区域, 所述第二传感器用于检测移动方向上的第二区域,所述第一区域及第二区域垂直于移动方向进行布置;所述控制模块根据第一传感器及第二传感器的感测结果控制自移动设备的移动方式。
优选的,所述第一区域及第二区域沿自移动设备的高度方向设置。
优选的,所述第一区域及第二区域至少部分重叠。
优选的,第一区域的上边界不低于150毫米,所述第二区域的下边界不高于150毫米。
优选的,所述第一传感器和/或第二传感器检测到障碍物后,所述控制模块控制所述自移动设备避开障碍物。
优选的,所述第一传感器为非接触式传感器,第二传感器为接触式传感器。
优选的,所述自移动设备还包括对履带进行防护的履带挡件,所述第二传感器设置于履带挡件。
优选的,所述自移动设备还包括对履带进行防护的履带挡件,所述第二传感器设置于履带挡件。
优选的,所述履带挡件的数量为4个,分别对应位于所述壳体两侧履带的两个端部的前上方。
优选的,所述履带挡件在竖直方向的最下端离工作表面的高度距离为40毫米到70毫米。
优选的,所述履带挡件在竖直方向的最下端低于所述履带末端在竖直方向上高度的一半以下。
优选的,所述履带挡件距离所述履带挡件下方的履带的最短距离小于等于50毫米。
优选的,所述履带挡件的横向宽度大于所述履带的横向宽度。
优选的,所述履带挡件的外侧边离所述履带的外侧边距离大于等于5毫米。
优选的,所述接触式传感器包括霍尔传感器、磁信号感应传感器或微动开关。
优选的,所述履带挡件为预定形状的覆盖板。
优选的,所述履带挡件为挡杆。
优选的,所述挡杆包括钢丝件以预定方式绕制成具有高度和宽度的形状体。
优选的,所述自移动设备包括与壳体活动连接的顶盖,所述履带挡件设置在所述顶盖的端角。
优选的,所述接触式传感器检测所述顶盖相对所述壳体的位移。
优选的,自移动设备移动时的动量的最大值大于5kg·m/s。
优选的,自移动设备的质量大于12kg。
优选的,自移动设备的移动速度的最大值大于0.45m/s。
优选的,在自移动设备移动方向的前端,履带的至少在其回转运动的旋转中心以下的部分外露。
优选的,壳体包括上盖,所述上盖部分覆盖履带;在自移动设备移动方向的前端,上盖的下边缘与工作平面的距离大于履带回转运动的旋转中心与工作平面的距离。
优选的,以平行于自移动设备的工作平面且垂直于自移动设备的移动方向的方向为宽度方向,非接触式传感器的有效检测宽度覆盖履带的宽度范围。
优选的,非接触式传感器的有效检测宽度大于自移动设备的宽度。
优选的,自移动设备与非接触式传感器检测到的障碍物的距离小于或等于预定的第一距离后,控制模块控制自移动设备停止移动。
优选的,自移动设备与非接触式传感器检测到的障碍物的距离小于或等于第一距离后,控制模块延时时间T控制自移动设备停止移动。
优选的,非接触式传感器为超声波传感器,当自移动设备前方第二距离内存在障碍物时,超声波传感器检测不到障碍物的存在,第一距离小于或等于第二距离。
优选的,若非接触式传感器检测到自移动设备前方存在障碍物,则控制模块可选择地控制自移动设备减速,或转向,或后退。
优选的,非接触式传感器的至少其中一个设置在自移动设备移动方向的前侧。
优选的,非接触式传感器为超声波传感器,或光学传感器。
为解决现有技术存在的问题,本发明提供一种方案是:一种自移动设备的控制方法,所述自移动设备包括移动模块,所述移动模块包括履带,所述履带由驱动马达驱动以带动自移动设备移动,其特征在于,所述自移动设备的控制方法包括步骤:使用第一传感器及第二传感器检测自移动设备的移动方向上是否存在障碍物;若检测到自移动设备的移动方向上存在障碍物,则调整自移动 设备的移动方式;其中第二传感器的检测区域覆盖第一传感器的检测盲区。
优选的,控制自移动设备移动时的动量的最大值大于5kg·m/s。
优选的,控制自移动设备的移动速度的最大值大于0.45m/s。
优选的,其特征在于,第一传感器及第二传感器检测到的障碍物的距离小于或等于预定第一距离后,控制自移动设备停止移动。
优选的,第一传感器及第二传感器检测到的障碍物的距离小于或等于第一距离后,延时时间T控制自移动设备停止移动。
优选的,第一传感器为超声波传感器,当自移动设备前方第二距离内存在障碍物时,超声波传感器检测不到障碍物的存在,第一距离小于或等于第二距离。
优选的,若第一、第二传感器检测到自移动设备前方存在障碍物,则可选择地控制自移动设备减速,或转向,或后退。
本发明通过在履带端部的前上方设置履带挡件,当履带前方存在障碍物时,履带挡件先与障碍物发生碰撞,碰撞检测传感器检测到该碰撞发生,并且将碰撞信息传输给控制模块,控制模块控制智能割草机转向或后退。该技术方案有效地感测智能割草机近距离内的障碍物,避免了履带直接碾压前方物体,有效地提升了智能割草机的安全性能。
为解决现有技术存在的问题,本发明采用的一种技术方案是:一种自移动设备,尤其是一种智能割草机,包括,壳体;工作模块,位于所述壳体的底部,用于执行切割工作;行走模块,位于所述壳体的两侧,每侧的行走模块包括履带;其中,所述壳体的底部设有防护件,所述防护件位于所述工作模块的前方或/和后方,用于遮挡所述工作模块,所述防护件的延伸范围覆盖两侧履带之间的至少大部分长度。
优选的,所述防护件沿竖直方向具有预定高度。
优选的,所述防护件沿竖直方向的自由端离工作表面的距离为40毫米至70毫米。
优选的,所述防护件的侧端离相应侧端的履带的最短距离小于等于20毫米。
优选的,所述防护件的整体形状呈梳状,包括复数个梳齿。
优选的,所述相邻梳齿之间的间隔宽度小于等于20毫米。
优选的,所述防护件位于所述壳体底部的前端或/和后端。
优选的,所述防护件到所述工作模块的最短距离大于等于10毫米。
优选的,所述防护件的整体形状呈板状。
优选的,所述导向件包括导向轮或导向支撑部。
优选的,所述驱动件包括驱动轮。
优选的,所述壳体包括底座,所述防护件设置在所述底座的底部。
优选的,所述智能割草机还包括与壳体活动连接的顶盖,所述顶盖包括用于覆盖壳体的主体部,所述主体部沿竖直方向的最低点距离工作表面的高度大于70毫米。
本发明通过在壳体底部设置防护件,防护件位于工作模块的前方或/和后方,以构成防护屏障,从而有效地防护人的手或脚从壳体前方或后方接触到工作模块,有效地提高了智能割草机的安全性能。
为解决现有技术存在的问题,本发明采用的一种技术方案是:一种自移动设备,尤其是一种智能割草机,包括,壳体,所述壳体内中空形成收容腔;控制模块,位于所述收容腔内,控制所述智能割草机自动工作及自动行走;行走模块,位于所述壳体的两侧,每侧的行走模块包括前支撑件、后支撑件和履带,所述履带绕设于所述前支撑件和后支撑件上;其中,所述智能割草机还包括连接于壳体的框架模块,所述框架模块固定和支撑所述行走模块。
优选的,所述框架模块包括安装部和支架,所述安装部用于安装所述前支撑件和后支撑件,所述支架形成所述框架模块的轮廓。
优选的,所述前支撑件包括前轮、所述后支撑件包括后轮。
优选的,所述安装部包括第一中心轴和第二中心轴,所述前轮安装在第一中心轴上,所述后轮安装在第二中心轴上。
优选的,所述第一中心轴与所述第二中心轴沿纵向间隔预定距离。
优选的,所述第一中心轴与所述第二中心轴沿纵向间隔的距离为200毫米至800毫米。
优选的,所述支架包括用于连接所述壳体的第一固定板。
优选的,所述支架包括用于遮挡履带与前支撑件和后支撑件相配合部位的第二固定板。
优选的,所述支架包括用于遮挡履带外形轮廓的第二固定板。
优选的,所述框架模块支撑所述前支撑件或/和后支撑件的横向两端。
本发明采用框架模块固定和支撑行走模块,并且通过框架模块与壳体连接, 解决了由履带张紧力产生壳体形变及履带脱齿的问题,有效地提高了履带式智能割草机的工作性能。
为解决现有技术存在的问题,本发明采用的一种技术方案是:一种自移动设备,尤其是一种智能割草机,包括,壳体,所述壳体内中空形成收容腔;控制模块,位于所述收容腔内,控制所述智能割草机自动工作及自动行走;行走模块,位于所述壳体的两侧,每侧的行走模块包括履带;其中,所述智能割草机还包括下支撑件,用于支撑履带与工作表面的接触面。
优选的,所述下支撑件与所述履带内表面之间的摩擦类型为滚动摩擦。
优选的,所述下支撑件包括轮式结构。
优选的,所述轮式结构的数量为复数个。
优选的,所述复数个轮式结构等间距地排列。
优选的,所述轮式结构包括轮轴和支撑滚轮,所述支撑滚轮安装于所述轮轴上。
本发明通过设置下支撑件,支撑履带与工作表面的接触面,增加了履带与工作表面的受力点,有效地分散了履带行走过程中对草坪的压力,从而避免了履带式智能割草机的压草问题。
为解决现有技术存在的问题,本发明采用的一种技术方案是:一种自移动设备,尤其是一种智能割草机,包括,壳体;工作模块,位于所述壳体的底部,用于执行切割工作;行走模块,位于所述壳体的两侧,每侧的行走模块包括第一轮、第二轮和履带,所述履带以所述第一轮和所述第二轮为两端而进行绕设;其中,所述第一轮的外径小于所述第二轮的外径,所述第一轮为驱动轮,所述第二轮为导向轮。
优选的,所述第一轮的外径与所述第二轮的外径比值范围为1:1.5到1:5。
优选的,所述驱动轮的外径范围为50毫米到180毫米。
优选的,所述导向轮的外径范围为100毫米到400毫米。
优选的,所述驱动轮的轮轴在纵向上到导向轮的轮轴距离为200毫米至800毫米。
优选的,所述智能割草机还包括驱动所述驱动轮的电机,所述电机的重心到工作表面的距离为25毫米至90毫米。
优选的,所述智能割草机还包括能源模块,所述能源模块设置于远离所述电机的另一端。
本发明通过设置前支撑件和后支撑件的外径不同,从而使得履带两个端部的高度不同,在降低智能割草机重心高度和保持越障能力之间取得很好的平衡,有效地提高了整个智能割草机的工作性能。
为解决现有技术存在的问题,本发明采用的一种技术方案是:一种自移动设备,尤其是一种智能割草机,包括,壳体,所述壳体内中空形成收容腔;工作模块,位于所述壳体的底部,用于执行切割工作;行走模块,位于所述壳体的两侧,每侧的行走模块包括第一轮、第二轮和履带,所述履带以所述第一轮和所述第二轮为两端而进行绕设;能源模块,位于所述收容腔内;电机模块,位于所述收容腔内,包括驱动所述工作模块的工作电机和驱动所述驱动轮的驱动电机;其中,在竖直方向上,所述智能割草机的整机重心不高于第一轮的轮心及第二轮的轮心。
优选的,在竖直方向上,所述智能割草机的整机重心位于第一轮的轮心及第二轮的轮心之间。
优选的,所述智能割草机的整机重心距离工作表面的高度为25毫米至160毫米。
优选的,所述第一轮的高度小于所述第二轮的高度。
优选的,所述第一轮和所述第二轮的高度比值范围为1:1.5到1:5。
优选的,所述第一轮的高度范围为50毫米到180毫米。
优选的,所述第二轮的高度范围为100毫米到400毫米。
优选的,所述驱动电机的重心离工作表面的高度为25毫米至90毫米。
优选的,所述能源模块设置于远离所述驱动电机的另一端。
优选的,所述第一轮为驱动轮,所述第二轮为导向轮。
优选的,所述驱动轮的轮轴在纵向上到导向轮的轮轴距离为200毫米至800毫米。
本发明限定智能割草机整机的重心高度位于25毫米至160毫米,具体地通过履带两端高度不同、布置收容腔内重质量的部件等方式实现,从而有效地提高智能割草机的爬坡性能。
为解决现有问题,本发明提供一种履带轮,包括两个轮缘和连接两个所述轮缘且位于两个所述轮缘之间的连接部,所述轮缘包括相对的第一侧和第二侧,两个所述轮缘的所述第一侧相互靠近且相对设置,两个所述轮缘之间设有配合槽,至少一个所述轮缘上开设有与所述配合槽和所述第二侧贯通的通孔。
利用上述履带轮,当有泥或草进入履带与履带轮啮合处时,泥或草可进入配合槽并经通孔排出到轮缘的第二侧,避免履带轮上夹杂泥或草,保证履带轮的持续正常运行。
在其中一实施例中,两个所述轮缘上均开设有所述通孔。
在其中一实施例中,所述轮缘包括底板和设于所述底板边缘的凸缘,所述通孔开设于所述底板。
在其中一实施例中,所述轮缘的所述底板上设有加强框,所述加强框包括空心腔,所述通孔与所述空心腔连通。
在其中一实施例中,所述加强框为阶梯状,其包括更靠近所述底板中心的根部和远离所述底板中心且与所述凸缘连接的顶部。
在其中一实施例中,所述履带轮还包括设于所述轮缘中心的轮毂,所述轮毂中心设有连接孔。
一种履带行走机构,包括履带和履带轮,所述履带轮上述履带轮,所述履带轮包括驱动轮和导向轮,所述履带包覆于所述驱动轮和所述导向轮上。
一种履带行走机构,包括履带和履带轮,所述履带轮包括相互连接的两个轮缘,所述履带包覆于所述履带轮,所述履带轮的至少一个所述轮缘上设有与所述履带和所述轮缘啮合处连通,并与所述履带轮外侧连通的排料通道。
一种履带式智能割草机,其包括上述履带行走机构、安装于所述履带行走机构的机身和用于割草的工作部件,所述工作部件安装于所述机身。
本发明所述的履带轮及履带式行走机构,当有泥或草进入履带与履带轮啮合处时,泥或草可进入配合槽并经通孔排出到轮缘的第二侧,避免履带轮上夹杂泥或草,保证履带轮的持续正常运行。本发明还公开了一种包括上述履带轮的履带行走机构和履带式智能割草机。
附图说明
图1是本发明实施例提供的履带式智能割草机的立体示意图;
图2是图1所示的履带式智能割草机部分爆炸示意图。
图3是图1所示实施例的行走模块的侧边示意图。
图4是本发明一实施例的框架模块的爆炸示意图。
图5是图1所示实施例的主视图。
图6是图5所示实施例的左侧部分示意图。
图7是图1所示实施例的仰视图。
图8是本发明的实施例的自动割草机结构图。
图9是本发明的实施例的非接触式传感器的检测范围示意图。
图10是本发明实施例的自动割草机移动方式示意图。
图11为本发明一实施例的履带轮的立体示意图。
图12为图11所示履带轮的侧视图。
图13为图11所示履带轮的主视图。及
图14为图11所示履带轮的截面图。
其中,
100、智能割草机        10、壳体               12、上盖
14、底座               102、电机              104、控制模块
106、能源模块          108、工作模块          1081、转动盘
1083、切割元件         20、行走模块           201、后支撑件
202、第一轮            203、前支撑件          204、第二轮
210、履带              211、第一段            213、第二段
215、上段              217、下段              30、防护件
31、左侧端             32、右侧端             40、框架模块
401、第一固定板        403、第二固定板        405、第一中心轴
407、第二中心轴        410、下支撑件          411、支撑轴
413、支撑滚轮          50、顶盖               52、履带挡件
105、减速箱
具体实施方式
有关本发明的详细说明和技术内容,配合附图说明如下,然而所附附图仅提供参考与说明,并非用来对本发明加以限制。
如图1和图2所示,本发明提供一种自移动设备,具体可以是智能割草机、自动扫雪机、智能扫地机等可以自行移动的设备。本实施例提供一种智能割草机100。智能割草机100包括壳体10,位于壳体10两侧的行走模块20,位于壳体10底部的工作模块108,位于壳体10内部的电机102、控制智能割草机100自动工作及自动行走的控制模块104、以及提供能量的能源模块106。
在本发明的描述中,以图1所示智能割草机100所在方位建立笛卡尔坐标系。y轴的方向定义为智能割草机100的纵向,朝向y轴的正方向定义为智能 割草机100的前方,朝向y轴的负方向定义为智能割草机100的后方;x轴的方向定义为智能割草机100的横向,朝向x轴的正方向定义为智能割草机100的右侧,朝向x轴的负方向定义为智能割草机100的左侧;z轴的方向定义为智能割草机100的竖直方向,朝向z轴的正方向定义为智能割草机100的上方,朝向z轴的负方向定义为智能割草机100的下方。
在该实施例中,壳体10包括上盖12和底座14,上盖12和底座14构成一内空的收容腔。收容腔内安装有电机102,控制模块104、能量模块106等部件,共同支撑智能割草机100的各个功能实现。当然,壳体10上或者壳体10内也可以设置多种传感器,以辅助智能割草机100实现各个功能。
壳体10两侧各设置一行走模块20,彼此相对壳体10对称。行走模块20包括前支撑件203、后支撑件201和履带210。履带210以前支撑件203和后支撑件201为两端,绕设于两者之上。履带210连接后支撑件201和前支撑件203,其是整个智能割草机100的着地部分。在本实施例中,前支撑件203具体形式为驱动轮,后支撑件201具体形式为引导轮。前支撑件203在电机102的驱动下转动,进而带动履带210不断绕后支撑件201和前支撑件203回转前进,从而实现带动智能割草机100前进。当然,后支撑件201也可以非图1所示实施例的形式,如导向支撑部、或者一组轮组,只需将履带210的末端支撑即可。
如图3所示,从空间角度可以将履带210分为四段。在该实施例中,履带210与后支撑件201配接的部位,定义为第一段211;履带210与前支撑件203配接的部位,定义为第二段213;处于第一段211和第二段213之间的上方部位,定义为上段215;处于第一段211和第二段213之间的下方部位,定义为下段217。当然,第一段211也可以定义为履带210与前支撑件203配接的部位,第二段213定义为履带210与后支撑件201配接的部位。
在本发明中,后支撑件201以导向轮作为实施例,前支撑件203以驱动轮作为实施例。相应的,第一段211为履带210与导向轮配接的弧状部,第二段213为履带210与驱动轮配接的弧状部。
在本实施例中,驱动轮位于智能割草机纵向的前方,作为前轮;导向轮位于智能割草机纵向的后方,作为后轮。当然,驱动轮和导向轮相对纵向的位置关系并不受限,即导向轮可作为前轮,位于智能割草机纵向的前方。
在现有的结构设计中,行走模块20通过驱动轮和引导轮的轮轴与壳体10连接。行走模块20在行走过程中,履带210会对驱动轮产生与前进方向相反的 第一张紧力F1,以及会对导向轮产生与前进方向相同的第二张紧力F2。第一张紧力F1会作用于驱动轮的轮轴,第二张紧力F2会作用于导向轮的轮轴。张紧力作用于轮轴上形成扭矩,导致壳体10和轮轴发生形变,从而壳体与轮轴连接处容易断裂,且轮轴的变形会导致履带脱齿现象。
为了避免上述问题的发生,本发明采用框架模块40支撑和固定行走模块20。行走模块20由框架模块40支撑和固定,并由框架模块40与壳体10连接。框架模块40包括支架和安装部。支架是框架模块40的主体部分,用于固定轮组安装部、及连接至壳体10、及形成框架模块40的轮廓。安装部具体的形式根据前支撑件和后支撑件的结构形式不同而不同。在该实施例中,前支撑件和后支撑件都为轮组形式,所以安装部具体形式为轮组安装部。轮组安装部用于安装驱动轮和引导轮。履带210绕设于驱动轮和引导轮之上。行走模块20和框架模块40形成一个整体模块,可模块化地连接至壳体10。行走模块20由框架模块40支撑和固定,由框架模块40连接至壳体上。具体地,框架模块40通过螺纹连接、或铆接、或焊接等各类机械连接方式,连接至壳体10上。框架模块40支撑所述前支撑件或/和后支撑件的横向两端,即引导轮的轮轴两端和驱动轮的轮轴两端都被框架模块40支撑。由于框架模块40的支撑作用,履带210所产生的张紧力不再与轮轴构成悬臂而生成扭矩,从而避免壳体10发生形变及履带210发生脱齿现象。
在本实施例中,框架模块40的一种具体实施例如图4所示。框架模块40包括轮组安装部和支架。支架包括间隔、相对设置的第一固定板401和第二固定板403。优选的,第一固定板401与第二固定板403相互平行。轮组安装部包括第一中心轴405和第二中心轴407,第一中心轴405和第二中心轴407都设于第一固定板401与第二固定板403之间,且二者沿壳体10的纵向间隔预定距离。导向轮安装在第一中心轴405上,智能割草机100行走时,导向轮绕第一中心轴405旋转。驱动轮安装在第二中心轴407上,智能割草机行走时,驱动轮绕第二中心轴407旋转。第一中心轴405到第二中心轴407的距离为200毫米到800毫米。
行走模块20通过框架模块40与壳体10连接,从而智能割草机100可以实现模块化装配,即将行走模块20和框架模块40作为一个整体安装到壳体10上。在装配时,用户将驱动轮和导向轮分别装配至第二中心轴407及第一中心轴405上;再将第一固定板401和第二固定板403配接成一个整体;将第一固 定板401以螺钉铆接、卡接等方式固定连接至壳体10的侧边。
在该实施例中,由于第一固定板401和第二固定板403的支撑限制作用,履带张紧力不会对第一中心轴和第二中心轴产生扭矩。从而,由框架模块40将行走模块20配接至壳体10的技术方案,履带不易发生脱齿现象,壳体10与第一固定板401配接处也不易断裂。
在现有的结构设计中,履带210与地面/工作表面的受力点只有驱动轮和引导轮与地面接触的两个位置,从而两个位置处的压力会很大,很容易对草坪产生碾压破坏。同样由于履带210与地面/工作表面的受力只有两个位置,履带210其余与地面/工作表面接触的部分在运行过程中容易发生受力不均,产生打滑或脱齿现象。
为了避免上述问题的发生,优选的,智能割草机100还包括下支撑件410。下支撑件410用于支撑履带与地面/工作表面相接触的部分,增加履带210与地面/工作表面的受力点的个数,分散履带210对地面/工作表面的压力。履带支撑部410具体的结构形式可以为一沿履带下段217设置的支撑块。更优选的,为了降低履带210与下支撑件410之间摩擦,下支撑件410的结构形式可以采用轮式结构、浮动式结构、球状体结构等。
如图4所示,在该实施例中,下支撑件410设置在框架模块40的第一中心轴405和第二中心轴407之间。下支撑件410包括复数个设于第一固定板401和第二固定板403之间的支撑轴411,以及绕支撑轴411可旋转运动的支撑滚轮413。支撑滚轮413与履带下段217的内表面配合接触。当然,下支撑件410也可具有支撑上段215的结构。当然,下支撑件410也可以采用其他结构,只需该下支撑件410与履带210的配接处呈滚动摩擦即可,具体形态可以为滚轮、滚珠、球状、弧状等。
下支撑件410增加下段217与工作表面/地面的受力点,使得履带210不易从驱动轮和导向轮之间滑脱,即不易发生脱齿现象。由于履带210的受力点变多,则下段217整体对工作表面/地面的压力就会分散至各个受力点,从而每个受力点的压力就会相对较小,智能割草机在行走过程中会对草坪的磨损就不会过大。
为了防止人的手或脚从壳体10的侧边接触到工作模块108,引发切割元件意外割伤事故;以及防止人的手或脚意外卡入到履带与轮子配接部位,引发人手或脚卷入履带的事故。优选的,本发明的框架模块40在远离壳体10外侧的 一面设有防护装置。防护装置具体可以为密闭式防护板。当然,防护装置也可以是不属于框架模块40的单独部件,其配接在框架模块40远离壳体10外侧的一面上即可。
如图4所示,在该实施例中,框架模块40中远离壳体10外侧的第二固定板403,为全封闭式板状,用于遮住履带210内圈的空心部位。第二固定板403从侧边遮住位于壳体底部14的工作模块108,防止人手或脚从壳体10的侧边接触到工作模块108。第二固定板403从侧边遮住履带与轮组配合的部位,防止人手或脚卷入履带运行过程。当然,第二固定板403也可以采用其他类型的具体形状,只需从侧边能够阻止人手或脚直接接触工作模块108和履带与轮组配合的啮齿部位即可。
智能割草机100是一种自动工作及行走的机器,其需要适应各种类型的草坪地形。由轮式行走结构改为履带式行走结构,智能割草机100的地形适应能力已有大幅度提升。作为履带式智能割草机,其地形适应性能仍可通过结构设置进一步提高。智能割草机重心越低,其爬坡性能、转弯性能等方面越优。智能割草机的轮组半径越小,整体机身的高度就会越低,从而智能割草机的重心就会越低。同时,智能割草机需要一定的越障能力,才能够越过草坪的坑洼处、凸起处等障碍。智能割草机的轮组半径越大,其所能越过障碍的最大尺寸就会越大,即越障能力越优。
为了同时兼顾爬坡和越障性能,履带式智能割草机以前支撑件和后支撑件为两端绕设的履带,前支撑件的高度与后支撑件的高度不同,从而履带的两端高度是不同。以图3为例,履带的两端分别为第一段211和第二段213。第一段211的高度为H1,第二段的高度为H2。在该实施例中,后支撑件采用导向轮,前支撑件采用驱动轮。履带210分别以导向轮和驱动轮为两端,绕设于两者之上。如本领域技术人员所知,履带第一段211的高度相当于其绕设的导向轮或驱动轮的直径,履带第二段213的高度相当于其绕设的驱动轮或导向轮的直径。
履带210两个端部的高度不同,相当于驱动轮和引导轮采用不同直径的尺寸。在该实施例中,轮子直径的大小不影响其作为导向功能还是驱动功能,因此,此处将行走模块20中的导向轮和驱动轮另行命名为第一轮202和第二轮204。智能割草机100具有小直径的轮子,从而可以将整体重心向下降低;同时,智能割草机100还具有大直径的轮子,从而仍然具有越障的优势。
为了兼顾履带式智能割草机100的爬坡性能和越障能力,第一轮202的直径与第二轮204的直径的比值范围为1:1.5到1:5。第一轮202的直径具体数值范围为50毫米到180毫米。第二轮204的直径具体数值范围为75毫米到400毫米。如本领域技术人员所知,可以以小直径的第一轮202作为驱动轮203,抑或以大直径的第二轮204作为驱动轮203。整机能够爬坡或越障的前提在于前轮能够通过障碍物或上坡,因而越障爬坡能力与前轮息息相关。本实施例中,以尺寸较大的第二轮204作为前轮(相较于智能割草机的前进方向而言),以尺寸较小的第一轮202为后轮,可显著提高整机的越障与爬坡的能力。
影响智能割草机100整机的重心高度的因素,主要为各类重质量的零部件的重心高度。该类重质量的零部件主要包括驱动驱动轮的电机、用于调节驱动电机速度的减速箱、驱动工作模块的电机、用于存储能量的能量存储模块。因此,控制智能割草机100的重心高度的方法之一,可通过控制这类零部件的布置及高度来达到。
在常规结构设计中,为了控制电机102的体积和重量,一般都是采用高速而体积小的电机作为驱动电机。电机102一般通过减速箱105进行降速后,再以预设的速度驱动驱动轮旋转。减速箱105具体可以为行星齿轮等改变速率比的传动机构。结构上为了方便传动,电机102、减速箱105及驱动轮一般进行同轴布置或同轴平行布置。在该实施例中,以小直径的第一轮202作为驱动轮,则相应的电机102及减速箱105的重心高度也会随着驱动轮的直径减小而降低。电机102的重心距离工作表面/地面的高度范围为25毫米到90毫米;减速箱105的重心距离工作表面/地面的高度范围为25毫米到90毫米。通过控制各个元部件的重心高度,智能割草机100的整机重心高度为25毫米到160毫米。
在该实施例中,驱动工作模块108的电机位于收容腔的中间部位。同时,为了平衡整个机身的重心,能量模块106等其他偏重部件安装在收容腔靠近导向轮201的附近。
为了保证智能割草机具有一定的爬坡越障能力,整机重心越高越好;而为了使智能割草机具有良好的运动性能(包括转弯、加速、制动等性能),则要求整机重心降低。该实施例中,在竖直方向上,所述智能割草机的整机重心不高于第一轮202的轮心及第二轮204的轮心,即整机重心低于较大轮的轮心,以获得良好的越障爬坡性能及运动性能。在其他实施例中,为了同时获得较好的运动性能,整机重心不应低于较小轮的轮心。
在该实施例中,小直径的驱动轮也可作为前轮,设置在纵长方向的前方;大直径的引导轮作为后轮,设置在纵长方向的后方。
由于履带式智能割草机100具有较强的爬坡能力,如果履带210可以直接接触其前方的物体,则履带会直接碾过前方的物体,无论前方的物体是障碍物、或人脚、或树杆桩部等。
优选的,智能割草机100包括位于履带210端部的履带挡件52。履带式智能割草机在履带的四个端部各设置一个履带挡件52。当履带近距离内存在障碍物时,障碍物先碰撞到该履带挡件52。智能割草机100还包括碰撞传感器60,用于检测履带挡件52是否发生碰撞事件。当履带挡件52与障碍物发生碰撞时,碰撞传感器60感知该碰撞事件,并将检测结果传输给控制模块104,控制模块104控制智能割草机100转向或后退,以防止履带210直接碾过其前方的物体。
如图2所示,在该实施例中,履带挡件52设置在顶盖50上。顶盖50活动连接在壳体10的顶部。当履带挡件52发生碰撞时,会引起顶盖50相对壳体10发生位移。碰撞传感器60检测到顶盖50与壳体10发生相对位移,并将该检测结果传输给控制模块104,控制模块104判断前方存在障碍物,控制智能割草机100转向或后退。
履带挡件52具有一定的宽度和一定的高度,且离履带弧状部外表面具有一定的距离。由于四个履带挡件52都需要在高度、宽度、间距方面满足相同的设计条件,因此,下述描述以一个履带挡件52作为示例。
如图5所示,为了对履带前上方的障碍进行检测,履带挡件52沿竖直方向需要覆盖其相应履带弧状部直径的一半以下。具体地,履带挡件52在竖直方向的自由端离工作表面/地面的高度d范围为40毫米到70毫米。
当履带挡件52离履带端部外表面的距离过大时,智能割草机100在爬坡时,履带挡件52会先接触到上方的坡位,碰撞传感器60会感测到碰撞事件,并且将该感测结果传输给控制模块104。控制模块104判断前方为障碍物,从而控制智能割草机100转弯或后退,影响整机的爬坡能力。为了不影响智能割草机100的爬坡能力,如图6所示,履带挡件52离履带端部内表面的距离W需要小于等于50毫米。
在该实施例中,如图5所示,履带挡件52为预定形状的覆盖板。在另一实施例中,履带挡件52也可以为类似于保险杠的挡杆。挡杆包括钢丝件以预定方式绕制成具有高度和宽度的形状体。具体来讲,履带挡件52为钢丝件,钢丝件 从壳体10或者浮动盖50处朝履带侧延伸,在履带210末端的前方围绕成一预定形状,如回形针状、矩形状、圈圈状等。预定的形状具备一定的高度和宽度,从而在履带210末端的前方形成一止挡屏障。当智能割草机100近距离内存在障碍物时,障碍物首先碰撞在履带挡件52上。
当然,履带挡件52的具体结构形式可以为多种,只需其满足上述参数即可。碰撞传感器60具体可以为霍尔元件、微动开关、或磁信号传感器等。
在现有技术中,轮式智能割草机为了防止人手或脚从前方或后方接触到工作模块108。轮式智能割草机通过设有相对壳体活动的顶盖。该顶盖的前端部位和后端部位,在纵向长度上要大于壳体的纵向长度,并且顶盖会在竖直方向向下延伸一端距离以构成前端和后端的防护屏障。
在履带式智能割草机中,爬坡性能是其优势所在。如果采用轮式的顶盖进行安全防护,则前端和后端的防护屏障会影响其爬坡性能。因此,在履带式智能割草机中,其顶盖的前端和后端在纵向长度仅会略超过壳体的纵向长度,或者等于或者小于壳体的纵向长度。其顶盖不会向下延伸一段距离以构成前端和后端的防护屏障。顶盖用于覆盖壳体的主体部沿竖直方向上的自由端距离工作表面的高度大于70毫米,从而不会影响履带式智能割草机的爬坡性能。
对于智能割草机的设计制造来说,安全问题是个很重要的考虑因素。由于智能割草机的壳体底部距离地面会有一段距离,这段距离使得人的脚或手能够伸入到壳体下方并接近作为切割元件的刀条等。履带式智能割草机为了满足其爬坡性能,不可以采用轮式智能割草机式的顶盖结构进行前后端的防护。因此,履带式智能割草机100有必要采用其他结构设计,用防止人手或脚从割草机的前方或后方接触到工作模块108。
如图1所示,本实施例中,在壳体底座14设有防护件30。防护件30位于工作模块108的前方,在工作模块108的前方构建防护屏障,以阻止人的手或脚接触工作模块108。
防护件30的一端连接至壳体底座14,另一端为自由端,在竖直方向上形成一具有预定高度的屏障。为了起到更好的防护作用,防护件30的自由端到地面或工作表面的距离为40毫米到70毫米之间。
防护件30在壳体底座14横向布置,具有左侧端31和右侧端32,在横向上形成一具有预定长度的屏障。为了起到更好的防护作用,防护件30的横向长度大于工作模块108的横向长度。当然,若工作模块108为复数个,则防护件 30的横向长度大于复数个工作模块108的横向长度总和。优选的,如图7所示,防护件30的左侧端31距离壳体底座14左侧边沿处的最短距离小于等于20毫米;防护件30的右侧端32距离壳体底座14右侧边沿处的最短距离大于等于10毫米。
如本领域技术人员所知,防护件30横向布置仅限定防护件30在壳体底部14布置的方向,并没有限定防护件30的布置形状。如图7所示,在本实施例中,防护件30的横向布置为沿着壳体底部14的横向形状布置。当然,防护件30也可以以其他形状横向布置在壳体底部14上,如直线状、弧状、不规则形状等。
防护件30位于工作模块108的前方,与工作模块108在纵向上形成一定距离以更好阻挡人手或脚接触。防护件30到工作模块108的最短距离s大于等于10毫米。如图7所示,在该实施例中,防护件30到工作模块108的最短距离具体为切割元件1083末端至防护件30的纵向后端的距离。
防护件30具体的结构可以为板状。
为了避免智能割草机100在运行过程中,防护件30将草压平或者将草阻挡而工作模块108无法触及到防护件30前面的草,防护件30沿竖直方向开设有凹槽。优选的,如图1所示,防护件30整体呈梳状或者栅栏状。防护件30包括复数个梳齿(栅栏),各个梳齿(栅栏)之间存在间隙,草可以从间隙中穿过或部分穿过,从而有效地减少压草程度和避免工作模块108无法接触草。防护件30仍然需要具备防护的功能,因此,相邻梳齿间的间距S也不能过大。在该实施例中,相邻梳齿间的间隔距离S小于等于20毫米。
可替换的,防护件30也可以设置在工作模块108的后方,具体的结构及设置模式与上述描述类似,此处不再赘述。
优选的,壳体底座14可以设置复数个防护件30,具体布置在工作模块108的前方和后方,或者以工作模块108为中心的四周。具体的结构及设置模式与上述描述类似,此处不再赘述。
图8为本发明另一实施例的自动割草机的结构图。如图8所示,自动割草机100包括壳体;移动模块,移动模块包括履带210,由驱动马达驱动以带动自动割草机100移动。本实施例中,移动模块还包括前轮204和后轮202,履带绕设于前轮204和后轮202上。在其他实施例中,移动模块也可以不包括前轮或后轮,只要提供驱动履带运动的驱动机构和支撑履带运动的支撑机构即可。 本实施例中,自动割草机包括两组履带210,分别设置在自动割草机移动方向的两侧。自动割草机还包括切割模块(图未示),执行割草工作。本实施例中,切割模块包括刀片。自动割草机还包括控制模块,控制自动割草机的移动和工作,控制模块包括处理器和控制电路。移动模块、切割模块和控制模块均安装于壳体。当然自动割草机还包括能量模块,能量模块包括电池包,为自动割草机的移动和工作提供能量。本实施例中所指的自动割草机的移动,包括自动割草机的转向运动。
本实施例中,智能割草机包括第一传感器及第二传感器,第一传感器用于检测移动方向上的第一区域,所述第二传感器用于检测移动方向上的第二区域。具体的,所述第一区域及第二区域垂直于移动方向进行布置,智能割草机在移动中,整机都是位于第一区域与第二区域共同形成的空间内。所述第一区域与第二区域沿智能割草机100的纵长方向设置,且至少部分重叠,以避免智能割草机处于斜坡时(即倾斜时)两个传感器出现竖直的检测盲区。具体来说,所述第一区域的上边界不低于150毫米,所述第二区域的下边界不高于150毫米。第一传感器与第二传感器可以是两个相同的接触式传感器或非接触式传感器,当然也可选择上述接触式传感器(即前述碰撞式传感器60)及一个非接触式传感器。本实施例中选用上述接触式传感器及一个非接触式传感器9。所述非接触式传感器9检测到障碍物后,所述控制模块控制所述智能割草机100避开障碍物,具体可以是转弯或后退;若是接触式传感器检测到障碍物,这时智能割草机100已与障碍物接触,因此控制模块首先控制智能割草机后退,然后才能够作出转弯动作,或者保持后退的动作。
如图8所示,本实施例中非接触式传感器9检测自动割草机移动方向上的障碍物;若非接触式传感器9检测到自动割草机移动方向上存在障碍物,则控制模块调整自动割草机的移动方式。具体的,若非接触式传感器9检测到自动割草机移动方向上存在障碍物,则控制模块将控制自动割草机在碰撞到障碍物之前停止移动。非接触式传感器9与控制模块电性连接,当非接触式传感器9检测到自动割草机移动方向上存在障碍物时,向控制模块发电信号,控制模块处理电信号,控制移动模块调整自动割草机的移动方式。
本实施例中的自动割草机采用履带210带动自动割草机移动,使得自动割 草机具有良好的爬坡能力和越障能力。同时,自动割草机采用非接触式传感器9检测移动方向上的障碍物,使得自动割草机在接触障碍物之前检测到障碍物的存在,从而能够及时调整移动方式,避免对障碍物、尤其是人体造成冲击和伤害。本实施例中的自动割草机在性能提高的同时保障了安全性。本实施例中的自动割草机具有较大的质量,体现为自动割草机具有较大的惯性,在崎岖不平的地表上移动的能力强。本实施例中,自动割草机的质量大于12kg,优选的,自动割草机的质量在16-18kg之间。自动割草机具有较大的质量的特点在一方面与履带式自动割草机的结构特性有关。本实施例中,自动割草机具有较大的移动速度,体现为克服外力、包括自身重力做功的能力强,能够很好地克服移动中的阻力,例如在斜坡上移动时的阻力。本实施例中,自动割草机的移动速度的最大值大于0.45m/s,优选的,自动割草机的移动速度的最大值在0.45-0.6m/s之间。由于履带210的越障和爬坡能力强,因此自动割草机在移动过程中能够保持较大的移动速度。本实施例中,自动割草机移动时的质量与速度的乘积的最大值,即自动割草机的动量的最大值,大于5kg·m/s,优选的,自动割草机移动时的动量的最大值在7.2-10.8kg·m/s之间。自动割草机移动时的动量越大,自动割草机与障碍物发生碰撞时的冲量就越大,对特定的障碍物而言,碰撞时的冲击力就越大,本实施例中,自动割草机碰撞树木时的撞击力的最大值大于200N。另外,自动割草机的质量与移动速度大,意味着自动割草机的动能大,碰撞障碍物时产生的破坏能力强。因此,在本实施例的自动割草机的移动过程中,避免自动割草机对障碍物的直接碰撞显得尤为重要,利用非接触式传感器9检测自动割草机移动方向上的障碍物也就尤其有价值和意义。
本实施例中,为使自动割草机具有良好的越障性能,自动割草机前端的履带3至少部分外露,具体的,在自动割草机移动方向的前端,履带3的至少在其回转运动的旋转中心以下的部分外露。如图1所示,自动割草机的履带3由驱动马达驱动进行回转运动,以带动自动割草机移动。本实施例中,履带3绕设于前轮204和后轮202上,由后轮202驱动进行回转运动。在自动割草机移动方向的前端,即图8中A端,履带210的回转运动的旋转中心为前轮204的旋转中心O1,履带210的至少在前轮204的旋转中心O1以下的部分外露。在其 他实施例中,自动割草机可以不包括前轮或后轮,可以包括其他驱动或支撑结构,只需保证在自动割草机移动方向的前端,履带210的在其回转运动的旋转中心以下的部分外露即可。本实施例中,自动割草机的壳体包括上盖12,上盖12部分覆盖履带,在自动割草机的前端,上盖12的下边缘与工作平面的距离大于履带210回转运动的旋转中心与工作平面的距离。如图8所示,壳体的上盖12覆盖履带210的一部分,例如绕设在前轮204与后轮202之间不接触工作表面的部分,使其免于日光暴晒或雨淋。本实施例中,为使得自动割草机能够越过工作表面的凸起,例如工作表面上平躺的障碍物,限制上盖12的覆盖范围,在自动割草机移动方向的前端,上盖12不低于前轮204的旋转中心O1,使得履带210的在前轮204的旋转中心O1以下的部分外露,当自动割草机在移动中碰撞到障碍物时,履带210能够接触到障碍物,并越过障碍物,而不会由于上盖12的遮挡而停止前进。在其他实施例中,自动割草机可以不包括前轮,则在自动割草机移动方向的前端,使上盖12不低于履带210回转运动的旋转中心即可。具体的,使得上盖12的覆盖履带210宽度范围的部分满足上述条件即可。当然,在自动割草机移动方向的前端,可以使履带210尽可能多的外露,即,使上盖12的下边缘距离工作平面的距离尽可能的大,在其他实施例中,上盖12也可以不覆盖履带210。本实施例中,由于在自动割草机的前端,履带210的回转运动的旋转中心以下的部分外露,使得履带210能够接触到自动割草机移动方向上的障碍物,并越过障碍物,大大地提高了自动割草机的越障能力。与此同时,由于履带210能够接触到自动割草机移动方向上的障碍物,并具有爬越障碍物的能力,当自动割草机移动方向上的障碍物为人体,或者树木等竖立的障碍物时,若不及时控制自动割草机的移动方式,则履带210可能对障碍物造成碾压伤害,又由于自动割草机在接触到障碍物后能够进一步向前移动,障碍物将接触自动割草机下方的刀片,从而造成损伤。因此在本实施例中的自动割草机的移动过程中,利用非接触式传感器9检测自动割草机移动方向上的障碍物显得尤为重要,非接触式传感器9能够识别出竖立的障碍物,使自动割草机及时调整移动方式,从而在自动割草机性能提高的同时,安全性得到了保障。
本实施例中,为保障自动割草机移动方向上的障碍物免受履带210的伤害, 必须使非接触式传感器9的有效检测范围覆盖履带210正前方的区域。具体的,以平行于自动割草机的工作平面且垂直于自动割草机的移动方向的方向为宽度方向,非接触式传感器9的有效检测宽度覆盖履带210的宽度范围。如图9所示,非接触式传感器9的有效检测范围至少覆盖阴影部分的宽度范围。本实施例中,非接触式传感器9的有效检测宽度大于自动割草机的宽度,即非接触式传感器9的有效检测宽度覆盖履带210的宽度范围以及履带210之间的宽度范围。非接触式传感器9具有上述有效检测范围,使得非接触式传感器9能够检测到自动割草机移动过程中正前方的障碍物,避免自动割草机在移动过程中碰撞到障碍物,尤其避免障碍物受到履带210的碾压伤害,从而保障了自动割草机的安全性。
当然,在智能割草机前进的方向上,非接触式传感器9也是存在检测盲区的,比如挡板下前方的区域(又或者是因为距离过近),检测信号由于防护件的遮挡,无法到达这个区域内。因此可将前述碰撞传感器与非接触式传感器组合使用,且碰撞传感器的检测区域至少能够覆盖上述盲区,以确保前进方向上障碍物都能够被检测出来,以利于控制模块及时控制智能割草机进行避障,避免对人或动物造成伤害,也使智能割草机自身免于激烈碰撞造成的损坏。在其他实施例中,碰撞传感器也可以是其他形式的接触式传感器。
本实施例中,若接触式传感器9检测到自动割草机移动方向上存在障碍物,则控制模块调整自动割草机的移动方式。具体的,自动割草机与非接触式传感器9检测到的障碍物的距离小于或等于预定的第一距离后,控制模块控制自动割草机停止移动。如图10所示,非接触式传感器9检测到自动割草机移动方向上存在障碍物时,不立即停止移动,而是继续行驶一段距离后才停止移动。本实施例中,非接触式传感器9为超声波传感器,当自动割草机前方第二距离内存在障碍物时,超声波传感器检测不到障碍物的存在,将超声波传感器检测不到障碍物的区域称为超声波传感器的盲区。本实施例中,自动割草机停止移动时与障碍物的距离小于第二距离,即自动割草机的刹车距离小于超声波传感器的盲区距离。具体的,自动割草机在移动过程中,超声波传感器检测到自动割草机的移动方向上存在障碍物,控制模块控制自动割草机继续移动,当自动割草机与障碍物的距离达到第二距离时,超声波传感器检测不到障碍物,控制模 块判断障碍物进入超声波传感器的盲区,由于盲区距离已知,可使自动割草机继续移动一段距离,自动割草机的移动速度已知,因此通过控制延时时间T来控制自动割草机继续移动的距离,在延时时间T后控制模块控制自动割草机停止移动。控制模块判断使自动割草机停止移动的第一距离可以等于第二距离,也可以小于第二距离。控制模块判断自动割草机与障碍物的距离达到第一距离后,可以直接控制自动割草机刹车,也可以延时时间T后控制自动割草机刹车。控制模块对自动割草机的移动方式的调整保证了自动割草机的安全性,同时使自动割草机能够尽可能地移动到障碍物附近。本实施例中,非接触式传感器9检测到障碍物后,控制模块使自动割草机保持原来的行驶速度继续移动,并在碰撞到障碍物之前停止移动。在其他实施例中,非接触式传感器9检测到障碍物后,控制模块也可以控制自动割草机减小行驶速度,或控制自动割草机转向,或控制自动割草机后退,或者可选择地对各种行驶策略进行组合,在此不再赘述。
本实施例中,非接触式传感器9的至少其中一个设置在自动割草机移动方向的前侧,从而能够检测自动割草机移动方向上的障碍物。当然,非接触式传感器9也可以设置在自动割草机的多个方位上,检测多个角度的障碍物,辅助自动割草机的各种行驶策略。非接触式传感器9也可以设置为检测角度可调,以灵活地适应自动割草机的移动和工作。
本实施例中,非接触式传感器9为超声波传感器,超声波传感器抗干扰能力强,性能稳定。在其他实施例中,非接触式传感器9也可以为光学传感器,例如红外传感器或摄像头等等,只要能够在自动割草机碰撞到障碍物之前检测到障碍物的存在。
在另一实施例中,还提供了一种履带轮1000,亦即之前所述的驱动轮或导向轮。请参阅图11至图14,本发明一实施例中的履带轮1000包括两个轮缘1020和连接两个轮缘1020且位于两个轮缘1020之间的连接部1040,轮缘1020包括相对的第一侧10201和第二侧1021,两个轮缘1020的第一侧10201相互靠近且相对设置,两个轮缘1020之间设有配合槽1060,至少一个轮缘1020上开设有与配合槽1060和第二侧1021贯通的通孔1022,以使配合槽1060内的物体可经通孔1022。本实施例中,两个轮缘1020上均开设有通孔1022。也就是 说,履带轮1000的至少一个轮缘1020上设有与履带和轮缘1020啮合处连通,并与履带轮1000外侧连通的排料通道,以便将夹杂在履带和轮缘1020啮合处的泥或草等排出到履带轮1000的外侧。
使用时,履带与轮缘1020配合以绕设于履带轮1020上,当有泥或草进入履带与履带轮1000啮合处时,泥或草可进入配合槽1060并经通孔1022排出到轮缘1020的第二侧1021,即履带轮1000的外侧,避免履带轮1000上夹杂泥或草,保证履带轮1000的持续正常运行。
本实施例中,轮缘1020包括底板1024和设于底板1024边缘的凸缘1026,通孔1022开设于底板1024,履带与轮缘1020的凸缘1026配合。
本实施例中,轮缘1020的底板1024上设有加强框1028,加强框1028包括空心腔,通孔1022与空心腔连通。具体地,轮缘1020上设有多个间隔设置的加强框1028。通过设置加强框1028可增强轮缘1020的强度,空心腔的设置不仅可减轻轮缘1020的重量,且能通过与通孔1022连通将泥或草排出履带轮1000。可以理解,通孔1022也可不与加强框1028的空心腔连通,而是直接连通至轮缘1020的第二侧1021,但通孔1022与加强框1028的空心腔连通并从加强框1028处排出会将泥或草排出至履带轮1000更靠外的位置,更利于泥或草的排出。
本实施例中,加强框1028为阶梯状,其包括更靠近底板1024中心的根部10282和远离底板1024中心且与凸缘1026连接的顶部10284。具体地,顶部10284为倾斜设置,远离根部10282的一侧朝凸缘1026的一侧倾斜,对应地,加强框1028的空心腔也随顶部10284倾斜。
本实施例中,履带轮1000还包括设于轮缘1020中心的轮毂1090,轮毂1090中心设有连接孔以将履带轮1000安装到履带行走机构的车架。
本发明还提供一种履带行走机构,其包括履带和上述履带轮1000,履带轮1000包括驱动轮和导向轮,履带包覆于驱动轮和导向轮上。
本发明还提供一种履带式智能割草机,其包括上述履带行走机构、安装于履带行走机构的机身和用于割草的工作部件,工作部件安装于机身。
本领域技术人员可以想到的是,本发明还可以有其他的实现方式,如具体的结构设计并不是以履带式智能割草机为载体,而是以其他类型的履带式服务 自移动设备为载体,如清洁自移动设备、送货自移动设备、扫雪自移动设备等,但只要其采用的技术精髓与本发明相同或相近似,或者任何基于本发明做出的变化和替换都在本发明的保护范围之内。

Claims (40)

  1. 一种自移动设备,包括:
    壳体,设置有马达;
    移动模块,包括履带,履带在马达驱动下移动自移动设备;
    工作模块;
    控制模块,控制移动模块移动及工作模块工作;
    第一传感器及第二传感器,检测自移动设备在移动方向上的障碍物;
    所述第一传感器用于检测移动方向上的第一区域,所述第二传感器用于检测移动方向上的第二区域,所述第一区域及第二区域垂直于移动方向进行布置;
    所述控制模块根据第一传感器及第二传感器的感测结果控制自移动设备的移动方式。
  2. 根据权利要求1所述的自移动设备,其特征在于:所述第一区域及第二区域沿自移动设备的高度方向设置。
  3. 根据权利要求2所述的自移动设备,其特征在于:所述第一区域及第二区域至少部分重叠。
  4. 根据权利要求2所述的自移动设备,其特征在于:第一区域的上边界不低于150毫米,所述第二区域的下边界不高于150毫米。
  5. 根据权利要求1所述的自移动设备,其特征在于,所述第一传感器和/或第二传感器检测到障碍物后,所述控制模块控制所述自移动设备避开障碍物。
  6. 根据权利要求1所述的自移动设备,其特征在于:所述第一传感器为非接触式传感器,第二传感器为接触式传感器。
  7. 根据权利要求6所述的自移动设备,其特征在于:所述自移动设备还包括对履带进行防护的履带挡件,所述第二传感器设置于履带挡件。
  8. 根据权利要求6所述的自移动设备,其特征在于,所述履带挡件的数量为4个,分别对应位于所述壳体两侧履带的两个端部的前上方。
  9. 根据权利要求6所述的自移动设备,其特征在于,所述履带挡件在竖直方向的最下端离工作表面的高度距离为40毫米到70毫米。
  10. 根据权利要求6所述的自移动设备,其特征在于,所述履带挡件在竖直方向的最下端低于所述履带末端在竖直方向上高度的一半以下。
  11. 根据权利要求6所述的智能割草机,其特征在于,所述履带挡件距离所述履带挡件下方的履带的最短距离小于等于50毫米。
  12. 根据权利要求6所述的自移动设备,其特征在于,所述履带挡件的横向宽度大于所述履带的横向宽度。
  13. 根据权利要求12所述的自移动设备,其特征在于,所述履带挡件的外侧边离所述履带的外侧边距离大于等于5毫米。
  14. 根据权利要求12所述的自移动设备,其特征在于,所述控制模块判断所述履带挡件的前上方存在障碍物后,所述控制模块控制所述自移动设备转弯或后退。
  15. 根据权利要求6所述的自移动设备,其特征在于,所述接触式传感器包括霍尔传感器、磁信号感应传感器或微动开关。
  16. 根据权利要求6所述的自移动设备,其特征在于,所述履带挡件为预定形状的覆盖板。
  17. 根据权利要求6所述的自移动设备,其特征在于,所述履带挡件为挡杆。
  18. 根据权利要求17所述的自移动设备,其特征在于,所述挡杆包括钢丝件以预定方式绕制成具有高度和宽度的形状体。
  19. 根据权利要求6所述的自移动设备,其特征在于,所述自移动设备包括与壳体活动连接的顶盖,所述履带挡件设置在所述顶盖的端角。
  20. 根据权利要求19所述的自移动设备,其特征在于,所述接触式传感器检测所述顶盖相对所述壳体的位移。
  21. 根据权利要求1所述的自移动设备,其特征在于,自移动设备移动时的动量的最大值大于5kg·m/s。
  22. 根据权利要求1所述的自移动设备,其特征在于,自移动设备的质量大于12kg。
  23. 根据权利要求1所述的自移动设备,其特征在于,自移动设备的移动速度的最大值大于0.45m/s。
  24. 根据权利要求1所述的自移动设备,其特征在于,在自移动设备移动方向的前端,履带的至少在其回转运动的旋转中心以下的部分外露。
  25. 根据权利要求24所述的自移动设备,其特征在于,壳体包括上盖,所述上盖部分覆盖履带;在自移动设备移动方向的前端,上盖的下边缘与工作平面的距离大于履带回转运动的旋转中心与工作平面的距离。
  26. 根据权利要求6所述的自移动设备,其特征在于,以平行于自移动设备的工作平面且垂直于自移动设备的移动方向的方向为宽度方向,非接触式传感器的有效检测宽度覆盖履带的宽度范围。
  27. 根据权利要求26所述的自移动设备,其特征在于,非接触式传感器的有效检测宽度大于自移动设备的宽度。
  28. 根据权利要求6所述的自移动设备,其特征在于,自移动设备与非接触式传感器检测到的障碍物的距离小于或等于预定的第一距离后,控制模块控制自移动设备停止移动。
  29. 根据权利要求28所述的自移动设备,其特征在于,自移动设备与非接触式传感器检测到的障碍物的距离小于或等于第一距离后,控制模块延时时间T控制自移动设备停止移动。
  30. 根据权利要求28所述的自移动设备,其特征在于,非接触式传感器为超声波传感器,当自移动设备前方第二距离内存在障碍物时,超声波传感器检测不到障碍物的存在,第一距离小于或等于第二距离。
  31. 根据权利要求6所述的自移动设备,其特征在于,若非接触式传感器检测到自移动设备前方存在障碍物,则控制模块可选择地控制自移动设备减速,或转向,或后退。
  32. 根据权利要求6所述的自移动设备,其特征在于,非接触式传感器的至少其中一个设置在自移动设备移动方向的前侧。
  33. 根据权利要求6所述的自移动设备,其特征在于,非接触式传感器为超声波传感器,或光学传感器。
  34. 一种自移动设备的控制方法,所述自移动设备包括移动模块,所述移动模块包括履带,所述履带由驱动马达驱动以带动自移动设备移动,其特征在于,所述自移动设备的控制方法包括步骤:
    使用第一传感器及第二传感器检测自移动设备的移动方向上是否存在障碍物;
    使用第一传感器用于检测移动方向上的第一区域,使用第二传感器用于检测移动方向上的第二区域,所述第一区域及第二区域垂直于移动方向进行布置;
    所述控制模块根据第一传感器第二传感器的感测结果控制自移动设备的移动方式。
  35. 根据权利要求34所述的自移动设备的控制方法,其特征在于,控制自移动设备移动时的动量的最大值大于5kg·m/s。
  36. 根据权利要求34所述的自移动设备的控制方法,其特征在于,控制自移动设备的移动速度的最大值大于0.45m/s。
  37. 根据权利要求34所述的自移动设备的控制方法,其特征在于,所述第一传感器及第二传感器至少之一为非接触式传感器,非接触式传感器检测到的障碍物的距离小于或等于预定第一距离后,控制自移动设备停止移动。
  38. 根据权利要求37所述的自移动设备的控制方法,其特征在于,非接触式传感器检测到的障碍物的距离小于或等于第一距离后,延时时间T控制自移动设备停止移动。
  39. 根据权利要求37所述的自移动设备的控制方法,其特征在于,非接触式传感器为超声波传感器,当自移动设备前方第二距离内存在障碍物时,超声波传感器检测不到障碍物的存在,第一距离小于或等于第二距离。
  40. 根据权利要求34所述的自移动设备的控制方法,其特征在于,所述第一传感器及第二传感器至少之一为非接触式传感器,若非接触式传感器检测到自移动设备前方存在障碍物,则可选择地控制自移动设备减速,或转向,或后退。
PCT/CN2017/085161 2016-05-19 2017-05-19 自移动设备及其控制方法 WO2017198226A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17798789.8A EP3459334B1 (en) 2016-05-19 2017-05-19 Self-moving device and control method thereof
US16/195,204 US11099572B2 (en) 2016-05-19 2018-11-19 Self-moving device and control method thereof

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201610334287.0 2016-05-19
CN201610334439.7 2016-05-19
CN201610334439 2016-05-19
CN201610332842.6 2016-05-19
CN201610334288 2016-05-19
CN201610334440.X 2016-05-19
CN201610334786 2016-05-19
CN201610332842 2016-05-19
CN201610334288.5 2016-05-19
CN201610334287 2016-05-19
CN201610334455 2016-05-19
CN201610334440 2016-05-19
CN201610334786.X 2016-05-19
CN201610334455.6 2016-05-19
CN201611005432 2016-11-15
CN201611005432.7 2016-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/195,204 Continuation US11099572B2 (en) 2016-05-19 2018-11-19 Self-moving device and control method thereof

Publications (1)

Publication Number Publication Date
WO2017198226A1 true WO2017198226A1 (zh) 2017-11-23

Family

ID=60325714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085161 WO2017198226A1 (zh) 2016-05-19 2017-05-19 自移动设备及其控制方法

Country Status (4)

Country Link
US (1) US11099572B2 (zh)
EP (1) EP3459334B1 (zh)
CN (1) CN107399377B (zh)
WO (1) WO2017198226A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111920344A (zh) * 2019-05-13 2020-11-13 燕成祥 机器人越障装置
CN112578777A (zh) * 2019-09-27 2021-03-30 苏州宝时得电动工具有限公司 自主机器人及其行走路径规划方法、装置和存储介质
US20220121217A1 (en) * 2019-02-03 2022-04-21 Positec Power Tools (Suzhou) Co., Ltd Self-moving device, its obstacle detection method and obstacle detection module

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6610665B2 (ja) * 2015-06-23 2019-11-27 日本電気株式会社 検出システム、検出方法、及び、プログラム
EP3469442A4 (en) 2016-06-30 2020-09-16 TTI (Macao Commercial Offshore) Limited SELF-CONTAINED LAWN MOWER AND ASSOCIATED NAVIGATION SYSTEM
US11172608B2 (en) 2016-06-30 2021-11-16 Tti (Macao Commercial Offshore) Limited Autonomous lawn mower and a system for navigating thereof
US20200201347A1 (en) * 2017-08-30 2020-06-25 Positec Power Tools (Suzhou) Co., Ltd Self-moving device and method for controlling movement path of same
CN108639169A (zh) * 2018-04-24 2018-10-12 上海钧工智能技术有限公司 一种履带机器人的翻转臂机构
CN108646250B (zh) * 2018-06-14 2023-07-07 山东交通学院 一种多探头式车载雷达的距离求取方法
CN108551846A (zh) * 2018-06-19 2018-09-21 北斗万春(重庆)智能机器人研究院有限公司 一种割草机器人
EP3816652A4 (en) * 2018-06-26 2022-03-16 Positec Power Tools (Suzhou) Co., Ltd ELECTRICAL DEVICE APPLYING RADAR
US20200090501A1 (en) * 2018-09-19 2020-03-19 International Business Machines Corporation Accident avoidance system for pedestrians
CN111338332B (zh) * 2018-11-30 2022-03-18 宝时得科技(中国)有限公司 自动行走设备、其避障方法及装置
CN111367268B (zh) * 2018-12-24 2022-05-17 苏州宝时得电动工具有限公司 自动行走设备、及其行走控制方法与装置
TW202039271A (zh) * 2019-04-22 2020-11-01 燕成祥 機器人越障裝置
CN112119742B (zh) * 2019-06-25 2023-10-10 宝时得科技(中国)有限公司 智能割草机及智能割草机的自动控制方法
CN212696652U (zh) * 2020-01-21 2021-03-16 苏州宝时得电动工具有限公司 自动割草机
US20210276593A1 (en) * 2020-02-25 2021-09-09 Next Energy, LLC Automated and interchangeable functional device
US20210352842A1 (en) * 2020-05-14 2021-11-18 Globe (jiangsu) Co., Ltd. Robotic Mower with Collision and Detection Assemblies
CN112425344A (zh) * 2020-11-25 2021-03-02 西南大学 一种果园自走式除草机及其自主导航避障方法
CN113125568B (zh) * 2021-04-07 2022-06-17 华南理工大学 履带式移动超声波结构检测装置和检测方法
CN115494832A (zh) * 2021-06-17 2022-12-20 苏州宝时得电动工具有限公司 自移动设备及躲避障碍的控制方法、存储介质
CN113940186B (zh) * 2021-11-15 2022-09-27 南京苏美达智能技术有限公司 一种智能割草机的控制方法
CN116890943B (zh) * 2023-09-11 2023-11-14 广州市捷丰自动化设备有限公司 一种铁路过轨agv
CN116968835B (zh) * 2023-09-25 2023-12-26 中国电子科技南湖研究院 一种爬壁机器人的风压调节方法、系统及爬壁机器人

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2230414A (en) * 1989-04-22 1990-10-24 Jeffrey Ernest Hunt Self-propelled mowing apparatus
CN101091428A (zh) * 2006-10-20 2007-12-26 大连理工大学 一种自动割草机器人
CN201107902Y (zh) * 2007-11-15 2008-09-03 上海创绘机器人科技有限公司 智能割草机器人结构
CN102662400A (zh) * 2012-05-10 2012-09-12 慈溪思达电子科技有限公司 割草机器人的路径规划算法
CN103141210A (zh) * 2013-03-13 2013-06-12 江苏春花杰佳电器有限公司 智能割草机系统及割草方法
CN103733801A (zh) * 2014-01-02 2014-04-23 上海大学 一种组合式智能割草机器人
US20140121881A1 (en) * 2012-10-23 2014-05-01 Daniel A. DIAZDELCASTILLO Autonomous and remote control all purpose machine (arcapm)
CN203735069U (zh) * 2014-01-28 2014-07-30 苏州宝时得电动工具有限公司 智能割草机
CN205179745U (zh) * 2015-10-13 2016-04-27 苏州宝时得电动工具有限公司 割草机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7926598B2 (en) * 2008-12-09 2011-04-19 Irobot Corporation Mobile robotic vehicle
GB201306437D0 (en) * 2013-04-09 2013-05-22 F Robotics Acquisitions Ltd Domestic robotic system and robot therfor
KR101622693B1 (ko) * 2014-04-30 2016-05-19 엘지전자 주식회사 잔디 깎기 로봇 및 그 제어 방법
WO2017125089A1 (zh) * 2016-01-21 2017-07-27 苏州宝时得电动工具有限公司 自移动设备及自移动设备的控制方法
WO2017186149A1 (zh) * 2016-04-27 2017-11-02 苏州宝时得电动工具有限公司 智能履带式移动设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2230414A (en) * 1989-04-22 1990-10-24 Jeffrey Ernest Hunt Self-propelled mowing apparatus
CN101091428A (zh) * 2006-10-20 2007-12-26 大连理工大学 一种自动割草机器人
CN201107902Y (zh) * 2007-11-15 2008-09-03 上海创绘机器人科技有限公司 智能割草机器人结构
CN102662400A (zh) * 2012-05-10 2012-09-12 慈溪思达电子科技有限公司 割草机器人的路径规划算法
US20140121881A1 (en) * 2012-10-23 2014-05-01 Daniel A. DIAZDELCASTILLO Autonomous and remote control all purpose machine (arcapm)
CN103141210A (zh) * 2013-03-13 2013-06-12 江苏春花杰佳电器有限公司 智能割草机系统及割草方法
CN103733801A (zh) * 2014-01-02 2014-04-23 上海大学 一种组合式智能割草机器人
CN203735069U (zh) * 2014-01-28 2014-07-30 苏州宝时得电动工具有限公司 智能割草机
CN205179745U (zh) * 2015-10-13 2016-04-27 苏州宝时得电动工具有限公司 割草机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3459334A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220121217A1 (en) * 2019-02-03 2022-04-21 Positec Power Tools (Suzhou) Co., Ltd Self-moving device, its obstacle detection method and obstacle detection module
CN111920344A (zh) * 2019-05-13 2020-11-13 燕成祥 机器人越障装置
CN112578777A (zh) * 2019-09-27 2021-03-30 苏州宝时得电动工具有限公司 自主机器人及其行走路径规划方法、装置和存储介质

Also Published As

Publication number Publication date
CN107399377B (zh) 2021-02-09
US20190171214A1 (en) 2019-06-06
CN107399377A (zh) 2017-11-28
EP3459334B1 (en) 2022-09-07
US11099572B2 (en) 2021-08-24
EP3459334A1 (en) 2019-03-27
EP3459334A4 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
WO2017198226A1 (zh) 自移动设备及其控制方法
US11096325B2 (en) Lawn mower robot
US10716254B2 (en) Lawn mower robot
EP3571917B1 (en) Lawn mower
CN112088636A (zh) 自动割草机
KR101526334B1 (ko) 예초용 로봇
CN206413414U (zh) 割草机器人
JP7085752B2 (ja) 自律制御型草刈機
WO2020098666A1 (zh) 割草机器人
CN206472500U (zh) 割草机器人
CN108323310A (zh) 割草机器人
WO2021175331A1 (zh) 自移动园艺机器人及其工作方法
CN108323309A (zh) 割草机器人
CN211353106U (zh) 自动行走机器人
WO2024027586A1 (zh) 防护装置以及割草机
CN211353105U (zh) 自动行走机器人
CN209527210U (zh) 割草机器人
CN209454898U (zh) 自动避障机器人行走机构
CN112400448B (zh) 自动行走机器人及其控制方法
CN105875023A (zh) 割草机
US4515392A (en) Slope mower
CN108693873A (zh) 智能机器人
CN207037461U (zh) 智能机器人
CN112400449B (zh) 自动行走机器人及其控制方法
JP2000188919A (ja) 自走式草刈機およびその草刈方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017798789

Country of ref document: EP

Effective date: 20181219