WO2017197881A1 - 一种平面光波导结构及其耦合结构和耦合方法 - Google Patents

一种平面光波导结构及其耦合结构和耦合方法 Download PDF

Info

Publication number
WO2017197881A1
WO2017197881A1 PCT/CN2016/110358 CN2016110358W WO2017197881A1 WO 2017197881 A1 WO2017197881 A1 WO 2017197881A1 CN 2016110358 W CN2016110358 W CN 2016110358W WO 2017197881 A1 WO2017197881 A1 WO 2017197881A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
sub
planar optical
silicon dioxide
coupling
Prior art date
Application number
PCT/CN2016/110358
Other languages
English (en)
French (fr)
Inventor
陈奔
梁雪瑞
胡百泉
刘成刚
张玓
付永安
孙莉萍
马卫东
余向红
Original Assignee
武汉电信器件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610326883.4A external-priority patent/CN105759374B/zh
Priority claimed from CN201610326163.8A external-priority patent/CN105759373B/zh
Priority claimed from CN201610327114.6A external-priority patent/CN105759343B/zh
Application filed by 武汉电信器件有限公司 filed Critical 武汉电信器件有限公司
Publication of WO2017197881A1 publication Critical patent/WO2017197881A1/zh
Priority to US16/192,845 priority Critical patent/US10656350B2/en
Priority to US16/843,882 priority patent/US11181702B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4212Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element being a coupling medium interposed therebetween, e.g. epoxy resin, refractive index matching material, index grease, matching liquid or gel
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to the field of optical waveguide coupling technology, and in particular to a planar optical waveguide structure, a coupling structure thereof and a coupling method.
  • the mainstream 40G/100G optical modules are basically free-space coupling technologies based on prisms, lenses, optical filters, etc., which are characterized by relatively complicated processes, active light-to-light, high packaging costs, and large-scale integration is very difficult.
  • photonic integration technology refers to active devices (lasers, detectors, optical amplifiers, optical modulators, etc.) and passive components (split/combiners, optical filters, optical multiplexers/demultiplexers, etc.)
  • active devices lasers, detectors, optical amplifiers, optical modulators, etc.
  • passive components split/combiners, optical filters, optical multiplexers/demultiplexers, etc.
  • the technical problem to be solved by embodiments of the present invention is how to efficiently couple the light of a single mode laser to a planar optical waveguide or other silicon-based optical integrated chip.
  • a further technical problem to be solved by the embodiments of the present invention is to provide a planar optical waveguide structure and a corresponding coupling structure and coupling method for a single core, a multi-core, and a hybrid multi-core application scenario, respectively.
  • an embodiment of the present invention provides a coupling structure based on a planar optical waveguide, where the coupling structure includes a single mode active device and a planar optical waveguide, specifically:
  • the planar optical waveguide includes a silicon dioxide waveguide for transmitting an optical signal, wherein the silicon dioxide waveguide is composed of a coupling segment and a conductive segment;
  • the coupling section is a positive echelon structure or an inverted echelon structure, wherein a surface of the coupling section coupled to the single-mode active device is a ladder top, and a connecting surface of the coupling section and the conductive section is a ladder bottom;
  • a coupling gap is pre-set between the single mode active device and the planar optical waveguide.
  • the coupling interval gap d takes a value of 5 ⁇ m to 50 ⁇ m, and the coupling gap is filled with a matching glue for index matching.
  • the single-mode active device is specifically a Gaussian single-mode semiconductor laser having a center wavelength of 1310 nm to 1660 nms, a far-field emission angle X direction of 10°-40°, and a Y direction of 10°-45°
  • the single-mode active device has a light-emitting surface refractive index of 1.48
  • the matching gel has a refractive index of 1.48.
  • the coupling structure formed by the single-mode active device and the planar optical waveguide specifically includes an EPON optical module, a GPON optical module, a high-speed single-channel optical module SFP and SFP+ in data communication, or 40G, 100G optical Transmitting parallel modules QSFP, QSFP28.
  • an embodiment of the present invention further provides a planar optical waveguide structure, where the planar optical waveguide structure includes a silicon dioxide waveguide for transmitting an optical signal, specifically:
  • the silica waveguide is composed of a coupling section and a conducting section
  • the coupling section is a forward ladder structure or an inverted ladder structure, wherein the coupling section is configured to be a ladder top with a coupling surface of the single-mode active device, and the connecting section of the coupling section and the conductive section is a ladder bottom.
  • the planar optical waveguide is provided with a single-mode active device mounting base, and the base is provided with a pad and an alignment mark.
  • an embodiment of the present invention further provides a coupling method based on a planar optical waveguide.
  • the silicon dioxide waveguide in the planar optical waveguide is composed of a coupling section and a conductive section, and the method includes:
  • the pad is provided with a pad and an alignment mark
  • the selected single-mode active device is a Gaussian single-mode semiconductor laser with a center wavelength of 1310 nm to 1660 nms, a far-field emission angle of X° of 10° to 40°, and a Y direction of 10° to 45°;
  • the semiconductor laser is soldered in accordance with an alignment mark on the planar optical waveguide.
  • the method further includes:
  • the matching glue is selected based on the coating parameters of the laser and the refractive index of the silica waveguide, and the coupling gap is filled with the selected matching glue.
  • an embodiment of the present invention further provides a planar optical waveguide structure, wherein the planar optical waveguide includes a silicon dioxide main waveguide for transmitting an optical signal, and a sub-waveguide for assisting the incoming light;
  • the secondary waveguide includes a silicon nitride secondary waveguide that abuts the silicon dioxide primary waveguide.
  • the silicon nitride sub-waveguide is composed of two sub-sub-waveguides, wherein a first sub-sub-waveguide is located on an upper surface of the silicon dioxide main waveguide, and a second sub-sub-waveguide is located in the silicon dioxide main waveguide The lower surface.
  • the first sub-sub-waveguide and the second sub-sub-waveguide are both formed by a transition portion and a pyramid portion, wherein the transition portion is a rectangular cube extending in a direction of light transmission; wherein the pyramid portion is a bottom surface and the excessive portion Partially connected, the structure of the cone top extending in the direction of light transmission.
  • the silicon nitride sub-waveguide is composed of three sub-sub-waveguides, wherein the first sub-sub-waveguide, the second sub-sub-waveguide, and the third sub-sub-waveguide are both located on an upper surface of the silicon dioxide main waveguide;
  • the three sub-waveguides are pyramidal structures in which the cone top extends in the direction of light transmission.
  • the three sub-sub-waveguides are spaced apart by a predetermined distance, and the three sub-multiplexed waveguides are arranged in parallel.
  • the auxiliary waveguide further includes a silicon dioxide sub-waveguide, specifically:
  • the silicon nitride sub-waveguide and the silicon dioxide sub-waveguide are each composed of a transition portion and a pyramid portion, and the transition portion is a rectangular cube extending in a direction of light transmission; the cone portion is a bottom surface that is connected to the excessive portion, and the cone top is transmitted to the light. a direction extending structure; wherein the silicon nitride sub-waveguide is located on an upper surface of the silicon dioxide main waveguide, the silicon dioxide sub-waveguide is located on an upper surface of the silicon dioxide main waveguide, and covers the silicon nitride sub-waveguide on.
  • the embodiment of the present invention further provides a planar optical waveguide-based coupling structure, comprising the planar optical waveguide structure according to the fourth aspect, wherein the coupling structure further comprises a single-mode active device, specifically:
  • the planar optical waveguide is provided with a single-mode active device fixing station on the light-incident side of the silicon dioxide main waveguide and the silicon nitride sub-waveguide;
  • the fixing stage is provided with a pad and an alignment mark for performing soldering with a corresponding pad on the single-mode active device; the alignment mark is used for binding the automatic binding machine Addressing of solder joints;
  • a coupling gap d is disposed between the single mode active device and the light entrance of the silicon dioxide main waveguide and the silicon nitride sub-waveguide, and the coupling spacer is filled with Index matching matching glue.
  • the embodiment of the present invention further provides a coupling method based on a planar optical waveguide, including:
  • the coupling gap between the single mode active device light exit port and the planar optical waveguide entrance port is filled with a matching glue.
  • the planar optical waveguide is composed of a main waveguide and a sub-waveguide, and the planar optical waveguide that is selected according to the far-field emission angle specifically includes:
  • the single mode active device is a lateral elliptical source or a longitudinal elliptical source
  • a planar optical waveguide in which the sub-waveguide is buried in a single-side tiling manner on the main waveguide is selected;
  • a planar optical waveguide in which the secondary waveguide is buried in a double-sided tiling manner on the main waveguide is selected.
  • the sub-waveguide is a planar optical waveguide embedded in a single-side tiling manner on the main waveguide, specifically:
  • the silicon nitride sub-waveguide is composed of three sub-sub-waveguides, wherein the first sub-sub-waveguide, the second sub-sub-waveguide and the third sub-sub-waveguide are both located on the upper surface of the silicon dioxide main waveguide; the three sub-sub-waveguides are cones Body structure in which the top of the cone extends in the direction of light transmission; or
  • the silicon nitride sub-waveguide and the silicon dioxide sub-waveguide are each composed of a transition portion and a pyramid portion, and the transition portion is a rectangular cube extending in a direction of light transmission; the cone portion is a bottom surface that is connected to the excessive portion, and the cone top is transmitted to the light. a direction extending structure; wherein the silicon nitride sub-waveguide is located on an upper surface of the silicon dioxide main waveguide, the silicon dioxide sub-waveguide is located on an upper surface of the silicon dioxide main waveguide, and covers the silicon nitride sub-waveguide on;
  • planar waveguide in which the secondary waveguide is buried in a double-sided manner on the main waveguide is specifically:
  • the silicon nitride sub-waveguide is composed of two sub-sub-waveguides, wherein a first sub-sub-waveguide is located on an upper surface of the silicon dioxide main waveguide, and a second sub-sub-waveguide is located on a lower surface of the silicon dioxide main waveguide.
  • the embodiment of the present invention further provides a planar optical waveguide structure, wherein the planar optical waveguide includes a silicon dioxide main waveguide for transmitting an optical signal, and a sub-waveguide for assisting the incoming light;
  • the secondary waveguide includes one or more silicon dioxide sub-waveguides disposed at a predetermined center distance from the silicon dioxide primary waveguide.
  • the auxiliary waveguide specifically includes two sub-sub-waveguides, wherein the first sub-sub-waveguide is located on an upper side of the silicon dioxide main waveguide, and the second sub-sub-waveguide is located on a lower side of the silicon dioxide main waveguide .
  • the first sub-sub-waveguide and the second sub-sub-waveguide are each formed by a positive echelon structure
  • the ladder top and the silicon dioxide main waveguide entrance port are located on the same side; the bottom of the ladder extends in the direction of light transmission, and the width of the ladder bottom is the same as the width of the main waveguide of the silicon dioxide;
  • the side faces of the first sub-sub-waveguide step body and the second sub-sub-waveguide ladder body adjacent to the upper and lower planes of the silicon dioxide main waveguide are respectively kept parallel to the upper and lower planes of the silicon dioxide main waveguide.
  • the parameters of the main waveguide and the auxiliary waveguide are specifically:
  • the main waveguide and the sub-waveguide are in a multi-core planar optical waveguide structure, and the inner and outer layers of the respective core layers are cladding layers having similar refractive indexes, and the relative refractive index difference is 0.013.
  • the auxiliary waveguide specifically includes eight sub-sub-waveguides, wherein the first sub-sub-waveguide is located on an upper side of the silicon dioxide main waveguide; and the second sub-sub-waveguide is located on a lower side of the silicon dioxide main waveguide a third sub-sub-waveguide located on the left side of the silicon dioxide main waveguide; a fourth sub-sub-waveguide located on the right side of the silicon dioxide main waveguide; and a fifth sub-sub-waveguide located on the upper left side of the silicon dioxide main waveguide a side, located on the left side of the first sub-sub-waveguide, on the upper side of the third sub-sub-waveguide; the sixth sub-sub-waveguide is located on the upper right side of the silicon dioxide main waveguide, and located at the first sub-sub The left side of the waveguide is located on the upper side of the fourth sub-sub-waveguide; the seventh sub-sub-waveguide is located on the lower left side of the silicon dioxide main waveguide, and is located on the left side of the second sub-
  • each of the sub-sub-waveguides is a positive echelon structure, and four sides of the connection ladder top and the ladder bottom are inclined surfaces, wherein the ladder top and the light entrance of the silicon dioxide main waveguide are located in the multi-core The same side of the planar optical waveguide.
  • the main waveguide and the sub-waveguide are in a multi-core planar optical waveguide structure, and the inner and outer layers of the respective core layers are cladding layers having similar refractive indexes, and the relative refractive index difference is 0.013.
  • the embodiment of the present invention further provides a planar optical waveguide-based coupling structure, including the planar optical waveguide of the structure of the seventh aspect, wherein the coupling structure further includes a single-mode active device, specifically:
  • the multi-core planar optical waveguide is provided with a single-mode active device fixing station on the light-incident side of the silicon dioxide main waveguide and the silicon dioxide sub-waveguide;
  • the mounting table is provided with pads and alignment marks for performing soldering with corresponding pads on the single mode active device; the alignment marks are used to tie the automatic bonding machine Addressing of solder joints;
  • a coupling gap d is disposed between the single-mode active device and the light entrance of the silicon dioxide main waveguide and the silicon dioxide sub-waveguide, and the coupling spacer is filled with Index matching matching glue.
  • the coupling structure formed by the single-mode active device and the multi-core planar optical waveguide specifically includes an EPON optical module, a GPON optical module, a high-speed single-channel optical module SFP and SFP+ in data communication, or 40G.
  • the coupling structure and method proposed in the first aspect of the present invention can be directly applied to an automatic method for mounting a laser onto a planar optical waveguide circuit PLC to complete passive pairing and direct coupling of the laser to the PLC, and the automation device
  • the application can greatly guarantee the quality of the process, shorten the light and welding time, and achieve the purpose of reducing costs.
  • the hybrid multi-core waveguide proposed in the fourth embodiment of the present invention refers to a silicon nitride/silicon dioxide sub-waveguide other than a silicon dioxide main waveguide at a laser interface end of the PLC to form a hybrid multi-core waveguide.
  • Improve coupling efficiency and alignment tolerance Since the numerical aperture NA of the silicon nitride waveguide is high, the light-receiving ability is stronger than that of the silicon dioxide waveguide.
  • the function of the hybrid multi-core waveguide is equivalent to the addition of a light-receiving light-incident port. After a transition, all the sub-waveguides disappear, so that the light entering from the additional light-injecting port is merged into the main body through the parallel coupling of the waveguide. Waveguides achieve the goal of improving coupling efficiency and alignment tolerance.
  • the planar optical waveguide structure including one or more silicon dioxide sub-waveguides proposed in the seventh embodiment of the present invention can complete the passive pairing and direct coupling of the laser to the PLC, and can improve the alignment tolerance compared with the prior art; Based on the improvement of the alignment tolerance, the requirements for process precision in the automation equipment can be further reduced, the light and welding time can be shortened, and the defective rate can be further reduced, thereby achieving the purpose of reducing the cost.
  • FIG. 1 is a schematic diagram of a coupling structure based on a planar optical waveguide according to an embodiment of the present invention
  • FIG. 2 is a partial enlarged view of a top view of the A-A' cross section of the stepped body structure of FIG. 1 according to an embodiment of the present invention
  • FIG. 3 is a partial enlarged view of the cross-sectional view taken along line B-B' of FIG. 2 in the structure of the stepped body of FIG. 1 according to an embodiment of the present invention
  • FIG. 4 is a partial enlarged view of a top view of the A-A' cross section of the inverted ladder structure of FIG. 1 according to an embodiment of the present invention
  • Figure 5 is a partial enlarged view of the cross-sectional structure of Figure 1 taken along line B-B' of Figure 4 in an embodiment of the present invention
  • FIG. 6 is a schematic flow chart of a coupling method based on a planar optical waveguide according to an embodiment of the present invention
  • Figure 7 is a partial enlarged view of a prior art A-A' cross-sectional view of the prior art according to an embodiment of the present invention.
  • Figure 8 is a partial enlarged view of the cross section taken along the line B-B' in Figure 7 in the prior art provided by the embodiment of the present invention.
  • FIG. 9 is a diagram showing a correspondence relationship between a coupling section width and a coupling efficiency according to an embodiment of the present invention.
  • FIG. 10 is a diagram showing a correspondence relationship between a coupling segment width and a coupling interval gap according to an embodiment of the present invention
  • FIG. 11 is a positioning tolerance diagram obtained based on a simulation test according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a coupling structure based on a planar optical waveguide according to an embodiment of the present invention.
  • Figure 13 is a partial enlarged view of a plan view of the cross section taken along the line A-A' in Figure 12, in accordance with an embodiment of the present invention
  • Figure 14 is a partial enlarged view of a front view of the corresponding portion of Figure 13 of Figure 12 according to an embodiment of the present invention
  • Figure 15 is a partial enlarged view of the left side view of Figure 12 taken along line B-B' of Figure 12 with respect to the left side view of Figure 13;
  • Figure 16 is a partial enlarged view of a plan view of the cross section taken along the line A-A' in Figure 12, in accordance with an embodiment of the present invention
  • Figure 17 is a partial enlarged view of a plan view taken along line C-C' of Figure 12, in accordance with an embodiment of the present invention.
  • Figure 18 is a partial enlarged view of a front view of the corresponding portion of Figure 16 of Figure 12 according to an embodiment of the present invention
  • Figure 19 is a partial enlarged view of the left side view of Figure 22 taken along line B-B' of Figure 12 with respect to the left side view of Figure 16;
  • Figure 21 is a partial enlarged view of a plan view of the cross section taken along the line A-A' in Figure 12 according to an embodiment of the present invention
  • Figure 22 is a partial enlarged view of a front view of the corresponding portion of Figure 21 of Figure 12 according to an embodiment of the present invention
  • Figure 23 is a partial enlarged view of the left side view of Figure 22 taken along line B-B' of Figure 12 with respect to the left side view of Figure 21;
  • 24 is a positioning tolerance diagram obtained based on a simulation test according to an embodiment of the present invention.
  • Figure 25 is a partially enlarged plan view showing a plan view of the cross section taken along the line A-A' in Figure 12 according to an embodiment of the present invention
  • Figure 26 is a partial enlarged view of a front view of the corresponding portion of Figure 25 of Figure 12 according to an embodiment of the present invention
  • Figure 27 is a partial enlarged view of the left side view of Figure BB with respect to the left side view of Figure 25, in accordance with an embodiment of the present invention
  • 29 is a flowchart of a coupling method based on a planar optical waveguide according to an embodiment of the present invention.
  • FIG. 30 is a schematic diagram of a coupling structure of a multi-core planar optical waveguide according to an embodiment of the present invention.
  • Figure 31 is a partial enlarged view of a plan view taken along line C-C' of Figure 30, showing an embodiment of the present invention
  • Figure 32 is a partial enlarged view of a plan view taken along line A-A' of Figure 30, showing an embodiment of the present invention
  • Figure 33 is a partial enlarged view of the cross section of Figure 32 taken along line D-D' of Figure 32, in accordance with an embodiment of the present invention
  • Figure 34 is a partial enlarged view of a cross-sectional view taken along line B-B' of Figure 30, in accordance with an embodiment of the present invention
  • 35 is a positioning tolerance diagram obtained based on a simulation test according to an embodiment of the present invention.
  • Figure 36 is a partial enlarged view of another plan view of the cross section taken along the line A-A' in Figure 30 according to an embodiment of the present invention.
  • FIG. 37 is a partial enlarged view of the cross section of FIG. 30 taken along line D-D' of FIG. 36 according to an embodiment of the present invention
  • Figure 38 is a partial enlarged view of a cross-sectional view taken along line B-B' of Figure 30, taken in accordance with an embodiment of the present invention
  • FIG. 39 is a positioning tolerance diagram obtained based on a simulation test according to an embodiment of the present invention.
  • highest coupling efficiency is defined as the highest coupling efficiency from active device to optical waveguide that can be achieved at a working wavelength, waveguide shape and spacing fixed;
  • 6dB alignment Tolerance is the allowable relative displacement between the active device and the waveguide when the coupling efficiency is greater than or equal to 25% (6dB insertion loss).
  • Embodiment 1 of the present invention provides a coupling structure based on a planar optical waveguide, the structure comprising a single mode active device and a planar optical waveguide PLC, as shown in FIG. 1, specifically:
  • the planar optical waveguide PLC includes a silicon dioxide waveguide for transmitting an optical signal, wherein the silicon dioxide waveguide is composed of a coupling section and a conductive section.
  • single-mode active devices include, but are not limited to, Fabry-Perot (abbreviated as FP), Distributed Feedback Laser (abbreviated as DFB), and electroabsorption modulated laser (Electlro) -absorption Modulated Laser (abbreviated as EML), based on Semiconductor Optical Amplifier (SOA).
  • FP Fabry-Perot
  • DFB Distributed Feedback Laser
  • EML electroabsorption modulated laser
  • SOA Semiconductor Optical Amplifier
  • the coupling section is a positive echelon structure or an inverted echelon structure, wherein a surface of the coupling section coupled to the single-mode active device is a ladder top, and a connecting surface of the coupling section and the conductive section is a ladder bottom.
  • Fig. 2 which is a plan view of the A-A' section in Fig. 1
  • a schematic diagram of a positive echelon structure is shown.
  • Fig. 4 which is a plan view of the A-A' section in Fig. 1, a schematic view of an inverted ladder structure is shown.
  • a coupling gap d is pre-set between the single mode active device and the planar optical waveguide.
  • planar optical waveguide coupling structure proposed by the embodiment of the invention can complete the passive pairing and direct coupling of the laser to the PLC, and improves the alignment tolerance compared with the prior art; and the automation can be further reduced based on the improvement of the alignment tolerance
  • the requirements for process accuracy in the equipment can shorten the light and welding time and further reduce the defective rate, thus achieving the goal of reducing costs.
  • the coupling spacer gap d has a value of 5 ⁇ m to 50 ⁇ m, and the coupling gap is filled with an index matching gel for index matching.
  • the match The glue is used to protect the optical path from external erosion while completing the index matching.
  • a coupling device composed of the single-mode active device and the planar optical waveguide can be applied to various known optical modules, such as an EPON optical module, a GPON optical module, and a high-speed single in data communication.
  • Embodiment 1 of the present invention gives a coupling structure based on a planar optical waveguide, and a specific description will be given next to the planar optical waveguide structure used in Embodiment 1, the planar optical waveguide structure including an optical signal for transmitting
  • the silica waveguide as shown in Figures 2 and 3, is specific:
  • the silica waveguide is composed of a coupling section and a conducting section
  • the coupling section is a forward ladder structure or an inverted ladder structure, wherein the coupling section is configured to be a ladder top with a coupling surface of the single-mode active device, and the connecting section of the coupling section and the conductive section is a ladder bottom.
  • the embodiment of the present invention provides a preferred implementation from the process complexity of fabricating the planar optical waveguide structure.
  • the positive ladder structure or the inverted ladder structure is four with respect to the ladder top and the ladder bottom.
  • the sides are formed by a set of parallel faces and a set of bevels, and the parallel faces are perpendicular to the growth direction of the planar optical waveguide.
  • This preferred implementation can reduce the process difficulty of growing the planar optical waveguide.
  • the four sides of the forward ladder structure or the inverted ladder structure with respect to the ladder top and the ladder bottom are composed of a set of parallel faces and a set of slopes, and the parallel faces and the planes
  • the horizontal plane of the optical waveguide is vertical.
  • the four sides of the forward ladder structure or the inverted ladder structure with respect to the ladder top and the ladder bottom are composed of two sets of inclined surfaces.
  • a single-mode active device mounting base is disposed on the planar optical waveguide.
  • a pad and an alignment mark are disposed on the base.
  • there are corresponding single-mode active devices having pads for eutectic soldering or thermo-compression bonding and alignment marks matching the planar optical waveguide.
  • the optical plane waveguide structure described in Embodiment 2 based on the above structure, a coupling method based on a planar optical waveguide, silicon dioxide in a planar optical waveguide is proposed.
  • the waveguide is composed of a coupling section and a conducting section, as shown in FIG. 6, the method comprising:
  • the PLC waveguide in the embodiment of the present invention is a silicon-based silicon dioxide embedded rectangular waveguide, wherein the coupling segment core layer and the conductive segment core layer are all cladding layers having the same refractive index, and the relative refractive index inside and outside the core layer The difference is 0.013.
  • step 202 a single mode active device mounting base is created on the planar optical waveguide, the pads being provided with pads and alignment marks.
  • planar optical waveguide and the pads of the single-mode active device are soldered to form a bonded solder joint.
  • the selected single mode active device is a Gaussian type single mode semiconductor laser having a center wavelength of 1310 nm to 1660 nm, a far field emission angle X direction of 10 to 40 degrees, and a Y direction of 10 to 45 degrees.
  • step 204 the semiconductor laser is soldered in accordance with an alignment mark on the planar optical waveguide.
  • the method further includes:
  • step 205 the matching glue is selected based on the coating parameters of the laser and the refractive index of the silica waveguide, and the coupling gap is filled with the selected matching glue.
  • the 6dB alignment tolerance is only one point, that is, the laser and PLC are fixed to a very high degree of accuracy, and a slight deviation will not reach the 6dB alignment tolerance.
  • the embodiment of the present invention optimizes the shape of the waveguide to obtain a coupling gap of 5 ⁇ m and a matching glue (refractive index of 1.48).
  • a matching glue refractive index of 1.48.
  • the shape of the planar optical waveguide circuit PLC is easy to realize in the horizontal direction
  • the shape in the vertical direction is relatively difficult to realize
  • the present invention preferentially takes the same size in the vertical direction, and only increases the tapered waveguide in the horizontal direction (ie, horizontally).
  • the direction is extended, the vertical direction is equal, and the process is also the mask mask.)
  • the highest coupling efficiency and 6dB alignment tolerance are improved without increasing the PLC manufacturing process.
  • Embodiment 3 of the present invention only gives a parameter example, and the present invention further provides a correspondence diagram between the coupling efficiency and the waveguide width of the coupling segment (as shown in FIG. 9, where the parameters of the single mode active device, and the plane)
  • the relevant parameters of the optical waveguide refer to the related description of the embodiment, and are not described here again.
  • the influence of the waveguide width of the coupling section on the waveguide width of the coupling section involves various aspects, including the wavelength of the laser, the refractive index difference of the optical waveguide, and the laser.
  • the refractive index of the light-emitting surface, etc., the prior art does not have a formula that can directly derive the relationship between the above several parameters.
  • the present invention further simulates by finding that the width (or height) of the coupling section affects the coupling efficiency.
  • a relationship graph as shown in FIG. 9 is obtained, and a coupling efficiency and coupling interval gap relationship diagram as shown in FIG. 10 is obtained.
  • the single-mode active device is specifically a Gaussian single-mode semiconductor laser with a center wavelength of 1310 nm and a far-field emission angle of 25° ⁇ 40°, in order to interact with the silicon dioxide waveguide.
  • ⁇ m; ladder length L 800 ⁇ m; the matching gel has a refractive index of 1.48.
  • the different curves correspond to different coupling efficiencies, for example, the curve of 0.03398 indicates that the coupling efficiency is 3.398%.
  • the 6dB alignment tolerance is:
  • the result of the present invention can directly mount the laser to the planar optical waveguide circuit PLC in an automatic manner, complete the passive light of the laser to the PLC and directly coupling.
  • the application of automation equipment can greatly guarantee the quality of the process, shorten the light and welding time, and achieve the purpose of reducing costs.
  • Embodiment 5 of the present invention provides a structure of a planar optical waveguide. Compared with the single-core planar optical waveguide application scenario of Embodiment 1, the embodiment of the present invention focuses on a planar optical waveguide proposed by a hybrid multi-core planar optical waveguide application scenario.
  • the structure as shown in Figures 12-15, includes, specifically:
  • the planar optical waveguide includes a silicon dioxide main waveguide for transmitting an optical signal, and a sub-waveguide for assisting the incoming light;
  • the secondary waveguide includes a silicon nitride secondary waveguide that abuts the silicon dioxide primary waveguide.
  • the silicon nitride secondary waveguide may be in various structural forms: for example, it is specifically a rectangular cubic structure, a forward ladder structure, an inverted ladder structure, or the like.
  • the hybrid multi-core waveguide proposed in this embodiment refers to a silicon nitride sub-waveguide other than a silicon dioxide main waveguide at a laser interface end of the PLC to form a hybrid multi-core waveguide, with the aim of improving coupling efficiency and alignment tolerance. Since the numerical aperture NA of the silicon nitride waveguide is high, the light-receiving ability is stronger than that of the silicon dioxide waveguide.
  • the function of the hybrid multi-core waveguide is equivalent to the addition of a light-receiving light-incident port. After a transition, all the sub-waveguides disappear, so that the light entering from the additional light-injecting port is merged into the main body through the parallel coupling of the waveguide. Waveguides achieve the goal of improving coupling efficiency and alignment tolerance.
  • silica main waveguide is comprised of a coupling section and a conducting section.
  • the coupling section is a positive echelon structure or an inverted echelon structure, wherein a surface of the coupling section coupled to the single-mode active device is a ladder top, and a connecting surface of the coupling section and the conductive section is a ladder bottom.
  • Embodiment 6 of the present invention specifically describes one of the optional sub-waveguide structures.
  • the sub-waveguide includes not only a silicon nitride sub-waveguide, but also includes The silica sub-waveguide, as shown in Figures 16, 17, 18 and 19, the specific structure is as follows:
  • the planar optical waveguide includes a silicon dioxide main waveguide for transmitting an optical signal, and a sub-waveguide for assisting the incoming light;
  • the silicon nitride sub-waveguide and the silicon dioxide sub-waveguide are each composed of a transition portion and a pyramid portion, and the transition portion is a rectangular cube extending in a direction of light transmission; the cone portion is a bottom surface that is connected to the excessive portion, and the cone top direction a structure in which a light transmission direction extends; wherein a silicon nitride sub-waveguide is located on an upper surface of the silicon dioxide main waveguide, the silicon dioxide sub-waveguide is located on an upper surface of the silicon dioxide main waveguide, and covers the silicon nitride sub-layer Above the waveguide.
  • Transition portion length L of the silica secondary waveguide transition 1 100 ⁇ m
  • the total length of the silica secondary waveguide (including the transition portion and the tapered portion) L pair 1 total 600 ⁇ m;
  • Transition portion length L of the silicon nitride sub-waveguide L 2 transition 100 ⁇ m
  • the total length of the silicon nitride sub-waveguide (including the transition portion and the tapered portion) L pair 2 total 500 ⁇ m;
  • the planar optical waveguide of this parameter is suitable for a Gaussian single-mode semiconductor laser with a center wavelength of 1310 nm to 1660 nms, a far-field emission angle of X° of 10° to 40°, and a Y direction of 10° to 45°.
  • the front end and the back end are the same size, and the maximum coupling efficiency is only 25%.
  • the 6dB alignment tolerance is only one point, that is, the laser and PLC are fixed to a very high precision.
  • a Gaussian single-mode semiconductor laser having a center wavelength of 1310 nm and a far-field emission angle of 25° ⁇ 40° is used for simulation test to obtain a positioning tolerance diagram as shown in FIG. 20 .
  • planar optical waveguide structure according to Embodiment 6 of the present invention is improved enough, and the maximum coupling efficiency reaches 46.6%.
  • the 6dB alignment tolerance (shown in Figure 20) is achieved in the X and Y directions:
  • the above results improve the highest coupling efficiency compared to the single waveguide approach and further relax the 6 dB alignment tolerance.
  • the accuracy of the commercial automatic binding machine can reach +/- 0.5 ⁇ m.
  • the result of the embodiment of the present invention can directly mount the laser to the PLC in an automatic manner, and complete the passive pairing and direct coupling of the laser to the PLC.
  • the application of automation equipment can greatly guarantee the quality of the process, shorten the light and welding time, and achieve the purpose of reducing costs.
  • Embodiment 7 of the present invention specifically describes one of the optional sub-waveguide structures, as shown in FIG. 21, FIG. 22 and FIG. 23, specifically, the The silicon nitride sub-waveguide is composed of two sub-sub-waveguides, wherein a first sub-sub-waveguide is located on an upper surface of the silicon dioxide main waveguide, and a second sub-sub-waveguide is located on a lower surface of the silicon dioxide main waveguide.
  • the first sub-sub-waveguide and the second sub-sub-waveguide are each composed of a transition portion and a cone portion, wherein the transition portion is a direct optical transmission.
  • Silicon nitride sub-waveguide transition portion length L sub-transition 400 ⁇ m;
  • Silicon nitride sub-sub-waveguide apex width T 0.1 ⁇ m.
  • the planar optical waveguide of this parameter is suitable for a Gaussian single-mode semiconductor laser with a center wavelength of 1310 nm to 1660 nms, a far-field emission angle of X° of 10° to 40°, and a Y direction of 10° to 45°.
  • the front end and the back end are the same size, and the maximum coupling efficiency is only 25%.
  • the 6dB alignment tolerance is only one point, that is, the laser and the PLC are fixed to a very high precision, and a slight deviation will occur. The 6dB alignment tolerance is not achieved.
  • a Gaussian single-mode semiconductor laser having a center wavelength of 1310 nm and a far-field emission angle of 25° ⁇ 40° is used for simulation test to obtain a positioning tolerance diagram as shown in FIG.
  • planar optical waveguide structure according to Embodiment 7 of the present invention is improved enough, and the maximum coupling efficiency reaches 49.43%, and the 6 dB alignment tolerance (shown in FIG. 24) is respectively achieved in the X and Y directions:
  • the above results improve the highest coupling efficiency compared to the single waveguide approach and further relax the 6 dB alignment tolerance.
  • the accuracy of the commercial automatic binding machine can reach +/- 0.5 ⁇ m.
  • the result of the embodiment of the present invention can directly mount the laser to the PLC in an automatic manner, and complete the passive pairing and direct coupling of the laser to the PLC.
  • the application of automation equipment can greatly guarantee the quality of the process, shorten the light and welding time, and achieve the purpose of reducing costs.
  • Embodiment 8 of the present invention specifically describes one of the optional sub-waveguide structures, as shown in FIGS. 25, 26, and 27, specifically, the Nitriding
  • the silicon sub-waveguide is composed of three sub-sub-waveguides, wherein the first sub-sub-waveguide, the second sub-sub-waveguide and the third sub-sub-waveguide are both located on the upper surface of the silicon dioxide main waveguide; the three sub-sub-waveguides are pyramidal structures Wherein the cone top extends in the direction of light transmission.
  • the three sub-sub-waveguides are spaced apart by a predetermined distance and the three sub-multiplexed waveguides are arranged in parallel.
  • the total length L of the silicon nitride sub-waveguide Deputy 1000 ⁇ m;
  • Silicon nitride sub-sub-waveguide apex width T 0.1 ⁇ m
  • G 0.1 ⁇ m interval between the sub-sub-silicon nitride waveguide.
  • the planar optical waveguide of this parameter is suitable for a Gaussian single-mode semiconductor laser with a center wavelength of 1310 nm to 1660 nms, a far-field emission angle of X° of 10° to 40°, and a Y direction of 10° to 45°.
  • the front end and the back end are the same size, and the maximum coupling efficiency is only 25%.
  • the 6dB alignment tolerance is only one point, that is, the laser and the PLC are fixed to a very high precision, and a slight deviation will occur. The 6dB alignment tolerance is not achieved.
  • a Gaussian single-mode semiconductor laser having a center wavelength of 1310 nm and a far-field emission angle of 25° ⁇ 40° is used for simulation test to obtain a positioning tolerance diagram as shown in FIG.
  • planar optical waveguide structure according to Embodiment 8 of the present invention is improved enough, and the maximum coupling efficiency reaches 43.7%, and the 6 dB alignment tolerance (shown in FIG. 28) is respectively achieved in the X and Y directions:
  • a hybrid multi-core waveguide formed by adding a silicon nitride sub-waveguide having a large numerical aperture NA is that this invention has a very high coupling efficiency in the direct coupling of an active device to a planar optical waveguide circuit.
  • the 6dB alignment tolerance has also improved accordingly.
  • the accuracy of the commercial automatic binding machine can reach +/- 0.5 ⁇ m.
  • the result of the present invention can directly mount the laser to the PLC in an automatic manner, and complete the passive pairing and direct coupling of the laser to the PLC.
  • the application of automation equipment can greatly guarantee the quality of the process and shorten the time of light and welding, thus achieving the goal of reducing costs.
  • a coupling structure of a planar optical waveguide comprising a planar optical waveguide having a structure as described in any one of Embodiments 5 to 8, wherein the coupling structure further comprises a single mode active device, and the single mode active device includes but is not limited to Fabry-Perot laser FP, distributed feedback laser DFB, electroabsorption modulation laser EML, semiconductor optical amplifier based SOA, etc.
  • the coupling structure is specifically:
  • the planar optical waveguide is provided with a single-mode active device fixing station on the light-incident side of the silicon dioxide main waveguide and the silicon nitride sub-waveguide;
  • the fixing stage is provided with a pad and an alignment mark for performing soldering with a corresponding pad on the single-mode active device; the alignment mark is used for binding the automatic binding machine Addressing of solder joints;
  • a coupling gap d is disposed between the single mode active device and the light entrance of the silicon dioxide main waveguide and the silicon nitride sub-waveguide, and the coupling spacer is filled with Index matching matching glue.
  • the coupling method includes:
  • step 301 the optical wavelength and far field emission angle of the single mode active device are determined.
  • a planar optical waveguide adapted thereto is selected based on the far field emission angle.
  • the optional planar optical waveguide includes the planar optical waveguides as proposed in Embodiments 5 to 8.
  • step 303 the single mode active device is soldered in accordance with pads and alignment marks provided on the planar optical waveguide.
  • step 304 a coupling gap between the single mode active device light exit and the planar optical waveguide entrance is filled with a matching glue.
  • the planar optical waveguide is composed of a main waveguide and a sub-waveguide, and the planar optical waveguide that is adapted according to the far-field emission angle has a preferred implementation scheme. Specifically include:
  • the single mode active device is a lateral elliptical source or a longitudinal elliptical source
  • a planar optical waveguide in which the sub-waveguide is buried in a single-side tiling manner on the main waveguide is selected;
  • a planar optical waveguide in which the secondary waveguide is buried in a double-sided tiling manner on the main waveguide is selected.
  • planar optical waveguide in which the sub-waveguide is buried in a single-sided tiling manner on the main waveguide, specifically:
  • the silicon nitride sub-waveguide is composed of three sub-sub-waveguides, wherein the first sub-sub-waveguide, the second sub-sub-waveguide and the third sub-sub-waveguide are both located on the upper surface of the silicon dioxide main waveguide; the three sub-sub-waveguides are cones Body structure in which the top of the cone extends in the direction of light transmission; or
  • the silicon nitride sub-waveguide and the silicon dioxide sub-waveguide are each composed of a transition portion and a pyramid portion, and the transition portion is a rectangular cube extending in a direction of light transmission; the cone portion is a bottom surface that is connected to the excessive portion, and the cone top is transmitted to the light. a direction extending structure; wherein the silicon nitride sub-waveguide is located on an upper surface of the silicon dioxide main waveguide, the silicon dioxide sub-waveguide is located on an upper surface of the silicon dioxide main waveguide, and covers the silicon nitride sub-waveguide on;
  • planar waveguide in which the secondary waveguide is buried in a double-sided manner on the main waveguide is specifically:
  • the silicon nitride sub-waveguide is composed of two sub-sub-waveguides, wherein a first sub-sub-waveguide is located on an upper surface of the silicon dioxide main waveguide, and a second sub-sub-waveguide is located on a lower surface of the silicon dioxide main waveguide.
  • Embodiment 11 of the present invention provides a multi-core planar optical waveguide structure, as shown in FIG. Show:
  • the planar optical waveguide includes a silicon dioxide main waveguide for transmitting an optical signal, and a sub-waveguide for assisting the incoming light;
  • the secondary waveguide includes one or more silicon dioxide sub-waveguides disposed at a predetermined center distance from the silicon dioxide primary waveguide.
  • center distance is used to ensure that the one or more silicon dioxide sub-waveguides and the silicon dioxide main waveguide generate sufficient coupling effects on the light receiving surface.
  • the planar optical waveguide structure including one or more silicon dioxide sub-waveguides proposed by the embodiments of the present invention can complete the passive pairing and direct coupling of the laser to the PLC, and the alignment tolerance can be improved compared with the prior art;
  • the improvement of the alignment tolerance can further reduce the requirements for process precision in the automation equipment, and can shorten the light and welding time, and further reduce the defective rate, thereby achieving the purpose of reducing the cost.
  • the silicon dioxide main waveguide includes a coupling section and a conductive section, and the coupling section is a positive ladder structure or an inverted ladder structure, wherein The surface of the coupling segment coupled to the single-mode active device is a ladder top, and the connecting surface of the coupling segment and the conductive segment is a ladder bottom.
  • Embodiment 12 of the present invention specifically illustrates the configuration of one of the optional silicon dioxide sub-waveguides, as shown in FIGS. 32, 33, and 34:
  • the planar optical waveguide includes a silicon dioxide main waveguide for transmitting an optical signal, and a sub-waveguide for assisting the incoming light;
  • the sub-waveguide specifically includes two sub-sub-waveguides, wherein a first sub-sub-waveguide is located on an upper side of the silicon dioxide main waveguide, and a second sub-sub-waveguide is located on a lower side of the silicon dioxide main waveguide, the second The silicon oxide sub-waveguide and the silicon dioxide main waveguide are disposed at a predetermined center distance.
  • center distance is used to ensure that the one or more silicon dioxide sub-waveguides and the silicon dioxide main waveguide generate sufficient coupling effects on the light receiving surface.
  • the first sub-sub-waveguide and the second sub-sub-waveguide are both positive colloids.
  • the ladder top and the silicon dioxide main waveguide entrance port are located on the same side; the bottom of the ladder extends in the direction of light transmission, and the width of the ladder bottom is the same as the width of the main waveguide of the silicon dioxide;
  • the side faces of the first sub-sub-waveguide step body and the second sub-sub-waveguide ladder body adjacent to the upper and lower planes of the silicon dioxide main waveguide are respectively kept parallel to the upper and lower planes of the silicon dioxide main waveguide.
  • the first sub-sub-waveguide and the second sub-sub-waveguide may each be composed of an inverted ladder structure, and compared with the above scheme, the first sub-sub-waveguide and the second sub-sub-waveguide are characterized by Light The transmission direction, as shown in Fig. 34, is smaller and smaller.
  • the embodiment of the present invention when the center wavelength of the selected single mode active device is 1310 nm-1660 nm, the far field emission angle X direction is 10°-40°, and the Y direction is 10°-45°, the embodiment of the present invention further provides A set of parameters of the main waveguide and the sub-waveguide are specifically as follows with reference to FIG. 32 and FIG. 33:
  • the main waveguide and the sub-waveguide are in a multi-core planar optical waveguide structure, and the inner and outer layers of the respective core layers are cladding layers having similar refractive indices, and the relative refractive index difference is It is 0.013. All of these dimensions need to be optimized based on application conditions (operating wavelength, PLC function and process conditions, etc.). In the prior art, the front end and the back end are the same size, and the maximum coupling efficiency is only 25%.
  • the 6dB alignment tolerance is only one point, that is, the laser and the PLC are fixed to a very high precision, and a slight deviation will occur. The 6dB alignment tolerance is not achieved. Fig.
  • FIG. 35 is a diagram showing the coupled coupling efficiency distribution of the present embodiment 2 in a parameter setting of a center wavelength of a single mode active device of 1310 nm and a far field emission angle of 25° ⁇ 40°.
  • the maximum coupling efficiency is 32%
  • the 6dB alignment tolerance is:
  • the above results improve the highest coupling efficiency compared to the single waveguide approach and further relax the 6 dB alignment tolerance.
  • the accuracy of the commercial automatic bonding machine can reach +/- 0.5 ⁇ m.
  • the result of the embodiment of the present invention can directly mount the laser to the PLC in an automatic manner, and complete the passive pairing and direct coupling of the laser to the PLC.
  • the application of automation equipment can greatly guarantee the quality of the process, shorten the light and welding time, and achieve the purpose of reducing costs.
  • Embodiment 13 of the present invention specifically illustrates the configuration of one of the optional silicon dioxide sub-waveguides, as shown in FIGS. 36, 37, and 38:
  • the planar optical waveguide includes a silicon dioxide main waveguide for transmitting an optical signal, and an auxiliary light Secondary waveguide
  • the sub-waveguide specifically includes eight sub-sub-waveguides, wherein the first sub-sub-waveguide 01 is located on the upper side of the silicon dioxide main waveguide; the second sub-sub-waveguide 02 is located on the lower side of the silicon dioxide main waveguide; a three-sub-sub-waveguide 03 is located on the left side of the silicon dioxide main waveguide; a fourth sub-sub-waveguide 04 is located on the right side of the silicon dioxide main waveguide; and a fifth sub-sub-waveguide 05 is located on the silicon dioxide main waveguide
  • the upper left side is located on the left side of the first sub-sub-waveguide and is located on the upper side of the third sub-sub-waveguide; the sixth sub-sub-waveguide 06 is located on the upper right side of the silicon dioxide main waveguide, and is located at the first The left side of the sub-sub-waveguide is located on the upper side of the fourth sub-sub-waveguide; the seventh sub-sub-waveguide 07 is located on the lower left side of the silicon dioxide main waveguide, and
  • center distance is used to ensure that the one or more silicon dioxide sub-waveguides and the silicon dioxide main waveguide generate sufficient coupling effects on the light receiving surface.
  • each sub-sub-waveguide is specifically a forward echelon structure, and is connected to the ladder top and The four sides of the bottom of the ladder are all sloped, wherein the entrance of the ladder and the inlet of the silicon dioxide main waveguide are located on the same side of the multi-core planar optical waveguide.
  • each of the silicon sub-waveguides may be composed of an inverted ladder structure, and compared with the above scheme, the first sub-sub-waveguide and the second sub-sub-waveguide are along the light transmission direction.
  • the cross-sectional area shown in Figure 38 is getting smaller and smaller.
  • the main waveguide and the sub-waveguide are in a multi-core planar optical waveguide structure, and the inner and outer layers of the respective core layers are cladding layers having similar refractive indices, and the relative refractive index difference is It is 0.013.
  • the embodiment of the present invention when the center wavelength of the selected single mode active device is 1310 nm-1660 nm, the far field emission angle X direction is 10°-40°, and the Y direction is 10°-45°, the embodiment of the present invention further provides A set of parameters of the main waveguide and the sub-waveguide are specifically as follows with reference to FIGS. 36 and 37:
  • Fig. 39 is a diagram showing the coupled coupling efficiency distribution of the present embodiment 3 in the parameter setting of the center wavelength of the single mode active device of 1310 nm and the far field emission angle of 25 ° ⁇ 40 °.
  • the maximum coupling efficiency is 33%, and the 6dB alignment tolerance (described in Figure 39) is:
  • the above results improve the highest coupling efficiency compared to the single waveguide approach and further relax the 6 dB alignment tolerance.
  • the accuracy of the commercial automatic bonding machine can reach +/- 0.5 ⁇ m.
  • the result of the embodiment of the present invention can directly mount the laser to the PLC in an automatic manner, and complete the passive pairing and direct coupling of the laser to the PLC.
  • the application of automation equipment can greatly guarantee the quality of the process, shorten the light and welding time, and achieve the purpose of reducing costs.
  • the embodiment 12 and the embodiment 13 of the present invention provide a structural layout manner of the in-line and lip-shaped silicon dioxide sub-waveguides, and based on the above preferred schemes, those skilled in the art design, for example, a cross type and a cross.
  • the layout of the type of silica sub-waveguides is also within the scope of the present invention.
  • the embodiment of the present invention further provides a multi-core planar optical waveguide coupling structure, comprising the multi-core planar optical waveguide structure as described in Embodiment 11, 12 or 13, wherein the coupling structure further comprises a single-mode active device, wherein Single mode active devices include, but are not limited to, Fabry-Perot laser FP, distributed feedback laser DFB, electroabsorption modulated laser EML, semiconductor optical amplifier based SOA, and the like.
  • Single mode active devices include, but are not limited to, Fabry-Perot laser FP, distributed feedback laser DFB, electroabsorption modulated laser EML, semiconductor optical amplifier based SOA, and the like.
  • the coupling structure is specifically:
  • the multi-core planar optical waveguide is provided with a single-mode active device fixing station on the light-incident side of the silicon dioxide main waveguide and the silicon dioxide sub-waveguide;
  • the mounting table is provided with pads and alignment marks for performing soldering with corresponding pads on the single mode active device; the alignment marks are used to tie the automatic bonding machine Addressing of solder joints;
  • the pads on the multi-core planar optical waveguide are also referred to as bonding pads.
  • a coupling gap d is disposed between the single-mode active device and the light entrance of the silicon dioxide main waveguide and the silicon dioxide sub-waveguide, and the coupling spacer is filled with Index matching matching glue.
  • the coupling structure formed by the single-mode active device and the multi-core planar optical waveguide specifically includes an EPON optical module and a GPON optical module; a high-speed single-channel optical module SFP and SFP+ in data communication; or 40G, 100G optical transmission parallel modules QSFP, QSFP28.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • disk optical disk

Abstract

一种平面光波导结构及其耦合结构和耦合方法。耦合结构包括单模有源器件和平面光波导,平面光波导包括用于传递光信号的二氧化硅波导,其中,二氧化硅波导由耦合段和传导段构成;耦合段为正梯体结构或者倒梯体结构,其中,耦合段与单模有源器件相耦合的面为梯顶,耦合段与传导段连接面为梯底;单模有源器件与平面光波导之间预设有耦合间隔空隙。平面光波导结构完成激光器到平面光波导的被动对光和直接耦合,平面光波导结构可以采用自动化设备完成,可以保证工艺质量,缩短对光和焊接时间,从而达到降低成本的目的。

Description

一种平面光波导结构及其耦合结构和耦合方法 【技术领域】
本发明涉及光波导耦合技术领域,特别是涉及一种平面光波导结构及其耦合结构和耦合方法。
【背景技术】
目前主流的40G/100G光模块基本上还是基于棱镜、透镜、光滤波片等的自由空间耦合技术,其特点是工艺比较复杂,需要主动对光,封装成本高,更大规模的集成非常困难。
另一方面,光子集成技术,泛指有源器件(激光器,探测器,光放大器,光调制器等)和无源器件(分光/合光器,光滤波器,光复用/解复用器等)的集成,从而实现单片多功能的光器件技术。光子集成技术被视为是近期乃至将来,特别是在数据中心等短距离光互联应用中,强有力的光模块技术。然而,如何有效地将单模激光器的光耦合到平面光波导(Planar Lightwave Circuit,PLC)或者其他硅基光集成芯片,还是目前的一个大课题。除了耦合效率以外,如何使得工艺简单易行,可以使用自动设备来达到减低成本的效果,也同样是重要的课题。
【发明内容】
本发明实施例要解决的技术问题是如何有效地将单模激光器的光耦合到平面光波导或者其他硅基光集成芯片。
本发明实施例进一步要解决的技术问题是,分别就单芯、多芯以及混合多芯应用场景,提供平面光波导结构以及相应的耦合结构和耦合方法。
本发明实施例采用如下技术方案:
第一方面,本发明实施例提供了一种基于平面光波导的耦合结构,耦合结构包括单模有源器件和平面光波导,具体的:
平面光波导包括用于传递光信号的二氧化硅波导,其中,所述二氧化硅波导由耦合段和传导段构成;
所述耦合段为正梯体结构或者倒梯体结构,其中,所述耦合段与所述单模有源器件相耦合的面为梯顶,所述耦合段与所述传导段连接面为梯底;
所述单模有源器件与所述平面光波导之间预设有耦合间隔空隙。
可选的,所述耦合间隔空隙d的取值为5μm-50μm,并且所述耦合间隔空隙中填充有用于折射率匹配的匹配胶。
可选的,在所述单模有源器件具体为中心波长1310nm-1660nms,远场发射角X方向10°-40°,Y方向10°-45°的高斯型单模半导体激光器时,所述耦合段的梯顶面宽度W1=2.6μm、梯顶面高度H1=4.4μm;梯底面宽度W2=3.3μm,梯底面高度H2=4.4μm;梯体长度L=800μm。
可选的,所述单模有源器件的出光面折射率为1.48,则所述匹配胶的折射率为1.48。
可选的,由所述单模有源器件和平面光波导构成的耦合结构具体包括EPON光模块、GPON光模块;数据通信中的高速单信道光模块SFP、SFP+;或者用于40G,100G光传输的并行模块QSFP、QSFP28。
第二方面,本发明实施例还提供了一种平面光波导结构,平面光波导结构包括用于传递光信号的二氧化硅波导,具体的:
所述二氧化硅波导由耦合段和传导段构成;
所述耦合段为正梯体结构或者倒梯体结构,其中,所述耦合段用于与单模有源器件耦合面为梯顶,所述耦合段与所述传导段连接面为梯底。
可选的,所述耦合段的梯顶面宽度W1=2.6μm、梯顶面高度H1=4.4μm;梯底面宽度W2=3.3μm,梯底面高度H2=4.4μm;梯体长度L=800μm。
可选的,平面光波导上设置有单模有源器件安装底座,所述底座上设置有焊盘和对位标记。
第三方面,本发明实施例还提供了一种基于平面光波导的耦合方法,平面光波导中的二氧化硅波导由耦合段和传导段构成,所述方法包括:
生成所述平面光波导,所述耦合段为梯体结构,其中梯顶面宽度W1=2.6μm、梯顶面高度H1=4.4μm;梯底面宽度W2=3.3μm,梯底面高度H2=4.4μm;梯体长度L=800μm;
在所述平面光波导上生成单模有源器件安装底座,所述底座上设置有焊盘和对位标记;
确认选择的单模有源器件具体为中心波长1310nm-1660nms,远场发射角X方向10°-40°,Y方向10°-45°的高斯型单模半导体激光器;
将所述半导体激光器按照所述平面光波导上的对位标记完成焊接。
可选的,所述单模有源器件与所述平面光波导在焊接完成后,两者之间存在预设的耦合间隔空隙,所述方法还包括:
根据激光器的镀膜参数和二氧化硅波导的折射率选择匹配胶,并使用选择的匹配胶填充所述耦合间隔空隙。
第四方面,本发明实施例还提供了一种平面光波导结构,平面光波导内包括用于传递光信号的二氧化硅主波导,以及辅助进光的副波导;
所述副波导包括氮化硅副波导,所述氮化硅副波导紧贴着二氧化硅主波导。
可选的,所述氮化硅副波导由两条子副波导组成,其中,第一子副波导位于所述二氧化硅主波导的上表面,第二子副波导位于所述二氧化硅主波导的下表面。
可选的,所述第一子副波导和第二子副波导均由过渡部分和锥体部分构成,其中过渡部分是一向光传输方向延伸的矩形立方体;其中锥体部分为底面与所述过度部分衔接,锥顶向光传输方向延伸的结构。
可选的,所述氮化硅副波导由三条子副波导组成,其中,第一子副波导、第二子副波导和第三子副波导均位于所述二氧化硅主波导的上表面;三条子副波导为锥体结构,其中锥顶向光传输方向延伸。
可选的,所述三条子副波导之间间隔预设距离,并且三条子复波波导之间平行排列。
可选的,所述副波导还包括二氧化硅副波导,具体的:
氮化硅副波导和二氧化硅副波导均由过渡部分和锥体部分构成,过渡部分是一向光传输方向延伸的矩形立方体;锥体部分为底面与所述过度部分衔接,锥顶向光传输方向延伸的结构;其中,氮化硅副波导位于二氧化硅主波导的上表面,所述二氧化硅副波导位于二氧化硅主波导的上表面,并且覆盖于所述氮化硅副波导之上。
第五方面,本发明实施例还提供了一种基于平面光波导的耦合结构,包括如第四方面所述结构的平面光波导,则所述耦合结构还包括单模有源器件,具体的:
所述平面光波导上位于所述二氧化硅主波导和氮化硅副波导的进光侧设置有单模有源器件固定台;
所述固定台上设置有焊盘和对位标记,所述焊盘用于与所述单模有源器件上的相应焊盘完成焊接;所述对位标记用于为自动绑定机提供绑定焊点的寻址;
在所述耦合结构中,所述单模有源器件和所述二氧化硅主波导和氮化硅副波导的进光口之间设置有耦合间隔空隙d,所述耦合间隔空隙中填充有用于折射率匹配的匹配胶。
第六方面,本发明实施例还提供了一种基于平面光波导的耦合方法,包括:
确定单模有源器件的光波长和远场发射角;
根据所述远场发射角选择与之适配的平面光波导;
按照平面光波导上设置的焊盘和对位标记,焊接所述单模有源器件上;
使用匹配胶填充单模有源器件出光口和平面光波导进光口之间的耦合间隔空隙。
可选的,所述平面光波导由主波导和副波导构成,则所述根据所述远场发射角选择与之适配的平面光波导具体包括:
根据所述远场发射角,确定所述单模有源器件是横向椭圆光源或者是纵向椭圆光源;
若是横向椭圆光源,则选择副波导在主波导上单侧平铺方式埋入的平面光波导;
若是纵向椭圆光源,则选择副波导在主波导上双侧平铺方式埋入的平面光波导。
可选的,所述副波导在主波导上单侧平铺方式埋入的平面光波导,具体为:
氮化硅副波导由三条子副波导组成,其中,第一子副波导、第二子副波导和第三子副波导均位于所述二氧化硅主波导的上表面;三条子副波导为锥体结构,其中锥顶向光传输方向延伸;或者,
氮化硅副波导和二氧化硅副波导均由过渡部分和锥体部分构成,过渡部分是一向光传输方向延伸的矩形立方体;锥体部分为底面与所述过度部分衔接,锥顶向光传输方向延伸的结构;其中,氮化硅副波导位于二氧化硅主波导的上表面,所述二氧化硅副波导位于二氧化硅主波导的上表面,并且覆盖于所述氮化硅副波导之上;
所述副波导在主波导上双侧平铺方式埋入的平面光波导,具体为:
氮化硅副波导由两条子副波导组成,其中,第一子副波导位于所述二氧化硅主波导的上表面,第二子副波导位于所述二氧化硅主波导的下表面。
第七方面,本发明实施例还提供了一种平面光波导结构,平面光波导内包括用于传递光信号的二氧化硅主波导,以及辅助进光的副波导;
所述副波导包括一个或者多个二氧化硅副波导,所述二氧化硅副波导与所述二氧化硅主波导按照预设中心距离设置。
可选的,所述副波导具体包括两条子副波导,其中,第一子副波导位于所述二氧化硅主波导的上侧,第二子副波导位于所述二氧化硅主波导的下侧。
可选的,所述第一子副波导和第二子副波导均由正梯体结构构成;
其中梯顶和二氧化硅主波导进光口位于同一侧;梯底向光传输方向延伸,并且梯底的宽度与二氧化硅主波导的宽度相同;
其中,第一子副波导梯体和第二子副波导梯体上与所述二氧化硅主波导上下平面相邻的侧面,分别保持与所述二氧化硅主波导上下平面平行。
可选的,在选择的单模有源器件的中心波长为1310nm-1660nm,远场发射角为25°×40°时,所述主波导和副波导的参数具体为:
主波导进光口的宽度W=3.0μm,高度H=3.0μm;
副波导进光口的宽度W副in=2.6μm,高度H副in=3.0μm;
副波导梯底的宽度W副out=3.0μm,高度H副out=3.0μm;
副波导长度L=100μm,主波导和副波导的中心距离Ay=3.6μm。
可选的,主波导和副波导在多芯平面光波导结构中,其各自芯层内外为折射率相近的包层,其相对折射率差为0.013。
可选的,所述副波导具体包括八条子副波导,其中,第一子副波导位于所述二氧化硅主波导的上侧;第二子副波导位于所述二氧化硅主波导的下侧;第三子副波导位于所述二氧化硅主波导的左侧;第四子副波导位于所述二氧化硅主波导的右侧;第五子副波导位于所述二氧化硅主波导的左上侧,且位于所述第一子副波导左侧,位于所述第三子副波导上侧;第六子副波导位于所述二氧化硅主波导的右上侧,且位于所述第一子副波导左侧,位于所述第四子副波导上侧;第七子副波导位于所述二氧化硅主波导的左下侧,且位于所述第二子副波导左侧,位于所述第三子副波导下侧;第八子副波导位于所述二氧化硅主波导的右下侧,且位于所述第二子副波导右侧,位于所述第四子副波导下侧。
可选的,所述各子副波导具体为正梯体结构,并且连接梯顶和梯底的四个侧面均为斜面,其中梯顶与二氧化硅主波导的进光口位于所述多芯平面光波导的同侧。
可选的,主波导和副波导在多芯平面光波导结构中,其各自芯层内外为折射率相近的包层,其相对折射率差为0.013。
第八方面,本发明实施例还提供了一种基于平面光波导的耦合结构,包括第七方面所述结构的平面光波导,则所述耦合结构还包括单模有源器件,具体的:
所述多芯平面光波导上位于所述二氧化硅主波导和二氧化硅副波导的进光侧设置有单模有源器件固定台;
所述固定台上设置有焊盘和对位标记,所述焊盘用于与所述单模有源器件上的相应焊盘完成焊接;所述对位标记用于为自动邦定机提供绑定焊点的寻址;
在所述耦合结构中,所述单模有源器件和所述二氧化硅主波导和二氧化硅副波导的进光口之间设置有耦合间隔空隙d,所述耦合间隔空隙中填充有用于折射率匹配的匹配胶。
可选的,由所述单模有源器件和多芯平面光波导构成的耦合结构具体包括EPON光模块、GPON光模块;数据通信中的高速单信道光模块SFP、SFP+;或者用于40G,100G光传输的并行模块QSFP、QSFP28。
在本发明第一方面实施例所提出的耦合结构和方法可以直接应用到自动的方式来将激光器贴装至平面光波导电路PLC上,完成激光器到PLC的被动对光和直接耦合,而自动化设备的应用可以极大地保证工艺质量,缩短对光和焊接时间,从而达到降低成本的目的。
在本发明第四方面实施例所提出的混合多芯波导是指在PLC的激光器接口端加上二氧化硅主波导以外的氮化硅/二氧化硅副波导,形成混合多芯波导,目的在于改善耦合效率和对位容差。由于氮化硅波导的数值孔径NA较高,所以收光能力比二氧化硅波导强。混合多芯波导的作用相当于附加了收光更强的进光口,在经过一段过渡后所有的副波导消失,从而使得从附加进光口进入的光,通过波导平行耦合的方式汇入主波导,达到改善耦合效率和对位容差的目的。
在本发明第七实施例所提出的包括一个或者多个二氧化硅副波导的平面光波导结构能够完成激光器到PLC的被动对光和直接耦合,相比较现有技术能够提高对位容差;基于该对位容差的提高,能够进一步减轻自动化设备中对于工艺精度的要求,能够达到缩短对光和焊接时间,并进一步减少次品率,从而达到降低成本的目的。
【附图说明】
图1是本发明实施例提供的一种基于平面光波导的耦合结构示意图;
图2是本发明实施例提供的由图1正梯体结构中A-A’截面俯视图的局部放大图;
图3是本发明实施例提供的图1正梯体结构中参考图2中B-B’截面的局部放大图;
图4是本发明实施例提供的由图1倒梯体结构中A-A’截面俯视图的局部放大图;
图5是本发明实施例提供的图1倒梯体结构中参考图4中B-B’截面的局部放大图;
图6是本发明实施例提供的一种基于平面光波导的耦合方法的流程示意图;
图7是本发明实施例提供的现有技术中的A-A’截面俯视图的局部放大图;
图8是本发明实施例提供的现有技术中的图7中B-B’截面的局部放大图;
图9是本发明实施例提供的一种耦合段宽度与耦合效率对应关系图;
图10是本发明实施例提供的一种耦合段宽度与耦合间隔空隙对应关系图;
图11是本发明实施例提供的基于模拟测试得到的定位公差图;
图12是本发明实施例提供的一种基于平面光波导的耦合结构示意图;
图13是本发明实施例提供的以图12中A-A’截面俯视图的部分放大图;
图14是本发明实施例提供的图12中图13相应部分的正视图的部分放大图;
图15是本发明实施例提供的以图12中B-B’截面相对于图13的左视图的部分放大图;
图16是本发明实施例提供的以图12中A-A’截面俯视图的部分放大图;
图17是本发明实施例提供的以图12中C-C’截面俯视图的部分放大图;
图18是本发明实施例提供的图12中图16相应部分的正视图的部分放大图;
图19是本发明实施例提供的以图12中B-B’截面相对于图16的左视图的部分放大图;
图20是本发明实施例提供的基于模拟测试得到的定位公差图;
图21是本发明实施例提供的以图12中A-A’截面俯视图的部分放大图;
图22是本发明实施例提供的图12中图21相应部分的正视图的部分放大图;
图23是本发明实施例提供的以图12中B-B’截面相对于图21的左视图的部分放大图;
图24是本发明实施例提供的基于模拟测试得到的定位公差图;
图25是本发明实施例提供的以图12中A-A’截面俯视图的部分放大图;
图26是本发明实施例提供的图12中图25相应部分的正视图的部分放大图;
图27是本发明实施例提供的以图12中B-B’截面相对于图25的左视图的部分放大图;
图28是本发明实施例提供的基于模拟测试得到的定位公差图;
图29是本发明实施例提供的一种基于平面光波导的耦合方法流程图;
图30是本发明实施例提供的一种多芯平面光波导耦合结构示意图;
图31是本发明实施例提供的由图30中C-C’截面俯视图的局部放大图;
图32是本发明实施例提供的由图30中A-A’截面俯视图的局部放大图;
图33是本发明实施例提供的图30参考图32中D-D’截面的局部放大图;
图34是本发明实施例提供的参考图32并由图30中B-B’截面图的局部放大图;
图35是本发明实施例提供的基于模拟测试得到的定位公差图;
图36是本发明实施例提供的另一种由图30中A-A’截面俯视图的局部放大图;
图37是本发明实施例提供的图30参考图36中D-D’截面的局部放大图;
图38是本发明实施例提供的参考图36并由图30中B-B’截面图的局部放大图;
图39是本发明实施例提供的基于模拟测试得到的定位公差图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不应当理解为对本发明的限制。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此 之间未构成冲突就可以相互组合。
为了在本发明各实施例中叙述方便,“最高耦合效率”定义为在工作波长,波导形状和间隔固定的情况下,可能达到的从有源器件至光波导的最高耦合效率;“6dB对位容差”则为耦合效率大于或等于25%(6dB插损)时有源器件和波导之间可容许的相对位移。这两项参数将被用来作为衡量设计优劣的指标。
实施例1:
本发明实施例1提供了一种基于平面光波导的耦合结构,所述结构包括单模有源器件和平面光波导PLC,如图1所示,具体的:
所述平面光波导PLC包括用于传递光信号的二氧化硅波导,其中,所述二氧化硅波导由耦合段和传导段构成。
其中,单模有源器件包括但不限于法布里-珀罗激光器(Fabry-Perot,简写为:FP)、分布式反馈激光器(Distributed Feedback Laser,简写为:DFB)、电吸收调制激光器(Electlro-absorption Modulated Laser,简写为:EML)、基于半导体光放大器(Semiconductor Opticalamplifier,简写为:SOA)等。
所述耦合段为正梯体结构或者倒梯体结构,其中,所述耦合段与所述单模有源器件相耦合的面为梯顶,所述耦合段与所述传导段连接面为梯底。如图2所示,为图1中A-A’截面的俯视图,其给出了一种正梯体结构示意图。如图4所示,为图1中A-A’截面的俯视图,其给出了一种倒梯体结构示意图。
所述单模有源器件与所述平面光波导之间预设有耦合间隔空隙d。
本发明实施例所提出的平面光波导耦合结构能够完成激光器到PLC的被动对光和直接耦合,相比较现有技术提高了对位容差;基于该对位容差的提高,能够进一步减轻自动化设备中对于工艺精度的要求,能够达到缩短对光和焊接时间,并进一步减少次品率,从而达到降低成本的目的。
为了保证本发明实施例所设计的基于平面光波导的耦合结构,能够在工业自动化设备制造过程中被更高效的完成,并且能够减少次品率,存在一种优选的实现方案,具体的:所述耦合间隔空隙d的取值为5μm-50μm,并且所述耦合间隔空隙中填充有用于折射率匹配的匹配胶(index matching gel)。所述匹配 胶用于在完成折射率匹配的同时,保护光路避免受外界的侵蚀。
结合本发明实施例,由所述单模有源器件和平面光波导构成的耦合器件可以应用到各种已知的光模块中,例如:EPON光模块、GPON光模块;数据通信中的高速单信道光模块SFP、SFP+;或者用于40G,100G光传输的并行模块QSFP、QSFP28。
实施例2:
本发明实施例1给予了一种基于平面光波导的耦合结构,接下来将对于实施例1中所使用的平面光波导结构给予具体的阐述,所述平面光波导结构包括用于传递光信号的二氧化硅波导,如图2和3所示,具体的:
所述二氧化硅波导由耦合段和传导段构成;
所述耦合段为正梯体结构或者倒梯体结构,其中,所述耦合段用于与单模有源器件耦合面为梯顶,所述耦合段与所述传导段连接面为梯底。
从制作所述平面光波导结构的工艺复杂度出发,本发明实施例提供了一种优选的实现方案,所述正梯体结构或者倒梯体结构中相对于所述梯顶和梯底的四个侧面由一组平行面和一组斜面构成,并且,所述平行面与所述平面光波导的生长方向垂直。该优选实现方案能够减少生长所述平面光波导的工艺难度。结合本发明实施例,还存在两种可选的实现方案:
第一种,所述正梯体结构或者倒梯体结构中相对于所述梯顶和梯底的四个侧面由一组平行面和一组斜面构成,并且,所述平行面与所述平面光波导的水平面垂直。
第二种,所述正梯体结构或者倒梯体结构中相对于所述梯顶和梯底的四个侧面由两组斜面构成。
上述两种可选的实现方案同样能够达到增加对位容差的效果,但是其制作工艺的复杂度相对与优选方案更高。
结合本发明实施例,为了能够应用到实施例1中的耦合结构中去,并进一步提高工业自动加工的效率,存在一种优选的实现方案:平面光波导上设置有单模有源器件安装底座,所述底座上设置有焊盘和对位标记(alignment mark)。 其中,相应的有单模有源器件有为共晶焊或者热压焊用的焊盘和与所述平面光波导向匹配的对位标记。
结合本发明实施例,提供了一组可实现的参数,具体的,所述耦合段的梯顶面宽度W1=2.6μm、梯顶面高度H1=4.4μm;梯底面宽度W2=3.3μm,梯底面高度H2=4.4μm;梯体长度L=800μm。相应的,传导段的宽度W=3.3μm、高度H=4.4μm。
实施例3:
本发明实施例除了提供实施例1所述的耦合结构,实施例2所述的光平面波导结构外,基于上述结构提出了一种基于平面光波导的耦合方法,平面光波导中的二氧化硅波导由耦合段和传导段构成,如图6所示,所述方法包括:
在步骤201中,生成所述平面光波导,所述耦合段为梯体结构,其中梯顶面宽度W1=2.6μm、梯顶面高度H1=4.4μm;梯底面宽度W2=3.3μm,梯底面高度H2=4.4μm;梯体长度L=800μm。
优选的,本发明实施例中的PLC波导为硅基二氧化硅埋入式矩形波导,其中,耦合段芯层和传导段芯层外均为折射率相同的包层,芯层内外相对折射率差为0.013。
在步骤202中,在所述平面光波导上生成单模有源器件安装底座,所述底座上设置有焊盘和对位标记。
如图1所示,其中平面光波导与单模有源器件的焊盘完成焊接后形成绑定焊点。
在步骤203中,确认选择的单模有源器件具体为中心波长1310nm-1660nm,远场发射角X方向10°-40°,Y方向10°-45°的高斯型单模半导体激光器。
在步骤204中,将所述半导体激光器按照所述平面光波导上的对位标记完成焊接。
结合本发明实施例,存在一种优选的实现方式,该方式更符合工业自动化制造的实际情况,即所述单模有源器件与所述平面光波导在焊接完成后,两者之间存在预设的耦合间隔空隙d,则在完成步骤204之后所述方法还包括:
在步骤205中,根据激光器的镀膜参数和二氧化硅波导的折射率选择匹配胶,并使用选择的匹配胶填充所述耦合间隔空隙。
图7-图8是未做优化的平面光波导PLC,其中W=3.3μm、H=4.4μm。如果PLC上与激光器(单模有源器件)相结合的波导不做任何优化,如图7-图8所示,现有技术中前端和后端同样尺寸,则其最高耦合效率仅为25%,6dB对位容差只是一个点,即激光器和PLC的焊接固定要达到极高的准确度,稍有偏差就会达不到所述6dB对位容差。
由于耦合效率和6dB对位容差是随波导的形状变化的,本发明实施例通过对波导形状进行优化,得出了在5μm耦合间隔空隙,加匹配胶(折射率为1.48)的应用条件下(其中,激光器中心波长1310nm,远场发射角25°×40°,出光面折射率为1.48),最佳波导形状如图2和3所示,其中W1=2.6μm,H1=4.4μm;W2=3.3μm,H2=4.4μm;L=800μm。由于平面光波导电路PLC在制作中,水平方向的形状容易实现,但在垂直方向的形状比较难以实现,本发明在垂直方向有目的地取同样尺寸,仅在水平方向增加锥形波导(即水平方向上扩展,垂直方向等高,在工艺上也就是掩膜mask的不同),在不增加PLC制作工艺的前提下,改善了最高耦合效率和6dB对位容差。
本发明实施例3仅给出了一种参数实例,而本发明进一步的提供了耦合效率与耦合段波导宽度的对应关系图(如图9所示,其中单模有源器件相关参数、以及平面光波导的相关参数参考本实施例相关描述,在此,不再赘述),由于耦合段波导宽度对耦合段波导宽度的影响涉及多方面,包括激光器的波长、光波导的折射率差、激光器的出光面折射率等等,现有技术没有一种能够直接推导上述几种参数间关系的公式,因此,本发明在发现耦合段宽度(或者高度)会影响耦合效率的情况下,进一步通过仿真手段获得如图9所示的关系曲线图,以及如图10所示的耦合效率与耦合间隔空隙关系图。本领域技术人员,能够在此基础上通过合理的推演所获得的技术方案都属于本发明所要保护的范围内。
实施例4:
结合本发明上述各实施例所提出的结构和方法,在本实施例中提供了相应 的仿真结果,在本实施例的仿真环境中,所述单模有源器件具体为中心波长1310nm,远场发射角25°×40°的高斯型单模半导体激光器,为了与二氧化硅波导的折射率相匹配,激光器出光面折射率为1.48;所述耦合段的梯顶面宽度W1=2.6μm、梯顶面高度H1=4.4μm;梯底面宽度W2=3.3μm,梯底面高度H2=4.4μm;梯体长度L=800μm;所述匹配胶的折射率为1.48。
在本发明的构成及波导形状条件下,根据仿真结果,如图11所示,其中,不同曲线对应着不同的耦合效率,例如0.03398的曲线表明其耦合效率为3.398%。我们得到最高耦合效率为30%,6dB对位容差为:
X方向=+/-0.75μm;
Y方向=+/-0.825μm;
这个结果大大放宽了6dB对位容差。目前商用自动绑定机的精度可以达到+/-0.5μm,本发明的结果完全可以直接用自动的方式来将激光器贴装至平面光波导电路PLC上,完成激光器到PLC的被动对光和直接耦合。而自动化设备的应用可以极大地保证工艺质量,缩短对光和焊接时间,从而达到降低成本的目的。
实施例5:
本发明实施例5提供了一种平面光波导的结构,相比较实施例1的单芯平面光波导应用场景,本发明实施例则是侧重于混合多芯平面光波导应用场景提出的平面光波导结构,如图12-图15所述结构包括,具体的:
所述平面光波导内包括用于传递光信号的二氧化硅主波导,以及辅助进光的副波导;
所述副波导包括氮化硅副波导,所述氮化硅副波导紧贴着二氧化硅主波导。
其中,所述氮化硅副波导可以是多种结构形式:例如其具体为矩形立方体结构、正梯体结构、倒梯体结构等等。
本实施例所提出的混合多芯波导是指在PLC的激光器接口端加上二氧化硅主波导以外的氮化硅副波导,形成混合多芯波导,目的在于改善耦合效率和对位容差。由于氮化硅波导的数值孔径NA较高,所以收光能力比二氧化硅波导强。 混合多芯波导的作用相当于附加了收光更强的进光口,在经过一段过渡后所有的副波导消失,从而使得从附加进光口进入的光,通过波导平行耦合的方式汇入主波导,达到改善耦合效率和对位容差的目的。
结合本发明实施例存在一种优选的实现方案,其中,所述二氧化硅主波导由耦合段和传导段构成。
所述耦合段为正梯体结构或者倒梯体结构,其中,所述耦合段与所述单模有源器件相耦合的面为梯顶,所述耦合段与所述传导段连接面为梯底。
实施例6:
基于实施例5所述的一种平面光波导结构,本发明实施例6具体阐述其中一种可选的所述副波导结构,具体的,所述副波导不仅包括氮化硅副波导,还包括二氧化硅副波导,如图16、图17、图18和图19所示,具体结构阐述如下:
所述平面光波导内包括用于传递光信号的二氧化硅主波导,以及辅助进光的副波导;
所述氮化硅副波导和二氧化硅副波导均由过渡部分和锥体部分构成,过渡部分是一向光传输方向延伸的矩形立方体;锥体部分为底面与所述过度部分衔接,锥顶向光传输方向延伸的结构;其中,氮化硅副波导位于二氧化硅主波导的上表面,所述二氧化硅副波导位于二氧化硅主波导的上表面,并且覆盖于所述氮化硅副波导之上。
结合本实施例6所述结构,存在一种优选的尺寸,参考图16-图19:
二氧化硅主波导进光口的宽度W=5.0μm,高度H=3.0μm;
二氧化硅副波导进光口的宽度W副1in=5.0μm,高度H副1in=3.0μm;
二氧化硅副波导的过渡部分长度L副1过渡=100μm;
二氧化硅副波导的总长度(包括过渡部分和锥形部分)L副1总=600μm;
二氧化硅副波导锥顶宽度T副1=0.1μm;
氮化硅副波导进光口的宽度W副2in=2.0μm,高度H副2in=0.06μm;
氮化硅副波导的过渡部分长度L副2过渡=100μm;
氮化硅副波导的总长度(包括过渡部分和锥形部分)L副2总=500μm;
氮化硅副波导锥顶宽度T副2=0.1μm。
主波导和副波导之间没有间隔。所有这些尺寸需要根据应用条件(工作波长,PLC功能及工艺等条件等)优化来决定。本参数的平面光波导适合与中心波长1310nm-1660nms,远场发射角X方向10°-40°,Y方向10°-45°的高斯型单模半导体激光器。现有技术(单一波导)中前端和后端同样尺寸,则其最高耦合效率仅为25%,6dB对位容差只是一个点,即激光器和PLC的焊接固定要达到极高的准确度,稍有偏差就会达不到所述6dB对位容差。本实施例利用中心波长1310nm,远场发射角为25°×40°的高斯型单模半导体激光器做模拟测试得到如图20所示的定位公差示意图。
通过本发明实施例6所述平面光波导结构改进够,最高耦合效率达到46.6%,
6dB对位容差(图20所示)在X、Y方向上分别达到:
X方向=+/-0.95μm;
Y方向=+/-0.95μm。
与单一波导的方法相比,上面的结果改善了最高耦合效率,并且进一步放宽了6dB对位容差。目前商用自动绑定机的精度可以达到+/-0.5μm,本发明实施例的结果完全可以直接用自动的方式来将激光器贴装至PLC上,完成激光器到PLC的被动对光和直接耦合。而自动化设备的应用可以极大地保证工艺质量,缩短对光和焊接时间,从而达到降低成本的目的。
实施例7:
基于实施例5所述的一种平面光波导结构,本发明实施例7具体阐述其中一种可选的所述副波导结构,如图21,图22和图23所示,具体的,所述氮化硅副波导由两条子副波导组成,其中,第一子副波导位于所述二氧化硅主波导的上表面,第二子副波导位于所述二氧化硅主波导的下表面。
结合本发明实施例,存在一种优选的实现方案,如图21所示,所述第一子副波导和第二子体副波导均由过渡部分和锥部分构成,其中过渡部分是一向光传输方向延伸的矩形立方体;其中锥体部分为底面与所述过度部分衔接,锥顶向光传输方向延伸的结构。
二氧化硅主波导进光口的宽度W主in=3.0μm,高度H主in=1.8μm;
二氧化硅主波导的中间过渡部分长度L主过渡=500μm;
二氧化硅主波导后部出光口宽度W主out=3.0μm,高度H主out=4.0μm;
氮化硅副波导的进光口的宽度W副in=1.8μm,高度H副in=0.048μm;
氮化硅副波导过渡部分长度L副过渡=400μm;
氮化硅副波导的总长度(包括过渡部分和锥形部分)L副总=500μm;
氮化硅副波导锥顶宽度T=0.1μm。
主波导和副波导之间没有间隔。所有这些尺寸需要根据应用条件(工作波长,PLC功能及工艺等条件等)优化来决定。本参数的平面光波导适合与中心波长1310nm-1660nms,远场发射角X方向10°-40°,Y方向10°-45°的高斯型单模半导体激光器。现有技术中前端和后端同样尺寸,则其最高耦合效率仅为25%,6dB对位容差只是一个点,即激光器和PLC的焊接固定要达到极高的准确度,稍有偏差就会达不到所述6dB对位容差。本实施例利用中心波长1310nm,远场发射角为25°×40°的高斯型单模半导体激光器做模拟测试得到如图24所示的定位公差示意图。
通过本发明实施例7所述平面光波导结构改进够,最高耦合效率达到49.43%,6dB对位容差(图24所示)在X、Y方向上分别达到:
X方向=+/-1.0μm;
Y方向=+/-1.0μm。
与单一波导的方法相比,上面的结果改善了最高耦合效率,并且进一步放宽了6dB对位容差。目前商用自动绑定机的精度可以达到+/-0.5μm,本发明实施例的结果完全可以直接用自动的方式来将激光器贴装至PLC上,完成激光器到PLC的被动对光和直接耦合。而自动化设备的应用可以极大地保证工艺质量,缩短对光和焊接时间,从而达到降低成本的目的。
实施例8:
基于实施例5所述的一种平面光波导结构,本发明实施例8具体阐述其中一种可选的所述副波导结构,如图25、图26和图27所示,具体的,所述氮化 硅副波导由三条子副波导组成,其中,第一子副波导、第二子副波导和第三子副波导均位于所述二氧化硅主波导的上表面;三条子副波导为锥体结构,其中锥顶向光传输方向延伸。
结合本发明实施例,存在一种优选的实现方案,其中,所述三条子副波导之间间隔预设距离,并且三条子复波波导之间平行排列。
二氧化硅主波导进光口的宽度W主in=5.0μm,高度H主in=3.8μm;
氮化硅副波导的进光口的宽度W副in=1.5μm,高度H副in=0.05μm;
氮化硅副波导的总长度L副总=1000μm;
氮化硅副波导锥顶宽度T=0.1μm;
氮化硅副波导之间的间隔G=0.1μm。
本参数的平面光波导适合与中心波长1310nm-1660nms,远场发射角X方向10°-40°,Y方向10°-45°的高斯型单模半导体激光器。现有技术中前端和后端同样尺寸,则其最高耦合效率仅为25%,6dB对位容差只是一个点,即激光器和PLC的焊接固定要达到极高的准确度,稍有偏差就会达不到所述6dB对位容差。本实施例利用中心波长1310nm,远场发射角为25°×40°的高斯型单模半导体激光器做模拟测试得到如图28所示的定位公差示意图。
通过本发明实施例8所述平面光波导结构改进够,最高耦合效率达到43.7%,6dB对位容差(图28所示)在X、Y方向上分别达到:
X方向=+/-1.35μm;
Y方向=+/-0.95μm。
加入数值孔径NA较大的氮化硅副波导而构成的混合多芯波导的技术效果在于,在有源器件至平面光波导电路的直接耦合中,这个发明具有非常高的耦合效率。同时,6dB对位容差也有相应改善。目前商用自动绑定机的精度可以达到+/-0.5μm,本发明的结果完全可以直接用自动的方式来将激光器贴装至PLC上,完成激光器到PLC的被动对光和直接耦合。自动化设备的应用可以极大地保证工艺质量,缩短对光和焊接时间,从而达到降低成本的目的。
实施例9:
一种平面光波导的耦合结构,包括如实施例5至实施例8任一所述结构的平面光波导,则所述耦合结构还包括单模有源器件,单模有源器件包括但不限于法布里-珀罗激光器FP、分布式反馈激光器DFB、电吸收调制激光器EML、基于半导体光放大器SOA等。如图12所示,所述耦合结构具体为:
所述平面光波导上位于所述二氧化硅主波导和氮化硅副波导的进光侧设置有单模有源器件固定台;
所述固定台上设置有焊盘和对位标记,所述焊盘用于与所述单模有源器件上的相应焊盘完成焊接;所述对位标记用于为自动绑定机提供绑定焊点的寻址;
在所述耦合结构中,所述单模有源器件和所述二氧化硅主波导和氮化硅副波导的进光口之间设置有耦合间隔空隙d,所述耦合间隔空隙中填充有用于折射率匹配的匹配胶。
实施例10:
本发明实施例除了提供上述一种平面光波导的耦合方法,如图29所示,所述耦合方法包括:
在步骤301中,确定单模有源器件的光波长和远场发射角。
在步骤302中,根据所述远场发射角选择与之适配的平面光波导。
其中,可选的平面光波导包括如实施例5至实施例8中所提出的各平面光波导。
在步骤303中,按照平面光波导上设置的焊盘和对位标记,焊接所述单模有源器件上。
在步骤304中,使用匹配胶填充单模有源器件出光口和平面光波导进光口之间的耦合间隔空隙。
在本发明实施例实现过程中,所述平面光波导由主波导和副波导构成,则所述根据所述远场发射角选择与之适配的平面光波导,存在一种优选的实现方案,具体包括:
根据所述远场发射角,确定所述单模有源器件是横向椭圆光源或者是纵向椭圆光源;
若是横向椭圆光源,则选择副波导在主波导上单侧平铺方式埋入的平面光波导;
若是纵向椭圆光源,则选择副波导在主波导上双侧平铺方式埋入的平面光波导。
结合本发明实施例,所述副波导在主波导上单侧平铺方式埋入的平面光波导,存在几种优选的实现方案,具体为:
氮化硅副波导由三条子副波导组成,其中,第一子副波导、第二子副波导和第三子副波导均位于所述二氧化硅主波导的上表面;三条子副波导为锥体结构,其中锥顶向光传输方向延伸;或者,
氮化硅副波导和二氧化硅副波导均由过渡部分和锥体部分构成,过渡部分是一向光传输方向延伸的矩形立方体;锥体部分为底面与所述过度部分衔接,锥顶向光传输方向延伸的结构;其中,氮化硅副波导位于二氧化硅主波导的上表面,所述二氧化硅副波导位于二氧化硅主波导的上表面,并且覆盖于所述氮化硅副波导之上;
所述副波导在主波导上双侧平铺方式埋入的平面光波导,具体为:
氮化硅副波导由两条子副波导组成,其中,第一子副波导位于所述二氧化硅主波导的上表面,第二子副波导位于所述二氧化硅主波导的下表面。
实施例11:
相比较实施例1的单芯平面光波导应用场景,以及实施例5的混合多芯平面光波导应用场景,本发明实施例11则是提供了一种多芯平面光波导结构,如图30所示:
所述平面光波导内包括用于传递光信号的二氧化硅主波导,以及辅助进光的副波导;
所述副波导包括一个或者多个二氧化硅副波导,所述二氧化硅副波导与所述二氧化硅主波导按照预设中心距离设置。
其中,所述中心距离用于保障所述一个或者多个二氧化硅副波导和所述二氧化硅主波导在光接受面上产生足够的耦合效应。
本发明实施例所提出的包括一个或者多个二氧化硅副波导的平面光波导结构能够完成激光器到PLC的被动对光和直接耦合,相比较现有技术能够提高了对位容差;基于该对位容差的提高,能够进一步减轻自动化设备中对于工艺精度的要求,能够达到缩短对光和焊接时间,并进一步减少次品率,从而达到降低成本的目的。
结合本发明实施例存在一种优选的实现方案,如图31所示,所述二氧化硅主波导包括耦合段和传导段,所述耦合段为正梯体结构或者倒梯体结构,其中,所述耦合段与所述单模有源器件相耦合的面为梯顶,所述耦合段与所述传导段连接面为梯底。
实施例12:
基于实施例11所述的一种多芯平面光波导结构,本发明实施例12具体阐述其中一种可选的二氧化硅副波导的构成,如图32、图33和图34所示:
所述平面光波导内包括用于传递光信号的二氧化硅主波导,以及辅助进光的副波导;
所述副波导具体包括两条子副波导,其中,第一子副波导位于所述二氧化硅主波导的上侧,第二子副波导位于所述二氧化硅主波导的下侧,所述二氧化硅副波导与所述二氧化硅主波导按照预设中心距离设置。
其中,所述中心距离用于保障所述一个或者多个二氧化硅副波导和所述二氧化硅主波导在光接受面上产生足够的耦合效应。
结合本发明实施例,存在一种优选的实现方案,如图32所示(图30中A-A’水平截面俯视图),所述第一子副波导和第二子副波导均由正梯体结构构成;
其中梯顶和二氧化硅主波导进光口位于同一侧;梯底向光传输方向延伸,并且梯底的宽度与二氧化硅主波导的宽度相同;
其中,第一子副波导梯体和第二子副波导梯体上与所述二氧化硅主波导上下平面相邻的侧面,分别保持与所述二氧化硅主波导上下平面平行。
在可选的实现方案中,所述第一子副波导和第二子副波导可以均由倒梯体结构构成,相比较上述方案,其特征在于第一子副波导和第二子副波导沿着光 传输方向,如图34所示的截面积越来越小。
结合本发明实施例,在选择的单模有源器件的中心波长为1310nm-1660nm,远场发射角X方向10°-40°,Y方向10°-45°时,本发明实施例还提供了所述主波导和副波导的一组参数,参考图32和图33具体为:
主波导进光口的宽度W=3.0μm,高度H=3.0μm;
副波导进光口的宽度W副in=2.6μm,高度H副in=3.0μm;
副波导梯底的宽度W副out=3.0μm,高度H副out=3.0μm;
副波导长度L=100μm,主波导和副波导的中心距离Ay=3.6μm。
在本实施例各种实现方式中,存在一种实现方式,其中,主波导和副波导在多芯平面光波导结构中,其各自芯层内外为折射率相近的包层,其相对折射率差为0.013。所有这些尺寸需要根据应用条件(工作波长,PLC功能及工艺等条件等)优化来决定。现有技术中前端和后端同样尺寸,则其最高耦合效率仅为25%,6dB对位容差只是一个点,即激光器和PLC的焊接固定要达到极高的准确度,稍有偏差就会达不到所述6dB对位容差。图35是本实施2在单模有源器件的中心波长为1310nm,远场发射角为25°×40°的参数设置下,模拟出的耦合效率分布图。最高耦合效率为32%,6dB对位容差(如图35)为:
X方向=+/-0.825μm;
Y方向=+/-0.9μm。
与单一波导的方法相比,上面的结果改善了最高耦合效率,并且进一步放宽了6dB对位容差。目前商用自动邦定机的精度可以达到+/-0.5μm,本发明实施例的结果完全可以直接用自动的方式来将激光器贴装至PLC上,完成激光器到PLC的被动对光和直接耦合。而自动化设备的应用可以极大地保证工艺质量,缩短对光和焊接时间,从而达到降低成本的目的。
实施例13:
基于实施例11所述的一种多芯平面光波导结构,本发明实施例13具体阐述其中一种可选的二氧化硅副波导的构成,如图36、图37和图38所示:
所述平面光波导内包括用于传递光信号的二氧化硅主波导,以及辅助进光 的副波导;
所述副波导具体包括八条子副波导,其中,第一子副波导01位于所述二氧化硅主波导的上侧;第二子副波导02位于所述二氧化硅主波导的下侧;第三子副波导03位于所述二氧化硅主波导的左侧;第四子副波导04位于所述二氧化硅主波导的右侧;第五子副波导05位于所述二氧化硅主波导的左上侧,且位于所述第一子副波导左侧,位于所述第三子副波导上侧;第六子副波导06位于所述二氧化硅主波导的右上侧,且位于所述第一子副波导左侧,位于所述第四子副波导上侧;第七子副波导07位于所述二氧化硅主波导的左下侧,且位于所述第二子副波导左侧,位于所述第三子副波导下侧;第八子副波导08位于所述二氧化硅主波导的右下侧,且位于所述第二子副波导右侧,位于所述第四子副波导下侧,所述二氧化硅副波导与所述二氧化硅主波导按照预设中心距离设置。
其中,所述中心距离用于保障所述一个或者多个二氧化硅副波导和所述二氧化硅主波导在光接受面上产生足够的耦合效应。
结合本发明实施例,存在一种优选的实现方案,如图36所示(图30中A-A’水平截面俯视图),所述各子副波导具体为正梯体结构,并且连接梯顶和梯底的四个侧面均为斜面,其中梯顶与二氧化硅主波导的进光口位于所述多芯平面光波导的同侧。
在可选的实现方案中,所述各二氧化硅副波导可以均由倒梯体结构构成,相比较上述方案,其特征在于第一子副波导和第二子副波导沿着光传输方向,如图38所示的截面积越来越小。
在本实施例各种实现方式中,存在一种实现方式,其中,主波导和副波导在多芯平面光波导结构中,其各自芯层内外为折射率相近的包层,其相对折射率差为0.013。
结合本发明实施例,在选择的单模有源器件的中心波长为1310nm-1660nm,远场发射角X方向10°-40°,Y方向10°-45°时,本发明实施例还提供了所述主波导和副波导的一组参数,参考图36和图37具体为:
主波导进光口的宽度W=3.0μm,高度H=3.0μm;
副波导进光口的宽度W副in=2.5μm,高度H副in=1.7273μm;
副波导梯底的宽度W副out=3.0μm,高度H副out=3.5μm;
副波导长度L=100μm;
主波导和副波导在X方向的中心距离Ax=3.5μm;
主波导和副波导在Y方向的中心距离Ay=3.5μm。
所有这些尺寸需要根据应用条件(工作波长,PLC功能及工艺等条件等)优化来决定。现有技术中前端和后端同样尺寸,则其最高耦合效率仅为25%,6dB对位容差只是一个点,即激光器和PLC的焊接固定要达到极高的准确度,稍有偏差就会达不到所述6dB对位容差。图39是本实施3在单模有源器件的中心波长为1310nm,远场发射角为25°×40°的参数设置下,模拟出的耦合效率分布图。最高耦合效率为33%,6dB对位容差(如图39所述)为:
X方向=+/-0.95μm;
Y方向=+/-0.95μm。
与单一波导的方法相比,上面的结果改善了最高耦合效率,并且进一步放宽了6dB对位容差。目前商用自动邦定机的精度可以达到+/-0.5μm,本发明实施例的结果完全可以直接用自动的方式来将激光器贴装至PLC上,完成激光器到PLC的被动对光和直接耦合。而自动化设备的应用可以极大地保证工艺质量,缩短对光和焊接时间,从而达到降低成本的目的。
本发明实施例12和实施例13给出了一字型和口字型二氧化硅副波导的结构布局方式,本领域技术人员基于上述优选方案基础上,设计出的还有例如十字型、交叉型二氧化硅副波导的布局方式也同样属于本发明所要保护的范围内。
实施例14:
本发明实施例还提供了一种多芯平面光波导耦合结构,包括如实施例11、12或13所述结构的多芯平面光波导,所述耦合结构还包括单模有源器件,其中,单模有源器件包括但不限于法布里-珀罗激光器FP、分布式反馈激光器DFB、电吸收调制激光器EML、基于半导体光放大器SOA等。如图30所示,所述耦合结构具体为:
所述多芯平面光波导上位于所述二氧化硅主波导和二氧化硅副波导的进光侧设置有单模有源器件固定台;
所述固定台上设置有焊盘和对位标记,所述焊盘用于与所述单模有源器件上的相应焊盘完成焊接;所述对位标记用于为自动邦定机提供绑定焊点的寻址;
如图30所示,多芯平面光波导上的焊盘也被称为邦定焊点。
在所述耦合结构中,所述单模有源器件和所述二氧化硅主波导和二氧化硅副波导的进光口之间设置有耦合间隔空隙d,所述耦合间隔空隙中填充有用于折射率匹配的匹配胶。
结合本发明实施例,由所述单模有源器件和多芯平面光波导构成的耦合结构具体包括EPON光模块、GPON光模块;数据通信中的高速单信道光模块SFP、SFP+;或者用于40G,100G光传输的并行模块QSFP、QSFP28。
值得说明的是,上述装置和系统内的模块、单元之间的信息交互、执行过程等内容,由于与本发明的处理方法实施例基于同一构思,具体内容可参见本发明方法实施例中的叙述,此处不再赘述。
本领域普通技术人员可以理解实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或光盘等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (30)

  1. 一种基于平面光波导的耦合结构,其特征在于,耦合结构包括单模有源器件和平面光波导,具体的:
    平面光波导包括用于传递光信号的二氧化硅波导,其中,所述二氧化硅波导由耦合段和传导段构成;
    所述耦合段为正梯体结构或者倒梯体结构,其中,所述耦合段与所述单模有源器件相耦合的面为梯顶,所述耦合段与所述传导段连接面为梯底;
    所述单模有源器件与所述平面光波导之间预设有耦合间隔空隙。
  2. 根据权利要求1所述的基于平面光波导的耦合结构,其特征在于,所述耦合间隔空隙d的取值为5μm-50μm,并且所述耦合间隔空隙中填充有用于折射率匹配的匹配胶。
  3. 根据权利要求1或2所述的基于平面光波导的耦合结构,其特征在于,在所述单模有源器件具体为中心波长1310nm-1660nms,远场发射角X方向10°-40°,Y方向10°-45°的高斯型单模半导体激光器时,所述耦合段的梯顶面宽度W1=2.6μm、梯顶面高度H1=4.4μm;梯底面宽度W2=3.3μm,梯底面高度H2=4.4μm;梯体长度L=800μm。
  4. 根据权利要求3所述的基于平面光波导的耦合结构,其特征在于,所述单模有源器件的出光面折射率为1.48,则所述匹配胶的折射率为1.48。
  5. 根据权利要求1、2或4所述的基于平面光波导的耦合结构,其特征在于,由所述单模有源器件和平面光波导构成的耦合结构具体包括EPON光模块、GPON光模块;数据通信中的高速单信道光模块SFP、SFP+;或者用于40G,100G光传输的并行模块QSFP、QSFP28。
  6. 一种平面光波导结构,其特征在于,平面光波导结构包括用于传递光信号的二氧化硅波导,具体的:
    所述二氧化硅波导由耦合段和传导段构成;
    所述耦合段为正梯体结构或者倒梯体结构,其中,所述耦合段用于与单模有源器件耦合面为梯顶,所述耦合段与所述传导段连接面为梯底。
  7. 根据权利要求6所述的平面光波导结构,其特征在于,所述耦合段的梯顶面宽度W1=2.6μm、梯顶面高度H1=4.4μm;梯底面宽度W2=3.3μm,梯底面高度H2=4.4μm;梯体长度L=800μm。
  8. 根据权利要求6所述的平面光波导结构,其特征在于,平面光波导上设置有单模有源器件安装底座,所述底座上设置有焊盘和对位标记。
  9. 一种基于平面光波导的耦合方法,其特征在于,平面光波导中的二氧化硅波导由耦合段和传导段构成,所述方法包括:
    生成所述平面光波导,所述耦合段为梯体结构,其中梯顶面宽度W1=2.6μm、梯顶面高度H1=4.4μm;梯底面宽度W2=3.3μm,梯底面高度H2=4.4μm;梯体长度L=800μm;
    在所述平面光波导上生成单模有源器件安装底座,所述底座上设置有焊盘和对位标记;
    确认选择的单模有源器件具体为中心波长1310nm-1660nms,远场发射角X方向10°-40°,Y方向10°-45°的高斯型单模半导体激光器;
    将所述半导体激光器按照所述平面光波导上的对位标记完成焊接。
  10. 根据权利要求9所述的基于平面光波导的耦合方法,其特征在于,所述单模有源器件与所述平面光波导在焊接完成后,两者之间存在预设的耦合间隔空隙,所述方法还包括:
    根据激光器的镀膜参数和二氧化硅波导的折射率选择匹配胶,并使用选择的匹配胶填充所述耦合间隔空隙。
  11. 一种平面光波导结构,其特征在于,
    平面光波导内包括用于传递光信号的二氧化硅主波导,以及辅助进光的副波导;
    所述副波导包括氮化硅副波导,所述氮化硅副波导紧贴着二氧化硅主波导。
  12. 根据权利要求11所述的平面光波导结构,其特征在于,所述氮化硅副波导由两条子副波导组成,其中,第一子副波导位于所述二氧化硅主波导的上表面,第二子副波导位于所述二氧化硅主波导的下表面。
  13. 根据权利要求12所述的平面光波导结构,其特征在于,所述第一子副波导和第二子副波导均由过渡部分和锥体部分构成,其中过渡部分是一向光传输方向延伸的矩形立方体;其中锥体部分为底面与所述过度部分衔接,锥顶向光传输方向延伸的结构。
  14. 根据权利要求11所述的平面光波导结构,其特征在于,所述氮化硅副波导由三条子副波导组成,其中,第一子副波导、第二子副波导和第三子副波导均位于所述二氧化硅主波导的上表面;三条子副波导为锥体结构,其中锥顶向光传输方向延伸。
  15. 根据权利要求14所述的平面光波导结构,其特征在于,所述三条子副波导之间间隔预设距离,并且三条子复波波导之间平行排列。
  16. 根据权利要求11所述的平面光波导结构,其特征在于,所述副波导还包括二氧化硅副波导,具体的:
    氮化硅副波导和二氧化硅副波导均由过渡部分和锥体部分构成,过渡部分是一向光传输方向延伸的矩形立方体;锥体部分为底面与所述过度部分衔接,锥顶向光传输方向延伸的结构;其中,氮化硅副波导位于二氧化硅主波导的上表面,所述二氧化硅副波导位于二氧化硅主波导的上表面,并且覆盖于所述氮化硅副波导之上。
  17. 一种基于平面光波导的耦合结构,其特征在于,包括如权利要求11-16任一所述结构的平面光波导,则所述耦合结构还包括单模有源器件,具体的:
    所述平面光波导上位于所述二氧化硅主波导和氮化硅副波导的进光侧设置有单模有源器件固定台;
    所述固定台上设置有焊盘和对位标记,所述焊盘用于与所述单模有源器件上的相应焊盘完成焊接;所述对位标记用于为自动绑定机提供绑定焊点的寻址;
    在所述耦合结构中,所述单模有源器件和所述二氧化硅主波导和氮化硅副波导的进光口之间设置有耦合间隔空隙d,所述耦合间隔空隙中填充有用于折射率匹配的匹配胶。
  18. 一种基于平面光波导的耦合方法,其特征在于,包括:
    确定单模有源器件的光波长和远场发射角;
    根据所述远场发射角选择与之适配的平面光波导;
    按照平面光波导上设置的焊盘和对位标记,焊接所述单模有源器件上;
    使用匹配胶填充单模有源器件出光口和平面光波导进光口之间的耦合间隔空隙。
  19. 根据权利要求18所述的基于平面光波导的耦合方法,其特征在于,所述平面光波导由主波导和副波导构成,则所述根据所述远场发射角选择与之适配的平面光波导具体包括:
    根据所述远场发射角,确定所述单模有源器件是横向椭圆光源或者是纵向椭圆光源;
    若是横向椭圆光源,则选择副波导在主波导上单侧平铺方式埋入的平面光波导;
    若是纵向椭圆光源,则选择副波导在主波导上双侧平铺方式埋入的平面光波导。
  20. 根据权利要求19所述的基于平面光波导的耦合方法,其特征在于,所述副波导在主波导上单侧平铺方式埋入的平面光波导,具体为:
    氮化硅副波导由三条子副波导组成,其中,第一子副波导、第二子副波导和第三子副波导均位于所述二氧化硅主波导的上表面;三条子副波导为锥体结构,其中锥顶向光传输方向延伸;或者,
    氮化硅副波导和二氧化硅副波导均由过渡部分和锥体部分构成,过渡部分是一向光传输方向延伸的矩形立方体;锥体部分为底面与所述过度部分衔接,锥顶向光传输方向延伸的结构;其中,氮化硅副波导位于二氧化硅主波导的上表面,所述二氧化硅副波导位于二氧化硅主波导的上表面,并且覆盖于所述氮化硅副波导之上;
    所述副波导在主波导上双侧平铺方式埋入的平面光波导,具体为:
    氮化硅副波导由两条子副波导组成,其中,第一子副波导位于所述二氧化硅主波导的上表面,第二子副波导位于所述二氧化硅主波导的下表面。
  21. 一种平面光波导结构,其特征在于,
    平面光波导内包括用于传递光信号的二氧化硅主波导,以及辅助进光的副波导;
    所述副波导包括一个或者多个二氧化硅副波导,所述二氧化硅副波导与所述二氧化硅主波导按照预设中心距离设置。
  22. 根据权利要求21所述的平面光波导结构,其特征在于,所述副波导具体包括两条子副波导,其中,第一子副波导位于所述二氧化硅主波导的上侧,第二子副波导位于所述二氧化硅主波导的下侧。
  23. 根据权利要求22所述的平面光波导结构,其特征在于,所述第一子副波导和第二子副波导均由正梯体结构构成;
    其中梯顶和二氧化硅主波导进光口位于同一侧;梯底向光传输方向延伸,并且梯底的宽度与二氧化硅主波导的宽度相同;
    其中,第一子副波导梯体和第二子副波导梯体上与所述二氧化硅主波导上下平面相邻的侧面,分别保持与所述二氧化硅主波导上下平面平行。
  24. 根据权利要求22或23所述的平面光波导结构,其特征在于,在选择的单模有源器件的中心波长为1310nm-1660nm,远场发射角为25°×40°时,所述主波导和副波导的参数具体为:
    主波导进光口的宽度W=3.0μm,高度H=3.0μm;
    副波导进光口的宽度W副in=2.6μm,高度H副in=3.0μm;
    副波导梯底的宽度W副out=3.0μm,高度H副out=3.0μm;
    副波导长度L=100μm,主波导和副波导的中心距离Ay=3.6μm。
  25. 根据权利要求22或23所述的平面光波导结构,其特征在于,主波导和副波导在多芯平面光波导结构中,其各自芯层内外为折射率相近的包层,其相对折射率差为0.013。
  26. 根据权利要求21所述的平面光波导结构,其特征在于,所述副波导具体包括八条子副波导,其中,第一子副波导位于所述二氧化硅主波导的上侧;第二子副波导位于所述二氧化硅主波导的下侧;第三子副波导位于所述二氧化 硅主波导的左侧;第四子副波导位于所述二氧化硅主波导的右侧;第五子副波导位于所述二氧化硅主波导的左上侧,且位于所述第一子副波导左侧,位于所述第三子副波导上侧;第六子副波导位于所述二氧化硅主波导的右上侧,且位于所述第一子副波导左侧,位于所述第四子副波导上侧;第七子副波导位于所述二氧化硅主波导的左下侧,且位于所述第二子副波导左侧,位于所述第三子副波导下侧;第八子副波导位于所述二氧化硅主波导的右下侧,且位于所述第二子副波导右侧,位于所述第四子副波导下侧。
  27. 根据权利要求26所述的平面光波导结构,其特征在于,所述各子副波导具体为正梯体结构,并且连接梯顶和梯底的四个侧面均为斜面,其中梯顶与二氧化硅主波导的进光口位于所述多芯平面光波导的同侧。
  28. 根据权利要求26或27所述的平面光波导结构,其特征在于,主波导和副波导在多芯平面光波导结构中,其各自芯层内外为折射率相近的包层,其相对折射率差为0.013。
  29. 一种基于平面光波导的耦合结构,其特征在于,包括如权利要求21-28任一所述结构的平面光波导,则所述耦合结构还包括单模有源器件,具体的:
    所述多芯平面光波导上位于所述二氧化硅主波导和二氧化硅副波导的进光侧设置有单模有源器件固定台;
    所述固定台上设置有焊盘和对位标记,所述焊盘用于与所述单模有源器件上的相应焊盘完成焊接;所述对位标记用于为自动邦定机提供绑定焊点的寻址;
    在所述耦合结构中,所述单模有源器件和所述二氧化硅主波导和二氧化硅副波导的进光口之间设置有耦合间隔空隙d,所述耦合间隔空隙中填充有用于折射率匹配的匹配胶。
  30. 根据权利要求29所述的基于平面光波导的耦合结构,其特征在于,由所述单模有源器件和多芯平面光波导构成的耦合结构具体包括EPON光模块、GPON光模块;数据通信中的高速单信道光模块SFP、SFP+;或者用于40G,100G光传输的并行模块QSFP、QSFP28。
PCT/CN2016/110358 2016-05-17 2016-12-16 一种平面光波导结构及其耦合结构和耦合方法 WO2017197881A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/192,845 US10656350B2 (en) 2016-05-17 2018-11-16 Planar optical waveguide structure, and coupling structure thereof and coupling method thereof
US16/843,882 US11181702B2 (en) 2016-05-17 2020-04-09 Planar optical waveguide structure, and coupling structure thereof and coupling method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610326163.8 2016-05-17
CN201610326883.4 2016-05-17
CN201610327114.6 2016-05-17
CN201610326883.4A CN105759374B (zh) 2016-05-17 2016-05-17 一种平面光波导结构及其耦合结构和耦合方法
CN201610326163.8A CN105759373B (zh) 2016-05-17 2016-05-17 一种多芯平面光波导结构及其耦合结构
CN201610327114.6A CN105759343B (zh) 2016-05-17 2016-05-17 一种混合多芯平面光波导的结构及其耦合结构和耦合方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/192,845 Continuation US10656350B2 (en) 2016-05-17 2018-11-16 Planar optical waveguide structure, and coupling structure thereof and coupling method thereof

Publications (1)

Publication Number Publication Date
WO2017197881A1 true WO2017197881A1 (zh) 2017-11-23

Family

ID=60324639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110358 WO2017197881A1 (zh) 2016-05-17 2016-12-16 一种平面光波导结构及其耦合结构和耦合方法

Country Status (2)

Country Link
US (2) US10656350B2 (zh)
WO (1) WO2017197881A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017106209A1 (en) 2015-12-13 2017-06-22 GenXComm, Inc. Interference cancellation methods and apparatus
US10257746B2 (en) 2016-07-16 2019-04-09 GenXComm, Inc. Interference cancellation methods and apparatus
US11171464B1 (en) 2018-12-14 2021-11-09 Apple Inc. Laser integration techniques
US11150409B2 (en) 2018-12-27 2021-10-19 GenXComm, Inc. Saw assisted facet etch dicing
US10727945B1 (en) * 2019-07-15 2020-07-28 GenXComm, Inc. Efficiently combining multiple taps of an optical filter
US11215755B2 (en) 2019-09-19 2022-01-04 GenXComm, Inc. Low loss, polarization-independent, large bandwidth mode converter for edge coupling
US11539394B2 (en) 2019-10-29 2022-12-27 GenXComm, Inc. Self-interference mitigation in in-band full-duplex communication systems
US20210181436A1 (en) * 2019-12-11 2021-06-17 Macom Technology Solutions Holdings, Inc. Multi-tip waveguide coupler with improved alignment guidance
US11796737B2 (en) 2020-08-10 2023-10-24 GenXComm, Inc. Co-manufacturing of silicon-on-insulator waveguides and silicon nitride waveguides for hybrid photonic integrated circuits
US20230102967A1 (en) * 2021-09-24 2023-03-30 Apple Inc. Chip-to-Chip Optical Coupling for Photonic Integrated Circuits
US11733458B2 (en) * 2021-10-04 2023-08-22 Globalfoundries U.S. Inc. Edge couplers with confining features
WO2023075850A1 (en) 2021-10-25 2023-05-04 GenXComm, Inc. Hybrid photonic integrated circuits for ultra-low phase noise signal generators
CN115291194B (zh) * 2022-10-08 2023-01-03 深圳市速腾聚创科技有限公司 光收发模组、激光雷达、自动驾驶系统及可移动设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1135795A (zh) * 1993-11-22 1996-11-13 桑·K·西姆 使用自对准纤芯扩展器的光纤互连
CN1318760A (zh) * 2000-03-22 2001-10-24 松下电器产业株式会社 光波导器件集成模块及其制造方法
CN102356337A (zh) * 2009-03-17 2012-02-15 日本电气株式会社 光波导装置及其制造方法
CN103454715A (zh) * 2012-06-01 2013-12-18 汽车照明罗伊特林根有限公司 光导体和光导体装置
US20150316720A1 (en) * 2014-04-30 2015-11-05 Futurewei Technologies, Inc. Inverse Taper Waveguides for Low-Loss Mode Converters
CN105589126A (zh) * 2016-03-21 2016-05-18 安比斯特殊玻璃(苏州)有限公司 一种复合型导光板及其液晶显示模组
CN105759343A (zh) * 2016-05-17 2016-07-13 武汉电信器件有限公司 一种混合多芯平面光波导的结构及其耦合结构和耦合方法
CN105759373A (zh) * 2016-05-17 2016-07-13 武汉电信器件有限公司 一种多芯平面光波导结构及其耦合结构

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142596A (en) * 1990-07-24 1992-08-25 Matsushita Electric Industrial Co., Ltd. Tapered light wave guide and wavelength converting element using the same
US5854868A (en) * 1994-06-22 1998-12-29 Fujitsu Limited Optical device and light waveguide integrated circuit
JP2000258648A (ja) 1999-03-05 2000-09-22 Sumitomo Electric Ind Ltd 光平面導波路
US7068870B2 (en) * 2000-10-26 2006-06-27 Shipley Company, L.L.C. Variable width waveguide for mode-matching and method for making
US7251406B2 (en) * 2000-12-14 2007-07-31 Shipley Company, L.L.C. Optical waveguide termination with vertical and horizontal mode shaping
US6751391B2 (en) * 2001-07-24 2004-06-15 Agilent Technologies, Inc. Optical systems incorporating waveguides and methods of manufacture
JP3815271B2 (ja) 2001-08-02 2006-08-30 日本電気株式会社 光結合器
CN102621630B (zh) 2001-10-30 2015-03-25 Hoya美国公司 使用光学功率横向传送的光学接合设备和方法
US20050123241A1 (en) 2003-12-03 2005-06-09 Moti Margalit Polarization independent frequency selective optical coupler
WO2006067778A1 (en) 2004-02-18 2006-06-29 Color Chip (Israel) Ltd. System and method for the fabrication of an electro-optical module
JP2005284256A (ja) * 2004-03-05 2005-10-13 Nec Corp 導波路型光スプリッタ及びこれ備えた導波路型光モジュール
EP1782113A1 (en) 2004-08-23 2007-05-09 Molex Incorporated System and tapered waveguide for improving light coupling efficiency between optical fibers and integrated planar waveguides and method of manufacturing same
KR100759805B1 (ko) * 2005-12-07 2007-09-20 한국전자통신연구원 광증폭 듀플렉서
WO2008114624A1 (ja) 2007-03-20 2008-09-25 Nec Corporation 光導波路及びこれを用いたスポットサイズ変換器
JP2009086238A (ja) 2007-09-28 2009-04-23 Nec Corp 平面光波回路及びその製造方法並びに光導波路デバイス
JP5259829B2 (ja) * 2009-09-28 2013-08-07 株式会社東芝 光結合装置及び光合分波装置
KR101199302B1 (ko) 2009-10-13 2012-11-09 한국전자통신연구원 광 소자 및 그 제조 방법
CN101907754A (zh) 2010-07-09 2010-12-08 浙江大学 一种用于半导体激光器的波导耦合器芯片
US9274275B2 (en) * 2013-07-03 2016-03-01 Cisco Technology, Inc. Photonic integration platform
WO2015011845A1 (ja) * 2013-07-23 2015-01-29 独立行政法人産業技術総合研究所 層間光波結合デバイス
US9703047B2 (en) * 2014-02-28 2017-07-11 Ciena Corporation Spot-size converter for optical mode conversion and coupling between two waveguides
EP3091379B1 (en) * 2015-05-05 2020-12-02 Huawei Technologies Co., Ltd. Optical coupling scheme

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1135795A (zh) * 1993-11-22 1996-11-13 桑·K·西姆 使用自对准纤芯扩展器的光纤互连
CN1318760A (zh) * 2000-03-22 2001-10-24 松下电器产业株式会社 光波导器件集成模块及其制造方法
CN102356337A (zh) * 2009-03-17 2012-02-15 日本电气株式会社 光波导装置及其制造方法
CN103454715A (zh) * 2012-06-01 2013-12-18 汽车照明罗伊特林根有限公司 光导体和光导体装置
US20150316720A1 (en) * 2014-04-30 2015-11-05 Futurewei Technologies, Inc. Inverse Taper Waveguides for Low-Loss Mode Converters
CN105589126A (zh) * 2016-03-21 2016-05-18 安比斯特殊玻璃(苏州)有限公司 一种复合型导光板及其液晶显示模组
CN105759343A (zh) * 2016-05-17 2016-07-13 武汉电信器件有限公司 一种混合多芯平面光波导的结构及其耦合结构和耦合方法
CN105759373A (zh) * 2016-05-17 2016-07-13 武汉电信器件有限公司 一种多芯平面光波导结构及其耦合结构

Also Published As

Publication number Publication date
US11181702B2 (en) 2021-11-23
US10656350B2 (en) 2020-05-19
US20190086620A1 (en) 2019-03-21
US20200233159A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
WO2017197881A1 (zh) 一种平面光波导结构及其耦合结构和耦合方法
CN107003478B (zh) 光耦合装置
JP6435384B2 (ja) 光変調素子
US9664979B2 (en) Hybrid integration using folded Mach-Zehnder modulator array block
JP5568044B2 (ja) 光インターコネクトモジュールおよび光電気ハイブリッド混載ボード
TWI675229B (zh) 包含矽光晶片和耦合器晶片的光學模組
CN105759374B (zh) 一种平面光波导结构及其耦合结构和耦合方法
JP5323646B2 (ja) ハイブリッド集積光モジュール
CN105759343B (zh) 一种混合多芯平面光波导的结构及其耦合结构和耦合方法
Budd et al. Semiconductor optical amplifier (SOA) packaging for scalable and gain-integrated silicon photonic switching platforms
CN106291810A (zh) 一种基于平面光波导电路的光混合集成结构
Doany et al. A four-channel silicon photonic carrier with flip-chip integrated semiconductor optical amplifier (SOA) array providing> 10-dB gain
CN105759373B (zh) 一种多芯平面光波导结构及其耦合结构
Murao et al. Lens alignment technique using high-power laser for hybrid integrated multi-channel transmitter optical sub-assemblies
US10422967B2 (en) Optical coupling apparatus and method
Yashiki et al. 25-Gbps/ch error-free operation over 300-m MMF of low-power-consumption silicon-photonics-based chip-scale optical I/O cores
CN211718660U (zh) Psm4/aoc光发射芯片
CN113885129A (zh) 一种混合集成新方法
CN208596242U (zh) 一种平行光耦合结构
JP2020064211A (ja) 光接続構造
WO2023233534A1 (ja) 光モジュール
WO2014049852A1 (ja) 光ファイバと接続する光路変換光結合デバイスおよび光モジュール
JP3381784B2 (ja) 光半導体素子、該光半導体素子を用いた光通信モジュール、および光半導体素子の製造方法
JP2014191245A (ja) 光導波回路装置
Kobayashi et al. Hybrid optical integration technology

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902260

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902260

Country of ref document: EP

Kind code of ref document: A1