WO2017197799A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2017197799A1
WO2017197799A1 PCT/CN2016/095564 CN2016095564W WO2017197799A1 WO 2017197799 A1 WO2017197799 A1 WO 2017197799A1 CN 2016095564 W CN2016095564 W CN 2016095564W WO 2017197799 A1 WO2017197799 A1 WO 2017197799A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency region
frequency
control signaling
region
Prior art date
Application number
PCT/CN2016/095564
Other languages
English (en)
French (fr)
Inventor
周珏嘉
洪伟
张明
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Publication of WO2017197799A1 publication Critical patent/WO2017197799A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication method and apparatus.
  • 5G the 5th Generation Mobile Communication
  • broadband connectivity requires high transmission rates under broadband
  • Internet of Things services require more connections under narrowband, which requires the allocation of time-frequency resources by wireless communication systems.
  • More flexible For example, as shown in FIG. 1, the traditional time-frequency resource blocks of the same size are flexibly configured into time-frequency resource blocks of different sizes. In this configuration mechanism, the interval of subcarriers also needs to be flexibly configured according to service requirements.
  • the traditional fixed subcarrier spacing is flexibly configured as a variable subcarrier spacing according to different services.
  • the user equipment can normally communicate with the base station only in the case of a fixed subcarrier spacing. Therefore, in order to balance the flexible configuration of the service and the communication requirement, how to perform communication in the case where the subcarrier spacing is dynamically variable has become an urgent problem to be solved by those skilled in the art.
  • the present invention provides a communication method and apparatus.
  • a communication method comprising:
  • the first control signaling receives, by the first time-frequency region, the first control signaling, where the first time-frequency region is a time-frequency region of at least one fixed sub-carrier interval, and the first control signaling carries a second time-frequency region Frequency position information, where the second time-frequency region is a time-frequency region of a variable sub-carrier interval;
  • the first control signaling includes time-frequency location information for carrying a time-frequency region of the second control signaling.
  • the first control signaling further includes: time-frequency position information for receiving a time-frequency region of the reference signal, time-frequency position information for transmitting a time-frequency region of the data, and At least one of time-frequency position information, power control information, and scheduling information of a time-frequency region of the transmitted data.
  • the fixed subcarrier spacing is a traditional subcarrier spacing in an LTE (Long Term Evolution) mode.
  • LTE Long Term Evolution
  • the communicating with the base station on the second time-frequency region comprises:
  • the second time-frequency region is communicated with the base station, where the preset duration includes an integer multiple TTI (Transmission Time Interval).
  • TTI Transmission Time Interval
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the second control signaling includes time-frequency location information for receiving a time-frequency region of the reference signal, time-frequency location information for transmitting a time-frequency region of the data, and data for retransmitting data. At least one of time-frequency position information, power control information, and scheduling information of the time-frequency region.
  • a communication method comprising:
  • the first control signaling Transmitting, by the first time-frequency region, the first control signaling, where the first time-frequency region is at least one time-frequency region with a fixed sub-carrier interval, and the first control signaling carries a time-frequency of the second time-frequency region Location information, where the second time-frequency region is a time-frequency region with variable subcarrier spacing;
  • the first control signaling includes time-frequency location information for carrying a time-frequency region of the second control signaling.
  • the first control signaling further includes: a time frequency for receiving a time-frequency region of the reference signal At least one of location information, time-frequency location information of a time-frequency region for transmitting data, time-frequency location information of a time-frequency region for retransmitting data, power control information, and scheduling information.
  • the second control signaling includes time-frequency location information for receiving a time-frequency region of the reference signal, time-frequency location information for transmitting a time-frequency region of the data, and data for retransmitting data. At least one of time-frequency position information, power control information, and scheduling information of the time-frequency region.
  • the fixed subcarrier spacing refers to a legacy subcarrier spacing in LTE mode.
  • a communication device comprising:
  • the receiving module is configured to receive the first control signaling that is transmitted by using the first time-frequency region, where the first time-frequency region is a time-frequency region of at least one fixed sub-carrier interval, where the first control signaling carries Time-frequency position information of the second time-frequency region, wherein the second time-frequency region is a time-frequency region of the variable sub-carrier interval;
  • the communication module is configured to communicate with the base station on the second time-frequency region according to the time-frequency location information of the second time-frequency region indicated by the first control signaling.
  • the first control signaling includes time-frequency location information for carrying a time-frequency region of the second control signaling.
  • the first control signaling further includes: time-frequency position information for receiving a time-frequency region of the reference signal, time-frequency position information for transmitting a time-frequency region of the data, and At least one of time-frequency position information, power control information, and scheduling information of a time-frequency region of the transmitted data.
  • the fixed subcarrier spacing refers to a legacy subcarrier spacing in LTE mode.
  • the communication module is configured to communicate with the base station on the second time-frequency region after a preset time period, where the preset duration includes an integer multiple of TTI.
  • the communication module is further configured to switch back to the first time-frequency region by the second time-frequency region based on scheduling information in the first control signaling, the scheduling The information indicates time-frequency position information of the first time-frequency region; and communicates with the base station by the first time-frequency region.
  • the communication module is further configured to switch from the current sub-band region of the second time-frequency region to the second time-frequency region based on scheduling information in the first control signaling.
  • the communication module is further configured to receive the second control signaling by using the second time-frequency region; based on scheduling information in the second control signaling, by the Switching the second time-frequency region back to the first time-frequency region, the scheduling information indicating time-frequency location information of the first time-frequency region, and communicating with the base station by using the first time-frequency region.
  • the communication module is further configured to receive the second control signaling by using the second time-frequency region; based on scheduling information in the second control signaling, by the The current sub-band region of the second time-frequency region is switched to other sub-band regions of the second time-frequency region, and the scheduling information indicates time-frequency bits of the other sub-band regions Setting information; communicating with the base station through the other sub-band regions.
  • the second control signaling includes time-frequency location information for receiving a time-frequency region of the reference signal, time-frequency location information for transmitting a time-frequency region of the data, and data for retransmitting data. At least one of time-frequency position information, power control information, and scheduling information of the time-frequency region.
  • a communication device comprising:
  • the transmission module is configured to transmit the first control signaling by using the first time-frequency region, where the first time-frequency region is at least one time-frequency region with a fixed sub-carrier interval, and the first control signaling carries the second Time-frequency position information of the time-frequency region, wherein the second time-frequency region is a time-frequency region with variable sub-carrier spacing;
  • the communication module is configured to communicate with the user equipment on the second time-frequency region according to the time-frequency location information of the second time-frequency region.
  • the first control signaling includes time-frequency location information for carrying a time-frequency region of the second control signaling.
  • the first control signaling further includes: time-frequency position information for receiving a time-frequency region of the reference signal, time-frequency position information for transmitting a time-frequency region of the data, and At least one of time-frequency position information, power control information, and scheduling information of a time-frequency region of the transmitted data.
  • the second control signaling includes time-frequency location information for receiving a time-frequency region of the reference signal, time-frequency location information for transmitting a time-frequency region of the data, and data for retransmitting data. At least one of time-frequency position information, power control information, and scheduling information of the time-frequency region.
  • the fixed subcarrier spacing refers to a legacy subcarrier spacing in LTE mode.
  • a communication device including:
  • a memory for storing processor executable instructions
  • the processor is configured to: receive first control signaling that is transmitted by using a first time-frequency region, where the first time-frequency region is at least one time-frequency region that uses a fixed sub-carrier interval, the first control The signaling carries the time-frequency position information of the second time-frequency region, where the second time-frequency region is a time-frequency region with a variable sub-carrier interval; and the second time-frequency region indicated by the first control signaling The time-frequency location information communicates with the base station on the second time-frequency region.
  • a communication device including:
  • a memory for storing processor executable instructions
  • the processor is configured to transmit the first control signaling by using the first time-frequency region, where the first time-frequency region is at least one time-frequency region with a fixed sub-carrier interval, the first control signaling Carrying time-frequency position information of a second time-frequency region, wherein the second time-frequency region is a time-frequency region with a variable sub-carrier interval; according to the second time-frequency region
  • the time-frequency location information communicates with the user equipment on the second time-frequency region.
  • the auxiliary user equipment communicates with the base station by using the second time-frequency region with the variable sub-carrier spacing, so that the fixed-subcarrier interval service is used to assist the user equipment to switch to the variable sub-
  • the carrier interval service solves the problem that the user equipment and the base station cannot communicate normally when the subcarrier spacing is flexibly configured.
  • FIG. 1 is a schematic diagram of a configuration of a time-frequency resource block shown in the background art.
  • FIG. 2 is a schematic diagram of an implementation scenario according to an exemplary embodiment.
  • FIG. 3A is a flowchart of a communication method according to an exemplary embodiment.
  • FIG. 3B is a flowchart of a communication method according to an exemplary embodiment.
  • FIG. 4 is a flow chart showing a communication method according to an exemplary embodiment.
  • FIG. 5 is a schematic diagram of a communication principle according to an exemplary embodiment.
  • FIG. 6A is a block diagram of a communication device, according to an exemplary embodiment.
  • FIG. 6B is a block diagram of a communication device, according to an exemplary embodiment.
  • FIG. 7 is a block diagram of a communication device, according to an exemplary embodiment.
  • FIG. 2 is a schematic diagram of an implementation scenario according to an exemplary embodiment.
  • the implementation scenario includes a user equipment and a base station.
  • the user equipment provided by the embodiment of the present invention may be a mobile terminal, a personal communication service, a telephone, a cordless telephone, a session initiation protocol telephone, a wireless local loop station, a personal digital assistant, or the like.
  • a base station may refer to a device having a management function of a radio resource, capable of communicating with a user equipment, or as a central controller to assist direct communication between user equipments.
  • the base station may be a base station in a GSM (Global System for Mobile Communication) or CDMA (Code Division Multiple Access), or may be a WCDMA (Wideband Code Division Multiple Access).
  • the base station in the address may be an evolved base station in the LTE (Long Term Evolution), which is not specifically limited in this embodiment of the present invention.
  • FIG. 3A is a flowchart of a communication method according to an exemplary embodiment. As shown in FIG. 3A, the method is used in a user equipment, and includes the following steps.
  • step 301a the first control signaling transmitted through the first time-frequency region is received, where the first time-frequency region is at least one time-frequency region with a fixed sub-carrier interval, and the first control signaling carries the second time-frequency region.
  • the time-frequency location information, and the second time-frequency region is a time-frequency region with variable subcarrier spacing.
  • step 302a communication with the base station is performed on the second time-frequency region according to the time-frequency position information of the second time-frequency region indicated by the first control signaling.
  • the method provided by the embodiment of the present invention assists the user equipment to switch to the second time-frequency region using the variable sub-carrier interval by using the first time-frequency region with the fixed sub-carrier spacing, and communicates with the base station through the second time-frequency region.
  • the problem that the user equipment and the base station cannot communicate normally when the subcarrier spacing is flexibly configured is solved by using the fixed subcarrier spacing service to assist the user equipment to switch to the variable subcarrier spacing service.
  • the first control signaling includes time-frequency location information for carrying a time-frequency region of the second control signaling.
  • the first control signaling further includes: time-frequency position information for receiving a time-frequency region of the reference signal, time-frequency position information for transmitting a time-frequency region of the data, and At least one of time-frequency position information, power control information, and scheduling information of a time-frequency region of the transmitted data.
  • the fixed subcarrier spacing is a legacy subcarrier spacing in LTE mode.
  • the communicating with the base station on the second time-frequency region includes: communicating with the base station on the second time-frequency region after a preset time period,
  • the preset duration includes an integer multiple of TTI.
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the second control signaling includes time-frequency location information for receiving a time-frequency region of the reference signal, time-frequency location information for transmitting a time-frequency region of the data, and data for retransmitting data. At least one of time-frequency position information, power control information, and scheduling information of the time-frequency region.
  • FIG. 3B is a flowchart of a communication method according to an exemplary embodiment. As shown in FIG. 3B, the method is used in a base station, and includes the following steps.
  • the first control signaling is transmitted through the first time-frequency region, where the first time-frequency region is at least one time-frequency region with a fixed sub-carrier interval, and the first control signaling carries the second time-frequency region.
  • the second time-frequency region is a time-frequency region with variable sub-carrier spacing.
  • step 302b communication with the user equipment is performed through the second time-frequency region according to the time-frequency position information of the second time-frequency region.
  • the method provided by the embodiment of the present invention implements the use of the fixed subcarrier spacing service by using the first time-frequency region of the fixed subcarrier spacing to assist the user equipment to communicate with the base station by using the second time-frequency region with the variable subcarrier spacing.
  • the auxiliary user equipment is switched to the variable subcarrier spacing service, which solves the problem that the user equipment and the base station cannot communicate normally when the subcarrier spacing is flexibly configured.
  • the first control signaling includes time-frequency location information for carrying a time-frequency region of the second control signaling.
  • the first control signaling further includes: time-frequency position information for receiving a time-frequency region of the reference signal, time-frequency position information for transmitting a time-frequency region of the data, and At least one of time-frequency position information, power control information, and scheduling information of a time-frequency region of the transmitted data.
  • the second control signaling includes time-frequency location information for receiving a time-frequency region of the reference signal, time-frequency location information for transmitting a time-frequency region of the data, and data for retransmitting data. At least one of time-frequency position information, power control information, and scheduling information of the time-frequency region.
  • the fixed subcarrier spacing refers to a legacy subcarrier spacing in LTE mode.
  • FIG. 4 is a flowchart of a communication method according to an exemplary embodiment. As shown in FIG. 4, an interaction body is used. The user equipment and the base station include the following steps.
  • the user equipment receives the first control signaling that is transmitted through the first time-frequency region, where the first time-frequency region is at least one time-frequency region with a fixed sub-carrier interval, and the first control signaling indicates the second time.
  • Time-frequency position information of the frequency region, and the second time-frequency region is a time-frequency region with variable sub-carrier spacing.
  • the first time-frequency region and the second time-frequency region may be a time-frequency region of one carrier frequency band, and may also be a time-frequency region of multiple carrier frequency bands, which is not specifically limited in this embodiment of the present invention. .
  • the first time-frequency region and the second time-frequency region are time-frequency regions within one carrier frequency band
  • the first time-frequency region generally refers to a time-frequency region located near a center frequency of the carrier frequency band.
  • FIG. 5 is a three time-frequency region divided by a carrier frequency band, wherein the central region portion in FIG. 5 is a first time-frequency region, and the first time-frequency region is near a center frequency of the carrier frequency band.
  • the other two regions except the first time-frequency region correspond to the second time-frequency region.
  • the first time-frequency region and the second time-frequency region are the time-frequency regions of the plurality of carrier frequency bands
  • the first time-frequency region and the second time-frequency region may each occupy at least one carrier frequency band, which is not in this embodiment of the present invention. Specific restrictions are made.
  • the time-frequency regions in which the first time-frequency region and the second time-frequency region are one carrier frequency band are exemplified in the subsequent sections.
  • the time-frequency resource blocks with the same size in the original carrier frequency band are flexibly configured as time-frequency resource blocks of different sizes according to different service types.
  • the size of the corresponding time-frequency resource block is the same for the broadband connection service, but the size of the time-frequency resource block corresponds to the time-frequency resource block size corresponding to the Internet of Things service and the car network service.
  • the time-frequency resource block size and the time-frequency resource block size corresponding to the broadcast service are different.
  • the sub-carrier spacing needs to be flexibly configured according to the service type. That is, the original fixed subcarrier spacing is set to a variable subcarrier spacing within one carrier frequency band.
  • the subcarrier spacing is fixed before the 5G service appears.
  • the fixed subcarrier spacing in the embodiment of the present invention refers to the traditional subcarrier spacing in the LTE mode. That is, the LTE system sets the legacy subcarrier spacing to 15 kHz.
  • the user equipment can normally detect and access the base station, that is, can normally communicate with the base station.
  • the embodiment of the present invention introduces the use of the first time-frequency region to assist in accessing the second time-frequency region, so as to achieve the purpose of the user equipment communicating with the base station through the second time-frequency region.
  • the first time-frequency region and the second time-frequency region may both be time-frequency regions including multiple time-frequency resource blocks, but the time-frequency resource block sizes may be different between the two.
  • the first time-frequency region is a time-frequency region located near the center frequency in one carrier frequency band, and the sub-carrier spacing is fixed in the first time-frequency region, for example, a fixed value of 15 kHz.
  • the size of all time-frequency resource blocks included in the first time-frequency region is the same, that is, each time-frequency resource block has the same span in the frequency domain and the time domain. In other words, each time-frequency resource block occupies the same frequency difference in the frequency domain, and each time-frequency resource block occupies the same duration in the time domain.
  • a time-frequency region corresponding to each type of 5G service is specifically labeled.
  • 5G services include eMBB (enhanced Mobile Broad Band) services, corresponding to broadband connection services, mMTC (massive Machine Type) Communication, huge machine type communication) service, corresponding to the Internet of Things service, URLLC (Ultra Reliable Low Latency Communication) service, corresponding to the Internet of Things service, and the broadcast service, etc.
  • eMBB enhanced Mobile Broad Band
  • mMTC massive Machine Type Communication
  • URLLC Ultra Reliable Low Latency Communication
  • the second time-frequency region uses a variable subcarrier spacing.
  • the subcarrier spacing corresponding to each service may be different depending on the type of service. For example, as shown in FIG. 5, the subcarrier spacing of the eMBB service and the mMTC service in the frequency domain is different, and the subcarrier spacing corresponding to the eMBB service is greater than the subcarrier spacing corresponding to the mMTC service.
  • the user equipment can communicate with the base station on the second time-frequency region indicated by the first signaling, for example, in FIG. 5, according to the indication of the first control signaling, communicating with the base station on the time-frequency region corresponding to the eMBB service and the mMTC service. .
  • the fixed subcarrier spacing service refers to a service that uses a fixed subcarrier spacing in a traditional service such as 2G, 3G, or 4G, and a 5G service.
  • the variable subcarrier spacing service refers to a service using variable subcarrier spacing in 5G services.
  • the user equipment when the user equipment firstly accesses the base station or switches from the variable subcarrier interval service to the fixed subcarrier interval service, the user equipment always passes the first time before the user equipment switches to the variable subcarrier interval service again.
  • the time-frequency region communicates with the base station for normal measurement, data transmission, and the like.
  • the first control signaling is transmitted between the base station and the user equipment by using the first time-frequency region.
  • the first control signaling includes at least time-frequency location information for carrying a time-frequency region of the second control signaling.
  • the transmission location of the second control signaling is different from the first control signaling, and the content carried by the two is also different.
  • the first control signaling is transmitted through the first time-frequency region, that is, by using a conventional time-frequency region with a fixed sub-carrier interval; and the second control signaling is transmitted through the second time-frequency region, that is, by using a variable sub-carrier interval. 5G time-frequency area transmission.
  • the first control signaling may further include: time-frequency location information for receiving a time-frequency region of the reference signal, time-frequency location information of a time-frequency region for transmitting data, and data for retransmitting data. At least one of time-frequency position information, power control information, and scheduling information of the time-frequency region.
  • the Reference Signal (RS) is a pilot signal, which is a known signal that is provided by the base station to the user equipment for channel estimation or channel sounding. The user equipment can know at which position in the second time-frequency region the reference signal transmitted by the base station is received according to the time-frequency position information of the time-frequency region for receiving the reference signal.
  • the user equipment can know at which position in the second time-frequency region the data transmission is performed with the base station according to the time-frequency position information of the time-frequency region for transmitting data.
  • the user equipment can know at which position in the second time-frequency region the data is retransmitted with the base station according to the time-frequency position information of the time-frequency region for retransmitting the data.
  • the power control information is used to indicate whether a change in power is required after the user equipment is switched from the first time-frequency region to the second time-frequency region.
  • the scheduling information is used to indicate which service the user equipment switches to after performing a certain service on the second time-frequency region.
  • the first control signaling may include time-frequency location information for transmitting the time-frequency region of the second control signaling and the foregoing other information.
  • the purpose of the setting is to enable the user equipment to directly receive the reference signal or perform data transmission in the specified time-frequency region of the second time-frequency region according to the time-frequency position information in the first control signaling, thereby reducing the time. delay.
  • the user equipment is not required to receive the second control signaling in the second time-frequency region according to the indication of the first control signaling, and then in the specified time-frequency region in the second time-frequency region according to the indication of the second control signaling. Receive a reference signal or perform data transmission.
  • the second control signaling may include other information than the time-frequency location information of the time-frequency region carrying the second control signaling. That is, the second control signaling includes time-frequency position information for receiving a time-frequency region of the reference signal, time-frequency position information of a time-frequency region for transmitting data, and a time-frequency position of a time-frequency region for retransmitting data. At least one of information, power control information, and scheduling information.
  • the user equipment may be in the second time-frequency region according to the time-frequency location information of the time-frequency region for carrying the second control signaling carried in the first control signaling.
  • the second control signaling is read at a specific location.
  • the second control signaling further indicates time-frequency position information of the received reference signal, time-frequency position information of the retransmitted data, and the like, and according to the time-frequency position information, the user equipment can know where in the second time-frequency region. Reference signal reception, data transmission, etc. are performed at some locations.
  • An exemplary embodiment of the foregoing first control signaling and second control signaling is a PDCCH (Physical Downlink Control Channel) and its evolution, a PBCH (Physical Broadcast Channel), and an evolution thereof.
  • PHICH Physical Hybrid ARQ Indicator Channel
  • PCFICH Physical Control Format Indicator Channel
  • PUCCH Physical Upl Control CHannel
  • the embodiment of the present invention does not specifically limit the path control channel and its evolution, or the PRACH (Physical Random Access Channel) and its evolution.
  • step 402 after the preset duration, the user equipment communicates with the base station through the second time-frequency region according to the time-frequency location information of the second time-frequency region indicated by the first control signaling.
  • the preset duration includes an integer multiple of the TTI. That is, after reading the integer multiple TTI of the first control signaling on the first time-frequency region, the user equipment communicates with the base station in the second time-frequency region.
  • the embodiment of the present invention does not specifically limit the preset duration.
  • the integer multiple TTI may be the sum of the time lengths spanned by several time-frequency resource blocks in the first time-frequency region; or, the integer multiple TTI may also be a partial time-frequency resource block span in the first time-frequency region.
  • the sum of the length of time and the sum of the lengths of time spanned by a portion of the time-frequency resource blocks in the second time-frequency region; or, the integer multiple TTI may also be the sum of the lengths of time spans of several time-frequency resource blocks in the second time-frequency region . This embodiment of the present invention does not specifically limit this.
  • the length of time that a time-frequency resource block spans may be referred to as a TTI.
  • the user equipment is switched from the first time-frequency region to the second time-frequency region, and after the service processing is completed in the second time-frequency region, the user equipment is in the second direction as indicated by the upwardly indicated arrow in FIG.
  • the system indication such as switching to the mMTC service.
  • the embodiment of the invention is not specifically limited thereto. Specifically, the indication of the scheduling information shall prevail.
  • the user equipment can receive the second control signaling in the second time-frequency region, and can continue to receive the first control signaling in the first time-frequency region, so the user
  • the device switches from the second time-frequency region to the first time-frequency region, and may be based on the first control signaling or the second control signaling, and the switching manner is as follows:
  • the first mode based on the scheduling information in the first control signaling, is switched back to the first time-frequency region by the second time-frequency region, where the scheduling information indicates time-frequency location information of the first time-frequency region;
  • the frequency region communicates with the base station.
  • the second mode receiving the second control signaling by using the second time-frequency region, and switching back to the first time-frequency region by the second time-frequency region based on the scheduling information in the second control signaling, where the scheduling information indicates the first Time-frequency position information of the time-frequency region; communicating with the base station through the first time-frequency region.
  • the user equipment can continue to receive the first control in the first time-frequency region in addition to receiving the second control signaling in the second time-frequency region.
  • Signaling so the user equipment switches from the current sub-band area of the second time-frequency region to the other sub-band area of the second time-frequency region, and may be based on the first control signaling or the second control signaling, and the switching mode is specific. as follows:
  • the first mode based on the scheduling information in the first control signaling, is switched from the current sub-band region in the second time-frequency region to the other sub-band region in the second time-frequency region, and the scheduling information indicates the time of the other sub-band regions.
  • Frequency location information communicates with the base station through other sub-band regions.
  • the second control signaling is received by the second time-frequency region; and the current sub-band region of the second time-frequency region is switched to the other sub-region of the second time-frequency region based on the scheduling information in the second control signaling.
  • the scheduling information indicates time-frequency position information of other sub-band regions; and communicates with the base station through other sub-band regions.
  • the coverage of the current 5G service is limited, and the user equipment may move to an area that does not support the 5G service.
  • the user equipment needs to switch back from the 5G service to the traditional services such as 2G, 3G or 4G.
  • the signal strength of the 5G service is less than the preset threshold, the user equipment can be switched back to the non-5G service by the 5G service, and then the user equipment communicates with the base station in the first time-frequency region.
  • the preset threshold may be 90 dbm or 100 dbm, etc., which is not specifically limited in this embodiment of the present invention.
  • the signal strength of the 5G service is less than the preset threshold, it indicates that the user equipment has been gradually away from the area covered by the 5G service or has reached the area where there is no 5G service coverage. In this case, the service switching needs to be performed as described above.
  • the first time-frequency region using the fixed subcarrier spacing is used to assist the user equipment switching.
  • the second time-frequency region with variable subcarrier spacing so that the user can normally communicate with the base station in the second time-frequency region.
  • a variable duration interval may be adopted in the time domain. That is, the time interval of the time-frequency resource blocks of different services is adjusted in the time domain according to different service types.
  • the vehicle network service needs lower delay and more reliable connection, that is, reliable data transmission in a short time, and thus the transmission time is short, so the occupation time of one time-frequency resource block corresponding to the vehicle networking service can be used.
  • the setting is smaller.
  • the setting mode in the time domain is the same as the setting mode in the frequency domain, that is, the time interval corresponding to different services is different.
  • the manner in which the user equipment communicates with the base station is the same as the communication method shown in the foregoing steps 401 and 402 in the scenario in which the time interval is variable in the time domain, and details are not described herein again.
  • the first time-frequency region using the fixed sub-carrier spacing is an entire continuous time-frequency region.
  • the first time-frequency region may be a time-frequency region composed of a plurality of hour-frequency region windows, in addition to being an entire continuous time-frequency region.
  • Each hour frequency region window may be composed of multiple time-frequency resource blocks, and each time-frequency resource block adopts a traditional sub-carrier interval in the LTE mode.
  • the hourly frequency area window for transmitting the first control signaling may be different, so the base station needs to be sent to the user equipment for transmission in advance. Time-frequency location information of the time-frequency region window of the first control signaling of different services.
  • the user equipment performs the reception of the first control signaling on the accurate time-frequency area window.
  • the manner in which the user equipment communicates with the base station is the same as that in the foregoing steps 401 and 402, and details are not described herein again.
  • the method provided by the embodiment of the present invention implements the use of the fixed subcarrier spacing service by using the first time-frequency region of the fixed subcarrier spacing to assist the user equipment to communicate with the base station by using the second time-frequency region with the variable subcarrier spacing.
  • the auxiliary user equipment is switched to the variable subcarrier spacing service, which solves the problem that the user equipment and the base station cannot communicate normally when the subcarrier spacing is flexibly configured.
  • FIG. 6A is a block diagram of a communication device, according to an exemplary embodiment.
  • the apparatus includes a receiving module 601a and a communication module 602a.
  • the receiving module 601a is configured to receive the first control signaling that is transmitted by using the first time-frequency region, where the first time-frequency region is at least one time-frequency region that adopts a fixed sub-carrier interval, where the first control signaling carries Time-frequency position information of the second time-frequency region, wherein the second time-frequency region is a time-frequency region with a variable sub-carrier spacing;
  • the communication module 602a is configured to communicate with the base station on the second time-frequency region according to the time-frequency location information of the second time-frequency region indicated by the first control signaling.
  • the first control signaling includes time-frequency location information for carrying a time-frequency region of the second control signaling.
  • the first control signaling further includes: time-frequency position information for receiving a time-frequency region of the reference signal, time-frequency position information for transmitting a time-frequency region of the data, and At least one of time-frequency position information, power control information, and scheduling information of a time-frequency region of the transmitted data.
  • the fixed subcarrier spacing refers to a legacy subcarrier spacing in LTE mode.
  • the communication module 602a is configured to communicate with the base station on the second time-frequency region after a preset time period, where the preset duration includes an integer multiple of TTI.
  • the communication module 602a is further configured to switch back to the first time-frequency region by the second time-frequency region based on scheduling information in the first control signaling,
  • the scheduling information indicates time-frequency location information of the first time-frequency region; and communicates with the base station by using the first time-frequency region.
  • the communication module 602a is further configured to switch from the current sub-band region of the second time-frequency region to the second time based on scheduling information in the first control signaling.
  • the scheduling information indicates time-frequency location information of the other sub-band regions; and the other sub-band regions communicate with the base station.
  • the communication module 602a is further configured to receive the second control signaling by using the second time-frequency region; based on scheduling information in the second control signaling, by the Switching the second time-frequency region back to the first time-frequency region, the scheduling information indicating time-frequency location information of the first time-frequency region, and communicating with the base station by using the first time-frequency region.
  • the communication module 602a is further configured to receive the first time through the second time-frequency region And controlling, according to the scheduling information in the second control signaling, the current sub-band region of the second time-frequency region to be switched to another sub-band region of the second time-frequency region, the scheduling information Time-frequency location information of the other sub-band regions is indicated; communication with the base station is performed by the other sub-band regions.
  • the second control signaling includes time-frequency location information for receiving a time-frequency region of the reference signal, time-frequency location information for transmitting a time-frequency region of the data, and data for retransmitting data. At least one of time-frequency position information, power control information, and scheduling information of the time-frequency region.
  • the apparatus provided by the embodiment of the present invention implements the use of the fixed subcarrier spacing service by using the first time-frequency region with the fixed subcarrier spacing to assist the user equipment to communicate with the base station by using the second time-frequency region with the variable subcarrier spacing.
  • the auxiliary user equipment is switched to the variable subcarrier spacing service, which solves the problem that the user equipment and the base station cannot communicate normally when the subcarrier spacing is flexibly configured.
  • FIG. 6B is a block diagram of a communication device, according to an exemplary embodiment.
  • the apparatus includes a transmission module 601b, a communication module 602b.
  • the transmission module 601b is configured to transmit the first control signaling by using the first time-frequency region, where the first time-frequency region is at least one time-frequency region with a fixed sub-carrier interval, where the first control signaling carries Time-frequency position information of the second time-frequency region, wherein the second time-frequency region is a time-frequency region with variable sub-carrier spacing;
  • the communication module 602b is configured to communicate with the user equipment on the second time-frequency region according to the time-frequency location information of the second time-frequency region.
  • the first control signaling includes time-frequency location information for carrying a time-frequency region of the second control signaling.
  • the first control signaling further includes: time-frequency position information for receiving a time-frequency region of the reference signal, time-frequency position information for transmitting a time-frequency region of the data, and At least one of time-frequency position information, power control information, and scheduling information of a time-frequency region of the transmitted data.
  • the second control signaling includes time-frequency location information for receiving a time-frequency region of the reference signal, time-frequency location information for transmitting a time-frequency region of the data, and data for retransmitting data. At least one of time-frequency position information, power control information, and scheduling information of the time-frequency region.
  • the fixed subcarrier spacing refers to a legacy subcarrier spacing in LTE mode.
  • the apparatus provided by the embodiment of the present invention implements the use of the fixed subcarrier spacing service by using the first time-frequency region with the fixed subcarrier spacing to assist the user equipment to communicate with the base station by using the second time-frequency region with the variable subcarrier spacing.
  • the auxiliary user equipment is switched to the variable subcarrier spacing service, which solves the problem that the user equipment and the base station cannot communicate normally when the subcarrier spacing is flexibly configured.
  • FIG. 7 is a block diagram of a communication device 700, according to an exemplary embodiment.
  • device 700 can be a shift Mobile phones, computers, digital broadcast terminals, messaging devices, game consoles, tablet devices, medical devices, fitness equipment, personal digital assistants, etc.
  • the apparatus 700 may include one or more of the following components: a processing component 702, a memory 704, a power component 706, a multimedia component 708, an audio component 710, an I/O (Input/Output) interface 712, Sensor component 714, and communication component 716.
  • Processing component 702 typically controls the overall operation of device 700, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 702 can include one or more processors 720 to execute instructions to perform all or part of the steps described above.
  • processing component 702 can include one or more modules to facilitate interaction between component 702 and other components.
  • processing component 702 can include a multimedia module to facilitate interaction between multimedia component 708 and processing component 702.
  • Memory 704 is configured to store various types of data to support operation at device 700. Examples of such data include instructions for any application or method operating on device 700, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 704 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as SRAM (Static Random Access Memory), EEPROM (Electrically-Erasable Programmable Read-Only Memory). Erasable Programmable Read Only Memory (EPROM), PROM (Programmable Read-Only Memory), ROM (Read-Only Memory, Read only memory), magnetic memory, flash memory, disk or optical disk.
  • SRAM Static Random Access Memory
  • EEPROM Electrically-Erasable Programmable Read-Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM PROM
  • ROM Read-Only Memory, Read only memory
  • magnetic memory flash memory, disk or optical disk.
  • Power component 706 provides power to various components of device 700.
  • Power component 706 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 700.
  • the multimedia component 708 includes a screen between the device 700 and the user that provides an output interface.
  • the screen may include an LCD (Liquid Crystal Display) and a TP (Touch Panel). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 708 includes a front camera and/or a rear camera. When the device 700 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 710 is configured to output and/or input an audio signal.
  • the audio component 710 includes a MIC (Microphone) that is configured to receive an external audio signal when the device 700 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 704 or transmitted via communication component 716.
  • audio component 710 also includes a speaker for outputting an audio signal.
  • the I/O interface 712 provides an interface between the processing component 702 and the peripheral interface module, and the peripheral interface module can be Keyboard, click wheel, button, etc. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 714 includes one or more sensors for providing device 700 with various aspects of status assessment.
  • sensor component 714 can detect an open/closed state of device 700, the relative positioning of components, such as a display and a keypad of device 700, and sensor component 714 can also detect a change in position of device 700 or a component of device 700, user The presence or absence of contact with device 700, device 700 orientation or acceleration/deceleration and temperature variation of device 700.
  • Sensor assembly 714 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor component 714 may also include a light sensor, such as a CMOS (Complementary Metal Oxide Semiconductor) or CCD (Charge-coupled Device) image sensor for use in imaging applications.
  • the sensor component 714 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 716 is configured to facilitate wired or wireless communication between device 700 and other devices.
  • the device 700 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 716 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 716 also includes an NFC (Near Field Communication) module to facilitate short range communication.
  • the NFC module can be based on RFID (Radio Frequency Identification) technology, IrDA (Infra-red Data Association) technology, UWB (Ultra Wideband) technology, BT (Bluetooth) technology and Other technologies to achieve.
  • the device 700 may be configured by one or more ASICs (Application Specific Integrated Circuits), DSP (Digital Signal Processor), DSPD (Digital Signal Processor Device). Device), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), controller, microcontroller, microprocessor or other electronic component implementation for performing the above method.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processor Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the above method.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 704 comprising instructions executable by processor 720 of apparatus 700 to perform the above method.
  • the non-transitory computer readable storage medium may be a ROM, a RAM (Random Access Memory), a CD-ROM (Compact Disc Read-Only Memory), a magnetic tape, a floppy disk, and optical data. Storage devices, etc.
  • a non-transitory computer readable storage medium when instructions in the storage medium are executed by a processor of a user device, to enable the user device to perform the communication method described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Devices For Executing Special Programs (AREA)
  • Computer And Data Communications (AREA)
  • Stored Programmes (AREA)

Abstract

本发明是关于一种通信方法及装置,属于通信技术领域。所述方法包括:接收通过第一时频区域传输的第一控制信令,所述第一时频区域为至少一个固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为可变子载波间隔的时频区域;根据所述第一控制信令所指示的第二时频区域的时频位置信息,在所述第二时频区域上与所述基站进行通信。本发明通过采用固定子载波间隔的第一时频区域,辅助用户设备通过采用可变子载波间隔的第二时频区域与基站进行通信,实现了利用固定子载波间隔业务辅助用户设备切换至可变子载波间隔业务,解决了当灵活配置子载波间隔时用户设备与基站无法正常通信的问题。

Description

一种通信方法及装置
本申请基于申请号为201610342243.2、申请日为2016年5月20日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及通信技术领域,特别涉及一种通信方法及装置。
背景技术
随着科技的不断进步,无线通信技术逐渐向5G(the 5th Generation Mobile Communication,第五代移动通信技术)演进。进入5G阶段以来,一个重要的目标便是满足灵活的业务配置,覆盖包括宽带连接、物联网、车联网、广播等多种业务。由于不同业务对无线通信系统的指标要求不同,例如宽带连接业务需要宽带下的高传输速率,而物联网业务则需要窄带下更多的连接数量,这便需要无线通信系统对时频资源的分配更加灵活。比如,如图1所示,将传统的大小一致的时频资源块灵活配置为大小不一的时频资源块。在这种配置机制下,会导致子载波的间隔也需要根据业务需求灵活配置。即将传统的固定子载波间隔根据业务不同灵活配置为可变子载波间隔。而目前仅在固定子载波间隔的情形下用户设备才可与基站正常通信。因此为了兼顾业务灵活配置和通信需求,在子载波间隔动态可变的情形下,如何进行通信成为了本领域技术人员亟需解决的一个问题。
发明内容
为克服相关技术中存在的问题,本发明提供一种通信方法及装置。
根据本发明实施例的第一方面,提供一种通信方法,所述方法包括:
接收通过第一时频区域传输的第一控制信令,所述第一时频区域为至少一个固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为可变子载波间隔的时频区域;
根据所述第一控制信令所指示的第二时频区域的时频位置信息,在所述第二时频区域上与所述基站进行通信。
在另一个实施例中,所述第一控制信令中包括用于承载第二控制信令的时频区域的时频位置信息。
在另一个实施例中,所述第一控制信令中还包括:用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
在另一个实施例中,所述固定子载波间隔为LTE(Long Term Evolution,长期演进)模式下的传统子载波间隔。
在另一个实施例中,所述在所述第二时频区域上与所述基站进行通信,包括:
在预设时长后,在所述第二时频区域上与所述基站进行通信,所述预设时长包括整数倍TTI(Transmission Time Interval,传输时间间隔)。
在另一个实施例中,所述方法还包括:
基于所述第一控制信令中的调度信息,由所述第二时频区域切换回所述第一时频区域,所述调度信息指示了所述第一时频区域的时频位置信息;
通过所述第一时频区域与所述基站进行通信。
在另一个实施例中,所述方法还包括:
基于所述第一控制信令中的调度信息,由所述第二时频区域的当前子频段区域切换至所述第二时频区域的其他子频段区域,所述调度信息指示了所述其他子频段区域的时频位置信息;
通过所述其他子频段区域与所述基站进行通信。
在另一个实施例中,所述方法还包括:
通过所述第二时频区域接收所述第二控制信令;
基于所述第二控制信令中的调度信息,由所述第二时频区域切换回所述第一时频区域,所述调度信息指示了所述第一时频区域的时频位置信息;
通过所述第一时频区域与所述基站进行通信。
在另一个实施例中,所述方法还包括:
通过所述第二时频区域接收所述第二控制信令;
基于所述第二控制信令中的调度信息,由所述第二时频区域的当前子频段区域切换至所述第二时频区域的其他子频段区域,所述调度信息指示了所述其他子频段区域的时频位置信息;
通过所述其他子频段区域与所述基站进行通信。
在另一个实施例中,所述第二控制信令包括用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
根据本发明实施例的第二方面,提供一种通信方法,所述方法包括:
通过第一时频区域传输第一控制信令,所述第一时频区域为至少一个采用固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为采用可变子载波间隔的时频区域;
根据所述第二时频区域的时频位置信息,在所述第二时频区域上与用户设备进行通信。
在另一个实施例中,所述第一控制信令中包括用于承载第二控制信令的时频区域的时频位置信息。
在另一个实施例中,所述第一控制信令中还包括:用于接收参考信号的时频区域的时频 位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
在另一个实施例中,所述第二控制信令包括用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
在另一个实施例中,所述固定子载波间隔指代LTE模式下的传统子载波间隔。
根据本发明实施例的第三方面,提供一种通信装置,所述装置包括:
接收模块,被配置为接收通过第一时频区域传输的第一控制信令,所述第一时频区域为至少一个固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为可变子载波间隔的时频区域;
通信模块,被配置为根据所述第一控制信令所指示的第二时频区域的时频位置信息,在所述第二时频区域上与所述基站进行通信。
在另一个实施例中,所述第一控制信令中包括用于承载第二控制信令的时频区域的时频位置信息。
在另一个实施例中,所述第一控制信令中还包括:用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
在另一个实施例中,所述固定子载波间隔指代LTE模式下的传统子载波间隔。
在另一个实施例中,所述通信模块,被配置为在预设时长后,在所述第二时频区域上与所述基站进行通信,所述预设时长包括整数倍TTI。
在另一个实施例中,所述通信模块,还被配置为基于所述第一控制信令中的调度信息,由所述第二时频区域切换回所述第一时频区域,所述调度信息指示了所述第一时频区域的时频位置信息;通过所述第一时频区域与所述基站进行通信。
在另一个实施例中,所述通信模块,还被配置为基于所述第一控制信令中的调度信息,由所述第二时频区域的当前子频段区域切换至所述第二时频区域的其他子频段区域,所述调度信息指示了所述其他子频段区域的时频位置信息;通过所述其他子频段区域与所述基站进行通信。
在另一个实施例中,所述通信模块,还被配置为通过所述第二时频区域接收所述第二控制信令;基于所述第二控制信令中的调度信息,由所述第二时频区域切换回所述第一时频区域,所述调度信息指示了所述第一时频区域的时频位置信息;通过所述第一时频区域与所述基站进行通信。
在另一个实施例中,所述通信模块,还被配置为通过所述第二时频区域接收所述第二控制信令;基于所述第二控制信令中的调度信息,由所述第二时频区域的当前子频段区域切换至所述第二时频区域的其他子频段区域,所述调度信息指示了所述其他子频段区域的时频位 置信息;通过所述其他子频段区域与所述基站进行通信。
在另一个实施例中,所述第二控制信令包括用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
根据本发明实施例的第四方面,提供一种通信装置,所述装置包括:
传输模块,被配置为通过第一时频区域传输第一控制信令,所述第一时频区域为至少一个采用固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为采用可变子载波间隔的时频区域;
通信模块,被配置为根据所述第二时频区域的时频位置信息,在所述第二时频区域上与用户设备进行通信。
在另一个实施例中,所述第一控制信令中包括用于承载第二控制信令的时频区域的时频位置信息。
在另一个实施例中,所述第一控制信令中还包括:用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
在另一个实施例中,所述第二控制信令包括用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
在另一个实施例中,所述固定子载波间隔指代LTE模式下的传统子载波间隔。
根据本发明实施例的第五方面,提供一种通信装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:接收通过第一时频区域传输的第一控制信令,所述第一时频区域为至少一个采用固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为采用可变子载波间隔的时频区域;根据所述第一控制信令所指示的第二时频区域的时频位置信息,在所述第二时频区域上与所述基站进行通信。
根据本发明实施例的第六方面,提供一种通信装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:通过第一时频区域传输第一控制信令,所述第一时频区域为至少一个采用固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为采用可变子载波间隔的时频区域;根据所述第二时频区域的 时频位置信息,在所述第二时频区域上与用户设备进行通信。
本发明的实施例提供的技术方案可以包括以下有益效果:
通过采用固定子载波间隔的第一时频区域,辅助用户设备通过采用可变子载波间隔的第二时频区域与基站进行通信,实现了利用固定子载波间隔业务辅助用户设备切换至可变子载波间隔业务,解决了当灵活配置子载波间隔时用户设备与基站无法正常通信的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是背景技术示出的一种时频资源块的配置示意图。
图2是根据一示例性实施例示出的一种实施场景的示意图。
图3A是根据一示例性实施例示出的一种通信方法的流程图。
图3B是根据一示例性实施例示出的一种通信方法的流程图。
图4是根据一示例性实施例示出的一种通信方法的流程图。
图5是根据一示例性实施例示出的一种通信原理示意图。
图6A是根据一示例性实施例示出的一种通信装置的框图。
图6B是根据一示例性实施例示出的一种通信装置的框图。
图7是根据一示例性实施例示出的一种通信装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图2是根据一示例性实施例示出的一种实施场景示意图。参见图2,该实施场景中包括用户设备和基站。其中,本发明实施例所提供的用户设备可以是移动终端、个人通信业务、电话、无绳电话、会话发起协议话机、无线本地环路站、个人数字助理等。基站可以是指具有无线资源的管理功能的设备,能够与用户设备进行通信,或者作为中央控制器协助用户设备之间进行直接通信。其中,基站可以是GSM(Global System for Mobile Communication,全球移动通信系统)或CDMA(Code Division Multiple Access,码分多址)中的基站,也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的基站,还可以是LTE(Long Term Evolution,长期演进)中的演进型基站,本发明实施例对此不进行具体限定。
图3A是根据一示例性实施例示出的一种通信方法的流程图,如图3A所示,该方法用于用户设备中,包括以下步骤。
在步骤301a中,接收通过第一时频区域传输的第一控制信令,第一时频区域为至少一个采用固定子载波间隔的时频区域,第一控制信令携带了第二时频区域的时频位置信息,第二时频区域为采用可变子载波间隔的时频区域。
在步骤302a中,根据第一控制信令所指示的第二时频区域的时频位置信息,在第二时频区域上与基站进行通信。
本发明实施例提供的方法,通过采用固定子载波间隔的第一时频区域辅助用户设备切换至采用可变子载波间隔的第二时频区域,并通过第二时频区域与基站进行通信,实现了利用固定子载波间隔业务辅助用户设备切换至可变子载波间隔业务,解决了当灵活配置子载波间隔时用户设备与基站无法正常通信的问题。
在另一个实施例中,所述第一控制信令中包括用于承载第二控制信令的时频区域的时频位置信息。
在另一个实施例中,所述第一控制信令中还包括:用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
在另一个实施例中,所述固定子载波间隔为LTE模式下的传统子载波间隔。
在另一个实施例中,所述在所述第二时频区域上与所述基站进行通信,包括:在预设时长后,在所述第二时频区域上与所述基站进行通信,所述预设时长包括整数倍TTI。
在另一个实施例中,该方法还包括:
基于所述第一控制信令中的调度信息,由所述第二时频区域切换回所述第一时频区域,所述调度信息指示了所述第一时频区域的时频位置信息;
通过所述第一时频区域与所述基站进行通信。
在另一个实施例中,该方法还包括:
基于所述第一控制信令中的调度信息,由所述第二时频区域的当前子频段区域切换至所述第二时频区域的其他子频段区域,所述调度信息指示了所述其他子频段区域的时频位置信息;
通过所述其他子频段区域与所述基站进行通信。
在另一个实施例中,该方法还包括:
通过所述第二时频区域接收所述第二控制信令;
基于所述第二控制信令中的调度信息,由所述第二时频区域切换回所述第一时频区域,所述调度信息指示了所述第一时频区域的时频位置信息;
通过所述第一时频区域与所述基站进行通信。
在另一个实施例中,该方法还包括:
通过所述第二时频区域接收所述第二控制信令;
基于所述第二控制信令中的调度信息,由所述第二时频区域的当前子频段区域切换至所述第二时频区域的其他子频段区域,所述调度信息指示了所述其他子频段区域的时频位置信息;
通过所述其他子频段区域与所述基站进行通信。
在另一个实施例中,所述第二控制信令包括用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。
图3B是根据一示例性实施例示出的一种通信方法的流程图,如图3B所示,该方法用于基站中,包括以下步骤。
在步骤301b中,通过第一时频区域传输第一控制信令,第一时频区域为至少一个采用固定子载波间隔的时频区域,第一控制信令携带了第二时频区域的时频位置信息,第二时频区域为采用可变子载波间隔的时频区域。
在步骤302b中,根据第二时频区域的时频位置信息,通过第二时频区域与用户设备进行通信。
本发明实施例提供的方法,通过采用固定子载波间隔的第一时频区域,辅助用户设备通过采用可变子载波间隔的第二时频区域与基站进行通信,实现了利用固定子载波间隔业务辅助用户设备切换至可变子载波间隔业务,解决了当灵活配置子载波间隔时用户设备与基站无法正常通信的问题。
在另一个实施例中,所述第一控制信令中包括用于承载第二控制信令的时频区域的时频位置信息。
在另一个实施例中,所述第一控制信令中还包括:用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
在另一个实施例中,所述第二控制信令包括用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
在另一个实施例中,所述固定子载波间隔指代LTE模式下的传统子载波间隔。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。
图4是根据一示例性实施例示出的一种通信方法的流程图,如图4所示,交互主体为用 户设备和基站,包括以下步骤。
在步骤401中,用户设备接收通过第一时频区域传输的第一控制信令,第一时频区域为至少一个采用固定子载波间隔的时频区域,第一控制信令指示了第二时频区域的时频位置信息,第二时频区域为采用可变子载波间隔的时频区域。
在本发明实施例中,第一时频区域和第二时频区域可为一个载波频段的时频区域,还可为多个载波频段的时频区域,本发明实施例对此不进行具体限定。
当第一时频区域和第二时频区域为一个载波频段内的时频区域时,第一时频区域通常指代位于该载波频段的中心频率附近的时频区域。比如图5为一个载波频段划分出的三个时频区域,其中图5中的中心区域部分为第一时频区域,第一时频区域在该载波频段的中心频率附近。而除第一时频区域的另外两个区域对应为第二时频区域。
当第一时频区域和第二时频区域为多个载波频段的时频区域时,第一时频区域和第二时频区域均可单独占用至少一个载波频段,本发明实施例对此不进行具体限定。在本文后续部分均以第一时频区域和第二时频区域为一个载波频段的时频区域进行举例说明。
在进入5G阶段以来为了满足灵活的业务配置,将原来一个载波频段内大小统一的时频资源块,基于业务类型不同灵活配置为大小不一的时频资源块。如图1所示,对于宽带连接业务来讲其对应的时频资源块的大小是一致的,但是这些时频资源块的大小与物联网业务对应的时频资源块大小、车联网业务对应的时频资源块大小、广播业务对应的时频资源块大小均是不同的。
在对时频资源块进行灵活配置后,会出现子载波间隔也需要根据业务类型灵活配置的需求。也即,在一个载波频段内将原来的固定子载波间隔设置为可变子载波间隔。而在5G业务出现之前子载波间隔均是固定的。需要说明的是,在本发明实施例中固定子载波间隔指代LTE模式下的传统子载波间隔。也即,LTE系统将传统子载波间隔设置为15kHz。在固定子载波的情况下,用户设备可以正常检测和接入基站,即可以正常与基站进行通信。但是在可变子载波间隔的情况下,用户设备便无法知晓接收控制信令和信息数据的时频资源位置,因此可能无法与基站实现正常通信。为此本发明实施例引入了利用第一时频区域辅助接入第二时频区域,以实现用户设备通过第二时频区域与基站进行通信的目的。
其中,第一时频区域和第二时频区域均可为包括多个时频资源块的时频区域,只不过二者之间的时频资源块大小可能存在差异。如图5所示,第一时频区域为一个载波频段内位于中心频率附近的时频区域,在第一时频区域中子载波间隔为固定的,比如为固定值15kHz。其中,第一时频区域包含的所有时频资源块的大小均是相同的,也即每一个时频资源块在频域上和时域上的跨度相同。换句话说,每一个时频资源块在频域上占用的频率差相同,每一个时频资源块在时域上占用的时长也相同。
在图5中除了第一时频区域以外的其他区域都可称之为第二时频区域。在第二时频区域中,具体标注了每一个类型的5G业务所对应的时频区域。其中,5G业务包括eMBB(enhanced Mobile Broad Band,增强型移动宽带)业务,对应宽带连接业务,mMTC(massive Machine Type  Communication,巨大型机器类型通信)业务,对应物联网业务,URLLC(Ultra Reliable Low Latency Communication,超可靠低延迟通信)业务,对应物联网业务、以及广播业务等,本发明实施例对此不进行具体限定。其中,第二时频区域采用可变子载波间隔。根据业务类型不同,每一个业务对应的子载波间隔可能都不同。比如,如图5所示,eMBB业务与mMTC业务在频域上的子载波间隔就不同,eMBB业务对应的子载波间隔要大于mMTC业务对应的子载波间隔。用户设备可在第一信令所指示的第二时频区域上与基站进行通信,比如图5中根据第一控制信令的指示在eMBB业务和mMTC业务对应的时频区域上与基站进行通信。
在用户设备初步接入基站或当由固定子载波间隔业务切换至可变子载波间隔业务时,触发用户设备通过第一时频区域接收第一控制信令。其中,固定子载波间隔业务指代2G、3G或4G等传统业务、5G业务中采用固定子载波间隔的业务。可变子载波间隔业务指代5G业务中使用可变子载波间隔的业务。在另一个实施例中,用户设备在初步接入基站或者由可变子载波间隔业务切换回固定子载波间隔业务时,在用户设备再次切换到可变子载波间隔业务之前,用户设备一直通过第一时频区域与基站进行通信,以进行正常测量和数据传输等。
其中,基站和用户设备之间通过第一时频区域进行第一控制信令的传输。在本发明实施例中,第一控制信令中至少包括用于承载第二控制信令的时频区域的时频位置信息。第二控制信令的传输位置与第一控制信令不同,二者携带的内容也不同。第一控制信令通过第一时频区域传输,即通过采用固定子载波间隔的传统时频区域传输;而第二控制信令通过第二时频区域传输,即通过采用可变子载波间隔的5G时频区域传输。
除此之外,第一控制信令中还可包括:用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。其中,参考信号(Reference Signal,RS)就是导频信号,是由基站提供给用户设备用于信道估计或信道探测的一种已知信号。用户设备根据用于接收参考信号的时频区域的时频位置信息,可以获知在第二时频区域的哪个位置上接收基站传输的参考信号。用户设备根据用于传输数据的时频区域的时频位置信息,可以获知在第二时频区域的哪个位置上与基站进行数据传输。用户设备根据用于重传数据的时频区域的时频位置信息,可以获知在第二时频区域的哪个位置上与基站进行数据重传。功率控制信息用于指示在用户设备由第一时频区域切换至第二时频区域后是否需要进行功率上的改变。调度信息用于指示用户设备在第二时频区域上执行完毕某一业务后切换到其他何种业务。
需要说明的是,第一控制信令中可同时包括用于承载第二控制信令的时频区域的时频位置信息和上述其他信息。之所以这样设置的目的是为了使得用户设备可直接根据第一控制信令中时频位置信息在第二时频区域的指定时频区域上接收参考信号或者进行数据传输等,从而减少时间上的延迟。而无需用户设备需先根据第一控制信令的指示在第二时频区域上接收到第二控制信令,之后再根据第二控制信令的指示在第二时频区域的指定时频区域上接收参考信号或者进行数据传输等。
在本发明实施例中,第二控制信令中可包含除了承载第二控制信令的时频区域的时频位置信息之外的其他信息。即,第二控制信令包括用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
也即,用户设备在接收到第一控制信令后,可根据第一控制信令中携带的用于承载第二控制信令的时频区域的时频位置信息,在第二时频区域的特定位置上读取到第二控制信令。而第二控制信令中进一步地指示了接收参考信号的时频位置信息、重传数据的时频位置信息等,进而根据这些时频位置信息,用户设备可以知道在第二时频区域的哪一些位置上进行参考信号的接收、数据传输等。
其中,上述第一控制信令和第二控制信令的一个典型实施例是PDCCH(Physical Downlink Control Channel,物理下行控制信道)及其演进、PBCH(Physical broadcast channel,物理广播信道)及其演进、PHICH(Physical Hybrid ARQ Indicator Channel,物理混合自动重传指示信道)及其演进、PCFICH(Physical Control Format Indicator Channel--物理控制格式指示信道)及其演进、PUCCH(Physical Upl ink Control CHannel,物理上行链路控制信道)及其演进、或者PRACH(Physical Random Access Channel,物理随机接入信道)及其演进等,本发明实施例对此不进行具体限定。
在步骤402中,在预设时长后,用户设备根据第一控制信令所指示的第二时频区域的时频位置信息,通过第二时频区域与基站进行通信。
其中,预设时长包括整数倍的TTI。也即,在第一时频区域上读取第一控制信令的整数倍TTI后,用户设备在第二时频区域上与基站进行通信。对于预设时长具体包括几个TTI,本发明实施例对此不进行具体限定。在本发明实施例中,整数倍TTI可为第一时频区域中几个时频资源块跨越的时间长度总和;或者,整数倍TTI还可为第一时频区域中一部分时频资源块跨越的时间长度总和与第二时频区域中一部分时频资源块跨越的时间长度总和的相加;或者,整数倍TTI还可为第二时频区域中几个时频资源块跨越的时间长度总和。本发明实施例对此不进行具体限定。其中,一个时频资源块跨越的时间长度可称之为一个TTI。
需要说明的是,用户设备在由第一时频区域切换至第二时频区域,并在第二时频区域完成业务处理后,如图5中向上指示的箭头所示,用户设备在第二时频区域完成eMBB业务处理后,可按照系统指示切换到新的业务所在时频区域继续处理新的业务,比如切换到mMTC业务;除此之外,还可切换回第一时频区域,本发明实施例对此不进行具体限定。具体以调度信息的指示为准。
以切换回第一时频区域为例,用户设备除了可在第二时频区域上接收第二控制信令外,其还可继续在第一时频区域上接收第一控制信令,因此用户设备从第二时频区域切换回第一时频区域,既可基于第一控制信令也可基于第二控制信令,切换方式具体如下:
第一种方式、基于第一控制信令中的调度信息,由第二时频区域切换回第一时频区域,该调度信息指示了第一时频区域的时频位置信息;通过第一时频区域与基站进行通信。
第二种方式、通过第二时频区域接收第二控制信令;基于第二控制信令中的调度信息,由第二时频区域切换回第一时频区域,该调度信息指示了第一时频区域的时频位置信息;通过第一时频区域与基站进行通信。
以切换至第二时频区域的其他子频段区域为例,用户设备除了可在第二时频区域上接收第二控制信令外,其还可继续在第一时频区域上接收第一控制信令,因此用户设备从第二时频区域的当前子频段区域切换至第二时频区域的其他子频段区域,既可基于第一控制信令也可基于第二控制信令,切换方式具体如下:
第一种方式、基于第一控制信令中的调度信息,由第二时频区域的当前子频段区域切换至第二时频区域的其他子频段区域,调度信息指示了其他子频段区域的时频位置信息;通过其他子频段区域与基站进行通信。
第二种方式、通过第二时频区域接收第二控制信令;基于第二控制信令中的调度信息,由第二时频区域的当前子频段区域切换至第二时频区域的其他子频段区域,调度信息指示了其他子频段区域的时频位置信息;通过其他子频段区域与基站进行通信。
在另一个实施例中,用户设备在切换到5G业务后,由于目前5G业务的覆盖范围有限,会存在用户设备移动至不支持5G业务的地区的情况。在该种情况下,用户设备还需从5G业务切换回2G、3G或4G等传统业务。当5G业务的信号强度小于预设阈值时,用户设备可由5G业务切换回非5G业务,之后用户设备在第一时频区域上与基站进行通信。其中,预设阈值可为90dbm或100dbm等,本发明实施例对此不进行具体限定。当5G业务的信号强度小于预设阈值时,表明用户设备当前已经逐渐远离5G业务覆盖的地区或者已经到达彻底没有5G业务覆盖的地区,此时还需按照上述方式进行业务切换。
上述步骤401和步骤402所示的通信方法,为了保证在频域上采用可变子载波间隔后用户设备与基站的正常通信问题,通过采用固定子载波间隔的第一时频区域辅助用户设备切换至采用可变子载波间隔的第二时频区域,以使用户在第二时频区域上与基站正常进行通信。需要说明的是,为了满足业务的灵活配置,除了在频域上采用可变子载波间隔的方式外,还可在时域上采用可变时长间隔的方式。也即根据业务类型不同,将不同业务的时频资源块在时域上占用的时长间隔进行调整。比如车辆网业务需要更低时延和更可靠地连接,也就是在较短时间里可靠地进行数据传输,进而传输时间较短,因此可将车联网业务对应的一个时频资源块的占用时长设置的较小。时域上的设置方式同频域上的设置方式同理,即不同业务对应的时长间隔不同。在时域上时长间隔可变的场景下,用户设备与基站进行通信的方式同上述步骤401和步骤402所示的通信方式同理,此处不再赘述。
在上述步骤401和步骤402所示的通信方法中,采用固定子载波间隔的第一时频区域为一整个连续的时频区域。在另一个实施例中,第一时频区域除了可为一整个连续的时频区域外,还可为由多个小时频区域窗口组成的时频区域。每一个小时频区域窗口可由多个时频资源块组成,每一个时频资源块均是采用LTE模式下的传统子载波间隔。对于不同的业务来说,传输第一控制信令的小时频区域窗口可能不同,因此基站还需提前向用户设备下发用于传输 不同业务的第一控制信令的时频区域窗口的时频位置信息。以便用户设备在准确的时频区域窗口上进行第一控制信令的接收。除此之外在该种场景下,用户设备与基站进行通信的方式同上述步骤401和步骤402所示的通信方式同理,此处不再赘述。
本发明实施例提供的方法,通过采用固定子载波间隔的第一时频区域,辅助用户设备通过采用可变子载波间隔的第二时频区域与基站进行通信,实现了利用固定子载波间隔业务辅助用户设备切换至可变子载波间隔业务,解决了当灵活配置子载波间隔时用户设备与基站无法正常通信的问题。
图6A是根据一示例性实施例示出的一种通信装置的框图。参照图6A,该装置包括接收模块601a,通信模块602a。
接收模块601a,被配置为接收通过第一时频区域传输的第一控制信令,所述第一时频区域为至少一个采用固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为采用可变子载波间隔的时频区域;
通信模块602a,被配置为根据所述第一控制信令所指示的第二时频区域的时频位置信息,在所述第二时频区域上与所述基站进行通信。
在另一个实施例中,所述第一控制信令中包括用于承载第二控制信令的时频区域的时频位置信息。
在另一个实施例中,所述第一控制信令中还包括:用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
在另一个实施例中,所述固定子载波间隔指代LTE模式下的传统子载波间隔。
在另一个实施例中,所述通信模块602a,被配置为在预设时长后,在所述第二时频区域上与所述基站进行通信,所述预设时长包括整数倍TTI。
在另一个实施例中,所述通信模块602a,还被配置为基于所述第一控制信令中的调度信息,由所述第二时频区域切换回所述第一时频区域,所述调度信息指示了所述第一时频区域的时频位置信息;通过所述第一时频区域与所述基站进行通信。
在另一个实施例中,所述通信模块602a,还被配置为基于所述第一控制信令中的调度信息,由所述第二时频区域的当前子频段区域切换至所述第二时频区域的其他子频段区域,所述调度信息指示了所述其他子频段区域的时频位置信息;通过所述其他子频段区域与所述基站进行通信。
在另一个实施例中,所述通信模块602a,还被配置为通过所述第二时频区域接收所述第二控制信令;基于所述第二控制信令中的调度信息,由所述第二时频区域切换回所述第一时频区域,所述调度信息指示了所述第一时频区域的时频位置信息;通过所述第一时频区域与所述基站进行通信。
在另一个实施例中,所述通信模块602a,还被配置为通过所述第二时频区域接收所述第 二控制信令;基于所述第二控制信令中的调度信息,由所述第二时频区域的当前子频段区域切换至所述第二时频区域的其他子频段区域,所述调度信息指示了所述其他子频段区域的时频位置信息;通过所述其他子频段区域与所述基站进行通信。
在另一个实施例中,所述第二控制信令包括用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
本发明实施例提供的装置,通过采用固定子载波间隔的第一时频区域,辅助用户设备通过采用可变子载波间隔的第二时频区域与基站进行通信,实现了利用固定子载波间隔业务辅助用户设备切换至可变子载波间隔业务,解决了当灵活配置子载波间隔时用户设备与基站无法正常通信的问题。
图6B是根据一示例性实施例示出的一种通信装置的框图。参照图6B,该装置包括传输模块601b,通信模块602b。
传输模块601b,被配置为通过第一时频区域传输第一控制信令,所述第一时频区域为至少一个采用固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为采用可变子载波间隔的时频区域;
通信模块602b,被配置为根据所述第二时频区域的时频位置信息,在所述第二时频区域上与用户设备进行通信。
在另一个实施例中,所述第一控制信令中包括用于承载第二控制信令的时频区域的时频位置信息。
在另一个实施例中,所述第一控制信令中还包括:用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
在另一个实施例中,所述第二控制信令包括用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
在另一个实施例中,所述固定子载波间隔指代LTE模式下的传统子载波间隔。
本发明实施例提供的装置,通过采用固定子载波间隔的第一时频区域,辅助用户设备通过采用可变子载波间隔的第二时频区域与基站进行通信,实现了利用固定子载波间隔业务辅助用户设备切换至可变子载波间隔业务,解决了当灵活配置子载波间隔时用户设备与基站无法正常通信的问题。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图7是根据一示例性实施例示出的一种通信装置700的框图。例如,装置700可以是移 动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,装置700可以包括以下一个或多个组件:处理组件702,存储器704,电源组件706,多媒体组件708,音频组件710,I/O(Input/Output,输入/输出)的接口712,传感器组件714,以及通信组件716。
处理组件702通常控制装置700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件702可以包括一个或多个处理器720来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件702可以包括一个或多个模块,便于处理组件702和其他组件之间的交互。例如,处理组件702可以包括多媒体模块,以方便多媒体组件708和处理组件702之间的交互。
存储器704被配置为存储各种类型的数据以支持在装置700的操作。这些数据的示例包括用于在装置700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如SRAM(Static Random Access Memory,静态随机存取存储器),EEPROM(Electrically-Erasable Programmable Read-Only Memory,电可擦除可编程只读存储器),EPROM(Erasable Programmable Read Only Memory,可擦除可编程只读存储器),PROM(Programmable Read-Only Memory,可编程只读存储器),ROM(Read-Only Memory,只读存储器),磁存储器,快闪存储器,磁盘或光盘。
电源组件706为装置700的各种组件提供电力。电源组件706可以包括电源管理系统,一个或多个电源,及其他与为装置700生成、管理和分配电力相关联的组件。
多媒体组件708包括在所述装置700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括LCD(Liquid Crystal Display,液晶显示器)和TP(Touch Panel,触摸面板)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件708包括一个前置摄像头和/或后置摄像头。当装置700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件710被配置为输出和/或输入音频信号。例如,音频组件710包括一个MIC(Microphone,麦克风),当装置700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器704或经由通信组件716发送。在一些实施例中,音频组件710还包括一个扬声器,用于输出音频信号。
I/O接口712为处理组件702和外围接口模块之间提供接口,上述外围接口模块可以是 键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件714包括一个或多个传感器,用于为装置700提供各个方面的状态评估。例如,传感器组件714可以检测到设备700的打开/关闭状态,组件的相对定位,例如组件为装置700的显示器和小键盘,传感器组件714还可以检测装置700或装置700一个组件的位置改变,用户与装置700接触的存在或不存在,装置700方位或加速/减速和装置700的温度变化。传感器组件714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件714还可以包括光传感器,如CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物)或CCD(Charge-coupled Device,电荷耦合元件)图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件716被配置为便于装置700和其他设备之间有线或无线方式的通信。装置700可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件716还包括NFC(Near Field Communication,近场通信)模块,以促进短程通信。例如,在NFC模块可基于RFID(Radio Frequency Identification,射频识别)技术,IrDA(Infra-red Data Association,红外数据协会)技术,UWB(Ultra Wideband,超宽带)技术,BT(Bluetooth,蓝牙)技术和其他技术来实现。
在示例性实施例中,装置700可以被一个或多个ASIC(Application Specific Integrated Circuit,应用专用集成电路)、DSP(Digital signal Processor,数字信号处理器)、DSPD(Digital signal Processor Device,数字信号处理设备)、PLD(Programmable Logic Device,可编程逻辑器件)、FPGA)(Field Programmable Gate Array,现场可编程门阵列)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器704,上述指令可由装置700的处理器720执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、RAM(Random Access Memory,随机存取存储器)、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器)、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述存储介质中的指令由用户设备的处理器执行时,使得用户设备能够执行上述通信方法。
本领域技术人员在考虑说明书及实践这里发明的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未发明的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (32)

  1. 一种通信方法,其特征在于,所述方法包括:
    接收通过第一时频区域传输的第一控制信令,所述第一时频区域为至少一个固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为可变子载波间隔的时频区域;
    根据所述第一控制信令所指示的第二时频区域的时频位置信息,在所述第二时频区域上与所述基站进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述第一控制信令中包括用于承载第二控制信令的时频区域的时频位置信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一控制信令中还包括:用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
  4. 根据权利要求1所述的方法,其特征在于,所述固定子载波间隔为长期演进LTE模式下的传统子载波间隔。
  5. 根据权利要求1所述的方法,其特征在于,所述在所述第二时频区域上与所述基站进行通信,包括:
    在预设时长后,在所述第二时频区域上与所述基站进行通信,所述预设时长包括整数倍传输时间间隔TTI。
  6. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    基于所述第一控制信令中的调度信息,由所述第二时频区域切换回所述第一时频区域,所述调度信息指示了所述第一时频区域的时频位置信息;
    通过所述第一时频区域与所述基站进行通信。
  7. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    基于所述第一控制信令中的调度信息,由所述第二时频区域的当前子频段区域切换至所述第二时频区域的其他子频段区域,所述调度信息指示了所述其他子频段区域的时频位置信息;
    通过所述其他子频段区域与所述基站进行通信。
  8. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    通过所述第二时频区域接收所述第二控制信令;
    基于所述第二控制信令中的调度信息,由所述第二时频区域切换回所述第一时频区域,所述调度信息指示了所述第一时频区域的时频位置信息;
    通过所述第一时频区域与所述基站进行通信。
  9. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    通过所述第二时频区域接收所述第二控制信令;
    基于所述第二控制信令中的调度信息,由所述第二时频区域的当前子频段区域切换至所述第二时频区域的其他子频段区域,所述调度信息指示了所述其他子频段区域的时频位置信息;
    通过所述其他子频段区域与所述基站进行通信。
  10. 根据权利要求2所述的方法,其特征在于,所述第二控制信令包括用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
  11. 一种通信方法,其特征在于,所述方法包括:
    通过第一时频区域传输第一控制信令,所述第一时频区域为至少一个采用固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为采用可变子载波间隔的时频区域;
    根据所述第二时频区域的时频位置信息,在所述第二时频区域上与用户设备进行通信。
  12. 根据权利要求11所述的方法,其特征在于,所述第一控制信令中包括用于承载第二控制信令的时频区域的时频位置信息。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一控制信令中还包括:用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
  14. 根据权利要求11所述的方法,其特征在于,所述第二控制信令包括用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
  15. 根据权利要求11所述的方法,其特征在于,所述固定子载波间隔指代长期演进LTE 模式下的传统子载波间隔。
  16. 一种通信装置,其特征在于,所述装置包括:
    接收模块,被配置为接收通过第一时频区域传输的第一控制信令,所述第一时频区域为至少一个固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为可变子载波间隔的时频区域;
    通信模块,被配置为根据所述第一控制信令所指示的第二时频区域的时频位置信息,在所述第二时频区域上与所述基站进行通信。
  17. 根据权利要求16所述的装置,其特征在于,所述第一控制信令中包括用于承载第二控制信令的时频区域的时频位置信息。
  18. 根据权利要求16或17所述的装置,其特征在于,所述第一控制信令中还包括:用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
  19. 根据权利要求16所述的装置,其特征在于,所述固定子载波间隔指代长期演进LTE模式下的传统子载波间隔。
  20. 根据权利要求16所述的装置,其特征在于,所述通信模块,被配置为在预设时长后,在所述第二时频区域上与所述基站进行通信,所述预设时长包括整数倍传输时间间隔TTI。
  21. 根据权利要求18所述的装置,其特征在于,所述通信模块,还被配置为基于所述第一控制信令中的调度信息,由所述第二时频区域切换回所述第一时频区域,所述调度信息指示了所述第一时频区域的时频位置信息;通过所述第一时频区域与所述基站进行通信。
  22. 根据权利要求18所述的装置,其特征在于,所述通信模块,还被配置为基于所述第一控制信令中的调度信息,由所述第二时频区域的当前子频段区域切换至所述第二时频区域的其他子频段区域,所述调度信息指示了所述其他子频段区域的时频位置信息;通过所述其他子频段区域与所述基站进行通信。
  23. 根据权利要求17所述的装置,其特征在于,所述通信模块,还被配置为通过所述第二时频区域接收所述第二控制信令;基于所述第二控制信令中的调度信息,由所述第二时频区域切换回所述第一时频区域,所述调度信息指示了所述第一时频区域的时频位置信息;通过所述第一时频区域与所述基站进行通信。
  24. 根据权利要求17所述的装置,其特征在于,所述通信模块,还被配置为通过所述第二时频区域接收所述第二控制信令;基于所述第二控制信令中的调度信息,由所述第二时频区域的当前子频段区域切换至所述第二时频区域的其他子频段区域,所述调度信息指示了所述其他子频段区域的时频位置信息;通过所述其他子频段区域与所述基站进行通信。
  25. 根据权利要求17所述的装置,其特征在于,所述第二控制信令包括用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
  26. 一种通信装置,其特征在于,所述装置包括:
    传输模块,被配置为通过第一时频区域传输第一控制信令,所述第一时频区域为至少一个采用固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为采用可变子载波间隔的时频区域;
    通信模块,被配置为根据所述第二时频区域的时频位置信息,在所述第二时频区域上与用户设备进行通信。
  27. 根据权利要求26所述的装置,其特征在于,所述第一控制信令中包括用于承载第二控制信令的时频区域的时频位置信息。
  28. 根据权利要求26或27所述的装置,其特征在于,所述第一控制信令中还包括:用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
  29. 根据权利要求26所述的装置,其特征在于,所述第二控制信令包括用于接收参考信号的时频区域的时频位置信息、用于传输数据的时频区域的时频位置信息、用于重传数据的时频区域的时频位置信息、功率控制信息和调度信息中至少一种。
  30. 根据权利要求26所述的装置,其特征在于,所述固定子载波间隔指代长期演进LTE模式下的传统子载波间隔。
  31. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:接收通过第一时频区域传输的第一控制信令,所述第一时 频区域为至少一个采用固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为采用可变子载波间隔的时频区域;根据所述第一控制信令所指示的第二时频区域的时频位置信息,在所述第二时频区域上与所述基站进行通信。
  32. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:通过第一时频区域传输第一控制信令,所述第一时频区域为至少一个采用固定子载波间隔的时频区域,所述第一控制信令携带了第二时频区域的时频位置信息,所述第二时频区域为采用可变子载波间隔的时频区域;根据所述第二时频区域的时频位置信息,在所述第二时频区域上与用户设备进行通信。
PCT/CN2016/095564 2016-05-20 2016-08-16 一种通信方法及装置 WO2017197799A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610342243.2 2016-05-20
CN201610342243.2A CN107404372B (zh) 2016-05-20 2016-05-20 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2017197799A1 true WO2017197799A1 (zh) 2017-11-23

Family

ID=59021226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095564 WO2017197799A1 (zh) 2016-05-20 2016-08-16 一种通信方法及装置

Country Status (5)

Country Link
US (1) US10348540B2 (zh)
EP (2) EP4161011A1 (zh)
CN (1) CN107404372B (zh)
ES (1) ES2936665T3 (zh)
WO (1) WO2017197799A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105979597B (zh) * 2016-06-27 2020-02-21 宇龙计算机通信科技(深圳)有限公司 通信资源的分配方法、分配装置、基站和终端
CN108282275B (zh) * 2017-01-06 2021-09-14 华为技术有限公司 数据传输方法及装置
US10097260B2 (en) * 2017-02-06 2018-10-09 Qualcomm Incorporated Current indication channel for eMBB/URLLC multiplexing
WO2020000149A1 (zh) * 2018-06-25 2020-01-02 北京小米移动软件有限公司 信道测量的方法、装置、终端和基站以及存储介质
ES2965189T3 (es) * 2018-11-15 2024-04-11 Beijing Xiaomi Mobile Software Co Ltd Método y dispositivo para transmitir información de control y datos
CN111757433A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 功率控制的方法、终端设备和网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577857A (zh) * 2008-05-10 2009-11-11 中兴通讯股份有限公司 多媒体广播多播业务的配置方法、数据传输方法及装置
EP2209275A2 (en) * 2006-01-27 2010-07-21 Fujitsu Limited Multicarrier radio communication system utilizing a radio frame format suitable for reducing peak power
CN101867550A (zh) * 2010-06-09 2010-10-20 清华大学 Ofdm系统中支持多业务的多媒体发送、接收方法及其装置
CN103095632A (zh) * 2011-11-04 2013-05-08 中兴通讯股份有限公司 载波控制域的配置方法及装置
CN105122709A (zh) * 2013-11-08 2015-12-02 华为技术有限公司 一种数据传输的方法、装置及通信系统

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8032145B2 (en) * 2004-07-23 2011-10-04 Qualcomm Incorporated Restrictive reuse set management algorithm for equal grade of service on FL transmission
JP4526977B2 (ja) * 2005-03-02 2010-08-18 株式会社エヌ・ティ・ティ・ドコモ 送信機および送信制御方法
US7912135B2 (en) * 2005-06-22 2011-03-22 Samsung Electronics Co., Ltd. Method and transmission apparatus for allocating resources to transmit uplink packet data in an orthogonal frequency division multiplexing system
US20090185630A1 (en) * 2008-01-23 2009-07-23 Mediatek Inc. Method and apparatus for estimating the channel impulse response of multi-carrier communicating systems
US8717983B2 (en) * 2009-04-07 2014-05-06 National Taiwan University MediaTek Inc. Mechanism of dynamic resource transaction for wireless OFDMA systems
US8824968B2 (en) * 2009-12-10 2014-09-02 Lg Electronics Inc. Method and apparatus for reducing inter-cell interference in a wireless communication system
CN102792642B (zh) * 2010-02-05 2016-08-17 韩国电子通信研究院 源装置、目的装置、及中继装置的通信方法
EP2540026B1 (en) * 2010-02-26 2015-10-21 Telefonaktiebolaget L M Ericsson (publ) Control information assigning method
US9167599B2 (en) * 2010-09-22 2015-10-20 Motorola Solutions, Inc. Channel structure for non-contention based windows and contention based random access requests
CN102685890B (zh) * 2011-03-08 2017-11-14 中兴通讯股份有限公司 一种导频的发送方法及系统
WO2012121635A1 (en) * 2011-03-10 2012-09-13 Telefonaktiebolaget L M Ericsson (Publ) Hybrid congestion control
EP2536223B1 (en) * 2011-06-16 2014-07-23 NTT DoCoMo, Inc. A method for scheduling users in a cellular environment for applying Pareto optimal power control, scheduler and wireless communication network
JP5927901B2 (ja) * 2011-12-26 2016-06-01 シャープ株式会社 移動局装置、基地局装置、通信システム、上りリンク送信制御方法および集積回路
WO2013166311A1 (en) * 2012-05-02 2013-11-07 Marvell World Trade Ltd. Scheduling schemes for user equipment power saving in a communication network
EP2868135B1 (en) * 2012-06-29 2020-01-01 Nokia Solutions and Networks Oy Offloading of user plane packets from a macro base station to an access point
CN103582085B (zh) * 2012-08-10 2017-02-22 华为技术有限公司 异构网络中的接入方法和装置
CN103687010B (zh) * 2012-08-30 2017-07-04 电信科学技术研究院 一种传输参考信号的方法、装置及系统
US9131498B2 (en) * 2012-09-12 2015-09-08 Futurewei Technologies, Inc. System and method for adaptive transmission time interval (TTI) structure
AU2012389865B2 (en) * 2012-09-13 2016-02-04 Telefonaktiebolaget L M Ericsson (Publ) Network node and method for managing radio resources dedicated to beacon signalling for D2D discovery
US9065645B2 (en) * 2012-09-27 2015-06-23 Motorola Solutions, Inc. Method and apparatus for providing acknowledgement information to radio communication devices in a wireless communication system
US9713060B2 (en) * 2012-11-07 2017-07-18 Avago Technologies General Ip (Singapore) Pte. Ltd. Small cell initial access and physical cell identity determination
CN103974315B (zh) * 2013-02-05 2018-01-19 电信科学技术研究院 三维信道测量资源配置和质量测量方法及设备
CN104038320B (zh) * 2013-03-04 2019-03-01 中兴通讯股份有限公司 资源映射、接收方法及装置、信令通知、获取方法及装置
CN105191176B (zh) * 2013-04-09 2019-09-03 Lg电子株式会社 在无线接入系统中发送信道状态信息的方法和装置
EP3713262B1 (en) * 2013-07-26 2022-04-20 LG Electronics Inc. Method for transmitting signal for mtc and apparatus for same
US9319957B1 (en) * 2013-07-31 2016-04-19 Sprint Spectrum L.P. Dynamic swapping of uplink and downlink base stations
CN105474679A (zh) * 2013-09-05 2016-04-06 富士通株式会社 信标帧发送方法和装置
CN105264941A (zh) * 2013-10-31 2016-01-20 华为技术有限公司 一种测量配置方法、识别和测量方法、宏基站及ue
EP3079317B1 (en) * 2013-12-27 2019-12-11 Huawei Technologies Co., Ltd. Broadcast control bandwidth allocation and data transceiving method and apparatus
US10862634B2 (en) * 2014-03-07 2020-12-08 Huawei Technologies Co., Ltd. Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
CN105191466A (zh) * 2014-03-21 2015-12-23 索尼株式会社 用于设备对设备通信的高效的基于竞争的分散式过程
CN106416160B (zh) * 2014-06-19 2020-03-10 华为技术有限公司 数据发送、接收方法、装置及设备
EP3175574A4 (en) * 2014-08-01 2018-03-07 Intel IP Corporation Pdcch design for narrowband deployment
CN106031198B (zh) * 2014-12-31 2019-10-22 华为技术有限公司 一种调度网络节点数据的方法、装置及系统
CN106162922B (zh) * 2015-01-27 2021-01-26 中兴通讯股份有限公司 发现信号的处理方法及装置
CN107667548B (zh) * 2015-05-11 2020-09-18 三星电子株式会社 用于资源的情境感知调度的方法和系统
CN109561400B (zh) * 2015-05-29 2021-08-17 Oppo广东移动通信有限公司 机器类型通信的方法、基站以及终端
WO2016197396A1 (zh) * 2015-06-12 2016-12-15 华为技术有限公司 一种网络设备、终端设备及资源分配方法
CN107925536B (zh) * 2015-07-06 2021-10-29 瑞典爱立信有限公司 用于无线系统中数据传送的资源分配
US10959244B2 (en) * 2015-07-22 2021-03-23 Samsung Electronics Co., Ltd. Method and device for communication in narrow band system
US20170118055A1 (en) * 2015-10-22 2017-04-27 Mediatek Inc. Flexible and Scalable Air Interface for Mobile Communication
US11102775B2 (en) * 2015-11-26 2021-08-24 Huawei Technologies Co., Ltd. Resource block channelization for OFDM-based numerologies
US10225065B2 (en) * 2015-12-18 2019-03-05 Qualcomm Incorporated Common control channel subband design and signaling
CN106998591B (zh) * 2016-01-24 2018-03-23 上海朗帛通信技术有限公司 一种调度方法和装置
WO2017140681A1 (en) * 2016-02-15 2017-08-24 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for synchronization of communication devices operating in half duplex mode
CN116170264A (zh) * 2016-03-03 2023-05-26 北京三星通信技术研究有限公司 基于滤波的信号发送、接收方法及相应的发射机与接收机
US10405266B2 (en) * 2016-04-04 2019-09-03 Lg Electronics Inc. Method and user equipment for receiving downlink control channel, and method and base station for transmitting downlink control channel
CN106793101B (zh) * 2016-05-09 2019-06-04 展讯通信(上海)有限公司 用户设备、网络侧设备及用户设备的控制方法
US10715288B2 (en) * 2016-05-10 2020-07-14 Apple Inc. Wireless local area network sounding protocol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2209275A2 (en) * 2006-01-27 2010-07-21 Fujitsu Limited Multicarrier radio communication system utilizing a radio frame format suitable for reducing peak power
CN101577857A (zh) * 2008-05-10 2009-11-11 中兴通讯股份有限公司 多媒体广播多播业务的配置方法、数据传输方法及装置
CN101867550A (zh) * 2010-06-09 2010-10-20 清华大学 Ofdm系统中支持多业务的多媒体发送、接收方法及其装置
CN103095632A (zh) * 2011-11-04 2013-05-08 中兴通讯股份有限公司 载波控制域的配置方法及装置
CN105122709A (zh) * 2013-11-08 2015-12-02 华为技术有限公司 一种数据传输的方法、装置及通信系统

Also Published As

Publication number Publication date
EP3247158A1 (en) 2017-11-22
ES2936665T3 (es) 2023-03-21
US10348540B2 (en) 2019-07-09
EP4161011A1 (en) 2023-04-05
CN107404372A (zh) 2017-11-28
US20170338987A1 (en) 2017-11-23
EP3247158B1 (en) 2023-01-04
CN107404372B (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
US11963208B2 (en) Resource allocation method and apparatus
CN112953610B (zh) 上行传输的方法及装置
WO2017197799A1 (zh) 一种通信方法及装置
RU2732620C1 (ru) Способ и устройство согласования помех, базовая станция и пользовательское оборудование
WO2019095223A1 (zh) 跳频配置方法及装置
WO2019136688A1 (zh) 信息反馈方法及装置
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
WO2018201469A1 (zh) 信号传输方法、装置、电子设备和计算机可读存储介质
US11503642B2 (en) Method and device for determining an uplink-downlink switching point
EP3952506B1 (en) Slot format indication method and apparatus
WO2018098623A1 (zh) 确定传输时间间隔的方法、装置及基站、用户设备
CN109451802B (zh) 控制信令的传输方法、终端及基站
US11924121B2 (en) Data transmission method and apparatus, and storage medium
WO2019090723A1 (zh) 数据传输方法及装置
WO2019061157A1 (zh) 消除交调干扰的方法、装置、用户设备及基站
CN109565427B (zh) 传输控制信息和数据的方法及装置
WO2024059979A1 (zh) 子带配置方法及装置
CN111147210A (zh) 状态转换方法及装置
WO2018000322A1 (zh) 数据传输方法及装置
WO2019028756A1 (zh) 一种下行控制信息的配置方法及装置
WO2024065122A1 (zh) 通信、通信指示方法和装置以及存储介质
WO2024065124A1 (zh) 能力指示、确定方法及装置、通信装置和存储介质
WO2024138567A1 (zh) 资源确定方法及装置、存储介质
WO2024138745A1 (zh) 信道传输方法及装置、存储介质
WO2019127220A1 (zh) 数据传输方法、装置及系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902179

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902179

Country of ref document: EP

Kind code of ref document: A1