WO2019127220A1 - 数据传输方法、装置及系统 - Google Patents

数据传输方法、装置及系统 Download PDF

Info

Publication number
WO2019127220A1
WO2019127220A1 PCT/CN2017/119412 CN2017119412W WO2019127220A1 WO 2019127220 A1 WO2019127220 A1 WO 2019127220A1 CN 2017119412 W CN2017119412 W CN 2017119412W WO 2019127220 A1 WO2019127220 A1 WO 2019127220A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical layer
layer channel
transmission direction
data transmission
target
Prior art date
Application number
PCT/CN2017/119412
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PL17936636.4T priority Critical patent/PL3734897T3/pl
Priority to ES17936636T priority patent/ES2962343T3/es
Priority to CN202110743275.4A priority patent/CN113472509B/zh
Priority to EP17936636.4A priority patent/EP3734897B1/en
Priority to PCT/CN2017/119412 priority patent/WO2019127220A1/zh
Priority to CN201780002251.5A priority patent/CN109451862B/zh
Publication of WO2019127220A1 publication Critical patent/WO2019127220A1/zh
Priority to US16/910,547 priority patent/US11362792B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a data transmission method, apparatus, and system.
  • duplex communication has two modes: Time Division Duplexing (TDD) mode and Frequency Division Duplexing (FDD) mode, in which the TDD mode is different at the same carrier.
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing
  • the uplink data transmission and the downlink data transmission are performed on the slot, and the FDD mode is to perform uplink data transmission and downlink data transmission on different carriers.
  • downlink data can only be transmitted on the downlink carrier, and uplink data can only be transmitted on the uplink carrier.
  • virtual reality or augmented reality
  • emerging Internet applications such as vehicle-to-vehicle communication puts higher demands on wireless communication technology, which requires the terminal to support a richer type of service, and if it continues to adopt a fixed
  • the uplink and downlink time slot matching mode has poor flexibility, and the terminal cannot better support a richer service type.
  • some resources may be reserved on the downlink carrier and the uplink carrier for the technology that may be introduced in the future. Therefore, for the FDD system, a terminal in the FDD mode is also required.
  • the scheme for obtaining dynamic transmission direction indication information is completed to complete data transmission in FDD mode.
  • the present disclosure provides a data transmission method, apparatus, and system, which can solve the problem that a terminal cannot acquire dynamic transmission direction indication information in a target mode, such as an FDD mode, in the related art.
  • the technical solution is as follows:
  • a data transmission method for a base station, the method comprising:
  • Obtaining a target transmission direction indication information where the target transmission direction indication information is used by the terminal to determine, in the target mode, a transmission direction of the uplink data transmission and the downlink data transmission, where the target mode is that the terminal separately performs uplink data transmission and downlink data according to different carriers. Mode of transmission;
  • the target transmission direction indication information is sent to the terminal.
  • obtaining target transmission direction indication information including:
  • the indication unit ratio information includes a plurality of transmission direction indication information, and the target transmission direction indication information is any one of a plurality of transmission direction indication information, each transmission
  • the direction indication information includes indication unit ratio information of the downlink carrier and indication unit ratio information of the uplink carrier.
  • the target transmission direction indication information is sent to the terminal, including:
  • the target transmission direction indication information is sent to the terminal through the physical layer channel, where the physical layer channel is a physical layer channel for carrying common control information.
  • obtaining target transmission direction indication information including:
  • the physical layer channel carries the indication unit ratio information of the downlink carrier
  • the second physical layer channel carries the indication unit ratio information of the uplink carrier
  • the first physical layer channel and the second physical layer channel are physicals for carrying common control information.
  • the first detection time and the second detection time are determined as target transmission direction indication information.
  • the method further includes:
  • the first detection time and the second detection time are configured in the base station based on the high layer signaling, the medium access control unit MAC CE or the physical layer signaling.
  • obtaining target transmission direction indication information including:
  • each third detection time is a time when the terminal is used to detect a physical layer channel
  • the physical layer channel carries the indication unit ratio information
  • the physical layer channel is used to carry the common control information.
  • a plurality of third detection timings are determined as target transmission direction indication information.
  • the method further includes:
  • the preset rule is sent to the terminal by using the RRC signaling, the MAC CE, or the physical layer signaling, where the preset rule is used to indicate the first detection time used to detect the first physical layer channel in the multiple third detection moments
  • the second physical layer channel carries the indication unit ratio information of the downlink carrier, and the second physical layer channel carries the indication unit ratio information of the uplink carrier.
  • the indication unit is a time slot, a subframe, a radio frame, or an orthogonal frequency division multiplexing OFDM symbol.
  • the target mode is a frequency division duplex FDD mode.
  • a data transmission method for a terminal, the method comprising:
  • the target mode is a mode in which the terminal separately performs uplink data transmission and downlink data transmission according to different carriers.
  • the target transmission direction indication information includes indicator unit ratio information of the downlink carrier and indicator unit ratio information of the uplink carrier,
  • Determining, according to the target transmission direction indication information, a transmission direction of the uplink data transmission and the downlink data transmission in the target mode including:
  • receiving the target transmission direction indication information sent by the base station including:
  • the target transmission direction indication information includes a first detection time and a second detection time, where the first detection time is a time used by the terminal to detect the first physical layer channel, and the second detection time is used by the terminal to detect the second physical layer.
  • the first physical layer channel carries the indication unit ratio information of the downlink carrier
  • the second physical layer channel carries the indication unit ratio information of the uplink carrier, where the first physical layer channel and the second physical layer channel are used for a physical layer channel carrying common control information
  • Determining, according to the target transmission direction indication information, a transmission direction of the uplink data transmission and the downlink data transmission in the target mode including:
  • the second physical layer channel is detected at the second detection time, and the transmission direction of the uplink data transmission in the target mode is determined based on the detected indication unit ratio information of the detected uplink carrier.
  • the target transmission direction indication information includes multiple third detection moments, where each third detection time is a time when the terminal is used to detect one physical layer channel, and the physical layer channel carries indication unit ratio information, and the physical layer channel is a physical layer channel for carrying common control information,
  • Determining, according to the target transmission direction indication information, a transmission direction of the uplink data transmission and the downlink data transmission in the target mode including:
  • the first physical layer channel carries a downlink carrier
  • the second physical layer channel carries the indication unit ratio information of the uplink carrier
  • the second physical layer channel is detected at the second detection time, and the transmission direction of the uplink data transmission in the target mode is determined based on the detected indication unit ratio information of the detected uplink carrier.
  • the method further includes:
  • a data transmission apparatus for a base station, the apparatus comprising:
  • the acquiring module is configured to obtain the target transmission direction indication information, where the target transmission direction indication information is used by the terminal to determine the transmission direction of the uplink data transmission and the downlink data transmission in the target mode, where the target mode is that the terminal separately performs uplink data based on different carriers. Mode of transmission and downlink data transmission;
  • the first sending module is configured to send the target transmission direction indication information to the terminal.
  • the acquisition module is configured to:
  • the indication unit ratio information includes a plurality of transmission direction indication information, and the target transmission direction indication information is any one of a plurality of transmission direction indication information, each transmission
  • the direction indication information includes indication unit ratio information of the downlink carrier and indication unit ratio information of the uplink carrier.
  • the first sending module is configured to:
  • the target transmission direction indication information is sent to the terminal through the physical layer channel, where the physical layer channel is a physical layer channel for carrying common control information.
  • the acquisition module is configured to:
  • the physical layer channel carries the indication unit ratio information of the downlink carrier
  • the second physical layer channel carries the indication unit ratio information of the uplink carrier
  • the first physical layer channel and the second physical layer channel are physicals for carrying common control information.
  • the first detection time and the second detection time are determined as target transmission direction indication information.
  • the device further includes:
  • the processing module is configured to configure the first detection time and the second detection time at the base station based on the high layer signaling, the medium access control unit MAC CE or the physical layer signaling.
  • the acquisition module is configured to:
  • each third detection time is a time when the terminal is used to detect a physical layer channel
  • the physical layer channel carries the indication unit ratio information
  • the physical layer channel is used to carry the common control information.
  • a plurality of third detection timings are determined as target transmission direction indication information.
  • the device further includes:
  • the second sending module is configured to send a preset rule to the terminal by using the RRC signaling, the MAC CE, or the physical layer signaling, where the preset rule is used to indicate that the first physical layer is detected in the multiple third detection moments. a first detection time of the channel and a second detection time for detecting the second physical layer channel, where the first physical layer channel carries the indication information of the downlink carrier, and the second physical layer channel carries the indication unit of the uplink carrier. Than information.
  • the indication unit is a time slot, a subframe, a radio frame, or an orthogonal frequency division multiplexing OFDM symbol.
  • the target mode is a frequency division duplex FDD mode.
  • a data transmission apparatus for a terminal, the apparatus comprising:
  • the first receiving module is configured to receive target transmission direction indication information sent by the base station;
  • the determining module is configured to determine, according to the target transmission direction indication information, a transmission direction of the uplink data transmission and the downlink data transmission in the target mode, where the target mode is a mode in which the terminal performs uplink data transmission and downlink data transmission respectively according to different carriers.
  • the target transmission direction indication information includes indicator unit ratio information of the downlink carrier and indicator unit ratio information of the uplink carrier,
  • Determine the module configured to:
  • the first receiving module is configured to:
  • the target transmission direction indication information includes a first detection time and a second detection time, where the first detection time is a time used by the terminal to detect the first physical layer channel, and the second detection time is used by the terminal to detect the second physical layer.
  • the first physical layer channel carries the indication unit ratio information of the downlink carrier
  • the second physical layer channel carries the indication unit ratio information of the uplink carrier, where the first physical layer channel and the second physical layer channel are used for a physical layer channel carrying common control information
  • Determine the module configured to:
  • the second physical layer channel is detected at the second detection time, and the transmission direction of the uplink data transmission in the target mode is determined based on the detected indication unit ratio information of the detected uplink carrier.
  • the target transmission direction indication information includes multiple third detection moments, where each third detection time is a time when the terminal is used to detect one physical layer channel, and the physical layer channel carries indication unit ratio information, and the physical layer channel is a physical layer channel for carrying common control information,
  • Determine the module configured to:
  • the first physical layer channel carries a downlink carrier
  • the second physical layer channel carries the indication unit ratio information of the uplink carrier
  • the second physical layer channel is detected at the second detection time, and the transmission direction of the uplink data transmission in the target mode is determined based on the detected indication unit ratio information of the detected uplink carrier.
  • the device further includes:
  • the second receiving module is configured to receive a preset rule that is sent by the base station by using RRC signaling, MAC CE, or physical layer signaling.
  • a data transmission apparatus for a base station, the apparatus comprising:
  • a memory for storing executable instructions of the processor
  • processor is configured to:
  • Obtaining a target transmission direction indication information where the target transmission direction indication information is used by the terminal to determine a transmission direction of the uplink data transmission and the downlink data transmission in the target mode, where the target mode is that the terminal separately performs uplink data transmission and downlink data transmission according to different carriers. mode;
  • the target transmission direction indication information is sent to the terminal.
  • a data transmission apparatus for a terminal, the apparatus comprising:
  • a memory for storing executable instructions of the processor
  • processor is configured to:
  • the transmission direction of the uplink data transmission and the downlink data transmission in the target mode is determined based on the target transmission direction indication information, and the target mode is a mode in which the terminal performs uplink data transmission and downlink data transmission respectively according to different carriers.
  • a storage medium having stored therein instructions that, when executed on a processing component, cause the processing component to perform the data transmission method as described in the first aspect;
  • the processing component is caused to perform the data transmission method as described in the second aspect.
  • a data transmission system including: a base station and a terminal,
  • the base station includes the data transmission device of the third aspect, the terminal comprising the data transmission device of the fourth aspect;
  • the base station includes the data transmission device of the fifth aspect
  • the terminal comprises the data transmission device of the sixth aspect.
  • the base station can obtain the target transmission direction indication information, and then send the target transmission direction indication information to the terminal, after which the terminal determines, according to the target transmission direction indication information, the transmission direction of the uplink data transmission and the downlink data transmission in the target mode, where the target The mode is a mode in which the terminal performs uplink data transmission and downlink data transmission respectively according to different carriers.
  • the terminal can obtain dynamic transmission direction indication information in the target mode, thereby completing data transmission in the target mode, and ensuring the system. Scalability, the terminal can better support a richer business type.
  • FIG. 1 is a schematic diagram of an implementation environment involved in a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a data transmission method according to an exemplary embodiment
  • FIG. 3 is a flowchart of still another data transmission method according to an exemplary embodiment
  • FIG. 4 is a flowchart of still another data transmission method according to an exemplary embodiment
  • FIG. 5 is a flowchart of a data transmission method according to an exemplary embodiment
  • FIG. 6 is a flowchart of a data transmission method according to an exemplary embodiment
  • FIG. 7 is a schematic diagram of a first detection time and a second detection time in the embodiment shown in FIG. 6;
  • FIG. 8 is a flowchart of a data transmission method according to an exemplary embodiment
  • FIG. 9 is a schematic diagram of determining a second detection time in the embodiment shown in FIG. 8;
  • FIG. 10 is a block diagram of a data transmission apparatus according to an exemplary embodiment
  • FIG. 11 is a block diagram of another data transmission apparatus according to an exemplary embodiment.
  • FIG. 12 is a block diagram of still another data transmission apparatus according to an exemplary embodiment
  • FIG. 13 is a block diagram of a data transmission apparatus according to an exemplary embodiment
  • FIG. 14 is a block diagram of a data transmission apparatus according to an exemplary embodiment
  • FIG. 15 is a block diagram of a data transmission apparatus according to an exemplary embodiment
  • FIG. 16 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 1 is a schematic diagram of an implementation environment involved in a data transmission method provided by an embodiment of the present disclosure.
  • the implementation environment can include terminal 10 and base station 20.
  • the terminal 10 may be a mobile station, a mobile station, a remote station, an access point, a remote terminal device, an access terminal device, a user terminal device, a user agent, a user equipment, a subscriber station, a subscriber unit, a mobile terminal device, or a wireless terminal. Equipment, etc.
  • the terminal can be a mobile phone (or "cellular" phone), a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital assistant (Personal) Digital Assistant, PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, and mobile station in a future 5G network or a future evolved public land mobile network (Public) Terminal devices in the Land Mobile Network, PLMN).
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal digital assistant
  • handheld device with wireless communication capabilities computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, and mobile station in a future 5G network or a future evolved public land mobile network (Public) Terminal devices in the Land Mobile Network, PLMN).
  • PLMN public land mobile network
  • FIG. 2 is a flowchart of a data transmission method according to an exemplary embodiment.
  • the data transmission method may be used in the base station 20 in the implementation environment shown in FIG. 1.
  • the data transmission method may include the following steps:
  • the target transmission direction indication information is used, where the target transmission direction indication information is used by the terminal to determine a transmission direction of the uplink data transmission and the downlink data transmission in the target mode, where the target mode is that the terminal separately performs uplink based on different carriers.
  • the mode of data transmission and downlink data transmission is used, where the target transmission direction indication information is used by the terminal to determine a transmission direction of the uplink data transmission and the downlink data transmission in the target mode, where the target mode is that the terminal separately performs uplink based on different carriers. The mode of data transmission and downlink data transmission.
  • step 202 the target transmission direction indication information is transmitted to the terminal.
  • the base station can obtain the target transmission direction indication information, and then send the target transmission direction indication information to the terminal, so that the terminal determines, in the target mode, based on the target transmission direction indication information.
  • the transmission direction of the uplink data transmission and the downlink data transmission is performed, wherein the target mode is a mode in which the terminal performs uplink data transmission and downlink data transmission respectively according to different carriers, by which the terminal can acquire dynamic transmission direction indication information in the target mode.
  • FIG. 3 is a flowchart of a data transmission method according to an exemplary embodiment.
  • the data transmission method may be used in the terminal 10 in the implementation environment shown in FIG. 1.
  • the data transmission method may include the following steps:
  • step 301 the target transmission direction indication information sent by the base station is received.
  • step 302 the transmission direction of the uplink data transmission and the downlink data transmission in the target mode is determined based on the target transmission direction indication information, where the target mode is a mode in which the terminal performs uplink data transmission and downlink data transmission respectively according to different carriers.
  • the terminal can receive the target transmission direction indication information sent by the base station, and then determine, according to the target transmission direction indication information, the uplink data transmission and the downlink data transmission in the target mode.
  • the target mode is a mode in which the terminal performs uplink data transmission and downlink data transmission respectively according to different carriers.
  • the terminal can acquire dynamic transmission direction indication information in the target mode, thereby completing data transmission in the target mode.
  • FIG. 4 is a flowchart of another data transmission method according to an exemplary embodiment.
  • the data transmission method may be used in the implementation environment shown in FIG. 1.
  • the data transmission method may include the following steps:
  • step 401 the base station acquires target transmission direction indication information.
  • the target mode is a mode in which the terminal separately performs uplink data transmission and downlink data transmission based on different carriers.
  • the target mode can be an FDD mode.
  • the FDD mode is for uplink data transmission and downlink data transmission on different carriers, and the uplink and downlink are distinguished by different frequencies.
  • the downlink channel from the base station to the terminal uses the carrier c1, and the uplink channel from the terminal to the base station reserves a sufficient guard band between another carrier c2, c1 and c2 symmetric with c1.
  • the carrier in the embodiment of the present disclosure may be an independent carrier, or may be a Band Width Part (BWP) on a carrier. Description.
  • BWP Band Width Part
  • step 402 the base station transmits target transmission direction indication information to the terminal.
  • step 403 the terminal determines a transmission direction of the uplink data transmission and the downlink data transmission in the target mode based on the target transmission direction indication information.
  • the base station may obtain the target transmission direction indication information, and the base station may pre-configure the indication unit ratio information, and then obtain the target transmission direction indication information from the indication unit matching information.
  • the base station may pre-configure the detection time for the terminal to detect the physical layer channel, and determine the detection time as the target transmission direction indication information.
  • the data transmission method is described by taking the following two implementable manners as an example.
  • the data transmission method may include the following steps:
  • step 501 the base station acquires target transmission direction indication information from the pre-configured indication unit ratio information.
  • the target transmission direction indication information is used by the terminal for determining the transmission direction of the uplink data transmission and the downlink data transmission in the target mode.
  • the target mode is a mode in which the terminal separately performs uplink data transmission and downlink data transmission based on different carriers.
  • the target mode can be an FDD mode.
  • the indication unit ratio information includes a plurality of transmission direction indication information, and the target transmission direction indication information is any one of a plurality of transmission direction indication information, and each of the transmission direction indication information includes indication unit ratio information of the downlink carrier and an indication of the uplink carrier. Unit ratio information.
  • the base station pre-configures multiple transmission directions.
  • the indication information, the indication unit ratio information of the downlink carrier of each transmission direction indication information is used for the downlink carrier to reserve a part of resources
  • the indication unit ratio information of the uplink carrier is used for the uplink carrier to reserve a part of resources.
  • the indication unit may be a time slot, a subframe, a radio frame, or an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the base station pre-configures the slot ratio information, where the slot ratio information includes a plurality of transmission direction indication information, and each of the transmission direction indication information includes a slot carrier ratio information of the downlink carrier and an uplink carrier. Gap ratio information.
  • the base station acquires the target transmission direction indication information from the indication unit ratio information.
  • the slot ratio information of the downlink carrier may be the same as or different from the slot ratio information of the uplink carrier.
  • the slot ratio information of the downlink carrier is the same as the slot ratio information of the uplink carrier.
  • the unknown state is used to indicate that the time slot is neither an uplink time slot nor a downlink time slot.
  • the slot ratio information configured by the base station can be as shown in Table 1.
  • the slot ratio information includes four transmission direction indication information, and the transmission direction indication information numbered 1 includes slot ratio information f1 of the downlink carrier and slot ratio information f2 of the uplink carrier.
  • F1 and f2 may be the same or different.
  • step 502 the base station transmits target transmission direction indication information to the terminal.
  • the step 502 may include: the base station sends, by using a physical layer channel, target transmission direction indication information, where the physical layer channel is a physical layer channel for carrying common control information.
  • the physical layer channel may be a group common physical downlink control channel (GC-PDCCH).
  • the terminal receives the target transmission direction indication information sent by the base station through the physical layer channel.
  • the base station obtains the transmission direction indication information numbered 1 from Table 1, and determines the transmission direction indication information as the target transmission direction indication information, where the target transmission direction indication information includes The slot ratio information f1 of the downlink carrier and the slot ratio information f2 of the uplink carrier, after which the base station transmits the target transmission direction indication information to the terminal.
  • step 503 the terminal determines, according to the indication unit matching information of the downlink carrier in the target transmission direction indication information, the transmission direction of the downlink data transmission in the target mode, and based on the indication unit ratio information of the uplink carrier in the target transmission direction indication information. Determine the transmission direction of the uplink data transmission in the target mode.
  • the base station determines the transmission direction indication information numbered 1 in Table 1 as the target transmission direction indication information, and the terminal determines to perform downlink in the target mode based on the slot ratio information f1 of the downlink carrier in the target transmission direction indication information.
  • the base station can obtain the target transmission direction indication information from the pre-configured indication unit matching information, and then send the target transmission direction indication information to the terminal, after which the terminal is based on the
  • the target transmission direction indication information determines a transmission direction of the uplink data transmission and the downlink data transmission in the target mode, where the target mode is a mode in which the terminal performs uplink data transmission and downlink data transmission respectively according to different carriers, by which the terminal can In the target mode, dynamic transmission direction indication information is obtained, thereby completing data transmission in the target mode.
  • the detection time may be used to indicate that the terminal detects the physical layer channel of the indication unit matching information carrying the downlink carrier. Or detecting the physical layer channel of the indication unit matching information carrying the uplink carrier; in the second aspect, the detecting moment may only indicate that the terminal detects the physical layer channel carrying the indication unit matching information, and then the terminal determines the detection time based on the preset rule. Is a physical layer channel for detecting the indication unit ratio information carrying the downlink carrier, or a physical layer channel for detecting the indication unit ratio information carrying the downlink carrier.
  • the data transmission method will be described below by taking these two aspects as an example.
  • the data transmission method may include the following steps:
  • step 601 the base station configures a first detection time and a second detection time.
  • the first detection time is a time when the terminal is used to detect the first physical layer channel
  • the second detection time is a time used by the terminal to detect the second physical layer channel.
  • the first physical layer channel carries the indication unit ratio information of the downlink carrier
  • the second physical layer channel carries the indication unit ratio information of the uplink carrier.
  • the indication unit matching information of the downlink carrier is used for the downlink carrier to reserve a part of resources
  • the indication unit ratio information of the uplink carrier is used for the uplink carrier to reserve a part of resources.
  • the first physical layer channel and the second physical layer channel are physical layer channels for carrying common control information.
  • the physical layer channel may be a GC-PDCCH.
  • first physical layer channel and the second physical layer channel may be the same or different.
  • the detection period of the first detection time and the detection period of the second detection time may be the same or different.
  • the indication unit can be a time slot, a subframe, a radio frame or an OFDM symbol.
  • the step 601 may include: the base station configuring the first detection time and the second detection time at the base station according to the high layer signaling, the medium access control control element (MAC CE), or the physical layer signaling.
  • MAC CE medium access control control element
  • step 602 the base station acquires a pre-configured first detection time and a second detection time.
  • the base station acquires the first detection time and the second detection time configured in step 601.
  • step 603 the base station determines the first detection time and the second detection time as the target transmission direction indication information.
  • the base station determines the first detection time and the second detection time acquired in step 602 as the target transmission direction indication information.
  • the target transmission direction indication information is used by the terminal for determining the transmission direction of the uplink data transmission and the downlink data transmission in the target mode.
  • the target mode is a mode in which the terminal separately performs uplink data transmission and downlink data transmission based on different carriers.
  • the target mode can be an FDD mode.
  • step 604 the base station transmits target transmission direction indication information to the terminal.
  • the base station may send the first detection time and the second detection time to the terminal by using the same signaling.
  • the base station may separately send the first detection time and the second detection time to the terminal by using different signaling, which is not limited in this embodiment of the disclosure.
  • step 605 the terminal detects the first physical layer channel at the first detection time, and determines the transmission direction of the downlink data transmission in the target mode based on the detected indication unit ratio information of the downlink carrier.
  • the terminal detects the first physical layer channel at the first detection time, and the first physical layer channel carries the indication information of the downlink carrier, so that the terminal can obtain the indication information of the downlink carrier, and further can be based on the downlink carrier.
  • the indication unit ratio information determines the transmission direction of the downlink data transmission in the target mode.
  • step 606 the terminal detects the second physical layer channel at the second detection time, and determines the transmission direction of the uplink data transmission in the target mode based on the detected indication unit ratio information of the uplink carrier.
  • the terminal detects the second physical layer channel at the second detection time. Since the second physical layer channel carries the indication information of the uplink carrier, the terminal can obtain the indication information of the uplink carrier, and further can be based on the uplink carrier.
  • the indication unit ratio information determines the transmission direction of the uplink data transmission in the target mode.
  • FIG. 7 exemplarily shows a first detection time t1 and a second detection time t2.
  • the horizontal axis is the time domain
  • the vertical axis is the frequency domain
  • the terminal detects the first at t1.
  • the physical layer channel obtains the slot ratio information of the downlink carrier
  • the terminal determines the downlink data transmission in the target mode based on the slot ratio ratio information of the downlink carrier.
  • the transmission direction is determined based on the slot ratio information of the uplink carrier, and the transmission direction of the uplink data transmission in the target mode is determined.
  • the base station pre-configures the detection time of the physical layer signal for the terminal to detect, and the base station detects the physical layer channel of the indication unit matching information carrying the downlink carrier by detecting the time indication terminal. Or detecting a physical layer channel carrying the indication information of the uplink carrier, so that the terminal determines the transmission direction of the uplink data transmission and the downlink data transmission in the target mode, where the target mode is that the terminal separately performs uplink data transmission based on different carriers. And a mode of downlink data transmission, by which the terminal can acquire dynamic transmission direction indication information in the target mode, thereby completing data transmission in the target mode.
  • the data transmission method may include the following steps:
  • step 701 the base station acquires a plurality of pre-configured third detection times, where each third detection time is a time when the terminal is used to detect one physical layer channel.
  • the physical layer channel carries indicator unit ratio information
  • the physical layer channel is a physical layer channel for carrying common control information.
  • the physical layer channel may be a GC-PDCCH.
  • the third detection moment only indicates that the terminal detects a physical layer channel carrying the indication unit ratio information.
  • the indication unit can be a time slot, a subframe, a radio frame or an OFDM symbol.
  • step 702 the base station determines a plurality of third detection moments as target transmission direction indication information.
  • the base station determines the plurality of third detection moments acquired in step 701 as the target transmission direction indication information.
  • step 703 the base station transmits target transmission direction indication information to the terminal.
  • step 704 the base station sends a preset rule to the terminal through RRC signaling, MAC CE or physical layer signaling.
  • the terminal receives a preset rule that the base station sends through RRC signaling, MAC CE or physical layer signaling.
  • the preset rule is used to indicate a first detection time for detecting the first physical layer channel and a second detection time for detecting the second physical layer channel in the plurality of third detection moments.
  • the first physical layer channel carries the indication unit ratio information of the downlink carrier
  • the second physical layer channel carries the indication unit ratio information of the uplink carrier.
  • the preset rule may be: the first third detection time is a first detection time for detecting the first physical layer channel, and the second third detection time is used for Detecting a second detection time of the second physical layer channel, the third detection time is a first detection time for detecting the first physical layer channel, and the fourth detection time is a second detection for detecting the second physical layer channel At the moment, the first detection time and the second detection time are staggered.
  • the preset rule may be: the first two third detection moments are first detection moments for detecting the first physical layer channel, and the last two third detection moments are second detections for detecting the second physical layer channel. At the moment, the two consecutive third detection moments are a group.
  • the content of the preset rule may be multiple. The content of the preset rule is not limited in the embodiment of the present disclosure.
  • step 704 and the step 703 are not sequential, that is, the step 704 may be performed after the step 703 is performed, or the step 704 may be performed after the step 704 is performed, and the step 703 and the step 704 may be performed at the same time.
  • step 704 is an optional step, that is, the base station may not send the preset rule to the terminal, in this case, the preset rule may be preset in the protocol.
  • step 705 the terminal determines, according to the preset rule, a first detection time for detecting the first physical layer channel and a second detection time for detecting the second physical layer channel in the plurality of third detection times.
  • the first physical layer channel carries the indication unit ratio information of the downlink carrier
  • the second physical layer channel carries the indication unit ratio information of the uplink carrier.
  • the indication unit ratio information of the downlink carrier is used for the downlink carrier to reserve a part of resources
  • the indication unit ratio information of the uplink carrier is used for the uplink carrier to reserve a part of resources.
  • the terminal may determine the first detection time and the second detection time based on the preset rule sent by the base station in step 704. On the other hand, the terminal may determine the first detection time and the second according to a preset rule preset in the protocol. Detection time.
  • step 706 the terminal detects the first physical layer channel at the first detection time, and determines the transmission direction of the downlink data transmission in the target mode based on the detected indication unit ratio information of the downlink carrier.
  • the terminal detects the first physical layer channel at the first detection time, and the first physical layer channel carries the indication information of the downlink carrier, so that the terminal can obtain the indication information of the downlink carrier, and further can be based on the downlink carrier.
  • the indication unit ratio information determines the transmission direction of the downlink data transmission in the target mode.
  • step 707 the terminal detects the second physical layer channel at the second detection time, and determines the transmission direction of the uplink data transmission in the target mode based on the detected indication unit ratio information of the uplink carrier.
  • the terminal detects the second physical layer channel at the second detection time. Since the second physical layer channel carries the indication information of the uplink carrier, the terminal can obtain the indication information of the uplink carrier, and further can be based on the uplink carrier.
  • the indication unit ratio information determines the transmission direction of the uplink data transmission in the target mode.
  • FIG. 9 exemplarily shows a schematic diagram of determining, by the terminal, a second detection time according to a preset rule.
  • the base station sends four third detection times to the terminal by using a downlink carrier, and the terminal is based on a preset rule. Determining that the first third detection time and the third third detection time are the second detection time, and is used for detecting the second physical layer channel carrying the indication unit matching information of the uplink carrier.
  • the base station pre-configures the detection time for the terminal to detect the physical layer signal, and the base station detects the physical layer channel carrying the indication unit ratio information by detecting the time indication terminal, and then the terminal Determining, by using a preset rule, a detection time is a physical layer channel for indicating whether the terminal detects the indication unit matching information of the downlink carrier, or a physical layer channel for indicating that the terminal detects the indication unit matching information of the downlink carrier, and further The terminal determines the transmission direction of the uplink data transmission and the downlink data transmission in the target mode, where the target mode is a mode in which the terminal performs uplink data transmission and downlink data transmission respectively according to different carriers, by which the terminal can be in the target mode. Obtain dynamic transmission direction indication information, and then complete data transmission in the target mode.
  • FIG. 10 is a block diagram of a data transmission apparatus, which may be implemented as part or all of the base station 20 in the implementation environment shown in FIG. 1 by software, hardware, or a combination of both, according to an exemplary embodiment.
  • the data transmission device 800 can include:
  • the obtaining module 810 is configured to acquire target transmission direction indication information, where the target transmission direction indication information is used by the terminal to determine, in the target mode, a transmission direction of the uplink data transmission and the downlink data transmission, where the target mode is determined by the terminal based on different carriers.
  • the mode of uplink data transmission and downlink data transmission is configured to acquire target transmission direction indication information, where the target transmission direction indication information is used by the terminal to determine, in the target mode, a transmission direction of the uplink data transmission and the downlink data transmission, where the target mode is determined by the terminal based on different carriers. The mode of uplink data transmission and downlink data transmission.
  • the first sending module 820 is configured to send target transmission direction indication information to the terminal.
  • the data transmission apparatus can acquire the target transmission direction indication information, and then send the target transmission direction indication information to the terminal, so that the terminal determines, according to the target transmission direction indication information, in the target mode.
  • the transmission direction of the uplink data transmission and the downlink data transmission is performed, wherein the target mode is a mode in which the terminal performs uplink data transmission and downlink data transmission respectively according to different carriers, by which the terminal can acquire dynamic transmission direction indication information in the target mode.
  • the obtaining module 810 is configured to:
  • the indication unit ratio information includes a plurality of transmission direction indication information, and the target transmission direction indication information is any one of a plurality of transmission direction indication information, each transmission
  • the direction indication information includes indication unit ratio information of the downlink carrier and indication unit ratio information of the uplink carrier.
  • the first sending module 820 is configured to:
  • the target transmission direction indication information is sent to the terminal through the physical layer channel, where the physical layer channel is a physical layer channel for carrying common control information.
  • the obtaining module 810 is configured to:
  • the first detection time and the second detection time are obtained.
  • the first detection time is a time when the terminal is used to detect the first physical layer channel
  • the second detection time is a time used by the terminal to detect the second physical layer channel.
  • the first physical layer channel carries the indication unit ratio information of the downlink carrier
  • the second physical layer channel carries the indication unit ratio information of the uplink carrier
  • the first physical layer channel and the second physical layer channel are used for carrying the common control information.
  • the first detection time and the second detection time are determined as target transmission direction indication information.
  • the apparatus 800 may further include:
  • the processing module 830 is configured to configure the first detection time and the second detection time at the base station based on the high layer signaling, the MAC CE, or the physical layer signaling.
  • the obtaining module 810 is configured to:
  • each third detection time is a time when the terminal is used to detect a physical layer channel
  • the physical layer channel carries the indication unit ratio information
  • the physical layer channel is used to carry the common control information.
  • a plurality of third detection timings are determined as target transmission direction indication information.
  • the device 800 further includes:
  • the second sending module 840 is configured to send a preset rule to the terminal by using RRC signaling, MAC CE, or physical layer signaling.
  • the preset rule is used to indicate a first detection time for detecting the first physical layer channel and a second detection time for detecting the second physical layer channel in the plurality of third detection moments.
  • the first physical layer channel carries the indication unit ratio information of the downlink carrier
  • the second physical layer channel carries the indication unit ratio information of the uplink carrier.
  • the indication unit may be a time slot, a subframe, a radio frame, or an OFDM symbol.
  • the target mode may be an FDD mode.
  • the data transmission apparatus can acquire the target transmission direction indication information, and then send the target transmission direction indication information to the terminal, so that the terminal determines, according to the target transmission direction indication information, in the target mode.
  • the transmission direction of the uplink data transmission and the downlink data transmission is performed, wherein the target mode is a mode in which the terminal performs uplink data transmission and downlink data transmission respectively according to different carriers, by which the terminal can acquire dynamic transmission direction indication information in the target mode.
  • FIG. 13 is a block diagram of a data transmission apparatus, which may be implemented as part or all of the terminal 10 in the implementation environment shown in FIG. 1 by software, hardware, or a combination of both, according to an exemplary embodiment.
  • the data transmission device 1100 can include:
  • the first receiving module 1110 is configured to receive target transmission direction indication information sent by the base station.
  • the determining module 1120 is configured to determine, according to the target transmission direction indication information, a transmission direction of performing uplink data transmission and downlink data transmission in the target mode, where the target mode is a mode in which the terminal performs uplink data transmission and downlink data transmission respectively according to different carriers.
  • the data transmission apparatus can receive the target transmission direction indication information sent by the base station, and then determine, according to the target transmission direction indication information, the uplink data transmission and the downlink data transmission in the target mode.
  • the target mode is a mode in which the terminal separately performs uplink data transmission and downlink data transmission based on different carriers, and the terminal can acquire dynamic transmission direction indication information in the target mode, thereby completing data transmission in the target mode.
  • the target transmission direction indication information includes the indication unit ratio information of the downlink carrier and the indication unit ratio information of the uplink carrier.
  • the determining module 1120 is configured to:
  • the first receiving module 1110 is configured to:
  • the physical layer channel is a physical layer channel for carrying common control information.
  • the target transmission direction indication information includes a first detection time and a second detection time, where the first detection time is a time when the terminal is used to detect the first physical layer channel, and the second detection time is used by the terminal to detect the second physical layer.
  • the first physical layer channel carries the indication unit ratio information of the downlink carrier
  • the second physical layer channel carries the indication unit ratio information of the uplink carrier
  • the first physical layer channel and the second physical layer channel are used for carrying the common control information.
  • the physical layer channel correspondingly, the determining module 1120, is configured to:
  • the second physical layer channel is detected at the second detection time, and the transmission direction of the uplink data transmission in the target mode is determined based on the detected indication unit ratio information of the detected uplink carrier.
  • the target transmission direction indication information includes a plurality of third detection moments, where each third detection time is a time when the terminal is used to detect one physical layer channel, and the physical layer channel carries indication unit ratio information, and the physical layer channel is The physical layer channel for carrying the common control information, and correspondingly, the determining module 1120 is configured to:
  • the first physical layer channel carries a downlink carrier
  • the second physical layer channel carries the indication unit ratio information of the uplink carrier
  • the second physical layer channel is detected at the second detection time, and the transmission direction of the uplink data transmission in the target mode is determined based on the detected indication unit ratio information of the detected uplink carrier.
  • the device 1100 may further include:
  • the second receiving module 1130 is configured to receive a preset rule that is sent by the base station by using RRC signaling, MAC CE, or physical layer signaling.
  • the data transmission apparatus can receive the target transmission direction indication information sent by the base station, and then determine, according to the target transmission direction indication information, the uplink data transmission and the downlink data transmission in the target mode.
  • the target mode is a mode in which the terminal separately performs uplink data transmission and downlink data transmission based on different carriers, and the terminal can acquire dynamic transmission direction indication information in the target mode, thereby completing data transmission in the target mode.
  • the embodiment of the present disclosure further provides a data transmission system, including: a base station and a terminal.
  • the base station includes the data transmission device shown in FIG. 10, FIG. 11, or FIG. 12, and the terminal includes the data transmission device shown in FIG. 13 or FIG.
  • FIG. 15 is a block diagram of a data transmission device 1200, according to an exemplary embodiment.
  • the device 1200 can be a base station, and the base station can be the base station 20 in the implementation environment shown in FIG. 1.
  • the data transmission device 1200 includes:
  • the processor 1210 The processor 1210;
  • a memory 1220 for storing executable instructions 1221 of the processor
  • the processor 1210 is configured to:
  • the target mode is a mode in which the terminal separately performs uplink data transmission and downlink data transmission according to different carriers.
  • the processor 1210 can be configured to execute the executable instruction 1221 to implement the data transmission method as shown in FIG. 2, FIG. 4, FIG. 5, FIG. 6, or FIG.
  • the embodiment of the present disclosure further provides a storage medium, where the storage medium stores instructions, and when the storage medium runs on the processing component, causes the processing component to perform the operation as shown in FIG. 2, FIG. 4, FIG. 5, FIG. 6, or FIG. Data transmission method.
  • FIG. 16 is a block diagram of a data transmission device 1300, according to an exemplary embodiment.
  • the device 1300 may be a terminal, and the terminal may be the terminal 10 in the implementation environment shown in FIG. 1.
  • the terminal may be a mobile station, a mobile station, a remote station, an access point, a remote terminal device, an access terminal device, and a user terminal. Equipment, etc.
  • apparatus 1300 can include one or more of the following components: processing component 1302, memory 1304, power component 1306, multimedia component 1308, audio component 1310, input/output (I/O) interface 1312, sensor component 1314, And a communication component 1316.
  • Processing component 1302 typically controls the overall operation of device 1300, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 1302 can include one or more processors 1320 to execute instructions to perform all or part of the steps described above.
  • processing component 1302 can include one or more modules to facilitate interaction between component 1302 and other components.
  • processing component 1302 can include a multimedia module to facilitate interaction between multimedia component 1308 and processing component 1302.
  • Memory 1304 is configured to store various types of data to support operation at device 1300. Examples of such data include instructions for any application or method operating on device 1300, contact data, phone book data, messages, pictures, videos, and the like.
  • Memory 1304 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 1306 provides power to various components of device 1300.
  • Power component 1306 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 1300.
  • the multimedia component 1308 includes a screen between the device 1300 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 1308 includes a front camera and/or a rear camera. When the device 1300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1310 is configured to output and/or input an audio signal.
  • the audio component 1310 includes a microphone (MIC) that is configured to receive an external audio signal when the device 1300 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 1304 or transmitted via communication component 1316.
  • the audio component 1310 also includes a speaker for outputting an audio signal.
  • the I/O interface 1312 provides an interface between the processing component 1302 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 1314 includes one or more sensors for providing device 1300 with a status assessment of various aspects.
  • sensor assembly 1314 can detect an open/closed state of device 1300, a relative positioning of components, such as the display and keypad of device 1300, and sensor component 1314 can also detect a change in position of one component of device 1300 or device 1300. The presence or absence of contact by the user with the device 1300, the orientation or acceleration/deceleration of the device 1300 and the temperature change of the device 1300.
  • Sensor assembly 1314 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1314 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1314 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1316 is configured to facilitate wired or wireless communication between device 1300 and other devices.
  • the device 1300 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 1316 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 1316 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 1300 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the data transfer method illustrated in FIG. 3 above, or in conjunction with implementing FIG. 4, FIG. 5, FIG. 6, or FIG. The data transmission method shown.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the data transfer method illustrated in FIG. 3 above, or in conjunction with implementing FIG. 4, FIG. 5, FIG. 6, or FIG. The data transmission method shown.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 1304 comprising instructions executable by processor 1320 of apparatus 1300 to perform the above method.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • a non-transitory computer readable storage medium when the instructions in the storage medium are executed by the processor of the device 1300, enable the device 1300 to perform the data transmission method shown in FIG. 3 above, or cooperate with the implementation of FIG. 4 and FIG. The data transmission method shown in FIG. 6 or FIG.
  • the embodiment of the present disclosure further provides a storage medium, where the storage medium stores instructions, and when the storage medium runs on the processing component, causes the processing component to perform as shown in FIG. 3, FIG. 4, FIG. 5, FIG. 6, or FIG. The data transmission method shown.
  • the embodiment of the present disclosure further provides a data transmission system, including: a base station and a terminal.
  • the base station includes the data transmission device shown in FIG. 15, and the terminal includes the data transmission device shown in FIG.

Abstract

本公开提供了一种数据传输方法、装置及系统,涉及无线通信技术领域,该方法包括:基站获取目标传输方向指示信息,所述目标传输方向指示信息用于供终端确定在目标模式下进行上行数据传输和下行数据传输的传输方向,所述目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式;基站向终端发送所述目标传输方向指示信息;终端基于所述目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向。本公开解决了终端无法在目标模式如FDD模式下获取动态的传输方向指示信息的问题,终端能够在目标模式下获取动态的传输方向指示信息,进而完成目标模式下的数据传输,本公开用于数据传输。

Description

数据传输方法、装置及系统 技术领域
本公开涉及无线通信技术领域,特别涉及一种数据传输方法、装置及系统。
背景技术
在无线通信领域中,双工通信有两种模式:时分双工(Time Division Duplexing,TDD)模式和频分双工(Frequency Division Duplexing,FDD)模式,其中,TDD模式是在同一载波的不同时隙上进行上行数据传输和下行数据传输,FDD模式是在不同载波上进行上行数据传输和下行数据传输。
在传统的FDD系统中,下行载波上只能进行下行数据的传输,上行载波上只能进行上行数据的传输。新一代的虚拟现实(或增强现实)和车车通信等新兴互联网应用的不断涌现对无线通信技术提出了更高的要求,这就要求终端能够支持更加丰富的业务类型,而如果继续采用固定的上下行时隙配比方式,灵活性较差,终端无法较好地支持更加丰富的业务类型。对于FDD系统来讲,为了保证系统的可扩展性,下行载波上和上行载波上都可能预留一部分的资源给未来可能引入的技术使用,因此,对于FDD系统,也需要一种终端在FDD模式下获取动态的传输方向指示信息的方案,来完成FDD模式下的数据传输。
发明内容
本公开提供了一种数据传输方法、装置及系统,可以解决相关技术中终端无法在目标模式如FDD模式下获取动态的传输方向指示信息的问题。所述技术方案如下:
根据本公开的第一方面,提供一种数据传输方法,用于基站,该方法包括:
获取目标传输方向指示信息,该目标传输方向指示信息用于供终端确定在目标模式下进行上行数据传输和下行数据传输的传输方向,该目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式;
向终端发送目标传输方向指示信息。
可选的,获取目标传输方向指示信息,包括:
从预先配置的指示单元配比信息中获取目标传输方向指示信息,指示单元配比信息包括多个传输方向指示信息,目标传输方向指示信息是多个传输方向指示信息中的任一个,每个传输方向指示信息包括下行载波的指示单元配比信息和上行载波的指示单元配比信息。
可选的,向终端发送目标传输方向指示信息,包括:
通过物理层信道向终端发送目标传输方向指示信息,该物理层信道为用于承载公共控制信息的物理层信道。
可选的,获取目标传输方向指示信息,包括:
获取预先配置的第一检测时刻和第二检测时刻,第一检测时刻为终端用于检测第一物理层信道的时刻,第二检测时刻为终端用于检测第二物理层信道的时刻,第一物理层信道承载有下行载波的指示单元配比信息,第二物理层信道承载有上行载波的指示单元配比信息,第一物理层信道和第二物理层信道为用于承载公共控制信息的物理层信道;
将第一检测时刻和第二检测时刻确定为目标传输方向指示信息。
可选的,该方法还包括:
基于高层信令、媒体访问控制单元MAC CE或物理层信令在基站配置第一检测时刻和第二检测时刻。
可选的,获取目标传输方向指示信息,包括:
获取预先配置的多个第三检测时刻,每个第三检测时刻为终端用于检测一个物理层信道的时刻,物理层信道承载有指示单元配比信息,物理层信道为用于承载公共控制信息的物理层信道;
将多个第三检测时刻确定为目标传输方向指示信息。
可选的,该方法还包括:
通过无线资源控制RRC信令、MAC CE或物理层信令向终端发送预设规则,预设规则用于指示多个第三检测时刻中用于检测第一物理层信道的第一检测时刻和用于检测第二物理层信道的第二检测时刻,第一物理层信道承载有下行载波的指示单元配比信息,第二物理层信道承载有上行载波的指示单元配比信息。
可选的,指示单元为时隙、子帧、无线帧或正交频分复用OFDM符号。
可选的,目标模式为频分双工FDD模式。
根据本公开的第二方面,提供一种数据传输方法,用于终端,该方法包括:
接收基站发送的目标传输方向指示信息;
基于所述目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,该目标模式为所述终端基于不同载波分别进行上行数据传输和下行数据传输的模式。
可选的,目标传输方向指示信息包括下行载波的指示单元配比信息和上行载波的指示单元配比信息,
基于目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,包括:
基于目标传输方向指示信息中下行载波的指示单元配比信息确定在目标模式下进行下行数据传输的传输方向,并基于目标传输方向指示信息中上行载波的指示单元配比信息确定在目标模式下进行上行数据传输的传输方向。
可选的,接收基站发送的目标传输方向指示信息,包括:
通过物理层信道接收基站发送的目标传输方向指示信息,该物理层信道为用于承载公共控制信息的物理层信道。
可选的,目标传输方向指示信息包括第一检测时刻和第二检测时刻,第一检测时刻为终端用于检测第一物理层信道的时刻,第二检测时刻为终端用于检测第二物理层信道的时刻,第一物理层信道承载有下行载波的指示单元配比信息,第二物理层信道承载有上行载波的指示单元配比信息,第一物理层信道和第二物理层信道为用于承载公共控制信息的物理层信道,
基于目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,包括:
在第一检测时刻检测第一物理层信道,并基于检测的下行载波的指示单元配比信息确定在目标模式下进行下行数据传输的传输方向;
在第二检测时刻检测第二物理层信道,并基于检测的上行载波的指示单元配比信息确定在目标模式下进行上行数据传输的传输方向。
可选的,目标传输方向指示信息包括多个第三检测时刻,每个第三检测时刻为终端用于检测一个物理层信道的时刻,物理层信道承载有指示单元配比信息,物理层信道为用于承载公共控制信息的物理层信道,
基于目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,包括:
基于预设规则确定多个第三检测时刻中用于检测第一物理层信道的第一 检测时刻和用于检测第二物理层信道的第二检测时刻,第一物理层信道承载有下行载波的指示单元配比信息,第二物理层信道承载有上行载波的指示单元配比信息;
在第一检测时刻检测第一物理层信道,并基于检测的下行载波的指示单元配比信息确定在目标模式下进行下行数据传输的传输方向;
在第二检测时刻检测第二物理层信道,并基于检测的上行载波的指示单元配比信息确定在目标模式下进行上行数据传输的传输方向。
可选的,该方法还包括:
接收基站通过RRC信令、MAC CE或物理层信令发送的预设规则。
根据本公开的第三方面,提供一种数据传输装置,用于基站,该装置包括:
获取模块,被配置为获取目标传输方向指示信息,目标传输方向指示信息用于供终端确定在目标模式下进行上行数据传输和下行数据传输的传输方向,目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式;
第一发送模块,被配置为向终端发送目标传输方向指示信息。
可选的,获取模块,被配置为:
从预先配置的指示单元配比信息中获取目标传输方向指示信息,指示单元配比信息包括多个传输方向指示信息,目标传输方向指示信息是多个传输方向指示信息中的任一个,每个传输方向指示信息包括下行载波的指示单元配比信息和上行载波的指示单元配比信息。
可选的,第一发送模块,被配置为:
通过物理层信道向终端发送目标传输方向指示信息,该物理层信道为用于承载公共控制信息的物理层信道。
可选的,获取模块,被配置为:
获取预先配置的第一检测时刻和第二检测时刻,第一检测时刻为终端用于检测第一物理层信道的时刻,第二检测时刻为终端用于检测第二物理层信道的时刻,第一物理层信道承载有下行载波的指示单元配比信息,第二物理层信道承载有上行载波的指示单元配比信息,第一物理层信道和第二物理层信道为用于承载公共控制信息的物理层信道;
将第一检测时刻和第二检测时刻确定为目标传输方向指示信息。
可选的,该装置还包括:
处理模块,被配置为基于高层信令、媒体访问控制单元MAC CE或物理层 信令在基站配置第一检测时刻和第二检测时刻。
可选的,获取模块,被配置为:
获取预先配置的多个第三检测时刻,每个第三检测时刻为终端用于检测一个物理层信道的时刻,物理层信道承载有指示单元配比信息,物理层信道为用于承载公共控制信息的物理层信道;
将多个第三检测时刻确定为目标传输方向指示信息。
可选的,该装置还包括:
第二发送模块,被配置为通过无线资源控制RRC信令、MAC CE或物理层信令向终端发送预设规则,预设规则用于指示多个第三检测时刻中用于检测第一物理层信道的第一检测时刻和用于检测第二物理层信道的第二检测时刻,第一物理层信道承载有下行载波的指示单元配比信息,第二物理层信道承载有上行载波的指示单元配比信息。
可选的,指示单元为时隙、子帧、无线帧或正交频分复用OFDM符号。
可选的,目标模式为频分双工FDD模式。
根据本公开的第四方面,提供一种数据传输装置,用于终端,该装置包括:
第一接收模块,被配置为接收基站发送的目标传输方向指示信息;
确定模块,被配置为基于目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,该目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式。
可选的,目标传输方向指示信息包括下行载波的指示单元配比信息和上行载波的指示单元配比信息,
确定模块,被配置为:
基于目标传输方向指示信息中下行载波的指示单元配比信息确定在目标模式下进行下行数据传输的传输方向,并基于目标传输方向指示信息中上行载波的指示单元配比信息确定在目标模式下进行上行数据传输的传输方向。
可选的,第一接收模块,被配置为:
通过物理层信道接收基站发送的目标传输方向指示信息,该物理层信道为用于承载公共控制信息的物理层信道。
可选的,目标传输方向指示信息包括第一检测时刻和第二检测时刻,第一检测时刻为终端用于检测第一物理层信道的时刻,第二检测时刻为终端用于检测第二物理层信道的时刻,第一物理层信道承载有下行载波的指示单元配比信 息,第二物理层信道承载有上行载波的指示单元配比信息,第一物理层信道和第二物理层信道为用于承载公共控制信息的物理层信道,
确定模块,被配置为:
在第一检测时刻检测第一物理层信道,并基于检测的下行载波的指示单元配比信息确定在目标模式下进行下行数据传输的传输方向;
在第二检测时刻检测第二物理层信道,并基于检测的上行载波的指示单元配比信息确定在目标模式下进行上行数据传输的传输方向。
可选的,目标传输方向指示信息包括多个第三检测时刻,每个第三检测时刻为终端用于检测一个物理层信道的时刻,物理层信道承载有指示单元配比信息,物理层信道为用于承载公共控制信息的物理层信道,
确定模块,被配置为:
基于预设规则确定多个第三检测时刻中用于检测第一物理层信道的第一检测时刻和用于检测第二物理层信道的第二检测时刻,第一物理层信道承载有下行载波的指示单元配比信息,第二物理层信道承载有上行载波的指示单元配比信息;
在第一检测时刻检测第一物理层信道,并基于检测的下行载波的指示单元配比信息确定在目标模式下进行下行数据传输的传输方向;
在第二检测时刻检测第二物理层信道,并基于检测的上行载波的指示单元配比信息确定在目标模式下进行上行数据传输的传输方向。
可选的,该装置还包括:
第二接收模块,被配置为接收基站通过RRC信令、MAC CE或物理层信令发送的预设规则。
根据本公开的第五方面,提供一种数据传输装置,用于基站,该装置包括:
处理器;
用于存储处理器的可执行指令的存储器;
其中,处理器被配置为:
获取目标传输方向指示信息,目标传输方向指示信息用于供终端确定在目标模式下进行上行数据传输和下行数据传输的传输方向,目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式;
向终端发送目标传输方向指示信息。
根据本公开的第六方面,提供一种数据传输装置,用于终端,该装置包括:
处理器;
用于存储处理器的可执行指令的存储器;
其中,处理器被配置为:
接收基站发送的目标传输方向指示信息;
基于目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式。
根据本公开的第七方面,提供一种存储介质,该存储介质中存储有指令,当所述存储介质在处理组件上运行时,使得处理组件执行如第一方面所述的数据传输方法;
或者,使得处理组件执行如第二方面所述的数据传输方法。
根据本公开的第八方面,提供一种数据传输系统,包括:基站和终端,
基站包括第三方面所述的数据传输装置,终端包括第四方面所述的数据传输装置;
或者,基站包括第五方面所述的数据传输装置,终端包括第六方面所述的数据传输装置。
本公开实施例提供的技术方案的有益效果是:
基站能够获取目标传输方向指示信息,然后向终端发送该目标传输方向指示信息,之后,终端基于该目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,其中,目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式,在本公开实施例中,终端能够在目标模式下获取动态的传输方向指示信息,进而完成目标模式下的数据传输,保证系统的可扩展性,终端能够较好地支持更加丰富的业务类型。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的数据传输方法所涉及的实施环境的示意图;
图2是根据一示例性实施例示出的一种数据传输方法的流程图;
图3是根据一示例性实施例示出的又一种数据传输方法的流程图;
图4是根据一示例性实施例示出的再一种数据传输方法的流程图;
图5是根据一示例性实施例示出的一种数据传输方法的流程图;
图6是根据一示例性实施例示出的一种数据传输方法的流程图;
图7是图6所示实施例中第一检测时刻和第二检测时刻的示意图;
图8是根据一示例性实施例示出的一种数据传输方法的流程图;
图9是图8所示实施例中确定第二检测时刻的示意图;
图10是根据一示例性实施例示出的一种数据传输装置的框图;
图11是根据一示例性实施例示出的另一种数据传输装置的框图;
图12是根据一示例性实施例示出的又一种数据传输装置的框图;
图13是根据一示例性实施例示出的一种数据传输装置的框图;
图14是根据一示例性实施例示出的一种数据传输装置的框图;
图15是根据一示例性实施例示出的一种数据传输装置的框图;
图16是根据一示例性实施例示出的一种数据传输装置的框图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部份实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
请参考图1,其示出了本公开实施例提供的数据传输方法所涉及的实施环境的示意图。该实施环境可以包括终端10和基站20。
其中,终端10可以为移动台、移动站、远程站、接入点、远程终端设备、接入终端设备、用户终端设备、用户代理、用户装备、订户站、订户单元、移动终端设备或无线终端设备等。例如,终端可以为移动电话(或称为“蜂窝”电话)、无绳电话、会话启动协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的移动台或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的终端设备等。
图2是根据一示例性实施例示出的一种数据传输方法的流程图,该数据传输方法可以用于图1所示实施环境中的基站20,该数据传输方法可以包括如下几个步骤:
在步骤201中,获取目标传输方向指示信息,该目标传输方向指示信息用于供终端确定在目标模式下进行上行数据传输和下行数据传输的传输方向,该目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式。
在步骤202中,向终端发送目标传输方向指示信息。
综上所述,本公开实施例提供的数据传输方法,基站能够获取目标传输方向指示信息,然后向终端发送该目标传输方向指示信息,进而使得终端基于该目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,其中,目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式,通过该方法,终端能够在目标模式下获取动态的传输方向指示信息,进而完成目标模式下的数据传输。
图3是根据一示例性实施例示出的一种数据传输方法的流程图,该数据传输方法可以用于图1所示实施环境中的终端10,该数据传输方法可以包括如下几个步骤:
在步骤301中,接收基站发送的目标传输方向指示信息。
在步骤302中,基于目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,该目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式。
综上所述,本公开实施例提供的数据传输方法,终端能够接收基站发送的目标传输方向指示信息,之后,基于该目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,该目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式,通过该方法,终端能够在目标模式下获取动态的传输方向指示信息,进而完成目标模式下的数据传输。
图4是根据一示例性实施例示出的另一种数据传输方法的流程图,该数据传输方法可以用于图1所示实施环境,该数据传输方法可以包括如下几个步骤:
在步骤401中,基站获取目标传输方向指示信息。
该目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式。示例的,该目标模式可以为FDD模式。FDD模式是在不同载波上进行上行数据传输和下行数据传输,上下行用不同的频率区分。从基站到终端的下行链路信道采用载波c1,从终端到基站的上行链路信道采用与c1对称的另一载波c2,c1和c2之间预留足够的保护频段。
需要说明的是,本公开实施例中的载波可以是一个独立载波,也可以是一个载波上的频域带宽部分(Band Width Part,BWP),本公开实施例以载波为一个独立载波为例进行说明。
在步骤402中,基站向终端发送目标传输方向指示信息。
在步骤403中,终端基于目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向。
在本公开实施例中,基站获取目标传输方向指示信息可以有多种可实现方式,例如,基站可以预先配置指示单元配比信息,然后从该指示单元配比信息中获取目标传输方向指示信息;或者,基站可以预先配置供终端检测物理层信道的检测时刻,将检测时刻确定为目标传输方向指示信息。本公开实施例以以下两种可实现方式为例对该数据传输方法进行说明。
在第一种可实现方式中,当基站预先配置指示单元配比信息时,如图5所示,该数据传输方法可以包括如下几个步骤:
在步骤501中,基站从预先配置的指示单元配比信息中获取目标传输方向指示信息。
目标传输方向指示信息用于供终端确定在目标模式下进行上行数据传输和下行数据传输的传输方向。该目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式。示例的,目标模式可以为FDD模式。
指示单元配比信息包括多个传输方向指示信息,目标传输方向指示信息是多个传输方向指示信息中的任一个,每个传输方向指示信息包括下行载波的指示单元配比信息和上行载波的指示单元配比信息。
对于FDD系统来讲,为了保证系统的可扩展性,下行载波上和上行载波上都可能预留一部分的资源给未来可能引入的技术使用,在本公开实施例中,基站预先配置多个传输方向指示信息,每个传输方向指示信息的下行载波的指示单元配比信息用于下行载波预留一部分资源,上行载波的指示单元配比信息用于上行载波预留一部分资源。
示例的,指示单元可以为时隙、子帧、无线帧或正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
假设指示单元为时隙,基站预先配置时隙配比信息,该时隙配比信息包括多个传输方向指示信息,每个传输方向指示信息包括下行载波的时隙配比信息和上行载波的时隙配比信息。基站从该指示单元配比信息中获取目标传输方向指示信息。对于同一个传输方向指示信息来说,下行载波的时隙配比信息与上行载波的时隙配比信息可能相同,也可能不同。当下行载波的时隙状态和上行载波的时隙状态均为unknown状态时,下行载波的时隙配比信息与上行载波的时隙配比信息相同。unknown状态用于指示该时隙既不是上行时隙,也不是下行时隙。
示例的,基站配置的时隙配比信息可以如表1所示。参见表1,该时隙配比信息包括4个传输方向指示信息,编号为1的传输方向指示信息包括下行载波的时隙配比信息f1和上行载波的时隙配比信息f2。f1和f2可能相同,也可能不同。
表1
Figure PCTCN2017119412-appb-000001
在步骤502中,基站向终端发送目标传输方向指示信息。
可选的,步骤502可以包括:基站通过物理层信道向终端发送目标传输方向指示信息,该物理层信道为用于承载公共控制信息的物理层信道。示例的,该物理层信道可以为组公用物理下行控制信道(Common Group Physical Downlink Control Channel,GC-PDCCH)。相应地,终端通过物理层信道接收基站发送的目标传输方向指示信息。
以表1所示的指示单元配比信息为例,基站从表1中获取编号为1的传输 方向指示信息,将该传输方向指示信息确定为目标传输方向指示信息,该目标传输方向指示信息包括下行载波的时隙配比信息f1和上行载波的时隙配比信息f2,之后,基站向终端发送该目标传输方向指示信息。
在步骤503中,终端基于目标传输方向指示信息中下行载波的指示单元配比信息确定在目标模式下进行下行数据传输的传输方向,并基于目标传输方向指示信息中上行载波的指示单元配比信息确定在目标模式下进行上行数据传输的传输方向。
示例的,基站将表1中编号为1的传输方向指示信息确定为目标传输方向指示信息,那么终端基于该目标传输方向指示信息中下行载波的时隙配比信息f1确定在目标模式下进行下行数据传输的传输方向,并基于该目标传输方向指示信息中上行载波的时隙配比信息f2确定在目标模式下进行上行数据传输的传输方向。
综上所述,本公开实施例提供的数据传输方法,基站能够从预先配置的指示单元配比信息中获取目标传输方向指示信息,然后向终端发送该目标传输方向指示信息,之后,终端基于该目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,其中,目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式,通过该方法,终端能够在目标模式下获取动态的传输方向指示信息,进而完成目标模式下的数据传输。
在第二种实现方式中,当基站预先配置供终端检测物理层信道的检测时刻时,第一方面,检测时刻可以用于指示终端检测承载有下行载波的指示单元配比信息的物理层信道,或者检测承载有上行载波的指示单元配比信息的物理层信道;第二方面,检测时刻可以仅指示终端检测承载有指示单元配比信息的物理层信道,然后由终端基于预设规则确定检测时刻是用于检测承载有下行载波的指示单元配比信息的物理层信道,还是用于检测承载有下行载波的指示单元配比信息的物理层信道。下面以这两个方面为例对该数据传输方法进行说明。
第一方面,如图6所示,该数据传输方法可以包括如下几个步骤:
在步骤601中,基站配置第一检测时刻和第二检测时刻。
第一检测时刻为终端用于检测第一物理层信道的时刻,第二检测时刻为终端用于检测第二物理层信道的时刻。其中,第一物理层信道承载有下行载波的指示单元配比信息,第二物理层信道承载有上行载波的指示单元配比信息。下 行载波的指示单元配比信息用于下行载波预留一部分资源,上行载波的指示单元配比信息用于上行载波预留一部分资源。第一物理层信道和第二物理层信道为用于承载公共控制信息的物理层信道。示例的,该物理层信道可以为GC-PDCCH。
需要说明的是,第一物理层信道和第二物理层信道所在的位置(也称作搜索空间(search space))可以相同,也可以不同。
在本公开实施例中,第一检测时刻的检测周期和第二检测时刻的检测周期可以相同,也可以不同。
示例的,指示单元可以为时隙、子帧、无线帧或OFDM符号。
其中,步骤601可以包括:基站基于高层信令、媒体访问控制单元(Media Access Control control element,MAC CE)或物理层信令在基站配置第一检测时刻和第二检测时刻。
关于高层信令和物理层信令的说明可以参考相关技术,在此不再赘述。
在步骤602中,基站获取预先配置的第一检测时刻和第二检测时刻。
基站获取步骤601配置的第一检测时刻和第二检测时刻。
在步骤603中,基站将第一检测时刻和第二检测时刻确定为目标传输方向指示信息。
基站将步骤602获取的第一检测时刻和第二检测时刻确定为目标传输方向指示信息。目标传输方向指示信息用于供终端确定在目标模式下进行上行数据传输和下行数据传输的传输方向。该目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式。示例的,目标模式可以为FDD模式。
在步骤604中,基站向终端发送目标传输方向指示信息。
在本步骤中,基站可以通过同一信令向终端发送第一检测时刻和第二检测时刻。或者,基站可以通过不同信令向终端分别发送第一检测时刻和第二检测时刻,本公开实施例对此不做限定。
在步骤605中,终端在第一检测时刻检测第一物理层信道,并基于检测的下行载波的指示单元配比信息确定在目标模式下进行下行数据传输的传输方向。
终端在第一检测时刻检测第一物理层信道,由于第一物理层信道承载有下行载波的指示单元配比信息,所以,终端能够得到下行载波的指示单元配比信息,进而能够根据下行载波的指示单元配比信息确定在目标模式下进行下行数 据传输的传输方向。
在步骤606中,终端在第二检测时刻检测第二物理层信道,并基于检测的上行载波的指示单元配比信息确定在目标模式下进行上行数据传输的传输方向。
终端在第二检测时刻检测第二物理层信道,由于第二物理层信道承载有上行载波的指示单元配比信息,所以,终端能够得到上行载波的指示单元配比信息,进而能够根据上行载波的指示单元配比信息确定在目标模式下进行上行数据传输的传输方向。
假设指示单元为时隙,图7示例性示出了第一检测时刻t1和第二检测时刻t2的示意图,图7中,横轴为时域,纵轴为频域,终端在t1检测第一物理层信道得到下行载波的时隙配比信息,在t2检测第二物理层信道得到上行载波的时隙配比信息,终端基于下行载波的时隙配比信息确定在目标模式下进行下行数据传输的传输方向,并基于上行载波的时隙配比信息确定在目标模式下进行上行数据传输的传输方向。
综上所述,本公开实施例提供的数据传输方法,基站预先配置供终端检测物理层信号的检测时刻,基站通过检测时刻指示终端检测承载有下行载波的指示单元配比信息的物理层信道,或者检测承载有上行载波的指示单元配比信息的物理层信道,使得终端确定在目标模式下进行上行数据传输和下行数据传输的传输方向,其中,目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式,通过该方法,终端能够在目标模式下获取动态的传输方向指示信息,进而完成目标模式下的数据传输。
第二方面,如图8所示,该数据传输方法可以包括如下几个步骤:
在步骤701中,基站获取预先配置的多个第三检测时刻,每个第三检测时刻为终端用于检测一个物理层信道的时刻。
物理层信道承载有指示单元配比信息,物理层信道为用于承载公共控制信息的物理层信道。示例的,该物理层信道可以为GC-PDCCH。
在本公开实施例中,第三检测时刻仅指示终端检测承载有指示单元配比信息的物理层信道。示例的,指示单元可以为时隙、子帧、无线帧或OFDM符号。
在步骤702中,基站将多个第三检测时刻确定为目标传输方向指示信息。
基站将步骤701获取的多个第三检测时刻确定为目标传输方向指示信息。
在步骤703中,基站向终端发送目标传输方向指示信息。
在步骤704中,基站通过RRC信令、MAC CE或物理层信令向终端发送预设规则。相应地,终端接收基站通过RRC信令、MAC CE或物理层信令发送的预设规则。
该预设规则用于指示多个第三检测时刻中用于检测第一物理层信道的第一检测时刻和用于检测第二物理层信道的第二检测时刻。其中,第一物理层信道承载有下行载波的指示单元配比信息,第二物理层信道承载有上行载波的指示单元配比信息。
假设第三检测时刻有4个,示例的,预设规则可以为:第1个第三检测时刻为用于检测第一物理层信道的第一检测时刻,第2个第三检测时刻为用于检测第二物理层信道的第二检测时刻,第3个检测时刻为用于检测第一物理层信道的第一检测时刻,第4个检测时刻为用于检测第二物理层信道的第二检测时刻,第一检测时刻和第二检测时刻相交错。或者,预设规则可以为:前2个第三检测时刻为用于检测第一物理层信道的第一检测时刻,后2个第三检测时刻为用于检测第二物理层信道的第二检测时刻,连续的2个第三检测时刻为一组。在本公开实施例中,预设规则的内容可以有多种,本公开实施例对预设规则的内容不做限定。
需要说明的是,步骤704和步骤703无先后顺序,即可以先执行步骤703后执行步骤704,也可以先执行步骤704后执行步骤703,也可以同时执行步骤703和步骤704。
还需要补充说明的是,在本公开实施例中,步骤704为可选步骤,即基站可以不向终端发送预设规则,在这种情况下,预设规则可以是协议中预先设定的。
在步骤705中,终端基于预设规则确定多个第三检测时刻中用于检测第一物理层信道的第一检测时刻和用于检测第二物理层信道的第二检测时刻。
第一物理层信道承载有下行载波的指示单元配比信息,第二物理层信道承载有上行载波的指示单元配比信息。下行载波的指示单元配比信息用于下行载波预留一部分资源,上行载波的指示单元配比信息用于上行载波预留一部分资源。
一方面,终端可以基于步骤704中基站发送的预设规则确定第一检测时刻 和第二检测时刻,另一方面,终端可以基于协议中预先设定的预设规则确定第一检测时刻和第二检测时刻。
在步骤706中,终端在第一检测时刻检测第一物理层信道,并基于检测的下行载波的指示单元配比信息确定在目标模式下进行下行数据传输的传输方向。
终端在第一检测时刻检测第一物理层信道,由于第一物理层信道承载有下行载波的指示单元配比信息,所以,终端能够得到下行载波的指示单元配比信息,进而能够根据下行载波的指示单元配比信息确定在目标模式下进行下行数据传输的传输方向。
在步骤707中,终端在第二检测时刻检测第二物理层信道,并基于检测的上行载波的指示单元配比信息确定在目标模式下进行上行数据传输的传输方向。
终端在第二检测时刻检测第二物理层信道,由于第二物理层信道承载有上行载波的指示单元配比信息,所以,终端能够得到上行载波的指示单元配比信息,进而能够根据上行载波的指示单元配比信息确定在目标模式下进行上行数据传输的传输方向。
假设指示单元为时隙,图9示例性示出了终端基于预设规则确定第二检测时刻的示意图,参见图9,基站通过下行载波向终端发送4个第三检测时刻,终端基于预设规则确定第1个第三检测时刻和第3个第三检测时刻为第二检测时刻,用于检测承载有上行载波的指示单元配比信息的第二物理层信道。
综上所述,本公开实施例提供的数据传输方法,基站预先配置供终端检测物理层信号的检测时刻,基站通过检测时刻指示终端检测承载有指示单元配比信息的物理层信道,然后由终端基于预设规则确定检测时刻是用于指示终端检测承载有下行载波的指示单元配比信息的物理层信道,还是用于指示终端检测承载有下行载波的指示单元配比信息的物理层信道,进而使得终端确定在目标模式下进行上行数据传输和下行数据传输的传输方向,其中,目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式,通过该方法,终端能够在目标模式下获取动态的传输方向指示信息,进而完成目标模式下的数据传输。
需要说明的是,本公开实施例提供的数据传输方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的 技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图10是根据一示例性实施例示出的一种数据传输装置的框图,该数据传输装置可以通过软件、硬件或者两者的结合实现成为图1所示实施环境中的基站20的部分或者全部。该数据传输装置800可以包括:
获取模块810,被配置为获取目标传输方向指示信息,该目标传输方向指示信息用于供终端确定在目标模式下进行上行数据传输和下行数据传输的传输方向,该目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式。
第一发送模块820,被配置为向终端发送目标传输方向指示信息。
综上所述,本公开实施例提供的数据传输装置,基站能够获取目标传输方向指示信息,然后向终端发送该目标传输方向指示信息,进而使得终端基于该目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,其中,目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式,通过该装置,终端能够在目标模式下获取动态的传输方向指示信息,进而完成目标模式下的数据传输。
可选的,第一方面,获取模块810,被配置为:
从预先配置的指示单元配比信息中获取目标传输方向指示信息,指示单元配比信息包括多个传输方向指示信息,目标传输方向指示信息是多个传输方向指示信息中的任一个,每个传输方向指示信息包括下行载波的指示单元配比信息和上行载波的指示单元配比信息。
第一发送模块820,被配置为:
通过物理层信道向终端发送目标传输方向指示信息,物理层信道为用于承载公共控制信息的物理层信道。
第二方面,获取模块810,被配置为:
获取预先配置的第一检测时刻和第二检测时刻,第一检测时刻为终端用于检测第一物理层信道的时刻,第二检测时刻为终端用于检测第二物理层信道的时刻。第一物理层信道承载有下行载波的指示单元配比信息,第二物理层信道 承载有上行载波的指示单元配比信息,第一物理层信道和第二物理层信道为用于承载公共控制信息的物理层信道;
将第一检测时刻和第二检测时刻确定为目标传输方向指示信息。
进一步的,如图11所示,该装置800还可以包括:
处理模块830,被配置为基于高层信令、MAC CE或物理层信令在基站配置第一检测时刻和第二检测时刻。
图11中其他标记含义可以参考图10。
第三方面,获取模块810,被配置为:
获取预先配置的多个第三检测时刻,每个第三检测时刻为终端用于检测一个物理层信道的时刻,物理层信道承载有指示单元配比信息,物理层信道为用于承载公共控制信息的物理层信道;
将多个第三检测时刻确定为目标传输方向指示信息。
进一步的,如图12所示,该装置800还包括:
第二发送模块840,被配置为通过RRC信令、MAC CE或物理层信令向终端发送预设规则。预设规则用于指示多个第三检测时刻中用于检测第一物理层信道的第一检测时刻和用于检测第二物理层信道的第二检测时刻。第一物理层信道承载有下行载波的指示单元配比信息,第二物理层信道承载有上行载波的指示单元配比信息。
图12中其他标记含义可以参考图10。
可选的,指示单元可以为时隙、子帧、无线帧或OFDM符号。
可选的,目标模式可以为FDD模式。
综上所述,本公开实施例提供的数据传输装置,基站能够获取目标传输方向指示信息,然后向终端发送该目标传输方向指示信息,进而使得终端基于该目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,其中,目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式,通过该装置,终端能够在目标模式下获取动态的传输方向指示信息,进而完成目标模式下的数据传输。
图13是根据一示例性实施例示出的一种数据传输装置的框图,该数据传输装置可以通过软件、硬件或者两者的结合实现成为图1所示实施环境中的终端10的部分或者全部。该数据传输装置1100可以包括:
第一接收模块1110,被配置为接收基站发送的目标传输方向指示信息。
确定模块1120,被配置为基于目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,该目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式。
综上所述,本公开实施例提供的数据传输装置,终端能够接收基站发送的目标传输方向指示信息,之后,基于该目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,该目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式,通过该装置,终端能够在目标模式下获取动态的传输方向指示信息,进而完成目标模式下的数据传输。
可选的,第一方面,目标传输方向指示信息包括下行载波的指示单元配比信息和上行载波的指示单元配比信息,相应的,确定模块1120,被配置为:
基于目标传输方向指示信息中下行载波的指示单元配比信息确定在目标模式下进行下行数据传输的传输方向,并基于目标传输方向指示信息中上行载波的指示单元配比信息确定在目标模式下进行上行数据传输的传输方向。
可选的,第一接收模块1110,被配置为:
通过物理层信道接收基站发送的目标传输方向指示信息,物理层信道为用于承载公共控制信息的物理层信道。
第二方面,目标传输方向指示信息包括第一检测时刻和第二检测时刻,第一检测时刻为终端用于检测第一物理层信道的时刻,第二检测时刻为终端用于检测第二物理层信道的时刻。第一物理层信道承载有下行载波的指示单元配比信息,第二物理层信道承载有上行载波的指示单元配比信息,第一物理层信道和第二物理层信道为用于承载公共控制信息的物理层信道,相应的,确定模块1120,被配置为:
在第一检测时刻检测第一物理层信道,并基于检测的下行载波的指示单元配比信息确定在目标模式下进行下行数据传输的传输方向;
在第二检测时刻检测第二物理层信道,并基于检测的上行载波的指示单元配比信息确定在目标模式下进行上行数据传输的传输方向。
第三方面,目标传输方向指示信息包括多个第三检测时刻,每个第三检测时刻为终端用于检测一个物理层信道的时刻,物理层信道承载有指示单元配比信息,物理层信道为用于承载公共控制信息的物理层信道,相应的,确定模块1120,被配置为:
基于预设规则确定多个第三检测时刻中用于检测第一物理层信道的第一检测时刻和用于检测第二物理层信道的第二检测时刻,第一物理层信道承载有下行载波的指示单元配比信息,第二物理层信道承载有上行载波的指示单元配比信息;
在第一检测时刻检测第一物理层信道,并基于检测的下行载波的指示单元配比信息确定在目标模式下进行下行数据传输的传输方向;
在第二检测时刻检测第二物理层信道,并基于检测的上行载波的指示单元配比信息确定在目标模式下进行上行数据传输的传输方向。
进一步的,如图14所示,该装置1100还可以包括:
第二接收模块1130,被配置为接收基站通过RRC信令、MAC CE或物理层信令发送的预设规则。
图14中其他标记含义可以参考图13。
综上所述,本公开实施例提供的数据传输装置,终端能够接收基站发送的目标传输方向指示信息,之后,基于该目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,该目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式,通过该装置,终端能够在目标模式下获取动态的传输方向指示信息,进而完成目标模式下的数据传输。
本公开实施例还提供了一种数据传输系统,包括:基站和终端。
其中,基站包括图10、图11或图12所示的数据传输装置,终端包括图13或图14所示的数据传输装置。
图15是根据一示例性实施例示出的一种数据传输装置1200的框图。例如,装置1200可以为基站,该基站可以为图1所示实施环境中的基站20,该数据传输装置1200包括:
处理器1210;
用于存储处理器的可执行指令1221的存储器1220;
其中,处理器1210被配置为:
接收基站发送的目标传输方向指示信息;
基于目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,该目标模式为终端基于不同载波分别进行上行数据传输 和下行数据传输的模式。
处理器1210,可以用于执行可执行指令1221以实现如图2、图4、图5、图6或图8所示的数据传输方法。
本公开实施例还提供一种存储介质,存储介质中存储有指令,当存储介质在处理组件上运行时,使得处理组件执行如图2、图4、图5、图6或图8所示的数据传输方法。
图16是根据一示例性实施例示出的一种数据传输装置1300的框图。例如,装置1300可以为终端,该终端可以为图1所示实施环境中的终端10,终端可以为移动台、移动站、远程站、接入点、远程终端设备、接入终端设备、用户终端设备等。
参照图16,装置1300可以包括以下一个或多个组件:处理组件1302,存储器1304,电源组件1306,多媒体组件1308,音频组件1310,输入/输出(I/O)的接口1312,传感器组件1314,以及通信组件1316。
处理组件1302通常控制装置1300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1302可以包括一个或多个处理器1320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1302可以包括一个或多个模块,便于处理组件1302和其他组件之间的交互。例如,处理组件1302可以包括多媒体模块,以方便多媒体组件1308和处理组件1302之间的交互。
存储器1304被配置为存储各种类型的数据以支持在装置1300的操作。这些数据的示例包括用于在装置1300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1306为装置1300的各种组件提供电力。电源组件1306可以包括电源管理系统,一个或多个电源,及其他与为装置1300生成、管理和分配电力相关联的组件。
多媒体组件1308包括在所述装置1300和用户之间的提供一个输出接口的 屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1308包括一个前置摄像头和/或后置摄像头。当装置1300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1310被配置为输出和/或输入音频信号。例如,音频组件1310包括一个麦克风(MIC),当装置1300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1304或经由通信组件1316发送。在一些实施例中,音频组件1310还包括一个扬声器,用于输出音频信号。
I/O接口1312为处理组件1302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1314包括一个或多个传感器,用于为装置1300提供各个方面的状态评估。例如,传感器组件1314可以检测到装置1300的打开/关闭状态,组件的相对定位,例如所述组件为装置1300的显示器和小键盘,传感器组件1314还可以检测装置1300或装置1300一个组件的位置改变,用户与装置1300接触的存在或不存在,装置1300方位或加速/减速和装置1300的温度变化。传感器组件1314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1316被配置为便于装置1300和其他设备之间有线或无线方式的通信。装置1300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述 通信组件1316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述图3所示的数据传输方法,或者配合实现图4、图5、图6或图8所示的数据传输方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1304,上述指令可由装置1300的处理器1320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当存储介质中的指令由装置1300的处理器执行时,使得装置1300能够执行上述图3所示的数据传输方法,或者配合实现图4、图5、图6或图8所示的数据传输方法。
本公开实施例还提供一种存储介质,存储介质中存储有指令,当所述存储介质在处理组件上运行时,使得处理组件执行如图3、图4、图5、图6或图8所示的数据传输方法。
本公开实施例还提供了一种数据传输系统,包括:基站和终端。
其中,基站包括图15所示的数据传输装置,终端包括图16所示的数据传输装置。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (34)

  1. 一种数据传输方法,其特征在于,用于基站,所述方法包括:
    获取目标传输方向指示信息,所述目标传输方向指示信息用于供终端确定在目标模式下进行上行数据传输和下行数据传输的传输方向,所述目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式;
    向终端发送所述目标传输方向指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述获取目标传输方向指示信息,包括:
    从预先配置的指示单元配比信息中获取所述目标传输方向指示信息,所述指示单元配比信息包括多个传输方向指示信息,所述目标传输方向指示信息是所述多个传输方向指示信息中的任一个,每个传输方向指示信息包括下行载波的指示单元配比信息和上行载波的指示单元配比信息。
  3. 根据权利要求2所述的方法,其特征在于,所述向终端发送所述目标传输方向指示信息,包括:
    通过物理层信道向所述终端发送所述目标传输方向指示信息,所述物理层信道为用于承载公共控制信息的物理层信道。
  4. 根据权利要求1所述的方法,其特征在于,所述获取目标传输方向指示信息,包括:
    获取预先配置的第一检测时刻和第二检测时刻,所述第一检测时刻为所述终端用于检测第一物理层信道的时刻,所述第二检测时刻为所述终端用于检测第二物理层信道的时刻,所述第一物理层信道承载有下行载波的指示单元配比信息,所述第二物理层信道承载有上行载波的指示单元配比信息,所述第一物理层信道和所述第二物理层信道为用于承载公共控制信息的物理层信道;
    将所述第一检测时刻和所述第二检测时刻确定为所述目标传输方向指示信息。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    基于高层信令、媒体访问控制单元MAC CE或物理层信令在所述基站配置所述第一检测时刻和所述第二检测时刻。
  6. 根据权利要求1所述的方法,其特征在于,所述获取目标传输方向指示信息,包括:
    获取预先配置的多个第三检测时刻,每个所述第三检测时刻为所述终端用于检测一个物理层信道的时刻,所述物理层信道承载有指示单元配比信息,所述物理层信道为用于承载公共控制信息的物理层信道;
    将所述多个第三检测时刻确定为所述目标传输方向指示信息。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    通过无线资源控制RRC信令、MAC CE或物理层信令向所述终端发送预设规则,所述预设规则用于指示所述多个第三检测时刻中用于检测第一物理层信道的第一检测时刻和用于检测第二物理层信道的第二检测时刻,所述第一物理层信道承载有下行载波的指示单元配比信息,所述第二物理层信道承载有上行载波的指示单元配比信息。
  8. 根据权利要求2、4或6所述的方法,其特征在于,
    所述指示单元为时隙、子帧、无线帧或正交频分复用OFDM符号。
  9. 根据权利要求1所述的方法,其特征在于,所述目标模式为频分双工FDD模式。
  10. 一种数据传输方法,其特征在于,用于终端,所述方法包括:
    接收基站发送的目标传输方向指示信息;
    基于所述目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,所述目标模式为所述终端基于不同载波分别进行上行数据传输和下行数据传输的模式。
  11. 根据权利要求10所述的方法,其特征在于,所述目标传输方向指示信息包括下行载波的指示单元配比信息和上行载波的指示单元配比信息,
    所述基于所述目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,包括:
    基于所述目标传输方向指示信息中下行载波的指示单元配比信息确定在所述目标模式下进行下行数据传输的传输方向,并基于所述目标传输方向指示信息中上行载波的指示单元配比信息确定在所述目标模式下进行上行数据传输的传输方向。
  12. 根据权利要求11所述的方法,其特征在于,所述接收基站发送的目标传输方向指示信息,包括:
    通过物理层信道接收所述基站发送的所述目标传输方向指示信息,所述物理层信道为用于承载公共控制信息的物理层信道。
  13. 根据权利要求10所述的方法,其特征在于,所述目标传输方向指示信息包括第一检测时刻和第二检测时刻,所述第一检测时刻为所述终端用于检测第一物理层信道的时刻,所述第二检测时刻为所述终端用于检测第二物理层信道的时刻,所述第一物理层信道承载有下行载波的指示单元配比信息,所述第二物理层信道承载有上行载波的指示单元配比信息,所述第一物理层信道和所述第二物理层信道为用于承载公共控制信息的物理层信道,
    所述基于所述目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,包括:
    在所述第一检测时刻检测所述第一物理层信道,并基于检测的下行载波的指示单元配比信息确定在所述目标模式下进行下行数据传输的传输方向;
    在所述第二检测时刻检测所述第二物理层信道,并基于检测的上行载波的指示单元配比信息确定在所述目标模式下进行上行数据传输的传输方向。
  14. 根据权利要求10所述的方法,其特征在于,所述目标传输方向指示信息包括多个第三检测时刻,每个所述第三检测时刻为所述终端用于检测一个物理层信道的时刻,所述物理层信道承载有指示单元配比信息,所述物理层信道为用于承载公共控制信息的物理层信道,
    所述基于所述目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,包括:
    基于预设规则确定所述多个第三检测时刻中用于检测第一物理层信道的第一检测时刻和用于检测第二物理层信道的第二检测时刻,所述第一物理层信道承载有下行载波的指示单元配比信息,所述第二物理层信道承载有上行载波的指示单元配比信息;
    在所述第一检测时刻检测所述第一物理层信道,并基于检测的下行载波的指示单元配比信息确定在所述目标模式下进行下行数据传输的传输方向;
    在所述第二检测时刻检测所述第二物理层信道,并基于检测的上行载波的指示单元配比信息确定在所述目标模式下进行上行数据传输的传输方向。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    接收所述基站通过RRC信令、MAC CE或物理层信令发送的所述预设规则。
  16. 一种数据传输装置,其特征在于,用于基站,所述装置包括:
    获取模块,被配置为获取目标传输方向指示信息,所述目标传输方向指示信息用于供终端确定在目标模式下进行上行数据传输和下行数据传输的传输方向,所述目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式;
    第一发送模块,被配置为向终端发送所述目标传输方向指示信息。
  17. 根据权利要求16所述的装置,其特征在于,所述获取模块,被配置为:
    从预先配置的指示单元配比信息中获取所述目标传输方向指示信息,所述指示单元配比信息包括多个传输方向指示信息,所述目标传输方向指示信息是所述多个传输方向指示信息中的任一个,每个传输方向指示信息包括下行载波的指示单元配比信息和上行载波的指示单元配比信息。
  18. 根据权利要求17所述的装置,其特征在于,所述第一发送模块,被配置为:
    通过物理层信道向所述终端发送所述目标传输方向指示信息,所述物理层信道为用于承载公共控制信息的物理层信道。
  19. 根据权利要求16所述的装置,其特征在于,所述获取模块,被配置为:
    获取预先配置的第一检测时刻和第二检测时刻,所述第一检测时刻为所述终端用于检测第一物理层信道的时刻,所述第二检测时刻为所述终端用于检测第二物理层信道的时刻,所述第一物理层信道承载有下行载波的指示单元配比信息,所述第二物理层信道承载有上行载波的指示单元配比信息,所述第一物理层信道和所述第二物理层信道为用于承载公共控制信息的物理层信道;
    将所述第一检测时刻和所述第二检测时刻确定为所述目标传输方向指示信息。
  20. 根据权利要求19所述的装置,其特征在于,所述装置还包括:
    处理模块,被配置为基于高层信令、媒体访问控制单元MAC CE或物理层信令在所述基站配置所述第一检测时刻和所述第二检测时刻。
  21. 根据权利要求16所述的装置,其特征在于,所述获取模块,被配置为:
    获取预先配置的多个第三检测时刻,每个所述第三检测时刻为所述终端用于检测一个物理层信道的时刻,所述物理层信道承载有指示单元配比信息,所述物理层信道为用于承载公共控制信息的物理层信道;
    将所述多个第三检测时刻确定为所述目标传输方向指示信息。
  22. 根据权利要求21所述的装置,其特征在于,所述装置还包括:
    第二发送模块,被配置为通过无线资源控制RRC信令、MAC CE或物理层信令向所述终端发送预设规则,所述预设规则用于指示所述多个第三检测时刻中用于检测第一物理层信道的第一检测时刻和用于检测第二物理层信道的第二检测时刻,所述第一物理层信道承载有下行载波的指示单元配比信息,所述第二物理层信道承载有上行载波的指示单元配比信息。
  23. 根据权利要求17、19或21所述的装置,其特征在于,
    所述指示单元为时隙、子帧、无线帧或正交频分复用OFDM符号。
  24. 根据权利要求16所述的装置,其特征在于,所述目标模式为频分双工FDD模式。
  25. 一种数据传输装置,其特征在于,用于终端,所述装置包括:
    第一接收模块,被配置为接收基站发送的目标传输方向指示信息;
    确定模块,被配置为基于所述目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,所述目标模式为所述终端基于不同载波分别进行上行数据传输和下行数据传输的模式。
  26. 根据权利要求25所述的装置,其特征在于,所述目标传输方向指示信息包括下行载波的指示单元配比信息和上行载波的指示单元配比信息,
    所述确定模块,被配置为:
    基于所述目标传输方向指示信息中下行载波的指示单元配比信息确定在所述目标模式下进行下行数据传输的传输方向,并基于所述目标传输方向指示信息中上行载波的指示单元配比信息确定在所述目标模式下进行上行数据传输的传输方向。
  27. 根据权利要求26所述的装置,其特征在于,所述第一接收模块,被配置为:
    通过物理层信道接收所述基站发送的所述目标传输方向指示信息,所述物理层信道为用于承载公共控制信息的物理层信道。
  28. 根据权利要求25所述的装置,其特征在于,所述目标传输方向指示信息包括第一检测时刻和第二检测时刻,所述第一检测时刻为所述终端用于检测第一物理层信道的时刻,所述第二检测时刻为所述终端用于检测第二物理层信道的时刻,所述第一物理层信道承载有下行载波的指示单元配比信息,所述第二物理层信道承载有上行载波的指示单元配比信息,所述第一物理层信道和所述第二物理层信道为用于承载公共控制信息的物理层信道,
    所述确定模块,被配置为:
    在所述第一检测时刻检测所述第一物理层信道,并基于检测的下行载波的指示单元配比信息确定在所述目标模式下进行下行数据传输的传输方向;
    在所述第二检测时刻检测所述第二物理层信道,并基于检测的上行载波的指示单元配比信息确定在所述目标模式下进行上行数据传输的传输方向。
  29. 根据权利要求25所述的装置,其特征在于,所述目标传输方向指示信息包括多个第三检测时刻,每个所述第三检测时刻为所述终端用于检测一个物理层信道的时刻,所述物理层信道承载有指示单元配比信息,所述物理层信道为用于承载公共控制信息的物理层信道,
    所述确定模块,被配置为:
    基于预设规则确定所述多个第三检测时刻中用于检测第一物理层信道的第一检测时刻和用于检测第二物理层信道的第二检测时刻,所述第一物理层信道承载有下行载波的指示单元配比信息,所述第二物理层信道承载有上行载波的指示单元配比信息;
    在所述第一检测时刻检测所述第一物理层信道,并基于检测的下行载波的指示单元配比信息确定在所述目标模式下进行下行数据传输的传输方向;
    在所述第二检测时刻检测所述第二物理层信道,并基于检测的上行载波的指示单元配比信息确定在所述目标模式下进行上行数据传输的传输方向。
  30. 根据权利要求29所述的装置,其特征在于,所述装置还包括:
    第二接收模块,被配置为接收所述基站通过RRC信令、MAC CE或物理层信令发送的所述预设规则。
  31. 一种数据传输装置,其特征在于,用于基站,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    获取目标传输方向指示信息,所述目标传输方向指示信息用于供终端确定在目标模式下进行上行数据传输和下行数据传输的传输方向,所述目标模式为终端基于不同载波分别进行上行数据传输和下行数据传输的模式;
    向终端发送所述目标传输方向指示信息。
  32. 一种数据传输装置,其特征在于,用于终端,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    接收基站发送的目标传输方向指示信息;
    基于所述目标传输方向指示信息确定在目标模式下进行上行数据传输和下行数据传输的传输方向,所述目标模式为所述终端基于不同载波分别进行上行数据传输和下行数据传输的模式。
  33. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质在处理组件上运行时,使得处理组件执行如权利要求1至9任一所述的数据传输方法;
    或者,使得处理组件执行如权利要求10至15任一所述的数据传输方法。
  34. 一种数据传输系统,其特征在于,包括:基站和终端,
    所述基站包括权利要求16至24任一所述的数据传输装置,所述终端包括权利要求25至30任一所述的数据传输装置;
    或者,所述基站包括权利要求31所述的数据传输装置,所述终端包括权利要求32所述的数据传输装置。
PCT/CN2017/119412 2017-12-28 2017-12-28 数据传输方法、装置及系统 WO2019127220A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PL17936636.4T PL3734897T3 (pl) 2017-12-28 2017-12-28 Sposób, stacja bazowa i terminal do transmisji danych
ES17936636T ES2962343T3 (es) 2017-12-28 2017-12-28 Método de transmisión de datos, estación base y terminal
CN202110743275.4A CN113472509B (zh) 2017-12-28 2017-12-28 数据传输方法、装置及系统
EP17936636.4A EP3734897B1 (en) 2017-12-28 2017-12-28 Data transmission method, base station and terminal
PCT/CN2017/119412 WO2019127220A1 (zh) 2017-12-28 2017-12-28 数据传输方法、装置及系统
CN201780002251.5A CN109451862B (zh) 2017-12-28 2017-12-28 数据传输方法、装置及系统
US16/910,547 US11362792B2 (en) 2017-12-28 2020-06-24 Data transmission method, device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/119412 WO2019127220A1 (zh) 2017-12-28 2017-12-28 数据传输方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/910,547 Continuation US11362792B2 (en) 2017-12-28 2020-06-24 Data transmission method, device, and system

Publications (1)

Publication Number Publication Date
WO2019127220A1 true WO2019127220A1 (zh) 2019-07-04

Family

ID=65531039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119412 WO2019127220A1 (zh) 2017-12-28 2017-12-28 数据传输方法、装置及系统

Country Status (6)

Country Link
US (1) US11362792B2 (zh)
EP (1) EP3734897B1 (zh)
CN (2) CN113472509B (zh)
ES (1) ES2962343T3 (zh)
PL (1) PL3734897T3 (zh)
WO (1) WO2019127220A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150765A2 (ko) * 2011-05-02 2012-11-08 (주)팬택 무선통신 시스템에서 ack/nack 정보 송수신 장치 및 방법
CN104579589A (zh) * 2013-10-12 2015-04-29 普天信息技术有限公司 Tdd-fdd系统中的应答方法、基站、终端和系统
CN104811411A (zh) * 2014-01-26 2015-07-29 中国移动通信集团公司 一种数据传输的方法、设备和系统
CN105722111A (zh) * 2014-12-05 2016-06-29 中国移动通信集团公司 一种干扰检测方法和装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7200405B2 (en) * 2003-11-18 2007-04-03 Interdigital Technology Corporation Method and system for providing channel assignment information used to support uplink and downlink channels
CN100367817C (zh) * 2005-08-01 2008-02-06 华为技术有限公司 一种系统间切换故障上报方法
CN101426267B (zh) * 2007-11-02 2013-11-06 中国移动通信集团公司 资源调度方法及其装置
CN102026206B (zh) * 2009-09-21 2013-06-05 上海贝尔股份有限公司 为tdd系统分配低频段频谱资源的方法和装置
US8559343B2 (en) * 2009-12-23 2013-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Flexible subframes
JP5071507B2 (ja) * 2010-03-30 2012-11-14 ブラザー工業株式会社 制御回路、制御装置、制御方法、画像形成装置
CN102448148B (zh) * 2010-09-30 2014-12-10 中国移动通信集团公司 无线通信系统以及在其中对载波进行时隙配置的方法
KR102031031B1 (ko) * 2011-06-20 2019-10-15 삼성전자 주식회사 무선 통신 시스템에서 시분할 복식 프레임 구성 정보 송수신 방법 및 장치
CN102958173B (zh) * 2011-08-26 2016-03-30 华为技术有限公司 资源分配的方法及设备
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
US9923690B2 (en) * 2013-08-06 2018-03-20 Texas Instruments Incorporated Dynamic signaling of the downlink and uplink subframe allocation for a TDD wireless communication system
CN105099601B (zh) * 2014-04-25 2020-10-27 北京三星通信技术研究有限公司 一种灵活fdd系统中上行传输的方法和设备
CN106162697B (zh) * 2015-04-17 2020-01-17 中国移动通信集团公司 一种帧结构配置方法、基站、用户设备及系统
KR102368198B1 (ko) * 2015-05-13 2022-02-28 삼성전자 주식회사 이동 통신 시스템에서의 피드백 방법 및 장치
US10554540B2 (en) * 2016-08-22 2020-02-04 Qualcomm Incorporated Controlling allocations for independent links
US10440742B2 (en) * 2016-09-23 2019-10-08 Qualcomm Incorporated Dynamic grant-free and grant-based uplink transmissions
WO2018195980A1 (zh) * 2017-04-28 2018-11-01 北京小米移动软件有限公司 数据传输方法及装置
EP3654709A4 (en) * 2017-07-31 2021-01-20 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR INDICATING THE TRANSMISSION DIRECTION
CN116846529A (zh) * 2017-08-07 2023-10-03 Lg电子株式会社 无线通信系统中发送或接收信号的方法和装置及可读介质
US11723028B2 (en) * 2020-06-18 2023-08-08 Qualcomm Incorporated Coreset and search space association with resource bandwidth

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150765A2 (ko) * 2011-05-02 2012-11-08 (주)팬택 무선통신 시스템에서 ack/nack 정보 송수신 장치 및 방법
CN104579589A (zh) * 2013-10-12 2015-04-29 普天信息技术有限公司 Tdd-fdd系统中的应答方法、基站、终端和系统
CN104811411A (zh) * 2014-01-26 2015-07-29 中国移动通信集团公司 一种数据传输的方法、设备和系统
CN105722111A (zh) * 2014-12-05 2016-06-29 中国移动通信集团公司 一种干扰检测方法和装置

Also Published As

Publication number Publication date
PL3734897T3 (pl) 2024-02-19
EP3734897A1 (en) 2020-11-04
US11362792B2 (en) 2022-06-14
CN113472509A (zh) 2021-10-01
CN113472509B (zh) 2024-02-13
EP3734897B1 (en) 2023-10-18
US20200322110A1 (en) 2020-10-08
CN109451862B (zh) 2021-08-03
CN109451862A (zh) 2019-03-08
EP3734897A4 (en) 2020-12-23
ES2962343T3 (es) 2024-03-18

Similar Documents

Publication Publication Date Title
US11469962B2 (en) Method and apparatus for configuring information of indicating time-frequency position of SSB, and method and apparatus for determining time-frequency position of SSB
US11159294B2 (en) Method for obtaining time-frequency resource position of common control resource set of remaining system information
WO2018082018A1 (zh) 信号接收方法及装置
WO2019095140A1 (zh) 剩余关键系统信息的公共控制资源集合的周期信息指示方法
EP3713327A1 (en) Method for indicating frequency-domain information of common control resource set of remaining minimum system information
CN107223358B (zh) 一种业务复用传输方法、装置及计算机可读存储介质
WO2018201469A1 (zh) 信号传输方法、装置、电子设备和计算机可读存储介质
WO2019100402A1 (zh) 信息指示方法及装置、基站和用户设备
WO2019213962A1 (zh) 寻呼同步方法及装置
WO2019024039A1 (zh) 指示多业务数据复用传输的方法及装置、终端和基站
US11910334B2 (en) Method and device for transmitting synchronization indication information
US20230318773A1 (en) Method for transmitting reference signal, method for receiving reference signal, base station and user equipment
WO2019061306A1 (zh) 信号传输方法及装置
WO2019024037A1 (zh) 指示多业务数据复用传输的方法及装置、终端和基站
WO2019024084A1 (zh) 数据传输方法、装置以及计算机可读存储介质
WO2019095183A1 (zh) 剩余关键系统信息的公共控制资源集合的时域信息指示方法
WO2018023472A1 (zh) 建立业务连接的方法及装置
CN109618564B (zh) 传输方向的指示方法及装置
WO2019127248A1 (zh) 数据传输方法和装置
WO2019109311A1 (zh) 信道协调方法及装置
WO2018000322A1 (zh) 数据传输方法及装置
WO2019127220A1 (zh) 数据传输方法、装置及系统
WO2019028756A1 (zh) 一种下行控制信息的配置方法及装置
RU2748902C1 (ru) Способ и устройство для определения информации о направлении передачи
US20220053473A1 (en) Method and device for indicating resource occupation state, and method and device for determining resource occupation state

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017936636

Country of ref document: EP

Effective date: 20200728