WO2019127248A1 - 数据传输方法和装置 - Google Patents

数据传输方法和装置 Download PDF

Info

Publication number
WO2019127248A1
WO2019127248A1 PCT/CN2017/119509 CN2017119509W WO2019127248A1 WO 2019127248 A1 WO2019127248 A1 WO 2019127248A1 CN 2017119509 W CN2017119509 W CN 2017119509W WO 2019127248 A1 WO2019127248 A1 WO 2019127248A1
Authority
WO
WIPO (PCT)
Prior art keywords
data unit
protocol data
transmission opportunity
new data
available transmission
Prior art date
Application number
PCT/CN2017/119509
Other languages
English (en)
French (fr)
Inventor
江小威
赵群
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US16/771,214 priority Critical patent/US11271684B2/en
Priority to CN201780002371.5A priority patent/CN108401482B/zh
Priority to PCT/CN2017/119509 priority patent/WO2019127248A1/zh
Publication of WO2019127248A1 publication Critical patent/WO2019127248A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data transmission method, a data transmission device, an electronic device, and a computer readable storage medium.
  • the user equipment transmits data to the base station, and may use a bundling method, that is, the number of times K that the base station needs to repeatedly transmit data to the user equipment, and K repeated transmission opportunities.
  • the user equipment repeatedly transmits data K times in K repeated transmission opportunities through the same HARQ (Hybrid Automatic Repeat reQuest) process.
  • HARQ Hybrid Automatic Repeat reQuest
  • the first transmission opportunity of the K repeated transmission opportunities indicated by the base station needs to be started to transmit data, in this case, if the current K is used.
  • a non-first transmission opportunity in a transmission opportunity acquires new data to be transmitted, it needs to wait until the first transmission opportunity of the next K transmission opportunities indicated by the base station to transmit data, resulting in a large transmission of new data. Delay.
  • embodiments of the present disclosure propose a data transmission method, a data transmission device, an electronic device, and a computer readable storage medium to solve the technical problems in the related art.
  • a data transmission method comprising:
  • the uplink resource allocation information is used to indicate a number of times, a period, a start time, a HARQ information, and a corresponding HARQ process of the repeated transmission opportunity
  • the redundancy version The sequence is for indicating an available transmission opportunity in the repeated transmission opportunity
  • Protocol data unit If new data needs to be transmitted, from each of the available transmission opportunities, from each of the available transmission opportunities, an attempt is made to acquire a medium access control layer generated from the new data.
  • the protocol data unit is obtained, indicating, according to the number of times, the period, and the start time, that the HARQ process starts from an available transmission opportunity corresponding to the acquisition of the protocol data unit, and the base station is sent to the base station in each of the repeated transmission opportunities. Transmitting the protocol data unit.
  • the uplink resource allocation information is included in an RRC message, and/or included in a message of a physical downlink control channel, and/or included in a random access response message.
  • the uplink resource allocation information is included in an RRC message, where the attempt to acquire a protocol data unit generated by the medium access control layer according to the new data includes:
  • the HARQ information includes a new data indication field, and determining, according to the HARQ information, whether new data needs to be transmitted includes:
  • the protocol data unit includes:
  • a data transmission apparatus comprising:
  • the receiving module is configured to receive uplink resource allocation information and a redundancy version sequence transmitted by the base station, where the uplink resource allocation information is used to indicate the number of times, the period, the start time, the HARQ information, and the corresponding HARQ process of the repeated transmission opportunity
  • the redundancy version sequence is used to indicate an available transmission opportunity in the repeated transmission opportunity
  • a determining module configured to determine whether new data needs to be transmitted according to the HARQ information
  • Attempting to acquire a module configured to, if new data needs to be transmitted, from each of the available transmission opportunities, to obtain a medium access control layer, based on the first available transmission opportunity of the available transmission opportunities a protocol data unit generated by the new data;
  • a transmission module configured to, when the attempted acquisition module acquires a protocol data unit, instruct the HARQ process to start from an available transmission opportunity corresponding to the acquisition of the protocol data unit according to the number, period, and start time Transmitting the protocol data unit to the base station in each of the repeated transmission opportunities.
  • the uplink resource allocation information is included in an RRC message, and/or included in a message of a physical downlink control channel, and/or included in a random access response message.
  • the uplink resource allocation information is included in an RRC message
  • the attempt to acquire module is configured to attempt to acquire a protocol data unit of the medium access control from the multiplexing and assembling entity.
  • the HARQ information includes a new data indication field
  • the determining module is configured to determine whether the new data indication field corresponding to the historically nearest HARQ process is a flip relationship, and if the relationship is a flip relationship , to determine the need to transfer new data.
  • the transmission module includes:
  • An opportunity determination sub-module configured to determine an available transmission opportunity corresponding to the acquisition of the protocol data unit
  • a number determining submodule configured to determine, according to the available transmission opportunity and the number of times of the repeated transmission opportunity when the protocol data unit is acquired, the start of the available transmission opportunity corresponding to the acquisition of the protocol data unit The number of times the transmission opportunity is repeated;
  • a transmission submodule configured to instruct the HARQ process to start from an available transmission opportunity corresponding to the acquisition of the protocol data unit according to the period and the start time, to the said repeated transmission opportunity in the remaining number of times
  • the base station transmits the protocol data unit.
  • an electronic device comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the uplink resource allocation information is used to indicate a number of times, a period, a start time, a HARQ information, and a corresponding HARQ process of the repeated transmission opportunity
  • the redundancy version The sequence is for indicating an available transmission opportunity in the repeated transmission opportunity
  • Protocol data unit If new data needs to be transmitted, from each of the available transmission opportunities, from each of the available transmission opportunities, an attempt is made to acquire a medium access control layer generated from the new data.
  • the protocol data unit is obtained, indicating, according to the number of times, the period, and the start time, that the HARQ process starts from an available transmission opportunity corresponding to the acquisition of the protocol data unit, and the base station is sent to the base station in each of the repeated transmission opportunities. Transmitting the protocol data unit.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the following steps:
  • the uplink resource allocation information is used to indicate a number of times, a period, a start time, a HARQ information, and a corresponding HARQ process of the repeated transmission opportunity
  • the redundancy version The sequence is for indicating an available transmission opportunity in the repeated transmission opportunity
  • Protocol data unit If new data needs to be transmitted, from each of the available transmission opportunities, from each of the available transmission opportunities, an attempt is made to acquire a medium access control layer generated from the new data.
  • the protocol data unit is obtained, indicating, according to the number of times, the period, and the start time, that the HARQ process starts from an available transmission opportunity corresponding to the acquisition of the protocol data unit, and the base station is sent to the base station in each of the repeated transmission opportunities. Transmitting the protocol data unit.
  • the base station can receive the protocol data unit containing the new data in time, and reduce the delay of transmitting the new data.
  • FIG. 1 is a schematic flow chart of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic flow chart of another data transmission method according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic flow chart of still another data transmission method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flow chart of still another data transmission method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic block diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic block diagram of a transmission module according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic block diagram of an apparatus for transmitting data, according to an exemplary embodiment.
  • FIG. 1 is a schematic flow chart of a data transmission method according to an embodiment of the present disclosure.
  • the data transmission method shown in this embodiment can be applied to user equipment such as a mobile phone, a tablet computer, a wearable device, and the like.
  • the data transmission method shown in this embodiment may include the following steps.
  • step S1 the uplink resource allocation information and the redundancy version sequence transmitted by the base station are received, where the uplink resource allocation information is used to indicate the number of times, the period, the start time, the HARQ information, and the corresponding HARQ process of the repeated transmission opportunity.
  • the redundancy version sequence is used to indicate available transmission opportunities in the repeated transmission opportunities.
  • the uplink resource allocation information may be a UL grant, and the base station may transmit the uplink resource allocation information to the user equipment through the PDCCH (Physical Downlink Control Channel), or may be carried by the random access response message.
  • the uplink resource allocation information may also carry the uplink resource allocation information by using an RRC (Radio Resource Control) message.
  • RRC Radio Resource Control
  • the redundancy version sequence may be configured by the base station to the user equipment through the RRC message, and the data transmitted in the repeated transmission opportunity may include redundant bits, and different repeated transmission opportunities may be generated according to different generation manners. Redundant bits in the corresponding data, wherein the redundancy version corresponds to the above generation manner, and the plurality of redundancy versions may constitute a redundancy version sequence. According to this embodiment, the available transmission opportunities in the repeated transmission opportunities may also be determined according to the redundancy version sequence.
  • the redundancy version sequence is s1-0231, according to which the available transmission opportunity in the repeated transmission opportunity can be determined as the first repeated transmission opportunity.
  • the redundancy version sequence is s2-0303, according to which the sequence of available transmissions in the repeated transmission opportunity can be determined to be an odd number of repeated transmission opportunities, for example, the number of repeated transmission opportunities is 8 times, then the available transmission opportunities are 8 The first repeated transmission opportunity, the third repeated transmission opportunity, the fifth repeated transmission opportunity, and the seventh repeated transmission opportunity in the secondary transmission opportunity.
  • the redundancy version sequence is s3-0000, according to the redundancy version sequence, it can be determined that in the case that the number of repeated transmission opportunities is eight, the available transmission opportunity is the eighth repeated transmission opportunity among the eight repeated transmission opportunities. In the case where the number of repeated transmission opportunities is less than 8 times, the available transmission opportunities may be each repeated transmission opportunity.
  • the number of repeated transmission opportunities is the number of repeated transmission opportunities in a bundle transmission.
  • step S2 it is determined whether new data needs to be transmitted based on the HARQ information.
  • the HARQ information may include an NDI (New Data Indicator), and the NDI corresponding to each HARQ process is configured for each HARQ process initiated by the user equipment, and the user equipment may store the NDI corresponding to each HARQ process, and When a new HARQ process is initiated, it is determined whether the new HARQ process is the same as the NDI corresponding to the last HARQ process initiated in the past. If different, it may be determined that new data needs to be transmitted.
  • NDI New Data Indicator
  • the HARQ information may include other NDI information, and may also include other content for indicating whether new data needs to be transmitted, and may be set as needed.
  • step S3 if new data needs to be transmitted, starting from the first available transmission opportunity in the available transmission opportunity, attempting to acquire the medium access control layer according to each available transmission opportunity in the available transmission opportunity New data generated protocol data unit.
  • the MAC (Media Access Control) layer may generate a PDU (Protocol Data Unit) according to the new data in the case where it is determined that new data needs to be transmitted. In turn, starting from the first available transmission opportunity, an attempt is made to acquire a PDU generated by the MAC layer in each of the available transmission opportunities.
  • PDU Protocol Data Unit
  • step S4 if the protocol data unit is acquired, according to the number of times, the period, and the start time, the HARQ process is instructed to start from the available transmission opportunity corresponding to the acquisition of the protocol data unit, in each of the repeated transmission opportunities. Transmitting the protocol data unit to the base station.
  • the protocol data unit if the protocol data unit is obtained, it may be determined that new data needs to be transmitted in the corresponding available transmission opportunity when the protocol data unit is acquired, so that according to the number of times, the period, and the start time, Instructing the HARQ process to begin transmitting the protocol data unit to the base station in each of the repeated transmission opportunities starting from an available transmission opportunity corresponding to the acquisition of the protocol data unit.
  • the start time and the end time of each of the repeated transmission opportunities after the corresponding available transmission opportunity when the protocol data unit is acquired may be determined according to the period and the start time. Based on the number of times, the remaining number of repeated transmission opportunities after the corresponding available transmission opportunity when the protocol data unit is acquired may be determined.
  • one bundle transmission includes 8 repeated transmission opportunities, and the corresponding available transmission opportunity when acquiring the protocol data unit is the third repeated transmission opportunity among 8 repeated transmission opportunities.
  • the first repeated transmission opportunity in the repeated transmission opportunity corresponding to the bundle transmission after the current bundle transmission is required to transmit the protocol data unit, which results in the transmission of the protocol data unit later.
  • the time corresponding to the repeated transmission opportunity is at least 5 times, and according to an embodiment of the present disclosure, the protocol data unit can be transmitted to the base station starting from the 3rd repeated transmission opportunity of the current bundle transmission.
  • the uplink resource allocation information is included in an RRC message, and/or included in a message of a physical downlink control channel, and/or included in a random access response message.
  • the base station may transmit the uplink resource allocation information to the user equipment by using the RRC message, or may transmit the uplink resource allocation information to the user equipment by using the physical downlink control channel, and may also pass the random access response to the user equipment.
  • the random access response message carries uplink resource allocation information.
  • the base station may transmit the uplink resource allocation information to the user equipment in any one of the foregoing three manners, or may transmit the uplink resource allocation information to the user equipment in any two of the foregoing manners, and may also pass the foregoing.
  • Each of the above three modes transmits uplink resource allocation information to the user equipment. It can be configured as needed.
  • the uplink resource allocation information is included in an RRC message, and the attempt to acquire a protocol data unit generated by the medium access control layer according to the new data includes:
  • step S31 an attempt is made to obtain a protocol data unit of medium access control from the multiplexing and assembling entity.
  • the HARQ entity in the user equipment may process the user equipment according to the uplink resource allocation information. Determining the HARQ process indicated by the uplink resource allocation information, and assembling the data of the RRC logical channels (including the new data to be transmitted) into the protocol data unit by using a multiplexing and assembly entity, thereby Starting from the first available transmission opportunity in the available transmission opportunities, attempting to acquire a protocol data unit of medium access control from the multiplexing and assembling entity at each of the available transmission opportunities.
  • FIG. 3 is a schematic flow chart of still another data transmission method according to an embodiment of the present disclosure.
  • the HARQ information includes a new data indication field, and determining, according to the HARQ information, whether new data needs to be transmitted includes:
  • step S21 it is determined whether the new data indication field corresponding to the historically nearest HARQ process is an inversion relationship, and if it is an inversion relationship, it is determined that new data needs to be transmitted.
  • the data since the data is transmitted through the HARQ technology, specifically, the data is repeatedly transmitted through multiple HARQ processes, it may be set that when the data is repeatedly transmitted, the new data indication field corresponding to the HARQ process is 0, when new data is transmitted, The new data indication field corresponding to the HARQ process is 1 (it is required that the new data indication field may include one character or multiple characters), and then the HARQ process corresponding to the last repeated transmission of data is repeated when data is repeatedly transmitted.
  • the new data indicates field 0, and the new data indicating field 1 corresponding to the HARQ process of the first repeated transmission of data in the repeated transmission of the new data indicates that the field 1 is a flip relationship, whereby it is convenient to determine whether new data needs to be transmitted. .
  • FIG. 4 is a schematic flow chart of still another data transmission method according to an embodiment of the present disclosure.
  • the indicating that the HARQ process starts from the available transmission opportunity corresponding to the acquisition of the protocol data unit according to the number of times, the period, and the start time includes:
  • step S41 it is determined that the available transmission opportunity corresponding to the acquisition of the protocol data unit is determined.
  • step S42 determining, according to the available transmission opportunity and the number of times of the repeated transmission opportunity when the protocol data unit is acquired, the repeated transmission opportunity starting from the available transmission opportunity corresponding to the acquisition of the protocol data unit The remaining number of times.
  • the number of remaining times may vary depending on the number of available transmission opportunities and the number of repeated transmission opportunities corresponding to the acquisition of the protocol data unit.
  • the available transmission opportunity is the third repeated transmission opportunity in the repeated transmission opportunity, then in the case that one bundle transmission includes 8 repeated transmission opportunities, the remaining number of times is 6 times, and in one bundle transmission includes 6 repeated transmissions. In the case of an opportunity, the remaining number is four times.
  • step S43 according to the period and the start time, indicating that the HARQ process starts from an available transmission opportunity corresponding to the acquisition of the protocol data unit, and transmits to the base station in the repeated transmission opportunity of the remaining number of times.
  • the protocol data unit
  • the start time and the end time of each repeated transmission opportunity in the repetitive transmission opportunity of the remaining number of times may be determined, thereby determining the available transmission corresponding to the acquisition of the protocol data unit.
  • the start time and end time of the opportunity, and the start time and end time of each repeated transmission opportunity after the available transmission opportunity corresponding to the protocol data unit is obtained, according to which the remaining number of repeated transmission opportunities are determined.
  • the present disclosure also provides an embodiment of a data transmission device.
  • FIG. 5 is a schematic block diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • the data transmission device shown in this embodiment can be applied to user equipment such as a mobile phone, a tablet computer, a wearable device, and the like.
  • the data transmission apparatus shown in this embodiment may include the following steps.
  • the receiving module 1 is configured to receive uplink resource allocation information and a redundancy version sequence transmitted by the base station, where the uplink resource allocation information is used to indicate the number of times, the period, the start time, the HARQ information, and the corresponding HARQ of the repeated transmission opportunity. a process, the redundancy version sequence is used to indicate an available transmission opportunity in the repeated transmission opportunity;
  • Determining module 2 configured to determine, according to the HARQ information, whether new data needs to be transmitted;
  • Attempting to acquire module 3 configured to attempt to acquire a medium access control layer for each of the available transmission opportunities from the first available transmission opportunity of the available transmission opportunities if new data needs to be transmitted a protocol data unit generated from the new data;
  • the transmission module 4 is configured to, when the attempted acquisition module 3 acquires the protocol data unit, instruct the HARQ process to obtain an available transmission corresponding to the protocol data unit according to the number of times, the period, and the start time.
  • the opportunity begins by transmitting the protocol data unit to the base station in each of the repeated transmission opportunities.
  • the uplink resource allocation information is included in an RRC message, and/or included in a message of a physical downlink control channel, and/or included in a random access response message.
  • the uplink resource allocation information is included in an RRC message
  • the attempt to acquire module is configured to attempt to acquire a protocol data unit of the medium access control from the multiplexing and assembling entity.
  • the HARQ information includes a new data indication field
  • the determining module is configured to determine whether the new data indication field corresponding to the historically nearest HARQ process is a flip relationship, and if the relationship is a flip relationship , to determine the need to transfer new data.
  • FIG. 6 is a schematic block diagram of a transmission module according to an embodiment of the present disclosure. As shown in FIG. 6, on the basis of the embodiment shown in FIG. 5, the transmission module 4 includes:
  • the opportunity determination sub-module 41 is configured to determine an available transmission opportunity corresponding to the acquisition of the protocol data unit
  • the number determining sub-module 42 is configured to determine, according to the available transmission opportunity and the number of times of the repeated transmission opportunity when the protocol data unit is acquired, the start of the available transmission opportunity corresponding to the acquisition of the protocol data unit Describe the remaining number of repeated transmission opportunities;
  • the transmission sub-module 43 is configured to, according to the period and the start time, instruct the HARQ process to start from an available transmission opportunity corresponding to the acquisition of the protocol data unit, in the repeated transmission opportunity of the remaining number of times
  • the base station transmits the protocol data unit.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.
  • An embodiment of the present disclosure also provides an electronic device, including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the uplink resource allocation information is used to indicate a number of times, a period, a start time, a HARQ information, and a corresponding HARQ process of the repeated transmission opportunity
  • the redundancy version The sequence is for indicating an available transmission opportunity in the repeated transmission opportunity
  • Protocol data unit If new data needs to be transmitted, from each of the available transmission opportunities, from each of the available transmission opportunities, an attempt is made to acquire a medium access control layer generated from the new data.
  • the protocol data unit is obtained, indicating, according to the number of times, the period, and the start time, that the HARQ process starts from an available transmission opportunity corresponding to the acquisition of the protocol data unit, and the base station is sent to the base station in each of the repeated transmission opportunities. Transmitting the protocol data unit.
  • Embodiments of the present disclosure also propose a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the following steps:
  • the uplink resource allocation information is used to indicate a number of times, a period, a start time, a HARQ information, and a corresponding HARQ process of the repeated transmission opportunity
  • the redundancy version The sequence is for indicating an available transmission opportunity in the repeated transmission opportunity
  • Protocol data unit If new data needs to be transmitted, from each of the available transmission opportunities, from each of the available transmission opportunities, an attempt is made to acquire a medium access control layer generated from the new data.
  • the protocol data unit is obtained, indicating, according to the number, the period, and the start time, that the HARQ process starts from an available transmission opportunity corresponding to the acquisition of the protocol data unit, and the base station is sent to the base station in each of the repeated transmission opportunities. Transmitting the protocol data unit.
  • FIG. 7 is a schematic block diagram of an apparatus 700 for transmitting data, according to an exemplary embodiment.
  • device 700 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a gaming console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • apparatus 700 can include one or more of the following components: processing component 702, memory 704, power component 706, multimedia component 708, audio component 710, input/output (I/O) interface 712, sensor component 714, And a communication component 716.
  • Processing component 702 typically controls the overall operation of device 700, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 702 can include one or more processors 720 to execute instructions to perform all or part of the steps described above.
  • processing component 702 can include one or more modules to facilitate interaction between component 702 and other components.
  • processing component 702 can include a multimedia module to facilitate interaction between multimedia component 708 and processing component 702.
  • Memory 704 is configured to store various types of data to support operation at device 700. Examples of such data include instructions for any application or method operating on device 700, contact data, phone book data, messages, pictures, videos, and the like. Memory 704 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 706 provides power to various components of device 700.
  • Power component 706 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 700.
  • the multimedia component 708 includes a screen between the device 700 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 708 includes a front camera and/or a rear camera. When the device 700 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 710 is configured to output and/or input an audio signal.
  • audio component 710 includes a microphone (MIC) that is configured to receive an external audio signal when device 700 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 704 or transmitted via communication component 716.
  • audio component 710 also includes a speaker for outputting an audio signal.
  • the I/O interface 712 provides an interface between the processing component 702 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 714 includes one or more sensors for providing device 700 with various aspects of status assessment.
  • sensor assembly 714 can detect an open/closed state of device 700, relative positioning of components, such as the display and keypad of device 700, and sensor component 714 can also detect a change in position of one component of device 700 or device 700. The presence or absence of user contact with device 700, device 700 orientation or acceleration/deceleration, and temperature variation of device 700.
  • Sensor assembly 714 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor component 714 can also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 714 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 716 is configured to facilitate wired or wireless communication between device 700 and other devices.
  • the device 700 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 716 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 716 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 700 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the method described in any of the above embodiments.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the method described in any of the above embodiments.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 704 comprising instructions executable by processor 720 of apparatus 700 to perform the above method.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开的实施例提出了数据传输方法,包括:接收基站传输的上行资源分配信息和冗余版本序列;根据HARQ信息确定是否需要传输新的数据;若需要传输新的数据,从可用传输机会中第一个可用传输机会起,在可用传输机会中的每个可用传输机会,尝试获取介质访问控制层根据新的数据生成的协议数据单元;若获取到协议数据单元,根据次数、周期和起始时间,指示HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个重复传输机会中向基站传输协议数据单元。根据公开的实施例,可以保证在需要传输新的数据时,基站能够及时地接收到包含新的数据的协议数据单元,降低传输新的数据的延迟。

Description

数据传输方法和装置 技术领域
本申请涉及通信技术领域,具体而言,涉及数据传输方法、数据传输装置、电子设备和计算机可读存储介质。
背景技术
在NR(New Radio,新空口)中,用户设备向基站传输数据,可以采用bundling(打捆传输)方式,也即基站配置给用户设备需要重复传输数据的次数K,以及K个重复传输机会,用户设备通过相同的HARQ(混合自动重传请求,Hybrid Automatic Repeat reQuest)进程,在K个重复传输机会中,重复传输数据K次。
在相关技术中,用户设备在传输新的数据时,若采用bundling方式,需要从基站指示的K个重复传输机会中第一个传输机会开始传输数据,在这种情况下,若在当前的K个传输机会中的非第一个传输机会获取到新的数据要传输时,就需要等到基站指示的下K个传输机会中的第一个传输机会才能传输数据,导致传输新的数据存在较大时延。
发明内容
有鉴于此,本公开的实施例提出了数据传输方法、数据传输装置、电子设备和计算机可读存储介质,以解决相关技术中的技术问题。
根据公开的实施例的第一方面,提出数据传输方法,包括:
接收基站传输的上行资源分配信息和冗余版本序列,其中,所述上行资源分配信息用于指示重复传输机会的次数、周期、起始时间、HARQ信息和对应的HARQ进程,所述冗余版本序列用于指示所述重复传输机会中的可用传输机会;
根据所述HARQ信息确定是否需要传输新的数据;
若需要传输新的数据,从所述可用传输机会中第一个可用传输机会起,在所述 可用传输机会中的每个可用传输机会,尝试获取介质访问控制层根据所述新的数据生成的协议数据单元;
若获取到协议数据单元,根据所述次数、周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元。
可选地,所述上行资源分配信息包含于RRC消息中,和/或包含于物理下行控制信道的消息中,和/或包含于随机接入响应消息中。
可选地,所述上行资源分配信息包含于RRC消息中,所述尝试获取介质访问控制层根据所述新的数据生成的协议数据单元包括:
从复用与组装实体中尝试获取介质访问控制的协议数据单元。
可选地,所述HARQ信息包括新数据指示字段,所述根据所述HARQ信息确定是否需要传输新的数据包括:
确定所述新数据指示字段与历史上最近的HARQ进程对应的新数据指示字段是否为翻转关系,若为翻转关系,确定需要传输新的数据。
可选地,所述根据所述次数、周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元包括:
确定获取到协议数据单元时对应的可用传输机会;
根据所述获取到协议数据单元时对应的可用传输机会和所述重复传输机会的次数,确定从所述获取到协议数据单元时对应的可用传输机会开始的所述重复传输机会的剩余次数;
根据所述周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在所述剩余次数的所述重复传输机会中向所述基站传输所述协议数据单元。
根据公开的实施例的第二方面,提出一种数据传输装置,包括:
接收模块,被配置为接收基站传输的上行资源分配信息和冗余版本序列,其中,所述上行资源分配信息用于指示重复传输机会的次数、周期、起始时间、HARQ信息和对应的HARQ进程,所述冗余版本序列用于指示所述重复传输机会中的可用传输机 会;
确定模块,被配置为根据所述HARQ信息确定是否需要传输新的数据;
尝试获取模块,被配置为若需要传输新的数据,从所述可用传输机会中第一个可用传输机会起,在所述可用传输机会中的每个可用传输机会,尝试获取介质访问控制层根据所述新的数据生成的协议数据单元;
传输模块,被配置为在所述尝试获取模块获取到协议数据单元的情况下,根据所述次数、周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元。
可选地,所述上行资源分配信息包含于RRC消息中,和/或包含于物理下行控制信道的消息中,和/或包含于随机接入响应消息中。
可选地,所述上行资源分配信息包含于RRC消息中,所述尝试获取模块被配置为从复用与组装实体中尝试获取介质访问控制的协议数据单元。
可选地,所述HARQ信息包括新数据指示字段,所述确定模块被配置为确定所述新数据指示字段与历史上最近的HARQ进程对应的新数据指示字段是否为翻转关系,若为翻转关系,确定需要传输新的数据。
可选地,所述传输模块包括:
机会确定子模块,被配置为确定获取到协议数据单元时对应的可用传输机会;
次数确定子模块,被配置为根据所述获取到协议数据单元时对应的可用传输机会和所述重复传输机会的次数,确定从所述获取到协议数据单元时对应的可用传输机会开始的所述重复传输机会的剩余次数;
传输子模块,被配置为根据所述周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在所述剩余次数的所述重复传输机会中向所述基站传输所述协议数据单元。
根据公开的实施例的第三方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收基站传输的上行资源分配信息和冗余版本序列,其中,所述上行资源分配信息用于指示重复传输机会的次数、周期、起始时间、HARQ信息和对应的HARQ进程,所述冗余版本序列用于指示所述重复传输机会中的可用传输机会;
根据所述HARQ信息确定是否需要传输新的数据;
若需要传输新的数据,从所述可用传输机会中第一个可用传输机会起,在所述可用传输机会中的每个可用传输机会,尝试获取介质访问控制层根据所述新的数据生成的协议数据单元;
若获取到协议数据单元,根据所述次数、周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元。
根据公开的实施例的第四方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
接收基站传输的上行资源分配信息和冗余版本序列,其中,所述上行资源分配信息用于指示重复传输机会的次数、周期、起始时间、HARQ信息和对应的HARQ进程,所述冗余版本序列用于指示所述重复传输机会中的可用传输机会;
根据所述HARQ信息确定是否需要传输新的数据;
若需要传输新的数据,从所述可用传输机会中第一个可用传输机会起,在所述可用传输机会中的每个可用传输机会,尝试获取介质访问控制层根据所述新的数据生成的协议数据单元;
若获取到协议数据单元,根据所述次数、周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元。
根据上述实施例可知,通过从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元,可以保证在需要传输新的数据时,基站能够及时地接收到包含新的数据的协议数据单元,降低传输新的数据的延迟。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开一个实施例示出的一种数据传输方法的示意流程图。
图2是根据本公开一个实施例示出的另一种数据传输方法的示意流程图。
图3是根据本公开一个实施例示出的又一种数据传输方法的示意流程图。
图4是根据本公开一个实施例示出的又一种数据传输方法的示意流程图。
图5是根据本公开一个实施例示出的一种数据传输装置的示意框图。
图6是根据本公开一个实施例示出的一种传输模块的示意框图。
图7是根据一示例性实施例示出的一种用于传输数据的装置的示意框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是根据本公开一个实施例示出的一种数据传输方法的示意流程图。本实施例所示的数据传输方法可以应用于用户设备,例如手机、平板电脑、可穿戴设备等。
如图1所示,本实施例所示的数据传输方法可以包括以下步骤。
在步骤S1中,接收基站传输的上行资源分配信息和冗余版本序列,其中,所述上行资源分配信息用于指示重复传输机会的次数、周期、起始时间、HARQ信息和对应的HARQ进程,所述冗余版本序列用于指示所述重复传输机会中的可用传输机会。
在一个实施例中,上行资源分配信息可以是UL grant,而基站既可以通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)向用户设备传输上 行资源分配信息,也可以通过随机接入响应消息携带上行资源分配信息,还可以通过RRC(Radio Resource Control,无线资源控制)消息携带上行资源分配信息。
在一个实施例中,冗余版本序列可以由基站通过RRC消息配置给用户设备,在重复传输机会中传输的数据中,可以包含冗余比特,可以根据不同的生成方式,来生成不同重复传输机会对应的数据中的冗余比特,其中,冗余版本对应于上述生成方式,多个冗余版本可以构成冗余版本序列。根据本实施例,还可以根据冗余版本序列确定所述重复传输机会中的可用传输机会。
例如冗余版本序列为s1-0231,根据该冗余版本序列可以确定重复传输机会中的可用传输机会为第一个重复传输机会。
例如冗余版本序列为s2-0303,根据该冗余版本序列可以确定重复传输机会中的可用传输机会为奇数次重复传输机会,例如重复传输机会的次数为8次,那么可用传输机会为这8次重复传输机会中的第1次重复传输机会、第3次重复传输机会、第5次重复传输机会和第7次重复传输机会。
例如冗余版本序列为s3-0000,根据该冗余版本序列可以确定在重复传输机会的次数为8次的情况下,可用传输机会为这8次重复传输机会中的第8次重复传输机会,在重复传输机会的次数小于8次的情况下,可用传输机会可以是每次重复传输机会。
在一个实施例中,所述重复传输机会的次数为一次打捆传输中重复传输机会的次数。
在步骤S2中,根据所述HARQ信息确定是否需要传输新的数据。
在一个实施例中,HARQ信息可以包括NDI(New data indicator,新数据指示字段),针对用户设备发起的每个HARQ进程,分别对应一个NDI,用户设备可以存储每个HARQ进程对应的NDI,并在发起新的HARQ进程时,确定新的HARQ进程与过去最近一次发起的HARQ进程对应的NDI是否相同,若不同,则可以确定需要传输新的数据。
当然,HARQ信息除了可以包括NDI,也可以包括其他用于指示是否需要传输新的数据的内容,具体可以根据需要进行设置。
在步骤S3中,若需要传输新的数据,从所述可用传输机会中第一个可用传输机会起,在所述可用传输机会中的每个可用传输机会,尝试获取介质访问控制层根据 所述新的数据生成的协议数据单元。
在一个实施例中,在确定需要传输新的数据的情况下,MAC(Media Access Control,介质访问控制)层可以根据新的数据生成PDU(Protocol Data Unit,协议数据单元)。进而可以从第一个可用传输机会开始,在每个可用传输机会中尝试获取MAC层生成的PDU。
在步骤S4中,若获取到协议数据单元,根据所述次数、周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元。
在一个实施例中,若获取到所述协议数据单元,可以确定在获取到协议数据单元时对应的可用传输机会中存在新的数据需要传输,从而可以根据所述次数、周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元。
其中,根据所述周期和所述起始时间可以确定在获取到协议数据单元时对应的可用传输机会后,每个所述重复传输机会的起始时间和结束时间。根据所述次数可以确定在获取到协议数据单元时对应的可用传输机会后的重复传输机会的剩余次数。
例如一次打捆传输包含8次重复传输机会,获取到协议数据单元时对应的可用传输机会为8次重复传输机会中的第3次重复传输机会。在这种情况下,在相关技术中,需要在当前打捆传输之后的打捆传输对应的重复传输机会中的第1次重复传输机会来传输协议数据单元,这就导致协议数据单元的传输晚了至少5次重复传输机会对应的时间,而根据本公开的实施例,则可以从当前打捆传输的第3次重复传输机会开始向基站传输协议数据单元。
可见,通过从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元,可以保证在需要传输新的数据时,基站能够及时地接收到包含新的数据的协议数据单元,降低传输新的数据的延迟。
可选地,所述上行资源分配信息包含于RRC消息中,和/或包含于物理下行控制信道的消息中,和/或包含于随机接入响应消息中。
在一个实施例中,基站可以通过RRC消息向用户设备传输上行资源分配信息,也可以通过物理下行控制信道向用户设备传输上行资源分配信息,还可以在向用户设备发送随机接入响应时,通过随机接入响应消息携带上行资源分配信息。
需要说明的是,基站可以通过上述三种方式中任意一种方式向用户设备传输上行资源分配信息,也可以通过上述三种方式中任意两种方式向用户设备传输上行资源分配信息,还可以通过上述三种方式中的每种方式向用户设备传输上行资源分配信息。具体可以根据需要进行配置。
图2是根据本公开一个实施例示出的另一种数据传输方法的示意流程图。如图2所示,在图1所示实施例的基础上,所述上行资源分配信息包含于RRC消息中,所述尝试获取介质访问控制层根据所述新的数据生成的协议数据单元包括:
在步骤S31中,从复用与组装实体中尝试获取介质访问控制的协议数据单元。
在一个实施例中,若上行资源分配信息包含于RRC消息中,也即基站通过RRC消息向用户设备传输上行资源分配信息,用户设备中的HARQ实体可以根据上行资源分配信息,在用户设备的进程中确定上行资源分配信息所指示的HARQ进程,并通过复用与组装实体(Multiplexing and assembly entity)把RRC各个逻辑信道的数据(包含需要传输的新的数据)组装成协议数据单元,进而可以从所述可用传输机会中第一个可用传输机会起,在所述可用传输机会中的每个可用传输机会,从复用与组装实体中尝试获取介质访问控制的协议数据单元。
图3是根据本公开一个实施例示出的又一种数据传输方法的示意流程图。如图3所示,在图1所示实施例的基础上,所述HARQ信息包括新数据指示字段,所述根据所述HARQ信息确定是否需要传输新的数据包括:
在步骤S21中,确定所述新数据指示字段与历史上最近的HARQ进程对应的新数据指示字段是否为翻转关系,若为翻转关系,确定需要传输新的数据。
在一个实施例中,由于通过HARQ技术传输数据具体是通过多个HARQ进程对数据重复传输,可以设置当重复传输数据时,HARQ进程对应的新数据指示字段为0,当传输新的数据时,HARQ进程对应的新数据指示字段为1(需要说明的是,新数据指示字段可以包括一个字符,也可以包括多个字符),那么在重复传输数据时,最后一次重复传输数据的HARQ进程对应的新数据指示字段0,与接下来对于新的数据的重复传输中第一次重复传输数据的HARQ进程对应的新数据指示字段1为翻转关系,据此,可以方便地确定是否需要传输新的数据。
图4是根据本公开一个实施例示出的又一种数据传输方法的示意流程图。如图4所示,在图1所示实施例的基础上,所述根据所述次数、周期和起始时间,指示所 述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元包括:
在步骤S41中,确定获取到协议数据单元时对应的可用传输机会。
在步骤S42中,根据所述获取到协议数据单元时对应的可用传输机会和所述重复传输机会的次数,确定从所述获取到协议数据单元时对应的可用传输机会开始的所述重复传输机会的剩余次数。
在一个实施例中,剩余次数根据获取到协议数据单元时对应的可用传输机会和重复传输机会的次数的不同,可以有所不同。例如可用传输机会为重复传输机会中的第3次重复传输机会,那么在一次打捆传输包含8次重复传输机会的情况下,剩余次数为6次,而在一次打捆传输包含6次重复传输机会的情况下,剩余次数则为4次。
在步骤S43中,根据所述周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在所述剩余次数的所述重复传输机会中向所述基站传输所述协议数据单元。
在一个实施例中,根据所述周期和起始时间,可以确定剩余次数的重复传输机会中每个重复传输机会的起始时间和结束时间,进而可以确定获取到协议数据单元时对应的可用传输机会的起始时间和结束时间,以及获取到协议数据单元时对应的可用传输机会之后的每个重复传输机会的起始时间和结束时间,据此,也就确定了剩余次数的重复传输机会中每个传输机会的起始时间和结束时间,从而可以在剩余次数的重复传输机会中每个传输机会中,从起始时间到结束时间向基站传输所述协议数据单元。
与前述的数据传输方法的实施例相对应,本公开还提供了数据传输装置的实施例。
图5是根据本公开一个实施例示出的一种数据传输装置的示意框图。本实施例所示的数据传输装置可以应用于用户设备,例如手机、平板电脑、可穿戴设备等。
如图5所示,本实施例所示的数据传输装置可以包括以下步骤。
接收模块1,被配置为接收基站传输的上行资源分配信息和冗余版本序列,其中,所述上行资源分配信息用于指示重复传输机会的次数、周期、起始时间、HARQ信息和对应的HARQ进程,所述冗余版本序列用于指示所述重复传输机会中的可用传输机会;
确定模块2,被配置为根据所述HARQ信息确定是否需要传输新的数据;
尝试获取模块3,被配置为若需要传输新的数据,从所述可用传输机会中第一个可用传输机会起,在所述可用传输机会中的每个可用传输机会,尝试获取介质访问控制层根据所述新的数据生成的协议数据单元;
传输模块4,被配置为在所述尝试获取模块3获取到协议数据单元的情况下,根据所述次数、周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元。
可选地,所述上行资源分配信息包含于RRC消息中,和/或包含于物理下行控制信道的消息中,和/或包含于随机接入响应消息中。
可选地,所述上行资源分配信息包含于RRC消息中,所述尝试获取模块被配置为从复用与组装实体中尝试获取介质访问控制的协议数据单元。
可选地,所述HARQ信息包括新数据指示字段,所述确定模块被配置为确定所述新数据指示字段与历史上最近的HARQ进程对应的新数据指示字段是否为翻转关系,若为翻转关系,确定需要传输新的数据。
图6是根据本公开一个实施例示出的一种传输模块的示意框图。如图6所示,在图5所示实施例的基础上,所述传输模块4包括:
机会确定子模块41,被配置为确定获取到协议数据单元时对应的可用传输机会;
次数确定子模块42,被配置为根据所述获取到协议数据单元时对应的可用传输机会和所述重复传输机会的次数,确定从所述获取到协议数据单元时对应的可用传输机会开始的所述重复传输机会的剩余次数;
传输子模块43,被配置为根据所述周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在所述剩余次数的所述重复传输机会中向所述基站传输所述协议数据单元。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分 离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出了一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收基站传输的上行资源分配信息和冗余版本序列,其中,所述上行资源分配信息用于指示重复传输机会的次数、周期、起始时间、HARQ信息和对应的HARQ进程,所述冗余版本序列用于指示所述重复传输机会中的可用传输机会;
根据所述HARQ信息确定是否需要传输新的数据;
若需要传输新的数据,从所述可用传输机会中第一个可用传输机会起,在所述可用传输机会中的每个可用传输机会,尝试获取介质访问控制层根据所述新的数据生成的协议数据单元;
若获取到协议数据单元,根据所述次数、周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元。
本公开的实施例还提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
接收基站传输的上行资源分配信息和冗余版本序列,其中,所述上行资源分配信息用于指示重复传输机会的次数、周期、起始时间、HARQ信息和对应的HARQ进程,所述冗余版本序列用于指示所述重复传输机会中的可用传输机会;
根据所述HARQ信息确定是否需要传输新的数据;
若需要传输新的数据,从所述可用传输机会中第一个可用传输机会起,在所述可用传输机会中的每个可用传输机会,尝试获取介质访问控制层根据所述新的数据生成的协议数据单元;
若获取到协议数据单元,根据所述次数、周期和起始时间,指示所述HARQ 进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元。
图7是根据一示例性实施例示出的一种用于传输数据的装置700的示意框图。例如,装置700可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,装置700可以包括以下一个或多个组件:处理组件702,存储器704,电源组件706,多媒体组件708,音频组件710,输入/输出(I/O)的接口712,传感器组件714,以及通信组件716。
处理组件702通常控制装置700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件702可以包括一个或多个处理器720来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件702可以包括一个或多个模块,便于处理组件702和其他组件之间的交互。例如,处理组件702可以包括多媒体模块,以方便多媒体组件708和处理组件702之间的交互。
存储器704被配置为存储各种类型的数据以支持在装置700的操作。这些数据的示例包括用于在装置700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件706为装置700的各种组件提供电力。电源组件706可以包括电源管理系统,一个或多个电源,及其他与为装置700生成、管理和分配电力相关联的组件。
多媒体组件708包括在所述装置700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件708包括一个前置摄像头和/或后置摄像头。当装置700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系 统或具有焦距和光学变焦能力。
音频组件710被配置为输出和/或输入音频信号。例如,音频组件710包括一个麦克风(MIC),当装置700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器704或经由通信组件716发送。在一些实施例中,音频组件710还包括一个扬声器,用于输出音频信号。
I/O接口712为处理组件702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件714包括一个或多个传感器,用于为装置700提供各个方面的状态评估。例如,传感器组件714可以检测到装置700的打开/关闭状态,组件的相对定位,例如所述组件为装置700的显示器和小键盘,传感器组件714还可以检测装置700或装置700一个组件的位置改变,用户与装置700接触的存在或不存在,装置700方位或加速/减速和装置700的温度变化。传感器组件714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件716被配置为便于装置700和其他设备之间有线或无线方式的通信。装置700可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件716还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述任一实施例所述的方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器704,上述指令可由装置700的处理器720执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (12)

  1. 一种数据传输方法,其特征在于,包括:
    接收基站传输的上行资源分配信息和冗余版本序列,其中,所述上行资源分配信息用于指示重复传输机会的次数、周期、起始时间、HARQ信息和对应的HARQ进程,所述冗余版本序列用于指示所述重复传输机会中的可用传输机会;
    根据所述HARQ信息确定是否需要传输新的数据;
    若需要传输新的数据,从所述可用传输机会中第一个可用传输机会起,在所述可用传输机会中的每个可用传输机会,尝试获取介质访问控制层根据所述新的数据生成的协议数据单元;
    若获取到协议数据单元,根据所述次数、周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元。
  2. 根据权利要求1所述的方法,其特征在于,所述上行资源分配信息包含于RRC消息中,和/或包含于物理下行控制信道的消息中,和/或包含于随机接入响应消息中。
  3. 根据权利要求2所述的方法,其特征在于,所述上行资源分配信息包含于RRC消息中,所述尝试获取介质访问控制层根据所述新的数据生成的协议数据单元包括:
    从复用与组装实体中尝试获取介质访问控制的协议数据单元。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述HARQ信息包括新数据指示字段,所述根据所述HARQ信息确定是否需要传输新的数据包括:
    确定所述新数据指示字段与历史上最近的HARQ进程对应的新数据指示字段是否为翻转关系,若为翻转关系,确定需要传输新的数据。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述根据所述次数、周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元包括:
    确定获取到协议数据单元时对应的可用传输机会;
    根据所述获取到协议数据单元时对应的可用传输机会和所述重复传输机会的次数,确定从所述获取到协议数据单元时对应的可用传输机会开始的所述重复传输机会的剩余次数;
    根据所述周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在所述剩余次数的所述重复传输机会中向所述基站传输所述协议数据单元。
  6. 一种数据传输装置,其特征在于,包括:
    接收模块,被配置为接收基站传输的上行资源分配信息和冗余版本序列,其中,所述上行资源分配信息用于指示重复传输机会的次数、周期、起始时间、HARQ信息和对应的HARQ进程,所述冗余版本序列用于指示所述重复传输机会中的可用传输机会;
    确定模块,被配置为根据所述HARQ信息确定是否需要传输新的数据;
    尝试获取模块,被配置为若需要传输新的数据,从所述可用传输机会中第一个可用传输机会起,在所述可用传输机会中的每个可用传输机会,尝试获取介质访问控制层根据所述新的数据生成的协议数据单元;
    传输模块,被配置为在所述尝试获取模块获取到协议数据单元的情况下,根据所述次数、周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元。
  7. 根据权利要求6所述的装置,其特征在于,所述上行资源分配信息包含于RRC消息中,和/或包含于物理下行控制信道的消息中,和/或包含于随机接入响应消息中。
  8. 根据权利要求7所述的装置,其特征在于,所述上行资源分配信息包含于RRC消息中,所述尝试获取模块被配置为从复用与组装实体中尝试获取介质访问控制的协议数据单元。
  9. 根据权利要求6至8中任一项所述的装置,其特征在于,所述HARQ信息包括新数据指示字段,所述确定模块被配置为确定所述新数据指示字段与历史上最近的HARQ进程对应的新数据指示字段是否为翻转关系,若为翻转关系,确定需要传输新的数据。
  10. 根据权利要求6至8中任一项所述的装置,其特征在于,所述传输模块包括:
    机会确定子模块,被配置为确定获取到协议数据单元时对应的可用传输机会;
    次数确定子模块,被配置为根据所述获取到协议数据单元时对应的可用传输机会和所述重复传输机会的次数,确定从所述获取到协议数据单元时对应的可用传输机会开始的所述重复传输机会的剩余次数;
    传输子模块,被配置为根据所述周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在所述剩余次数的所述重复传输机会中向所述基站传输所述协议数据单元。
  11. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收基站传输的上行资源分配信息和冗余版本序列,其中,所述上行资源分配信息用于指示重复传输机会的次数、周期、起始时间、HARQ信息和对应的HARQ进程,所述冗余版本序列用于指示所述重复传输机会中的可用传输机会;
    根据所述HARQ信息确定是否需要传输新的数据;
    若需要传输新的数据,从所述可用传输机会中第一个可用传输机会起,在所述可用传输机会中的每个可用传输机会,尝试获取介质访问控制层根据所述新的数据生成的协议数据单元;
    若获取到协议数据单元,根据所述次数、周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现以下步骤:
    接收基站传输的上行资源分配信息和冗余版本序列,其中,所述上行资源分配信息用于指示重复传输机会的次数、周期、起始时间、HARQ信息和对应的HARQ进程,所述冗余版本序列用于指示所述重复传输机会中的可用传输机会;
    根据所述HARQ信息确定是否需要传输新的数据;
    若需要传输新的数据,从所述可用传输机会中第一个可用传输机会起,在所述可用传输机会中的每个可用传输机会,尝试获取介质访问控制层根据所述新的数据生成的协议数据单元;
    若获取到协议数据单元,根据所述次数、周期和起始时间,指示所述HARQ进程从获取到协议数据单元时对应的可用传输机会开始,在每个所述重复传输机会中向所述基站传输所述协议数据单元。
PCT/CN2017/119509 2017-12-28 2017-12-28 数据传输方法和装置 WO2019127248A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/771,214 US11271684B2 (en) 2017-12-28 2017-12-28 Data transmission method and apparatus, electronic device, and computer-readable storage medium
CN201780002371.5A CN108401482B (zh) 2017-12-28 2017-12-28 数据传输方法和装置
PCT/CN2017/119509 WO2019127248A1 (zh) 2017-12-28 2017-12-28 数据传输方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/119509 WO2019127248A1 (zh) 2017-12-28 2017-12-28 数据传输方法和装置

Publications (1)

Publication Number Publication Date
WO2019127248A1 true WO2019127248A1 (zh) 2019-07-04

Family

ID=63095109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119509 WO2019127248A1 (zh) 2017-12-28 2017-12-28 数据传输方法和装置

Country Status (3)

Country Link
US (1) US11271684B2 (zh)
CN (1) CN108401482B (zh)
WO (1) WO2019127248A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865534B (zh) 2019-04-30 2021-07-13 大唐移动通信设备有限公司 一种信息传输方法、网络设备及终端
CN113518461B (zh) * 2020-04-10 2023-06-06 大唐移动通信设备有限公司 数据传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215590A (zh) * 2010-04-12 2011-10-12 中兴通讯股份有限公司 一种调度方法及系统
CN103796327A (zh) * 2012-10-29 2014-05-14 中兴通讯股份有限公司 一种子帧调度方法、系统及网络设备、终端
CN106160931A (zh) * 2015-04-09 2016-11-23 电信科学技术研究院 一种信息传输的方法及装置
CN107197528A (zh) * 2016-03-14 2017-09-22 华为技术有限公司 一种资源调度和分配的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8351400B2 (en) * 2004-05-05 2013-01-08 Qualcomm Incorporated Method and apparatus for overhead reduction in an enhanced uplink in a wireless communication system
ES2402621T3 (es) * 2008-09-22 2013-05-07 Nokia Siemens Networks Oy Método y aparato para proporcionar señalización de versiones de redundancia

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215590A (zh) * 2010-04-12 2011-10-12 中兴通讯股份有限公司 一种调度方法及系统
CN103796327A (zh) * 2012-10-29 2014-05-14 中兴通讯股份有限公司 一种子帧调度方法、系统及网络设备、终端
CN106160931A (zh) * 2015-04-09 2016-11-23 电信科学技术研究院 一种信息传输的方法及装置
CN107197528A (zh) * 2016-03-14 2017-09-22 华为技术有限公司 一种资源调度和分配的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Scheduling for HARQ-ACK Bundling for FeMTC", 3GPP TSG-RAN WGI MEETING #88 R1-1701987, vol. RAN WG1, 12 February 2017 (2017-02-12) - 17 February 2017 (2017-02-17), XP051209149 *

Also Published As

Publication number Publication date
CN108401482B (zh) 2021-01-01
CN108401482A (zh) 2018-08-14
US20200304242A1 (en) 2020-09-24
US11271684B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
US11469962B2 (en) Method and apparatus for configuring information of indicating time-frequency position of SSB, and method and apparatus for determining time-frequency position of SSB
KR102486803B1 (ko) 업 링크 전송 방법 및 장치
WO2019183881A1 (zh) 信息上报方法及装置和基于带宽部分的操作方法及装置
WO2019213907A1 (zh) 信息复用传输方法及装置、信息接收方法及装置
US11877280B2 (en) Buffer status report transmission and device
WO2019024087A1 (zh) 获取剩余关键系统信息的公共控制资源集时频资源位置的方法
WO2019134098A1 (zh) 数据传输方法、装置及用户设备
WO2018195752A1 (zh) 缓存状态的上报方法及装置
WO2018141134A1 (zh) 关于网络切片的接入方法及装置
WO2019095140A1 (zh) 剩余关键系统信息的公共控制资源集合的周期信息指示方法
WO2019084879A1 (zh) 剩余关键系统信息的公共资源集合的查找方法及装置
WO2020029035A1 (zh) 上行消息传输方法、装置及存储介质
WO2019218366A1 (zh) 前导码和调度请求的发送方法及装置
WO2019100402A1 (zh) 信息指示方法及装置、基站和用户设备
WO2019024039A1 (zh) 指示多业务数据复用传输的方法及装置、终端和基站
US20210212006A1 (en) Method and device for transmitting synchronization indication information
WO2018201439A1 (zh) 随机接入方法及装置、用户设备和计算机可读存储介质
WO2019127248A1 (zh) 数据传输方法和装置
WO2019218367A1 (zh) 信息传输方法及装置
WO2019153246A1 (zh) 触发保持方法和触发保持装置
WO2019148465A1 (zh) 控制信令的传输方法、终端及基站
WO2018205279A1 (zh) 用于接收和发送系统消息的方法、装置、用户设备及基站
WO2019218365A1 (zh) 消息发送方法、装置和资源分配方法、装置
WO2019144388A1 (zh) 信息指示方法及装置、基站和用户设备
WO2019174049A1 (zh) 系统消息请求调整方法及装置和用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936489

Country of ref document: EP

Kind code of ref document: A1