WO2018195980A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2018195980A1
WO2018195980A1 PCT/CN2017/082571 CN2017082571W WO2018195980A1 WO 2018195980 A1 WO2018195980 A1 WO 2018195980A1 CN 2017082571 W CN2017082571 W CN 2017082571W WO 2018195980 A1 WO2018195980 A1 WO 2018195980A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
indication information
target
target indication
transmission units
Prior art date
Application number
PCT/CN2017/082571
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2017/082571 priority Critical patent/WO2018195980A1/zh
Priority to CN201780000281.2A priority patent/CN107223362A/zh
Priority to EP17906951.3A priority patent/EP3618549A4/en
Publication of WO2018195980A1 publication Critical patent/WO2018195980A1/zh
Priority to US16/665,714 priority patent/US20200059919A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies

Definitions

  • the present disclosure relates to the field of wireless communications, and in particular, to a data transmission method and apparatus.
  • a wireless communication system generally performs data transmission in the form of a data frame.
  • the transmission direction of different subframes in one data frame may be different, that is, the transmission direction of some subframes in one data frame may be downlink.
  • the transmission direction of some subframes may be the uplink direction
  • the terminal may receive the data sent by the base station in the subframe in which the transmission direction is the downlink direction, and the terminal may send the data to the base station in the subframe in the uplink direction.
  • the terminal and the base station need to agree on the transmission direction of each subframe in the data frame.
  • the wireless communication system may pre-determine the transmission direction of each subframe in the data frame, and then the terminal and the base station may perform data transmission based on the foregoing rules.
  • the wireless communication system may pre-determine the first and third in the data frame.
  • the transmission direction of the 4th, 5th, 6th, 7th, 8th, 9th, and 10th subframes is the downlink direction
  • the transmission direction of the 2nd subframe is the uplink direction
  • the terminal may be in the 2nd subframe.
  • the data transmitted to the base station can receive data transmitted by the base station in the first, third, fourth, fifth, sixth, seventh, eighth, ninth, and tenth subframes.
  • the data transmission direction is dynamically changed.
  • the manner of pre-specifying the transmission direction of each sub-frame in the data frame is inferior, and cannot adapt to the dynamic change of the transmission direction of the new-generation communication system. .
  • the present disclosure provides a data transmission method and apparatus for overcoming the problem that the related art pre-specifies the transmission direction of each subframe in a data frame in advance.
  • the first aspect provides a data transmission method, where the method includes: receiving target indication information sent by a base station; determining, according to the target indication information, a transmission direction of the n transmission units, where the transmission direction includes an uplink direction and a downlink direction. Where n is a positive integer greater than or equal to 1; The transmission direction indicated by the target indication information is transmitted by the n transmission units.
  • the determining, according to the target indication information, a transmission direction of the n transmission units including:
  • the determining the location of the n transmission units according to the target indication information includes:
  • the n transmission units are consecutively located after the target transmission unit and adjacent to the target transmission unit; or the n transmission units include the target transmission unit and located at the target transmission N-1 consecutive transmission units adjacent to the target transmission unit after the unit.
  • the target indication information includes location indication information
  • determining the location of the n transmission units according to the target indication information includes: determining, according to the location indication information, locations of the n transmission units.
  • the target indication information includes a comprehensive indicator for indicating a transmission direction of the n transmission units, and determining, according to the target indication information, a transmission direction of n transmission units in the data frame, The method includes: determining a transmission direction indicated by the integrated indicator as a transmission direction of the n transmission units.
  • the target indication information includes n individual indicators for indicating a transmission direction, where the n individual indicators are in one-to-one correspondence with the n transmission units; and determining, according to the target indication information,
  • the transmission direction of the n transmission units includes: determining a transmission direction of each of the n transmission units as a transmission direction indicated by a corresponding individual indicator.
  • the transmitting, by the n transmission units, according to the transmission direction indicated by the target indication information includes: determining, according to the target indication information, transmission of each of the n transmission units And transmitting, by the transmission unit whose transmission direction is the uplink direction in the n transmission units, data to the base station; and receiving, by the transmission unit whose transmission direction is the downlink direction, the data sent by the base station.
  • the n transmission units are data frames, subframes, time slots, or orthogonal frequency division multiplexing OFDM symbols.
  • a data transmission method comprising:
  • the terminal Sending, by the terminal, the target indication information, so that the terminal determines a transmission direction of the n transmission units according to the target indication information, where the transmission direction includes an uplink direction and a downlink direction, where n is greater than or equal to 1 Integer.
  • the target indication information includes location indication information, where the location indication information is used to indicate locations of the n transmission units.
  • the target indication information includes a comprehensive indicator, where the integrated indicator is used to indicate a transmission direction of the n transmission units.
  • the target indication information includes n individual indicators, the n individual indicators are in one-to-one correspondence with the n transmission units, and each of the individual indicators is used to indicate transmission of a corresponding transmission unit. direction.
  • the n transmission units are data frames, subframes, time slots, or orthogonal frequency division multiplexing OFDM symbols.
  • a data transmission apparatus comprising:
  • a receiving module configured to receive target indication information sent by the base station
  • a determining module configured to determine, according to the target indication information, a transmission direction of the n transmission units, where the transmission direction includes an uplink direction and a downlink direction, where n is a positive integer greater than or equal to 1;
  • a transmission module configured to transmit data by using the n transmission units according to the transmission direction indicated by the target indication information.
  • the determining module includes:
  • a location determining submodule configured to determine a location of the n transmission units according to the target indication information
  • a direction determining submodule configured to determine a transmission direction of the n transmission units according to the target indication information.
  • the location determining submodule is configured to:
  • the n transmission units are consecutively located after the target transmission unit and adjacent to the target transmission unit; or the n transmission units include the target transmission unit and located at the target transmission N-1 consecutive transmission units adjacent to the target transmission unit after the unit. .
  • the target indication information includes location indication information, and the target indication information is Determining the location of the n transmission units, including:
  • the target indication information includes a comprehensive indicator for indicating a transmission direction of the n transmission units;
  • the determining module is configured to determine a transmission direction indicated by the integrated indicator as a transmission direction of the n transmission units.
  • the target indication information includes n individual indicators for indicating a transmission direction, where the n individual indicators are in one-to-one correspondence with the n transmission units;
  • the determining module is configured to determine a transmission direction of each of the n transmission units as a transmission direction indicated by a corresponding individual indicator.
  • the transmission module is configured to:
  • the data transmitted by the base station is received by a transmission unit whose transmission direction is a downlink direction among the n transmission units.
  • the n transmission units are data frames, subframes, time slots, or orthogonal frequency division multiplexing OFDM symbols.
  • a data transmission apparatus comprising:
  • a sending module configured to send the target indication information to the terminal, so that the terminal determines a transmission direction of the n transmission units according to the target indication information, where the transmission direction includes an uplink direction and a downlink direction, where n is greater than Or a positive integer equal to 1.
  • the target indication information includes location indication information, where the location indication information is used to indicate locations of the n transmission units.
  • the target indication information includes a comprehensive indicator, where the integrated indicator is used to indicate a transmission direction of the n transmission units.
  • the target indication information includes n individual indicators, the n individual indicators are in one-to-one correspondence with the n transmission units, and each of the individual indicators is used to indicate transmission of a corresponding transmission unit. direction.
  • the n transmission units are data frames, subframes, time slots, or orthogonal frequency division multiplexing OFDM symbols.
  • a data transmission apparatus including:
  • a memory for storing instructions executable by the processor
  • processor is configured to:
  • Data is transmitted through the n transmission units according to a transmission direction indicated by the target indication information.
  • a data transmission apparatus including:
  • a memory for storing instructions executable by the processor
  • processor is configured to:
  • the terminal Sending, by the terminal, the target indication information, so that the terminal determines a transmission direction of the n transmission units according to the target indication information, where the transmission direction includes an uplink direction and a downlink direction, where n is greater than or equal to 1 Integer.
  • FIG. 1 is a schematic diagram of an implementation environment involved in a data transmission method according to an exemplary embodiment.
  • FIG. 2 is a flowchart of a data transmission method according to an exemplary embodiment.
  • FIG. 3 is a flowchart of a data transmission method according to an exemplary embodiment.
  • FIG. 4A is a flowchart of a data transmission method according to an exemplary embodiment.
  • FIG. 4B is a schematic diagram showing the position of an n transmission unit according to an exemplary embodiment.
  • FIG. 5 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 6 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 7 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 8 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 9 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • a wireless communication system generally includes two duplex modes, namely, FDD (Frequency Division Duplexing) and TDD (Time Division Duplexing).
  • FDD duplex mode data transmission in the uplink direction (the terminal transmits data to the base station) and data transmission in the downlink direction (the base station transmits data to the terminal) are performed on the uplink channel and the downlink channel of different frequencies, respectively.
  • the transmission direction of each subframe in the data frame on the uplink channel is the uplink direction
  • the transmission direction of each subframe in the data frame on the downlink channel is the downlink direction.
  • the TDD duplex mode the data transmission in the uplink direction and the data transmission in the downlink direction are performed on the same frequency channel. In this case, the transmission direction of some subframes in the data frame on the channel is the downlink direction.
  • Some sub-frames have a transmission direction that is in the upstream direction.
  • the terminal and the base station need to agree on the transmission direction of each subframe in the data frame.
  • the wireless communication system may pre-determine the transmission direction of each subframe in the data frame, and the terminal and the base station may perform data transmission based on the foregoing predetermined. As shown in Table 1, each of the seven data frames pre-defined by the wireless communication system The direction of transmission.
  • ms in Table 1 refers to milliseconds
  • D refers to the downlink direction of the subframe
  • U refers to the uplink direction of the subframe
  • S refers to the subframe as a special subframe.
  • the special subframe may include an uplink pilot time slot (English: Uplink Pilot Time Slot; referred to as UpPTS), a downlink pilot time slot (English: Downlink Pilot Time Slot; abbreviation: DwPTS), and a guard interval (English: GP), which are mainly used.
  • UpPTS Uplink Pilot Time Slot
  • DwPTS Downlink Pilot Time Slot
  • GP guard interval
  • the terminal may receive the data sent by the base station in the 0th, 3rd, 4th, 5th, 6th, 7th, 8th, and 9th subframes of the data frame, where The data is transmitted to the base station in the second subframe.
  • the data transmission direction is dynamically changed.
  • the wireless communication system has a poor flexibility in pre-specifying the transmission direction of each subframe in the data frame, so it cannot adapt to the transmission direction dynamics of the new generation communication system. Changing needs.
  • the present disclosure provides a data transmission method, and the following disclosure will briefly describe an implementation environment involved in the data transmission method.
  • the implementation environment may include a base station 101 and a terminal 102.
  • the base station 101 and the terminal 102 may perform data transmission in the uplink direction and the downlink direction based on the same channel in the TDD duplex mode.
  • FIG. 2 is a flowchart of a data transmission method according to an exemplary embodiment. As shown in FIG. 2, the data transmission method is used in the terminal 102 shown in FIG. 1, and includes the following steps.
  • step 201 the terminal receives the target indication information sent by the base station.
  • step 202 the terminal determines a transmission direction of the n transmission units according to the target indication information, where the transmission direction includes an uplink direction and a downlink direction, where n is a positive integer greater than or equal to 1.
  • step 203 the terminal passes n transmission orders according to the transmission direction indicated by the target indication information. Meta transfer data.
  • the data transmission method receives the target indication information sent by the base station by using the terminal, determines the transmission direction of the n transmission units based on the target indication information, and then passes the n according to the determined transmission direction.
  • the transmission unit transmits data, so that the transmission direction of the transmission unit is determined to be flexible, so that it can be dynamically changed according to the data transmission needs of the communication system, and can meet the dynamic change requirement of the transmission direction of the new generation communication system.
  • FIG. 3 is a flowchart of a data transmission method according to an exemplary embodiment. As shown in FIG. 3, the data transmission method is used in the base station 101 shown in FIG. 1, and includes the following steps.
  • step 301 the base station generates target indication information.
  • the base station sends the target indication information to the terminal, so that the terminal determines the transmission direction of the n transmission units according to the target indication information, where the transmission direction includes an uplink direction and a downlink direction, where n is a positive integer greater than or equal to 1.
  • the data transmission method provided by the embodiment of the present disclosure sends the target indication information to the terminal by the base station, so that the terminal determines the transmission direction of the n transmission units based on the target indication information, and then passes the n according to the determined transmission direction.
  • the transmission unit transmits data, which makes the transmission direction of the transmission unit more flexible, so that it can be dynamically changed according to the data transmission needs of the communication system, and can meet the dynamic change requirements of the transmission direction of the new generation communication system.
  • FIG. 4A is a flowchart of a data transmission method according to an exemplary embodiment. As shown in FIG. 4A, the data transmission method is used in the implementation environment shown in FIG. 1, and includes the following steps.
  • step 401 the base station generates target indication information and transmits the target indication information to the terminal.
  • the base station may generate and transmit target indication information to the terminal, and the terminal may determine a transmission direction of the n transmission units according to the target indication information, where n is greater than Or a positive integer equal to 1.
  • the base station and the terminal can stipulate the transmission direction of the n transmission units based on the target indication information, and transmit data through the n transmission units based on the agreed transmission direction, which is compared with the wireless communication system pre-determining the transmission direction. More flexibility and better adaptability to the needs of next-generation communication systems.
  • the base station and the terminal can generally transmit data through the data frame. Therefore, the n transmission units may be data frames or units in the data frame.
  • the n transmission units may be subframes and time slots. Or OFDM (Orthogonal Frequency Division Multiplexing) Frequency division multiplexing) symbols, etc.
  • OFDM Orthogonal Frequency Division Multiplexing
  • one data frame may include 10 subframes, each subframe has a length of 1 millisecond, and one subframe may include two slots (English: slot), and each slot has a length of 0.5.
  • one slot may include 7 OFDM symbols, and each OFDM symbol has a length of 1/14 milliseconds.
  • the wireless communication system only specifies the transmission direction of the subframe in the data frame, and therefore, all the slots included in one subframe and the transmission direction of the OFDM symbol are the same, which makes the flexibility of the data transmission direction change. difference.
  • the n transmission units may be smaller transmission units (slots, OFDM symbols) than the subframes. Therefore, the transmission direction of the slots and OFDM symbols included in one subframe may be different. Therefore, the flexibility of the data transmission direction change in the embodiment of the present disclosure is higher, and it is more suitable for the needs of the new generation communication system.
  • step 402 after receiving the target indication information, the terminal determines the location of the n transmission units according to the target indication information.
  • the terminal After receiving the target indication information, the terminal needs to determine the location of the n transmission units according to the target indication information.
  • the embodiment of the present disclosure provides the following two manners for determining the locations of the n transmission units:
  • the terminal may determine the transmission unit that transmits the target indication information as the target transmission unit, and then the terminal may determine the location of the n transmission units associated with the location of the target transmission unit according to the location of the target transmission unit.
  • the terminal may store a location association rule, where the location association rule may define a location of the transmission unit associated with the target transmission unit compared to the target transmission unit, and the terminal may determine according to the location of the target transmission unit and the location association rule.
  • the location association rule may be sent to the terminal by the base station in advance through the high layer signaling or the physical layer signaling, or may be specified by the communication protocol, which is not specifically limited in this embodiment of the disclosure, and needs to be described.
  • the above-mentioned high-layer signaling may be RRC signaling, MAC CE signaling, and the like, which is not specifically limited in this embodiment of the present disclosure.
  • the location of the n transmission units determined by the terminal based on the location association rule may be: the n transmission units are consecutive and located behind the target transmission unit, and adjacent to the target transmission unit, or The n transmission units include a target transmission unit and n-1 consecutive transmission units located adjacent to the target transmission unit after the target transmission unit.
  • n transmission units are merely exemplary, and the disclosure is not limited. In practical applications, the n transmission units may be located before the target transmission unit or after the target transmission unit. Can be adjacent to the target transmission unit or not to the target transmission unit Adjacent, the target transmission unit may be included, or may not include the target transmission unit, and may be continuous or discontinuous, which is not specifically limited in the embodiment of the present disclosure.
  • the transmission unit of the transmission destination indication information is the slot a, that is, the slot a is the target transmission unit, and the location association rule stored in the terminal is: the transmission unit associated with the target transmission unit is located.
  • the terminal may determine that the n transmission units are time slot a+1 and time slot a+2.
  • the target indication information may include location indication information, where the location indication information may indicate the location of the n transmission units, and the terminal may determine the location of the n transmission units according to the location indication information.
  • the target indication information may include location indication information, which may indicate that the n transmission units are time slot a+1 and time slot a+2.
  • step 403 the terminal determines the transmission direction of the n transmission units according to the target indication information.
  • the terminal may determine the transmission direction of the n transmission units according to the target indication information.
  • the embodiment of the present disclosure provides the following two manners for determining the transmission direction of the n transmission units:
  • the target indication information may include a comprehensive indicator for indicating a transmission direction of the n transmission units, and the terminal may determine the transmission direction indicated by the integrated indicator as a transmission direction of the n transmission units.
  • mapping relationship table may be as shown in Table 2:
  • the DL in Table 2 refers to the downlink direction
  • the UL direction refers to the uplink direction
  • the DL dominant refers to the downlink direction
  • the UL dominant refers to the downlink direction.
  • mapping relationship table may be advanced by the base station through high layer signaling or physical layer signaling. It is also stipulated in the communication protocol, and is not specifically limited in this embodiment of the present disclosure.
  • mapping relationship table shown in Table 2 is merely exemplary, and it does not limit the present disclosure.
  • high-layer signaling may be RRC signaling, MAC CE signaling, and the like, which is not specifically limited in this embodiment of the present disclosure.
  • the terminal may determine a transmission direction indicated by the integrated indicator according to the comprehensive indicator and the mapping relationship table, and determine the determined transmission direction as a transmission direction of the n transmission units.
  • the target indication information in the slot a may include the integrated indicator 00, and the terminal may determine that the transmission directions of the slot a+1 and the slot a+2 are both the downlink direction.
  • the target indication information may include n individual indicators, and the n individual indicators are in one-to-one correspondence with the n transmission units, wherein each individual indicator is used to indicate a transmission direction of the corresponding transmission unit, and the terminal The transmission direction of each of the n transmission units may be determined as the transmission direction indicated by the corresponding individual indicator.
  • mapping relationship between a single indicator and a transmission direction may also be maintained in the terminal, and the mapping relationship table may be the same as the mapping relationship table shown in Table 2.
  • the terminal may determine a transmission direction indicated by each individual indicator according to the n individual indicators and the mapping relationship table, and determine a transmission direction indicated by each individual indicator as a transmission direction of the corresponding transmission unit.
  • the target indication information in the slot a may include the individual indicators 00 and 01 arranged in sequence, and the terminal may determine that the transmission direction of the slot a+1 is the downlink direction, and the transmission direction of the slot a+2. For the upward direction.
  • step 404 the terminal transmits data through n transmission units according to the transmission direction indicated by the target indication information.
  • the terminal after determining the transmission direction of each of the n transmission units, transmits data to the base station through the transmission unit whose transmission direction is the uplink direction in the n transmission units, and passes the n transmission units.
  • the transmission unit whose transmission direction is the downlink direction receives the data transmitted by the base station.
  • the terminal can receive the data sent by the base station through the slot a+1, which can be passed.
  • the slot a+2 transmits data to the base station.
  • the data transmission method receives the target indication information sent by the base station by using the terminal, determines the transmission direction of the n transmission units based on the target indication information, and then passes the n according to the determined transmission direction.
  • the transmission unit transmits data, so that the transmission direction of the transmission unit is determined to be flexible, so that it can be dynamically changed according to the data transmission needs of the communication system, and can be full. The need for dynamic changes in the transmission direction of the new generation of communication systems.
  • FIG. 5 is a block diagram of a data transmission device 500, according to an exemplary embodiment.
  • the apparatus includes a receiving module 501, a determining module 502, and a transmitting module 503.
  • the receiving module 501 is configured to receive target indication information sent by the base station.
  • the determining module 502 is configured to determine, according to the target indication information, a transmission direction of the n transmission units, where the transmission direction includes an uplink direction and a downlink direction, where n is a positive integer greater than or equal to 1.
  • the transmission module 503 is configured to transmit data through the n transmission units according to the transmission direction indicated by the target indication information.
  • the determining module 502 includes: a location determining submodule 5021, configured to determine a location of the n transmitting units according to the target indication information; and a direction determining submodule 5022, configured to The target indication information determines the transmission direction of the n transmission units.
  • the location determining sub-module 5021 is configured to: determine a transmission unit that transmits the target indication information as a target transmission unit; and determine a location of the n transmission units associated with the location of the target transmission unit according to the location of the target transmission unit.
  • n transmission units are consecutively located after the target transmission unit and adjacent to the target transmission unit; or, the n transmission units include the target transmission unit and the n adjacent to the target transmission unit after the target transmission unit - 1 continuous transmission unit.
  • the target indication information includes location indication information
  • the location determination sub-module 5021 is configured to determine a location of the n transmission units according to the location indication information.
  • the target indication information includes a comprehensive indicator for indicating a transmission direction of the n transmission units, and the determining module 502 is configured to determine a transmission direction indicated by the integrated indicator as n transmission units. Transmission direction.
  • the target indication information includes n individual indicators for indicating a transmission direction, n individual indicators are in one-to-one correspondence with n transmission units; and a determining module 502 is configured to transmit n transmission units The transmission direction of each of the transmission units is determined as the transmission direction indicated by the corresponding individual indicator.
  • the transmission module 503 is configured to: determine, according to the target indication information, a transmission direction of each of the n transmission units; and transmit the transmission direction in the uplink direction by the n transmission units
  • the base station transmits data; and the data transmitted by the base station is received by the transmission unit whose transmission direction is the downlink direction in the n transmission units.
  • the n transmission units are data frames, subframes, time slots, or orthogonal frequency division multiplexed OFDM symbols.
  • the data transmission apparatus receives the target indication information sent by the base station, determines the transmission direction of the n transmission units based on the target indication information, and then passes the n according to the determined transmission direction.
  • the transmission unit transmits data, so that the transmission direction of the transmission unit is determined to be flexible, so that it can be dynamically changed according to the data transmission needs of the communication system, and can meet the dynamic change requirement of the transmission direction of the new generation communication system.
  • FIG. 7 is a block diagram of a data transmission device 700, according to an exemplary embodiment.
  • the apparatus includes a generating module 701 and a transmitting module 702.
  • the generating module 701 is configured to generate target indication information.
  • the sending module 702 is configured to send target indication information to the terminal, so that the terminal determines a transmission direction of the n transmission units according to the target indication information, where the transmission direction includes an uplink direction and a downlink direction, where n is a positive integer greater than or equal to 1. .
  • the target indication information includes location indication information, and the location indication information is used to indicate locations of the n transmission units.
  • the target indication information includes a comprehensive indicator for indicating a transmission direction of the n transmission units.
  • the target indication information includes n individual indicators, and the n individual indicators are in one-to-one correspondence with the n transmission units, and each individual indicator is used to indicate a transmission direction of the corresponding transmission unit.
  • the n transmission units are data frames, subframes, time slots, or orthogonal frequency division multiplexed OFDM symbols.
  • the data transmission apparatus sends the target indication information to the terminal, so that the terminal determines the transmission direction of the n transmission units based on the target indication information, and then passes the n according to the determined transmission direction.
  • the transmission unit transmits data, so that the transmission direction of the transmission unit is determined to be flexible, so that it can be dynamically changed according to the data transmission needs of the communication system, and can meet the dynamic change requirement of the transmission direction of the new generation communication system.
  • FIG. 8 is a block diagram of a data transmission device 800, according to an exemplary embodiment.
  • device 800 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a gaming console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 800 can include one or more of the following components: processing component 802, memory 804, power component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814, And a communication component 816.
  • Processing component 802 typically controls the overall operation of device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 802 can include one or more processors 820 to execute instructions to perform all or part of the steps of the above described methods.
  • processing component 802 can include one or more modules to facilitate interaction between component 802 and other components.
  • processing component 802 can include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at device 800. Examples of such data include instructions for any application or method operating on device 800, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Electrically erasable programmable read only memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 806 provides power to various components of device 800.
  • Power component 806 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 800.
  • the multimedia component 808 includes a screen between the device 800 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When device 800 is in an operational mode, such as a shooting mode or In video mode, the front camera and/or rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input an audio signal.
  • the audio component 810 includes a microphone (MIC) that is configured to receive an external audio signal when the device 800 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816.
  • the audio component 810 also includes a speaker for outputting an audio signal.
  • the I/O interface 812 provides an interface between the processing component 802 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 814 includes one or more sensors for providing device 800 with a status assessment of various aspects.
  • sensor assembly 814 can detect an open/closed state of device 800, relative positioning of components, such as the display and keypad of device 800, and sensor component 814 can also detect a change in position of one component of device 800 or device 800. The presence or absence of user contact with device 800, device 800 orientation or acceleration/deceleration, and temperature variation of device 800.
  • Sensor assembly 814 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between device 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 804 comprising instructions executable by processor 820 of apparatus 800 to perform the above method.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • a non-transitory computer readable storage medium when instructions in the storage medium are executed by a processor of a mobile terminal, enabling the mobile terminal to perform the above data transmission method: for example, Receiving target indication information sent by the base station; determining a transmission direction of the n transmission units according to the target indication information, where the transmission direction includes an uplink direction and a downlink direction, where n is a positive integer greater than or equal to 1; a transmission direction indicated according to the target indication information Transfer data through n transmission units.
  • FIG. 9 is a block diagram of a data transmission device 900, which may be a base station. As shown in FIG. 9, the data transmission device 900 may include: a processor 901, a receiver 902, according to an exemplary embodiment. Transmitter 903 and memory 904. Receiver 902, transmitter 903, and memory 904 are coupled to processor 901 via a bus, respectively.
  • the processor 901 includes one or more processing cores.
  • Memory 904 can be used to store software programs as well as modules. Specifically, the memory 904 can store an application module 9042 required by the operating system 9041 and at least one function.
  • the receiver 902 is configured to receive communication messages sent by other devices, and the transmitter 903 is configured to send communication messages to other devices.
  • a non-transitory computer readable storage medium when instructions in the storage medium are executed by a processor of a base station, enabling a base station to perform the above data transmission method: for example, generating a target Instructing information; transmitting target indication information to the terminal, so that the terminal determines a transmission direction of the n transmission units according to the target indication information, where the transmission direction includes an uplink direction and a downlink direction, where n is a positive integer greater than or equal to 1.

Abstract

本公开提供了一种数据传输方法及装置,属于无线通信领域。所述方法包括:接收基站发送的目标指示信息;根据目标指示信息确定n个传输单元的传输方向,传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数;依据目标指示信息指示的传输方向,通过n个传输单元传输数据。本公开使得传输单元的传输方向的确定较为灵活,从而可以根据通信系统的数据传输需要而动态变化,能够满足新一代通信系统传输方向动态变化的需求。

Description

数据传输方法及装置 技术领域
本公开涉及无线通信领域,尤其涉及一种数据传输方法及装置。
背景技术
在实际应用中,无线通信系统一般以数据帧的形式进行数据传输,其中,一个数据帧中不同子帧的传输方向可以不同,也即是,一个数据帧中有些子帧的传输方向可以为下行方向,有些子帧的传输方向可以为上行方向,在传输方向为下行方向的子帧中终端可以接收基站发送的数据,在传输方向为上行方向的子帧中终端可以向基站发送数据。为了保证终端和基站间数据传输的正常进行,终端和基站需要约定数据帧中每一子帧的传输方向。
相关技术中,无线通信系统可以预先规定数据帧中每一个子帧的传输方向,而后终端和基站可以基于上述规定进行数据传输,例如,无线通信系统可以预先规定数据帧中的第1、第3、第4、第5、第6、第7、第8、第9和第10个子帧的传输方向为下行方向,第2个子帧的传输方向为上行方向,则终端可以在第2个子帧中向基站发送数据,可以在第1、第3、第4、第5、第6、第7、第8、第9和第10个子帧中接收基站发送的数据。
然而,在实现本公开的过程中,发明人发现现有技术至少存在以下缺点:
新一代通信系统中,数据传输方向是动态变化的,相关技术中预先对数据帧中每一个子帧的传输方向进行规定的方式灵活性较差,无法适应新一代通信系统传输方向动态变化的需求。
发明内容
为克服相关技术中预先对数据帧中每一个子帧的传输方向进行规定的方式灵活性较差的问题,本公开提供一种数据传输方法及装置。
第一方面,提供了一种数据传输方法,所述方法包括:接收基站发送的目标指示信息;根据所述目标指示信息确定n个传输单元的传输方向,所述传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数;依据所述 目标指示信息指示的传输方向,通过所述n个传输单元传输数据。
可选的,所述根据所述目标指示信息确定n个传输单元的传输方向,包括:
根据所述目标指示信息确定所述n个传输单元的位置;
根据所述目标指示信息确定所述n个传输单元的传输方向。
可选的,所述根据所述目标指示信息确定所述n个传输单元的位置,包括:
将传输所述目标指示信息的传输单元确定为目标传输单元;
根据所述目标传输单元的位置,确定与所述目标传输单元的位置关联的所述n个传输单元的位置。
可选的,所述n个传输单元连续并位于所述目标传输单元之后,且与所述目标传输单元相邻;或者,所述n个传输单元包括所述目标传输单元和位于所述目标传输单元之后的与所述目标传输单元相邻的n-1个连续的传输单元。
可选的,所述目标指示信息包括位置指示信息;所述根据所述目标指示信息确定所述n个传输单元的位置,包括:根据所述位置指示信息确定所述n个传输单元的位置。
可选的,所述目标指示信息包括一个用于指示所述n个传输单元的传输方向的综合指示符;所述根据所述目标指示信息确定所述数据帧中n个传输单元的传输方向,包括:将所述综合指示符指示的传输方向确定为所述n个传输单元的传输方向。
可选的,所述目标指示信息包括n个用于指示传输方向的单独指示符,所述n个单独指示符与所述n个传输单元一一对应;所述根据所述目标指示信息确定所述n个传输单元的传输方向,包括:将所述n个传输单元中每一个传输单元的传输方向确定为对应的单独指示符所指示的传输方向。
可选的,所述依据所述目标指示信息指示的传输方向,通过所述n个传输单元传输数据,包括:依据所述目标指示信息,确定所述n个传输单元中每个传输单元的传输方向;通过所述n个传输单元中传输方向为上行方向的传输单元向所述基站发送数据;通过所述n个传输单元中传输方向为下行方向的传输单元接收所述基站发送的数据。
可选的,所述n个传输单元为数据帧、子帧、时隙或正交频分复用OFDM符号。
第二方面,提供了一种数据传输方法,所述方法包括:
生成目标指示信息;
向终端发送所述目标指示信息,以使所述终端根据所述目标指示信息确定n个传输单元的传输方向,所述传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数。
可选的,所述目标指示信息包括位置指示信息,所述位置指示信息用于指示所述n个传输单元的位置。
可选的,所述目标指示信息包括一个综合指示符,所述综合指示符用于指示所述n个传输单元的传输方向。
可选的,所述目标指示信息包括n个单独指示符,所述n个单独指示符与所述n个传输单元一一对应,每个所述单独指示符用于指示对应的传输单元的传输方向。
可选的,所述n个传输单元为数据帧、子帧、时隙或正交频分复用OFDM符号。
第三方面,提供了一种数据传输装置,所述装置包括:
接收模块,用于接收基站发送的目标指示信息;
确定模块,用于根据所述目标指示信息确定n个传输单元的传输方向,所述传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数;
传输模块,用于依据所述目标指示信息指示的传输方向,通过所述n个传输单元传输数据。
可选的,所述确定模块包括:
位置确定子模块,用于根据所述目标指示信息确定所述n个传输单元的位置;
方向确定子模块,用于根据所述目标指示信息确定所述n个传输单元的传输方向。
可选的,所述位置确定子模块,用于:
将传输所述目标指示信息的传输单元确定为目标传输单元;
根据所述目标传输单元的位置,确定与所述目标传输单元的位置关联的所述n个传输单元的位置。
可选的,所述n个传输单元连续并位于所述目标传输单元之后,且与所述目标传输单元相邻;或者,所述n个传输单元包括所述目标传输单元和位于所述目标传输单元之后的与所述目标传输单元相邻的n-1个连续的传输单元。。
可选的,所述目标指示信息包括位置指示信息;所述根据所述目标指示信 息确定所述n个传输单元的位置,包括:
根据所述位置指示信息确定所述n个传输单元的位置。
可选的,所述目标指示信息包括一个用于指示所述n个传输单元的传输方向的综合指示符;
所述确定模块,用于将所述综合指示符指示的传输方向确定为所述n个传输单元的传输方向。
可选的,所述目标指示信息包括n个用于指示传输方向的单独指示符,所述n个单独指示符与所述n个传输单元一一对应;
所述确定模块,用于将所述n个传输单元中每一个传输单元的传输方向确定为对应的单独指示符所指示的传输方向。
可选的,所述传输模块,用于:
依据所述目标指示信息,确定所述n个传输单元中每个传输单元的传输方向;
通过所述n个传输单元中传输方向为上行方向的传输单元向所述基站发送数据;
通过所述n个传输单元中传输方向为下行方向的传输单元接收所述基站发送的数据。
可选的,所述n个传输单元为数据帧、子帧、时隙或正交频分复用OFDM符号。
第四方面,提供了一种数据传输装置,所述装置包括:
生成模块,用于生成目标指示信息;
发送模块,用于向终端发送所述目标指示信息,以使所述终端根据所述目标指示信息确定n个传输单元的传输方向,所述传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数。
可选的,所述目标指示信息包括位置指示信息,所述位置指示信息用于指示所述n个传输单元的位置。
可选的,所述目标指示信息包括一个综合指示符,所述综合指示符用于指示所述n个传输单元的传输方向。
可选的,所述目标指示信息包括n个单独指示符,所述n个单独指示符与所述n个传输单元一一对应,每个所述单独指示符用于指示对应的传输单元的传输方向。
可选的,所述n个传输单元为数据帧、子帧、时隙或正交频分复用OFDM符号。
第五方面,提供了一种数据传输装置,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
接收基站发送的目标指示信息;
根据所述目标指示信息确定n个传输单元的传输方向,所述传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数;
依据所述目标指示信息指示的传输方向,通过所述n个传输单元传输数据。
第六方面,提供了一种数据传输装置,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
生成目标指示信息;
向终端发送所述目标指示信息,以使所述终端根据所述目标指示信息确定n个传输单元的传输方向,所述传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过终端接收基站发送的目标指示信息,并基于该目标指示信息确定n个传输单元的传输方向,而后依据确定的传输方向,通过该n个传输单元传输数据,使得传输单元的传输方向的确定较为灵活,从而可以根据通信系统的数据传输需要而动态变化,能够满足新一代通信系统传输方向动态变化的需求。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种数据传输方法涉及到的实施环境的示意图。
图2是根据一示例性实施例示出的一种数据传输方法的流程图。
图3是根据一示例性实施例示出的一种数据传输方法的流程图。
图4A是根据一示例性实施例示出的一种数据传输方法的流程图。
图4B是根据一示例性实施例示出的一种n个传输单元的位置示意图。
图5是根据一示例性实施例示出的一种数据传输装置的框图。
图6是根据一示例性实施例示出的一种数据传输装置的框图。
图7是根据一示例性实施例示出的一种数据传输装置的框图。
图8是根据一示例性实施例示出的一种数据传输装置的框图。
图9是根据一示例性实施例示出的一种数据传输装置的框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
当前,无线通信系统一般包括两种双工模式,分别为FDD(Frequency Division Duplexing,频分双工)和TDD(Time Division Duplexing,时分双工)。在FDD双工模式下,上行方向的数据传输(终端向基站发送数据)和下行方向的数据传输(基站向终端发送数据)分别在不同频率的上行信道和下行信道上进行,在这种情况下,上行信道上的数据帧中每一子帧的传输方向均为上行方向,而下行信道上的数据帧中每一子帧的传输方向均为下行方向。在TDD双工模式下,上行方向的数据传输和下行方向的数据传输均在同一频率的信道上进行,在这种情况下,该信道上的数据帧中有些子帧的传输方向为下行方向,有些子帧的传输方向为上行方向。
为了保证TDD双工模式下终端和基站间数据传输的正常进行,终端和基站需要约定数据帧中每一子帧的传输方向。在实际应用中,无线通信系统可以预先规定数据帧中每一个子帧的传输方向,终端和基站可以基于上述预先规定进行数据传输。如表1所示为无线通信系统预先规定的7种数据帧中每一子帧 的传输方向。
表1
Figure PCTCN2017082571-appb-000001
其中,表1中的ms指的是毫秒,D指的是子帧的传输方向为下行方向,U指的是子帧的传输方向为上行方向,S指的是该子帧为特殊子帧,特殊子帧可以包括上行导频时隙(英文:Uplink Pilot TimeSlot;简称:UpPTS)、下行导频时隙(英文:Downlink Pilot TimeSlot;简称:DwPTS)和保护间隔(英文:GP),其主要用于防止上下行数据传输之间产生干扰。
当终端和基站约定使用表1中序号5的规定进行数据传输时,终端可以在数据帧的第0、3、4、5、6、7、8、9个子帧中接收基站发送的数据,在第2个子帧中向基站发送数据。
在新一代通信系统中,数据传输方向是动态变化的,无线通信系统预先对数据帧中每一个子帧的传输方向进行规定的方式灵活性较差,因此其无法适应新一代通信系统传输方向动态变化的需求。
为了解决上述问题,本公开提供了一种数据传输方法,下面本公开将对该数据传输方法涉及到的实施环境进行简要地说明。如图1所示,该实施环境可以包括基站101和终端102,其中基站101和终端102之间可以在上述TDD双工模式下基于同一信道进行上行方向和下行方向的数据传输。
图2是根据一示例性实施例示出的一种数据传输方法的流程图,如图2所示,该数据传输方法用于图1所示的终端102中,包括以下步骤。
在步骤201中,终端接收基站发送的目标指示信息。
在步骤202中,终端根据目标指示信息确定n个传输单元的传输方向,传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数。
在步骤203中,终端依据目标指示信息指示的传输方向,通过n个传输单 元传输数据。
综上所述,本公开实施例提供的数据传输方法,通过终端接收基站发送的目标指示信息,并基于该目标指示信息确定n个传输单元的传输方向,而后依据确定的传输方向,通过该n个传输单元传输数据,使得传输单元的传输方向的确定较为灵活,从而可以根据通信系统的数据传输需要而动态变化,能够满足新一代通信系统传输方向动态变化的需求。
图3是根据一示例性实施例示出的一种数据传输方法的流程图,如图3所示,该数据传输方法用于图1所示的基站101中,包括以下步骤。
在步骤301中,基站生成目标指示信息。
在步骤302中,基站向终端发送目标指示信息,以使终端根据目标指示信息确定n个传输单元的传输方向,传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数。
综上所述,本公开实施例提供的数据传输方法,通过基站向终端发送目标指示信息,使得终端基于该目标指示信息确定n个传输单元的传输方向,而后依据确定的传输方向,通过该n个传输单元传输数据,这使得传输单元的传输方向的确定较为灵活,从而可以根据通信系统的数据传输需要而动态变化,能够满足新一代通信系统传输方向动态变化的需求。
图4A是根据一示例性实施例示出的一种数据传输方法的流程图,如图4A所示,该数据传输方法用于图1所示的实施环境中,包括以下步骤。
在步骤401中,基站生成目标指示信息,并向终端发送该目标指示信息。
在实际应用中,为了满足新一代通信系统传输方向动态变化的需求,基站可以生成并向终端发送目标指示信息,终端可以根据该目标指示信息确定n个传输单元的传输方向,其中,n为大于或等于1的正整数。这样基站和终端可以基于该目标指示信息约定n个传输单元的传输方向,并基于约定的传输方向通过该n个传输单元传输数据,其相较于无线通信系统预先对传输方向进行规定的方式有更高的灵活性,更能适应新一代通信系统的需求。
在实际应用中,基站和终端通常可以通过数据帧传输数据,因此,上述n个传输单元可以为数据帧也可以为数据帧中的单元,例如,该n个传输单元可以为子帧、时隙或OFDM(Orthogonal Frequency Division Multiplexing,正交 频分复用)符号等。需要说明的是,通常情况下,一个数据帧可以包括10个子帧,每个子帧的长度为1毫秒,一个子帧可以包括两个时隙(英文:slot),每个时隙的长度为0.5毫秒,一个时隙可以包括7个OFDM符号,每个OFDM符号的长度为1/14毫秒。
在相关技术中,无线通信系统仅规定了数据帧中子帧的传输方向,因此,一个子帧中包含的所有时隙和OFDM符号的传输方向均相同,这使得数据传输方向变化的灵活性较差。而在本公开实施例中,上述n个传输单元可以为比子帧更小的传输单元(时隙、OFDM符号),因此,一个子帧中包含的时隙和OFDM符号的传输方向可以不相同,因此,本公开实施例中数据传输方向变化的灵活性较高,更能适应新一代通信系统的需求。
在步骤402中,终端接收到该目标指示信息后,根据目标指示信息确定n个传输单元的位置。
终端接收到目标指示信息后,需要根据该目标指示信息确定n个传输单元的位置,本公开实施例提供了如下两种确定上述n个传输单元的位置的方式:
第一种方式,终端可以将传输该目标指示信息的传输单元确定为目标传输单元,而后终端可以根据该目标传输单元的位置,确定与该目标传输单元的位置关联的n个传输单元的位置。
可选的,终端中可以存储有位置关联规则,该位置关联规则可以定义与目标传输单元关联的传输单元相较于目标传输单元的位置,终端可以根据该目标传输单元的位置以及位置关联规则确定上述n个传输单元的位置。在实际应用中,该位置关联规则可以由基站预先通过高层信令或物理层信令下发至终端中,也可以由通信协议进行规定,本公开实施例对此不做具体限定,需要说明的是,上述高层信令可以为RRC信令、MAC CE信令等,本公开实施例对此不做具体限定。
在本发明的一个实施例中,终端基于该位置关联规则确定的该n个传输单元的位置可以为:该n个传输单元连续并位于目标传输单元之后,且与目标传输单元相邻,或者,该n个传输单元包括目标传输单元和位于目标传输单元之后的与该目标传输单元相邻的n-1个连续的传输单元。
需要说明的是,上述n个传输单元的位置仅仅是示例性的,其并不能限制本公开,在实际应用中,该n个传输单元可以位于目标传输单元之前,也可以位于目标传输单元之后,可以与目标传输单元相邻,也可以与目标传输单元不 相邻,可以包括目标传输单元,也可以不包括目标传输单元,可以连续也可以不连续,本公开实施例对此不做具体限定。
例如,如图4B所示,传输目标指示信息的传输单元为时隙a,也即是时隙a为目标传输单元,终端中存储的位置关联规则为:与目标传输单元关联的传输单元为位于该目标传输单元之后的与该目标传输单元相邻的2个连续的传输单元,则终端可以确定上述n个传输单元为时隙a+1和时隙a+2。
第二种方式,目标指示信息中可以包括位置指示信息,该位置指示信息可以指示上述n个传输单元的位置,终端可以根据该位置指示信息确定n个传输单元的位置。
如图4B的举例,目标指示信息可以包括位置指示信息,该位置指示信息可以指示该n个传输单元为时隙a+1和时隙a+2。
在步骤403中,终端根据目标指示信息确定n个传输单元的传输方向。
终端在确定了该n个传输单元的位置后,可以根据该目标指示信息确定该n个传输单元的传输方向,本公开实施例提供了如下两种确定n个传输单元的传输方向的方式:
第一种方式,该目标指示信息可以包括一个用于指示n个传输单元的传输方向的综合指示符,终端可以将该综合指示符指示的传输方向确定为n个传输单元的传输方向。
在实际应用中,终端中可以维护一个综合指示符与传输方向的映射关系表,该映射关系表可以如表2所示:
表2
综合指示符 传输方向
00 DL
01 UL
10 DL dominant
11 UL dominant
其中,表2中的DL指的是传输方向为下行方向,UL指的是传输方向为上行方向,DL dominant指的是传输方向主要为下行方向,UL dominant指的是传输方向主要为下行方向。
在实际应用中,该映射关系表可以由基站预先通过高层信令或物理层信令 下发至终端中,也可以由通信协议进行规定,本公开实施例对此不做具体限定。此外,需要说明的是,表2所示的映射关系表仅仅是示例性的,其并不能限制本公开。还需要说明的是,上述高层信令可以为RRC信令、MAC CE信令等,本公开实施例对此不做具体限定。
终端可以根据该综合指示符和该映射关系表确定该综合指示符指示的传输方向,并将确定的传输方向作为上述n个传输单元的传输方向。如图4B的举例,时隙a中的目标指示信息可以包括综合指示符00,则终端可以确定时隙a+1和时隙a+2的传输方向均为下行方向。
第二种方式,目标指示信息可以包括n个单独指示符,该n个单独指示符与n个传输单元一一对应,其中,每个单独指示符用于指示对应的传输单元的传输方向,终端可以将n个传输单元中每一个传输单元的传输方向确定为对应的单独指示符所指示的传输方向。
在实际应用中,终端中也可以维护一个单独指示符与传输方向的映射关系表,该映射关系表可以与表2所示的映射关系表同理。
终端可以根据该n个单独指示符和该映射关系表确定每个单独指示符指示的传输方向,并将每个单独指示符所指示的传输方向确定为对应的传输单元的传输方向。如图4B的举例,时隙a中的目标指示信息可以包括依次排列的单独指示符00和01,则终端可以确定时隙a+1的传输方向为下行方向,时隙a+2的传输方向为上行方向。
在步骤404中,终端依据目标指示信息指示的传输方向,通过n个传输单元传输数据。
在实际应用中,终端在确定了该n个传输单元中每一个传输单元的传输方向后,通过该n个传输单元中传输方向为上行方向的传输单元向基站发送数据,通过该n个传输单元中传输方向为下行方向的传输单元接收基站发送的数据。
如图4B的举例,若终端确定时隙a+1的传输方向为下行方向,时隙a+2的传输方向为上行方向,则终端可以通过时隙a+1接收基站发送的数据,可以通过时隙a+2向基站发送数据。
综上所述,本公开实施例提供的数据传输方法,通过终端接收基站发送的目标指示信息,并基于该目标指示信息确定n个传输单元的传输方向,而后依据确定的传输方向,通过该n个传输单元传输数据,使得传输单元的传输方向的确定较为灵活,从而可以根据通信系统的数据传输需要而动态变化,能够满 足新一代通信系统传输方向动态变化的需求。
图5是根据一示例性实施例示出的一种数据传输装置500的框图。参照图5,该装置包括接收模块501、确定模块502和传输模块503。
该接收模块501,用于接收基站发送的目标指示信息。
该确定模块502,用于根据目标指示信息确定n个传输单元的传输方向,传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数。
该传输模块503,用于依据目标指示信息指示的传输方向,通过n个传输单元传输数据。
如图6所示,在本公开的一个实施例中,确定模块502,包括:位置确定子模块5021,用于根据目标指示信息确定n个传输单元的位置;方向确定子模块5022,用于根据目标指示信息确定n个传输单元的传输方向。
其中,位置确定子模块5021用于:将传输目标指示信息的传输单元确定为目标传输单元;根据目标传输单元的位置,确定与目标传输单元的位置关联的n个传输单元的位置。
在实际应用中,n个传输单元连续并位于目标传输单元之后,且与目标传输单元相邻;或者,n个传输单元包括目标传输单元和位于目标传输单元之后的与目标传输单元相邻的n-1个连续的传输单元。
在本公开的一个实施例中,目标指示信息包括位置指示信息;位置确定子模块5021,用于根据位置指示信息确定n个传输单元的位置。
在本公开的一个实施例中,目标指示信息包括一个用于指示n个传输单元的传输方向的综合指示符;确定模块502,用于将综合指示符指示的传输方向确定为n个传输单元的传输方向。
在本公开的一个实施例中,目标指示信息包括n个用于指示传输方向的单独指示符,n个单独指示符与n个传输单元一一对应;确定模块502,用于将n个传输单元中每一个传输单元的传输方向确定为对应的单独指示符所指示的传输方向。
在本公开的一个实施例中,传输模块503,用于:依据目标指示信息,确定n个传输单元中每个传输单元的传输方向;通过n个传输单元中传输方向为上行方向的传输单元向基站发送数据;通过n个传输单元中传输方向为下行方向的传输单元接收基站发送的数据。
在本公开的一个实施例中,n个传输单元为数据帧、子帧、时隙或正交频分复用OFDM符号。
综上所述,本公开实施例提供的数据传输装置,通过接收基站发送的目标指示信息,并基于该目标指示信息确定n个传输单元的传输方向,而后依据确定的传输方向,通过该n个传输单元传输数据,使得传输单元的传输方向的确定较为灵活,从而可以根据通信系统的数据传输需要而动态变化,能够满足新一代通信系统传输方向动态变化的需求。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图7是根据一示例性实施例示出的一种数据传输装置700的框图。参照图7,该装置包括生成模块701和发送模块702。
该生成模块701,用于生成目标指示信息。
该发送模块702,用于向终端发送目标指示信息,以使终端根据目标指示信息确定n个传输单元的传输方向,传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数。
在本公开的一个实施例中,目标指示信息包括位置指示信息,位置指示信息用于指示n个传输单元的位置。
在本公开的一个实施例中,目标指示信息包括一个综合指示符,综合指示符用于指示n个传输单元的传输方向。
在本公开的一个实施例中,目标指示信息包括n个单独指示符,n个单独指示符与n个传输单元一一对应,每个单独指示符用于指示对应的传输单元的传输方向。
在本公开的一个实施例中,n个传输单元为数据帧、子帧、时隙或正交频分复用OFDM符号。
综上所述,本公开实施例提供的数据传输装置,通过向终端发送目标指示信息,使终端基于该目标指示信息确定n个传输单元的传输方向,而后依据确定的传输方向,通过该n个传输单元传输数据,使得传输单元的传输方向的确定较为灵活,从而可以根据通信系统的数据传输需要而动态变化,能够满足新一代通信系统传输方向动态变化的需求。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关 该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图8是根据一示例性实施例示出的一种数据传输装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或 视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信部件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在示例性实施例中,还提供了一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行上述数据传输方法:例如,接收基站发送的目标指示信息;根据目标指示信息确定n个传输单元的传输方向,传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数;依据目标指示信息指示的传输方向,通过n个传输单元传输数据。
图9是根据一示例性实施例示出的一种数据传输装置900的框图,该数据传输装置900可以为基站,如图9所示,该数据传输装置900可以包括:处理器901、接收机902、发射机903和存储器904。接收机902、发射机903和存储器904分别通过总线与处理器901连接。
其中,处理器901包括一个或者一个以上处理核心。存储器904可用于存储软件程序以及模块。具体的,存储器904可存储操作系统9041、至少一个功能所需的应用程序模块9042。接收机902用于接收其他设备发送的通信报文,发射机903用于向其他设备发送通信报文。
在示例性实施例中,还提供了一种非临时性计算机可读存储介质,当所述存储介质中的指令由基站的处理器执行时,使得基站能够执行上述数据传输方法:例如,生成目标指示信息;向终端发送目标指示信息,以使终端根据目标指示信息确定n个传输单元的传输方向,传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的 权利要求来限制。

Claims (30)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    接收基站发送的目标指示信息;
    根据所述目标指示信息确定n个传输单元的传输方向,所述传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数;
    依据所述目标指示信息指示的传输方向,通过所述n个传输单元传输数据。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述目标指示信息确定n个传输单元的传输方向,包括:
    根据所述目标指示信息确定所述n个传输单元的位置;
    根据所述目标指示信息确定所述n个传输单元的传输方向。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述目标指示信息确定所述n个传输单元的位置,包括:
    将传输所述目标指示信息的传输单元确定为目标传输单元;
    根据所述目标传输单元的位置,确定与所述目标传输单元的位置关联的所述n个传输单元的位置。
  4. 根据权利要求3所述的方法,其特征在于,所述n个传输单元连续并位于所述目标传输单元之后,且与所述目标传输单元相邻;
    或者,所述n个传输单元包括所述目标传输单元和位于所述目标传输单元之后的与所述目标传输单元相邻的n-1个连续的传输单元。
  5. 根据权利要求2所述的方法,其特征在于,所述目标指示信息包括位置指示信息;所述根据所述目标指示信息确定所述n个传输单元的位置,包括:
    根据所述位置指示信息确定所述n个传输单元的位置。
  6. 根据权利要求1所述的方法,其特征在于,所述目标指示信息包括一个用于指示所述n个传输单元的传输方向的综合指示符;
    所述根据所述目标指示信息确定所述数据帧中n个传输单元的传输方向,包括:
    将所述综合指示符指示的传输方向确定为所述n个传输单元的传输方向。
  7. 根据权利要求1所述的方法,其特征在于,所述目标指示信息包括n个用于指示传输方向的单独指示符,所述n个单独指示符与所述n个传输单元一一对应;
    所述根据所述目标指示信息确定所述n个传输单元的传输方向,包括:
    将所述n个传输单元中每一个传输单元的传输方向确定为对应的单独指示符所指示的传输方向。
  8. 根据权利要求1所述的方法,其特征在于,所述依据所述目标指示信息指示的传输方向,通过所述n个传输单元传输数据,包括:
    依据所述目标指示信息,确定所述n个传输单元中每个传输单元的传输方向;
    通过所述n个传输单元中传输方向为上行方向的传输单元向所述基站发送数据;
    通过所述n个传输单元中传输方向为下行方向的传输单元接收所述基站发送的数据。
  9. 根据权利要求1所述的方法,其特征在于,所述n个传输单元为数据帧、子帧、时隙或正交频分复用OFDM符号。
  10. 一种数据传输方法,其特征在于,所述方法包括:
    生成目标指示信息;
    向终端发送所述目标指示信息,以使所述终端根据所述目标指示信息确定n个传输单元的传输方向,所述传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数。
  11. 根据权利要求10所述的方法,其特征在于,所述目标指示信息包括位置指示信息,所述位置指示信息用于指示所述n个传输单元的位置。
  12. 根据权利要求10所述的方法,其特征在于,所述目标指示信息包括一个综合指示符,所述综合指示符用于指示所述n个传输单元的传输方向。
  13. 根据权利要求10所述的方法,其特征在于,所述目标指示信息包括n个单独指示符,所述n个单独指示符与所述n个传输单元一一对应,每个所述单独指示符用于指示对应的传输单元的传输方向。
  14. 根据权利要求10所述的方法,其特征在于,所述n个传输单元为数据帧、子帧、时隙或正交频分复用OFDM符号。
  15. 一种数据传输装置,其特征在于,所述装置包括:
    接收模块,用于接收基站发送的目标指示信息;
    确定模块,用于根据所述目标指示信息确定n个传输单元的传输方向,所述传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数;
    传输模块,用于依据所述目标指示信息指示的传输方向,通过所述n个传输单元传输数据。
  16. 根据权利要求15所述的装置,其特征在于,所述确定模块包括:
    位置确定子模块,用于根据所述目标指示信息确定所述n个传输单元的位置;
    方向确定子模块,用于根据所述目标指示信息确定所述n个传输单元的传输方向。
  17. 根据权利要求16所述的装置,其特征在于,所述位置确定子模块用于:
    将传输所述目标指示信息的传输单元确定为目标传输单元;
    根据所述目标传输单元的位置,确定与所述目标传输单元的位置关联的所述n个传输单元的位置。
  18. 根据权利要求17所述的装置,其特征在于,所述n个传输单元连续并位于所述目标传输单元之后,且与所述目标传输单元相邻;
    或者,所述n个传输单元包括所述目标传输单元和位于所述目标传输单元之后的与所述目标传输单元相邻的n-1个连续的传输单元。
  19. 根据权利要求16所述的装置,其特征在于,所述目标指示信息包括位置指示信息;所述位置确定子模块,用于根据所述位置指示信息确定所述n个传输单元的位置。
  20. 根据权利要求15所述的装置,其特征在于,所述目标指示信息包括一个用于指示所述n个传输单元的传输方向的综合指示符;
    所述确定模块,用于将所述综合指示符指示的传输方向确定为所述n个传输单元的传输方向。
  21. 根据权利要求15所述的装置,其特征在于,所述目标指示信息包括n个用于指示传输方向的单独指示符,所述n个单独指示符与所述n个传输单元一一对应;
    所述确定模块,用于将所述n个传输单元中每一个传输单元的传输方向确定为对应的单独指示符所指示的传输方向。
  22. 根据权利要求15所述的装置,其特征在于,所述传输模块,用于:
    依据所述目标指示信息,确定所述n个传输单元中每个传输单元的传输方向;
    通过所述n个传输单元中传输方向为上行方向的传输单元向所述基站发送数据;
    通过所述n个传输单元中传输方向为下行方向的传输单元接收所述基站发送的数据。
  23. 根据权利要求15所述的装置,其特征在于,所述n个传输单元为数据帧、子帧、时隙或正交频分复用OFDM符号。
  24. 一种数据传输装置,其特征在于,所述装置包括:
    生成模块,用于生成目标指示信息;
    发送模块,用于向终端发送所述目标指示信息,以使所述终端根据所述目标指示信息确定n个传输单元的传输方向,所述传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数。
  25. 根据权利要求24所述的装置,其特征在于,所述目标指示信息包括位置指示信息,所述位置指示信息用于指示所述n个传输单元的位置。
  26. 根据权利要求24所述的装置,其特征在于,所述目标指示信息包括一个综合指示符,所述综合指示符用于指示所述n个传输单元的传输方向。
  27. 根据权利要求24所述的装置,其特征在于,所述目标指示信息包括n个单独指示符,所述n个单独指示符与所述n个传输单元一一对应,每个所述单独指示符用于指示对应的传输单元的传输方向。
  28. 根据权利要求24所述的装置,其特征在于,所述n个传输单元为数据帧、子帧、时隙或正交频分复用OFDM符号。
  29. 一种数据传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令的存储器;
    其中,所述处理器被配置为:
    接收基站发送的目标指示信息;
    根据所述目标指示信息确定n个传输单元的传输方向,所述传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数;
    依据所述目标指示信息指示的传输方向,通过所述n个传输单元传输数据。
  30. 一种数据传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令的存储器;
    其中,所述处理器被配置为:
    生成目标指示信息;
    向终端发送所述目标指示信息,以使所述终端根据所述目标指示信息确定n个传输单元的传输方向,所述传输方向包括上行方向和下行方向,其中,n为大于或等于1的正整数。
PCT/CN2017/082571 2017-04-28 2017-04-28 数据传输方法及装置 WO2018195980A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/082571 WO2018195980A1 (zh) 2017-04-28 2017-04-28 数据传输方法及装置
CN201780000281.2A CN107223362A (zh) 2017-04-28 2017-04-28 数据传输方法及装置
EP17906951.3A EP3618549A4 (en) 2017-04-28 2017-04-28 DATA TRANSMISSION METHOD AND APPARATUS
US16/665,714 US20200059919A1 (en) 2017-04-28 2019-10-28 Data transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/082571 WO2018195980A1 (zh) 2017-04-28 2017-04-28 数据传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/665,714 Continuation US20200059919A1 (en) 2017-04-28 2019-10-28 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018195980A1 true WO2018195980A1 (zh) 2018-11-01

Family

ID=59953954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082571 WO2018195980A1 (zh) 2017-04-28 2017-04-28 数据传输方法及装置

Country Status (4)

Country Link
US (1) US20200059919A1 (zh)
EP (1) EP3618549A4 (zh)
CN (1) CN107223362A (zh)
WO (1) WO2018195980A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496317B (zh) * 2017-11-02 2021-11-16 北京小米移动软件有限公司 剩余关键系统信息的公共资源集合的查找方法及装置
WO2019104672A1 (zh) 2017-11-30 2019-06-06 北京小米移动软件有限公司 信息指示方法及装置、基站和用户设备
WO2019126975A1 (zh) * 2017-12-26 2019-07-04 Oppo广东移动通信有限公司 一种传输方向的确定方法及装置、计算机存储介质
ES2962343T3 (es) * 2017-12-28 2024-03-18 Beijing Xiaomi Mobile Software Co Ltd Método de transmisión de datos, estación base y terminal
KR102465671B1 (ko) * 2017-12-28 2022-11-10 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 전송 방향 정보를 확정하는 방법 및 장치
WO2020042116A1 (zh) * 2018-08-30 2020-03-05 北京小米移动软件有限公司 指示、确定传输单元的传输方向的方法、装置及存储介质
WO2021237751A1 (zh) * 2020-05-29 2021-12-02 Oppo广东移动通信有限公司 数据传输方法、终端设备和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103384185A (zh) * 2012-05-02 2013-11-06 财团法人工业技术研究院 处理分时双工系统中资源配置的方法及其通信装置
CN104105203A (zh) * 2013-04-03 2014-10-15 中兴通讯股份有限公司 上下行资源配置信息处理方法及装置
CN106162697A (zh) * 2015-04-17 2016-11-23 中国移动通信集团公司 一种帧结构配置方法、基站、用户设备及系统
US20170041119A1 (en) * 2015-08-07 2017-02-09 Qualcomm Incorporated Configurable bi-directional time division duplex (tdd) subframe structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477382B1 (en) * 2000-06-12 2002-11-05 Intel Corporation Flexible paging for packet data
US9236938B2 (en) * 2006-07-07 2016-01-12 Telefonaktiebolaget L M Ericsson (Publ) Resource allocation for co-existing networks
CN103648175B (zh) * 2010-03-22 2017-09-29 华为技术有限公司 多子帧调度方法、系统和设备
EP2613605A4 (en) * 2010-09-03 2014-10-15 Fujitsu Ltd METHOD, TERMINAL DEVICE, AND BASE STATION DEVICE FOR TRANSMITTING UPLINK RESPONSE SIGNALS
US8644261B1 (en) * 2011-02-04 2014-02-04 Sprint Spectrum L.P. Methods and systems for registering a wireless access terminal with a radio access network
CN102143499A (zh) * 2011-03-29 2011-08-03 电信科学技术研究院 子帧配置信息通知和子帧配置的方法、系统及设备
KR20130125075A (ko) * 2012-05-08 2013-11-18 주식회사 팬택 반 이중 단말 및 반 이중 단말의 랜덤 억세스 방법
CN103916957A (zh) * 2013-01-04 2014-07-09 中国移动通信集团公司 一种上下行时隙方向的确定方法及装置
EP3474617B1 (en) * 2013-08-23 2020-11-04 Huawei Technologies Co., Ltd. Method and apparatus for transmitting uplink information
CN105991247A (zh) * 2015-02-16 2016-10-05 中兴通讯股份有限公司 一种设备到设备发送、接收、调度方法和相应装置
CN105592558B (zh) * 2016-02-05 2018-01-09 宇龙计算机通信科技(深圳)有限公司 一种数据传输方法、终端及数据传输系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103384185A (zh) * 2012-05-02 2013-11-06 财团法人工业技术研究院 处理分时双工系统中资源配置的方法及其通信装置
CN104105203A (zh) * 2013-04-03 2014-10-15 中兴通讯股份有限公司 上下行资源配置信息处理方法及装置
CN106162697A (zh) * 2015-04-17 2016-11-23 中国移动通信集团公司 一种帧结构配置方法、基站、用户设备及系统
US20170041119A1 (en) * 2015-08-07 2017-02-09 Qualcomm Incorporated Configurable bi-directional time division duplex (tdd) subframe structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618549A4 *

Also Published As

Publication number Publication date
EP3618549A1 (en) 2020-03-04
EP3618549A4 (en) 2020-03-04
US20200059919A1 (en) 2020-02-20
CN107223362A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
WO2018195980A1 (zh) 数据传输方法及装置
US11483819B2 (en) Data transmission method and apparatus and user equipment
CN108702776B (zh) 信息复用传输方法及装置、信息接收方法及装置
CN108353408B (zh) 增补上行载波配置方法及装置和调度资源分配方法及装置
EP3911067A1 (en) Resource allocation method and apparatus
EP3799483A1 (en) Method and device for sending wake-up signal, and paging demodulation method and device
US11539471B2 (en) Hybrid automatic repeat request feedback indication and feedback method, apparatus and base station
CN108401528B (zh) 指示多业务数据复用传输的方法及装置、终端和基站
CN109451798B (zh) 混合自动重传请求反馈指示、反馈方法及装置和基站
JP2023052156A (ja) 残りの最小システム情報の共通制御リソースセットの周波数領域情報を示すための方法
WO2019084909A1 (zh) 功率余量报告传输方法和装置
US11503642B2 (en) Method and device for determining an uplink-downlink switching point
KR102182610B1 (ko) 데이터 전송 방법, 장치, 컴퓨터 프로그램 및 저장 매체
WO2020191631A1 (zh) 时隙格式指示方法及装置
EP3836663B1 (en) Information scheduling and sending-receiving method and apparatus
WO2019024037A1 (zh) 指示多业务数据复用传输的方法及装置、终端和基站
WO2020206613A1 (zh) 数据反馈、传输方法及装置、基站和用户设备
CN108702262B (zh) 数据传输方法、装置、系统及计算机可读存储介质
WO2020014878A1 (zh) 数据传输方法、装置及存储介质
WO2020223969A1 (zh) 直连链路数据发送和直连链路资源配置方法以及装置
WO2018227627A1 (zh) 确定调度信令盲检次数的方法、装置、用户设备和基站
WO2018201336A1 (zh) 下行控制信道的接收、发送方法及装置
WO2024065124A1 (zh) 能力指示、确定方法及装置、通信装置和存储介质
US20230299887A1 (en) Transimission method, apparatus and storage medium
WO2024065123A1 (zh) 重复传输方法、装置、通信装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017906951

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017906951

Country of ref document: EP

Effective date: 20191128