WO2019090723A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2019090723A1
WO2019090723A1 PCT/CN2017/110537 CN2017110537W WO2019090723A1 WO 2019090723 A1 WO2019090723 A1 WO 2019090723A1 CN 2017110537 W CN2017110537 W CN 2017110537W WO 2019090723 A1 WO2019090723 A1 WO 2019090723A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
base station
autonomous
terminal
primary base
Prior art date
Application number
PCT/CN2017/110537
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2017/110537 priority Critical patent/WO2019090723A1/zh
Priority to CN201780001808.3A priority patent/CN109451860B/zh
Priority to EP17931557.7A priority patent/EP3706350B1/en
Priority to ES17931557T priority patent/ES2973523T3/es
Priority to PL17931557.7T priority patent/PL3706350T3/pl
Priority to US16/760,739 priority patent/US11431366B2/en
Publication of WO2019090723A1 publication Critical patent/WO2019090723A1/zh
Priority to US17/815,074 priority patent/US11742884B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/109Means associated with receiver for limiting or suppressing noise or interference by improving strong signal performance of the receiver when strong unwanted signals are present at the receiver input
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a data transmission method and apparatus.
  • an EN-DC (EUTRAN NR-Dual Connectivity) scenario and an LTE (Long Term Evolution) network is a 4G network.
  • the NR (New Radio) network is a 5G network.
  • the terminal needs to maintain two communication links at the same time, one for the LTE communication link and one for the NR communication link.
  • the terminal performs uplink transmission simultaneously on two frequency bands, it may cause serious intermodulation interference to downlink reception of a certain frequency band, thereby reducing the performance of the terminal.
  • the embodiments of the present disclosure provide a data transmission method and device.
  • a data transmission method the method being used for a primary base station, the method comprising:
  • the secondary base station When the secondary base station is configured for the terminal, configuring, for the secondary base station, a carrier parameter used by the secondary base station;
  • the primary base station is a long term evolution LTE base station
  • the secondary base station is a new air interface NR base station.
  • the autonomous rejection rule includes: a specified quantity and a specified number of times;
  • the specified number is used to characterize the number of persistent subframes in a carrier
  • the specified number of times is used to indicate that autonomously rejecting an uplink subframe is allowed within the specified number of persistent subframes The number of transmissions.
  • the autonomous rejection rule further includes: specifying a carrier
  • the designated carrier is used to identify that the primary base station is a carrier that is allowed to be autonomously rejected among the configured carriers of the secondary base station.
  • the sending the carrier parameter and the autonomous rejection rule to the terminal includes:
  • a data transmission method is provided, the method being used for a terminal, the method comprising:
  • the carrier parameter is a carrier parameter configured by the primary base station for the secondary base station
  • the autonomous rejection rule is that the primary base station is An autonomous rejection rule used by the terminal for the terminal to resolve intermodulation interference
  • the autonomously rejected carrier is determined according to the autonomous rejection rule, and is performed by using a carrier other than the autonomously rejected carrier. data transmission.
  • the primary base station is an LTE base station
  • the secondary base station is a new air interface NR base station.
  • the receiving the carrier parameter and the autonomous rejection rule sent by the primary base station include:
  • RRC connection configuration signaling sent by the primary base station, where the RRC connection configuration signaling includes the carrier parameter and the autonomous rejection rule;
  • the autonomous rejection rule includes: a specified number and a specified number of times; the specified number is used to characterize a number of persistent subframes in a carrier; the specified number of times is used to characterize the duration in the specified number The number of times the sub-frame is allowed to autonomously reject the uplink subframe transmission;
  • Determining, by the autonomous rejection rule, the carrier that is autonomously rejected including:
  • the carrier used by the secondary base station and the carrier used by the primary base station determine, as the autonomously rejected carrier, a carrier that satisfies the autonomous rejection rule, including:
  • the carrier used by the secondary base station and the carrier used by the primary base station satisfy the autonomous rejection rule, determining, according to the transmission carrier required for the data to be transmitted, the autonomously rejected carrier, the autonomously rejected carrier and the carrier The transmission carrier required to transmit data is different.
  • the autonomous deny rule further includes: specifying a carrier; the designated carrier is used to represent that the primary base station is a carrier that is allowed to be autonomously rejected in a carrier that has been configured by the secondary base station;
  • Determining, by the autonomous rejection rule, the carrier that is autonomously rejected including:
  • the designated carrier is determined as the autonomously rejected carrier.
  • a data transmission apparatus the apparatus being used for a primary base station, the apparatus comprising:
  • a first configuration module configured to configure, for the secondary base station, a carrier parameter used by the secondary base station when the secondary base station is configured for the terminal;
  • a second configuration module configured to configure, for the terminal, an autonomous rejection rule used when intermodulation interference occurs between a carrier used by the secondary base station and a carrier used by the primary base station;
  • a sending module configured to send the carrier parameter and the autonomous deny rule to the terminal.
  • the primary base station is an LTE base station
  • the secondary base station is a new air interface NR base station.
  • the autonomous rejection rule includes: a specified quantity and a specified number of times;
  • the specified number is used to characterize the number of persistent subframes in a carrier
  • the specified number of times is used to characterize the number of times an autonomous sub-frame transmission is allowed to be autonomously rejected within the specified number of consecutive subframes.
  • the autonomous rejection rule further includes: specifying a carrier
  • the designated carrier is used to identify that the primary base station is a carrier that is allowed to be autonomously rejected among the configured carriers of the secondary base station.
  • the sending module includes:
  • a transmitting submodule configured to send the RRC connection configuration signaling with the carrier parameter and the autonomous deny rule to the terminal, so that the terminal acquires the RRC connection configuration signaling from the terminal.
  • a data transmission apparatus the apparatus being used for a terminal, the apparatus comprising:
  • a receiving module configured to receive a carrier parameter and an autonomous deny rule sent by the primary base station, where the carrier parameter is a carrier parameter configured by the primary base station for the secondary base station to use by the secondary base station, the autonomous rejection rule The autonomous rejection rule used by the primary base station for the terminal to resolve the intermodulation interference;
  • a determining module configured to determine a carrier used by the secondary base station according to the carrier parameter
  • a data transmission module configured to: when a crosstalk occurs between a carrier used by the secondary base station and a carrier used by the primary base station, determine a carrier that is autonomously rejected according to the autonomous rejection rule, and use the autonomously rejected Other carriers other than the carrier carry out data transmission.
  • the primary base station is an LTE base station
  • the secondary base station is a new air interface NR base station.
  • the receiving module comprises:
  • the receiving submodule is configured to receive the RRC connection configuration signaling sent by the primary base station, where the RRC connection configuration signaling includes the carrier parameter and the autonomous rejection rule;
  • the obtaining submodule is configured to acquire the carrier parameter and the autonomous deny rule from the RRC connection configuration signaling.
  • the autonomous deny rule includes: a specified number and a specified number of times; the specified number is used to characterize a number of persistent subframes in one carrier; the specified number of times is used to characterize the persistent number in the specified number The number of times the intra-frame is allowed to reject the uplink subframe transmission autonomously;
  • the data transmission module includes:
  • a first determining submodule configured to: when a carrier used by the secondary base station and a carrier used by the primary base station have intermodulation interference, a carrier used by the secondary base station and a carrier used by the primary base station Determining, by the carrier that satisfies the autonomous rejection rule, the carrier that is autonomously rejected;
  • the first transmission submodule is configured to perform data transmission by using other carriers than the autonomously rejected carrier.
  • the first determining submodule comprises:
  • a second determining submodule configured to determine, if the carrier used by the secondary base station and the carrier used by the primary base station satisfy the autonomous rejection rule, determine the autonomously rejected carrier according to a transmission carrier required for data to be transmitted
  • the autonomously rejected carrier is different from the transmission carrier required for the data to be transmitted.
  • the autonomous deny rule further includes: specifying a carrier, where the designated carrier is used to represent that the primary base station is a carrier that is allowed to be autonomously rejected among carriers configured by the secondary base station;
  • the data transmission module includes:
  • a third determining submodule configured to determine the designated carrier as the autonomously rejected carrier
  • the second transmission submodule is configured to perform data transmission by using other carriers than the autonomously rejected carrier.
  • a non-transitory computer readable storage medium having stored thereon computer instructions for performing the data transmission method of the first aspect described above.
  • a non-transitory computer readable storage medium having stored thereon computer instructions for performing the data transmission method of the second aspect described above.
  • a data transmission apparatus the apparatus being used for a primary base station, the apparatus comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the secondary base station When the secondary base station is configured for the terminal, configuring, for the secondary base station, a carrier parameter used by the secondary base station;
  • a data transmission apparatus the apparatus being used for a terminal, the apparatus comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the carrier parameter is a carrier parameter configured by the primary base station for the secondary base station
  • the autonomous rejection rule is that the primary base station is Autonomous deny rule used by the terminal for the terminal to resolve intermodulation interference
  • the autonomously rejected carrier is determined according to the autonomous rejection rule, and is performed by using a carrier other than the autonomously rejected carrier. data transmission.
  • the secondary base station may configure the carrier parameter used by the secondary base station, and configure the terminal to perform intermodulation between the carrier used by the secondary base station and the carrier used by the primary base station.
  • the autonomous rejection rule used in the interference, and the carrier parameter and the autonomous rejection rule configured by the primary base station are sent to the terminal, so that the terminal can determine the carrier used by the secondary base station according to the carrier parameter configured by the primary base station, and the carrier used by the secondary base station and
  • intermodulation interference occurs between carriers used by the primary base station
  • the autonomously rejected carrier is determined according to the autonomous rejection rule configured by the primary base station, and the other carriers other than the determined autonomously rejected carrier are used for data transmission, thereby ensuring that the terminal is important for the terminal.
  • the reception of downlink signaling or the transmission of important uplink signaling improves the communication quality.
  • the terminal in the disclosure may receive the carrier parameter and the autonomous rejection rule sent by the primary base station, determine the carrier used by the secondary base station according to the carrier parameter configured by the primary base station, and use the carrier and the primary base station used by the secondary base station.
  • the autonomously rejected carrier is determined according to the autonomous rejection rule configured by the primary base station, and the other carriers other than the determined autonomously rejected carrier are used for data transmission, thereby ensuring that the terminal targets the important downlink.
  • the reception of signaling or the transmission of important uplink signaling improves communication quality.
  • FIG. 1 is a flowchart of a data transmission method according to an exemplary embodiment
  • FIG. 2 is a scene diagram of a data transmission method according to an exemplary embodiment
  • FIG. 3 is a flowchart of another data transmission method according to an exemplary embodiment
  • FIG. 4 is a flowchart of a data transmission method according to an exemplary embodiment
  • FIG. 5 is a flowchart of another data transmission method according to an exemplary embodiment
  • FIG. 6 is a flowchart of another data transmission method according to an exemplary embodiment
  • FIG. 7 is a flowchart of another data transmission method according to an exemplary embodiment
  • FIG. 8 is a flowchart of another data transmission method according to an exemplary embodiment
  • FIG. 9 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 10 is a block diagram of another data transmission apparatus according to an exemplary embodiment.
  • FIG. 11 is a block diagram of a data transmission apparatus according to an exemplary embodiment
  • FIG. 12 is a block diagram of another data transmission apparatus according to an exemplary embodiment
  • FIG. 13 is a block diagram of another data transmission apparatus according to an exemplary embodiment
  • FIG. 14 is a block diagram of another data transmission apparatus according to an exemplary embodiment
  • FIG. 15 is a block diagram of another data transmission apparatus according to an exemplary embodiment.
  • FIG. 16 is a schematic structural diagram of a data transmission apparatus according to an exemplary embodiment
  • FIG. 17 is a schematic structural diagram of a data transmission apparatus according to an exemplary embodiment.
  • first, second, third, etc. may be used in the present disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information without departing from the scope of the present disclosure.
  • second information may also be referred to as first information.
  • word "if” as used herein may be interpreted as "when” or “when” or “in response to a determination.”
  • FIG. 1 is a flowchart of a data transmission method according to an exemplary embodiment
  • FIG. 2 is a scene diagram of a data transmission method according to an exemplary embodiment
  • the data transmission method may be applied to a primary base station.
  • an LTE base station as shown in FIG. 1, the data transmission method includes the following steps 110-130:
  • step 110 when the secondary base station is configured for the terminal, the secondary base station is configured with carrier parameters for use by the secondary base station.
  • the terminal may establish a connection with the primary base station and the secondary base station, and can accept the network service provided by the primary base station and the network service provided by the secondary base station.
  • the network service provided by the primary base station is a service provided by the 4G network
  • the network service provided by the secondary base station is a service provided by the 5G network.
  • the secondary base station configures the carrier parameter used by the secondary base station, and the purpose is to enable the terminal to learn the carrier used by the secondary base station according to the carrier parameter, and use the carrier to perform data. transmission.
  • the carrier parameters configured by the primary base station may include, but are not limited to, a carrier frequency, configuration parameters of respective protocol layers, and the like.
  • the terminal is configured to send a carrier used by the secondary base station to a carrier used by the primary base station.
  • the autonomous rejection rule used when interfering with the birth is configured to send a carrier used by the secondary base station to a carrier used by the primary base station.
  • the primary base station when the primary base station configures the carrier parameter for the secondary base station, the primary base station may also instruct the terminal to automatically reject the configured carrier when the handover interference problem occurs.
  • step 130 the carrier parameters configured by the primary base station and the autonomous rejection rule are sent to the terminal.
  • the terminal may determine the carrier used by the secondary base station according to the carrier parameter configured by the primary base station, and use the carrier used by the secondary base station and the primary base station.
  • the autonomously rejected carrier is determined according to the autonomous rejection rule configured by the primary base station, and the other transmissions other than the determined autonomously rejected carrier are used for data transmission.
  • the primary base station is an LTE base station
  • the secondary base station is an NR base station.
  • the 5G terminal, the LTE base station, and the NR base station are included, and the 5G terminals are respectively connected to the LTE base station and the NR base station.
  • the LTE base station configures the NR base station as the secondary base station for the 5G terminal, and configures the used carrier parameter for the NR base station, and also indicates the autonomous rejection rule for the 5G terminal to automatically reject the configured carrier when the intermodulation interference problem occurs.
  • the 5G terminal can determine the carrier used by the NR base station according to the carrier parameter configured by the LTE base station for the NR base station, and when the carrier used by the NR base station and the carrier used by the LTE base station interfere with each other, the LTE base station can be configured according to the LTE base station for the 5G terminal.
  • the rejection rule determines the carrier that is autonomously rejected, and performs data transmission using other carriers than the determined autonomously rejected carrier.
  • the secondary base station when the secondary base station is configured for the terminal, the secondary base station is configured with the carrier parameter used by the secondary base station, and the terminal is configured to perform intermodulation between the carrier used by the secondary base station and the carrier used by the primary base station.
  • the autonomous rejection rule used in the interference, and the carrier parameter and the autonomous rejection rule configured by the primary base station are sent to the terminal, so that the terminal can determine the carrier used by the secondary base station according to the carrier parameter configured by the primary base station, and the carrier used by the secondary base station and
  • intermodulation interference occurs between carriers used by the primary base station
  • the autonomously rejected carrier is determined according to the autonomous rejection rule configured by the primary base station, and the other carriers other than the determined autonomously rejected carrier are used for data transmission, thereby ensuring that the terminal is important for the terminal.
  • the reception of downlink signaling or the transmission of important uplink signaling improves the communication quality.
  • the autonomous deny rule configured by the primary base station for the terminal may include: a specified quantity and a specified number of times; the specified quantity is used to represent the number of persistent subframes in one carrier; And characterizing the number of times the autonomous subframe transmission is allowed to be autonomously rejected within the specified number of persistent subframes.
  • the specified number may be the specified number of subframes; the specified number of times may be the specified number of rejections.
  • the specified number of times is used to indicate that the autonomous rejection of the uplink is allowed within the specified number of persistent subframes.
  • the number of times the subframe is transmitted, so that the terminal can determine the carrier that meets the specified number and the specified number of times as the carrier that is autonomously rejected, and uses other carriers other than the autonomously rejected carrier to perform data transmission, thereby avoiding the occurrence of intermodulation interference and improving the interference.
  • the reliability of data transmission is configured, and the specified number is used to characterize the number of persistent subframes in one carrier.
  • the autonomous deny rule configured by the primary base station for the terminal may include: the specified number and the specified number of times; and may further include: specifying the carrier.
  • the specified number is used to represent the number of persistent subframes in a carrier; the specified number of times is used to represent the number of times that the autonomous subframe transmission is allowed to be autonomously rejected in the specified number of persistent subframes; And characterizing a carrier that is allowed to be autonomously rejected among the carriers that the primary base station has configured for the secondary base station.
  • the specified carrier is configured for the terminal, and the specified number is used to indicate that the primary base station is a carrier that is allowed to be autonomously rejected in the configured carrier of the secondary base station, so that the terminal can directly determine the designated carrier as autonomously rejecting.
  • the carrier transmits data by using other carriers than the carrier that is autonomously rejected, thereby speeding up the efficiency of the terminal to determine the carrier that is autonomously rejected, and avoiding the occurrence of intermodulation interference, thereby improving the reliability of data transmission.
  • step 130 when the carrier parameter and the autonomous deny rule configured by the primary base station are sent to the terminal, the following implementation manners may be used, that is, steps 310-320:
  • step 310 the carrier parameters and the autonomous deny rule configured by the primary base station are added to the RRC (Radio Resource Control) connection configuration signaling.
  • RRC Radio Resource Control
  • the terminal can automatically reject M uplink subframe transmissions on a certain carrier of the configuration in N consecutive subframes, and/or Automatic rejection on the G carrier.
  • the NR secondary cell group configuration signaling is included in the RRC connection configuration signaling, and is applied to the terminal to configure the NR secondary carrier, so that the terminal can use the NR for data transmission.
  • step 320 the RRC connection configuration signaling with the carrier parameter and the autonomous rejection rule configured by the primary base station is sent to the terminal, so that the terminal acquires the carrier parameter and the autonomous rejection rule configured by the primary base station from the RRC connection configuration signaling.
  • the RRC connection configuration signaling with the carrier parameters configured by the primary base station and the autonomous rejection rule is added by adding the carrier parameters and the autonomous rejection rule configured by the primary base station to the RRC connection configuration signaling.
  • the terminal is sent to the terminal, so that the terminal can accurately and quickly obtain the carrier parameters and the autonomous rejection rule configured by the primary base station from the RRC connection configuration signaling, thereby improving the efficiency of the terminal acquiring the configuration information of the primary base station.
  • FIG. 4 is a flowchart of a data transmission method according to an exemplary embodiment.
  • the data transmission method may be applied to a terminal, such as a 5G terminal.
  • the data transmission method includes the following step 410- 430:
  • step 410 the carrier parameter and the autonomous deny rule sent by the primary base station are received, where the carrier parameter is a carrier parameter configured by the primary base station for the secondary base station, and the autonomous rejection rule is configured by the primary base station for the terminal.
  • the autonomous rejection rule used by the terminal to resolve intermodulation interference.
  • step 420 the carrier used by the secondary base station is determined according to the carrier parameter configured by the primary base station.
  • step 430 when a crosstalk occurs between the carrier used by the secondary base station and the carrier used by the primary base station, the autonomously rejected carrier is determined according to the autonomous rejection rule configured by the primary base station, and the carrier other than the autonomously rejected carrier is utilized.
  • the carrier carries out data transmission.
  • the terminal may autonomously decide to suspend the uplink of a certain carrier according to the autonomous rejection rule. Transmit to avoid intermodulation interference for downlink reception of other carriers.
  • the primary base station may be an LTE base station
  • the secondary base station may be an NR base station, as shown in the embodiment scenario of FIG.
  • the terminal needs to receive downlink signaling on the LTE carrier. If the uplink transmission is performed on the NR carrier and the LTE carrier at the same time, the downlink signaling reception of the LTE carrier will cause intermodulation interference, and the terminal can autonomously reject the NR carrier at this time. Upstream transmission.
  • the terminal needs to send a HARQ (Hybrid Automatic Repeat-reQuest) feedback for the NR downlink carrier on the NR uplink carrier, and the terminal can autonomously reject the uplink transmission on the LTE carrier. Since the terminal transmits interlaced interference when performing uplink transmission on the NR carrier and the LTE carrier at the same time, the terminal must reject a certain carrier to prevent intermodulation interference, but since the uplink transmission of the NR is to transmit important HARQ feedback, the terminal The uplink transmission on the LTE carrier is selected to be rejected, thereby ensuring uplink transmission of the terminal on the NR carrier, and no intermodulation interference is generated.
  • HARQ Hybrid Automatic Repeat-reQuest
  • the carrier parameter and the autonomous rejection rule sent by the primary base station are received, and the carrier used by the secondary base station is determined according to the carrier parameter configured by the primary base station, and the carrier used by the secondary base station and the primary base station are used.
  • the autonomously rejected carrier is determined according to the autonomous rejection rule configured by the primary base station, and the other carriers other than the determined autonomously rejected carrier are used for data transmission, thereby ensuring that the terminal targets the important downlink.
  • the reception of signaling or the transmission of important uplink signaling improves communication quality.
  • step 410 when receiving the carrier parameter and the autonomous rejection rule sent by the primary base station, the following implementation manner may be adopted, that is, steps 510-520:
  • step 510 the RRC connection configuration signaling sent by the primary base station is received, where the RRC connection configuration signaling includes a carrier parameter and an autonomous rejection rule configured by the primary base station;
  • step 520 the carrier parameters configured by the primary base station and the autonomous rejection rule are obtained from the RRC connection configuration signaling.
  • the carrier parameters configured by the primary base station and the autonomous rejection rule are obtained from the RRC connection configuration signaling, thereby improving the terminal acquiring the configuration information of the primary base station. effectiveness.
  • the autonomous deny rule configured by the primary base station for the terminal may include: a specified quantity and a specified number of times; the specified quantity is used to represent the number of persistent subframes in one carrier; And characterizing the number of times the autonomous subframe transmission is allowed to be autonomously rejected within the specified number of persistent subframes.
  • the foregoing step 430 as shown in FIG. 6, the following implementation manners may be adopted, that is, steps 610-620:
  • step 610 when inter-carrier interference occurs between the carrier used by the secondary base station and the carrier used by the primary base station, the carrier used by the secondary base station and the carrier used by the primary base station will satisfy the carrier of the autonomous rejection rule configured by the primary base station. Determined as a carrier that is autonomously rejected.
  • step 620 data transmission is performed using other carriers than the autonomously rejected carrier.
  • the carrier that satisfies the autonomous rejection rule configured by the primary base station is determined as the carrier that is autonomously rejected, and the other carrier than the carrier that is autonomously rejected is used for data transmission, thereby avoiding the occurrence of intermodulation interference and improving.
  • the reliability of data transmission is determined as the carrier that is autonomously rejected, and the other carrier than the carrier that is autonomously rejected is used for data transmission, thereby avoiding the occurrence of intermodulation interference and improving.
  • step 610 in the carrier used by the secondary base station and the carrier used by the primary base station, determining a carrier that satisfies the autonomous rejection rule is determined as the autonomous When the carrier is rejected, the following implementation manner may be adopted, that is, step 710:
  • step 710 if the carrier used by the secondary base station and the carrier used by the primary base station satisfy the autonomous rejection rule configured by the primary base station, the autonomously rejected carrier is determined according to the transmission carrier required for the data to be transmitted, and the autonomous rejection is performed.
  • the carrier is different from the transmission carrier required for the data to be transmitted.
  • the autonomously rejected carrier is determined by the carrier carrier to be transmitted according to the transmission carrier required for the data to be transmitted, and the autonomously rejected carrier is different from the transmission carrier required for the data to be transmitted, thereby enriching the manner of the terminal autonomously rejecting and improving the data.
  • the practicality of the transmission is determined by the carrier carrier to be transmitted according to the transmission carrier required for the data to be transmitted, and the autonomously rejected carrier is different from the transmission carrier required for the data to be transmitted, thereby enriching the manner of the terminal autonomously rejecting and improving the data.
  • the autonomous deny rule configured by the primary base station for the terminal may include: the specified number and the specified number of times; and may further include: specifying the carrier.
  • the specified number is used to represent the number of persistent subframes in a carrier; the specified number of times is used to represent the number of times that the autonomous subframe transmission is allowed to be autonomously rejected in the specified number of persistent subframes; And characterizing a carrier that is allowed to be autonomously rejected among the carriers that the primary base station has configured for the secondary base station.
  • step 810 when a crosstalk occurs between the carrier used by the secondary base station and the carrier used by the primary base station, the designated carrier configured by the primary base station is determined as the autonomously rejected carrier.
  • step 820 data transmission is performed using other carriers than the autonomously rejected carrier.
  • the specified carrier configured by the primary base station is directly determined as the autonomously rejected carrier, and the other carrier than the autonomously rejected carrier is used for data transmission, thereby speeding up the efficiency of determining the autonomously rejected carrier by the terminal. It avoids the occurrence of intermodulation interference and improves the reliability of data transmission.
  • the present disclosure also provides an embodiment of a data transmission device.
  • FIG. 9 is a block diagram of a data transmission apparatus for a primary base station and for performing the data transmission method shown in FIG. 1 according to an exemplary embodiment.
  • the data transmission apparatus may include :
  • the first configuration module 91 is configured to configure, for the secondary base station, a carrier parameter used by the secondary base station when the secondary base station is configured for the terminal;
  • the second configuration module 92 is configured to configure, for the terminal, an autonomous rejection rule used when intermodulation interference occurs between a carrier used by the secondary base station and a carrier used by the primary base station;
  • the sending module 93 is configured to send the carrier parameter and the autonomous deny rule to the terminal.
  • the primary base station is an LTE base station
  • the secondary base station is a new air interface NR base station.
  • the secondary base station when the secondary base station is configured for the terminal, the secondary base station is configured with the carrier parameter used by the secondary base station, and the terminal is configured to perform the handover between the carrier used by the secondary base station and the carrier used by the primary base station. Adjusting the autonomous rejection rule used in the interference, and transmitting the carrier parameter and the autonomous rejection rule configured by the primary base station to the terminal, so that the terminal can determine the carrier used by the secondary base station according to the carrier parameter configured by the primary base station, and the carrier used by the secondary base station.
  • the autonomously rejected carrier is determined according to the autonomous rejection rule configured by the primary base station, and the other carrier other than the determined autonomously rejected carrier is used for data transmission, thereby ensuring that the terminal is targeted.
  • the reception of important downlink signaling or the transmission of important uplink signaling improves communication quality.
  • the autonomous deny rule includes: a specified number and a specified number of times; the specified number is used to characterize a number of persistent subframes in one carrier; the specified number of times is used to characterize the persistent number in the specified number The number of times the intra-frame is allowed to reject the uplink subframe transmission autonomously.
  • the specified number of times is used to indicate that the autonomous rejection of the uplink is allowed within the specified number of persistent subframes.
  • the number of times the subframe is transmitted, so that the terminal can determine the carrier that meets the specified number and the specified number of times as the carrier that is autonomously rejected, and uses other carriers other than the autonomously rejected carrier to perform data transmission, thereby avoiding the occurrence of intermodulation interference and improving the interference.
  • the reliability of data transmission is configured, and the specified number is used to characterize the number of persistent subframes in one carrier.
  • the autonomous rejection rule further includes: specifying a carrier; the designated carrier is used to represent that the primary base station is a carrier that is allowed to be autonomously rejected among the configured carriers of the secondary base station.
  • the specified carrier is configured for the terminal, and the specified number is used to indicate that the primary base station is a carrier that is allowed to be autonomously rejected in the configured carrier of the secondary base station, so that the terminal can directly determine the designated carrier as autonomously rejecting.
  • the carrier transmits data by using other carriers than the carrier that is autonomously rejected, thereby speeding up the efficiency of the terminal to determine the carrier that is autonomously rejected, and avoiding the occurrence of intermodulation interference, thereby improving the reliability of data transmission.
  • FIG. 10 is a block diagram of another data transmission apparatus according to an exemplary embodiment, which is used in a primary base station and establishes a base station of the apparatus shown in FIG. 9.
  • the sending module 93 may include:
  • the adding submodule 101 is configured to add the carrier parameter and the autonomous deny rule to the RRC connection configuration signaling
  • the transmitting submodule 102 is configured to send the RRC connection configuration signaling with the carrier parameter and the autonomous deny rule to the terminal, so that the terminal obtains from the RRC connection configuration signaling The carrier parameter and the autonomous rejection rule.
  • the terminal can accurately and quickly acquire the carrier parameters and the autonomous rejection rule configured by the primary base station from the RRC connection configuration signaling, thereby improving the efficiency of the terminal acquiring the configuration information of the primary base station.
  • FIG. 11 is a block diagram of a data transmission apparatus for a terminal and for performing the data transmission method shown in FIG. 4, as shown in FIG. 11, the data transmission apparatus may include:
  • the receiving module 111 is configured to receive a carrier parameter and an autonomous rejection rule sent by the primary base station, where the carrier parameter is a carrier parameter configured by the primary base station for the secondary base station to be used by the secondary base station, and the autonomous rejection
  • the rule is an autonomous rejection rule used by the primary base station for the terminal to resolve the intermodulation interference
  • the determining module 112 is configured to determine, according to the carrier parameter, a carrier used by the secondary base station;
  • the data transmission module 113 is configured to: when a crosstalk occurs between a carrier used by the secondary base station and a carrier used by the primary base station, determine a carrier that is autonomously rejected according to the autonomous rejection rule, and use the autonomous rejection Other carriers other than the carrier carry out data transmission.
  • the primary base station is an LTE base station
  • the secondary base station is a new air interface NR base station.
  • the carrier parameter and the autonomous rejection rule sent by the primary base station are received, and the carrier used by the secondary base station is determined according to the carrier parameter configured by the primary base station, and between the carrier used by the secondary base station and the carrier used by the primary base station.
  • the autonomously rejected carrier is determined according to the autonomous rejection rule configured by the primary base station, and the other carriers other than the determined autonomously rejected carrier are used for data transmission, thereby ensuring that the terminal receives the important downlink signaling or The transmission of important uplink signaling improves the communication quality.
  • FIG. 12 is a block diagram showing another data transmission apparatus for a primary base station and establishing a base station of the apparatus shown in FIG. 11 according to an exemplary embodiment.
  • the data transmission apparatus may include
  • the receiving module 111 can include:
  • the receiving sub-module 121 is configured to receive the RRC connection configuration signaling sent by the primary base station, where the RRC connection configuration signaling includes the carrier parameter and the autonomous rejection rule;
  • the obtaining sub-module 122 is configured to acquire the carrier parameter and the autonomous deny rule from the RRC connection configuration signaling.
  • the RRC connection configuration signaling sent by the primary base station is received, and is connected from the RRC. Obtaining the carrier parameters configured by the primary base station and the autonomous rejection rule in the configuration signaling, thereby improving the efficiency of the terminal acquiring the configuration information of the primary base station.
  • FIG. 13 is a block diagram of another data transmission apparatus for a primary base station and establishing a base station of the apparatus shown in FIG. 11 according to an exemplary embodiment, the autonomous rejection rule including: a specified number and a specified number of times The specified number is used to characterize the number of persistent subframes in a carrier; the specified number of times is used to characterize the number of times the autonomous subframe transmission is allowed to be autonomously rejected within the specified number of persistent subframes;
  • the data transmission module 113 can include:
  • the first determining submodule 131 is configured to: when the interlace interference occurs between the carrier used by the secondary base station and the carrier used by the primary base station, the carrier used by the secondary base station and the carrier used by the primary base station Determining, by the carrier that satisfies the autonomous rejection rule, the carrier that is autonomously rejected;
  • the first transmission sub-module 132 is configured to perform data transmission by using other carriers than the autonomously rejected carrier.
  • the carrier that satisfies the autonomous rejection rule configured by the primary base station is determined as the carrier that is autonomously rejected, and the other carrier than the carrier that is autonomously rejected is used for data transmission, thereby avoiding the occurrence of intermodulation interference and improving.
  • the reliability of data transmission is determined as the carrier that is autonomously rejected, and the other carrier than the carrier that is autonomously rejected is used for data transmission, thereby avoiding the occurrence of intermodulation interference and improving.
  • FIG. 14 is a block diagram showing another data transmission apparatus for a primary base station and establishing a base station of the apparatus shown in FIG. 13 according to an exemplary embodiment, as shown in FIG. Module 131 can include:
  • the second determining sub-module 141 is configured to determine, if the carrier used by the secondary base station and the carrier used by the primary base station satisfy the autonomous rejection rule, determine the autonomous rejection according to a transmission carrier required for data to be transmitted.
  • the carrier, the autonomously rejected carrier is different from the transmission carrier required for the data to be transmitted.
  • the autonomously rejected carrier is determined by the carrier carrier to be transmitted according to the transmission carrier required for the data to be transmitted, and the autonomously rejected carrier is different from the transmission carrier required for the data to be transmitted, thereby enriching the manner of the terminal autonomously rejecting and improving the data.
  • the practicality of the transmission is determined by the carrier carrier to be transmitted according to the transmission carrier required for the data to be transmitted, and the autonomously rejected carrier is different from the transmission carrier required for the data to be transmitted, thereby enriching the manner of the terminal autonomously rejecting and improving the data.
  • FIG. 15 is a block diagram of another data transmission apparatus for a primary base station and establishing a base station of the apparatus shown in FIG. 13 according to an exemplary embodiment, the autonomous deny rule further includes: specifying a carrier, The specified carrier is used to indicate that the primary base station is a carrier that is allowed to be autonomously rejected in the configured carrier of the secondary base station; as shown in FIG. 15, the data transmission module 113 may include:
  • a third determining submodule 151 configured to determine the specified carrier as the autonomously rejected carrier
  • the second transmission sub-module 152 is configured to perform data transmission by using other carriers than the autonomously rejected carrier.
  • the specified carrier configured by the primary base station is directly determined as the autonomously rejected carrier, and the other carrier than the autonomously rejected carrier is used for data transmission, thereby speeding up the efficiency of determining the autonomously rejected carrier by the terminal. It avoids the occurrence of intermodulation interference and improves the reliability of data transmission.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, ie may be located in one Places, or they can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objectives of the present disclosure. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the present disclosure also provides a non-transitory computer readable storage medium having stored thereon a computer program for performing the data transmission method of any of the above-described FIGS. 1 to 3.
  • the present disclosure also provides a non-transitory computer readable storage medium having stored thereon a computer program for performing the data transfer method of any of the above-described FIGS. 4 to 8.
  • the present disclosure also provides a data transmission apparatus, the apparatus is used for a primary base station, and the apparatus includes:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the secondary base station When the secondary base station is configured for the terminal, configuring, for the secondary base station, a carrier parameter used by the secondary base station;
  • FIG. 16 is a schematic structural diagram of a data transmission apparatus according to an exemplary embodiment.
  • Apparatus 1600 can be provided as a base station.
  • the apparatus 1600 includes a processing component 1622, a wireless transmit/receive component 1624, an antenna component 1626, and a signal processing portion unique to the wireless interface, the processing group Block 1622 can further include one or more processors.
  • One of the processing components 1622 can be configured to perform the data transfer method of any of the above.
  • the present disclosure also provides a data transmission device, the device is used for the device for a terminal, and the device includes:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the carrier parameter is a carrier parameter configured by the primary base station for the secondary base station
  • the autonomous rejection rule is that the primary base station is Autonomous deny rule used by the terminal for the terminal to resolve intermodulation interference
  • the autonomously rejected carrier is determined according to the autonomous rejection rule, and is performed by using a carrier other than the autonomously rejected carrier. data transmission.
  • FIG. 17 is a schematic structural diagram of a data transmission apparatus according to an exemplary embodiment.
  • a data transmission device 1700 is shown in accordance with an exemplary embodiment.
  • the device 1700 can be a computer, a mobile phone, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, and a fitness device.
  • apparatus 1700 can include one or more of the following components: processing component 1701, memory 1702, power component 1703, multimedia component 1704, audio component 1705, input/output (I/O) interface 1706, sensor component 1707, And a communication component 1708.
  • Processing component 1701 typically controls the overall operation of device 1700, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 1701 may include one or more processors 1709 to execute instructions to perform all or part of the steps of the above described methods.
  • processing component 1701 can include one or more modules to facilitate interaction between component 1701 and other components.
  • the processing component 1701 can include a multimedia module to facilitate interaction between the multimedia component 1704 and the processing component 1701.
  • Memory 1702 is configured to store various types of data to support operation at device 1700. Examples of such data include instructions for any application or method operating on device 1700, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 1702 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 1703 provides power to various components of device 1700.
  • Power component 1703 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 1700.
  • Multimedia component 1704 includes a screen between the device 1700 and a user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 1704 includes a front camera and/or a rear camera. When the device 1700 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1705 is configured to output and/or input an audio signal.
  • the audio component 1705 includes a microphone (MIC) that is configured to receive an external audio signal when the device 1700 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 1702 or transmitted via communication component 1708.
  • the audio component 1705 also includes a speaker for outputting an audio signal.
  • the I/O interface 1706 provides an interface between the processing component 1701 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 1707 includes one or more sensors for providing state assessment of various aspects to device 1700.
  • sensor assembly 1707 can detect an open/closed state of device 1700, relative positioning of components, such as the display and keypad of device 1700, and sensor component 1707 can also detect loading The position of one component of the 1700 or device 1700 changes, the presence or absence of contact by the user with the device 1700, the orientation or acceleration/deceleration of the device 1700, and the temperature of the device 1700.
  • Sensor assembly 1707 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1707 can also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1707 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1708 is configured to facilitate wired or wireless communication between device 1700 and other devices.
  • the device 1700 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 1708 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 1708 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 1700 can be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the above methods.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 1702 comprising instructions executable by processor 1709 of apparatus 1700 to perform the above method.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • the apparatus 1700 when an instruction in the storage medium is executed by the processor, the apparatus 1700 is enabled to perform the data transmission method of any of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种数据传输方法及装置所述方法用于主基站,所述方法包括:在为终端配置辅基站时,为所述辅基站配置用于所述辅基站使用的载波参数;为所述终端配置用于所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时使用的自主拒绝规则;将所述载波参数和所述自主拒绝规则发送至所述终端,以使所述终端根据所述载波参数确定所述辅基站使用的载波,当所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时,根据所述自主拒绝规则确定自主拒绝的载波,并利用所述自主拒绝的载波之外的其他载波进行数据传输。因此,本公开可以保证终端针对重要的下行信令的接收或重要的上行信令的发送,提高了通信质量。

Description

数据传输方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
随着通信技术的不断发展,智能终端也得到了广泛使用。在新一代通信系统中,提供了一种新的应用场景,即EN-DC(EUTRAN NR-Dual Connectivity,LTE网络和NR网络双连接)场景,LTE(Long Term Evolution,长期演进)网络为4G网络,NR(New Radio,新空口)网络为5G网络。在该场景下,终端需要同时维持两条通信链路,一条为LTE通信链路,一条为NR通信链路。但是,相关技术中,若终端在两个频段上同时进行上行传输,有可能对某个频段的下行接收造成严重的交调干扰,因而降低了终端的性能。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种数据传输方法及装置
根据本公开实施例的第一方面,提供一种数据传输方法,所述方法用于主基站,所述方法包括:
在为终端配置辅基站时,为所述辅基站配置用于所述辅基站使用的载波参数;
为所述终端配置用于所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时使用的自主拒绝规则;
将所述载波参数和所述自主拒绝规则发送至所述终端。
在一实施例中,所述主基站为长期演进LTE基站,所述辅基站为新空口NR基站。
在一实施例中,所述自主拒绝规则包括:指定数量和指定次数;
所述指定数量用于表征一个载波中持续子帧的数量;
所述指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧 传输的次数。
在一实施例中,所述自主拒绝规则还包括:指定载波;
所述指定载波用于表征所述主基站为所述辅基站已配置的载波中允许自主拒绝的载波。
在一实施例中,所述将所述载波参数和所述自主拒绝规则发送至所述终端,包括:
将所述载波参数和所述自主拒绝规则添加到无线资源控制RRC连接配置信令中;
将带有所述载波参数和所述自主拒绝规则的所述RRC连接配置信令发送至所述终端,以使所述终端从所述RRC连接配置信令中获取所述载波参数和所述自主拒绝规则。
根据本公开实施例的第二方面,提供一种数据传输方法,所述方法用于终端,所述方法包括:
接收主基站发送的载波参数和自主拒绝规则,所述载波参数是所述主基站为所述辅基站配置的用于所述辅基站使用的载波参数,所述自主拒绝规则是所述主基站为所述终端配置的用于所述终端解决交调干扰时使用的自主拒绝规则;
根据所述载波参数确定所述辅基站使用的载波;
当所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时,根据所述自主拒绝规则确定自主拒绝的载波,并利用所述自主拒绝的载波之外的其他载波进行数据传输。
在一实施例中,所述主基站为LTE基站,所述辅基站为新空口NR基站。
在一实施例中,所述接收主基站发送的载波参数和自主拒绝规则,包括:
接收主基站发送的RRC连接配置信令,所述RRC连接配置信令中包括所述载波参数和所述自主拒绝规则;
从所述RRC连接配置信令中获取所述载波参数和所述自主拒绝规则。
在一实施例中,所述自主拒绝规则包括:指定数量和指定次数;所述指定数量用于表征一个载波中持续子帧的数量;所述指定次数用于表征在所述指定数量的持续 子帧内允许自主拒绝上行子帧传输的次数;
所述根据所述自主拒绝规则确定自主拒绝的载波,包括:
从所述辅基站使用的载波与所述主基站使用的载波中,将满足所述自主拒绝规则的载波确定为所述自主拒绝的载波。
在一实施例中,所述从所述辅基站使用的载波与所述主基站使用的载波中,将满足所述自主拒绝规则的载波确定为所述自主拒绝的载波,包括:
若所述辅基站使用的载波与所述主基站使用的载波均满足所述自主拒绝规则,则根据待传输数据所需的传输载波确定所述自主拒绝的载波,所述自主拒绝的载波与所述待传输数据所需的传输载波不同。
在一实施例中,所述自主拒绝规则还包括:指定载波;所述指定载波用于表征所述主基站为所述辅基站已配置的载波中允许自主拒绝的载波;
所述根据所述自主拒绝规则确定自主拒绝的载波,包括:
将所述指定载波确定为所述自主拒绝的载波。
根据本公开实施例的第三方面,提供一种数据传输装置,所述装置用于主基站,所述装置包括:
第一配置模块,被配置为在为终端配置辅基站时,为所述辅基站配置用于所述辅基站使用的载波参数;
第二配置模块,被配置为为所述终端配置用于所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时使用的自主拒绝规则;
发送模块,被配置为将所述载波参数和所述自主拒绝规则发送至所述终端。
在一实施例中,所述主基站为LTE基站,所述辅基站为新空口NR基站。
在一实施例中,所述自主拒绝规则包括:指定数量和指定次数;
所述指定数量用于表征一个载波中持续子帧的数量;
所述指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧传输的次数。
在一实施例中,所述自主拒绝规则还包括:指定载波;
所述指定载波用于表征所述主基站为所述辅基站已配置的载波中允许自主拒绝的载波。
在一实施例中,所述发送模块包括:
添加子模块,被配置为将所述载波参数和所述自主拒绝规则添加到RRC连接配置信令中;
发送子模块,被配置为将带有所述载波参数和所述自主拒绝规则的所述RRC连接配置信令发送至所述终端,以使所述终端从所述RRC连接配置信令中获取所述载波参数和所述自主拒绝规则。
根据本公开实施例的第四方面,提供一种数据传输装置,所述装置用于终端,所述装置包括:
接收模块,被配置为接收主基站发送的载波参数和自主拒绝规则,所述载波参数是所述主基站为所述辅基站配置的用于所述辅基站使用的载波参数,所述自主拒绝规则是所述主基站为所述终端配置的用于所述终端解决交调干扰时使用的自主拒绝规则;
确定模块,被配置为根据所述载波参数确定所述辅基站使用的载波;
数据传输模块,被配置为当所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时,根据所述自主拒绝规则确定自主拒绝的载波,并利用所述自主拒绝的载波之外的其他载波进行数据传输。
在一实施例中,所述主基站为LTE基站,所述辅基站为新空口NR基站。
在一实施例中,所述接收模块包括:
接收子模块,被配置为接收主基站发送的RRC连接配置信令,所述RRC连接配置信令中包括所述载波参数和所述自主拒绝规则;
获取子模块,被配置为从所述RRC连接配置信令中获取所述载波参数和所述自主拒绝规则。
在一实施例中,所述自主拒绝规则包括:指定数量和指定次数;所述指定数量用于表征一个载波中持续子帧的数量;所述指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧传输的次数;
所述数据传输模块包括:
第一确定子模块,被配置为当所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时,从所述辅基站使用的载波与所述主基站使用的载波中,将满足所述自主拒绝规则的载波确定为所述自主拒绝的载波;
第一传输子模块,被配置为利用所述自主拒绝的载波之外的其他载波进行数据传输。
在一实施例中,所述第一确定子模块包括:
第二确定子模块,被配置为若所述辅基站使用的载波与所述主基站使用的载波均满足所述自主拒绝规则,则根据待传输数据所需的传输载波确定所述自主拒绝的载波,所述自主拒绝的载波与所述待传输数据所需的传输载波不同。
在一实施例中,所述自主拒绝规则还包括:指定载波,所述指定载波用于表征所述主基站为所述辅基站已配置的载波中允许自主拒绝的载波;
所述数据传输模块包括:
第三确定子模块,被配置为将所述指定载波确定为所述自主拒绝的载波;
第二传输子模块,被配置为利用所述自主拒绝的载波之外的其他载波进行数据传输。
根据本公开实施例的第五方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,所述计算机程序用于执行上述第一方面所述的数据传输方法。
根据本公开实施例的第六方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,所述计算机程序用于执行上述第二方面所述的数据传输方法。
根据本公开实施例的第七方面,提供一种数据传输装置,所述装置用于主基站,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在为终端配置辅基站时,为所述辅基站配置用于所述辅基站使用的载波参数;
为所述终端配置用于所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时使用的自主拒绝规则;
将所述载波参数和所述自主拒绝规则发送至所述终端。
根据本公开实施例的第八方面,提供一种数据传输装置,所述装置用于终端,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收主基站发送的载波参数和自主拒绝规则,所述载波参数是所述主基站为所述辅基站配置的用于所述辅基站使用的载波参数,所述自主拒绝规则是所述主基站为所述终端配置的用于所述终端解决交调干扰时使用的自主拒绝规则
根据所述载波参数确定所述辅基站使用的载波;
当所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时,根据所述自主拒绝规则确定自主拒绝的载波,并利用所述自主拒绝的载波之外的其他载波进行数据传输。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开中的主基站在为终端配置辅基站时,可以为辅基站配置用于辅基站使用的载波参数,并为终端配置用于辅基站使用的载波与主基站使用的载波之间发生交调干扰时使用的自主拒绝规则,以及将主基站配置的载波参数和自主拒绝规则发送至终端,这样终端可以根据主基站配置的载波参数的确定辅基站使用的载波,以及当辅基站使用的载波与主基站使用的载波之间发生交调干扰时,根据主基站配置的自主拒绝规则确定自主拒绝的载波,并利用确定的自主拒绝的载波之外的其他载波进行数据传输,从而保证了终端针对重要的下行信令的接收或重要的上行信令的发送,提高了通信质量。
本公开中的终端可以通过接收主基站发送的载波参数和自主拒绝规则,并根据主基站配置的载波参数的确定辅基站使用的载波,以及当辅基站使用的载波与主基站 使用的载波之间发生交调干扰时,根据主基站配置的自主拒绝规则确定自主拒绝的载波,并利用确定的自主拒绝的载波之外的其他载波进行数据传输,从而保证了终端针对重要的下行信令的接收或重要的上行信令的发送,提高了通信质量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种数据传输方法的流程图;
图2是根据一示例性实施例示出的一种数据传输方法的场景图;
图3是根据一示例性实施例示出的另一种数据传输方法的流程图;
图4是根据一示例性实施例示出的一种数据传输方法的流程图;
图5是根据一示例性实施例示出的另一种数据传输方法的流程图;
图6是根据一示例性实施例示出的另一种数据传输方法的流程图;
图7是根据一示例性实施例示出的另一种数据传输方法的流程图;
图8是根据一示例性实施例示出的另一种数据传输方法的流程图;
图9是根据一示例性实施例示出的一种数据传输装置的框图;
图10是根据一示例性实施例示出的另一种数据传输装置的框图;
图11是根据一示例性实施例示出的一种数据传输装置的框图;
图12是根据一示例性实施例示出的另一种数据传输装置的框图;
图13是根据一示例性实施例示出的另一种数据传输装置的框图;
图14是根据一示例性实施例示出的另一种数据传输装置的框图;
图15是根据一示例性实施例示出的另一种数据传输装置的框图;
图16是根据一示例性实施例示出的一种数据传输装置的结构示意图;
图17是根据一示例性实施例示出的一种数据传输装置的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1是根据一示例性实施例示出的一种数据传输方法的流程图,图2是根据一示例性实施例示出的一种数据传输方法的场景图;该数据传输方法可以应用在主基站上,比如:LTE基站,如图1所示,该数据传输方法包括以下步骤110-130:
在步骤110中,在为终端配置辅基站时,为辅基站配置用于辅基站使用的载波参数。
本公开实施例中,终端可以与主基站、辅基站均建立连接,既能接受主基站提供的网络服务,还能接受辅基站提供的网络服务。比如:主基站提供的网络服务为4G网络提供的服务,辅基站提供的网络服务为5G网络提供的服务。
主基站在为终端配置辅基站时,会为该辅基站配置用于该辅基站使用的载波参数,其目的是为了让终端根据该载波参数获知辅基站使用的载波,并可以利用这个载波进行数据传输。其中,主基站配置的载波参数可以包括但不限于载波频率、以及各个协议层的配置参数等。
在步骤120中,为终端配置用于辅基站使用的载波与主基站使用的载波之间发 生交调干扰时使用的自主拒绝规则。
本公开实施例中,主基站在为辅基站配置载波参数的同时,还可以指示终端在发生交调干扰问题时针对配置的载波进行自动拒绝的规则。
在步骤130中,将主基站配置的载波参数和自主拒绝规则发送至终端。
本公开实施例中,将主基站配置的载波参数和自主拒绝规则发送至终端后,终端可以根据主基站配置的载波参数的确定辅基站使用的载波,以及当辅基站使用的载波与主基站使用的载波之间发生交调干扰时,根据主基站配置的自主拒绝规则确定自主拒绝的载波,并利用确定的自主拒绝的载波之外的其他载波进行数据传输。
在一实施例中,主基站为LTE基站,辅基站为NR基站。如图2所示的实施例场景中,包括5G终端、LTE基站、NR基站,且5G终端分别与LTE基站、NR基站均相连接。LTE基站在为5G终端配置NR基站作为辅基站,并为该NR基站配置使用的载波参数的同时,还可以指示5G终端在发生交调干扰问题时针对配置的载波进行自动拒绝的自主拒绝规则,这样5G终端可以根据LTE基站为NR基站配置的载波参数确定NR基站使用的载波,以及当NR基站使用的载波和LTE基站使用的载波发生交调干扰时,可以根据LTE基站为5G终端配置的自主拒绝规则确定自主拒绝的载波,并利用确定的自主拒绝的载波之外的其他载波进行数据传输。
由上述实施例可见,通过在为终端配置辅基站时,为辅基站配置用于辅基站使用的载波参数,并为终端配置用于辅基站使用的载波与主基站使用的载波之间发生交调干扰时使用的自主拒绝规则,以及将主基站配置的载波参数和自主拒绝规则发送至终端,这样终端可以根据主基站配置的载波参数的确定辅基站使用的载波,以及当辅基站使用的载波与主基站使用的载波之间发生交调干扰时,根据主基站配置的自主拒绝规则确定自主拒绝的载波,并利用确定的自主拒绝的载波之外的其他载波进行数据传输,从而保证了终端针对重要的下行信令的接收或重要的上行信令的发送,提高了通信质量。
在一实施例中,上述步骤120中,主基站为终端配置的自主拒绝规则可以包括:指定数量和指定次数;所述指定数量用于表征一个载波中持续子帧的数量;所述指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧传输的次数。
其中,指定数量可以是指定子帧数量;指定次数可以是指定拒绝次数。
由上述实施例可见,通过为终端配置指定数量和指定次数,且指定数量用于表征一个载波中持续子帧的数量,指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧传输的次数,这样终端可以将满足指定数量和指定次数的载波确定为自主拒绝的载波,并利用自主拒绝的载波之外的其他载波进行数据传输,从而避免了产生交调干扰,提高了数据传输的可靠性。
在一实施例中,上述步骤120中,主基站为终端配置的自主拒绝规则既可以包括:指定数量和指定次数;还可以包括:指定载波。
其中,所述指定数量用于表征一个载波中持续子帧的数量;所述指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧传输的次数;所述指定载波用于表征所述主基站为所述辅基站已配置的载波中允许自主拒绝的载波。
由上述实施例可见,通过为终端配置指定载波,且指定数量用于指定载波用于表征主基站为辅基站已配置的载波中允许自主拒绝的载波,这样终端可以直接将指定载波确定为自主拒绝的载波,并利用自主拒绝的载波之外的其他载波进行数据传输,从而加快了终端确定自主拒绝的载波的效率,还避免了产生交调干扰,提高了数据传输的可靠性。
在一实施例中,上述步骤130中,如图3所示,在将主基站配置的载波参数和自主拒绝规则发送至终端时,可以采用但不限于以下实现方式,即步骤310-320:
在步骤310中,将主基站配置的载波参数和自主拒绝规则添加到RRC(Radio Resource Control,无线资源控制)连接配置信令中。
比如:在NR辅小区组配置信令(NR-secondaryCellGroupConfig)信令里配置终端在N个持续子帧内可以在该配置的某个载波上自动拒绝M次上行子帧的传输,和/或在G载波上进行自动拒绝。其中,NR辅小区组配置信令是包含在RRC连接配置信令中的,并应用于终端配置NR辅载波时,使得终端可以使用NR进行数据传输。
在步骤320中,将带有主基站配置的载波参数和自主拒绝规则的RRC连接配置信令发送至终端,以使终端从RRC连接配置信令中获取主基站配置的载波参数和自主拒绝规则。
由上述实施例可见,通过将主基站配置的载波参数和自主拒绝规则添加到RRC连接配置信令中,将带有主基站配置的载波参数和自主拒绝规则的RRC连接配置信令 发送至终端,这样终端可以从RRC连接配置信令中准确且快速地获取主基站配置的载波参数和自主拒绝规则,从而提高了终端获取主基站配置信息的效率。
图4是根据一示例性实施例示出的一种数据传输方法的流程图,该数据传输方法可以应用在终端上,比如:5G终端,如图4所示,该数据传输方法包括以下步骤410-430:
在步骤410中,接收主基站发送的载波参数和自主拒绝规则,该载波参数是主基站为辅基站配置的用于辅基站使用的载波参数,该自主拒绝规则是主基站为终端配置的用于终端解决交调干扰时使用的自主拒绝规则。
在步骤420中,根据主基站配置的载波参数确定辅基站使用的载波。
在步骤430中,当辅基站使用的载波与主基站使用的载波之间发生交调干扰时,根据主基站配置的自主拒绝规则确定自主拒绝的载波,并利用该自主拒绝的载波之外的其他载波进行数据传输。
本公开实施例中,终端接收主基站配置的自主拒绝规则后,在需要接收重要的下行信令时或者需要发送重要的上行信令时,可以根据该自主拒绝规则自主决定暂停某个载波的上行发送,以避免对其他载波的下行接收产生交调干扰。
在一实施例中,主基站可以为LTE基站,辅基站可以为NR基站,如图2中的实施例场景所示。
比如:终端需要在LTE载波上接收下行信令,若同时在NR载波和LTE载波上进行上行发送,将会对LTE载波的下行信令接收造成交调干扰,此时终端可以自主拒绝在NR载波上的上行发送。
又比如:终端需要在NR上行载波上发送针对NR下行载波的HARQ(Hybrid Automatic Repeat-reQuest,混合自动重传请求)反馈,此时终端可以自主拒绝在LTE载波上的上行发送。由于,终端同时在NR载波和LTE载波上进行上行发送时会发送交调干扰,而终端必须拒绝某个载波来防止交调干扰,但是由于NR的上行发送是要发送重要的HARQ反馈,那么终端就选择拒绝在LTE载波上的上行发送,从而保证终端在NR载波上的上行发送,并且还不会产生交调干扰。
由上述实施例可见,通过接收主基站发送的载波参数和自主拒绝规则,并根据主基站配置的载波参数的确定辅基站使用的载波,以及当辅基站使用的载波与主基站 使用的载波之间发生交调干扰时,根据主基站配置的自主拒绝规则确定自主拒绝的载波,并利用确定的自主拒绝的载波之外的其他载波进行数据传输,从而保证了终端针对重要的下行信令的接收或重要的上行信令的发送,提高了通信质量。
在一实施例中,上述步骤410中,如图5所示,在接收主基站发送的载波参数和自主拒绝规则时,可以采用但不限于以下实现方式,即步骤510-520:
在步骤510中,接收主基站发送的RRC连接配置信令,该RRC连接配置信令中包括主基站配置的载波参数和自主拒绝规则;
在步骤520中,从RRC连接配置信令中获取主基站配置的载波参数和所述自主拒绝规则。
由上述实施例可见,通过接收主基站发送的RRC连接配置信令,并从RRC连接配置信令中获取主基站配置的载波参数和所述自主拒绝规则,从而提高了终端获取主基站配置信息的效率。
在一实施例中,上述步骤410中,主基站为终端配置的自主拒绝规则可以包括:指定数量和指定次数;所述指定数量用于表征一个载波中持续子帧的数量;所述指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧传输的次数。上述步骤430中,如图6所示,可以采用但不限于以下实现方式,即步骤610-620:
在步骤610中,当辅基站使用的载波与主基站使用的载波之间发生交调干扰时,从辅基站使用的载波与主基站使用的载波中,将满足主基站配置的自主拒绝规则的载波确定为自主拒绝的载波。
在步骤620中,利用该自主拒绝的载波之外的其他载波进行数据传输。
由上述实施例可见,通过将满足主基站配置的自主拒绝规则的载波确定为自主拒绝的载波,并利用自主拒绝的载波之外的其他载波进行数据传输,从而避免了产生交调干扰,提高了数据传输的可靠性。
在一实施例中,上述步骤610中,如图7所示,在从所述辅基站使用的载波与所述主基站使用的载波中,将满足所述自主拒绝规则的载波确定为所述自主拒绝的载波时,可以采用但不限于以下实现方式,即步骤710:
在步骤710中,若辅基站使用的载波与主基站使用的载波均满足主基站配置的自主拒绝规则,则根据待传输数据所需的传输载波确定自主拒绝的载波,该自主拒绝 的载波与待传输数据所需的传输载波不同。
由上述实施例可见,通过根据待传输数据所需的传输载波确定自主拒绝的载波,该自主拒绝的载波与待传输数据所需的传输载波不同,从而丰富了终端自主拒绝的方式,提高了数据传输的实用性。
在一实施例中,上述步骤410中,主基站为终端配置的自主拒绝规则既可以包括:指定数量和指定次数;还可以包括:指定载波。其中,所述指定数量用于表征一个载波中持续子帧的数量;所述指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧传输的次数;所述指定载波用于表征所述主基站为所述辅基站已配置的载波中允许自主拒绝的载波。上述步骤430中,如图8所示,可以采用但不限于以下实现方式,即步骤810-820:
在步骤810中,当辅基站使用的载波与主基站使用的载波之间发生交调干扰时,将主基站配置的指定载波确定为自主拒绝的载波。
在步骤820中,利用该自主拒绝的载波之外的其他载波进行数据传输。
由上述实施例可见,通过直接将主基站配置的指定载波确定为自主拒绝的载波,并利用自主拒绝的载波之外的其他载波进行数据传输,从而加快了终端确定自主拒绝的载波的效率,还避免了产生交调干扰,提高了数据传输的可靠性。
与前述数据传输方法实施例相对应,本公开还提供了数据传输装置的实施例。
图9是根据一示例性实施例示出的一种数据传输装置的框图,该装置用于主基站,并用于执行图1所示的数据传输方法,如图9所示,该数据传输装置可以包括:
第一配置模块91,被配置为在为终端配置辅基站时,为所述辅基站配置用于所述辅基站使用的载波参数;
第二配置模块92,被配置为为所述终端配置用于所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时使用的自主拒绝规则;
发送模块93,被配置为将所述载波参数和所述自主拒绝规则发送至所述终端。
在一实施例中,所述主基站为LTE基站,所述辅基站为新空口NR基站。
由上述实施例可见,通过在为终端配置辅基站时,为辅基站配置用于辅基站使用的载波参数,并为终端配置用于辅基站使用的载波与主基站使用的载波之间发生交 调干扰时使用的自主拒绝规则,以及将主基站配置的载波参数和自主拒绝规则发送至终端,这样终端可以根据主基站配置的载波参数的确定辅基站使用的载波,以及当辅基站使用的载波与主基站使用的载波之间发生交调干扰时,根据主基站配置的自主拒绝规则确定自主拒绝的载波,并利用确定的自主拒绝的载波之外的其他载波进行数据传输,从而保证了终端针对重要的下行信令的接收或重要的上行信令的发送,提高了通信质量。
在一实施例中,所述自主拒绝规则包括:指定数量和指定次数;所述指定数量用于表征一个载波中持续子帧的数量;所述指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧传输的次数。
由上述实施例可见,通过为终端配置指定数量和指定次数,且指定数量用于表征一个载波中持续子帧的数量,指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧传输的次数,这样终端可以将满足指定数量和指定次数的载波确定为自主拒绝的载波,并利用自主拒绝的载波之外的其他载波进行数据传输,从而避免了产生交调干扰,提高了数据传输的可靠性。
在一实施例中,所述自主拒绝规则还包括:指定载波;所述指定载波用于表征所述主基站为所述辅基站已配置的载波中允许自主拒绝的载波。
由上述实施例可见,通过为终端配置指定载波,且指定数量用于指定载波用于表征主基站为辅基站已配置的载波中允许自主拒绝的载波,这样终端可以直接将指定载波确定为自主拒绝的载波,并利用自主拒绝的载波之外的其他载波进行数据传输,从而加快了终端确定自主拒绝的载波的效率,还避免了产生交调干扰,提高了数据传输的可靠性。
图10是根据一示例性实施例示出的另一种数据传输装置的框图,该装置用于主基站,并建立图9所示装置的基站上,所述发送模块93可以包括:
添加子模块101,被配置为将所述载波参数和所述自主拒绝规则添加到RRC连接配置信令中;
发送子模块102,被配置为将带有所述载波参数和所述自主拒绝规则的所述RRC连接配置信令发送至所述终端,以使所述终端从所述RRC连接配置信令中获取所述载波参数和所述自主拒绝规则。
由上述实施例可见,通过将主基站配置的载波参数和自主拒绝规则添加到RRC连接配置信令中,将带有主基站配置的载波参数和自主拒绝规则的RRC连接配置信令发送至终端,这样终端可以从RRC连接配置信令中准确且快速地获取主基站配置的载波参数和自主拒绝规则,从而提高了终端获取主基站配置信息的效率。
图11是根据一示例性实施例示出的一种数据传输装置的框图,该装置用于终端,并用于执行图4所示的数据传输方法,如图11所示,该数据传输装置可以包括:
接收模块111,被配置为接收主基站发送的载波参数和自主拒绝规则,所述载波参数是所述主基站为所述辅基站配置的用于所述辅基站使用的载波参数,所述自主拒绝规则是所述主基站为所述终端配置的用于所述终端解决交调干扰时使用的自主拒绝规则;
确定模块112,被配置为根据所述载波参数确定所述辅基站使用的载波;
数据传输模块113,被配置为当所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时,根据所述自主拒绝规则确定自主拒绝的载波,并利用所述自主拒绝的载波之外的其他载波进行数据传输。
在一实施例中,所述主基站为LTE基站,所述辅基站为新空口NR基站。
由上述实施例可见,通过接收主基站发送的载波参数和自主拒绝规则,并根据主基站配置的载波参数的确定辅基站使用的载波,以及当辅基站使用的载波与主基站使用的载波之间发生交调干扰时,根据主基站配置的自主拒绝规则确定自主拒绝的载波,并利用确定的自主拒绝的载波之外的其他载波进行数据传输,从而保证了终端针对重要的下行信令的接收或重要的上行信令的发送,提高了通信质量。
图12是根据一示例性实施例示出的另一种数据传输装置的框图,该装置用于主基站,并建立图11所示装置的基站上,如图12所示,该数据传输装置可以包括:所述接收模块111可以包括:
接收子模块121,被配置为接收主基站发送的RRC连接配置信令,所述RRC连接配置信令中包括所述载波参数和所述自主拒绝规则;
获取子模块122,被配置为从所述RRC连接配置信令中获取所述载波参数和所述自主拒绝规则。
由上述实施例可见,通过接收主基站发送的RRC连接配置信令,并从RRC连 接配置信令中获取主基站配置的载波参数和所述自主拒绝规则,从而提高了终端获取主基站配置信息的效率。
图13是根据一示例性实施例示出的另一种数据传输装置的框图,该装置用于主基站,并建立图11所示装置的基站上,所述自主拒绝规则包括:指定数量和指定次数;所述指定数量用于表征一个载波中持续子帧的数量;所述指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧传输的次数;如图13所示,所述数据传输模块113可以包括:
第一确定子模块131,被配置为当所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时,从所述辅基站使用的载波与所述主基站使用的载波中,将满足所述自主拒绝规则的载波确定为所述自主拒绝的载波;
第一传输子模块132,被配置为利用所述自主拒绝的载波之外的其他载波进行数据传输。
由上述实施例可见,通过将满足主基站配置的自主拒绝规则的载波确定为自主拒绝的载波,并利用自主拒绝的载波之外的其他载波进行数据传输,从而避免了产生交调干扰,提高了数据传输的可靠性。
图14是根据一示例性实施例示出的另一种数据传输装置的框图,该装置用于主基站,并建立图13所示装置的基站上,如图14所示,所述第一确定子模块131可以包括:
第二确定子模块141,被配置为若所述辅基站使用的载波与所述主基站使用的载波均满足所述自主拒绝规则,则根据待传输数据所需的传输载波确定所述自主拒绝的载波,所述自主拒绝的载波与所述待传输数据所需的传输载波不同。
由上述实施例可见,通过根据待传输数据所需的传输载波确定自主拒绝的载波,该自主拒绝的载波与待传输数据所需的传输载波不同,从而丰富了终端自主拒绝的方式,提高了数据传输的实用性。
图15是根据一示例性实施例示出的另一种数据传输装置的框图,该装置用于主基站,并建立图13所示装置的基站上,所述自主拒绝规则还包括:指定载波,所述指定载波用于表征所述主基站为所述辅基站已配置的载波中允许自主拒绝的载波;如图15所示,所述数据传输模块113可以包括:
第三确定子模块151,被配置为将所述指定载波确定为所述自主拒绝的载波;
第二传输子模块152,被配置为利用所述自主拒绝的载波之外的其他载波进行数据传输。
由上述实施例可见,通过直接将主基站配置的指定载波确定为自主拒绝的载波,并利用自主拒绝的载波之外的其他载波进行数据传输,从而加快了终端确定自主拒绝的载波的效率,还避免了产生交调干扰,提高了数据传输的可靠性。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开还提供了一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序用于执行上述图1至图3任一所述的数据传输方法。
本公开还提供了一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序用于执行上述图4至图8任一所述的数据传输方法。
本公开还提供了一种数据传输装置,所述装置用于主基站,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在为终端配置辅基站时,为所述辅基站配置用于所述辅基站使用的载波参数;
为所述终端配置用于所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时使用的自主拒绝规则;
将所述载波参数和所述自主拒绝规则发送至所述终端。
如图16所示,图16是根据一示例性实施例示出的一种数据传输装置的结构示意图。装置1600可以被提供为一基站。参照图16,装置1600包括处理组件1622、无线发射/接收组件1624、天线组件1626、以及无线接口特有的信号处理部分,处理组 件1622可进一步包括一个或多个处理器。
处理组件1622中的其中一个处理器可以被配置为用于执行上述任一所述的数据传输方法。
本公开还提供了一种数据传输装置,所述装置用于所述装置用于终端,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收主基站发送的载波参数和自主拒绝规则,所述载波参数是所述主基站为所述辅基站配置的用于所述辅基站使用的载波参数,所述自主拒绝规则是所述主基站为所述终端配置的用于所述终端解决交调干扰时使用的自主拒绝规则
根据所述载波参数确定所述辅基站使用的载波;
当所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时,根据所述自主拒绝规则确定自主拒绝的载波,并利用所述自主拒绝的载波之外的其他载波进行数据传输。
图17是根据一示例性实施例示出的一种数据传输装置的结构示意图。如图17所示,根据一示例性实施例示出的一种数据传输装置1700,该装置1700可以是计算机,移动电话,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等终端。
参照图17,装置1700可以包括以下一个或多个组件:处理组件1701,存储器1702,电源组件1703,多媒体组件1704,音频组件1705,输入/输出(I/O)的接口1706,传感器组件1707,以及通信组件1708。
处理组件1701通常控制装置1700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1701可以包括一个或多个处理器1709来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1701可以包括一个或多个模块,便于处理组件1701和其它组件之间的交互。例如,处理组件1701可以包括多媒体模块,以方便多媒体组件1704和处理组件1701之间的交互。
存储器1702被配置为存储各种类型的数据以支持在装置1700的操作。这些数据的示例包括用于在装置1700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1702可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1703为装置1700的各种组件提供电力。电源组件1703可以包括电源管理系统,一个或多个电源,及其它与为装置1700生成、管理和分配电力相关联的组件。
多媒体组件1704包括在所述装置1700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1704包括一个前置摄像头和/或后置摄像头。当装置1700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1705被配置为输出和/或输入音频信号。例如,音频组件1705包括一个麦克风(MIC),当装置1700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1702或经由通信组件1708发送。在一些实施例中,音频组件1705还包括一个扬声器,用于输出音频信号。
I/O接口1706为处理组件1701和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1707包括一个或多个传感器,用于为装置1700提供各个方面的状态评估。例如,传感器组件1707可以检测到装置1700的打开/关闭状态,组件的相对定位,例如所述组件为装置1700的显示器和小键盘,传感器组件1707还可以检测装 置1700或装置1700一个组件的位置改变,用户与装置1700接触的存在或不存在,装置1700方位或加速/减速和装置1700的温度变化。传感器组件1707可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1707还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1707还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1708被配置为便于装置1700和其它设备之间有线或无线方式的通信。装置1700可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1708经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1708还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其它技术来实现。
在示例性实施例中,装置1700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其它电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1702,上述指令可由装置1700的处理器1709执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
其中,当所述存储介质中的指令由所述处理器执行时,使得装置1700能够执行上述任一所述的数据传输方法。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (26)

  1. 一种数据传输方法,其特征在于,所述方法用于主基站,所述方法包括:
    在为终端配置辅基站时,为所述辅基站配置用于所述辅基站使用的载波参数;
    为所述终端配置用于所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时使用的自主拒绝规则;
    将所述载波参数和所述自主拒绝规则发送至所述终端。
  2. 根据权利要求1所述的方法,其特征在于,所述主基站为长期演进LTE基站,所述辅基站为新空口NR基站。
  3. 根据权利要求1或2所述的方法,其特征在于,所述自主拒绝规则包括:指定数量和指定次数;
    所述指定数量用于表征一个载波中持续子帧的数量;
    所述指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧传输的次数。
  4. 根据权利要求3所述的方法,其特征在于,所述自主拒绝规则还包括:指定载波;
    所述指定载波用于表征所述主基站为所述辅基站已配置的载波中允许自主拒绝的载波。
  5. 根据权利要求1或2所述的方法,其特征在于,所述将所述载波参数和所述自主拒绝规则发送至所述终端,包括:
    将所述载波参数和所述自主拒绝规则添加到无线资源控制RRC连接配置信令中;
    将带有所述载波参数和所述自主拒绝规则的所述RRC连接配置信令发送至所述终端,以使所述终端从所述RRC连接配置信令中获取所述载波参数和所述自主拒绝规则。
  6. 一种数据传输方法,其特征在于,所述方法用于终端,所述方法包括:
    接收主基站发送的载波参数和自主拒绝规则,所述载波参数是所述主基站为所述辅基站配置的用于所述辅基站使用的载波参数,所述自主拒绝规则是所述主基站为所述终端配置的用于所述终端解决交调干扰时使用的自主拒绝规则;
    根据所述载波参数确定所述辅基站使用的载波;
    当所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时,根据所述自主拒绝规则确定自主拒绝的载波,并利用所述自主拒绝的载波之外的其他载波进 行数据传输。
  7. 根据权利要求6所述的方法,其特征在于,所述主基站为LTE基站,所述辅基站为新空口NR基站。
  8. 根据权利要求6或7所述的方法,其特征在于,所述接收主基站发送的载波参数和自主拒绝规则,包括:
    接收主基站发送的RRC连接配置信令,所述RRC连接配置信令中包括所述载波参数和所述自主拒绝规则;
    从所述RRC连接配置信令中获取所述载波参数和所述自主拒绝规则。
  9. 根据权利要求6或7所述的方法,其特征在于,所述自主拒绝规则包括:指定数量和指定次数;所述指定数量用于表征一个载波中持续子帧的数量;所述指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧传输的次数;
    所述根据所述自主拒绝规则确定自主拒绝的载波,包括:
    从所述辅基站使用的载波与所述主基站使用的载波中,将满足所述自主拒绝规则的载波确定为所述自主拒绝的载波。
  10. 根据权利要求9所述的方法,其特征在于,所述从所述辅基站使用的载波与所述主基站使用的载波中,将满足所述自主拒绝规则的载波确定为所述自主拒绝的载波,包括:
    若所述辅基站使用的载波与所述主基站使用的载波均满足所述自主拒绝规则,则根据待传输数据所需的传输载波确定所述自主拒绝的载波,所述自主拒绝的载波与所述待传输数据所需的传输载波不同。
  11. 根据权利要求9所述的方法,其特征在于,所述自主拒绝规则还包括:指定载波;所述指定载波用于表征所述主基站为所述辅基站已配置的载波中允许自主拒绝的载波;
    所述根据所述自主拒绝规则确定自主拒绝的载波,包括:
    将所述指定载波确定为所述自主拒绝的载波。
  12. 一种数据传输装置,其特征在于,所述装置用于主基站,所述装置包括:
    第一配置模块,被配置为在为终端配置辅基站时,为所述辅基站配置用于所述辅基站使用的载波参数;
    第二配置模块,被配置为为所述终端配置用于所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时使用的自主拒绝规则;
    发送模块,被配置为将所述载波参数和所述自主拒绝规则发送至所述终端。
  13. 根据权利要求12所述的装置,其特征在于,所述主基站为LTE基站,所述辅基站为新空口NR基站。
  14. 根据权利要求12或13所述的装置,其特征在于,所述自主拒绝规则包括:指定数量和指定次数;
    所述指定数量用于表征一个载波中持续子帧的数量;
    所述指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧传输的次数。
  15. 根据权利要求14所述的装置,其特征在于,所述自主拒绝规则还包括:指定载波;
    所述指定载波用于表征所述主基站为所述辅基站已配置的载波中允许自主拒绝的载波。
  16. 根据权利要求12或13所述的装置,其特征在于,所述发送模块包括:
    添加子模块,被配置为将所述载波参数和所述自主拒绝规则添加到RRC连接配置信令中;
    发送子模块,被配置为将带有所述载波参数和所述自主拒绝规则的所述RRC连接配置信令发送至所述终端,以使所述终端从所述RRC连接配置信令中获取所述载波参数和所述自主拒绝规则。
  17. 一种数据传输装置,其特征在于,所述装置用于终端,所述装置包括:
    接收模块,被配置为接收主基站发送的载波参数和自主拒绝规则,所述载波参数是所述主基站为所述辅基站配置的用于所述辅基站使用的载波参数,所述自主拒绝规则是所述主基站为所述终端配置的用于所述终端解决交调干扰时使用的自主拒绝规则;
    确定模块,被配置为根据所述载波参数确定所述辅基站使用的载波;
    数据传输模块,被配置为当所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时,根据所述自主拒绝规则确定自主拒绝的载波,并利用所述自主拒绝的载波之外的其他载波进行数据传输。
  18. 根据权利要求17所述的装置,其特征在于,所述主基站为LTE基站,所述辅基站为新空口NR基站。
  19. 根据权利要求17或18所述的装置,其特征在于,所述接收模块包括:
    接收子模块,被配置为接收主基站发送的RRC连接配置信令,所述RRC连接配 置信令中包括所述载波参数和所述自主拒绝规则;
    获取子模块,被配置为从所述RRC连接配置信令中获取所述载波参数和所述自主拒绝规则。
  20. 根据权利要求17或18所述的装置,其特征在于,所述自主拒绝规则包括:指定数量和指定次数;所述指定数量用于表征一个载波中持续子帧的数量;所述指定次数用于表征在所述指定数量的持续子帧内允许自主拒绝上行子帧传输的次数;
    所述数据传输模块包括:
    第一确定子模块,被配置为当所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时,从所述辅基站使用的载波与所述主基站使用的载波中,将满足所述自主拒绝规则的载波确定为所述自主拒绝的载波;
    第一传输子模块,被配置为利用所述自主拒绝的载波之外的其他载波进行数据传输。
  21. 根据权利要求20所述的装置,其特征在于,所述第一确定子模块包括:
    第二确定子模块,被配置为若所述辅基站使用的载波与所述主基站使用的载波均满足所述自主拒绝规则,则根据待传输数据所需的传输载波确定所述自主拒绝的载波,所述自主拒绝的载波与所述待传输数据所需的传输载波不同。
  22. 根据权利要求20所述的装置,其特征在于,所述自主拒绝规则还包括:指定载波,所述指定载波用于表征所述主基站为所述辅基站已配置的载波中允许自主拒绝的载波;
    所述数据传输模块包括:
    第三确定子模块,被配置为将所述指定载波确定为所述自主拒绝的载波;
    第二传输子模块,被配置为利用所述自主拒绝的载波之外的其他载波进行数据传输。
  23. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,其特征在于,所述计算机程序用于执行上述权利要求1-5任一所述的数据传输方法。
  24. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,其特征在于,所述计算机程序用于执行上述权利要求6-11任一所述的数据传输方法。
  25. 一种数据传输装置,其特征在于,所述装置用于主基站,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    在为终端配置辅基站时,为所述辅基站配置用于所述辅基站使用的载波参数;
    为所述终端配置用于所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时使用的自主拒绝规则;
    将所述载波参数和所述自主拒绝规则发送至所述终端。
  26. 一种数据传输装置,其特征在于,所述装置用于终端,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收主基站发送的载波参数和自主拒绝规则,所述载波参数是所述主基站为所述辅基站配置的用于所述辅基站使用的载波参数,所述自主拒绝规则是所述主基站为所述终端配置的用于所述终端解决交调干扰时使用的自主拒绝规则;
    根据所述载波参数确定所述辅基站使用的载波;
    当所述辅基站使用的载波与所述主基站使用的载波之间发生交调干扰时,根据所述自主拒绝规则确定自主拒绝的载波,并利用所述自主拒绝的载波之外的其他载波进行数据传输。
PCT/CN2017/110537 2017-11-10 2017-11-10 数据传输方法及装置 WO2019090723A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2017/110537 WO2019090723A1 (zh) 2017-11-10 2017-11-10 数据传输方法及装置
CN201780001808.3A CN109451860B (zh) 2017-11-10 2017-11-10 数据传输方法及装置
EP17931557.7A EP3706350B1 (en) 2017-11-10 2017-11-10 Data transmission method and device
ES17931557T ES2973523T3 (es) 2017-11-10 2017-11-10 Método y dispositivo de transmisión de datos
PL17931557.7T PL3706350T3 (pl) 2017-11-10 2017-11-10 Sposób i urządzenie do transmisji danych
US16/760,739 US11431366B2 (en) 2017-11-10 2017-11-10 Data transmission method and device
US17/815,074 US11742884B2 (en) 2017-11-10 2022-07-26 Data transmission method and device, and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/110537 WO2019090723A1 (zh) 2017-11-10 2017-11-10 数据传输方法及装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/760,739 A-371-Of-International US11431366B2 (en) 2017-11-10 2017-11-10 Data transmission method and device
US17/815,074 Continuation US11742884B2 (en) 2017-11-10 2022-07-26 Data transmission method and device, and communication system

Publications (1)

Publication Number Publication Date
WO2019090723A1 true WO2019090723A1 (zh) 2019-05-16

Family

ID=65532949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110537 WO2019090723A1 (zh) 2017-11-10 2017-11-10 数据传输方法及装置

Country Status (6)

Country Link
US (2) US11431366B2 (zh)
EP (1) EP3706350B1 (zh)
CN (1) CN109451860B (zh)
ES (1) ES2973523T3 (zh)
PL (1) PL3706350T3 (zh)
WO (1) WO2019090723A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3706350T3 (pl) * 2017-11-10 2024-05-20 Beijing Xiaomi Mobile Software Co., Ltd. Sposób i urządzenie do transmisji danych
CN111093234A (zh) * 2019-11-04 2020-05-01 中兴通讯股份有限公司 交叉流程的处理方法、装置、设备和存储介质
US20230021592A1 (en) * 2021-07-21 2023-01-26 At&T Intellectual Property I, L.P. Dual connectivity cell selection with dynamic spectrum sharing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2661002A1 (en) * 2012-05-04 2013-11-06 Broadcom Corporation Interference Suppression for Cellular Networks
CN106304403A (zh) * 2015-06-10 2017-01-04 电信科学技术研究院 一种多连接建立方法及相关设备
CN106330419A (zh) * 2015-06-26 2017-01-11 深圳市中兴微电子技术有限公司 一种解决干扰的方法及用户设备
CN107148085A (zh) * 2017-06-30 2017-09-08 维沃移动通信有限公司 一种载波聚合方法及移动终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140126552A1 (en) * 2012-11-02 2014-05-08 Qualcomm Incorporated Autonomous denial configurations for multi-radio coexistence
WO2014113990A1 (en) * 2013-01-28 2014-07-31 Qualcomm Incorporated Ue transmitter sharing by gsm and lte
WO2016075046A1 (en) * 2014-11-10 2016-05-19 Telefonaktiebolaget L M Ericsson (Publ) Reducing interference caused by uplink carrier aggregation
CN105704075A (zh) * 2014-11-25 2016-06-22 中兴通讯股份有限公司 校正处理方法及装置
CN114710242A (zh) 2016-04-01 2022-07-05 华为技术有限公司 用于srs切换、发送和增强的系统与方法
PL3706350T3 (pl) * 2017-11-10 2024-05-20 Beijing Xiaomi Mobile Software Co., Ltd. Sposób i urządzenie do transmisji danych

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2661002A1 (en) * 2012-05-04 2013-11-06 Broadcom Corporation Interference Suppression for Cellular Networks
CN106304403A (zh) * 2015-06-10 2017-01-04 电信科学技术研究院 一种多连接建立方法及相关设备
CN106330419A (zh) * 2015-06-26 2017-01-11 深圳市中兴微电子技术有限公司 一种解决干扰的方法及用户设备
CN107148085A (zh) * 2017-06-30 2017-09-08 维沃移动通信有限公司 一种载波聚合方法及移动终端

Also Published As

Publication number Publication date
EP3706350A4 (en) 2021-07-07
US11431366B2 (en) 2022-08-30
PL3706350T3 (pl) 2024-05-20
EP3706350B1 (en) 2024-01-17
CN109451860B (zh) 2023-06-23
ES2973523T3 (es) 2024-06-20
US20220368362A1 (en) 2022-11-17
US20200350936A1 (en) 2020-11-05
EP3706350A1 (en) 2020-09-09
US11742884B2 (en) 2023-08-29
CN109451860A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
US11191085B2 (en) Method and apparatus for coordinating in-device coexistence interference, user equipment and communication device
US11765023B2 (en) Configuration method and apparatus for transmission configuration indication
US11711818B2 (en) Method and device for configuring transmission
US11350394B2 (en) Resource configuration method, apparatus, user equipment, and base station
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2018218491A1 (zh) 传输数据的方法及装置
WO2019100281A1 (zh) 传输配置方法及装置
US11503642B2 (en) Method and device for determining an uplink-downlink switching point
US11742884B2 (en) Data transmission method and device, and communication system
WO2019095105A1 (zh) 通信链路的配置方法及装置
WO2020191631A1 (zh) 时隙格式指示方法及装置
WO2019023885A1 (zh) 蜂窝网络中实现全双工传输的方法、装置、设备及基站
WO2021022394A1 (zh) 信息发送方法及装置、连接建立方法及装置和基站
WO2018201392A1 (zh) 为多模终端配置工作模式的方法及装置
US11540294B2 (en) Method and apparatus for eliminating intermodulation interference, user equipment and base station
US11356890B2 (en) Method and apparatus for transmitting radio resource control message
WO2018000322A1 (zh) 数据传输方法及装置
WO2018112751A1 (zh) 系统信息的传输方法及装置
WO2019023880A1 (zh) 传输方向的指示方法及装置
WO2019071480A1 (zh) 通信控制方法和通信控制装置
CN113796110A (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
US12004016B2 (en) Method and apparatus for transmitting configuration information
WO2020206640A1 (zh) 资源指示方法及装置
WO2018201336A1 (zh) 下行控制信道的接收、发送方法及装置
WO2019047097A1 (zh) 信令检测的实现方法、装置、用户设备及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017931557

Country of ref document: EP

Effective date: 20200602