WO2017196001A1 - 액정 배향제 조성물, 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자 - Google Patents

액정 배향제 조성물, 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자 Download PDF

Info

Publication number
WO2017196001A1
WO2017196001A1 PCT/KR2017/004301 KR2017004301W WO2017196001A1 WO 2017196001 A1 WO2017196001 A1 WO 2017196001A1 KR 2017004301 W KR2017004301 W KR 2017004301W WO 2017196001 A1 WO2017196001 A1 WO 2017196001A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal aligning
polymer
group
formula
Prior art date
Application number
PCT/KR2017/004301
Other languages
English (en)
French (fr)
Other versions
WO2017196001A8 (ko
Inventor
조정호
한희
박항아
권순호
윤준영
윤형석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/765,434 priority Critical patent/US11347110B2/en
Priority to CN201780003594.3A priority patent/CN108138051B/zh
Priority to JP2018519849A priority patent/JP6790336B2/ja
Publication of WO2017196001A1 publication Critical patent/WO2017196001A1/ko
Publication of WO2017196001A8 publication Critical patent/WO2017196001A8/ko

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/025Polyamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/027Polyimide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • Liquid crystal aligning agent composition The manufacturing method of a liquid crystal aligning film, The liquid crystal aligning film and liquid crystal display element using the same
  • the present invention relates to a liquid crystal aligning agent composition, a method of manufacturing a liquid crystal aligning film, a liquid crystal aligning film and a liquid crystal display device using the same, which not only have excellent orientation and stability, but also have enhanced electrical properties such as voltage holding retention.
  • the liquid crystal alignment film plays a role of orienting the liquid crystal in a constant direction.
  • the liquid crystal alignment layer serves as a director in the arrangement of the liquid crystal molecules, so that the liquid crystal is moved by an electric field to form an image when the liquid crystal is moved to form an image.
  • it is essential to orient the liquid crystal uniformly.
  • a rubbing method is used in which a polymer film such as polyimide is applied to a substrate such as glass, and the surface is rubbed in a predetermined direction using fibers such as nylon or polyester.
  • the rubbing method may generate fine dust or electrostatic charge (ESD) when the fiber and the polymer film are rubbed, which may cause serious problems in manufacturing the liquid crystal panel.
  • polyimide is formed through a high temperature heat treatment process and subjected to light irradiation to perform alignment treatment.
  • a large amount of energy is required, so that it is difficult to secure actual productivity, and there is a limit that an additional heat treatment process is also required to secure alignment stability after light irradiation. .
  • the present invention is to provide a liquid crystal aligning agent composition that not only has excellent orientation and stability, but also has enhanced electrical characteristics such as voltage holding integrity.
  • this invention is providing the manufacturing method of the liquid crystal aligning film using the said liquid crystal aligning agent composition.
  • the present invention also provides a liquid crystal display device comprising the liquid crystal alignment film and the liquid crystal alignment film produced according to the method for producing the liquid crystal alignment film.
  • a first polymer comprising a repeating unit represented by the following formula (1) and at least one repeating unit selected from the group consisting of repeating units represented by 3, and a second comprising a repeating unit represented by the following formula (4)
  • the liquid crystal aligning agent composition containing the polymer for liquid crystal aligning agents is provided.
  • the present invention comprises the steps of applying the liquid crystal aligning agent composition to a substrate to form a coating film;
  • Drying the coating film Irradiating the coating film immediately after the drying step with an alignment treatment; It provides a method for producing a liquid crystal alignment film comprising; step of curing the alignment-treated coating film by heat treatment.
  • this invention provides the liquid crystal aligning film manufactured according to the manufacturing method of the said liquid crystal aligning film.
  • this invention provides the liquid crystal display element containing the said liquid crystal aligning film.
  • a liquid crystal aligning agent composition comprising at least one repeating unit selected from the group consisting of a repeating unit represented by the following Chemical Formula 2 and a repeating unit represented by the following Chemical Formula 3 and a repeating unit represented by the following Chemical Formula 1
  • a liquid crystal aligning agent composition comprising a polymer for aligning agent and a polymer for second liquid crystal aligning agent comprising a repeating unit represented by the following formula (4):
  • R 1 and R 2 are each independently hydrogen or carbon number
  • R 3 and R 4 are each independently hydrogen or carbon number
  • X 1 is a tetravalent organic group represented by the following Chemical Formula 5,
  • R 5 to R 8 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms
  • X 2 to X 4 are each independently a tetravalent organic group derived from a hydrocarbon having 4 to 20 carbon atoms, at least one H of the tetravalent organic groups is substituted with halogen, or at least one -CH 2 -valent oxygen or sulfur A tetravalent organic group replaced by _0-, -CO-, -S-, -SO—, -SO2- or -C0NH- so that the atoms are not directly connected,
  • Y 1 to Y 4 are each independently a divalent organic group.
  • a coating film is formed, and then converted into a polyimide through a high temperature heat treatment process. Irradiation was performed and orientation treatment was performed.
  • an additional heat treatment process is performed to secure alignment stability after light irradiation.
  • Many of these light irradiation energy and additional high temperature heat treatment process is very disadvantageous in terms of process cost and processing time, so there was a limit to apply to the actual mass production process.
  • the present inventors through an experiment, essentially include a repeating unit represented by Chemical Formula 1, and further include at least one repeating unit selected from the group consisting of a repeating unit represented by Chemical Formula 2 and a repeating unit represented by Chemical Formula 3. Since the first polymer includes a predetermined amount of imide repeating units imidized already, when a mixture of a polymer for a first liquid crystal aligning agent and a polymer for a second liquid crystal aligning agent including the repeating unit represented by Formula 4 is used. After the coating film is formed, the anisotropy can be generated by directly irradiating light without a high temperature heat treatment step, and then the heat treatment can be completed to align the alignment film. Therefore, the light irradiation energy can be greatly reduced, and a single heat treatment step is included. In addition to the excellent orientation and stability in a simple process, Properties was also confirmed that it is possible to manufacture an excellent liquid crystal alignment film, and completed the invention.
  • Hydrocarbons having 4 to 20 carbon atoms include alkanes having 4 to 20 carbon atoms, alkenes having 4 to 20 carbon atoms, alkynes having 4 to 20 carbon atoms, cycloalkanes having 4 to 20 carbon atoms, and carbon atoms.
  • a cycloalkene of 4 to 20, an arene of 6 to 20 carbon atoms, or one or more of these cyclic hydrocarbons is a fused r ing sharing two or more atoms, or one of them More than one hydrocarbon chemically It may be a combined hydrocarbon.
  • hydrocarbons having 4 to 20 carbon atoms include n-butane, cyclobutane, 1-methylcyclobutane, 1,3-dimethylcyclobutane, 1,2,3,4-tetramethylcyclobutane cyclopentane, cyclonucleic acid, Cycloheptane, cyclooctane, cyclonuxene, 1-methyl-3-ethylcyclonuxene, bicyclonuclear chamber, benzene, biphenyl, diphenylmethane, 2, 2-diphenylpropane, 1-ethyl-1, 2, 3, 4-tetrahydronaphthalene, 1, 6- diphenylnucleic acid, etc. can be illustrated.
  • the alkyl group having 1 to 10 carbon atoms may be a straight chain, branched chain or cyclic alkyl group. Specifically, the alkyl group having 1 to 10 carbon atoms is a straight chain alkyl group having 1 to 10 carbon atoms; Linear alkyl groups having 1 to 5 carbon atoms; Branched or cyclic alkyl groups having 3 to 10 carbon atoms; Or a branched or cyclic alkyl group having 3 to 6 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms is methyl group, ethyl group, n-propyl group, i so-propyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, i so- A pentyl group, neo-pentyl group, a cyclonuclear group, etc. can be illustrated.
  • the alkoxy group having 1 to 10 carbon atoms may be a straight chain, branched chain or cyclic alkoxy group. Specifically, the alkoxy group having 1 to 10 carbon atoms is a straight alkoxy group having 1 to 10 carbon atoms; Linear alkoxy groups having 1 to 5 carbon atoms; Branched or cyclic alkoxy groups having 3 to 10 carbon atoms; Or a branched or cyclic alkoxy group having 3 to 6 carbon atoms.
  • examples of the alkoxy group having 1 to 10 carbon atoms include methoxy group, ethoxy group, n-propoxy group, i so -propoxy group, n-butoxy group, i so -butoxy group, tert-butoxy group and n-phene group.
  • the time period, isofene special time group, a neo-phenoxy group, a cyclonucleooxy group, etc. can be illustrated.
  • the fluoroalkyl group having 1 to 10 carbon atoms may have one or more hydrogens of the alkyl group having 1 to 10 carbon atoms substituted with fluorine, and the fluoroalkoxy group having 1 to 10 carbon atoms may have at least one hydrogen of the alkoxy group having 1 to 10 carbon atoms. May be substituted with fluorine.
  • Alkenyl groups having 2 to 10 carbon atoms may be linear, branched or cyclic alkenyl groups. Specifically, an alkenyl group having 2 to 10 carbon atoms has a straight chain alkenyl group having 2 to 10 carbon atoms, a straight chain alkenyl group having 2 to 5 carbon atoms, a branched alkenyl group having 3 to 10 carbon atoms, a branched alkenyl group having 3 to 6 carbon atoms, and 5 carbon atoms It may be a cyclic alkenyl group of 10 to 10 or a cyclic alkenyl group of 6 to 8 carbon atoms. More specifically, examples of the alkenyl group having 2 to 10 carbon atoms include an ethenyl group, propenyl group, butenyl group, pentenyl group or cyclonuxenyl group.
  • Halogen may be fluorine (F), chlorine (C1), bromine (Br) or iodine (I).
  • a multivalent organic group derived from any compound refers to a moiety in a form in which a plurality of hydrogen atoms attached to any compound have been removed.
  • a tetravalent organic group derived from cyclobutane means a moiety in a form in which any four hydrogen atoms bonded to cyclobutane are removed.
  • ⁇ * in the formula means a residue of a form in which hydrogen of the site is removed.
  • * ⁇ ⁇ ⁇ means any one of residues in the form of four hydrogen atoms bonded to carbons 1, 2, 3 and 4 of cyclobutane, that is, a tetravalent organic group derived from cyclobutane. .
  • Y 1 to Y 4 may each independently be a divalent organic group represented by Formula 6 below:
  • R 9 and R 10 each independently represent a halogen, a cyano group, an alkyl group having 1 to 3 carbon atoms, an alkenyl group having 2 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, or a carbon group having 1 to 3 carbon atoms
  • Fluoroalkoxy group, p and q are each independently an integer between 0 and 4,
  • Z is an integer between 1 and 10
  • k and m are each independently an integer between 1 and 3
  • n is an integer between 0 and 3.
  • Hydrogen is bonded to carbon which is not substituted with R 9 or R 10 in Formula 6, and when p or q is an integer between 2 and 4, a plurality of R 9 or R10 may be the same or different substituents.
  • N in 6 may be an integer from 0 to 3 or an integer of 0 or 1.
  • X 1 is a tetravalent organic group represented by Formula 5
  • X 2 to X 4 are each independently a tetravalent and organic group derived from a hydrocarbon having 4 to 20 carbon atoms, Black is -0-, -co-, -S-, -so-, so that at least one H of the tetravalent ' organic group is substituted with halogen or at least one -CH 2 -is not directly connected to oxygen or sulfur atoms; It may be a tetravalent organic group replaced with S0 2 -or -C0NH-.
  • X 2 to X 4 may be each independently a tetravalent organic group described in Chemical Formula 7.
  • R 5 to R 8 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms
  • L 2 is a single bond, -0—, -CO-, -S-, -SO-, -S0 2- , -CR n R 12- , -C0NH-,-COO—,-(CH 2 ) Z- , -0 (CH 2 ) z 0-, -C00- (CH 2 ) z -0C0-, phenylene or any combination thereof
  • R 11 and R 12 are each independently hydrogen, of 1 to 10 carbon atoms
  • An alkyl group or a fluoroalkyl group, z is an integer from 1 to 10.
  • the polymer for a first liquid crystal aligning agent used in the method for producing a liquid crystal alignment film of the embodiment may include a repeating unit represented by the formula (1), which is an imide repeating unit, among the repeating units represented by the formulas (1), (2) and (3). 10 mol% to 74 mol%, preferably 20 mol% to 60 mol%, based on the total repeating units.
  • the polymer for the first liquid crystal aligning agent including a specific content of the imide repeating unit represented by Formula 1 since the polymer contains a predetermined amount of imide repeating units imidized already, high temperature heat treatment Even if the process is omitted and the light is directly irradiated, a liquid crystal alignment layer having excellent orientation and stability and excellent voltage retention and electrical characteristics can be produced. If the repeating unit represented by the formula (1) is included less than the content range does not exhibit a sufficient orientation characteristics, the orientation stability may be lowered, if the content of the repeating unit represented by the formula (1) exceeds the above range solubility Problems may appear that are difficult to produce a stable alignment liquid coatable. Accordingly, it is preferable to include the repeating unit represented by Chemical Formula 1 in the above-described content range because it is possible to provide a polymer for a liquid crystal aligning agent having excellent storage stability, electrical characteristics, orientation characteristics, and orientation stability.
  • the polymer for the first liquid crystal aligning agent may include a repeating unit represented by the formula (2) or a repeating unit represented by the formula (3) in an appropriate amount according to the desired properties.
  • the repeating unit represented by Formula 2 may include 0 mol% to 40 mol%, preferably 0 mol% to 30% based on the total repeating units represented by Formulas 1 to 3. Since the repeating unit represented by the formula (2) has a low rate of conversion to imide during the high silver heat treatment process after light irradiation, when exceeding the above range, the overall imidation ratio may be insufficient and the orientation stability may be lowered. Therefore, the repeating unit represented by the formula (2) has a suitable solubility within the above-described range for the liquid crystal aligning agent capable of realizing a high imidation rate with excellent process characteristics Polymers may be provided.
  • the repeating unit represented by Chemical Formula 3 may include 0 mol3 ⁇ 4> to 95 mol%, preferably 10 mol% to 90 mol% based on the total repeating units represented by Chemical Formulas 1 to 3. It is possible to provide a polymer for a liquid crystal aligning agent that exhibits excellent coating properties within such a range and excellent in process characteristics and can realize a high imidation ratio.
  • the polymer for the second liquid crystal aligning agent used in the method for producing a liquid crystal aligning film of the embodiment is mixed with the polymer for the first liquid crystal aligning agent which is a partially imidized polymer and used as the liquid crystal aligning agent, so that only the first liquid crystal aligning polymer Compared with the case of use, electrical characteristics of the alignment layer such as voltage holding rat io can be greatly improved.
  • X 4 in the repeating unit represented by Chemical Formula 4 is preferably derived from an aromatic structure in terms of improving voltage holding integrity.
  • R 9 and R 10 are each independently a short functional group having 3 or less carbon atoms or do not include R 9 and R 10 which are branched structures (P and q are 0). This is more preferable.
  • the polymer for the first liquid crystal aligning agent and the polymer for the second liquid crystal aligning agent may be mixed at a weight ratio of about 15:85 to 85:15, preferably about 20:80 to 80:20.
  • the first liquid crystal aligning agent since the first liquid crystal aligning agent includes a predetermined amount of imide repeating units imidized, the first liquid crystal aligning agent generates anisotropy by immediately irradiating light without a high temperature heat treatment process after forming a coating film, and then heat treatment is performed. There is a characteristic that the alignment film can be completed, and the polymer for the second liquid crystal aligning agent has a feature of improving electrical characteristics such as voltage retention.
  • the 2nd liquid crystal may be used for the outstanding light reaction characteristic and liquid crystal aligning property which the polymer for 1st liquid crystal aligning agent has. Since the excellent electrical properties of the alignment agent polymer can be complemented with each other, a liquid crystal alignment film having more excellent alignment and electrical properties at the same time It can manufacture.
  • a method of manufacturing a liquid crystal alignment layer may be provided.
  • the method of manufacturing the liquid crystal alignment layer may include a first unit including at least one repeating unit selected from a group consisting of a repeating unit represented by Formula 2 and a repeating unit represented by Formula 3, and a repeating unit represented by Formula 1
  • the liquid crystal aligning agent composition containing the polymer for liquid crystal aligning agents, and the polymer for 2nd liquid crystal aligning agents containing the repeating unit represented by General formula (4) is apply
  • the method of applying the liquid crystal aligning agent composition to the substrate is not particularly limited, and for example, screen printing, offset printing, flexographic printing, inkjet, or the like may be used.
  • the liquid crystal aligning agent composition may be a solution obtained by dissolving or dispersing the polymer for the first liquid crystal aligning agent and the polymer for the crab 2 liquid crystal aligning agent in an organic solvent.
  • organic solvent examples include ⁇ , ⁇ -dimethylformamide, ⁇ , ⁇ -dimethylacetamide, ⁇ -methyl ⁇ 2-pyrrolidone, ⁇ -methylcaprolactam, 2-pyridone,
  • the liquid crystal aligning agent composition may further include other components in addition to the polymer for the liquid crystal aligning agent and the organic solvent.
  • the liquid crystal aligning agent composition when applied, it improves the uniformity and surface smoothness of the film thickness, or improves the adhesion between the photo-alignment film and the substrate, or change the dielectric constant or conductivity of the photo-alignment film
  • black may further include an additive that may increase the compactness of the photoalignment layer.
  • additives may be exemplified by various solvents, surfactants, silane compounds, dielectrics or crosslinkable compounds. '
  • substrate is dried. Drying the coating film may be a method such as heating, vacuum evaporation of the coating film, it is preferably carried out at 50 ° C to 150 ° C, or 60 ° C to 140 ° C.
  • the manufacturing method of the liquid crystal aligning film of the said one Embodiment performs an alignment process by irradiating light to the coating film immediately after the said drying step.
  • the "coating film immediately after the drying step” means immediately irradiating light without the step of performing heat treatment at a temperature higher than the drying step after the drying step, and other steps other than the heat treatment may be added.
  • liquid crystal aligning film using a liquid crystal aligning agent containing a polyamic acid or a polyamic acid ester
  • light is emitted.
  • the liquid crystal aligning film is manufactured using the liquid crystal aligning agent of the above-described embodiment does not include the heat treatment step, and immediately after irradiating the alignment by irradiation with light, By curing, even under small light irradiation energy A liquid crystal aligning film with enhanced orientation and stability can be produced.
  • the light irradiation in the alignment process may be to irradiate the polarized ultraviolet rays of 150 ⁇ to 450 ran wavelength.
  • the intensity of exposure varies depending on the type of polymer, and it is possible to 3 ⁇ 4 the energy of 10 mJ / cin 2 to 10 J / cin 2 , preferably the energy of 30 mJ / cin 2 to 2 J / cin 2 .
  • a polarizing device using a substrate coated with a dielectric anisotropic material on the surface of a transparent substrate such as quartz glass, soda lime glass, soda lime free glass, 2 a polarizing plate on which fine aluminum or metal wire is deposited, or 3
  • An alignment treatment is performed by irradiating polarized ultraviolet rays selected from polarized ultraviolet rays by a method of passing or reflecting through a Brewster polarizer or the like by reflection of quartz glass.
  • the polarized ultraviolet rays may be irradiated perpendicularly to the substrate surface, or may be irradiated at an inclined angle at a specific angle. In this way, the alignment ability of the liquid crystal molecules is imparted to the coating film.
  • the curing of the alignment-treated coating film may be performed after light irradiation in a method of manufacturing a liquid crystal alignment film using a polymer for a liquid crystal alignment agent that includes a polyamic acid or a polyamic acid ester. Is applied to a substrate, and is subjected to a heat treatment step performed to imidize the liquid crystal aligning agent composition before irradiating light or while irradiating light.
  • the heat treatment may be carried out by a heating means such as a hot plate, hot air circulation furnace, infrared furnace, it is preferable to be carried out at 150 ° C to 300 ° C, or 200 ° C to 250 ° C.
  • a liquid crystal alignment layer manufactured according to the method of manufacturing the liquid crystal alignment layer of the embodiment may be provided.
  • the first liquid crystal essentially includes a repeating unit represented by Formula 1, and includes at least one repeating unit selected from the group consisting of a repeating unit represented by Formula 2 and a repeating unit represented by Formula 3.
  • Repeating formula represented by the formula (4) and the polymer for the alignment agent When the polymer for 2nd liquid crystal aligning agents containing a unit is mixed and used, the liquid crystal aligning film in which the orientation and stability were strengthened can be manufactured.
  • a liquid crystal display device including the liquid crystal alignment layer described above may be provided.
  • the liquid crystal alignment layer may be introduced into the liquid crystal cell by a known method, and the liquid crystal cell may likewise be introduced into the liquid crystal display device by a known method.
  • the liquid crystal alignment layer may be prepared by mixing a polymer including a repeating unit represented by Formula 1 and a polymer including a repeating unit represented by Formula 4 to realize excellent stability with excellent physical properties. Accordingly, a liquid crystal display device capable of exhibiting high reliability is provided.
  • a liquid crystal aligning agent composition and a method for producing a liquid crystal aligning film are provided which can provide a liquid crystal aligning film which is excellent in orientation and stability through a simple process, and which also has excellent voltage retention and electrical characteristics.
  • Diamine DA-1 was synthesized according to the following reaction formula 1.
  • Diamine DA-4 was synthesized according to the following reaction formula 2.
  • Cyclobutane ⁇ 1,2,3,4 ⁇ tetracarboxylic acid instead of pyromellitic acid anhydride A DA-5 having the above structure was prepared by the preparation example except that dianhydride (CBDA) was used.
  • composition of P-6 was quantitatively analyzed as follows.
  • the obtained PA-6 solution was coated on a glass substrate, and then subjected to imidization by heat treatment at 300 ° C. for 2 hours.
  • the imidation ratio of the material obtained through this process was defined as 100%, and this was analyzed by comparing CN peakUSSOcnf 1 ) of the imide shown in the IR spectrometer with P-6 obtained through the chemical imidization process.
  • the 1520cm "1 aromatic peak is set as a standard for normalizing, and the magnitude (I) of CN peaks appearing in the 1380011 -1 bands of PA-6 and P-6 is integrated and substituted into Equation 1 below.
  • the imidation ratio was quantified by doing this.
  • Imidation ratio (>) [(Il380, P-6 ⁇ ⁇ 520, ⁇ - ⁇ ) / (11380, ⁇ -6 ⁇ 300 ⁇ 11520, ⁇ -6 @ 300)] *
  • ⁇ - 6 is ON peak that appears in the 1380cm- 1 vs. ⁇ -6 In size and, I 1520, P eu 6 and the 1520cm- aromat ic greater peak 7] may appear on one, I i380, PA-6 @ 300 ⁇ PA-6 of the material subjected to heat treatment at 300 ° C 1380cm- 1
  • the size of CN peak in I 1520 , PA - 6 @ 300 is the size of aromatic peak in 1520cm "1 of the material heat-treated PA-6 at 300 ° C.
  • PA-6 was prepared in the same manner as in Synthesis example 6, where 13.0 g of acetic anhydride and 11.5 g of pyridine were used.
  • Polymer P-8 was prepared in the same manner as in Synthesis Example 1, except that 5.52 g was added.
  • the number average molecular weight (Mn) is 22, 000 g / mc) l
  • Synthesis Example 1 5.00g of 4,4'-methylene dianiline (4,4'-methylenedianiline) and 5.05g of 4,4'-oxydianiline (4,4'-oxydiani line) were first dissolved in NMP 221.4g. Thereafter, polymer Q-1 was prepared in the same manner as in Synthesis Example 1, except that 14.55 g of 4,4'-biphthalic anhydride (4,4'-biphthalic anhydride) was added. As a result of confirming the molecular weight of ⁇ -l through GPC, the number average molecular weight (Mn) was 25,000 g / 1 ⁇ 2) l, the weight average molecular weight (Mw) was 40,000 g / m. Synthesis Example 11: Preparation of polymer Q-2 for liquid crystal aligning agent
  • Og and the polymer Q-2 l .Og obtained in Synthesis Example 11 were dissolved in a mixed solvent of 30 g of NMP and 8 g of n-butoxyethanol to obtain a 5 wt% solution.
  • the obtained solution was filtered under pressure with the filter whose pore size of poly (tetrafluorene ethylene) material is 0.2 m, and liquid crystal aligning agent A-3 was manufactured.
  • Og was dissolved in a mixed solvent of 30 g of NMP and 8 g of n-butoxyethanol to obtain a 5 wt% solution.
  • the obtained solution was made into poly (tetrafluoreneethylene)
  • the liquid crystal aligning agent B-1 was manufactured by pressure filtration with the filter whose pore size of material is 0.2 / mm ⁇ 3>. Comparative Example 2
  • Og was dissolved in 30 g of NMP and n-butoxyethane in 8 g of a mixed solvent to obtain a 5 wt% solution. Then, the obtained solution was filtered under pressure with a filter having a pore size of poly (tetrafluoreneethylene) of 0.2 m to prepare a liquid crystal aligning agent C-4.
  • a comb-shaped IPS (in-pl ane swi tching) mode IT0 electrode pattern with a thickness of 60 nm, electrode width and spacing between electrodes is formed on a rectangular glass substrate measuring 2.5cm x 2.7cm.
  • the liquid crystal aligning agent was apply
  • the substrate on which the liquid crystal aligning agent was applied was placed on a hot plate of about 70 ° C., and dried for 3 minutes to evaporate the solvent.
  • ultraviolet rays having a wavelength of 254 nm were applied using an exposure machine with a line polarizer attached to each of the upper and lower coating films. Irradiation with an exposure dose of OJ / ciif was carried out.
  • the orientation-treated upper and lower plates were baked (cured) for 30 minutes in an oven at about 230 ° C. to obtain a coating film having a film thickness of 0.1.
  • a sealing agent impregnated with three sized ball spacers was applied to the edges of the upper plate except for the liquid crystal injection hole.
  • the alignment films formed on the upper and lower plates face each other and are aligned so that the alignment directions are parallel to each other.
  • the upper and lower plates are bonded to each other to cure the sealing agent, thereby preparing empty cells.
  • a liquid crystal was injected into the empty cell to prepare a liquid crystal cell of IPS mode.
  • the polarizing plates were attached to the upper and lower plates of the liquid crystal cell manufactured as described above to be perpendicular to each other. At this time, the polarization axis of the polarizing plate attached to the lower plate was to be parallel to the alignment axis of the liquid crystal cell. And the liquid crystal cell with a polarizing plate was put on the backlight of brightness 7,000cd / m ⁇ 2> , and light leakage was observed visually. At this time, if the alignment characteristics of the liquid crystal alignment layer are excellent and the liquid crystals are well arranged, light is not passed through the upper and lower flat plates attached vertically to each other, and the light is darkly observed without defects. In this case, the alignment characteristic is 'good', and when light leakage such as liquid crystal flow marks or bright spots is observed, it is shown in Table 1 as 'bad'.
  • the liquid crystal aligning stability was evaluated using the liquid crystal sal attached to the polarizing plate manufactured for said (1) liquid crystal aligning property evaluation.
  • the liquid crystal cell attached to the polarizing plate was attached on the backlight of 7,000cd / m 2 and the luminance of the black state was measured using the PR-880 equipment, which is a luminance brightness measurement equipment. Then, the liquid crystal cell was driven for 24 hours at 5V at room temperature. Then, the brightness of the black state was measured in the same manner as described above with the voltage of the liquid crystal cell turned off.
  • the difference between the initial luminance L0 measured before driving the liquid crystal cell and the later luminance L1 measured after driving was divided by the initial luminance L0 value and multiplied by 100 to calculate the luminance variation rate.
  • the calculated luminance fluctuation rate is closer to 0%, which means that the orientation stability is excellent. If the luminance fluctuation rate is less than 10%, it is shown in Table 1 as 'excellent', 10% or more less than 2 'normal', 20% or more 'bad'.
  • the substrate on which the liquid crystal aligning agent was applied was placed on a hot plate of about 70 ° C., dried for 3 minutes to evaporate the solvent.
  • ultraviolet rays of 254 nm were irradiated with a U / ciif exposure dose using an exposure machine in which upper and lower plates were coated with linear photons.
  • the upper and lower substrates subjected to the alignment treatment were baked and cured in an oven at 230 ° C. for 30 minutes to obtain a coating film having a film thickness of 0.1.
  • a sealing agent impregnated with a ball spacer of 4.5 was applied to the upper and lower edges of the glass except for the liquid crystal injection hole.
  • VHR voltage retention preservation ratio
  • the first liquid crystal aligning jeyong polymer and the second liquid crystal alignment films of Examples 1 to 7 using a liquid crystal aligning agent composition containing both a liquid crystal alignment jeyong polymer is a liquid crystal alignment properties, and stability of the present invention
  • Table 1 Comparative Examples 1 to 2 show good results in both the voltage holding retention ratio and the case of using only one type of the polymer for the first liquid crystal aligning agent and the polymer for the second liquid crystal aligning agent, or using a polymer having a different form from that for the first liquid crystal aligning agent.
  • the liquid crystal aligning film of 3 showed the poor result in some or all of the said evaluation items.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 액정 배향제 조성물, 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 배향막을 포함하는 액정 표시소자에 관한 것이다. 보다 구체적으로, 본 발명은 액정 배향제 조성물을 기판에 도포 및 건조한 후 고온의 열처리 공정을 생략하고, 바로 광을 조사하여 배향 처리한 후 이를 열처리하여 경화함으로써, 광 조사 에너지를 줄일 수 있을 뿐 아니라, 단순한 공정을 통해 배향성과 안정성 및 전압유지 보전율과 전기적 특성이 우수한 액정 배향막을 제공할 수 있는 액정 배향막의 제조 방법, 액정 배향막 및 이를 포함하는 액정 표시소자가 제공된다.

Description

【명세서】
【발명의 명칭】
액정 배향제 조성물, 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자
【기술분야】
관란출원 (들)과의 상호 인용
본 출원은 2016년 5월 13일자 한국 특허 출원 제 10-2016-
0058934호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 배향성과 안정성이 우수할 뿐만 아니라, 전압유지 보전율과 같은 전기적 특성 또한 강화된 액정 배향제 조성물, 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자에 관한 것이다.
【발명의 배경이 되는 기술】
액정 표시소자에 있어서, 액정 배향막은 액정을 일정한 방향으로 배향시키는 역할을 담당하고 있다. 구체적으로, 액정 배향막은 액정 분자의 배열에 방향자 (di rector ) 역할을 하여 전기장 (electr ic f ield)에 의해 액정이 움직여서 화상을 형성할 때, 적당한 방향을 잡도록 해준다. 일반적으로 액정 표시소자에서 균일한 휘도 (br ightness)와 높은 명암비 (contrast rat io)를 얻기 위해서는 액정을 균일하게 배향하는 것이 필수적이다.
액정을 배향시키는 통상적인 방법으로, 유리 등의 기판에 폴리이미드와 같은 고분자 막을 도포하고, 이 표면을 나일론이나 폴리에스테르 같은 섬유를 이용해 일정한 방향으로 문지르는 러빙 (rubbing) 방법이 이용되었다. 그러나 러빙 방법은 섬유질과 고분자막이 마찰될 때 미세한 먼지나 정전기 (electr i cal di scharge : ESD)가 발생할 수 있어, 액정 패널 제조 시 심각한 문제점을 야기시킬 수 있다.
상기 러빙 방법의 문제점을 해결하기 위하여, 최근에는 마찰이 아닌 광 조사에 의해 고분자 막에 이방성 (비등방성, ani sotropy)을 유도하고, 이를 이용하여 액정을 배열하는 광 배향법이 연구되고 있다. 상기 광배향법에 사용될 수 있는 재료로는 다양한 재료가 소개되어 있으며, 그 중에서도 액정 배향막의 양호한 제반 성능을 위해 폴리이미드가 주로 사용되고 있다. 그러나, 통상 폴리이미드는 용매 용해성이 떨어져 용액 상태로 코팅하여 배향막을 형성시키는 제조 공정 상에 바로 적용하기에는 어려움이 있다. 따라서, 용해성이 우수한 폴리아믹산 또는 폴리아믹산 에스테르와 같은 전구체 형태로 코팅을 한 후 고온의 열처리 공정을 거쳐 폴리이미드를 형성시키고 여기에 광조사를 실행하여 배향처리를 하게 된다. 그러나, 이러한 폴리이미드 상태의 막에 광조사를 하여 충분한 액정 배향성을 얻기 위해서는 많은 에너지가 필요해 실제 생산성 확보에 어려움이 생길 뿐 아니라, 광조사 후 배향 안정성을 확보하기 위해 추가적인 열처리 공정도 필요한 한계가 있다.
【발명의 내용】
'【해결하고자 하는 과제】
본 발명은 배향성과 안정성이 우수할 뿐만 아니라, 전압유지 보전율과 같은 전기적 특성 또한 강화된 액정 배향제 조성물을 제공하기 위한 것이다.
그리고, 본 발명은 상기 액정 배향제 조성물을 이용한 액정 배향막의 제조 방법을 제공하기 위한 것이다.
본 발명은 또한, 상기 액정 배향막의 제조 방법에 따라 제조된 액정 배향막 및 상기 액정 배향막을 포함하는 액정 표시소자를 제공하기 위한 것이다.
【과제의 해결 수단】
본 발명은, 하기 화학식 2로 표시되는 반복 단위 및 하기 화학식
3으로 표시되는 반복 단위로 이루어진 군에서 선택된 1종 이상의 반복 단위와 하기 화학식 1로 표시되는 반복 단위를, 포함하는 제 1 액정 배향제용 중합체, 및 하기 화학식 4로 표시되는 반복 단위를 포함하는 제 2 액정 배향제용 중합체를 포함하는 액정 배향제 조성물을 제공한다.
또한, 본 발명은 상기 액정 배향제 조성물을 기판에 도포하여 도막을 형성하는 단계;
상기 도막을 건조하는 단계 ; 상기 건조 단계 직후의 도막에 광을 조사하여 배향 처리하는 단계; 상기 배향 처리된 도막을 열처리하여 경화하는 단계;를 포함하는 액정 배향막의 제조 방법을 제공한다.
또한, 본 발명은 상기 액정 배향막의 제조 방법에 따라 제조된 액정 배향막을 제공한다.
또, 본 발명은 상기 액정 배향막을 포함하는 액정 표시소자를 제공한다.
이하 발명의 구체적인 구현예에 따른 액정 배향제 조성물, 액정 배향막의 제조 방법, 액정 배향막 및 액정 표시소자에 관하여 보다 상세하게 설명하기로 한다. 발명의 일 구현예에 따르면, 하기 화학식 2로 표시되는 반복 단위 및 하기 화학식 3으로 표시되는 반복 단위로 이루어진 군에서 선택된 1종 이상의 반복 단위와 하기 화학식 1로 표시되는 반복 단위를 포함하는 제 1 액정 배향제용 중합체, 및 하기 화학식 4로 표시되는 반복 단위를 포함하는 제 2 액정 배향제용 중합체를 포함하는 액정 배향제 조성물이 제공될 수 있다:
[화학식 1]
Figure imgf000004_0001
[화학식 2]
Figure imgf000004_0002
[화학식 3]
Figure imgf000005_0001
[ 4]
Figure imgf000005_0002
상기 화학식 1 내지 4에서,
R1 및 R2는 각각 독립적으로 수소 또는 탄소수
알킬기이되, R1 및 R2가 모두 수소이지 않고,
R3 및 R4는 각각 독립적으로 수소 또는 탄소수
알킬기이고,
X1은 하기 화학식 5로 표시되는 4가의 유기기이고,
[화학식 5]
Figure imgf000005_0003
상기 R5 내지 R8은 각각 독립적으로 수소 또는 탄소수 1 내지 6의 알킬기이고,
X2 내지 X4은 각각 독립적으로 탄소수 4 내지 20의 탄화수소에서 유래한 4가의 유기기이거나, 혹은 상기 4가의 유기기 중 하나 이상의 H가 할로겐으로 치환되거나 또는 하나 이상의 -CH2-가 산소 또는 황 원자들이 직접 연결되지 않도록 _0-, -CO- , -S- , -SO—, -SO2- 또는 -C0NH-로 대체된 4가의 유기기이고,
Y1 내지 Y4은 각각 독립적으로 2가의 유기기이다. 기존의 폴리이미드를 액정 배향막으로 사용하는 경우, 용해성이 우수한 폴리이미드 전구체 , 폴리아믹산 또는 폴리아믹산 에스테르를 도포하고 건조하여 도막을 형성한 후, 고온의 열처리 공정을 거쳐 폴리이미드로 전환시키고 여기에 광조사를 실행하여 배향처리를 하였다. 그러나, 이러한 폴리이미드 상태의 막에 광조사를 하여 층분한 액정 배향성을 얻기 위해서는 많은 광 조사 에너지가 필요할 뿐 아니라, 광조사 후 배향 안정성을 확보하기 위해 추가적인 열처리 공정도 거치게 된다. 이와 같은 많은 광 조사 에너지와 추가적인 고온 열처리 공정은 공정비용과, 공정시간 측면에서 매우 불리하므로 실제 대량 생산 공정에 적용하기에는 한계가 있었다.
이에 본 발명자들은 실험을 통해, 상기 화학식 1로 표시되는 반복 단위를 필수적으로 포함하고, 화학식 2로 표시되는 반복 단위 및 화학식 3으로 표시되는 반복 단위로 이루어진 군에서 선택된 1종 이상의 반복 단위를 추가로 포함하는 제 1 액정 배향제용 중합체와 상기 화학식 4로 표시되는 반복 단위를 포함하는 제 2 액정 배향제용 중합체를 흔합하여 이용하면, 상기 제 1 중합체가 이미 이미드화된 이미드 반복 단위를 일정 함량 포함하므로, 도막 형성 후 고온의 열처리 공정 없이 바로 광을 조사하여 이방성을 생성시키고, 이후에 열처리를 진행하여 배향막을 완성할 수 있기 때문에, 광 조사 에너지를 크게 줄일 수 있을 뿐 아니라, 1회의 열처리 공정을 포함하는 단순한 공정으로도 배향성과 안정성이 우수할 뿐만 아니라, 전압유지 보전율과 전기적 특성 또한 뛰어난 액정 배향막을 제조할 수 있음을 확인하고 발명을 완성하였다.
본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다.
탄소수 4 내지 20의 탄화수소는, 탄소수 4 내지 20의 알칸 (alkane) , 탄소수 4 내지 20의 알켄 (alkene) , 탄소수 4 내지 20의 알킨 (alkyne) , 탄소수 4 내지 20의 사이클로알칸 (cycloalkane) , 탄소수 4 내지 20의 사이클로알켄 (cycloalkene) , 탄소수 6 내지 20의 아렌 (arene)이거나, 혹은 이들 중 1종 이상의 고리형 탄화수소가 2 이상의 원자를 공유하는 축합 고리 ( fused r ing)이거나, 혹은 이들 중 1종 이상의 탄화수소가 화학적으로 결합된 탄화수소일 수 있다. 구체적으로, 탄소수 4 내지 20의 탄화수소로는 n-부탄, 사이클로부탄, 1-메틸사이클로부탄, 1 , 3-디메틸사이클로부탄, 1,2,3,4-테트라메틸사이클로부탄 사이클로펜탄, 사이클로핵산, 사이클로헵탄, 사이클로옥탄, 사이클로핵센, 1-메틸 -3-에틸사이클로핵센, 바이사이클로핵실, 벤젠, 바이페닐, 디페닐메탄, 2 , 2-디페닐프로판, 1- 에틸 -1,2,3,4-테트라하이드로나프탈렌 또는 1 , 6-디페닐핵산 등을 예시할 수 있다.
탄소수 1 내지 10의 알킬기는 직쇄, 분지쇄 또는 고리형 알킬기일 수 있다. 구체적으로, 탄소수 1 내지 10의 알킬기는 탄소수 1 내지 10의 직쇄 알킬기; 탄소수 1 내지 5의 직쇄 알킬기; 탄소수 3 내지 10의 분지쇄 또는 고리형 알킬기; 또는 탄소수 3 내지 6의 분지쇄 또는 고리형 알킬기일 수 있다. 보다 구체적으로, 탄소수 1 내지 10의 알킬기로는 메틸기, 에틸기, n-프로필기, i so-프로필기, n-부틸기, i s으부틸기, tert-부틸기, n-펜틸기, i so-펜틸기, neo-펜틸기 또는 사이클로핵실기 등을 예시할 수 있다.
탄소수 1 내지 10의 알콕시기는 직쇄, 분지쇄 또는 고리형 알콕시기일 수 있다. 구체적으로, 탄소수 1 내지 10의 알콕시기는 탄소수 1 내지 10의 직쇄 알콕시기; 탄소수 1 내지 5의 직쇄 알콕시기; 탄소수 3 내지 10의 분지쇄 또는 고리형 알콕시기; 또는 탄소수 3 내지 6의 분지쇄 또는 고리형 알콕시기일 수 있다. 보다 구체적으로, 탄소수 1 내지 10의 알콕시기로는 메톡시기, 에록시기, n-프로폭시기, i so-프로폭시기, n- 부톡시기, i so-부톡시기, tert-부록시기, n-펜특시기, i s으펜특시기, neo- 펜록시기 또는 사이클로핵록시기 등을 예시할 수 있다.
탄소수 1 내지 10의 플루오로알킬기는 상기 탄소수 1 내지 10의 알킬기의 하나 이상의 수소가 불소로 치환된 것일 수 있고, 탄소수 1 내지 10의 플루오로알콕시기는 상기 탄소수 1 내지 10의 알콕시기의 하나 이상의 수소가 불소로 치환된 것일 수 있다.
탄소수 2 내지 10의 알케닐기는 직쇄, 분지쇄 또는 고리형 알케닐기일 수 있다. 구체적으로, 탄소수 2 내지 10의 알케닐기는 탄소수 2 내지 10의 직쇄 알케닐기, 탄소수 2 내지 5의 직쇄 알케닐기, 탄소수 3 내지 10의 분지쇄 알케닐기 탄소수 3 내지 6의 분지쇄 알케닐기, 탄소수 5 내지 10의 고리형 알케닐기 또는 탄소수 6 내지 8의 고리형 알케닐기일 수 있다. 보다 구체적으로, 탄소수 2 내지 10의 알케닐기로는 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 또는 사이클로핵세닐기 등을 예시할 수 있다.
할로겐 (halogen)은 불소 (F), 염소 (C1), 브롬 (Br) 또는 요오드 (I)일 수 있다.
임의의 화합물에서 유래한 다가 유기기 (multivalent organic group)는 임의의 화합물에 결합된 복수의 수소 원자가 제거된 형태의 잔기를 의미한다. 일 예로, 사이클로부탄에서 유래한 4가의 유기기는 사이클로부탄에 결합된 임의의 수소 원자 4개가 제거된 형태의 잔기를 의미한다.
본 명세서에서, 화학식 중 ᅳ *는 해당 부위의 수소가 제거된 형태의 잔기를 의미한다. 예를 들어, *^ᅳᅳ 는 사이클로부탄의 1, 2, 3 및 4번 탄소에 결합된 수소 원자 4개가 제거된 형태의 잔기, 즉 사이클로부탄에서 유래한 4가의 유기기 중 어느 하나를 의미한다.
보다 구체적으로, 상기 화학식 1 내지 4에서, Y1 내지 Y4은 각각 독립적으로 하기 화학식 6로 표시되는 2가의 유기기일 수 있다:
[화학식 6]
Figure imgf000008_0001
상기 화학식 6에서,
R9 및 R10는 각각 독립적으로 할로겐, 시아노기 탄소수 1 내지 3의 알킬기, 탄소수 2 내지 3의 알케닐기, 탄소수 1 내지 3의 알콕시기, 탄소수 1 내지 3의 플루오로알킬기 또는 탄소수 1 내지 3의 플루오로알콕시기이며, p 및 q는 각각 독립적으로 0 내지 4사이의 정수이고,
은 단일결합, -0-, -CO-, -S -, -S02_, -C(C¾)2— , -C(CF3)2-, -C0NH-, -C00-, -(CH2)Z-, -0(CH2)zO-, -0(CH2)z-, -NH-, -NH(CH2)Z— NH-, -NH(CH2)Z()-, -0CH2-C(CH3)2-CH20- , -C00-(CH2)z-0C0- 또는 -0C0-(CH2)z-C00-이며,
상기 z는 1 내지 10 사이의 정수이고,
k 및 m은 각각 독립적으로 1 내지 3사이의 정수이고,
n은 0 내지 3 사이의 정수이다.
상기 화학식 6에서 R9 또는 R10로 치환되지 않은 탄소에는 수소가 결합되어 있으며, p 또는 q가 2 내지 4 사이의 정수일 때 복수의 R9 또는 RlO는 동일하거나 서로 상이한 치환기일 수 있다. 그리고, 상기 화학식
6에서 n은 0 내지 3 사이의 정수 혹은 0 또는 1의 정수일 수 있다.
그리고, 상기 화학식 1 내지 4의 반복 단위에서 X1은 상기 화학식 5로 표시되는 4가의 유기기이고, X2 내지 X4은 각각 독립적으로 탄소수 4 내지 20의 탄화수소에서 유래한 4가와 유기기이거나, 흑은 상기 4가의' 유기기 중 하나 이상의 H가 할로겐으로 치환되거나 또는 하나 이상의 -CH2- 가 산소 또는 황 원자들이 직접 연결되지 않도록 -0-, -co-, -S-, -so-, - S02- 또는 -C0NH-로 대체된 4가의 유기기일 수 있다.
일 예로, 상기 X2 내지 X4은 각각 독립적으로 하기 화학식 7에 기재된 4가의 유기기일 수 있다.
[화학식 7]
Figure imgf000009_0001
상기 화학식 7에서,
R5 내지 R8은 각각 독립적으로 수소 또는 탄소수 1 내지 6의 알킬기이고,
L2는 단일결합, -0—, -CO- , -S -, -SO- , -S02- , -CRnR12- , -C0NH- , - COO—, -(CH2)Z- , -0(CH2)z0- , -C00-(CH2)z-0C0- , 페닐렌 또는 이들의 조합으로 이루어진 군에서 선택된 어느 하나이며,
상기에서 R11 및 R12는 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기 또는 플루오로알킬기이고, z는 1 내지 10 사이의 정수이다.
그리고, 상기 일 구현예의 액정 배향막의 제조 방법에서 사용되는 제 1 액정 배향제용 중합체는 상기 화학식 1, 화학식 2 및 화학식 3으로 표시되는 반복 단위 중에서, 이미드 반복 단위인 화학식 1로 표시되는 반복 단위를 전체 반복 단위에 대하여 10 몰% 내지 74몰 %, 바람직하게는 20 몰% 내지 60몰%포함할 수 있다.
상술한 바와 같이, 상기 화학식 1로 표시되는 이미드 반복 단위를 특정 함량 포함하는 제 1 액정 배향제용 중합체를 이용하면, 상기 중합체가 이미 이미드화된 이미드 반복 단위를 일정 함량 포함하므로, 고온의 열처리 공정을 생략하고, 바로 광을 조사하여도 배향성과 안정성이 우수하고 전압유지 보전율과 전기적 특성 또한 뛰어난 액정 배향막을 제조할 수 있다. 만일 화학식 1로 표시되는 반복 단위가 상기 함량 범위보다 적게 포함되면 층분한 배향 특성을 나타내지 못하고, 배향 안정성이 저하될 수 있으며, 상기 화학식 1로 표시되는 반복 단위의 함량이 상기 범위를 초과하면 용해도가 낮아져 코팅 가능한 안정적인 배향액을 제조하기 어려운 문제가 나타날 수 있다. 이에 따라, 상기 화학식 1로 표시되는 반복 단위를 상술한 함량 범위로 포함하는 것이 보관 안정성, 전기적 특성, 배향 특성 및 배향 안정성이 모두 우수한 액정 배향제용 중합체를 제공할 수 있어 바람직하다.
또한, 상기 제 1 액정 배향제용 중합체는 화학식 2로 표시되는 반복 단위 또는 화학식 3으로 표시되는 반복 단위를 목적하는 특성에 따라 적절한 함량으로 포함할 수 있다.
구체적으로, 상기 화학식 2로 표시되는 반복 단위는 상기 화학식 1 내지 3으로 표시되는 전체 반복 단위에 대하여 0 몰% 내지 40몰%, 바람직하게는 0 몰% 내지 30를% 포함될 수 있다. 상기 화학식 2으로 표시되는 반복 단위는 광 조사 후 고은 열처리 공정 중 이미드로 전환되는 비율이 낮기 때문에, 상기 범위를 넘어서는 경우 전체적인 이미드화율이 부족하여 배향 안정성이 저하될 수 있다. 따라서, 상기 화학식 2로 표시되는 반복 단위는 상술한 범위 내에서 적절한 용해도를 나타내어 공정 특성이 우수하 서도 높은 이미드화율을 구현할 수 있는 액정 배향제용 중합체를 제공할 수 있다.
그리고, 상기 화학식 3으로 표시되는 반복 단위는 상기 화학식 1 내지 3으로 표시되는 전체 반복 단위에 대하여 0 몰¾> 내지 95몰 %, 바람직하게는 10 몰% 내지 90몰% 포함될 수 있다. 이러한 범위 내에서 우수한 코팅성을 나타내 공정 특성이 우수하면서도 높은 이미드화율을 구현할 수 있는 액정 배향제용 중합체를 제공할 수 있다.
한편, 상기 일 구현예의 액정 배향막의 제조 방법에서 사용되는 제 2 액정 배향제용 중합체는 부분 이미드화된 중합체인 상기 제 1 액정 배향제용 중합체와 흔합하여 액정 배향제로 사용함으로써, 제 1 액정 배향제용 중합체만 사용하는 경우에 비하여 전압유지 보전율 (Voltage Holding Rat io)과 같은 배향막의 전기적 특성을 크게 개선할 수 있다.
이와 같은 효과를 나타내기 위하여 , 상기 화학식 4로 표시되는 반복 단위에서 X4는 방향족 구조에서 유래된 것이 전압유지 보전율을 개선하는 측면에서 바람직하다.
또한, 상기 화학식 4로 표시되는 반복 단위에서 Y4 는 상기 화학식
6으로 표시되는 2가의 유기기인 것이 바람직하며, 이 때 R9 및 R10는 각각 독립적으로 탄소수 3 이하의 짧은 작용기이거나 측쇄 구조인 R9 및 R10을 포함하지 않는 것 (P 및 q가 0)이 더욱 바람직하다.
그리고, 상기 제 1 액정 배향제용 중합체와 제 2 액정 배향제용 중합체는 약 15 : 85 내지 85: 15, 바람직하게는 약 20 :80 내지 80: 20 의 중량비로 흔합할 수 있다. 상술한 바와 같이, 상기 제 1 액정 배향제는 이미 이미드화된 이미드 반복 단위를 일정 함량 포함하므로, 도막 형성 후 고온의 열처리 공정 없이 바로 광을 조사하여 이방성을 생성시키고, 이후에 열처리를 진행하여 배향막을 완성할 수 있는 특징이 있고, 제 2 액정 배향제용 중합체는 전압유지 보존율과 같은 전기적 특성을 향상시키는 특징이 있다. 이와 같은 특징을 갖는 상기 제 1 액정 배향제용 중합체와 제 2 액정 배향제용 중합체를 상기 중량비 범위로 흔합하여 사용하는 경우, 제 1 액정 배향제용 중합체가 갖는 우수한 광반웅 특성 및 액정 배향 특성에 제 2 액정 배향제용 중합체가 갖는 우수한 전기적 특성을 상호 보완할 수 있으므로, 보다 우수한 배향성과 전기적 특성을 동시에 갖는 액정 배향막을 제조할 수 있다. 발명의 또 다른 구현예에 따르면, 상기 일 구현예의 액정 배향제 조성물을 기판에 도포하여 도막을 형성하는 단계 ;
상기 도막을 건조하는 단계 ;
상기 건조 단계 직후의 도막에 광을 조사하여 배향 처리하는 단계; 상기 배향 처리된 도막을 열처리하여 경화하는 단계;를 포함하는 액정 배향막의 제조 방법이 제공될 수 있다.
상기 액정 배향막의 제조 방법은 먼저 상기 일 구현예의 화학식 2로 표시되는 반복 단위 및 화학식 3으로 표시되는 반복 단위로 이루어진 군에서 선택된 1종 이상의 반복 단위와 화학식 1로 표시되는 반복 단위를 포함하는 제 1 액정 배향제용 중합체, 및 화학식 4로 표시되는 반복 단위를 포함하는 제 2 액정 배향제용 중합체를 포함하는 액정 배향제 조성물을 기판에 도포하여 도막을 형성한다. 상기 액정 배향제 조성물을 기판에 도포하는 방법은 특별히 제한되지 않으며, 예컨대 스크린 인쇄, 오프셋 인쇄, 플렉소 인쇄, 잉크젯 등의 방법이 이용될 수 있다.
그리고, 상기 액정 배향제 조성물은 상기 제 1 액정 배향제용 중합체 및 게 2 액정 배향제용 중합체를 유기 용매에 용해 또는 분산시킨 것일 수 있다.
상기 유기 용매의 구체적인 예로는 Ν,Ν-디메틸포름아미드, Ν,Ν- 디메틸아세트아미드, Ν-메틸ᅳ 2-피롤리돈, Ν-메틸카프로락탐, 2-피를리돈,
Ν-에틸피롤리돈, Ν-비닐피롤리돈, 디메틸술폭사이드, 테트라메틸우레아, 피리딘, 디메틸술폰, 핵사메틸술폭사이드, Υ—부티로락톤, 3-메톡시 -Ν,Ν一 디메틸프로판아미드, 3-에톡시—Ν,Ν-디메틸프로판아미드, 3-부록시 -Ν,Ν- 디메틸프로판아미드, 1 , 3-디메틸 -이미다졸리디논, 에틸아밀케톤, 메틸노닐케톤, 메틸에틸케톤, 메틸이소아밀케톤, 메틸이소프로필케톤, 사이클로핵사논, 에틸렌카보네이트, 프로필렌카보네이트, 디글라임, 4- 하이드록시 -4-메틸— 2-펜타는, 에틸렌 글리콜 모노메틸 에테르, 에틸렌 글리콜 모노메틸 에테르 아세테이트, 에틸렌 글리콜 모노에틸 에테르, 에틸렌 글리콜 모노에틸 에테르 아세테이트, 에틸렌 글리콜 모노프로필 에테르, 에틸렌 글리콜 모노프로필 에테르 아세테이트, 에틸렌 글리콜 모노이소프로필 에테르, 에틸렌 글리콜 모노이소프로필 에테르 아세테이트, 에틸렌 글리콜 모노부틸 에테르, 에틸렌 글리콜 모노부틸 에테르 아세테이트 등을 들 수 있다. 이들은 단독으로 사용될 수도 있고, 흔합하여 사용될 수도 있다.
또한, 상기 액정 배향제 조성물은 액정 배향제용 중합체 및 유기 용매 외에 다른 성분을 추가로 포함할 수 있다. 비제한적인 예로, 액정 배향제 조성물이 도포되었을 때, 막 두께의 균일성이나 표면 평활성을 향상시키거나, 혹은 광배향막과 기판의 밀착성을 향상시키거나, 혹은 광배향막의 유전율이나 도전성을 변화시키거나, 흑은 광배향막의 치밀성을 증가시킬 수 있는 첨가제가 추가로 포함될 수 있다. 이러한 첨가제로는 각종 용매, 계면 활성제, 실란계 화합물, 유전체 또는 가교성 화합물 등이 예시될 수 있다. '
다음으로, 상기 액정 배향제 조성물을 기판에 도포하여 형성된 도막을 건조한다. 상기 도막을 건조하는 단계는 도막의 가열, 진공 증발 등의 방법을 이용할 수 있으며, 50 °C 내지 150 °C , 또는 60°C 내지 140°C에서 수행되는 것이 바람직하다.
다음으로, 상기 일 구현예의 액정 배향막의 제조 방법은 상기 건조 단계 직후의 도막에 광을 조사하여 배향 처리한다. 본 명세서에서 상기 "건조 단계 직후의 도막" 은 건조 단계 이후에 건조 단계 이상의 온도로 열처리하는 단계의 진행 없이 바로 광 조사하는 것을 의미하며, 열처리 이외의 다른 단계는 부가가 가능하다.
보다 구체적으로, 기존에 폴리아믹산 또는 폴리아믹산에스테르를 포함하는 액정 배향제를 사용하여 액정 배향막을 제조하는 경우에는 폴리아믹산이나 폴리아믹산에스테르의 이미드화를 위하여 필수적으로 고온의 열처리를 진행한 후 광을 조사하는 단계를 포함하지만, 상술한 일 구현예의 액정 배향제를 이용하여 액정 배향막을 제조하는 경우에는 상기 열처리 단계를 포함하지 않고, 바로 광을 조사하여 배향 처리한 후, 배향 처리된 도막을 열처리하여 경화함으로써, 작은 광 조사 에너지 하에서도 층분한 배향성과 안정성이 강화된 액정 배향막을 제조할 수 있다.
그리고, 상기 배향 처리하는 단계에서 광 조사는 150ηιη 내지 450 ran 파장의 편광된 자외선올 조사하는 것일 수 있다. 이 때, 노광의 세기는 중합체의 종류에 따라 다르며, 10 mJ/cin2 내지 10 J/cin2 의 에너지, 바람직하게는 30 mJ/cin2 내지 2 J/cin2 의 에너지를 ¾사할 수 있다.
상기 자외선으로는, ①석영유리, 소다라임 유리, 소다라임프리 유리 등의 투명 기판 표면에 유전이방성의 물질이 코팅된 기판을 이용한 편광 장치, ②미세하게 알루미늄 또는 금속 와이어가 증착된 편광판, 또는 ③석영유리의 반사에 의한 브루스터 편광 장치 등을 통과 또는 반사하는 방법으로 편광 처리된 자외선 중에서 선택된 편광 자외선을 조사하여 배향 처리를 한다. 이때 편광된 자외선은 기판면에 수직으로 조사할 수도 있고, 특정한 각으로 입사각을 경사하여 조사할 수도 있다. 이러한 방법에 의하여 액정분자의 배향 능력이 도막에 부여되게 된다.
다음으로, 상기 배향 처리된 도막을 열처리하여 경화하는 단계를 포함한다. 상기 배향 처리된 도막을 열처리하여 경화하는 단계는 기존에 폴리아믹산 또는 폴리아믹산 에스테르를 포함하는 액정 배향제용 중합체를 이용하여 액정 배향막을 제조하는 방법에서도 광 조사 이후에 실시하는 단계로, 액정 배향제 조성물을 기판에 도포하고, 광을 조사하기 이전에, 또는 광을 조사하면서 액정 배향제 조성물을 이미드화 시키기 위하여 실시하는 열처리 단계와는 구분된다.
이 때, 상기 열처리는 핫 플레이트, 열풍 순환로, 적외선로 등의 가열 수단에 의해 실시될 수 있으며, 150°C 내지 300°C , 또는 200°C 내지 250°C에서 수행되는 것이 바람직하다. 그리고, 발명의 또 다른 구현예에 따르면, 상기 일 구현예의 액정 배향막의 제조 방법에 따라 제조된 액정 배향막이 제공될 수 있다.
상술한 바와 같이, 상기 화학식 1로 표시되는 반복 단위를 필수적으로 포함하고, 화학식 2로 표시되는 반복 단위 및 화학식 3으로 표시되는 반복 단위로 이루어진 군에서 선택된 1종 이상의 반복 단위를 포함하는 제 1 액정 배향제용 중합체와 상기 화학식 4로 표시되는 반복 단위를 포함하는 제 2 액정 배향제용 중합체를 흔합하여 이용하면, 배향성과 안정성이 강화된 액정 배향막을 제조할 수 있다. 또한, 발명의 또 다른 구현예에 따르면, 상술한 액정 배향막을 포함하는 액정 표시소자가 제공될 수 있다.
상기 액정 배향막은 공지의 방법에 의해 액정셀에 도입될 수 있으며, 상기 액정셀은 마찬가지로 공지의 방법에 의해 액정 표시소자에 도입될 수 있다. 상기 액정 배향막은 상기 화학식 1로 표시되는 반복 단위를 필수로 포함하는 중합체와 화학식 4로 표시되는 반복 단위를 포함하는 중합체를 흔합하여 제조되어 우수한 제반 물성과 함께 뛰어난 안정성을 구현할 수 있다. 이에 따라, 높은 신뢰도를 나타낼 수 있는 액정 표시소자를 제공하게 된다.
[발명의 효과】
본 발명에 따르면, 액정 배향제 조성물을 기판에 도포 및 건조한 후 고온의 열척리 공정을 생략하고, 바로 광을 조사하여 배향 처리한 후, 이를 열처리하여 경화함으로써, 광 조사 에너지를 줄일 수 있을 뿐 아니라, 단순한 공정을 통해 배향성과 안정성이 우수하고 전압유지 보전율과 껀기적 특성 또한 뛰어난 액정 배향막을 제공할 수 있는 액정 배향제 조성물과 액정 배향막의 제조 방법이 제공된다.
【발명을 실시하기 위한 구체적인 내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. 제조예 1 : 디아민 DA-1의 합성
디아민 DA-1은 하기 반웅식 1에 따라 합성되었다.
[반웅식 1]
Figure imgf000016_0001
1, 3-디메틸사이클로부탄 -1 ,2,3, 4-테트라카복실산 디무수물 (1,3- dimethy 1 eye lobut ane-1 ,2,3, 4-t et r acarboxy 1 i c di anhydride, DMCBDA)과 4- 니트로아닐린 (4— nitroaniline)을 DMF(Dimethyl formamide)에 용해시켜 흔합물을 제조하였다. 이어서, 상기 흔합물을 약 80°C에서 약 12시간 동안 반웅시켜 아믹산을 제조하였다. 이후, 상기 아믹산을 DMF에 용해시키고, 아세트산 무수물 및 아세트산 나트륨을 첨가하여 흔합물을 제조하였다. 이어서, 상기 흔합물에 포함된 아믹산을 약 90°C에서 약 4시간 동안 이미드화시켰다. 이렇게 얻어진 이미드를 DMAc(Dimethylacetamide)에 용해시킨 후, Pd/C를 첨가하고 흔합물을 제조하였다. 이를 45°C 및 6 bar의 수소 압력 하에서 20분 동안 환원시켜 디아민 DA-1을 제조하였다. 제조예 2: 디아민 DA-2의 합성
Figure imgf000016_0002
1 ,3-디메틸사이클로부탄 -1, 2, 3, 4-테트라카복실산 디무수물 대신에 사이클로부탄 -1,2,3,4-테트라카복실산 디무수물 (eye lobut ane-1,2, 3, 4- tetracarboxylic di anhydride, CBDA)을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 상기 구조를 갖는 DA-2를 제조하였다. 제조예 3: 디아민 DA-3의 합성
Figure imgf000017_0001
1 !3ᅳ디메틸사이클로부탄 -1,2,3,4-테트라카복실산 디무수물 대신에 피로멜리틱산 디무수물 (pyromellitic di anhydride, PMM)을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 상기 구조를 갖는 DA-3를 제조하였다. 제조예 4: 디아민 DA— 4의 합성
Figure imgf000017_0002
디아민 DA-4은 하기 반웅식 2에 따라 합성되었다.
Figure imgf000017_0003
피로멜리틱산 디무수물 (pyromellitic di anhydride, PMDA) 25g올 250mL의 메탄올에 넣고 1~2방을의 염산을 첨가한 후 75°C에서 5시간 동안 가열 환류하였다. 용매를 감압하여 제거한 후 에틸 아세테이트와 노르말핵산을 300mL 첨가하여 고형화하였다. 생성된 고체를 감압 필터하고
40°C에서 감압 건조한 후 Ml 32g을 얻었다.
수득된 Ml 34g에 lOOmL의 를루엔을 첨가하고 상온에서 옥살릴 클로라이드 (oxalyl chloride) 35g을 적하하였다. 2~3 방울의 디메틸포름아마이드 (DMF)를 적가하고 50°C에서 16시간 동안 교반하였다. 상온으로 넁각한 후 용매와 잔류 옥살릴 클로라이드를 감압하여 제거하였다. 노란색 고체 생성물에 노르말핵산 300mL 첨가한 후 80°C에서 가열 환류하였다. 가열된 반응 용액을 여과하여 노르말핵산에 녹지 않는 impur ity를 제거하고 천천히 상온까지 넁각하여 생성된 흰 색의 결정을 여과한 후 40°C의 감압 오본에서 건조하여 M2 32.6g을 얻었다.
4-니트로아닐린 (4-ni troani l ine) 29.6g과 트리에탄을아민 (TEA)
21.7g을 400 mL의 테트라하이드로퓨란 (THF)에 넣고 상은에서 M2 32.6g을 첨가하였다. 상온에서 16시간 동안 교반한 후 생성된 침전물을 여과하였다. 여액에 디클로로메탄 (Dichloro methane) 400mL를 넣고 0.1N 염산 수용액으로 세척한 후 다시 포화 탄산수소나트륨 (NaHC03) 수용액으로 세척해 주었다. 세척된 유기 용액을 감압 여과하여 고체 생성물을 얻고 다시 디클로로메탄으로 재결정하여 고체상의 디나이트로 화합물 M3 43g을 얻었다. 얻어진 디나이트로 화합물 M3 43g을 고압 반웅기에 넣은 후 THF 500 mL에 녹이고 10 wt%의 Pd-C 2.2g을 첨가한 후 3 기압의 수소기체 (¾) 하에서 16시간 상온 교반하였다. 반웅 후 cel i te 필터 여과를 이용해 Pd-C를 제거하고 여과한 뒤 여액을 감압 농축하여 에스테르화된 디아민 DA-4 37g을 얻었다. 조예 5: 디아민 DA-5의 합성
Figure imgf000018_0001
피로멜리틱산 디무수물 대신에 사이클로부탄ᅳ 1,2,3,4ᅳ테트라카복실산 디무수물 (CBDA)을 사용한 것을 제외하고는 상기 제조예 방법으로 상기 구조를 갖는 DA-5를 제조하였다.
[제 1 액정 배향제용 중합체의 제조]
합성예 1: 액정 배향제용 중합체 P-1의 제조
상기 제조예 2에서 제조된 DA-2 5.0g (13.3 mmol)을 무수 N-메틸 피를리돈 (anhydrous N— methyl pyrrol i done: NMP) 71.27g에 완전히 녹였다. 그리고, ice bath 하에서 1,3-디메틸-사이클로부탄 -1,2 ,3,4-테트라카복실산 디무수물 (DMCBDA) 2.9¾(13.03隱 ol)을 상기 용액에 첨가하여 16 시간 동안 상온에서 교반하였다. 그리고, 얻어진 용액을 과량의 증류수에 투입하여 침전물을 생성시켰다. 이어서, 생성된 침전물을 여과하여 증류수로 2회 세척하고 다시 메탄을로 3회 세척하였다. 이렇게 얻어진 고체 생성물을 40 °C의 감압 오븐에서 24시간 건조하여 액정 배향제용 중합체 P-1 6.9g을 수득하였다.
GPC를 통해 상기 P-1의 분자량을 확인한 결과, 수평균분자량 (Mn)이
15,500g/nx)l이고, 중량평균분자량 (Mw)이 31,000g/m 이었다. 그리고, 중합체 P-1의 모노머 구조는 사용한 모노머의 당량비에 의해 정해지는 것으로, 분자 내 이미드 구조의 비율이 50.5%, 아믹산 구조의 비율이 49.5%이었다. 합성예 2: 액정 배향제용 중합체 P-2의 제조
상기 합성예 1에서 DA-1 5.0g, p-페닐렌디아민 (p-phenylenedi amine, PDA) 1.07g를 NMP 103.8g에 먼저 녹인 후, 사이클로부탄 -1,2,3,4- 테트라카복실산 디무수물 (CBDA) 2.12g과 4,4' -옥시디프탈산 디무수물 (0PDA) 3.35g을 첨가하는 것을 제외하고, 합성예 1과 동일한 방법을 사용하여 중합체 P-2를 제조하였다. GPC를 통해 상기 P-2의 분자량을 확인한 결과, 수평균분자량 (Mn)이 18,000g/mc)l이고, 중량평균분자량 (Mw)이
35,000g/nx)l이었다. 그리고, 중합체 P-2는 분자 내 이미드 구조의 비율은 36.4%, 아믹산 구조의 비율은 63.6%이었다. 합성예 3: 액정 배향제용 중합체 P-3의 제조
상기 합성예 1에서 DA-26.0g, 4,4'-옥시디아닐린 (4,4'-oxydianiline ODA) 1.37g를 NMP 110.5g에 먼저 녹인 후, DMCBDA 3.47g과 피로멜리틱산 디무수물 (pyromellitic di anhydride, PMDA) 1.44g을 첨가하는 것을 제외하고, 합성예 1과 동일한 방법을 사용하여 중합체 P-3를 제조하였다. GPC를 통해 , 상기 P-3의 분자량을 확인한 결과, 수평균분자량 (Mn)이 14,500g/mol이고, 중량평균분자량 (Mw)이 29,000g/m 이었다. 그리고, 중합체 P-3는 분자 내 이미드 구조의 비율은 41.9%, 아믹산 구조의 비율은 58.1%이었다. 합성예 4: 액정 배향제용 중합체 P-4의 제조
상기 합성예 1에서 DA-1 5.0g와 DA-52.8g을 NMP 115.9g에 먼저 녹인 후, 사이클로부탄 -1,2,3,4-테트라카복실산 디무수물 (CBDA) 4.08g를 첨가하는 것을 제외하고, 실시예 1과 동일한 방법을 사용하여 중합체 P-4를 제조하였다. GPC를 통해 상기 P-4의 분자량을 확인한 결과, 수평균분자량 (Mn)이 17,000g/nx)l이고, 중량평균분자량 (Mw)이
35,000g/nx)l이었다. 그리고, 증합체 P-4는 분자 내 이미드 구조의 비율은 35.3%, 아믹산 에스테르 구조의 비율이 15.1%, 아믹산 구조의 비율은 49.5%이었다. 합성예 5: 액정 배향제용 중합체 P-5의 제조
상기 합성예 1에서 DA-1 5.0g와 4,4 '-(1, 3- 프로필디일)디옥시디아닐린(4,4'-(1,3_1)1"01^1(^ 1)(1^^ 3^1^ ) 1.89g 및 DA-4 2.29g을 NMP 131.00g에 먼저 녹인 후, DMCBDA 5.43g를 첨가하는 것을 제외하고, 실시예 1과 동일한 방법을 사용하여 중합체 P-5# 제조하였다. GPC를 통해 상기 P-5의 분자량을 확인한 결과, 수평균분자량 (Mn)이 19,500g/ii)l이고, 중량평균분자량 (Mw)이
36,000g/iM)l이었다. 그리고, 중합체 P— 5는 분자 내 이미드 구조의 비율은 29.8%, 아믹산 에스테르 구조의 비율이 11.9%, 아믹산 구조의 비율은 49.5%이었다. 합성예 6: 액정 배향제용 중합체 P-6의 제조
4,4'-옥시디아닐린(4,4'-0 3!^111 , ODA) 3.7g과 p- 페닐렌디아민 (p-phenylene diamine: PDA) 2.0g을 무수 N-메틸 피롤리돈 (anhydrous N-methyl pyrrol i done: NMP) l 4.5g에 완전히 녹였다. 그리고, ice bath 하에서 상기 흔합물에 1,3-디메틸-사이클로부탄-1,2,3,4- 테트라카복실산 디무수물 (DMCBDA) 8.13g올 첨가하여 16 시간 동안 상온에서 교반하여 100% 폴리아믹산 중합체 용액 PA-6을 제조하였다.
이렇게 제조된 PA-6 용액에 아세트산 무수물 (acetic anhydride) 7.4g과 피리딘 5.7g을 첨가한 후 50°C에서 3시간 교반하여 화학적 이미드화를 진행하였다. 그리고, 얻어진 생성물을 과량의 증류수에 투입하여 침전물을 생성시켰다. 이어서, 생성된 침전물을 여과하여 증류수로 2회 세척하고 다시 메탄올로 3회 세척하였다. 이렇게 얻어진 고체 생성물을 40°C의 감압 오븐에서 24시간 건조하여 액정 배향제용 중합체 P- 6을 얻었다. GPC를 통해 상기 P-6의 분자량을 확인한 결과, 수평균분자량 (Mn)이 14,500g/ra 이고, 중량평균분자량 (Mw)이
28,000g/iTK)l이었다.
한편, P-6의 조성은 다음과 같이 정량 분석되었다.
화학적 이미드화를 진행하기 전에 얻어진 PA-6 용액을 유리 기판에 코팅한 후 300 °C 오븐에서 2시간 열처리하여 이미드화를 진행하였다. 이러한 공정을 통해 얻어진 물질의 이미드화율을 100%로 정의하고, 이를 화학적 이미드화 공정을 통해 얻어진 P-6과 IR 분광기에서 나타나는 이미드의 C-N peakUSSOcnf1)를 비교함으로써 분석하였다. 구체적으로, 1520cm"1 대의 aromatic peak을 노말라이즈 (normal ize)를 위한 기준으로 정하고 PA-6과 P-6의 1380011-1 대에 나타나는 C-N peak의 크기 (I)을 적분하여 다음 식 1에 대입함으로써 이미드화율을 정량하였다.
[식 1]
이미드화율 ( >) = [(Il380,P-6 ᅳ Ιΐ520,Ρ-β)/ ( 11380 , ΡΑ-6Θ300 ~ 11520 , ΡΑ-6@300 ) ] *
100
상기 식 1에서 Ι1380,Ρ-6는 Ρ-6의 1380cm—1 대에 나타나는 ON peak의 크기이고, I 1520, Pᅳ 6의 1520cm—1 대에 나타나는 aromat i c peak의 크 7]이며, I i380, PA-6@300^ PA-6을 300 °C에서 열처리한 물질의 1380cm—1 대에 나타나는 C-N peak의 크기이고, I1520,PA-6@300는 PA— 6을 300°C에서 열처리한 물질의 1520cm"1 대에 나타나는 aromat i c peak의 크기이다.
상기와 같은 방법을 통해 P-6의 조성을 분석한 결과 아믹산 구조의 비율은 35%, 이미드 구조의 비율은 65%이었다. 합성예 7 : 액정 배향제용 중합체 Pᅳ 7의 제조
상기 합성예 6에서와 동일한 방법으로 PA— 6을 제조하고, 여기에 아세트산 무수물 13.0g, 피리딘 11.5g을 사용하였다.
그러나, 5시간 반웅 과정 중 반웅 용액이 겔화가 진행되었다. 겔화가 진행된 반웅물은. 과량의 증류수에서 교반하여 고형분을 얻어내고 얻어진 고형분을 과량의 증류수로 2회, 메탄올로 3회 세척한 후 40°C 감압 오븐에서 24시간 건조해 중합체 P-7를 제조하였다. 그러나, 제조된 P-7는 용해성이 떨어져 분자량은 측정할 수 없었으며, 합성예 6의 분석 방법을 통해 조성을 분석한 결과 이미드 구조의 비율은 75. OT, 아믹산 구조의 비율은 25. OT이었다. 합성예 8 : 액정 배향제용 중합체 P-8의 제조
상기 합성예 1에서 DA-3 lO . Og을 NMP 140.0g에 먼저 녹인 후, DMCBDA
5.52g을 첨가하는 것을 제외하고, 합성예 1과 동일한 방법을 사용하여 중합체 P-8를 제조하였다. GPC를 통해 상기 P-8의 분자량을 확인한 결과, 수평균분자량 (Mn)이 22 , 000g/mc)l이고, 중량평균분자량 (Mw)이
39 , 000g/m 이었다. 그리고, P— 8의 모노머 구조를 분석한 결과, 분자 내 이미드 구조의 비율은 50.5%, 아믹산 구조의 비율은 49.5%이었다. 합성예 9 : 액정 배향제용 중합체 P-9의 제조
상기 합성예 1에서 DA-2 2.0g, p-페닐렌디아민 (PDA) 5.2g를 NMP 170.0g에 먼저 녹인 후, 1, 3-디메틸-사이클로부탄 -1, 2 , 3, 4-테트라카복실산 디무수물 (DMCBDA) 11.68g를 첨가하는 것을 제외하고, 합성예 1과 동일한 방법을 사용하여 중합체 P-9를 제조하였다. GPC를 통해 상기 P— 9의 분자량을 확인한 결과, 수평균분자량 (Mn)이 16,000g/mol이고, 중량평균분자량 (Mw)이 28,000g/mol이었다. 그리고, P-9의 모노머 구조를 분석한 결과, 분자 내 이미드 구조의 비율은 9.3%, 아믹산 구조의 비율은 90.2%이었다.
「제 2 액정 배향제용 중합체의 제조]
합성예 10: 액정 배향제용 중합체 Q-1의 제조
상기 합성예 1에서 4, 4'-메틸렌 디아닐린 (4,4'— methylenedianiline) 5.00g과 4,4'-옥시디아닐린 (4,4'-oxydiani line) 5.05g을 NMP 221.4g에 먼저 녹인 후, 4,4'-비프탈산무수물 (4,4'— biphthalic anhydride) 14.55g을 첨가하는 것을 제외하고, 합성예 1과 동일한 방법을 사용하여 중합체 Q-1를 제조하였다. GPC를 통해 상기 ά-l의 분자량을 확인한 결과, 수평균분자량 (Mn)이 25,000g/½)l이고, 중량평균분자량 (Mw)이 40,000g/m 이었다. 합성예 11: 액정 배향제용 중합체 Q-2의 제조
상기 합성예 1에서 4,4'-(1,4-부탄디일)디옥시디아닐린(4,4'-(1,4- butanediyl )dioxydiani 1 ine) 7.0g과 4,4'-이미노디아닐린 (4,4'- iminodianiline) 2.19g을 NMP 178. lg에 먼저 녹인 후, 4,4'- 비프탈산무수물 (4,4'-biphthalic anhydride) 10.59g을 첨가하는 것을 제외하고, 합성예 1과 동일한 방법을 사용하여 중합체 Q-2를 제조하였다. GPC를 통해 상기 Q— 2의 분자량을 확인한 결과, 수평균분자량 (Mn)이 28,000g/riK)l이고, 중량평균분자량 (Mw)이 45, OOOg/ηωΙ이었다. 합성예 12: 액정 배향제용 증합체 Q-3의 제조
상기 합성예 1에서 4,4'-(1,3-프로필디일)디옥시디아닐린(4,4'— (1,3- propyldiyl )dioxydiani 1 ine) 10.0g을 匪 P 180.7g에 먼저 녹인 후, 피로멜리틱산 디무수물 (pyromellitic di anhydride, PMDA) 4.16g과 4,4'— 옥시디프탈산무수물 (4,4'-oxydiphthalic anhydride) 5.92g을 첨가하는 것을 제외하고, 합성예 1과 동일한 방법을 사용하여 중합체 Q-3를 제조하였다. GPC를 통해 상기 Q-3의 분자량을 확인한 결과, 수평균분자량 (Mn)이 26, 500g/nK)l이고, 중량평균분자량 (Mw)이 43 , OOOg/ηκ) 1이었다. 시험예: 액정 배향막의 특성 평가
<액정 배향제 및 액정셀의 제조 >
(1) 액정 배향제의 제조
실시예 1
상기 합성예 1에서 얻어진 중합체 P-1 l . Og과 상기 합성예 10에서 얻어진 중합체 Q-l l . Og을 NMP 30g과 n-부톡시에탄올 8g의 흔합용매에 녹여 5wt% 용액을 얻었다. 그리고, 얻어진 용액을 폴리 (테트라플루오렌에틸렌) 재질의 기공 사이즈가 0. 皿인 필터로 가압 여과하여 액정 배향제 A-1을 제조하였다. 실시예 2
상기 합성예 1에서 얻어진 중합체 P-1 l . Og과 상기 합성예 11에서 얻어진 중합체 Q-2 l . Og을 NMP 30g과 n_부특시에탄올 8g의 흔합용매에 녹여 5wt 용액을 얻었다. 그리고, 얻어진 용액을 폴리 (테트라플루오렌에틸렌) 재질의 기공 사이즈가 0.2/Λη인 필터로 가압 여과하여 액정 배향제 A-2을 제조하였다. 실시예 3
상기 합성예 2에서 얻어진 중합체 P-2 l . Og과 상기 합성예 11에서 얻어진 중합체 Q-2 l .Og을 NMP 30g과 n-부특시에탄올 8g의 흔합용매에 녹여 5wt% 용액을 얻었다. 그리고, 얻어진 용액을 폴리 (테트라플루오렌에틸렌) 재질의 기공 사이즈가 0.2 m인 필터로 가압 여과하여 액정 배향제 A-3을 제조하였다. 실시예 4
상기 합성예 3에서 얻어진 중합체 P-3 1.2g과 상기 합성예 10에서 얻어진 중합체 Q-1 0.8g을 NMP 30g과 n-부록시에탄올 8g의 흔합용매에 녹여 5wt% 용액을 얻었다. 그리고, 얻어진 용액을 폴리 (테트라플루오렌에틸렌) 재질의 기공 사이즈가 인 필터로 가압 여과하여 액정 배향제 A-4을 제조하였다. 실시예 5
상기 합성예 4에서 얻어진 중합체 P-4 1.4g과 상기 합성예 12에서 얻어진 중합체 Q-3 0.6g을 NMP 30g과 n-부록시에탄올 8g의 흔합용매에 녹여 5wt% 용액을 얻었다. 그리고, 얻어진 용액을 폴리 (테트라플루오렌에틸렌) 재질의 기공 사이즈가 0.2/皿인 필터로 가압 여과하여 액정 배향제 A-5을 제조하였다. 실시예 6
상기 합성예 5에서 얻어진 중합체 P-5 " 1.0g과 상기 합성예 12에서 얻어진 중합체 Qᅳ 3 l . Og을 NMP 30g과 n-부톡시에탄올 8g의 흔합용매에 녹여 5wt% 용액을 얻었다. 그리고, 얻어진 용액을 폴리 (테트라플루오렌에틸렌) 재질의 기공 사이즈가 0.2 인 필터로 가압 여과하여 액정 배향제 A-6을 제조하였다. 실시^ 1 7
상기 합성예 6에서 얻어진 중합체 P-6 0.4g과 상기 합성예 11에서 얻어진 중합체 Q-2 1.6g을 NMP 30g과 n-부록시에탄을 8g의 흔합용매에 녹여 5wt% 용액을 얻었다. 그리고, 얻어진 용액을 폴리 (테트라플루오렌에틸렌) 재질의 기공 사이즈가 0.2 인 필터로 가압 여과하여 액정 배향제 A-7을 제조하였다. 비교예 1
상기 합성예 8에서 얻어진 증합체 P-8 l . Og과 상기 합성예 10에서 얻어진 중합체 Q-1 l . Og을 NMP 30g과 n-부록시에탄올 8g의 흔합용매에 녹여 5wt% 용액을 얻었다. 그리고, 얻어진 용액을 폴리 (테트라플루오렌에틸렌) 재질의 기공 사이즈가 0.2/皿인 필터로 가압 여과하여 액정 배향제 B-1을 제조하였다. 비교예 2
상기 합성예 2에서 얻어진 중합체 P-2 2.0g만을 NMP 30g과 n- 부특시에탄올 8g의 흔합용매에 녹여 5wt% 용액을 얻었다. 그리고, 얻어진 용액을 폴리 (테트라플루오렌에틸렌) 재질의 기공 사이즈가 0.2 인 필터로 가압 여과하여 액정 배향제 B-2을 제조하였다. 비교예 3
상기 합성예 10에서 얻어진 중합체 Q-l 2.0g만을 NMP 30g과 n- 부록시에탄올 8g의 흔합용매에 녹여 5wt% 용액을 얻었다. 그리고, 얻어진 용액을 폴리 (테트라플루오렌에틸렌) 재질의 기공 사이즈가 0.2 인 필터로 가압 여과하여 액정 배향제 B-3을 제조하였다. 참고예 1
상기 합성예 7에서 얻어진 중합체 P-7 l . Og과 상기 합성예 10에서 얻어진 중합체 Q-l l .Og을 NMP 30g과 n-부특시에탄을 8g의 흔합용매에 녹이려 하였으나, P-7이 녹지 않아 완전 용해된 배향제를 얻을 수 없었다. 참고예 2
상기 합성예 2에서 얻어진 중합체 P-2 1.8g과 상기 합성예 12에서 얻어진 증합체 Q-3 0.2g을 NMP 30g과 n-부록시에탄을 8g의 흔합용매에 녹여 5wt% 용액을 얻었다. 그리고, 얻어진 용액을 폴리 (테트라플루오렌에틸렌) 재질의 기공 사이즈가 0.2 인 필터로 가압 여과하여 액정 배향제 C-2을 제조하였다. 참고예 3
상기 합성예 1에서 얻어진 중합체 P-1 0.2g과 상기 합성예 11에서 얻어진 중합체 Q-2 1.8g을 NMP 30g과 n-부록시에탄올 8g의 흔합용매에 녹여 5wt 용액을 얻었다. 그리고, 얻어진 용액을 폴리 (테트라플루오렌에틸렌) 재질의 기공 사이즈가 0.2/im인 필터로 가압 여과하여 액정 배향제 C-3을 제조하였다. 참고예 4
상기 합성예 9에서 얻어진 중합체 P-9 l . Og과 상기 합성예 12에서 얻어진 중합체 Q-3 l . Og을 NMP 30g과 n-부록시에탄을 8g의 흔합용매에 녹여 5wt% 용액을 얻었다. 그리고, 얻어진 용액을 폴리 (테트라플루오렌에틸렌) 재질의 기공 사이즈가 0.2 m인 필터로 가압 여과하여 액정 배향제 C-4을 제조하였다.
(2) 액정샐의 제조
상기 실시예 1 내지 7, 비교예 1 내지 3, 참고예 1 내지 4에 따라 액정 배향제를 이용하여 하기와 같은 방법으로 액정셀을 제조하였다.
2.5cm X 2.7cm의 크기를 갖는 사각형 유리기판 상에 두께 60nm, 전극 폭 그리고 전극 간 간격이 6//m인 빗살 모양의 IPS ( in-pl ane swi tching) 모드형 IT0 전극 패턴이 형성되어 있는 기판 (하판)과 전극 패턴이 없는 유리 기판 (상판)에 각각 스핀 코팅 방식을 이용하여 액정 배향제를 도포하였다.
이어서, 액정 배향제가 도포된 기판을 약 70°C의 핫플레이트 위에 두어 3분간 건조하여 용매를 증발 시켰다. 이렇게 얻어진 도막을 배향처리하기 위해, 상 /하판 각각의 도막에 선 편광자가 부착된 노광기를 이용하여 254nm의 자외선을 l . OJ/ciif 의 노광량으로 조사하였다.
이후, 배향 처리된 상 /하판을 약 230°C의 오븐에서 30분간 소성 (경화)하여 막 두께 0. 1 의 도막을 얻었다. 이후, 3 크기의 볼 스페이서가 함침된 실링제 (seal ing agent )를 액정 주입구를 제외한 상판의 가장자리에 도포하였다. 그리고, 상판 및 하판에 형성된 배향막이 서로 마주 보며 배향 방향이 서로 나란하도록 정열시킨 후, 상하판을 합착하고 실링제를 경화함으로써 빈 샐을 제조하였다. 그리고, 상기 빈 샐에 액정을 주입하여 IPS 모드의 액정샐을 제조하였다. <액정 배향막의 특성 평가 >
(1) 액정 배향 특성 평가
상기와 같이 제조된 액정셀의 상판 및 하판에 편광판을 서로 수직이 되도록 부착하였다. 이때 하판에 부착된 편광판의 편광축은 액정셀의 배향축과 평행하도록 하였다. 그리고, 편광판이 부착된 액정셀을 밝기 7,000cd/m2 의 백라이트 위에 놓고 육안으로 빛샘을 관찰하였다. 이때, 액정 배향막의 배향 특성이 우수해 액정을 잘 배열시킨다면 서로 수직으로 부착된 상, 하의 평광판에 의해 빛이 통과되지 않고 불량 없이 어둡게 관찰이 된다. 이러한 경우의 배향 특성을 '양호 '로, 액정 흐름 자국이나 휘점과 같은 빛샘이 관찰되면 '불량 '으로 표 1에 표시하였다.
(2) 액정 배향 안정성 평가
상기 (1) 액정 배향 특성 평가를 위해 제조한 편광판이 부탁된 액정샐을 이용하여 액정 배향 안정성을 평가하였다.
구체적으로, 상기 편광판이 부탁된 액정셀을 7,000cd/m2의 백라이트 위에 부착하고 블랙 상태의 휘도를 휘도 밝기 측정 장비인 PR-880 장비를 이용해 측정하였다. 그리고, 상기 액정셀을 상온에서 교류전압 5V로 24시간 구동하였다. 이후, 액정셀의 전압을 끈 상태에서 상술한 바와 동일하게 블랙 상태의 휘도를 측정하였다.
액정샐의 구동 전 측정된 초기 휘도 (L0)와 구동 후 측정된 나중 휘도 (L1) 간의 차이를 초기 휘도 (L0)값으로 나누고 100을 곱하여 휘도 변동율을 계산하였다. 이렇게 계산된 휘도 변동율은 0%에 가까울수록 배향 안정성이 우수함을 의미한다. 휘도 변동율이 10% 미만이면 '우수', 10% 이상 2 미만이면 '보통', 20% 이상이면 '불량 '으로 표 1에 표시하였다.
(3) 전압유지 보전율 (Voltage Holding Ratio, VHR) 평가
상기 실시예 1 내지 7, 비교예 1 내지 3, 참고예 1 내지 4에서 제조한 액정 배향제를 이용하여 하기와 같은 방법으로 전압유지 보전율용 액정샐을 제조하였다. 2.5cm X 2.7cm의 크기를 갖는 사각형 유리기판 상에 두께 60nm, 면적 , lxl cm의 ITO 전극이 패턴된 전압유지비율 (VHR)용 상, 하 기판 각각에 스핀 코팅 방식을 이용하여 액정 배향제를 도포하였다.
이어서, 액정 배향제가 도포된 기판을 약 70°C의 핫플레이트 위에 두어 3분간 건조하여 용매를 증발시켰다. 이렇게 얻어진 도막을 배향처리하기 위해 상, 하판의 각각의 도막에 선평광자가 부착된 노광기를 이용하여 254nm의 자외선을 U/ciif 노광량으로 조사하였다. 이후 배향 처리된 상, 하 기판을 230 °C의 오븐에서 30분간 소성 경화하여 막두께 0. 1 의 도막을 얻었다. 이후 4.5 의 볼 스페이서가 함침된 실링제를 액정 주입구를 제외한 상, 하판 가장자리에 도포하였다. 그리고, 상판 및 하판에 배향처리 방향이 마주보며 나란하도록 정렬시킨 후 상, 하판을 합착하고 실링제를 UV 및 열 경화함으로서 빈 셀을 제조하였다. 그리고, 상기 빈 셀에 액정을 주입하고 주입구를 실링제로 밀봉하여 액정셀을 제조하였다. 상기와 같은 방법으로 제조된 액정셀의 전기적 특성인 전압 유지 보전율 (VHR)을 TOY0 6254 장비를 이용하여 측정하였다. 전압 유지 보전율은 5V, 60Hz , 60°C의 가혹 조건에서 측정되었다. 전압 유지 보전율은 100%가 이상적인 값이며, 측정 결과, 85% 이상이면 '양호', 85% 미만이면 '불량 '으로 표 1에 평가하였다.
【표 11
Figure imgf000029_0001
Figure imgf000030_0001
' 상기 표 1에 나타난 바와 같이, 본 발명의 제 1 액정 배향제용 중합체와 제 2 액정 배향제용 중합체를 모두 포함하는 액정 배향제 조성물을 이용한 실시예 1 내지 7의 액정 배향막은 액정 배향 특성과, 안정성 및 전압유지 보전율 모두 양호한 결과를 나타내었지만, 제 1 액정 배향제용 중합체 및 제 2 액정 배향제용 중합체 중 1종 만을 사용하거나, 제 1 액정 배향제용 중합체와 상이한 형태의 중합체를 사용한 경우인 비교예 1 내지 3의 액정 배향막은 상기 평가 항목들 중 일부 또는 전부에서 불량한 결과를 나타내었다.

Claims

【청구범위】 【청구항 1】 하기 화학식 2로 표시되는 반복 단위 및 하기 화학식 3으로 표시되는 반복 단위로 이루어진 군에서 선택된 1종 이상의 반복 단위와 하기 화학식 1로 표시되는 반복 단위를 포함하는 제 1 액정 배향제용 중합체, 및 하기 화학식 4로 표시되는 반복 단위를 포함하는 제 2 액정 배향제용 중합체를 포함하는 액정 배향제
[화학식 1]
Figure imgf000031_0001
[화학식 2]
Figure imgf000031_0002
[화학식 3]
Figure imgf000031_0003
Figure imgf000031_0004
상기 화학식 1 내지 4에서,
R1 및 R2는 각각 독립적으로 수소 탄소수 1 내지 10의 알킬기이되, R1 및 R2가모두수소이지 않고, R3 및 R4는 각각 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기이고, ' X1은 하기 화학식 5로 표시되는 4가의 유기기이고,
[화학식 5]
Figure imgf000032_0001
상기 R5 내지 R8은 각각 독립적으로 수소 또는 탄소수 1 내지 6의 알킬기이고,
X2 내지 X4은 각각 독립적으로 탄소수 4 내지 20의 탄화수소에서 유래한 4가의 유기기이거나, 혹은 상기 4가의 유기기 중 하나 이상의 H가 할로겐으로 치환되거나 또는 하나 이상의 -CH2-가 산소 또는 황 원자들이 직접 연결되지 않도록 -0-, -CO- , -S- , -SO- , -S02- 또는 -C0NH-로 대체된 4가의 유기기이고,
Y1 내지 Y4은 각각 독립적으로 2가의 유기기이다. 【청구항 2】
제 1항에 있어서,
상기 γ1 내지 γ4은 각각 독립적으로 하기 화학식 6으로 표시되는 2가의 유기기인 액정 배향제 조성물:
6]
Figure imgf000032_0002
상기 화학식 6에서,
R9 및 R10는 각각 독립적으로 할로겐, 시아노기, 탄소수 1 내지 3의 알킬기, 탄소수 2 내지 3의 알케닐기, 탄소수 1 내지 3의 알콕시기, 탄소수 1 내지 3의 플루오로알킬기 또는 탄소수 1 내지 3의 플루오로알콕시기이며, p 및 q는 각각 독립적으로 0 내지 4 사이의 정수이고,
1 은 단일결합, -0-, -CO-, -S-, -S02-, -C(CH3)2-, -C(CF3)2-, -C0NH-, -COO—, -(CH2)Z-, -0(CH2)z0-( -0(C¾)Z -, -NH-, -NH(CH2)Z-NH_, -NH(CH2)z0-, -0CH2-C(CH3)2-CH20-, -C00-(CH2)z-0C0- 또는 -0C0-(CH2)z-C0()-이며,
상기 z는 1 내지 10 사이의 정수이고,
k 및 m은 각각 독립적으로 1 내지 3사이의 정수이고,
n은 0 내지 3 사이의 정수이다.
【청구항 3】
제 1항에 있어서,
상기 X2 내지 X4은 각각 독립적으로 하기 화학식 7에 기재된 4가의 유기기인 액정 배향제 조성물:
[화학식 7]
Figure imgf000033_0001
상기 화학식 7에서,
R5 내지 R8은 각각 독립적으로 수소 또는 탓소수 1 내지 6의 알킬기이고,
L2는 단일결합, -0-, -CO-, -S-, -SO-, -S02-, -CRnR12-, -C0NH-, - C00-, -(CH2)Z-, -0(CH2)z0-, -C00-(CH2)z-0C0-, 페닐렌 또는 이들의 조합으로 이루어진 군에서 선택된 어느 하나이며,
상기에서 R11 '및 R12는 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기 또는 플루오로알킬기이고, z는 1 내지 10 사이의 정수이다.
【청구항 4】
제 1항에 있어서,
상기 제 1 액정 배향제용 중합체는 상기 화학식 1 내지 3으로 표시되는 전체 반복 단위에 대하여 하기 화학식 1로 표시되는 반복 단위를 10 몰¾> 내지 74 몰%포함하는 액정 배향제 조성물.
[청구항 5】
거 U항에 있어서,
제 1 액정 배향제용 중합체와 제 2 액정 배향제용 중합체는 15 : 85 내지 85 : 15의 중량비로 흔합되는, 액정 배향제 조성물.
【청구항 6】
제 1항의 액정 배향제 조성물을 기판에 도포하여 도막을 형성하는 단계;
상기 도막을 건조하는 단계 ;
상기 건조 단계 직후의 도막에 광을 조사하여 배향 처리하는 단계; 및
상기 배향 처리된 도막을 열처리하여 경화하는 단계;를 포함하는 액정 배향막의 제조 방법 .
【청구항 7]
제 6항에 있어서,
상기 액정 배향제 조성물은 제 1 액정 배향제용 중합체 및 제 2 액정 배향제용 중합체를 유기 용매에 용해 또는 분산시킨 것인 액정 배향막의 제조방법 .
【청구항 8】
제 6항에 있어서,
상기 도막을 건조하는 단계는 50 °C 내지 150 °C에서 수행되는 액정 배향막의 제조 방법 .
【청구항 9]
거 16항에 있어서,
상기 배향 처리하는 단계에서 광 조사는 150 ran 내지 450 ran 파장의 편광된 자외선을 조사하는 것인 액정 배향막의 제조 방법.
【청구항 10】
게 6항에 있어서,
상기 도막을 경화하는 단계에서 열처리 온도는 150 °C 내지 300 °C인 것을 특징으로 하는 액정 배향막의 제조 방법 .
【청구항 111
제 6항 내지 제 10항 중 어느 한 항에 따라 제조된 액정 배향막. 【청구항 12】
제 11항의 액정 배향막을 포함하는 액정 표시소자.
PCT/KR2017/004301 2016-05-13 2017-04-21 액정 배향제 조성물, 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자 WO2017196001A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/765,434 US11347110B2 (en) 2016-05-13 2017-04-21 Composition for liquid crystal alignment agent, manufacturing method of liquid crystal alignment film, liquid crystal alignment film using the same and liquid crystal display device
CN201780003594.3A CN108138051B (zh) 2016-05-13 2017-04-21 用于液晶取向剂的组合物、液晶取向膜的制造方法、使用其的液晶取向膜和液晶显示装置
JP2018519849A JP6790336B2 (ja) 2016-05-13 2017-04-21 液晶配向剤組成物、液晶配向膜の製造方法、これを用いた液晶配向膜および液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160058934A KR101856725B1 (ko) 2016-05-13 2016-05-13 액정 배향제 조성물, 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자
KR10-2016-0058934 2016-05-13

Publications (2)

Publication Number Publication Date
WO2017196001A1 true WO2017196001A1 (ko) 2017-11-16
WO2017196001A8 WO2017196001A8 (ko) 2017-12-14

Family

ID=60267320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004301 WO2017196001A1 (ko) 2016-05-13 2017-04-21 액정 배향제 조성물, 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자

Country Status (6)

Country Link
US (1) US11347110B2 (ko)
JP (1) JP6790336B2 (ko)
KR (1) KR101856725B1 (ko)
CN (1) CN108138051B (ko)
TW (1) TWI643886B (ko)
WO (1) WO2017196001A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044795A1 (ja) * 2017-08-29 2019-03-07 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
US20210040390A1 (en) * 2018-11-20 2021-02-11 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
US20210139782A1 (en) * 2019-01-17 2021-05-13 Lg Chem, Ltd. Liquid crystal alignment agent composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
US11512255B2 (en) 2018-11-20 2022-11-29 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
US11561438B2 (en) 2019-01-21 2023-01-24 Lg Chem, Ltd. Liquid crystal alignment agent composition, and liquid crystal alignment film, and liquid crystal display using the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856725B1 (ko) * 2016-05-13 2018-05-10 주식회사 엘지화학 액정 배향제 조성물, 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자
CN108885375B (zh) 2016-11-28 2021-05-18 株式会社Lg化学 液晶取向膜、用于制备其的方法和使用其的液晶显示装置
KR102065718B1 (ko) 2017-10-17 2020-02-11 주식회사 엘지화학 액정 배향막 및 이를 이용한 액정표시소자
KR102195312B1 (ko) * 2017-10-20 2020-12-24 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 및 이를 이용한 액정 배향막
KR102220974B1 (ko) 2018-01-10 2021-02-26 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 및 이를 이용한 액정 배향막 및 액정표시소자
WO2019139332A1 (ko) * 2018-01-10 2019-07-18 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 및 이를 이용한 액정 배향막 및 액정표시소자
KR102202056B1 (ko) 2018-02-21 2021-01-11 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 및 이를 이용한 액정 배향막
KR102258620B1 (ko) * 2018-11-20 2021-05-28 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
KR102263639B1 (ko) * 2018-11-20 2021-06-09 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
KR102264794B1 (ko) * 2018-11-20 2021-06-11 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
KR102264793B1 (ko) * 2018-11-20 2021-06-11 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
KR102258622B1 (ko) * 2018-11-20 2021-05-28 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
KR102258618B1 (ko) * 2018-11-20 2021-05-28 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
KR102258621B1 (ko) * 2018-11-20 2021-05-28 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
KR102263638B1 (ko) * 2018-11-20 2021-06-09 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
CN113504598A (zh) * 2021-07-16 2021-10-15 西北工业大学 一种基于一次性曝光的液晶薄膜消偏器及其制备方法
CN114058384A (zh) * 2021-11-26 2022-02-18 深圳市道尔顿电子材料有限公司 一种聚酰亚胺光取向剂溶液及其制备方法和光取向膜、液晶盒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046229A (ko) * 2002-11-26 2004-06-05 한국화학연구원 감광성 투명 폴리아믹산 유도체와 폴리이미드계 수지
US20100243955A1 (en) * 2009-03-31 2010-09-30 Daxin Materials Corporation Liquid crystal alignment solution
KR20140032883A (ko) * 2012-09-07 2014-03-17 주식회사 엘지화학 광배향성 폴리이미드계 공중합체 및 액정 배향막
KR20150001826A (ko) * 2012-04-18 2015-01-06 닛산 가가쿠 고교 가부시키 가이샤 광 배향법용의 액정 배향제, 액정 배향막 및 액정 표시 소자
KR20150037576A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 광배향성 중합체, 이를 포함하는 액정 배향막 및 이의 형성 방법

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340715A (en) * 1981-05-26 1982-07-20 Lord Corporation Epoxy resin compositions cured with imide-amines
JP3612832B2 (ja) 1995-12-28 2005-01-19 Jsr株式会社 イミド基含有ポリアミック酸の製造方法並びに液晶配向剤
JP4029452B2 (ja) 1997-12-29 2008-01-09 チッソ株式会社 ポリアミド酸組成物、液晶配向膜及び液晶表示素子
US20100060834A1 (en) 2007-01-09 2010-03-11 Xing-Zhong Fang Copolyimide, liquid crystal aligning layer comprising the same , and liquid crystal display comprising the same
JP5370631B2 (ja) 2007-02-05 2013-12-18 Jsr株式会社 液晶配向剤、液晶配向膜および液晶表示素子
JP5454754B2 (ja) 2007-07-23 2014-03-26 Jsr株式会社 液晶配向剤、液晶配向膜および液晶表示素子
CN101373296B (zh) * 2007-08-24 2012-07-04 株式会社日立显示器 液晶显示装置及其制造方法
TWI367233B (en) * 2008-02-01 2012-07-01 Liquid crystal alignment solution
KR20110054842A (ko) 2009-11-18 2011-05-25 제일모직주식회사 액정 광배향제, 이를 이용하여 제조한 액정 광배향막 및 상기 액정 광배향막을 포함하는 액정표시소자
WO2011136371A1 (ja) 2010-04-30 2011-11-03 日産化学工業株式会社 液晶配向剤、それを用いた液晶配向膜及び液晶表示素子
US20120172541A1 (en) 2010-12-30 2012-07-05 Cheil Industries Inc. Liquid Crystal Alignment Agent, Liquid Crystal Alignment Film Manufactured Using the Same, and Liquid Crystal Display Device Including the Liquid Crystal Alignment Film
TWI452088B (zh) 2011-04-14 2014-09-11 Daxin Materials Corp 液晶配向劑
CN103959151B (zh) 2011-09-30 2016-08-31 日产化学工业株式会社 液晶取向处理剂、液晶取向膜及液晶显示元件
TWI591097B (zh) * 2011-10-25 2017-07-11 達興材料股份有限公司 液晶配向劑
JP5939614B2 (ja) 2012-02-01 2016-06-22 株式会社ジャパンディスプレイ 配向膜およびそれを用いた液晶表示装置
KR102058764B1 (ko) 2012-03-30 2019-12-23 닛산 가가쿠 가부시키가이샤 폴리이미드계의 액정 배향 처리제, 액정 배향막, 및 액정 표시 소자
CN103589438B (zh) * 2012-08-15 2015-11-18 达兴材料股份有限公司 液晶配向剂、液晶配向膜及其液晶显示组件
US9791745B2 (en) 2012-09-07 2017-10-17 Lg Chem, Ltd. Photoalignment polyimide copolymer and liquid crystal alignment layer
CN102981314B (zh) 2012-12-18 2016-09-07 福建华映显示科技有限公司 配向膜的制作方法
WO2014157143A1 (ja) 2013-03-25 2014-10-02 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP5537698B2 (ja) 2013-04-25 2014-07-02 株式会社ジャパンディスプレイ 液晶配向膜材料
TWI487731B (zh) * 2013-09-04 2015-06-11 Daxin Materials Corp 液晶配向劑、液晶配向膜及液晶顯示元件
JP6372200B2 (ja) 2013-10-07 2018-08-15 Jsr株式会社 液晶配向膜の製造方法、光配向剤及び液晶表示素子
JP6582988B2 (ja) * 2013-10-23 2019-10-02 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶配向素子
JP6314488B2 (ja) 2014-01-17 2018-04-25 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム及び位相差フィルムの製造方法
JP6519583B2 (ja) 2014-04-03 2019-05-29 日産化学株式会社 ポリアミック酸エステル−ポリアミック酸共重合体を含有する液晶配向剤、及びそれを用いた液晶配向膜
JP6350045B2 (ja) 2014-07-07 2018-07-04 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP6492509B2 (ja) 2014-07-28 2019-04-03 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法
KR101879834B1 (ko) 2015-11-11 2018-07-18 주식회사 엘지화학 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자
KR101856725B1 (ko) * 2016-05-13 2018-05-10 주식회사 엘지화학 액정 배향제 조성물, 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046229A (ko) * 2002-11-26 2004-06-05 한국화학연구원 감광성 투명 폴리아믹산 유도체와 폴리이미드계 수지
US20100243955A1 (en) * 2009-03-31 2010-09-30 Daxin Materials Corporation Liquid crystal alignment solution
KR20150001826A (ko) * 2012-04-18 2015-01-06 닛산 가가쿠 고교 가부시키 가이샤 광 배향법용의 액정 배향제, 액정 배향막 및 액정 표시 소자
KR20140032883A (ko) * 2012-09-07 2014-03-17 주식회사 엘지화학 광배향성 폴리이미드계 공중합체 및 액정 배향막
KR20150037576A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 광배향성 중합체, 이를 포함하는 액정 배향막 및 이의 형성 방법

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044795A1 (ja) * 2017-08-29 2019-03-07 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JPWO2019044795A1 (ja) * 2017-08-29 2020-10-15 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP7196847B2 (ja) 2017-08-29 2022-12-27 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
US20210040390A1 (en) * 2018-11-20 2021-02-11 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
JP2021517272A (ja) * 2018-11-20 2021-07-15 エルジー・ケム・リミテッド 液晶配向剤組成物、それを用いた液晶配向膜の製造方法、それを用いた液晶配向膜および液晶表示素子
JP7102541B2 (ja) 2018-11-20 2022-07-19 エルジー・ケム・リミテッド 液晶配向剤組成物、それを用いた液晶配向膜の製造方法、それを用いた液晶配向膜および液晶表示素子
US11512255B2 (en) 2018-11-20 2022-11-29 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
US11667844B2 (en) 2018-11-20 2023-06-06 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
US20210139782A1 (en) * 2019-01-17 2021-05-13 Lg Chem, Ltd. Liquid crystal alignment agent composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
US11667843B2 (en) * 2019-01-17 2023-06-06 Lg Chem, Ltd. Liquid crystal alignment agent composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
US11561438B2 (en) 2019-01-21 2023-01-24 Lg Chem, Ltd. Liquid crystal alignment agent composition, and liquid crystal alignment film, and liquid crystal display using the same

Also Published As

Publication number Publication date
US20180298284A1 (en) 2018-10-18
KR20170127966A (ko) 2017-11-22
JP6790336B2 (ja) 2020-11-25
TW201739792A (zh) 2017-11-16
KR101856725B1 (ko) 2018-05-10
WO2017196001A8 (ko) 2017-12-14
JP2018538563A (ja) 2018-12-27
CN108138051A (zh) 2018-06-08
CN108138051B (zh) 2021-08-20
TWI643886B (zh) 2018-12-11
US11347110B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2017196001A1 (ko) 액정 배향제 조성물, 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자
CN107922647B (zh) 制造液晶取向层的方法、通过使用其制造的液晶取向层和液晶显示装置
CN108291149B (zh) 液晶取向组合物、用于使用其制备液晶取向膜的方法和使用其的液晶取向膜
WO2018034409A1 (ko) 액정 배향막의 제조 방법
TWI616473B (zh) 液晶配向劑用聚合物及其製備方法、液晶配向劑、液晶配向膜與液晶顯示裝置
WO2017043822A1 (ko) 액정 배향제용 중합제
CN109791334B (zh) 液晶取向剂组合物、使用其制备液晶取向膜的方法和使用其的液晶取向膜
WO2017082579A1 (ko) 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자
CN110168053B (zh) 液晶取向剂组合物、使用其制造液晶取向膜的方法和使用其的液晶取向膜
US11230670B2 (en) Liquid crystal aligning agent composition, method for producing liquid crystal alignment film using same, and liquid crystal alignment film using same
JP7102536B2 (ja) 液晶配向剤組成物、これを用いた液晶配向膜の製造方法、これを用いた液晶配向膜および液晶表示素子
JP6776498B2 (ja) 液晶配向膜、その製造方法およびこれを用いた液晶表示素子
JP6972489B2 (ja) 液晶配向剤組成物、これを用いた液晶配向膜の製造方法、およびこれを用いた液晶配向膜
JP2021517272A (ja) 液晶配向剤組成物、それを用いた液晶配向膜の製造方法、それを用いた液晶配向膜および液晶表示素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15765434

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018519849

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796301

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796301

Country of ref document: EP

Kind code of ref document: A1