WO2017082579A1 - 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자 - Google Patents

액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자 Download PDF

Info

Publication number
WO2017082579A1
WO2017082579A1 PCT/KR2016/012531 KR2016012531W WO2017082579A1 WO 2017082579 A1 WO2017082579 A1 WO 2017082579A1 KR 2016012531 W KR2016012531 W KR 2016012531W WO 2017082579 A1 WO2017082579 A1 WO 2017082579A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
carbon atoms
crystal alignment
Prior art date
Application number
PCT/KR2016/012531
Other languages
English (en)
French (fr)
Inventor
조정호
박항아
권순호
한희
윤준영
윤형석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160142888A external-priority patent/KR101879834B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018510080A priority Critical patent/JP6609875B2/ja
Priority to US15/751,737 priority patent/US10696901B2/en
Priority to EP16864505.9A priority patent/EP3315544B1/en
Priority to CN201680048836.6A priority patent/CN107922647B/zh
Publication of WO2017082579A1 publication Critical patent/WO2017082579A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a method for producing a liquid crystal alignment film having enhanced orientation and stability, a liquid crystal alignment film and a liquid crystal display device using the same. [Technique to become background of invention]
  • the liquid crystal alignment film plays a role of orienting the liquid crystal in a constant direction.
  • the liquid crystal alignment layer serves as a director in the arrangement of the liquid crystal molecules, so that the liquid crystal is moved by an electric field to form an image when the liquid crystal is moved to form an image.
  • it is essential to orient the liquid crystal uniformly.
  • a rubbing method is used in which a polymer film such as polyimide is applied to a substrate such as glass, and the surface is rubbed in a predetermined direction using fibers such as nylon or polyester.
  • the rubbing method may generate fine dust or electrostatic charge (ESD) when the fiber and the polymer film are rubbed, which may cause serious problems in manufacturing the liquid crystal panel.
  • ESD electrostatic charge
  • a photo-alignment method of inducing anisotropy (anisotropy, ani sotropy) to a polymer film by light irradiation instead of friction and arranging liquid crystals using the same has been studied.
  • polyimide is mainly used for good overall performance of the liquid crystal alignment layer.
  • polyimide is generally difficult to be directly applied to a manufacturing process in which solvent solubility is poorly coated in a solution state to form an alignment layer. Accordingly, after coating in the form of a precursor such as polyamic acid or polyamic acid ester having excellent solubility, polyimide is formed through a high temperature heat treatment process and subjected to light irradiation to perform alignment treatment.
  • the present invention is to provide a method for producing a liquid crystal alignment film having enhanced orientation and stability.
  • the present invention also provides a liquid crystal display device comprising the liquid crystal alignment film and the liquid crystal alignment film produced according to the method for producing the liquid crystal alignment film.
  • the present invention includes two or more repeating units selected from the group consisting of a repeating unit represented by the following formula (1), a repeating unit represented by the following formula (2) and a repeating unit represented by the following formula (3),
  • a coating film by coating a liquid crystal aligning agent including a polymerizing agent for a liquid crystal aligning agent comprising a repeating unit represented by the following Chemical Formula 1 with respect to all the repeating units represented by 3 to 5 to 74 mol3 ⁇ 4; Drying the coating film;
  • Irradiating the coating film immediately after the drying step with an alignment treatment provides a method for producing a liquid crystal alignment film, including the step of curing the alignment-treated coating film by heat treatment:
  • R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms, and R 1 and R 2 are not all hydrogen,
  • X 1 is a tetravalent organic group represented by the following formula (4),
  • R 3 to R 6 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms
  • X 2 and X 3 are each independently a tetravalent organic group derived from a hydrocarbon having 4 to 20 carbon atoms, at least one H of the tetravalent organic groups is substituted with halogen, or at least one -c3 ⁇ 4-valent oxygen or sulfur atom Is a tetravalent organic group substituted with -0-, -CO-, -S-, -SO-, -S0 2 -or -C0NH- so that they are not directly connected,
  • Y 1 to Y 3 are each independently a divalent organic group represented by the following formula (5),
  • R 7 and R 8 are each independently halogen, cyano group, alkyl group of 1 to 10 carbon atoms, alkenyl group of 2 to 10 carbon atoms, alkoxy group of 1 to 10 carbon atoms, fluoroalkyl group of 1 to 10 carbon atoms, or 1 to 10 carbon atoms Is a fluoroalkoxy group,
  • p and q are each independently an integer between 0 and 4,
  • L 1 is a single bond, — 0-, -CO-, -S-, -S0 2- , -C (C3 ⁇ 4) 2- , -C (CF 3 ) 2- , -C0NH-, -C00-,-( CH 2 ) Z- , -0 (CH 2 ) z 0-, -0 (CH 2 ) z- , -0CH 2 -C (CH 3 ) 2 -C3 ⁇ 4, — C00- (c3 ⁇ 4) z -oco- or -oco- (c3 ⁇ 4) z -coo-,
  • Z is an integer between 1 and 10
  • the present invention also includes two or more repeating units selected from the group consisting of a repeating unit represented by the following formula (1), a repeating unit represented by the following formula (2) and a repeating unit represented by the following formula (3), Forming a coating film by applying a liquid crystal aligning agent comprising a polymer for liquid crystal aligning agent containing 5 to 74 mol% of the repeating unit represented by the following Chemical Formula 1 to all the repeating units represented by Formula 3 to a substrate;
  • Irradiating the coating film immediately after the drying step to perform alignment treatment provides a method for producing a liquid crystal alignment film comprising a; by curing by the alignment heat treatment
  • R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms, and R 1 and R 2 are not all hydrogen,
  • X 1 is a tetravalent organic group
  • X 2 and X 3 are each independently a tetravalent organic group derived from a hydrocarbon having 4 to 20 carbon atoms, at least one H of the tetravalent organic groups is substituted with halogen, or at least one -C3 ⁇ 4-valent oxygen or sulfur atom Enter Is a tetravalent organic group substituted with -0- -CO-, -S-, -SO-, -S0 2 -or -C0NH- so that it is not directly linked
  • Y 1 to Y 3 are each independently a divalent organic group represented by the following formula (5),
  • R 7 and R 8 are each independently halogen, cyano group, alkyl group of 1 to 10 carbon atoms, alkenyl group of 2 to 10 carbon atoms, alkoxy group of 1 to 10 carbon atoms, fluoroalkyl group of 1 to 10 carbon atoms or 1 to 10 carbon atoms Is a fluoroalkoxy group,
  • p and q are each independently an integer between 0 and 4,
  • L 1 is a single bond, -E, -CO-, -S-, -S0 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -C0NH-, -COO-,-( CH 2 ) 2- , -0 (CH 2 ) z 0- ( 3 (CH 2 ) Z -0CH 2 -C (C3 ⁇ 4) 2 — C3 ⁇ 40-, -C00- (C3 ⁇ 4) z -0C0- or -0C0— ( C3 ⁇ 4) z -C00-,
  • Z is an integer between 1 and 10
  • n is an integer between 0 and 3.
  • this invention provides the liquid crystal aligning film manufactured by the manufacturing method of the said liquid crystal aligning film.
  • the present invention provides a liquid crystal display device comprising the liquid crystal alignment film.
  • the repeating unit represented by the formula (1) the repeating unit represented by the formula (2) and comprises at least two repeating units selected from the group consisting of the repeating unit represented by the formula (3), Forming a coating film by applying a liquid crystal aligning agent comprising a polymer for liquid crystal aligning agent containing 5 to 74 mol% of the repeating unit represented by Formula 1 to all the repeating units represented by 1 to 3;
  • the method of manufacturing a liquid crystal alignment layer may include a step of curing the alignment-treated coating film by heat treatment.
  • a polyimide precursor, a polyamic acid or a polyamic acid ester having excellent solubility is applied and dried to form a coating film, and then converted to polyimide through a high temperature heat treatment process. Irradiation was performed and orientation treatment was performed. However, a large amount of light irradiation energy is required in order to obtain a liquid crystal alignment property by applying light to the film of the polyimide state, and also undergo an additional heat treatment process to secure alignment stability after light irradiation. Many of these light irradiation energy and additional high temperature heat treatment process is very disadvantageous in terms of process cost and processing time, so there was a limit to apply to the actual mass production process.
  • the present inventors include two or more repeating units selected from the group consisting of repeating units represented by Formula 1, repeating units represented by Formula 2, and repeating units represented by Formula 3 through experiments, and in particular, the repeating units
  • the repeating units When using a polymer containing from 5 to 74 mol% of the imide repeating unit represented by the formula (1), since the polymer contains a predetermined amount of imide repeating units already imidized, immediately after the coating film formation without high temperature heat treatment process Since the anisotropy can be generated by irradiating and then the heat treatment can be performed to complete the alignment film, not only can the light irradiation energy be greatly reduced, but also the simplest process including a single heat treatment step It was confirmed that the liquid crystal aligning film with enhanced stability could be produced, and completed the invention.
  • Hydrocarbons of 4 to 20 carbon atoms include alkanes of 4 to 20 carbon atoms, alkenes of 4 to 20 carbon atoms, alkynes of 4 to 20 carbon atoms, cycloalkanes of 4 to 20 carbon atoms, and carbon atoms. Cycloalkenes 4 to 20, having 6 carbon atoms .
  • An arene of from 20 to 20, a black may be a fused ring in which one or more cyclic hydrocarbons share two or more atoms, or a hydrocarbon in which one or more hydrocarbons are chemically bonded. have.
  • hydrocarbons having 4 to 20 carbon atoms include n-butane, cyclobutane, 1-methylcyclobutane, 1, 3-dimethylcyclobutane, 1, 2,3,4-tetramethylcyclobutane, cyclopentane and cyclonucleic acid.
  • Cycloheptane, cyclooctane, cyclonuxene, 1-methyl-3-ethylcyclonucleene, bicyclonuclear chamber, benzene, biphenyl, diphenylmethane, 2, 2-diphenylpropane, 1-ethyl-1, 2,3 , 4-tetrahydronaphthalene, 1, 6-diphenylnucleic acid, etc. can be illustrated.
  • the alkyl group having 1 to 10 carbon atoms may be a straight chain, branched chain or cyclic alkyl group. Specifically, the alkyl group having 1 to 10 carbon atoms is a straight chain alkyl group having 1 to 10 carbon atoms; Linear alkyl groups having 1 to 5 carbon atoms; Branched or cyclic alkyl groups having 3 to 10 carbon atoms; Or a branched or cyclic alkyl group having 3 to 6 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms includes methyl group, ethyl group, n-propyl group, i so-propyl group, n-butyl group, i so-butyl group, tert-butyl group, n_pentyl group, i so -Pentyl group, neo-pentyl group, cyclonuclear group, etc. can be illustrated.
  • the alkoxy group having 1 to 10 carbon atoms may be a straight chain, branched chain or cyclic alkoxy group. Specifically, the alkoxy group having 1 to 10 carbon atoms is a straight alkoxy group having 1 to 10 carbon atoms; Linear alkoxy groups having 1 to 5 carbon atoms; Branched or cyclic alkoxy groups having 3 to 10 carbon atoms; Or a branched or cyclic alkoxy group having 3 to 6 carbon atoms.
  • examples of the alkoxy group having 1 to 10 carbon atoms include hydroxy group, ethoxy group, n-propoxy group, i so-propoxy group, n-
  • the sub special time group, i so- sub special time group, tert- hydroxy group, n-phenoxy group, i so- pentoxy group, neo- pentoxy group, a cyclonucleotoxy group, etc. can be illustrated.
  • the fluoroalkyl group of 1 to 10 carbon atoms may be one or more hydrogen of the alkyl group of 1 to 10 carbon atoms is substituted with fluorine, the fluoroalkoxy group of 1 to 10 carbon atoms of one or more hydrogen of the alkoxy group of 1 to 10 carbon atoms May be substituted with fluorine.
  • Alkenyl groups having 2 to 10 carbon atoms may be linear, branched or cyclic alkenyl groups. Specifically, an alkenyl group having 2 to 10 carbon atoms has a straight chain alkenyl group having 2 to 10 carbon atoms, a straight chain alkenyl group having 2 to 5 carbon atoms, a branched alkenyl group having 3 to 10 carbon atoms, a branched alkenyl group having 3 to 6 carbon atoms, and a carbon number It may be a cyclic alkenyl group of 5 to 10 or a cyclic alkenyl group of 6 to 8 carbon atoms. More specifically, examples of the alkenyl group having 2 to 10 carbon atoms include an ethenyl group, propenyl group, butenyl group, pentenyl group, cyclonucleenyl group and the like.
  • Halogen may be fluorine (F), chlorine (C1), bromine (Br) or iodine (I). .
  • a mult ivalent organi c group derived from any compound refers to a moiety in which a plurality of hydrogen atoms attached to any compound have been removed.
  • the tetravalent organic group derived from cyclobutane means a moiety in a form in which any four hydrogen atoms bonded to cyclobutane are removed.
  • ⁇ * in the formula is hydrogen is removed from the site
  • the polymer for the liquid crystal aligning agent of the liquid crystal alignment film according to the embodiment is two or more types selected from the group consisting of a repeating unit represented by Formula 1, a repeating unit represented by Formula 2 and a repeating unit represented by Formula 3 Contains units.
  • X 1 in the repeating unit of Formulas 1 to 3 It is a tetravalent organic group, More preferably, it is a tetravalent organic group represented by the said Formula (4), X ⁇ 2> and X ⁇ 3> are each independently a tetravalent organic group derived from a C4-C20 hydrocarbon, or the said tetravalent -0-, -CO-, -S-, -SO-, -S0 2 -or — C0NH so that at least one H in the organic group is substituted by halogen or at least one -c3 ⁇ 4- is not directly connected to oxygen or sulfur atoms It may be a tetravalent organic group replaced with-.
  • X 2 and X 3 may be each independently a tetravalent organic group represented by Chemical Formula 6.
  • R 3 to R 6 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms
  • L 2 is a single bond, -0-, -CO-, -S-, -SO-, -S0 2- , -CR 9 R 10- , -C0NH-, phenylene or any combination thereof
  • R 9 and R 10 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, or a fluoroalkyl group.
  • Y 1 to Y 3 may be defined by a divalent organic group represented by the formula (5) can provide a polymer for a liquid crystal aligning agent of various structures capable of expressing the above-described effect.
  • Hydrogen is bonded to carbon not substituted with R 7 or R 8 in Formula 5, and when p or q is an integer between 2 and 4, a plurality of R 7 or R 8 may be the same or different substituents.
  • m is an integer of 0 to 3 may be an integer of 0 or 1.
  • the polymerized product for the liquid crystal aligning agent may have a repeating unit represented by the formula (1), which is an imide repeating unit, of 5 to 74 mol%, preferably 10 To 60 mole%.
  • repeating unit represented by the formula (1) is included less than the content range does not exhibit a sufficient orientation characteristics, the orientation stability may be lowered, and if the content of the repeating unit represented by the formula (1) exceeds the range solubility Problems may appear that are difficult to produce a stable alignment liquid coatable. Accordingly, it is preferable to include the repeating unit represented by Chemical Formula 1 in the above-described content range because it is possible to provide a polymer for a liquid crystal aligning agent having excellent storage stability, electrical characteristics, alignment characteristics, and alignment ' stability.
  • repeating unit represented by Formula 2 or the repeating unit represented by Formula 3 may be included in an appropriate content according to the desired properties.
  • the repeating unit represented by Formula 2 is 0 to 40 mole%, preferably, based on the total repeating units represented by Formulas 1 to 3.
  • the repeating unit represented by the formula (2) has a low rate of conversion to imide during the high temperature heat treatment process after light irradiation, when it exceeds the above range, the overall imidation ratio may be insufficient and the orientation stability may be lowered. Accordingly, the repeating unit represented by Formula 2 may provide a polymer for a liquid crystal aligning agent that exhibits proper solubility within the above-described range and may realize excellent imidation ratio while having excellent process characteristics.
  • the repeating unit represented by the formula (3) is 0 to 95 mol% based on the total repeating units represented by the formula (1) to 3, 10 to 90 mol3 ⁇ 4 may be included. It is possible to provide a polymer for a liquid crystal aligning agent that exhibits excellent coating properties within such a range and excellent in process characteristics and can realize a high imidation ratio.
  • the manufacturing method of the liquid crystal aligning film of the said one Embodiment apply
  • the method of applying the liquid crystal aligning agent to the substrate is not particularly limited, and for example, screen printing, offset printing, flexographic printing, inkjet, or the like may be used.
  • the liquid crystal aligning agent may be one obtained by dissolving or dispersing the polymer for liquid crystal aligning agent in an organic solvent.
  • organic solvent examples include ⁇ , ⁇ -dimethylformamide, ⁇ , ⁇ -dimethylacetamide, ⁇ -methyl-2-pyrrolidone, ⁇ -methylcaprolactam 2-pyridone and ⁇ ⁇ ethylpyridone , ⁇ -vinylpyrrolidone, dimethyl sulfoxide, tetramethylurea, pyridine, dimethyl sulfone, nuxamethyl sulfoxide, ⁇ -butyrolactone, 3-methoxy- ⁇ , ⁇ -dimethylpropanamide, 3-ethoxy- ⁇ , ⁇ -dimethylpropanamide, 3-butoxy- ⁇ , ⁇ -dimethylpropanamide, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, Methyl isopropyl ketone,
  • the photoalignment agent may further include other components in addition to the polymer and the organic solvent.
  • the photo-alignment agent when applied, it improves the uniformity and surface smoothness of the film thickness, or improves the adhesion between the photo-alignment layer and the substrate, or the dielectric constant or conductivity of the photo-alignment layer Additives that can change or increase the compactness of the photo-alignment layer can be further included.
  • additives may be exemplified by various solvents, surfactant 1, silane compounds, dielectrics or crosslinkable compounds.
  • substrate is dried. Drying the coating film may be a method such as heating, vacuum evaporation of the coating film, it is preferably carried out at 50 to 150 ° C, or 60 to 140 ° C.
  • the manufacturing method of the liquid crystal aligning film of the said one Embodiment performs an alignment process by irradiating light to the coating film immediately after the said drying step.
  • the "coating film immediately after the drying step” means the light irradiation immediately after the drying step without progress of the heat treatment step above the drying step, other steps other than the heat treatment can be added.
  • liquid crystal aligning film when manufacturing a liquid crystal aligning film using a conventional liquid crystal aligning agent containing a polyamic acid or polyamic acid ester, the step of irradiating light after performing a high temperature heat treatment essentially for the imidization of the polyamic acid
  • the liquid crystal aligning film is manufactured by using the liquid crystal aligning agent of the above-described embodiment, it does not include the heat treatment step.
  • a liquid crystal aligning film with sufficient orientation and stability can be manufactured even under light irradiation energy.
  • the light irradiation in the alignment process may be to irradiate polarized ultraviolet rays of 150 to 450 ran wavelength.
  • the intensity of exposure varies depending on the type of polymer, and energy of 10 mJ / cuf to 10 J / crf, preferably 30 mJ / cin 2 to 2 J / cin 2 , can be irradiated.
  • the ultraviolet rays 1 a polarizer using a substrate coated with a dielectric anisotropic substance on the surface of a transparent substrate such as quartz glass, soda lime glass, soda lime free glass, 2 a polarizing plate on which fine aluminum or metal wire is deposited. Or (3) orientate by irradiating polarized ultraviolet rays selected from the polarized ultraviolet rays by passing or reflecting through a Brewster polarizer by reflection of quartz glass or the like. Do the processing.
  • the polarized ultraviolet rays may be irradiated perpendicularly to the substrate surface, or may be irradiated at an inclined angle at a specific angle. In this way, the alignment capability of the liquid crystal molecules is imparted to the coating film.
  • the curing of the alignment-treated coating film by heat treatment is performed after light irradiation in the conventional method of manufacturing a liquid crystal alignment film using a polymer for liquid crystal aligning agent including -a polyamic acid or a polyamic acid ester. Is applied to a substrate, and is subjected to a heat treatment step performed to imidize the liquid crystal aligning agent before irradiating light or while irradiating light.
  • the heat treatment may be carried out by a heating means such as a hot plate, hot air circulation furnace, infrared furnace, it is preferable to be carried out at 150 to 300 ° C, or 200 to 250 ° C.
  • a liquid crystal alignment layer manufactured according to the method of manufacturing the liquid crystal alignment layer of the embodiment may be provided.
  • the liquid crystal aligning film in which the orientation and stability were strengthened can be manufactured.
  • a liquid crystal display device including the liquid crystal alignment layer described above may be provided.
  • the liquid crystal alignment layer may be introduced into the liquid crystal cell by a known method, and the liquid crystal cell may likewise be pressed onto the liquid crystal display by a known method.
  • the liquid crystal alignment layer is prepared from a polymer containing a specific content of the repeating unit represented by Chemical Formula 1 and has excellent physical properties. Stability can be achieved. Accordingly, a liquid crystal display device capable of exhibiting high reliability is provided.
  • the heat treatment step of the silver is omitted, and the alignment treatment is performed by directly irradiating the light, followed by curing by heat treatment, thereby reducing the light irradiation energy
  • a method of manufacturing a liquid crystal alignment film, a liquid crystal alignment film, and a liquid crystal display device including the same which can provide a liquid crystal alignment film having enhanced alignment and stability through a process.
  • Diamine DA-1 was synthesized according to the following reaction formula 1.
  • a mixture was prepared by dissolving DMCBDAC 1, 3-dimethylcyclobutane-1, 2,3, 4-tetracarboxylic acid dianhydride) and 4-nitroaniline (Dini formamide) in DMF (Dimethyl formamide). Subsequently, the mixture was reacted at about 80 ° C. for about 12 hours to prepare amic acid. Thereafter, the amic acid is dissolved in DMF, The mixture was prepared by adding acetic anhydride and sodium acetate. Subsequently, the amic acid contained in the mixture was imidized at about 90 ° C. for about 4 hours. The imide thus obtained was dissolved in this ⁇ ! Ac (Dimethylacetamide), and then Pd / C was added to prepare a mixture. This was reduced for 20 minutes under hydrogen pressure of 45 ° C. and 6 bar to prepare diamine DA-1. Synthesis Example 2 Synthesis of Diamine DA ′ 2
  • DA-5 having the structure was prepared in the same manner as in Synthesis Example 3, except that CBDA (cyclobutane-1,2,3,4-tetracarboxylic acid dianhydride) was used instead of PMDA (pyromellitic acid dianhydride). Prepared.
  • Example 1 Preparation of polymer P-1 for liquid crystal aligning agent
  • Example 1 5.0 g of DA-1 and 1.07 g of phenylenediamine (PDA) were first dissolved in 89.81 g of NMP, followed by 1.90 g of cyclobutane-1,2,3,4-tetracarboxylic acid dianhydride (CBDA) and oxy.
  • Polymer P-2 was prepared using the same method as Example 1 except adding 3.00 g of diphthalic acid dianhydride (OPDA).
  • OPDA diphthalic acid dianhydride
  • Example 1 In Example 1, except that 4.0 g of DA-2 and 2.13 g of oxydianiline (ODA) were first dissolved in NMP 96.85 g, and then 3.27 g of DMCBDA and 1.36 g of pyromellitic acid anhydride (PMDA) were added thereto.
  • Polymer P-3 was prepared using the same method as 1. As a result of confirming the molecular weight of the P-3 through GPC, the number average molecular weight (Mn) is 14,500 g / mol, the weight average molecular weight (Mw)
  • Example 4 Preparation of polymer P-4 for liquid crystal aligning agent Example 1 except that 2.0-1 of DA-1 and 7.63 g of DA-6 were first dissolved in 156.88 g of NMP, and then 5.80 g of DMCBDA and 2.00 g of oxy-diphthalic anhydride (OPDA) were added thereto. Polymer P-4 was prepared using the same method as described above.
  • the number average molecular weight (Mn) was 19,500 g / mol
  • the weight average molecular weight (Mw) was 37,000 g / mol.
  • the proportion of imide structures in the molecule was 13.3%
  • the proportion of amic acid structures was 86.7%.
  • Example 5 Preparation of Polymer P-5 for Liquid Crystal Alignment Agent-In Example 1, 5.0 g of DA-1 and 3.93 g of DA-5 were first dissolved in 127.94 g of NMP, followed by cyclobutane-1,2,3,4- Polymer P-5 was prepared in the same manner as in Example 1 except that 5.28 g of tetracarboxylic acid anhydride (CBDA) was added.
  • CBDA tetracarboxylic acid anhydride
  • polymer P-5 had the ratio of the intramolecular imide structure of 22.7%, the ratio of the amic acid ester structure to 27.83 ⁇ 4>, and the ratio of the amic acid structure to 49.5%.
  • Example 6 Preparation of polymer P-6 for liquid crystal aligning agent
  • Example 1 polymer P-6 was prepared in the same manner as in Example 1 except that 8.0 g of DA-2 and 1.06 g of DA-4 were first dissolved in 131.00 g of NMP, and then 5.49 g of DMCBDA was added. It was. As a result of confirming the molecular weight of P-6 through GPC, the number average molecular weight (Mn) was 15,500 g / mol, and the weight average molecular weight (Mw) was 29,000 g / mol. And polymer P-6 had 42.9% of the imide structure in a molecule
  • Example 7 Preparation of polymer P-7 for liquid crystal aligning agent
  • composition of P-7 was quantitatively analyzed as follows.
  • the obtained PA-7 solution was coated on a glass substrate, and then subjected to imidization by heat treatment at 300 ° C. for 2 hours.
  • the imidation ratio of the material obtained through this process was defined as 100%, and this was analyzed by comparing the ON peak lSSOctTf 1 ) of the imide shown in the IR spectrometer with P-7 obtained through the chemical imidization process. Specifically, by setting the 1520cm " one aromatic peak as a standard for normalizing (integrated), and integrating the magnitude (I) of the ON peak appearing in 1380cm— 1 of the PA-7 and P-7 into the following equation 1 The imidation ratio was quantified.
  • Imidization rate (%) [(Il380, P-7 ⁇ Il520, P-7) / (11380, PA-7 @ 300 ⁇ 11520, PA-7 @ 300) 1 *
  • Equation 1 Ii38o, p-7 is the size of C_N peak appearing in 1380cm— one of P-7, and I 1520 , p- 7 is the aromatic peak appearing in 1520cm— one of P-7.
  • PA— 7 @ 300 is the magnitude of the C ⁇ N peak in the 1380 cm _1 range of the material heat-treated at 300 ° C ⁇ -7, and I 1520 , P A - 7 @ 300 is PA This is the size of aromatic peak in 1520cm _1 of the material heat-treated at -7 at 300 ° C.
  • the proportion of amic acid esters ranges from 3.5 to -NMR spectrum of P-7.
  • the size of the hydroxy peak of the amic acid ester appeared in 3.9ppm was confirmed by comparative analysis based on the hydrogen peak of the aromatic appeared in 6.8 to 8.0ppm.
  • the composition of P-7 was analyzed using the remaining ratio as the ratio of the amic acid.
  • P-8 was prepared in the same manner as in Example 7, except that 6.46 g, acetic anhydride 3.5 g, and pyridine 2.7 g were used.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • P-8 was 55.0%
  • the ratio of the imide structure was 45.0%. Comparative Example 1: Preparation of Polymer B-1 for a Liquid Crystal Alignment Agent
  • Example 1 DA-2 l.Og and 5.46 g of phenylenediamine (PDA) were first dissolved in 163.21 g of NMP, and then 1,3-dimethyl-cyclobutane _1, 2, 3, 4-tetracarboxylic acid dianhydride ( Polymer B-1 was prepared using the same method as Example 1 except adding 11.68 g of DMCBDA). As a result of confirming the molecular weight of B-1 through GPC, the number average molecular weight (Mn) was 14,000 g / mol, the weight average molecular weight (Mw) was 26,000 g / mol.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Example 1 6.00g of PDA was first dissolved in NMP 156.9g, and then 5.34g of CBDA and 6.10g of DMCBDA were added.
  • Polymer B-2 was prepared using the method. As a result of confirming the molecular weight of B-2 through GPC, the number average molecular weight (Mn) was 15,000 g / mol, and the weight average molecular weight (Mw) was 28, 000 g / mol. And as a result of analyzing the monomer structure of B-2, the ratio of the intramolecular amic acid structure was 100%. Comparative Example 3: Production of Polymer B-3 for Liquid Crystal Alignment Agent
  • Example 7 The same method as in Example 7 was used except that 6.00 g of PDA, 163.8 g of NMP, 12.20 g of DMCBDA, 6.7 g of acetic anhydride and 5.2 g of pyridine were used in Example 7.
  • Example 1 polymer B-4 was prepared in the same manner as in Example 1, except that 7.0 g of DA-3 was first dissolved in 97.75 g of NMP, and then 3.86 g of DMCBDA was added.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the ratio of the intramolecular imide structure was 50.5%
  • the ratio of the amic acid structure was 49.3 ⁇ 4.
  • Each of the polymers prepared according to Examples 1 to 8 and Comparative Examples 1 to 5 was added to a mixed solvent having a weight ratio of NMP and n-butoxyethane of 8: 2 in a mixed solvent. Dissolved in proportions by weight. Then, the obtained solution was filtered under pressure with a filter having a pore size of 0.2 made of poly (tetrafluoreneethylene) to prepare a liquid crystal aligning agent.
  • the liquid crystal cell was manufactured by the following method using the liquid crystal aligning agent manufactured above.
  • the liquid crystal aligning agent was apply
  • the substrate on which the liquid crystal aligning agent was applied was placed on a hot plate of about 70 ° C. and dried for 3 minutes to evaporate the solvent.
  • ultraviolet rays of 254 nm were irradiated with an exposure amount of 0.5 J / ciif or 1 J / cuf using an exposure machine with a line polarizer attached to each of the upper and lower coating films.
  • the orientation-treated upper and lower plates were baked (cured) for 30 minutes in an oven at about 23 C C to obtain a coating film having a film thickness of 0.1.
  • a sealing agent impregnated with a 3 / size ball spacer was applied to the edge of the upper plate except for the liquid crystal injection hole.
  • the upper and lower plates are bonded to each other and the empty cell is prepared by curing the sealing agent. Then, a liquid crystal was injected into the empty cell to prepare a liquid crystal cell of IPS mode.
  • the liquid crystal aligning agent coated substrate was placed on a hot plate of about 70 ° C. by the spin coating method, and dried for 3 minutes to evaporate the solvent. Since then
  • the polarizing plates were attached to the upper and lower plates of the liquid crystal cell manufactured by the alignment treatment of A or B so as to be perpendicular to each other. And the liquid crystal cell with a polarizing plate was put on the backlight of brightness 7000 cd / irf, and light leakage was observed visually.
  • the alignment characteristics of the liquid crystal alignment layer are excellent and the liquid crystals are well arranged, light is not passed through the upper and lower flat plates attached vertically to each other, and the light is darkly observed without defects.
  • the alignment characteristic is 'good', and when light leakage such as liquid crystal flow marks or bright spots is observed, it is shown in Table 1 as 'bad'.
  • the exposure dose to obtain a jeongsel was performed by changing to a 0.5 J / cin 2 or 1 J / cirf.
  • the evaluation of the exposure amount of the liquid crystal cell was based on the exposure amount necessary to obtain the liquid crystal alignment, and is shown in Table 1 below.
  • the liquid-crystal orientation stability was evaluated using the liquid crystal cell in which the polarizing plate manufactured for said (1) liquid-crystal orientation characteristic evaluation was carried out.
  • the liquid crystal cell in which the polarizing plate is attached is attached on the backlight of 7,000 cd / m 2 , and the luminance of the black state is attached to the PR-880 device, which is a luminance brightness measuring device.
  • the liquid crystal cell was driven for 24 hours at an alternating voltage of 5V at room temperature. Thereafter, the luminance of the black state was measured as described above with the voltage of the liquid crystal cell turned off.
  • the difference between the initial luminance L0 measured before driving the liquid crystal cell and the later luminance L1 measured after driving was divided by the initial luminance L0 value and multiplied by 100 to calculate the luminance variation rate.
  • the calculated luminance variation rate means that the closer to 0>, the better the orientation stability. If the luminance fluctuation rate is less than 10%, 'excellent', 10% or more and less than 20% is shown in Table 1 as 'normal', 20% or more 'bad'.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 배향막을 포함하는 액정 표시소자에 관한 것이다. 보다 구체적으로 상기 제조 방법에 따르면 액정 배향제를 기판에 도포 및 건조한 후 고온의 열처리 공정을 생략하고, 바로 광을 조사하여 배향 처리한 후, 이를 열처리하여 경화함으로써 액정 배향막을 제조할 수 있기 때문에, 공정에 필요한 광 조사 에너지를 줄일 수 있을 뿐 아니라, 광 조사 전의 고온 열처리 공정을 생략하여 단순하면서도, 배향성과 안정성이 강화된 액정 배향막의 제조 방법, 액정 배향막 및 이를 포함하는 액정 표시소자가 제공된다.

Description

【명세서】
【발명의 명칭】
액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2015 년 11 월 11 일자 한국 특허 출원 제 10-2015- 0158388 호 및 2016 년 10 월 31 일자 한국 특허 출원 제 10-2016- 0142888 호에 가초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 배향성과 안정성이 강화된 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자에 관한 것이다. 【발명의 배경이 되는 기술】
액정 표시소자에 있어서, 액정 배향막은 액정을 일정한 방향으로 배향시키는 역할을 담당하고 있다. 구체적으로, 액정 배향막은 액정 분자의 배열에 방향자 (di rector ) 역할을 하여 전기장 (electr ic f i eld)에 의해 액정이 움직여서 화상을 형성할 때, 적당한 방향을 잡도록 해준다. 일반적으로 액정 ᅳ표시소자에서 균일한 휘도 (br ightness)와 높은 명암비 (contrast rat io)를 얻기 위해서는 액정을 균일하게 배향하는 것이 필수적이다.
액정을 배향시키는 통상적인 방법으로, 유리 등의 기판에 폴리이미드와 같은 고분자 막을 도포하고, 이 표면을 나일론이나 폴리에스테르 같은 섬유를 이용해 일정한 방향으로 문지르는 러빙 (rubbing) 방법이 이용되었다. 그러나 러빙 방법은 섬유질과 고분자막이 마찰될 때 미세한 먼지나 정전기 (electr i cal di scharge : ESD)가 발생할 수 있어, 액정 패널 제조 시 심각한 문제점을 야기시킬 수 있다. 상기 러빙 방법의 문제점을 해결하기 위하여, 최근에는 마찰이 아닌 광 조사에 의해 고분자 막에 이방성 (비등방성, ani sotropy)을 유도하고, 이를 이용하여 액정을 배열하는 광 배향법이 연구되고 있다.
상기 광배향법에 사용될 수 있는 재료로는 다양한 재료가 소개되어 있으며, 그 중에서도 액정 배향막의 양호한 제반 성능을 위해 폴리이미드가 주로 사용되고 있다. 그러나, 통상 폴리이미드는 용매 용해성이 떨어져 용액 상태로 코팅하여 배향막을 형성시키는 제조 공정 상에 바로 적용하기에는 어려움이 있다 . 따라서, 용해성이 우수한 폴리아믹산 또는 폴리아믹산 에스테르와 같은 전구체 형태로 코팅을 한 후 고온의 열처리 공정을 거쳐 폴리이미드를 형성시키고 여기에 광조사를 실행하여 배향처리를 하게 된다. 그러나, 이러한 폴리이미드 상태의 막에 광조사를 하여 충분한 액정 배향성을 얻기 위해서는 많은 에너지가 필요해 실제 생산성 확보에 어려움이 생길 뿐 아니라, 광조사 후 배향 안정성을 확보하기 위해 추가적인 열처리 공정도 필요한 한계가 있다.
【발명의 내용]
【해결하고자 하는 과제】
본 발명은 배향성과 안정성이 강화된 액정 배향막의 제조 방법을 제공하기 위한 것이다.
본 발명은 또한, 상기 액정 배향막의 제조 방법에 따라 제조된 액정 배향막 및 상기 액정 배향막을 포함하는 액정 표시소자를 제공하기 위한 것이다.
【과제의 해결 수단]
본 발명은, 하기 화학식 1 로 표시되는 반복 단위, 하기 화학식 2 로 표시되는 반복 단위 및 하기 화학식 3 으로 표시되는 반복 단위로 이루어진 군에서 선택된 2 종 이상의 반복 단위를 포함하며, 하기 화학식 1 내지
3 으로 표시되는 전체 반복 단위에 대하여 하기 화학식 1 로 표시되는 반복 단위를 5 내지 74 몰¾ 포함하는 액정 배향제용 증합체를 포함하는 액정 배향제를 기판에 도포하여 도막을 형성하는 단계 ; 상기 도막을 건조하는 단계 ;
상기 건조 단계 직후의 도막에 광을 조사하여 배향 처리하는 단계; 상기 배향 처리된 도막을 열처리하여 경화하는 단계;를 포함하 액정 배향막의 제조 방법을 제공한다:
1]
Figure imgf000004_0001
[화학식 2]
Figure imgf000004_0002
[화학식 3]
Figure imgf000004_0003
상기 화학식 1 내지 3에서,
R1 및 R2 는 각각 독립적으로 수소 또는 탄소수 1 내지 10 의 알킬기이되, R1 및 R2가 모두 수소이지 않고,
X1은 하기 화학식 4로 표시되는 4가의 유기기이고,
[화학식 4]
Figure imgf000004_0004
상기 R3 내지 R6은 각각 독립적으로 수소 또는 탄소수 1 내지 6 의 알킬기이고,
X2 및 X3 은 각각 독립적으로 탄소수 4 내지 20 의 탄화수소에서 유래한 4 가의 유기기이거나, 혹은 상기 4 가의 유기기 중 하나 이상의 H 가 할로겐으로 치환되거나 또는 하나 이상의 -c¾-가 산소 또는 황 원자들이 직접 연결되지 않도록 -0-, -CO- , -S- , -SO- , -S02- 또는 -C0NH-로 대체된 4가의 유기기이고,
Y1 내지 Y3은 각각 독립적으로 하기 화학식 5 로 표시되는 2 가의 유기기이고,
[화학식 5]
Figure imgf000005_0001
상기 화학식 5에서 ,
R7 및 R8는 각각 독립적으로 할로겐, 시아노기, 탄소수 1 내지 10 의 알킬기, 탄소수 2 내지 10 의 알케닐기, 탄소수 1 내지 10 의 알콕시기, 탄소수 1 내지 10 의 플루오로알킬기 또는 탄소수 1 내지 10 의 플루오로알콕시기이며,
p 및 q는 각각 독립적으로 0 내지 4사이의 정수이고,
L1 은 단일결합, — 0-, -CO- , -S- , -S02- , -C(C¾)2- , -C(CF3)2- , - C0NH- , -C00- , -(CH2)Z -, -0(CH2)z0- , -0(CH2)z- , -0CH2-C(CH3)2-C¾으, — C00- (c¾)z-oco- 또는 -oco-(c¾)z-coo-이며,
상기 z는 1 내지 10 사이의 정수이고,
m은 0 내지 3 사이의 정수이다. 또한, 본 발명은 하기 화학식 1 로 표시되는 반복 단위, 하기 화학식 2 로 표시되는 반복 단위 및 하기 화학식 3 으로 표시되는 반복 단위로 이루어진 군에서 선택된 2 종 이상의 반복 단위를 포함하며, 하기 화학식 1 내지 3 으로 표시되는 전체 반복 단위에 대하여 하기 화학식 1 로 표시되는 반복 단위를 5 내지 74몰%포함하는 액정 배향제용 중합체를 포함하는 액정 배향제를 기판에 도포하여 도막을 형성하는 단계;
상기 도막을 건조하는 단계 ;
상기 건조 단계 직후의 도막에 광을 조사하여 배향 처리하는 단계 ; 상기 배향 열처리하여 경화하는 단계;를 포함하는 액정 배향막의 제조 방법을 제공
[화학식 1]
Figure imgf000006_0001
Figure imgf000006_0002
[화학식 3]
Figure imgf000006_0003
상기 화학식 1 내지 3에서,
R1 및 R2 는 각각 독립적으로 수소 또는 탄소수 1 내지 10 의 알킬기이되, R1 및 R2가 모두 수소이지 않고,
X1은 4가의 유기기이고,
X2 및 X3 은 각각 독립적으로 탄소수 4 내지 20 의 탄화수소에서 유래한 4 가의 유기기이거나, 혹은 상기 4 가의 유기기 중 하나 이상의 H 가 할로겐으로 치환되거나 또는 하나 이상의 -C¾-가 산소 또는 황 원자들이 직접 연결되지 않도록 -0- -CO-, -S-, -SO-, -S02- 또는 -C0NH-로 대체된 4가의 유기기이고
Y1 내지 Y3은 각각 독립적으로 하기 화학식 5 로 표시되는 2 가의 유기기이고,
[화학식 5]
Figure imgf000007_0001
상기 화학식 5에서,
R7 및 R8는 각각 독립적으로 할로겐, 시아노기, 탄소수 1 내지 10 의 알킬기, 탄소수 2 내지 10 의 알케닐기, 탄소수 1 내지 10 의 알콕시기, 탄소수 1 내지 10 의 플루오로알킬기 또는 탄소수 1 내지 10 의 플루오로알콕시기이며,
p 및 q는 각각 독립적으로 0 내지 4사이의 정수이고,
L1 은 단일결합, -으, -CO-, -S-, -S02-, -C(CH3)2-, -C(CF3)2-, - C0NH-, -COO-, -(CH2)2-, -0(CH2)z0-( 3(CH2)Z -0CH2-C(C¾)2— C¾0-, -C00- (C¾)z-0C0- 또는 -0C0— (C¾)z-C00-이며,
상기 z는 1 내지 10 사이의 정수이고,
m은 0 내지 3 사이의 정수이다.
그리고, 본 발명은 상기 액정 배향막의 제조 방법에 따라 제조된 액정 배향막을 제공한다.
또한, 본 발명은 상기 액정 배향막을 포함하는 액정 표시소자를 제공한다. 이하 발명의 구체적인 구현예에 따른 액정 배향막의 제조 방법, 배향막 및 액정 표시소자에 관하여 보다 상세하게 설명하기로 한다. 발명의 일 구현예에 따르면, 상기 화학식 1 로 표시되는 반복 단위 , 상기 화학식 2로 표시되는 반복 단위 및 상기 화학식 3 으로 표시되는 반복 단위로 이루어진 군에서 선택된 2 종 이상의 반복 단위를 포함하며, 상기 화학식 1 내지 3 으로 표시되는 전체 반복 단위에 대하여 상기 화학식 1 로 표시되는 반복 단위를 5 내지 74 몰% 포함하는 액정 배향제용 중합체를 포함하는 액정 배향제를 기판에 도포하여 도막을 형성하는 단계 ;
상기 도막을 건조하는 단계 ;
상기 건조 단계 직후의 도막에 광을 조사하여 배향 처리하는 단계 ; 상기 배향 처리된 도막을 열처리하여 경화하는 단계 ;를 포함하는 액정 배향막의 제조 방법이 제공될 수 있다.
기존의 폴리이미드를 액정 배향막으로 사용하는 경우, 용해성이 우수한 폴리이미드 전구체, 폴리아믹산 또는 폴리아믹산 에스테르를 도포하고 건조하여 도막을 형성한 후, 고온의 열처리 공정을 거쳐 폴리이미드로 전환시키고 여기에 광조사를 실행하여 배향처리를 하였다. 그러나, 이러한 폴리이미드 상태의 막에 광조사를 하여 층분한 액정 배향성을 얻기 위해서는 많은 광 조사 에너지가 필요할 뿐 아니라, 광조사 후 배향 안정성을 확보하기 위해 추가적인 열처리 공정도 거치게 된다. 이와 같은 많은 광 조사 에너지와 추가적인 고온 열처리 공정은 공정비용과, 공정시간 측면에서 매우 불리하므로 실제 대량 생산 공정에 적용하기에는 한계가 있었다.
이에 본 발명자들은 실험을 통해, 상기 화학식 1 로 표시되는 반복 단위, 화학식 2 로 표시되는 반복 단위 및 화학식 3 으로 표시되는 반복 단위로 이루어진 군에서 선택된 2 종 이상의 반복 단위를 포함하며, 특히 상기 반복 단위 중에서 화학식 1로 표시되는 이미드 반복 단위를 5 내지 74 몰% 포함하는 중합체를 이용하면, 상기 중합체가 이미 이미드화된 이미드 반복 단위를 일정 함량 포함하므로, 도막 형성 후 고온의 열처리 공정 없이 바로 광을 조사하여 이방성을 생성시키고, 이후에 열처리를 진행하여 배향막을 완성할 수 있기 때문에, 광 조사 에너지를 크게 줄일 수 있을 뿐 아니라, 1 회의 열처리 공정올 포함하는 단순한 공정으로도 배향성과 안정성이 강화된 액정 배향막을 제조할 수 있음을 확인하고 발명을 완성하였다.
본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다.
탄소수 4 내지 20의 탄화수소는, 탄소수 4 내지 20의 알칸 (alkane) , 탄소수 4 내지 20 의 알켄 (alkene) , 탄소수 4 내지 20 의 알킨 (alkyne) , 탄소수 4 내지 20 의 사이클로알칸 (cycloalkane) , 탄소수 4 내지 20 의 사이클로알켄 (cyc loalkene) , 탄소수 6 .내지 20 의 아렌 (arene)이거나, 흑은 아들 중 1 종 이상의 고리형 탄화수소가 2 이상의 원자를 공유하는 축합 고리 ( fused r ing)이거나, 혹은 이들 중 1 종 이상의 탄화수소가 화학적으로 결합된 탄화수소일 수 있다. 구체적으로, 탄소수 4 내지 20 의 탄화수소로는 n-부탄, 사이클로부탄, 1-메틸사이클로부탄, 1, 3-디메틸사이클로부탄, 1 , 2,3,4-테트라메틸사이클로부탄, 사이클로펜탄, 사이클로핵산, 사이클로헵탄, 사이클로옥탄, 사이클로핵센, 1-메틸 -3-에틸사이클로핵센, 바이사이클로핵실, 벤젠, 바이페닐, 디페닐메탄, 2, 2-디페닐프로판, 1- 에틸 -1 , 2,3,4-테트라하이드로나프탈렌 또는 1 , 6-디페닐핵산 등을 예시할 수 있다.
탄소수 1 내지 10 의 알킬기는 직쇄, 분지쇄 또는 고리형 알킬기일 수 있다. 구체적으로, 탄소수 1 내지 10 의 알킬기는 탄소수 1 내지 10 의 직쇄 알킬기; 탄소수 1 내지 5 의 직쇄 알킬기; 탄소수 3 내지 10 의 분지쇄 또는 고리형 알킬기 ; 또는 탄소수 3 내지 6 의 분지쇄 또는 고리형 알킬기일 수 있다. 보다구체적으로, 탄소수 1 내지 10 의 알킬기로는 메틸기, 에틸기, n-프로필기, i so-프로필기, n-부틸기, i so-부틸기, tert-부틸기, n_펜틸기, i so-펜틸기, neo—펜틸기 또는 사이클로핵실기 등을 예시할 수 있다.
탄소수 1 내지 10 의 알콕시기는 직쇄, 분지쇄 또는 고리형 알콕시기일 수 있다. 구체적으로, 탄소수 1 내지 10의 알콕시기는 탄소수 1 내지 10 의 직쇄 알콕시기; 탄소수 1 내지 5 의 직쇄 알콕시기; 탄소수 3 내지 10 의 분지쇄 또는 고리형 알콕시기; 또는 탄소수 3 내지 6 의 분지쇄 또는 고리형 알콕시기일 수 있다. 보다 구체적으로, 탄소수 1 내지 10 의 알콕시기로는 메록시기, 에톡시기, n-프로폭시기, i so-프로폭시기, n- 부특시기, i so-부특시기, tert-부록시기, n-펜록시기, i so-펜톡시기, neo- 펜톡시기 또는 사이클로핵톡시기 등을 예시할 수 있다.
탄소수 1 내지 10 의 플루오로알킬기는 상기 탄소수 1 내지 10 의 알킬기의 하나 이상의 수소가 불소로 치환된 것일 수 있고, 탄소수 1 내지 10 의 플루오로알콕시기는 상기 탄소수 1 내지 10 의 알콕시기의 하나 이상의 수소가 불소로 치환된 것일 수 있다.
탄소수 2 내지 10 의 알케닐기는 직쇄, 분지쇄 또는 고리형 알케닐기일 수 있다. 구체적으로, 탄소수 2 내지 10 의 알케닐기는 탄소수 2 내지 10 의 직쇄 알케닐기, 탄소수 2 내지 5 의 직쇄 알케닐기, 탄소수 3 내지 10 의 분지쇄 알케닐기, 탄소수 3 내지 6 의 분지쇄 알케닐기, 탄소수 5 내지 10 의 고리형 알케닐기 또는 탄소수 6 내지 8 의 고리형 알케닐기일 수 있다. 보다 구체적으로, 탄소수 2 내지 10 의 알케닐기로는 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 또는 사이클로핵세닐기 등을 예시할 수 있다.
할로겐 (halogen)은 불소 (F) , 염소 (C1 ) , 브롬 (Br ) 또는 요오드 ( I )일 수 있다. .
임의의 화합물에서 유래한 다가 유기기 (mul t ivalent organi c group)는 임의의 화합물에 .결합된 복수의 수소 원자가 제거된 형태의 잔기를 의미한다. 일 예로, 사이클로부탄에서 유래한 4 가의 유기기는 사이클로부탄에 결합된 임의의 수소 원자 4 개가 제거된 형태의 잔기를 의미한다 .
본 명세서에서, 화학식 중 ᅳ * 는 해당 부위의 수소가 제거된
형태의 잔기를 의미한다. 예를 들어,
Figure imgf000010_0001
사이클로부탄의 1, 2 , 3 및 4 번 탄소에 결합된 수소 원자 4 개가 제거된 형태의 잔기, 즉 사이클로부탄에서 유래한 4가의 유기기 중 어느 하나를 의미한다.
구체적으로, 상기 일 구현예에 따른 액정 배향막의 액정 배향제용 중합체는 상기 화학식 1 로 표시되는 반복 단위, 화학식 2로 표시되는 반복 단위 및 화학식 3 으로 표시되는 반복 단위로 이루어진 군에서 선택된 2 종 이상의 반복 단위를 포함한다. 상기 화학식 1 내지 3의 반복 단위에서 X1은 4 가의 유기기 이고, 보다 바람직하게는 상기 화학식 4 로 표시되는 4 가의 유기기이며, X2 및 X3은 각각 독립적으로 탄소수 4 내지 20 의 탄화수소에서 유래한 4 가의 유기기이거나, 혹은 상기 4 가의 유기기 중 하나 이상의 H 가 할로겐으로 치환되거나 또는 하나 이상의 -c¾-가 산소 또는 황 원자들이 직접 연결되지 않도록 -0-, -CO- , -S- , -SO- , -S02- 또는 — C0NH-로 대체된 4가의 유기기일 수 있다.
일 예로, 상기 X2 및 X3은 각각 독립적으로 하기 화학식 6 에 기재된 4가의 유기기일 수 있다.
6]
Figure imgf000011_0001
상기 화학식 5에서,
R3 내지 R6 은 각각 독립적으로 수소 또는 탄소수 1 내지 6 의 알킬기이고,
L2 는 단일결합, -0-, -CO- , -S- , -SO- , -S02- , -CR9R10- , -C0NH- , 페닐렌 또는 이들의 조합으로 이루어진 군에서 선택된 어느 하나이며,
상기에서 R9 및 R10는 각각 독립적으로 수소, 탄소수 1 내지 10 의 알킬기 또는 플루오로알킬기이다.
한편, 상기 Y1 내지 Y3은 상기 화학식 5로 표시되는 2가의 유기기로 정의되어 상술한 효과를 발현할 수 있는 다양한 구조의 액정 배향제용 중합체를 제공할 수 있다.
상기 화학식 5 에서 R7 또는 R8로 치환되지 않은 탄소에는 수소가 결합되어 있으며, p 또는 q 가 2 내지 4 사이의 정수일 때 복수의 R7 또는 R8 는 동일하거나 서로 상이한 치환기일 수 있다. 그리고, 상기 화학식 5에서 m은 0 내지 3 사이의 정수 흑은 0 또는 1의 정수일 수 있다.
그리고, 상기 일 구현예의 액정 배향막의 제조 방법에서 사용되는 액정 배향제용 증합체는 상기 화학식 1, 화학식 2 및 화학식 3으로 표시되는 반복 단위 중에서, 이미드 반복 단위인 화학식 1로 표시되는 반복 단위를 전체 반복 단위에 대하여 5 내지 74몰% , 바람직하게는 10 내지 60몰%포함할 수 있다.
상술한 바와 같이, 상기 화학식 1로 표시되는 이미드 반복 단위를 특정 함량 포함하는 중합체를 이용하면, 상기 중합체가 이미 이미드화된 이미드 반복 단위를 일정 함량 포함하므로, 고온의 열처리 공정을 생략하고, 바로 광을 조사하여도 배향성과 안정성이 우수한 액정 배향막을 제조할 수 있다.
만일 화학식 1로 표시되는 반복 단위가 상기 함량 범위보다 적게 포함되면 층분한 배향 특성을 나타내지 못하고, 배향 안정성이 저하될 수 있으며, 상기 화학식 1로 표시되는 반복 단위의 함량이 상기 범위를 초과하면 용해도가 낮아져 코팅 가능한 안정적인 배향액을 제조하기 어려운 문제가 나타날 수 있다. 이에 따라, 상기 화학식 1로 표시되는 반복 단위를 상술한 함량 범위로 포함하는 것이 보관 안정성, 전기적 특성, 배향 특성 및 배향 '안정성이 모두 우수한 액정 배향제용 중합체를 제공할 수 있어 바람직하다.
또한, 상기 화학식 2로 표시되는 반복 단위 또는 화학식 3으로 표시되는 반복 단위는 목적하는 특성에 따라 적절한 함량으로 포함될 수 있다.
구체적으로, 상기 화학식 2로 표시되는 반복 단위는 상기 화학식 1 내지 3으로 표시되는 전체 반복 단위에 대하여 0 내지 40몰 %, 바람직하게는
0 내지 30몰%포함될 수 있다. 상기 화학식 2으로 표시되는 반복 단위는 광 조사 후 고온 열처리 공정 중 이미드로 전환되는 비율이 낮기 때문에, 상기 범위를 넘어서는 경우 전체적인 이미드화율이 부족하여 배향 안정성이 저하될 수 있다. 따라서, 상기 화학식 2로 표시되는 반복 단위는 상술한 범위 내에서 적절한 용해도를 나타내어 공정 특성이 우수하면서도 높은 이미드화율을 구현할 수 있는 액정 배향제용 중합체를 제공할 수 있다.
그리고, 상기 화학식 3으로 표시되는 반복 단위는 상기 화학식 1 내지 3으로 표시되는 전체 반복 단위에 대하여 0 내지 95몰%, 바람직하게는 10 내지 90몰¾ 포함될 수 있다. 이러한 범위 내에서 우수한 코팅성을 나타내 공정 특성이 우수하면서도 높은 이미드화율을 구현할 수 있는 액정 배향제용 중합체를 제공할 수 있다.
상기 일 구현예의 액정 배향막의 제조 방법은 상기 액정 배향제용 중합체를 포함하는 액정 배향쩨를 기판에 도포하여 도막을 형성한다 . 상기 액정 배향제를 기판에 도포하는 방법은 특별히 제한되지 않으며, 예컨대 스크린 인쇄, 오프셋 인쇄, 플렉소 인쇄, 잉크젯 등의 방법이 이용될 수 있다.
그리고, 상기 액정 배향제는 상기 액정 배향제용 중합체를 유기 용매에 용해 또는 분산시킨 것일 수 있다.
상기 유기 용매의 구체적인 예로는 Ν, Ν-디메틸포름아미드, Ν ,Ν- 디메틸아세트아미드, Ν-메틸 -2-피롤리돈, Ν-메틸카프로락탐 2-피를리돈, Νᅳ에틸피를리돈, Ν-비닐피롤리돈, 디메틸술폭사이드, 테트라메틸우레아, 피리딘, 디메틸술폰, 핵사메틸술폭사이드, γ -부티로락톤, 3-메톡시 -Ν,Ν- 디메틸프로판아미드, 3-에록시 -Ν,Ν-디메틸프로판아미드, 3-부록시 -Ν,Ν- 디메틸프로판아미드, 1,3-디메틸 -이미다졸리디논, 에틸아밀케톤, 메틸노닐케톤, 메틸에틸케톤, 메틸이소아밀케톤, 메틸이소프로필케톤, 사이클로핵사논, 에틸렌카보네이트, 프로필렌카보네이트, 디글라임, 4- 하이드록시 -4-메틸 -2-펜타논, 에틸렌 글리콜 모노메틸 에테르, 에틸렌 글리콜 모노메틸 에테르 아세테이트, 에틸렌 글리콜 모노에틸 에테르, 에틸렌 글리콜 모노에틸 에테르 아세테이트, 에틸렌 글리콜 모노프로필 에테르, 에틸렌 글리콜 모노프로필 에테르 아세테이트, 에틸렌 글리콜 모노이소프로필 에테르, 에틸렌 글리콜 모노이소프로필 에테르 아세테이트, 에틸렌 글리콜 모노뷰틸 에테르, 에틸렌 글리콜 모노뷰틸 에테르 아세테이트 등을 들 수 있다. 이들은 단독으로 사용될 수도 있고, 흔합하여 사용될 수도 있다.
또한, 상기 광배향제는 중합체 및 유기 용매 외에 다른 성분을 추가로 포함할 수 있다. 비제한적인 예로, 광배향제가 도포되었을 때, 막 두께의 균일성이나 표면 평활성을 향상시키거나, 혹은 광배향막과 기판의 밀착성을 향상시키거나, 혹은 광배향막의 유전율이나 도전성을 변화시키거나, 혹은 광배향막의 치밀성을 증가시킬 수 있는 첨가제가 추가로 포함될 수 있다. 이러한 첨가제로는 각종 용매, 계면 활성거 1, 실란계 화합물, 유전체 또는 가교성 화합물 등이 예시될 수 있다.
다음으로, 상기 액정 배향제를 기판에 도포하여 형성된 도막을 건조한다. 상기 도막을 건조하는 단계는 도막의 가열, 진공 증발 등의 방법을 이용할 수 있으며, 50 내지 150°C , 또는 60 내지 140°C에서 수행되는 것이 바람직하다.
다음으로, 상기 일 구현예의 액정 배향막의 제조 방법은 상기 건조 단계 직후의 도막에 광을 조사하여 배향 처리한다. 본 명세서에서 상기 "건조 단계 직후의 도막' '은 건조 단계 이후에 건조 단계 이상의 온도로 열처리하는 단계의 진행 없이 바로 광 조사하는 것을 의미하며, 열처리 이외의 다른 단계는 부가가 가능하다.
보다 구체적으로, 기존에 폴리아믹산 또는 폴리아믹산에스테르를 포함하는 액정 배향제를 사용하여 액정 배향막을 제조하는 경우에는 폴리아믹산의 이미드화를 위하여 필수적으로 고온의 열처리를 진행한 후 광을 조사하는 단계를 포함하지만, 상술한 일 구현예의 액정 배향제를 이용하여 액정 배향막을 제조하는 경우에는 상기 열처리 단계를 포함하지 않고, 바로 광을 조사하여 배향 처리한 후, 배향 처리된 도막을 열처리하여 경화함으로써, 작은 광 조사 에너지 하에서도 충분한 배향성과 안정성이 강화된 액정 배향막을 제조할 수 있다.
그리고, 상기 배향 처리하는 단계에서 광 조사는 150 내지 450 ran 파장의 편광된 자외선을 조사하는 것일 수 있다. 이 때, 노광의 세기는 중합체의 종류에 따라 다르며, 10 mJ/cuf 내지 10 J/crf 의 에너지, 바람직하게는 30 mJ/cin2 내지 2 J/cin2 의 에너지를 조사할 수 있다.
상기 자외선으로는, ①석영유리, 소다라임 유리, 소다라임프리 유리 등의 투명 기판 표면에 유전이방성의 물질이 코팅된 기판을 이용한 편광 장치, ②미세하게 알루미늄 또는 금속 와이어가 증착된 편광판,. 또는 ③석영유리의 반사에 의한 브루스터 편광 장치 등을 통과 또는 반사하는 방법으로 편광 처리된 자외선 중에서 선택된 편광 자외선을 조사하여 배향 처리를 한다. 이때 편광된 자외선은 기판면에 수직으로 조사할 수도 있고, 특정한 각으로 입사각을 경사하여 조사할 수도 있다. 이러한 방법에 의하여 액정분자의 배향 능력이 도막에 부여되게 된다 .
다음으로, 상기 배향 처리된 도막을 열처리하여 경화하는 단계를 포함한다. 상기 배향 처리된 도막을 열처리하여 경화하는 단계는 기존에 -폴리아믹산 또는 폴리아믹산 에스테르를 포함하는 액정 배향제용 중합체를 이용하여 액정 배향막을 제조하는 방법에서도 광 조사 이후에 실시하는 단계로, 액정 배향제를 기판에 도포하고, 광을 조사하기 이전에, 또는 광을 조사하면서 액정 배향제를 이미드화 시키기 위하여 실시하는 열처리 단계와는 구분된다.
이 때, 상기 열처리는 핫 플레이트, 열풍 순환로, 적외선로 등의 가열 수단에 의해 실시될 수 있으며, 150 내지 300°C , 또는 200 내지 250°C에서 수행되는 것이 바람직하다. 그리고, 발명의 또 다른 구현예에 따르면, 상기 일 구현예의 액정 배향막의 제조 방법에 따라 제조된 액정 배향막이 제공될 수 있다.
상술한 바와 같이, 상기 화학식 1 로 표시되는 반복 단위, 화학식 2 로 표시되는 반복 단위 및 화학식 3 으로 표시되는 반복 단위로 이루어진 군에서 선택된 2 종 이상의 반복 단위를 포함하며, 특히 상기 반복 단위 중에서 화학식 1 로 표시되는 이미드 반복 단위를 5 내지 74 몰% 포함하는 중합체를 이용하면, 배향성과 안정성이 강화된 액정 배향막을 제조할 수 있다. 또한, 발명의 또 다른 구현예에 따르면, 상술한 액정 배향막을 포함하는 액정 표시소자가 제공될 수 있다.
상기 액정 배향막은 공지의 방법에 의해 액정샐에 도입될 수 있으며, 상기 액정셀은 마찬가지로 공지의 방법에 의해 액정 표시소자에 도압될 수 있다. 상기 액정 배향막은 상기 화학식 1 로 표시되는 반복 단위를 특정 함량 포함하는 중합체로부터 제조되어 우수한 제반 물성과 함께 뛰어난 안정성을 구현할 수 있다. 이에 따라, 높은 신뢰도를 나타낼 수 있는 액정 표시소자를 제공하게 된다 .
【발명의 효과】
본 발명에 따르면, 액정 배향제를 기판에 도포 및 건조한 후 고은의 열처리 공정을 생략하고, 바로 광을 조사하여 배향 처리한 후, 이를 열처리하여 경화함으로써, 광 조사 에너지를 줄일 수 있을 뿐 아니라, 단순한 공정을 통해 배향성과 안정성이 강화된 액정 배향막을 제공할 수 있는 액정 배향막의 제조 방법, 액정 배향막 및 이를 포함하는 액정 표시소자가 제공된다.
【발명을 실시하기 위한 구체적인 내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. 합성예 1 : 디아민 DA-1의 합성
디아민 DA-1은 하기 반웅식 1에 따라 합성되었다.
Figure imgf000016_0001
DMCBDAC 1, 3-디메틸사이클로부탄 -1 , 2 ,3 , 4-테트라카복실산 디무수물 )과 4-니트로아닐린 (4-ni troani l ine)을 DMF(Dimethyl formamide)에 용해시켜 흔합물을 제조하였다. 이어서, 상기 흔합물을 약 80°C에서 약 12시간 동안 반웅시켜 아믹산을 제조하였다. 이후, 상기 아믹산을 DMF에 용해시키고, 아세트산 무수물 및 아세트산 나트륨을 첨가하여 흔합물을 제조하였다. 이어서, 상기 흔합물에 포함된 아믹산을 약 90°C에서 약 4시간 동안 이미드화시켰다. 이렇게 얻어진 이미드를 이 \!Ac(Dimethylacetamide)에 용해시킨 후, Pd/C를 첨가하고 흔합물을 제조하였다. 이를 45°C 및 6 bar의 수소 압력 하에서 20분 동안 환원시켜 디아민 DA-1을 제조하였다. 합성예 2: 디아민 DAᅳ 2의 합성
Figure imgf000017_0001
DMCBDA(1,3-디메틸사이클로부탄ᅳ1,2,3,4-테트라카복실산 디무수물) 대신에 CBDA (사이클로부탄 -1,2,3,4-테트라카복실산 디무수물)을 사용한 것을 제외하고는 상기 합성예 1과 동일한 방법으로상기 구조를 갖는 DA-2를 제조하였다. 합성예 3: 디아민 DA-3의 합성
Figure imgf000017_0002
DMCBDA(1,3-디메틸사이클로부탄 -1,2,3,4-테트라카복실산 디무수물) 대신에 PMDA (피로멜리틱산 디무수물)을 사용한 것을 제외하고는 상기 합성예 1과 동일한 방법으로 상기 구조를 갖는 DA-3를 제조하였다. 합성예 4: 디아민 DA-4의 합성
Figure imgf000018_0001
디아민 DA-4은 하기 반웅식 2에 따라 합성되었다.
2]
Figure imgf000018_0002
PMDA (피로멜리틱산 디무수물) 2¾을 250mL의 메탄올에 넣고
1~2방울의 염산을 첨가한 후 75°C에서 5시간 동안 가열 환류하였다. 용매를 감압하여 제거한 후 에틸 아세테이트와 노르말핵산을 300mL 첨가하여 고형화하였다. 생성된 고체를 감압 필터하고 40°C에서 감압 건조한 후 Ml 32g을 얻었다.
수득된 Ml 34g에 lOOmL의 를루엔을 첨가하고 상온에서 올살릴 클로라이드 (oxalyl chlor ide) 35g을 적하하였다. 2-3 방울의 디메틸포름아마이드 (DMF)를 적가하고 5C C에서 16시간 동안 교반하였다. 상온으로 넁각한 후 용매와 잔류 올살릴 클로라이드를 감압하여 제거하였다. 노란색 고체 생성물에 노르말핵산 300mL 첨가한 후 80°C에서 가열 환류하였다. 가열된 반응 용액을 여과하여 노르말핵산에 녹지 않는 impur i ty를 제거하고 천천히 상온까지 냉각하여 생성된 흰 색의 결정을 여과한 후 40°C의 감압 오븐에서 건조하여 M2 32.6g을 얻었다. 4-니트로아닐린 (4-nitroaniline) 29.6g과 트리에탄올아민 (TEA) 21.7g을 400 mL의 테트라하이드로퓨란 (THF)에 넣고 상온에서 M2 32.6g을 첨가하였다. 상온에서 16시간 동안 교반한 후 생성된 침전물을 여과하였다. 여액에 디클로로메탄 (Dichloro methane) 400mL를 넣고 0.1N 염산 수용액으로 세척한 후 다시 포화 탄산수소나트륨 (NaHC03) 수용액으로 세척해 주었다. 세척된 유기 용액을 감압 여과하여 고체 생성물을 얻고 다시 디클로로메탄으로 재결정하여 고체상의 디나이트로 화합물 M3 43g을 얻었다. 얻어진 디나이트로 화합물 M3 43g을 고압 반웅기에 넣은 후 THF 500 mL에 녹이고 10 %의 Pd-C 2.2g을 첨가한 후 3 기압의 수소기체 (¾) 하에서 16시간 상온 교반하였다. 반웅 후 celite 필터 여과를 이용해 Pd-C를 제거하고 여과한 뒤 여액을 감압 농축하여 에스테르화된 디아민 DA-4 37g을 얻었다. 합성예 5: 디아민 DA-5의 합성
Figure imgf000019_0001
PMDA (피로멜리틱산 디무수물) 대신에 CBDA (사이클로부탄 -l,2,3,4- 테트라카복실산 디무수물)을 사용한 것을 제외하고는 상기 합성예 3과 동일한 방법으로 상기 구조를 갖는 DA-5를 제조하였다. 실시예 1: 액정 배향제용 중합체 P-1의 제조
상기 합성예 2에서 제조된 DA-2 5.0g (13.3 瞧 ol)과 무수 N-메틸 피롤리돈 (anhydrous N-methyl pyrrol i done: NMP) 71.27g에 완전히 녹였다. 그리고, ice bath 하에서 1,3-디메틸-사이클로부탄 -1,2,3 ,4-테트라카복실산 디무수물 (DMCBDA) 2.92§(13.03隱01)을 상기 용액에 첨가하여 16 시간 동안 상온에서 교반하였다. 그리고, 얻어진 용액을 과량의 증류수에 투입하여 침전물을 생성시켰다. 이어서, 생성된 침전물을 여과하여 증류수고 2회 세척하고 다시 메탄을로 3회 세척하였다. 이렇게 얻어진 고체 생성물을 40 °C의 감압 오븐에서 24시간 건조하여 액정 배향제용 중합체 P-1 6.9g을 수득하였다.
GPC를 통해 상기 P-1의 분자량을 확인한 결과, 수평균분자량 (Mn)이 15,500g/mol이고, 중량평균분자량 (Mw)이 31,000g/mol이었다. 그리고, 중합체 P-1의 모노머 구조는 사용한 모노머의 당량비에 의해 정해지는 것으로, 분자 내 이미드 구조의 비율이 50.5%, 아믹산 구조의 비율이 49.5%이었다. 실시예 2: 액정 배향제용 중합체 P-2의 제조
상기 실시예 1 에서 DA-1 5.0g, 페닐렌디아민 (PDA) 1.07g 를 NMP 89.81g 에 먼저 녹인 후, 사이클로부탄 -1,2,3,4-테트라카복실산 디무수물 (CBDA) 1.90g 과 옥시-디프탈산 디무수물 (OPDA) 3.00g 을 첨가하는 것을 제외하고, 실시예 1 과 동일한 방법을 사용하여 중합체 P-2 를 제조하였다. GPC 를 통해 상기 P-2 의 분자량을 확인한 결과, 수평균분자량 (Mn)이 17,000g/mol 이고, 중량평균분자량 (Mw)이
33,000g/mol 이었다. 그리고, 중합체 P-2 는 분자 내 이미드 구조의 비율은 33.8%, 아믹산 구조의 비율은 66.2%이었다.. 실시예 3: 액정 배향제용 중합체 P-3의 제조
상기 실시예 1 에서 DA-2 4.0g, 옥시디아닐린 (ODA) 2.13g 를 NMP 96.85g 에 먼저 녹인 후 DMCBDA 3.27g 과 피로멜리틱산 디무수물 (PMDA) 1.36g 을 첨가하는 것을 제외하고, 실시예 1 과 동일한 방법을 사용하여 중합체 P-3 를 제조하였다. GPC를 통해 상기 P-3 의 분자량을 확인한 결과, 수평균분자량 (Mn)이 14,500g/mol 이고, 중량평균분자량 (Mw)이
29,000g/mol 이었다. 그리고, 증합체 P-3 는 분자 내 이미드 구조의 비율은 33.8%, 아믹산 구조의 비율은 66.2%이었다. 실시예 4: 액정 배향제용 중합체 P-4의 제조 상기 실시예 1에서 DA-1 2.0g와 DA-6 7.63g을 NMP 156.88g에 먼저 녹인 후, DMCBDA 5.80g과 옥시-디프탈산 디무수물 (OPDA) 2.00g을 첨가하는 것을 제외하고, 실시예 1 과 동일한 방법을 사용하여 중합체 P-4 를 제조하였다. GPC 를 통해 상기 P-4 의 분자량을 확인한 결과, 수평균분자량 (Mn)이 19,500g/mol 이고, 중량평균분자량 (Mw)이 37,000g/mol 이었다. 그리고, 중합체 P— 4 는 분자 내 이미드 구조의 비율은 13.3%, 아믹산 구조의 비율은 86.7%이었다. 실시예 5: 액정 배향제용 중합체 P-5의 제조 - 상기 실시예 1에서 DA-1 5.0g와 DA-5 3.93g을 NMP 127.94g에 먼저 녹인 후, 사이클로부탄 -1,2,3,4-테트라카복실산 디무수물 (CBDA) 5.28g 를 첨가하는 것을 제외하고, 실시예 1 과 동일한 방법을 사용하여 중합체 P- 5 를 제조하였다. GPC 를 통해 상기 P-5 의 분자량을 확인한 결과, 수평균분자량 (Mn)이 17,000g/mol 이고, 중량평균분자량 (Mw)이 35,000g/mol 이었다. 그리고, 중합체 P-5 는 분자 내 이미드 구조의 비율은 22.7%, 아믹산 에스테르 구조의 비율이 27.8¾>, 아믹산 구조의 비율은 49.5%이었다. 실시예 6: 액정 배향제용 중합체 P-6의 제조
상기 실시예 1에서 DA-2 8.0g와 DA-4 1.06g을 NMP 131.00g에 먼저 녹인 후, DMCBDA 5.49g 를 첨가하는 것을 제외하고, 실시예 1 과 동일한 방법을 사용하여 중합체 P-6 를 제조하였다. GPC 를 통해 상기 P-6 의 분자량을 확인한 결과, 수평균분자량 (Mn)이 15,500g/mol 이고, 중량평균분자량 (Mw)이 29,000g/mol 이었다. 그리고, 중합체 P-6 는 분자 내 이미드 구조의 비율은 42.9%, 아믹산 에스테르 구조의 비율이 7.6%, 아믹산 구조의 비율은 49.5%이었다. 실시예 7: 액정 배향제용 중합체 P-7의 제조
DA-5 3.0g과 페닐렌디아민 (p— phenylene diamine: PDA) 4.98g을 무수 N-메틸 피를리돈 (anhydrous N-methyl pyrrol i done: NMP) 185.8g에 완전히 녹였다. 그리고, ice bath 하에서 상기 흔합물에 1, 3-디메틸 -사이클로부탄- 1,2,3,4-테트라카복실산 디무수물 (DMCBDA) 12.66g을 첨가하여 16 시간 동안 상온에서 교반하여 중합체 용액 PA-7을 제조하였다.
이렇게 제조된 PA-1 용액에 아세트산 무수물 (acetic anhydride) 6.9g과 피리딘 5.4g을 첨가한 후 50°C에서 6시간 교반하여 화학적 이미드화를 진행하였다. 그리고, 얻어진 생성물을 과량의 증류수에 투입하여 침점물을 생성시켰다. 이어서, 생성된 침전물을 여과하여 증류수로 2회 세척하고 다시 메탄올로 3회 세척하였다. 이렇게 얻어진 고체 생성물을 40°C의 감압 오븐에서 24시간 건조하여 액정 배향제용 중합체 (P- 7) 15.5g을 얻었다. GPC를 통해 상기 P-7의 분자량을 확인한 결과, 수평균분자량 (Mn)이 14,500g/ii )l이고, 중량평균분자량 (Mw)이
28,000g/irol이었다.
한편, P-7의 조성은 다음과 같이 정량 분석되었다.
화학적 이미드화를 진행하기 전에 얻어진 PA-7 용액을 유리 기판에 코팅한 후 300 °C 오븐에서 2시간 열처리하여 이미드화를 진행하였다. 이러한 공정을 통해 얻어진 물질의 이미드화율을 100%로 정의하고, 이를 화학적 이미드화 공정을 통해 얻어진 P-7과 IR 분광기에서 나타나는 이미드의 ON peak lSSOctTf1)를 비교함으로써 분석하였다. 구체적으로, 1520cm"1 대의 aromatic peak을 노말라이즈 (normalize)를 위한 기준으로 정하고 PA-7과 P-7의 1380cm—1 대에 나타나는 ON peak의 크기 (I)을 적분하여 다음 식 1에 대입함으로써 이미드화율을 정량하였다.
[식 1]
이미드화율 (%) = [(Il380,P-7 ~ Il520,P-7)/ ( 11380 , PA-7@300 ᅳ 11520 , PA-7@300 ) 1 *
100
상기 식 1에서 Ii38o,p-7는 P-7의 1380cm—1 대에 나타나는 C_N peak의 크기이고, I1520,p-7는 P— 7의 1520cm—1 대에 나타나는 aromatic peak의
3.7} °}며 , Il380,PA— 7@300는 ΡΑ-7을 300°C에서 열처리한 물질의 1380cm_1 대에 나타나는 Cᅳ N peak의 크기이고, I1520,PA-7@300는 PA-7을 300°C에서 열처리한 물질의 1520cm_1 대에 나타나는 aromatic peak의 크기이다.
아믹산 에스테르의 비율은 P-7의 -NMR 스펙트럼에서 3.5 내지 3.9ppm에 나타나는 아믹산 에스테르의 메록시 peak의 크기를 6.8 내지 8.0ppm에 나타나는 aromatic의 수소 peak 기준으로 비교 분석하여 확인하였다. 이렇게 이미드 비율과 아믹산 에스테르의 비율을 결정한 후 남은 비율을 아믹산의 비율로 하여 P-7의 조성을 분석하였다.
상기와 같은 방법을 통해 P— 7의 조성을 분석한 결과 아믹산 구조의 비율은 20%, 아믹산 에스테르 구조의 비율은 14%, 이미드 구조의 비율은 65%이었다. 실시예 8: 액정 배향제용 중합체 P-8의 제조
상기 실시예 7 에서 DA-6 4.0g 와 PDA 1.59g, NMP 108.4g, DMCBDA
6.46g, 아세트산 무수물 3.5g, 피리딘 2.7g을 사용한 것을 제외하고 실시예 7 과 동일한 방법을 사용하여 P-8 를 제조하였다. GPC 를 통해 상기 P-8 의 분자량을 확인한 결과, 수평균분자량 (Mn)이 18,000g/mol 이고, 중량평균분자량 (Mw)이 33,000g/mol 이었다. 그리고, P-8은 실시예 7의 분석 방법을 통해 조성을 분석한 결과 이미드 구조의 비율은 55.0%, 아믹산 구조의 비율은 45.0%이었다. 비교예 1: 액정 배향제용 중합체 B-1의 제조
상기 실시예 1 에서 DA-2 l.Og, 페닐렌디아민 (PDA) 5.46g 를 NMP 163.21g에 먼저 녹인 후, 1,3-디메틸-사이클로부탄 _1,2,3,4-테트라카복실산 디무수물 (DMCBDA) 11.68g 를 첨가하는 것을 제외하고, 실시예 1 과 동일한 방법을 사용하여 중합체 B-1 를 제조하였다. GPC 를 통해 상기 B— 1 의 분자량을 확인한 결과, 수평균분자량 (Mn)이 14,000g/mol 이고, 중량평균분자량 (Mw)이 26,000g/mol 이었다. 그리고, B-1 의 모노머 구조를 분석한 결과, 분자 내 이미드 구조의 비율은 4.9%, 아믹산 구조의 비율은 95.1%이었다. 비교예 2: 액정 배향제용 중합체 B— 2의 제조
상기 실시예 1 에서 PDA 6.00g 를 NMP 156.9g 에 먼저 녹인 후, CBDA 5.34g 과 DMCBDA 6.10g 을 첨가하는 것을 제외하고, 실시예 1 과 동일한 방법을 사용하여 중합체 B— 2 를 제조하였다. GPC 를 통해 상기 B-2 의 분자량을 확인한 결과, 수평균분자량 (Mn)이 15 , 000g/mol 이고, 중량평균분자량 (Mw)이 28 , 000g/mol 이었다. 그리고, B-2 의 모노머 구조를 분석한 결과, 분자 내 아믹산 구조의 비율이 100%이었다. 비교예 3: 액정 배향제용 중합체 B-3의 제조
상기 실시예 7 에서 PDA 6.00g , NMP 163.8g, DMCBDA 12.20g, 아세트산 무수물 6.7g , 피리딘 5.2g 을 사용한 것을 제외하고 실시예 7 과 동일한 방법을 사용하였다.
그러나, 화학적 이미드화 반웅 과정 중 반응 용액이 겔화가 진행되었다. 겔화가 진행된 반응물은 과량의 증류수에서 교반하여 고형분을 얻어내고 얻어진 고형분을 과량의 증류수로 2 회, 메탄올로 3 회 세척한 후 40 °C 감압 오븐에서 24 시간 건조해 중합체 B-3 를 제조하였다. 그러나, 제조된 B-3 는 용해성이 떨어져 분자량은 측정할 수 없었으며, 실시예 7 의 분석 방법을 통해 조성을 분석한 결과 이미드 구조의 비율은 75.0%, 아믹산 구조의 비율은 25.0%이었다. 비교예 4 : 액정 배향제용 중합체 B-4의 제조
상기 실시예 1 에서 DA-3 7.0g 을 NMP 97.75g 에 먼저 녹인 후, DMCBDA 3.86g 을 첨가하는 것을 제외하고, 실시예 1 과 동일한 방법을 사용하여 중합체 B-4 를 제조하였다. GPC 를 통해 상기 B— 1 의 분자량을 확인한 결과, 수평균분자량 (Mn)이 15 , 000g/mol 이고, 중량평균분자량 (Mw)이 29 , 000g/mol 이었다. 그리고, B-4 의 모노머 구조를 분석한 결과, 분자 내 이미드 구조의 비율은 50.5%, 아믹산 구조의 비율은 49. ¾이었다. 시험예: 액정 배향막의 특성 평가
<액정 배향제 및 액정셀의 제조 >
( 1) 액정 배향제의 제조
상기 실시예 1 내지 8 및 비교예 1 내지 5에 따라 제조된 중합체 각각을 NMP와 n-부록시에탄을의 중량비율이 8 : 2인 흔합용매에 고형분 5 중량 %의 비율로 녹였다. 그리고, 얻어진 용액을 폴리 (테트라플루오렌에틸렌) 재질의 기공 사이즈가 0.2 인 필터로 가압 여과하여 액정 배향제를 제조하였다.
(2) 액정셀의 제조
상기에서 제조한 액정 배향제를 이용하여 하기와 같은 방법으로 액정셀을 제조하였다.
2.5cm X 2.7cm의 크기를 갖는 사각형 유리기판 상에 두께 60nm , 전극 폭 3 그리고 전극 간 간격이 6 인 빗살 모양의 IPS ( in-pl ane swi t ching) 모드형 IT0 전극 패턴이 형성되어 있는 기판 (하판)과 전극 패턴이 없는 유리 기판 (상판)에 각각 스핀 코팅 방식을 아용하여 액정 배향제를 도포하였다.
(2-1) 본 발명에 따른 배향 처리 공정- A
이어서, 액정 배향제가 도포된 기판을 약 70 °C의 핫플레이트 위에 두어 3분간 건조하여 용매를 증발 시켰다. 이렇게 얻어진 도막을 배향처리하기 위해, 상 /하판 각각의 도막에 선 편광자가 부착된 노광기를 이용하여 254nm의 자외선을 0.5J/ciif 또는 1 J/cuf의 노광량으로 조사하였다. 이후, 배향 처리된 상 /하판을 약 23C C의 오븐에서 30분간 소성 (경화)하여 막 두께 0. 1 의 도막을 얻었다. 이후, 3/ 크기의 볼 스페이서가 함침된 실링제 ( seal ing agent )를 액정 주입구를 제외한 상판의 가장자리에 도포하였다. 그리고, 상판 및 하판에 형성된 배향막이 서로 마주 보며 배향 방향이 서로 나란하도록 정열시킨 후, 상하판을 합착하고 실링제를 경화함으로써 빈 셀을 제조하였다. 그리고, 상기 빈 셀에 액정을 주입하여 IPS모드의 액정셀을 제조하였다.
(2-2) 본 발명과 대비되는 기존 배향 처리 공정 -B
상기 스핀 코팅 방식에 의해 액정 배향제가 도포된 기판을 약 70 °C의 핫플레이트 위에 두어 3분간 건조하여 용매를 증발 시켰다. 이후, 약
230 °C의 오븐에서 30분간 소성 (경화)하여 막 두께 0. 1 의 도막을 얻었다. 이렇게 얻어진 도막을 배향하기 위해, 상 /하판 각각의 도막에 선 편광자가 부착된 노광기를 이용하여 254nm의 자외선을 1 J/cuf의 노광량으로 조사하였다. 이후, mi 크기의 볼 스페이서가 함침된 실링제 (seal ing agent )를 액정 주입구를 제외한 상판의 가장자리에 도포하였다. 그리고, 상판 및 하판에 형성된 배향막이 서로 마주 보며 배향 방향이 서로 나란하도록 정열시킨 후, 상하판을 합착하고 실링제를 경화함으로써 빈 셀을 제조하였다. 그리고, 상기 빈 샐에 액정을 주입하여 IPS 모드의 액정샐을 제조하였다.
<액정 배향막의 특성 평가 >
( 1) 액정 배향 특성 평가
상기와 같이 A 또는 B의 배향 처리 공정으로 제조된 액정셀의 상판 및 하판에 편광판을 서로 수직이 되도록 부착하였다. 그리고, 편광판이 부착된 액정셀을 밝기 7 , 000cd/irf 의 백라이트 위에 놓고 육안으로 빛샘을 관찰하였다. 이때, 액정 배향막의 배향 특성이 우수해 액정을 잘 배열시킨다면 서로 수직으로 부착된 상, 하의 평광판에 의해 빛이 통과되지 않고 불량 없이 어둡게 관찰이 된다. 이러한 경우의 배향 특성을 '양호 '로, 액정 흐름 자국이나 휘점과 같은 빛샘이 관찰되면 '불량 '으로 표 1에 표시하였다.
(2) 액정샐의 노광량 평가
상기와 같은 방법으로 액정셀을 제조할 때, 양호한 액.정셀을 얻기 위하여 노광량을 0.5 J/cin2 또는 1 J/cirf로 달리하여 진행하였다. 필요한 노광량이 작을수록 광 감도가 우수하다고 할 수 있으므로., 액정셀의 노광량 평가는 액정 배향을 얻기 위해 필요한 노광량을 기준으로 하였으며, 하기 표 1에 표시하였다.
(3) 액정 배향 안정성 평가
상기 ( 1) 액정 배향 특성 평가를 위해 제조한 편광판이 부탁된 액정셀을 이용하여 액정 배향 안정성을 평가하였다.
구체적으로, 상기 편광판이 부탁된 액정셀을 7 , 000cd/m2의 백라이트 위에 부착하고 블랙 상태의 휘도를 휘도 밝기 측정 장비인 PR-880 장비를 이용해 측정하였다ᅳ 그리고, 상기 액정셀을 상온에서 교류전압 5V로 24시간 구동하였다. 이후, 액정셀의 전압을 끈 상태에서 상술한 바와 동일하게 블랙 상태의 휘도를 측정하였다ᅳ
액정샐의 구동 전 측정된 초기 휘도 (L0 )와 구동 후 측정된 나중 휘도 (L1 ) 간의 차이를 초기 휘도 (L0 )값으로 나누고 100을 곱하여 휘도 변동율을 계산하였다. 이렇게 계산된 휘도 변동율은 0 >에 가까을수록 배향 안정성이 우수함을 의미한다. 휘도 변동율이 10% 미만이면 '우수', 10% 이상 20% 미만이면 '보통', 20% 이상이면 '불량 '으로 표 1에 표시하였다.
【표 1】
Figure imgf000027_0001

Claims

【특허청구범위】 [청구항 1】 하기 화학식 1 로 표시되는 반복 단위, 하기 화학식 2 로 표시되는 반복 단위 및 하기 화학식 3 으로 표시되는 반복 단위로 이루어진 군에서 선택된 2 종 이상의 반복 단위를 포함하며, 하기 화학식 1 내지 3 으로 표시되는 전체 반복 단위에 대하여 하기 화학식 1 로 표시되는 반복 단위를 5 내지 74 몰% 배향제용 중합체를 포함하는 액정 배향제를 기판에 도포하여 도막을 단계 ; 상기 도막을 건조하는 단계 ; 상기 건조 단계 직후의 도막에 광을 조사하여 배향 처리하는 단계; 및 상기 배향 처리된 도막을 열처리하여 경화하는 단계;를 포함하는 액정 배향막의 제조 방법 : ,
[화학식 1]
[화학식 2]
Figure imgf000028_0001
Figure imgf000028_0002
상기 화학식 1 내지 3에서,
R1 및 R2 는 각각 독립적으로 수소 또는 탄소수 1 내지 10 의 알킬기이되, R1 및 R2가 모두 수소이지 않고, X1은 하기 화학식 4로 표시되는 4가의 유기기이고,
[화학식 4]
Figure imgf000029_0001
상기 R3 내지 R6은 각각 독립적으로 수소 또는 탄소수 1 내지 6 의 알킬기이고,
X2 및 X3 은 각각 독립적으로 탄소수 4 내지 20 의 탄화수소에서 유래한 4가의 유기기이거나, 혹은 상기 4 가의 유기기 증 하나 이상의 Η 가 할로겐으로 치환되거나 또는 하나 이상의 -CH2-가 산소 또는 황 원자들이 직접 연결되지 않도록 _0-, -CO-, -S-, -SO-, -S02- 또는 -C0NHᅳ로 대체된 4가의 유기기이고,
Y1 내지 Y3은 각각 독립적으로 하기 화학식 5 로 표시되는 2 가의 유기기이고,
[화학식 5]
Figure imgf000029_0002
상기 화학식 5에서,
R7 및 R8는 각각 독립적으로 할로겐, 시아노기, 탄소수 1 내지 10 의 알킬기, 탄소수 2 내지 10 의 알케닐기, 탄소수 1 내지 10 의 알콕시기, 탄소수 1 내지 10 의 플루오로알킬기 또는 탄소수 1 내지 10 의 플루오로알콕시기이며,
p 및 q는 각각 독립적으로 0 내지 4사이의 정수이고,
L1 은 단일결합, -0-, -CO-, -S-, -S02-, -C(C¾)2-, -C(CF3)2-, - C0NH-, -C00-, -(CH2)Z-, -0(CH2)z0-, -0(C¾)Z -, -0CH2-C(CH3)2-CH20-, -C00- (CH2)z-0C0- 또는 -0C0-(CH2)z— COO-이며, 상기 z는 1 내지 10 사이의 정수이고,
m은 0 내지 3 사이의 정수이다.
【청구항 2】
제 1 항에 있어서,
X2 및 X3 은 각각 독립적으로 하기 화학식 6 에 기재된 4 가의 유기기인 액정 배향제용 중합체 :
6]
Figure imgf000030_0001
상기 화학식 6에서,
R3 내지 R6 은 각각 독립적으로 수소 또는 탄소수 1 내지 6 의 알킬기이고,
L2 는 단일결합, -요, -CO-, -S-, -SO- , -S02-, -CR9R10-, -C0NH-, 페닐렌 또는 이들의 조합으로 이루어진 군에서 선택된 어느 하나이며,
상기에서 R9 및 R10는 각각 독립적으로 수소, 탄소수 1 내지 10 의 알킬기 또는 플루오로알킬기이다.
【청구항 3】
제 1항에 있어서,
상기 액정 배향제는 상기 액정 배향제용 중합체를 유기 용매에 용해 또는 분산시킨 것인 액정 배향막의 제조 방법.
【청구항 4】
제 1항에 있어서, 상기 도막을 건조하는 단계는 50 내지 150°C에서 수행되는 액정 배향막의 제조 방법 .
[청구항 5】
5 제 1항에 있어서,
상기 배향 처리하는 단계에서 광 조사는 150 내지 450 nm 파장의 편광된 자외선을 조사하는 것인 액정 배향막의 제조 방법.
【청구항 6】
10 제 1항에 있어서,
상기 도막을 경화하는 단계에서 열처리 온도는 150 내지 300°C인 것을 특징으로 하는 액정 배향막의 제조 방법.
【청구항 71
15 제 1항 내지 제 6항 중 어느 한 항에 따라 제조된 액정 배향막 .
【청구항 8】
제 7항의 액정 배향막을 포함하는 액정 표시소자 .
- 20 【청구항 9】
하기 화학식 1 로 표시되는 반복 단위 , 하기 화학식 2 로 표시되는 반복 단위 및 하기 화학식 3 으로 표시되는 반복 단위로 이루어진 군에서 선택된 2 종 이상의 반복 단위를 포함하며, 하기 화학식 1 내지 3 으로 표시되는 전체 반복 단위에 대하여 하기 화학식 1 로 표시되는 반복 단위를 25 5 내지 74 몰% 포함하는 액정 배향제용 중합체를 포함하는 액정 배향제를 기판에 도포하여 도막을 형성하는 단계 ;
상기 도막을 건조하는 단계 ;
상기 건조 단계 직후의 도막에 광을 조사하여 배향 처리하는 단계; 상기 배향 처리된 도막을 열처리하여 경화하는 단계;를 포함하는 액정 배향막의 제조 방법:
[화학식 1]
Figure imgf000032_0001
[화학식 2]
Figure imgf000032_0002
[화학식 3]
Figure imgf000032_0003
상기 화학식 1 내지 3에서,
R1 및 R2 는 각각 독립적으로 수소 또는 탄소수 1 내지 10 의 알킬기이되, R1 및 R2가 모두 수소이지 않고,
X1은 4가의 유기기이고,.
X2 및 X3 은 각각 독립적으로 탄소수 4 내지 20 의 탄화수소에서 유래한 4 가의 유기기이거나, 혹은 상기 4 가의 유기기 중 하나 이상의 H 가 할로겐으로 치환되거나 또는 하나 이상의 -C¾-가 산소 또는 황 원자들이 직접 연결되지 않도록 — 0—, -CO- , -S -, -SO- , -S02- 또는 -C0NH-로 대체된 4가의 유기기이고,
Y1 내지 Y3은 각각 독립적으로 하기 화학식 5 로 표시되는 2 가의 유기기이고,
[화학식 5]
Figure imgf000033_0001
^기 화학식 5에서,
R7 및 R8는 각각 독립적으로 할로겐, 시아노기 , 탄소수 1 내지 10 의 알킬기, 탄소수 2 내지 10 의 알케닐기, 탄소수 1 내지 10 의 알콕시기, 탄소수 1 내지 10 의 플루오로알킬기 또는 탄소수 1 내지 10 의 플루오로알콕시기이며,
p 및 q는 각각 독립적으로 0 내지 4사이의 정수이고,
L1 은 단일결합, — 0-, -CO-, -S-, -S02-, -C(C¾)2-, -C(CF3)2-, - C0NH-, -C00-, -(CH2)Z-, -0(CH2)z0-, _0(CH2)z-, -0CH2-C(C¾)2-CH20-, -C00- (CH2)z-0C0- 또는 -0C0-(CH2)z-C00-이며,
상기 z는 1 내지 10 사이의 정수이고,
m은 0 내지 3 사이의 정수이다.
PCT/KR2016/012531 2015-11-11 2016-11-02 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자 WO2017082579A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018510080A JP6609875B2 (ja) 2015-11-11 2016-11-02 液晶配向膜の製造方法、これを利用した液晶配向膜および液晶表示素子
US15/751,737 US10696901B2 (en) 2015-11-11 2016-11-02 Method of manufacturing liquid crystal alignment layer, liquid crystal alignment layer manufactured by using the same, and liquid crystal display device
EP16864505.9A EP3315544B1 (en) 2015-11-11 2016-11-02 Liquid crystal alignment film manufacturing method, and liquid crystal alignment film and liquid crystal display element, using same
CN201680048836.6A CN107922647B (zh) 2015-11-11 2016-11-02 制造液晶取向层的方法、通过使用其制造的液晶取向层和液晶显示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150158388 2015-11-11
KR10-2015-0158388 2015-11-11
KR10-2016-0142888 2016-10-31
KR1020160142888A KR101879834B1 (ko) 2015-11-11 2016-10-31 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자

Publications (1)

Publication Number Publication Date
WO2017082579A1 true WO2017082579A1 (ko) 2017-05-18

Family

ID=58695777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012531 WO2017082579A1 (ko) 2015-11-11 2016-11-02 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자

Country Status (1)

Country Link
WO (1) WO2017082579A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044795A1 (ja) * 2017-08-29 2019-03-07 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2019139115A1 (ja) * 2018-01-15 2019-07-18 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
USD888236S1 (en) 2016-10-05 2020-06-23 Becton, Dickinson And Company Catheter adapter grip
JPWO2019065646A1 (ja) * 2017-09-26 2020-10-15 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
US11230670B2 (en) * 2017-06-30 2022-01-25 Lg Chem, Ltd. Liquid crystal aligning agent composition, method for producing liquid crystal alignment film using same, and liquid crystal alignment film using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046229A (ko) * 2002-11-26 2004-06-05 한국화학연구원 감광성 투명 폴리아믹산 유도체와 폴리이미드계 수지
KR20140032883A (ko) * 2012-09-07 2014-03-17 주식회사 엘지화학 광배향성 폴리이미드계 공중합체 및 액정 배향막
KR20150001826A (ko) * 2012-04-18 2015-01-06 닛산 가가쿠 고교 가부시키 가이샤 광 배향법용의 액정 배향제, 액정 배향막 및 액정 표시 소자
KR20150037576A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 광배향성 중합체, 이를 포함하는 액정 배향막 및 이의 형성 방법
JP2015135393A (ja) * 2014-01-17 2015-07-27 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム及び位相差フィルムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046229A (ko) * 2002-11-26 2004-06-05 한국화학연구원 감광성 투명 폴리아믹산 유도체와 폴리이미드계 수지
KR20150001826A (ko) * 2012-04-18 2015-01-06 닛산 가가쿠 고교 가부시키 가이샤 광 배향법용의 액정 배향제, 액정 배향막 및 액정 표시 소자
KR20140032883A (ko) * 2012-09-07 2014-03-17 주식회사 엘지화학 광배향성 폴리이미드계 공중합체 및 액정 배향막
KR20150037576A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 광배향성 중합체, 이를 포함하는 액정 배향막 및 이의 형성 방법
JP2015135393A (ja) * 2014-01-17 2015-07-27 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム及び位相差フィルムの製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD888236S1 (en) 2016-10-05 2020-06-23 Becton, Dickinson And Company Catheter adapter grip
US11230670B2 (en) * 2017-06-30 2022-01-25 Lg Chem, Ltd. Liquid crystal aligning agent composition, method for producing liquid crystal alignment film using same, and liquid crystal alignment film using same
WO2019044795A1 (ja) * 2017-08-29 2019-03-07 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR20200041965A (ko) * 2017-08-29 2020-04-22 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
CN111344630A (zh) * 2017-08-29 2020-06-26 日产化学株式会社 液晶取向剂、液晶取向膜和液晶表示元件
JPWO2019044795A1 (ja) * 2017-08-29 2020-10-15 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP7196847B2 (ja) 2017-08-29 2022-12-27 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR102635627B1 (ko) 2017-08-29 2024-02-08 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
JPWO2019065646A1 (ja) * 2017-09-26 2020-10-15 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7243628B2 (ja) 2017-09-26 2023-03-22 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2019139115A1 (ja) * 2018-01-15 2019-07-18 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Similar Documents

Publication Publication Date Title
JP6790336B2 (ja) 液晶配向剤組成物、液晶配向膜の製造方法、これを用いた液晶配向膜および液晶表示素子
CN107922647B (zh) 制造液晶取向层的方法、通过使用其制造的液晶取向层和液晶显示装置
CN108291149B (zh) 液晶取向组合物、用于使用其制备液晶取向膜的方法和使用其的液晶取向膜
JP6511698B2 (ja) 液晶配向剤用重合体
WO2017082579A1 (ko) 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정 표시소자
JP2019512719A (ja) 液晶配向膜の製造方法
WO2017043822A1 (ko) 액정 배향제용 중합제
US11230670B2 (en) Liquid crystal aligning agent composition, method for producing liquid crystal alignment film using same, and liquid crystal alignment film using same
CN110168053B (zh) 液晶取向剂组合物、使用其制造液晶取向膜的方法和使用其的液晶取向膜
US11073728B2 (en) Liquid crystal alignment film, method for preparing the same and liquid crystal display device using the same
JP6972489B2 (ja) 液晶配向剤組成物、これを用いた液晶配向膜の製造方法、およびこれを用いた液晶配向膜
JP6855676B2 (ja) 液晶配向剤組成物、それを用いた液晶配向膜の製造方法、それを用いた液晶配向膜および液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864505

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016864505

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15751737

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018510080

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE