WO2017195986A1 - 가로등의 제어방법 및 이를 이용한 제어장치 - Google Patents

가로등의 제어방법 및 이를 이용한 제어장치 Download PDF

Info

Publication number
WO2017195986A1
WO2017195986A1 PCT/KR2017/003725 KR2017003725W WO2017195986A1 WO 2017195986 A1 WO2017195986 A1 WO 2017195986A1 KR 2017003725 W KR2017003725 W KR 2017003725W WO 2017195986 A1 WO2017195986 A1 WO 2017195986A1
Authority
WO
WIPO (PCT)
Prior art keywords
lighting
signal
node
street light
street
Prior art date
Application number
PCT/KR2017/003725
Other languages
English (en)
French (fr)
Inventor
김현일
양문흠
Original Assignee
(주)네오비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160056862A external-priority patent/KR101640895B1/ko
Priority claimed from KR1020160088679A external-priority patent/KR102340722B1/ko
Priority claimed from KR1020160109160A external-priority patent/KR101692217B1/ko
Priority claimed from KR1020170019994A external-priority patent/KR20180093631A/ko
Priority claimed from KR1020170026946A external-priority patent/KR101746512B1/ko
Application filed by (주)네오비 filed Critical (주)네오비
Priority to US16/476,873 priority Critical patent/US10849208B2/en
Publication of WO2017195986A1 publication Critical patent/WO2017195986A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/08Lighting devices intended for fixed installation with a standard
    • F21S8/085Lighting devices intended for fixed installation with a standard of high-built type, e.g. street light
    • F21S8/086Lighting devices intended for fixed installation with a standard of high-built type, e.g. street light with lighting device attached sideways of the standard, e.g. for roads and highways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/155Coordinated control of two or more light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/103Outdoor lighting of streets or roads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/17Operational modes, e.g. switching from manual to automatic mode or prohibiting specific operations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to a control method of a street lamp and a control device using the same, and more particularly, to a control method and a control device using the street lamp that can control the brightness of a plurality of street lights installed on the road more quickly and efficiently. .
  • a plurality of street lights are installed at a predetermined distance from the road as lighting for illuminating the road for the safety of pedestrians and traffic.
  • the plurality of street lights illuminate the road at night, thereby allowing safe driving.
  • An object of the present invention is to provide a control method of a street lamp and a control apparatus using the same that can control the street lamp more quickly and efficiently.
  • the motion detection sensor installed in any one of the plurality of node street lamp (node) street lamps to detect the presence of the object in the preset detection area, the detected object presence signal
  • a lighting step includes a lighting step of lighting the street lamp.
  • the control apparatus of the street lamp determines whether an object exists according to a signal received from a motion detection sensor, and if it is determined that an object exists, it is determined whether there is an input object presence signal and the input object presence signal is inputted. If not, a new object existence signal is generated, and if it is determined that the object does not exist and there is no input object existence signal, an object absence signal is generated. If it is determined that the object exists, it is determined whether the object is a new object or an existing object.
  • a signal processing unit for calculating a size of a lighting area when it is determined that the new object is determined;
  • the signal is turned on at a preset dimming value, the object member signal is input from the signal processor, and a light zone active signal is generated from any one of surrounding street lights.
  • a lighting control unit which lights up at a preset dimming value upon receiving a);
  • a short-range wireless communication unit configured to set at least one street lamp included in the lighting area as an additional lighting street lamp according to the size of the lighting area, and to transmit the lighting area activation signal to the additional lighting street lamp.
  • a plurality of node street lights respectively detect the presence of an object, and transmits and receives a signal through short-range wireless communication between each of the street lamps, the object presence signal and the lighting area activation signal Accordingly, since the dimming value of each node street light is controlled, the lighting of the street light can be controlled more quickly and efficiently.
  • the dimming value of the node street light is controlled according to the input lighting area activation signal. There is an advantage to lighting safely.
  • the virtual lighting street lighting signal placed in front of the live lighting street lamp is transmitted in advance to set By controlling to automatically turn on after a time, even if an abnormal problem such as a motion detection sensor does not detect the object or a communication failure occurs in the future, there is an effect that the street lamps located in the front can be normally turned on.
  • FIG. 1 is a block diagram showing a lighting control apparatus of a street lamp according to a first embodiment of the present invention.
  • FIG. 2 is a view showing a lighting control method of a street lamp according to a first embodiment of the present invention.
  • FIG 3 is a view showing a state in which the lighting control of the street lamp according to the first embodiment of the present invention is implemented.
  • FIG. 4 is a view showing a lighting control method of a street lamp according to a second embodiment of the present invention.
  • FIG. 5 is a block diagram schematically showing a control gear device for a street lamp according to a third embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a control method of a street lamp according to a third embodiment of the present invention.
  • FIG. 7 is a view showing a state in which the control of the street lamp according to the third embodiment of the present invention is implemented.
  • FIG 8 is a view showing a state in which the control of the street lamp according to the fourth embodiment of the present invention is implemented.
  • FIG. 1 is a block diagram showing a lighting control apparatus of a street lamp according to a first embodiment of the present invention.
  • a plurality of street lights are installed on a road, for example.
  • the plurality of street lamps installed at predetermined intervals from each other on the road on which the vehicle runs are referred to as node street lamps 20.
  • the lighting control apparatus 10 of a street lamp according to the first exemplary embodiment of the present invention is installed for each of a plurality of node street lights 20 installed on a road, and each node street light has the same component. Do.
  • the lighting control device of one of the plurality of node street lights 20 will be described as an example in the present embodiment, but the lighting control device 10 includes all installed on the plurality of node street lights 20. Applied to lighting controls.
  • the lighting control device 10 includes a motion detection sensor 2, a signal processing unit 4, a short range wireless communication unit 6, and a lighting control unit 8.
  • the motion detection sensor 2 detects the presence of an object in a detection area set at the node street light.
  • the sensing region is set differently for each of the plurality of node street lights 20.
  • the motion detection sensor 2 will be described using, for example, a Doppler radar sensor of Ultra Wide Band (UWB) type.
  • the object includes all moving objects such as a vehicle, a bicycle, a motorcycle, and a pedestrian. Hereinafter, the object will be described as an example of the vehicle.
  • the motion detection sensor 2 may detect the presence or absence of the vehicle in the detection area, whether the vehicle enters the detection area, the traffic congestion in the detection area, and the like.
  • the motion detection sensor 2 detects a coordinate value of the object and transmits an object presence signal to the signal processor 4.
  • the signal processor 4 receives the object presence signal from the motion detection sensor 2.
  • the signal processing unit 4 is provided for each of the plurality of node street lights 20.
  • the signal processing unit 4 may be one central server unit that receives a signal with the plurality of node street lights 20. .
  • the signal processing unit 4 calculates the moving speed and the moving direction of the object according to the object presence signal received from the motion detection sensor 2. In addition, the signal processor 4 determines whether the object is a new object newly entered into the sensing area or an existing object already detected according to the object presence signal. In addition, the signal processor 4 calculates the size of the lighting area around the node street light according to the moving speed and the moving direction. The signal processor 4 outputs a moving speed, a moving direction, a new object, an existing object, a size of a light zone (LZ, light zone), the object existence signal, and the light region activation signal of the object.
  • LZ light zone
  • the short-range wireless communication unit 6 is a device for short-range wireless communication between adjacent node street lights.
  • the short range wireless communication unit 6 receives a signal from the signal processing unit 4 about the moving direction of the object and the size of the lighting area.
  • the short-range wireless communication unit 6 sets an additional lit street light that is adjacent to the node street light among the plurality of node street lights 20 and included in the lighting area to communicate with and light together.
  • the short range wireless communication unit 6 outputs the size of the lighting area and the lighting area activation signal to the additional lighting street lamp.
  • the short range wireless communication unit 6 communicates with the short range wireless communication unit respectively installed in the plurality of node street lights adjacent to the node street light.
  • the short range wireless communication unit 6 performs RF communication or Zigbee communication.
  • the plurality of node street lights are continuously installed at a predetermined interval at a distance of up to 2 km on the road, and the RF communication is suitable for communication between the node street lights because the communication is possible within a range of up to 10 km.
  • the plurality of node street lights are spaced apart at intervals of up to 50 m on the road, and the Zigbee communication is suitable for communication between the node street lights because communication is possible within a range of up to 100 m.
  • the present invention is not limited thereto, and in addition to Zigbee communication, it is possible to use various communication such as Zwave.
  • the lighting control unit 8 receives a signal from the signal processing unit 4 or the short range wireless communication unit 6.
  • the lighting control unit 8 receives the object presence signal and the lighting area activation signal from the signal processing unit 4, and receives the lighting area activation signal from the short range wireless communication unit 6.
  • the lighting controller 8 controls the dimming value of the node street light according to the input signal to light the node street light.
  • FIG. 2 is a view showing a lighting control method of a street lamp according to a first embodiment of the present invention.
  • the first node street light 21 of the plurality of node street lights 20 will be described. That is, the motion detection sensor 2 of the first node street light 21 detects an object, for example.
  • the motion detection sensor 2 performs an object detection step of detecting the presence of an object in a preset detection area.
  • the motion detection sensor 2 transmits the detected object presence signal to the signal processor 4.
  • the object presence signal includes a coordinate value of an object existing in the detection area.
  • the signal processor 4 receives the object presence signal from the motion detection sensor 2. The signal processor 4 determines that the object exists in the detection area when the object presence signal is received from the motion detection sensor 2 (S2).
  • the signal processor 4 performs an object determination step of determining whether the object is a new object newly entered into the sensing area or an existing object that has already been detected.
  • the distinction between the new object and the existing object may be determined according to the continuity according to the coordinate value included in the object existence signal, the number of the coordinate values, and the movement path of the object.
  • the pre-stored coordinate values will be described as an example of being temporarily stored in a database (not shown) provided in the lighting control device 10.
  • the present invention is not limited thereto and may be temporarily stored in the signal processing unit 4 or the lighting control unit 8 in addition to the database.
  • the current lighting state of the first node street light 21 is maintained.
  • the signal processor 4 calculates the moving direction and the moving speed of the new object (S4).
  • the moving speed may be calculated using a difference between coordinate values included in the object presence signal and a time when the motion detection sensor 2 detects each coordinate value.
  • the average value of the moving speeds of all the detected objects is calculated or the largest value is calculated as the moving speed.
  • the signal processor 4 performs a calculation step of calculating a size of a lighting area to be turned on based on the first node street light 21 according to the movement speed.
  • the size of the lit area includes the number of to be lit.
  • the number of to be turned on may be calculated using the moving speed and the distance between the plurality of node street lights 20.
  • the size of the lighting area is set in proportion to the moving speed. For example, if the moving speed of the new object is fast, the number of adjacent lights located in front of the first node street light 21 is increased, and if the moving speed of the new object is slow, the first node street light 21 of the first node street light 21 is increased. The number of adjacent lights located in front can be reduced.
  • the signal processing unit 4 inputs a signal for the moving direction of the new object and the size of the lighting area to the short range wireless communication unit 6 (S6).
  • the short-range wireless communication unit 6 When the short range wireless communication unit 6 receives a signal regarding the moving direction of the new object and the size of the lighting area, the short-range wireless communication unit 6 is connected to the lighting area among the plurality of street lights 20 adjacent to the first node street light 21. At least one of the included street lamps is set as additional lamps. (S7) Referring to FIG. 3A to be described below, two additional lamps are set as examples. The number of the additionally lit street light is set differently according to the moving direction and the moving speed. That is, by setting an adjacent street lamp as an additional lighting street lamp in addition to the first node street lamp 21 that senses an object, it controls not only the first node street lamp 21 that senses an object but also an additional lighting street lamp to light up together.
  • the short-range wireless communication unit 6 transmits a lighting area activation signal to the additionally lit street light.
  • the lighting area activation signal is a control signal for lighting the street light in the lighting area.
  • the short range wireless communication unit 6 communicates with the short range wireless communication units respectively installed in the additional lighting street lamps, and transmits the lighting area activation signal.
  • Each short-range wireless communication unit of the additionally lit street light transmits a signal to a lighting controller of the additionally lit street light when the lighting area activation signal is transmitted.
  • the lighting controller of the additional lighting street lamp receives the lighting area activation signal, the lighting controller controls the dimming value of the additional lighting street lamp differently according to the presence or absence of an input object presence signal and lights the lighting unit.
  • the lighting controller of the additional lighting street light determines that the additional lighting street light is turned off or is lit by a preset dimming value when there is no input object signal, and the dimming value of the additional lighting street light is equal to or higher than the rated value. Lights up when set upward.
  • the set dimming value is in the range of 30 to 50%, and the rated value is 100%.
  • the present invention is not limited thereto, and the set dimming value and the rated value may be variously set according to various factors such as the administrator's selection or the surrounding environment.
  • the lighting controller of the additional lighting street light may determine that a dimming value of the additional lighting street light is set to be equal to or higher than the rated value when the object presence signal is input, and may control to maintain the current lighting state. .
  • the signal processing unit 4 determines whether there is the previously input lighting area activation signal.
  • the previously input lighting area activation signal is a signal temporarily stored in the database.
  • the dimming value of the first node street light 21 is set to 100%, which is the rated value, and is turned on, thereby controlling to maintain the current lighting state.
  • the signal processing unit 4 inputs the object presence signal and the lighting area activation signal to the lighting control unit 8. (S10)
  • the signal processor 4 may temporarily store the lighting area activation signal in the database.
  • the lighting control unit 8 determines whether there is an object input signal previously input. (S11)
  • the input object presence signal is temporarily stored in the database. It is a signal.
  • the dimming value of the first node street light 21 is set to 100%, which is the rated value, and is already lit, so that the current lighting state is maintained.
  • the signal processor 4 may temporarily store the object presence signal in the database.
  • the signal processing unit 4 determines whether there is an input object presence signal.
  • the signal processor 4 checks whether there is an input object presence signal if there is no newly received object presence signal.
  • the input object presence signal is a signal temporarily stored in the database.
  • the first node street light 21 maintains the current lighting state or terminates execution. If there is no input object signal, the current lighting state is turned off or is lit in the range of 30 to 50%, which is the set dimming value.
  • the signal processor 4 inputs a new object member signal to the lighting controller 8 (S15).
  • the lighting controller 8 determines whether there is a previously input lighting region activation signal.
  • the lighting control unit 8 lights the first node street light 21 in a range of 30 to 50%, which is the set dimming value (S17). Even if not, the first node street light 21 is turned on at 30 to 50% dimming value for safety.
  • the dimming value of the first node street light 21 may be controlled according to weather information or time information. The weather information and time information may be periodically received from an external organization. For example, the first node street light 21 may be turned on at a dimming value of 30 to 50% for safety, even if the object is not detected in a foggy or cloudy weather or when the sun is dark.
  • the lighting control unit 8 maintains the current lighting state of the first node street light 21. (S18) If the previously input lighting area activation signal is present, Since the first node street light 21 can be determined to be in a lit state, the current lit state is maintained.
  • the size of the lighting area is calculated based on the moving direction and the speed of the new object.
  • the size of the lighting area is not limited thereto.
  • the manual method is a method in which the user manually inputs the number of street lights to be lit as the size of the lighting area when the system is initially set.
  • a plurality of lighting modes are preset in the system, and when the user selects any one of the plurality of lighting modes at the time of initial setting, the size of the street light to be turned on as the size of the lighting region according to the selected mode.
  • the number is set. That is, in the semi-operating method, the user selects the lighting mode without inputting the number of street lights to be turned on.
  • the plurality of lighting modes may include a power saving mode, a normal mode, a safety mode, and the like, wherein the power saving mode is preset with the smallest number of street lights to be turned on, and the safety mode is the number of street lights to be turned on. Is the most preset state, and the user selects and inputs one of the lighting modes without directly inputting the number of street lights.
  • FIG 3 is a view showing a state in which the lighting control of the street lamp according to the first embodiment of the present invention is implemented.
  • first, second, third, fourth, fifth, sixth, seventh and eighth node streetlights 21 to 28 from node street lights installed on a side of a vehicle to enter among a plurality of node street lights 20 installed on a road. It will be referred to as).
  • the lighting control device 10 is provided for each of the first, second, third, fourth, fifth, sixth, seventh, and eight node streetlights 21 to 28.
  • two first and second vehicles A and B enter the sensing region of the first node street light 21.
  • both the object presence signal and the lighting area activation signal are input to the lighting control unit 8 of the first node street light 21. Accordingly, the dimming value of the first node street light 21 is set to 100%, which is the rated value, and is turned on.
  • the short range wireless communication unit 6 of the first node street light 21 sets the second and third node street lights 22 and 23 adjacent to the first node street light 21 as the additional lighting street light.
  • the short range wireless communication unit 6 of the first node street light 21 transmits a lighting area activation signal to each short range wireless communication unit of the second and third node street lights 22 and 23 through wireless communication.
  • the second and third node street lights 22 and 23 receive the lighting area activation signal
  • the second and third node street lights 22 and 23 control the dimming value differently according to the presence or absence of an input object presence signal.
  • the dimming value is set to 100% of the rated value and is turned on. It is judged that the current lighting state is maintained.
  • the second and third node street lights 22 and 23 receive the lighting area activation signal, and when there is no input object presence signal, the second and third node street lights 22 and 23 are turned off or It is determined that the light is turned on by the set dimming value, and the dimming value is set upward to the rated value 100% and turned on.
  • the first node street light 21 and the second and third nodes may be used.
  • the dimming values of the street lights 22 and 23 are set to 100%, which is the rated value, and all of them are turned on.
  • the first vehicle A and the second vehicle B are moved by a predetermined distance.
  • the moving speed of the said 1st vehicle A and the said 2nd vehicle B differs, for example, and demonstrates.
  • the object presence signal and the lighting area activation signal are input to the lighting controller 8 of the second node street light 22. do. Accordingly, the dimming value of the second node street light 22 is set to 100%, which is the rated value, and is turned on.
  • the object member signal is newly input even if there is a previously input object presence signal.
  • the first node street light 21 is turned down to 30 to 50% of the set dimming value and is turned on.
  • the short range wireless communication unit 6 of the second node street light 22 sets the third and fourth node street lights 23 and 24 adjacent to the second node street light 22 as the additional lighting street light.
  • the short range wireless communication unit 6 of the second node street light 22 transmits a lighting area activation signal to each short range wireless communication unit of the third and fourth node street lights 23 and 24 through wireless communication.
  • the third and fourth node street lights 23 and 24 receive the lighting area activation signal
  • the third and fourth node street lights 23 and 24 control the dimming value differently according to the presence or absence of the input object presence signal.
  • the dimming value is set to 100% of the rated value and is turned on. It is judged that the current lighting state is maintained.
  • the dimming value is set to 100%, which is the rated value, and remains lit.
  • the fourth node street light 24 Since the fourth node street light 24 has no object presence signal input in the state where the lighting area activation signal is received, it is determined that the fourth node street light 24 is turned off or is lit by the set dimming value.
  • the dimming value of the fourth node street light 24 is set to 100% of the rated value and turned on.
  • the dimming values of the second node street light 22 and the third and fourth node street lights 23 and 24 are rated.
  • the value is set to 100% and all lights up.
  • the lighting controller 8 of the third node street light 23 provides the object presence signal and the lighting area activation signal. Are entered. Accordingly, the dimming value of the third node street light 23 is set to 100%, which is the rated value, and is turned on.
  • the short range wireless communication unit 6 of the third node street light 23 sets the fourth and fifth node street lights 24 and 25 adjacent to the third node street light 23 as the additional lighting street light.
  • the short range wireless communication unit 6 of the third node street light 23 transmits a lighting area activation signal to each short range wireless communication unit of the fourth and fifth node street lights 24 and 25 through wireless communication.
  • the fourth and fifth node street lights 24 and 25 receive the lighting area activation signal
  • the fourth and fifth node street lamps 24 and 25 control the dimming value differently according to the presence or absence of the input object presence signal.
  • the fourth and fifth node street lamps 24 and 25 determine that the dimming value is set to 100% of the rated value and is turned on when there is an input object presence signal in the state where the lighting area activation signal is received. Current lighting status.
  • the dimming value of the fourth node street light 24 is set to 100%, which is the rated value, and turned on.
  • the fifth node street light 25 Since the fifth node street light 25 has no object presence signal input in the state where the lighting area activation signal is received, it is determined that the fifth node street light 25 is turned off or is lit by the set dimming value. The lamp is lit by setting the dimming value of the fifth node street light 25 to 100%, which is the rated value.
  • the first vehicle A enters the sensing region of the second node street light 22, and the second vehicle (S) enters the sensing region of the third node street light 23.
  • the dimming values of the second, third, fourth, and fifth node street lights 22, 23, 24, and 25 are all lit to 100% of the rated value.
  • the first vehicle A and the second vehicle B are further moved by a predetermined distance.
  • the object presence signal and the lighting area activation signal are input to the lighting controller 8 of the fourth node street light 24. do. Therefore, the dimming value of the fourth node street light 24 is turned on to 100% of the rated value.
  • the object member signal is newly input even if there is an input signal.
  • the lighting area activation signal is not present in the first, second, and third node street lights 21, 22, and 23, the first, second, and three node street lights 21, 22, 23 are set as described above. The lamp is turned down to 30 to 50% of the dimming value.
  • the short range wireless communication unit 6 of the fourth node street light 24 sets the fifth and six node street lights 25 and 26 adjacent to the fourth node street light 24 as the additional lighting street light.
  • the short range wireless communication unit 6 of the fourth node street light 24 transmits a lighting area activation signal to each short range wireless communication unit of the fifth and six node street lights 25 and 26 through wireless communication.
  • the fifth and six node street lights 25 and 26 control different dimming values according to the presence or absence of an input object presence signal.
  • the fifth and sixth node street lights 25 and 26 determine that the dimming value is set to 100% of the rated value and is turned on when there is an input object presence signal in the state where the lighting area activation signal is received. Current lighting status.
  • the dimming value of the fifth node street light 25 is set to 100% of the rated value and turned on.
  • the sixth node street light 26 Since the sixth node street light 26 has no object presence signal input in the state where the lighting area activation signal is received, it is determined that the sixth node street light 26 is turned off or is lit by the set dimming value. The lamp is lit by setting the dimming value of the sixth node street light 26 to 100%, which is the rated value.
  • the lighting controller 8 of the sixth node street light 26 provides the object presence signal and the lighting area activation signal. Is input. Therefore, the dimming value of the sixth node street light 26 is turned on by setting the rated value to 100%.
  • the short range wireless communication unit 6 of the sixth node street light 26 sets the seventh and eighth node street lights 27 and 28 adjacent to the sixth node street light 26 as the additional lighting street light.
  • the short range wireless communication unit 6 of the sixth node street light 26 transmits a lighting area activation signal to each short range wireless communication unit of the seventh and eight node street lights 27 and 28 through wireless communication.
  • the seventh and eighth node street lights 27 and 28 receive the lighting area activation signal
  • the seventh and eighth node street lights 27 and 28 control the dimming value differently according to the presence or absence of the input object presence signal.
  • the seventh and eighth node street lights 27 and 28 determine that the dimming value is set to 100% which is the rated value and is turned on when there is an input object presence signal in the state where the lighting area activation signal is received. Current lighting status.
  • the seventh node street light 27 Since the seventh node street light 27 has no object presence signal input in the state where the lighting area activation signal is received, it is determined that the seventh node street light 27 is turned off or is lit by the set dimming value. Then, the dimming value of the seventh node street light 27 is set to 100%, which is the rated value, and turned on.
  • the dimming value of the eighth node street light 28 is set to 100%, which is the rated value, to be turned on.
  • the first vehicle A enters the sensing region of the fourth node street light 24, and the second vehicle (S) enters the sensing region of the sixth node street light 26.
  • the dimming values of the fourth, fifth, sixth, seventh and eighth node street lights 24, 25, 26, 27, and 28 are all lit at 100% of the rated value.
  • FIG. 4 is a view showing a lighting control method of a street lamp according to a second embodiment of the present invention.
  • the first node street light 21 of the plurality of node street lights 20 will be described. That is, the motion detection sensor 2 of the first node street light 21 detects an object, for example.
  • the object presence signal is transmitted from the motion detection sensor 2 to the signal processor 4 in the object detection step S1. If it is not transmitted, the control method is different from the above embodiment, and the rest of the configuration is similar, and thus, different configurations will be described in detail and detailed descriptions of the similar configurations will be omitted.
  • the signal processing unit 4 determines whether there is an input object presence signal.
  • the signal processing unit 4 inputs a new object member signal to the lighting control unit 8 (S25).
  • the lighting control unit 8 determines whether there is a lighting area activation signal previously input (S26).
  • the lighting control unit 8 lights the first node street light 21 in the range of 30 to 50%, which is the set dimming value (S27). Even if not, the first node street light 21 is turned on at 30 to 50% dimming value for safety.
  • the dimming value of the first node street light 21 may be controlled according to weather information or time information. The weather information and time information may be periodically received from an external organization. For example, the first node street light 21 may be turned on at a dimming value of 30 to 50% for safety, even if the object is not detected in a foggy or cloudy weather or when the sun is dark.
  • the lighting control unit 8 controls the dimming value of the first node street light 21 by setting the rated value to 100% (S28). Even if there is no object presence signal, if the lighting area activation signal is present, the dimming value of the first node street light 21 may be set to 100%, which is the rated value, and then turned on.
  • Figure 5 is a block diagram schematically showing a control gear device for a street lamp according to a third embodiment of the present invention.
  • 6 is a flowchart illustrating a control method of a street lamp according to a third embodiment of the present invention.
  • 7 is a view showing a state in which the control of the street lamp according to the third embodiment of the present invention is implemented.
  • a control system of a street lamp according to a third embodiment of the present invention includes a plurality of node street lights 310 to 360 installed on a road.
  • the plurality of street lamps installed at predetermined intervals from each other on a road on which the vehicle runs are referred to as node street lamps 310 to 360.
  • the plurality of node street lights 310 to 360 may include six first, two, three, four, five, and six node street lights 310, 320, 330, 340, and 350.
  • 360 is described as an example, the present invention is not limited thereto, and the number of the plurality of node street lights may be variously set.
  • the control configurations of the plurality of node street lights 310 to 360 are the same.
  • the plurality of node street lights 310 to 360 each include a motion detection sensor, a wireless communication unit, a signal processor, and a lighting controller.
  • the control component of the first node street light 310 will be described in detail.
  • the wireless communication unit 313 includes a lighting control unit 314 for controlling the lighting of the first node street light 310.
  • motion detection sensors 311, 321, 331, 341, 351, and 361 that detect an object for each of the plurality of node street lights 310 to 360 are provided as an example. do.
  • the motion detection sensor 311 detects the presence of an object in a detection area set for each of the plurality of node street lights.
  • the motion detection sensor 311 uses a UWB (Ultra Wide Band) type Doppler radar sensor.
  • the object includes all moving objects such as a vehicle, a bicycle, a motorcycle, and a pedestrian. Hereinafter, the object will be described as an example of the vehicle.
  • the motion detection sensor 311 may detect the presence or absence of the vehicle in the detection area, whether the vehicle enters the detection area, the traffic congestion in the detection area, and the like.
  • the motion detection sensor 311 inputs a coordinate value of the object to the signal processor 312. That is, when the motion detection sensor 311 of the first node street light 310 detects an object, an object coordinate value of the position of the object is input to the signal processor 312 of the first node street light 310.
  • the signal processor 312 receives the object coordinate value from the motion detection sensor 311. The signal processor 312 determines whether an object exists according to the object coordinate value, and determines whether the object is a new object or an existing object. In addition, the signal processor 312 determines whether or not the object present signal is activated. In addition, the signal processor 312 calculates the speed and the moving direction of the new object according to the object coordinate value, and also calculates the size of the light zone according to the calculated speed and the moving direction. The signal processor 312 inputs the movement direction of the new object and the size of the lighting area to the wireless communication unit 313.
  • street lights adjacent to each other are in short range wireless communication.
  • the short range wireless communication includes RF communication and Zigbee communication.
  • the plurality of node street lights are continuously installed at a predetermined interval at a distance of up to 2 km on the road, and the RF communication is suitable for communication between the node street lights because the communication is possible within a range of up to 10 km.
  • the plurality of node street lights are spaced apart at intervals of up to 50 m on the road, and the Zigbee communication is suitable for communication between the node street lights because communication is possible within a range of up to 100 m.
  • the present invention is not limited thereto, and in addition to ZigBee communication, it is possible to use various communication such as ZWAVE.
  • the wireless communication unit 313 receives the movement direction of the new object and the size of the lighting area from the signal processing unit 312, and sets communication street lamps to communicate among the plurality of node street lights.
  • the communication street lamps are set separately by being divided into a live lighting street lamp L and a pseudo lighting street lamp P according to the size of the lighting area.
  • the live lighting street light L is an additional lighting street light that receives a live light zone active signal (Ls) from the wireless communication unit 313 and immediately lights at a preset dimming value.
  • the set dimming value is 100%.
  • the virtual lighting street light P receives the virtual lighting area activation signal (Ps) from the wireless communication unit 313 and dims the setting at a predetermined lighting time in the virtual lighting area activation signal. It is a lamp which is scheduled to light by a value.
  • the lighting time point is set to a time point when a set time elapses after the live lighting street light L is turned on.
  • the motion detection sensor 311 of the first node street light 310 is described as an example to detect a new object
  • the second, third, fourth node street lights 320, 330, 340 Is set as the live lit street light (L)
  • the fifth and six node street lights 350 and 360 are set as the virtual lit street light (P).
  • the number of live lit street lights L or the number of virtual lit street lights P are set according to the size of the lit area.
  • the present invention is not limited thereto, and the number of the virtual lit street lights P may be set according to the number of the live lit street lights L or may be set to a predetermined number.
  • the lighting control unit 314 lights by controlling a dimming value of the first node street light 310.
  • the lighting control unit 314 receives the object existence signal, the live lighting area activation signal Ls, and the virtual lighting area activation signal Ps, and outputs a dimming value accordingly.
  • the second node street light 320 also communicates with an adjacent street light, a motion sensor 321 for detecting an object on a road, a signal processor 322 for processing a signal detected by the motion sensor 321.
  • the wireless communication unit 323, and the lighting control unit 324 for controlling the lighting of the second node street light (320).
  • the configuration and operation of the third, fourth, fifth, six-node street lights 330, 340, 350, and 360 are also the same, detailed descriptions thereof will be omitted.
  • the motion detection sensor 311 of the first node street light 310 detects an object among the plurality of node street lights 310 to 360.
  • the motion detection sensor 311 of the first node street light 310 detects an object
  • the coordinate value of the object is input to the signal processor 312 of the first node street light 310 (S301).
  • the signal processor 312 of the first node street light 310 determines whether an object exists according to the input coordinate value (S302).
  • the signal processor 312 of the first node street light 310 determines whether there is an object presence signal input to the first node street light 310 (S303).
  • the current state of the first node street light 310 is maintained. (S312) In other words, if it is determined that the pre-input object presence signal exists, the first node street light.
  • the 310 determines that the dimming value is set to 100% and turned on, and maintains the current state of the first node street light 310.
  • the signal processing unit 312 of the first node street light 310 generates a new object presence signal for the object, the first node street light 310
  • the object presence signal is input to the lighting control unit 314 of step S304.
  • the lighting controller 314 of the first node street light 310 receives the object presence signal, the lighting controller 314 sets the dimming value of the first node street light 310 to 100% to set the first node street light 310. (S305)
  • the signal processor 312 of the first node street light 310 determines whether the object is a new object or an existing object (S306).
  • the continuity of the moving path of the object is determined by referring to the coordinate value of the newly input object and the coordinate value of the previously stored existing object. . If it is determined that the continuity of the moving path of the object, it can be determined that the existing object. If it is determined that there is no continuity of the moving path of the object, it may be determined that it is a new object. In order to determine the continuity of the movement path, the coordinate values of the object are stored and managed so that one object has at least two coordinate histories.
  • the signal processing unit 312 of the first node street light 310 calculates the speed and the moving direction of the new object (S307).
  • the signal processing unit 312 of the first node street light 310 calculates the speed of the new object by using the distance difference of the coordinate values according to the time of the new object and a constant cycle time measured by the motion detection sensor 314. Calculate In addition, when the number of the new objects is several, the average value of the speeds of all the detected objects may be used, or the maximum value of the speeds of all the detected objects may be used.
  • the signal processor 312 of the first node street light 310 calculates the size of the lighting area by using the speed and the moving direction of the new object and the physical distance where the node street lights are installed.
  • the number of street lights to be turned on is determined.
  • the number of communication street lamps to which the first node street lamp 310 communicates is also determined. The size of the lighting area is automatically changed according to the moving speed of the new object.
  • the signal processor 312 of the first node street light 310 inputs the movement direction of the new object and the size of the lighting area to the wireless communication unit 313 (S309).
  • the wireless communication unit 313 of the first node street light 310 sets communication street lights to communicate among the plurality of node street lights 310 to 360 according to the input value.
  • the wireless communication unit 313 of the first node street light 310 determines the communication addresses of the communication street lights to communicate according to the size of the lighting area.
  • the communication address of the communication street lights is referenced from a communication network database in the wireless communication unit 313.
  • the wireless communication unit 313 of the first node street light 310 is set to distinguish between the live lighting street lamp (L) and the virtual lighting street lamp (P) of the communication street lights, and to the live lighting street lamp (L)
  • the live light zone active signal (Ls) is transmitted to the wireless communication unit of the set node street light
  • the virtual light zone activation signal (Pseudo light) is transmitted to the wireless communication unit of the node street light set to the virtual lamp street light (P).
  • zone active signal, Ps is transmitted to the wireless communication unit of the node street light set to the virtual lamp street light (P).
  • the number of the live lighting street lamps L is set in proportion to the size of the lighting area.
  • the virtual lighting street light (P) is disposed in front of the live lighting street light (L) in the moving direction of the new object, the number is determined according to the number of the live lighting street light (L) or the size of the lighting area. Can be done.
  • the live lighting street light L receives the live lighting area activation signal Ls from the first node street light 310, and receives the live lighting area activation signal Ls as a preset dimming value. It is a street lamp to light up.
  • the set dimming value is 100%.
  • the virtual lighting street light P is a street light that is to receive a virtual lighting area activation signal Ps from the first node street light 310 and is to be turned on at the preset dimming value at a preset lighting time.
  • the lighting time point is set to a time point when a preset set time elapses after receiving the virtual lighting area activation signal Ps.
  • the three second, three, and four node street lights 320, 330, and 340 are set to the fifth and sixth node streetlights 350 and 360, which are set to the live lighting streetlight L and disposed in front of the fourth node streetlight 340, are set to the virtual lighting streetlight P. It demonstrates as an example.
  • the second, third, and fourth node street lights 320, 330, and 340 are turned on with the dimming value of 100% immediately after receiving the live lighting area activation signal Ls.
  • the fifth and sixth node street lights 350 and 360 are not immediately turned on, but are in a standby state after receiving the virtual lighting area activation signal Ps, and the dimming value of the 100% at the lighting time point after the set time has elapsed. Lights up.
  • the lighting time of the fifth node street light 350 and the lighting time of the sixth street light 360 are set differently.
  • each lighting time of the plurality of virtual lighting street lights (P) is set to be sequentially turned on at a predetermined time interval, for example do. That is, when the fifth node street light 350 which is the first lamp to be turned on is set to be lit one minute after receiving the virtual lighting area activation signal Ps, the sixth node lamp which is the second lamp to be lit is the second lamp. 360 may be set to light after 2 minutes, which is twice the 1 minute after receiving the virtual lighting area activation signal Ps.
  • the plurality of virtual lit street lights P may be set to sequentially light at predetermined time intervals.
  • the present invention is not limited thereto, and the lighting timings of the plurality of virtual lighting street lamps P may be set to be gradually delayed in proportion to the distance between the live lighting street lamp L and the virtual lighting street lamp P.
  • FIG. It is possible.
  • the lighting time can of course be set differently according to the moving speed of the new object.
  • the fifth and sixth node street lights 350 and 360 may maintain a lit state with a dimming value of 30% to 50%. That is, the dimming value may be set to 30% to 50% in consideration of the night time or the road safety situation.
  • the virtual lighting area activation signal Ps when the live lighting area activation signal Ls is input to the virtual lighting street light P, the virtual lighting area activation signal Ps is deactivated.
  • the virtual lighting area activation signal Ps may be deactivated immediately or may be deactivated after a predetermined time elapses. That is, since the live lighting area activation signal Ls may be inputted or disappeared, the virtual lighting area activation signal Ps may be deactivated after a predetermined time has elapsed without immediately deactivating the virtual lighting area activation signal Ps.
  • the live lighting street lamp L As described above, after detecting the new object in the first node street light 310, not only transmits a signal by setting the live lighting street lamp L to be turned on immediately, but also lights up after a set time elapses.
  • the scheduled virtual lit street light P is also set to transmit a signal.
  • An abnormal problem such as a calculation error with respect to the size of the region, occurs, such that the live lighting area activation signal is not transmitted to the fifth node street light 350 or the sixth node street light 360.
  • the six-node street lamps 350 and 360 may be turned on according to the virtual lighting area activation signal previously input.
  • a motion detection sensor does not detect an object, or a calculation error regarding a size of a lighting area occurs. Since the node street lights 310 to 360 may be normally turned on, stability may be improved.
  • step S302 if it is determined in step S302 that the existence of the object does not exist, the signal processor 312 of the first node street light 310 determines whether there is an input object presence signal. (S313)
  • the lighting controller 314 of the first node street light 310 determines whether the first node street light 310 is turned on according to the virtual lighting area activation signal Ps (S315).
  • the first node street light 310 may be in a state where the virtual lighting area activation signal Ps is received from a node street light disposed before the first node street light 310. It is determined whether it is a lighting time point according to the virtual lighting area activation signal Ps.
  • the lighting controller 314 of the first node street light 310 determines whether there is an input live lighting area activation signal Ls (S316).
  • the live lighting area activation signal Ls is first applied to the virtual lighting area activation signal Ps, it is determined whether the live lighting area activation signal Ls has been previously input.
  • the dimming value of the first node street light 310 is set to 100%. Lights up (S317).
  • the first node street light 310 when the first node street light 310 does not have the previously input live lighting area activation signal Ls, the first node street light 310 is turned off or is turned on below a preset dimming value.
  • the dimming value of the first node street light 310 is set to 100%, which is a rated value, to be turned on.
  • the lighting control unit 314 of the first node street light 310 if it is determined that the time is not the lighting time, maintains the current state of the first node street light (310) (S312).
  • the first node street light 310 Since the object member signal is input to the first node street light 310 and not the lighting time point, the first node street light 310 is turned off or is 30% to 50% lit which is less than a preset dimming value. As it is, it maintains the present state.
  • the lighting controller 314 of the first node street light 310 maintains the current state of the first node street light 310 when it is determined that the previously input live lighting area activation signal Ls is present. (S312)
  • the dimming value of the first node street light 310 is set to 100% and is already turned on. Keep it.
  • the signal processing unit 312 of the first node street light 310 calculates the speed, the moving direction and the size of the lighting area of the new object (S307).
  • the present invention is not limited thereto, and the size of the lighting area may be input and stored in advance by the user in a manual or semi-automatic manner.
  • the manual method is a method in which the user manually inputs the number of street lights to be lit as the size of the lighting area when the system is initially set.
  • a plurality of lighting modes are preset in the system, and when the user selects any one of the plurality of lighting modes at the time of initial setting, the size of the street light to be turned on as the size of the lighting region according to the selected mode.
  • the number is set. That is, in the semi-operating method, the user selects the lighting mode without inputting the number of street lights to be turned on.
  • the plurality of lighting modes may include a power saving mode, a normal mode, a safety mode, and the like, wherein the power saving mode is preset with the smallest number of street lights to be turned on, and the safety mode is the number of street lights to be turned on. Is the most preset state, and the user selects and inputs one of the lighting modes without directly inputting the number of street lights.
  • the wireless communication unit 313 communicates according to a preset lighting area size. Street lamps can be set.
  • Figure 8 is a view showing a state in which the control of the street lamp according to the fourth embodiment of the present invention.
  • first node street lights 410 may include first, third, and fifth lights.
  • the motion detection sensors 411, 431, and 451 will be described by way of example.
  • the motion detection sensor 411 of the first node street light 410 detects a new object.
  • the wireless communication unit of the first node street light 410 sets the second and third node street lights 420 and 430 as a live lighting street light L, transmits a live lighting area activation signal Ls, and
  • the four-node street light 440 is set as a virtual lighting street light P and transmits a virtual lighting area activation signal Ps.
  • the second and third node street lights 420 and 430 are turned on with a dimming value of 100% immediately after receiving the live lighting area activation signal Ls.
  • the fourth node street light 440 is in a standby state after receiving the virtual lighting area activation signal Ps and then lights at a dimming value of 100% when the lighting time has elapsed after a predetermined time.
  • the new object travels and passes under the second node street light 420.
  • the second node street light 420 does not have a motion detection sensor, the second node street light 420 does not detect the new object, and the live lighting area activation signal Ls or the virtual lighting area activation signal Ps does not detect the new object. Do not transmit to the nearby streetlight.
  • the second, third, and four node street lights 420, 430, and 440 may be lit with a dimming value of 100%.
  • the fourth node street light 440 since the fourth node street light 440 has already received the virtual lighting area activation signal Ps from the first node street light 410, even when there is no signal, 100% of the fourth node street light 440 becomes 100%. It can be turned on automatically with dimming value.
  • the motion detection sensor of the third node street light 430 detects the new object.
  • the wireless communication unit of the third node street light 430 sets the fourth and fifth node street lights 440 and 450 as a live lit street light L and transmits a live lit area activation signal Ls.
  • the six-node street light 460 is set as a virtual lighting street light P and transmits a virtual lighting area activation signal Ps.
  • the fourth and fifth node street lights 440 and 450 are turned on with a dimming value of 100% immediately after receiving the live lighting area activation signal Ls.
  • the sixth node street light 460 is in a standby state after receiving the virtual lighting area activation signal Ps and then lights at a dimming value of 100% when the lighting time has elapsed after a predetermined time.
  • the motion detection sensor since the motion detection sensor does not need to be installed in all of the node street lights, the installation cost can be reduced.
  • the motion detection sensor is installed one by one for each of the two street lamps, for example, but not limited to this, it is possible to adjust the installation interval of the motion detection sensor.
  • the installation interval of the motion detection sensor may be adjusted in consideration of the lighting time of the virtual lighting area activation signal.
  • a control device of a street lamp that can more efficiently control the brightness of a plurality of street lights installed on the road.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

본 발명에 따른 가로등의 제어방법은, 복수의 노드 가로등들이 각각 물체의 존재여부를 감지하고, 각 노드 가로등들 간에 근거리무선통신을 통해 신호를 송, 수신함으로써, 물체존재신호와 점등영역 활성화신호에 따라 각 노드 가로등의 디밍값을 제어하기 때문에, 보다 신속하면서도 효율적으로 가로등의 점등을 제어할 수 있다. 또한, 어느 하나의 노드 가로등의 감지영역에 물체가 존재하지 않아서 물체존재신호가 없더라도 기입력된 점등영역 활성화신호에 따라 노드 가로등의 디밍값을 제어하기 때문에, 물체가 진입하기 이전에 물체의 전방을 안전하게 조명할 수 있는 이점이 있다. 또한, 물체를 감지한 노드 가로등이 즉시 점등해야 할 라이브 점등 가로등에 라이브 점등영역 활성화 신호를 전송할 뿐만 아니라, 상기 라이브 점등 가로등보다 전방에 배치된 가상 점등 가로등에는 가상 점등영역 활성화 신호를 미리 전송하여 설정 시간 이후에 자동 점등되도록 제어함으로써, 추후 동작감지센서가 상기 물체를 감지하지 못하거나 통신 장애가 발생하는 등의 비정상적인 문제가 발생하더라도 전방에 배치된 노드 가로등들이 정상적으로 점등될 수 있는 효과가 있다.

Description

가로등의 제어방법 및 이를 이용한 제어장치
본 발명은 가로등의 제어방법 및 이를 이용한 제어장치에 관한 것으로서, 보다 상세하게는 도로에 설치된 복수의 가로등들의 밝기를 보다 신속하고 효율적으로 제어할 수 있는 가로등의 제어방법 및 이를 이용한 제어장치에 관한 것이다.
일반적으로 도로에는 보행자와 교통의 안전을 위해 도로를 밝히기 위한 조명으로서 복수의 가로등들이 소정간격 이격된 위치에 설치된다. 특히, 복수의 가로등들은 야간 통행시 도로를 조명함으로써, 안전 운행이 이루어지도록 한다.
그러나, 기존의 도로 조명 시스템들은 차량이나 보행자의 유무에 관계없이 복수의 가로등들이 항상 동일한 밝기로 일괄적으로 점등 또는 소등되기 때문에, 가로등에 드는 전력량이 상당하여 에너지 낭비 및 비용이 많이 드는 문제점이 있다.
본 발명의 목적은, 보다 신속하고 효율적으로 가로등을 제어할 수 있는 가로등의 제어방법 및 이를 이용한 제어장치을 제공하는 데 있다.
본 발명에 따른 가로등의 제어방법은, 복수의 노드(node) 가로등들 중에서 어느 하나의 제1노드 가로등에 설치된 동작감지센서가 미리 설정된 감지영역에서 물체의 존재여부를 감지하고, 감지된 물체존재신호를 신호처리부로 송신하는 물체감지단계와; 상기 신호처리부는 상기 물체존재신호를 수신하면, 상기 물체가 상기 감지영역에 새로 진입한 신규 물체인지 이미 감지된 기존 물체인지 판단하는 물체판단단계와; 상기 물체판단단계에서 상기 물체가 신규 물체라고 판단되면, 상기 신호처리부는 상기 제1노드 가로등을 중심으로 점등영역의 크기를 결정하는 점등영역 계산단계와; 상기 신호처리부가 상기 제1노드 가로등에 설치된 점등 제어부에 상기 물체존재신호와 점등영역 활성화 신호를 입력하고, 상기 점등영역의 크기에 대한 신호를 상기 제1노드 가로등에 설치된 근거리무선통신부에 입력하는 신호입력단계와; 상기 근거리무선통신부가 상기 점등영역의 크기에 대한 신호를 수신하면, 상기 제1노드 가로등에 인접하는 상기 복수의 노드 가로등들 중에서 상기 점등영역에 포함되는 적어도 하나 이상의 가로등을 추가점등 가로등으로 설정하고, 상기 추가점등 가로등에 상기 점등영역 활성화 신호를 송신하는 통신단계와; 상기 신호입력단계에서 상기 제1노드 가로등의 점등 제어부가 상기 물체존재신호와 상기 점등영역 활성화 신호를 입력받으면, 상기 물체존재신호와 상기 점등영역 활성화 신호에 따라 상기 제1노드 가로등의 디밍값을 제어하여 상기 제1노드 가로등을 점등하고, 상기 통신단계에서 상기 추가점등 가로등의 점등 제어부가 상기 점등영역 활성화 신호를 수신하면, 상기 점등영역 활성화 신호에 따라 상기 추가 점등 가로등의 디밍값을 제어하여 상기 추가점등 가로등을 점등하는 점등단계를 포함한다.
본 발명에 따른 가로등의 제어장치는, 동작감지센서로부터 수신한 신호에 따라 물체 존재 여부를 판단하고, 물체가 존재한다고 판단되면 기입력된 물체존재신호가 있는지 판단하여 상기 기입력된 물체존재신호가 없으면 물체존재신호를 새로 생성하고, 상기 물체가 존재하지 않고 상기 기입력된 물체존재신호도 없다고 판단되면 물체부재신호를 생성하며, 상기 물체가 존재한다고 판단되면 상기 물체가 신규 물체인지 기존 물체인지를 판단하여 상기 신규물체라고 판단되면, 점등영역의 크기를 계산하는 신호 처리부와; 상기 신호처리부로부터 상기 물체존재신호를 입력받으면, 미리 설정된 설정디밍값으로 점등하고, 상기 신호처리부로부터 상기 물체부재신호를 입력받고, 주변 가로등들 중 어느 하나로부터 점등영역 활성화 신호(Live light zone active signal)를 수신하면, 미리 설정된 설정 디밍값으로 점등하는 점등 제어부와; 상기 점등영역의 크기에 따라 상기 주변 가로등들 중에서 상기 점등영역에 포함되는 적어도 하나 이상의 가로등을 추가 점등 가로등으로 설정하고, 상기 추가 점등 가로등에 상기 점등영역 활성화 신호를 송신하는 근거리무선통신부를 포함한다.
본 발명에 따른 가로등의 제어방법은, 복수의 노드 가로등들이 각각 물체의 존재여부를 감지하고, 각 노드 가로등들 간에 근거리무선통신을 통해 신호를 송, 수신함으로써, 물체존재신호와 점등영역 활성화신호에 따라 각 노드 가로등의 디밍값을 제어하기 때문에, 보다 신속하면서도 효율적으로 가로등의 점등을 제어할 수 있다.
또한, 어느 하나의 노드 가로등의 감지영역에 물체가 존재하지 않아서 물체존재신호가 없더라도 기입력된 점등영역 활성화신호에 따라 노드 가로등의 디밍값을 제어하기 때문에, 물체가 진입하기 이전에 물체의 전방을 안전하게 조명할 수 있는 이점이 있다.
또한, 물체를 감지한 노드 가로등이 즉시 점등해야 할 라이브 점등 가로등에 라이브 점등영역 활성화 신호를 전송할 뿐만 아니라, 상기 라이브 점등 가로등보다 전방에 배치된 가상 점등 가로등에는 가상 점등영역 활성화 신호를 미리 전송하여 설정 시간 이후에 자동 점등되도록 제어함으로써, 추후 동작감지센서가 상기 물체를 감지하지 못하거나 통신 장애가 발생하는 등의 비정상적인 문제가 발생하더라도 전방에 배치된 노드 가로등들이 정상적으로 점등될 수 있는 효과가 있다.
도 1은 본 발명의 제1실시예에 따른 가로등의 조명 제어장치가 도시된 블록도이다.
도 2는 본 발명의 제1실시예에 따른 가로등의 조명 제어방법이 도시된 도면이다.
도 3은 본 발명의 제1실시예에 따른 가로등의 조명 제어를 구현한 상태를 나타낸 도면이다.
도 4는 본 발명의 제2실시예에 따른 가로등의 조명 제어방법이 도시된 도면이다.
도 5는 본 발명의 제3실시예에 따른 가로등용 제어어장치를 개략적으로 도시한 블록도이다.
도 6은 본 발명의 제3실시예에 따른 가로등의 제어방법이 도시된 순서도이다.
도 7은 본 발명의 제3실시예에 따른 가로등의 제어를 구현한 상태를 나타낸 도면이다.
도 8은 본 발명의 제4실시예에 따른 가로등의 제어를 구현한 상태를 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대해 설명하면 다음과 같다.
도 1은 본 발명의 제1실시예에 따른 가로등의 조명 제어장치가 도시된 블록도이다.
본 발명의 제1실시예에서는 도로 위에 복수의 가로등들이 설치된 것으로 예를 들어 설명한다. 자동차가 주행하는 도로 위에서 서로 소정간격 이격되게 설치된 복수의 가로등들을 각각 노드(node) 가로등들(20)이라고 한다.
도 1을 참조하면, 본 발명의 제1실시예에 따른 가로등의 조명 제어장치(10)는, 도로 위에 설치된 복수의 노드 가로등(20)들마다 각각 설치되며, 각 노드 가로등들마다 구성요소가 동일하다.
이하, 본 실시예에서는 상기 복수의 노드 가로등들(20) 중 하나의 가로등의 조명 제어장치를 예를 들어 설명하나, 상기 조명 제어장치(10)는 상기 복수의 노드 가로등들(20)에 설치된 모든 조명 제어장치에 적용된다.
상기 조명 제어장치(10)는, 동작감지센서(2), 신호처리부(4), 근거리무선통신부(6) 및 점등 제어부(8)를 포함한다.
상기 동작감지센서(2)는, 상기 노드 가로등에 설정된 감지영역에 물체의 존재를 감지한다. 상기 감지영역은 상기 복수의 노드 가로등들(20)마다 각각 다르게 설정된다. 상기 동작감지센서(2)는 UWB(Ultra Wide Band) 방식의 도플러 레이더 센서를 이용하는 것으로 예를 들어 설명한다. 상기 물체는 차량, 자전거, 오토바이 및 보행자 등 이동하는 물체를 모두 포함하며, 이하 본 실시예에서는 차량인 것으로 예를 들어 설명한다. 상기 동작감지센서(2)는, 상기 감지영역에서 차량의 유, 무, 상기 감지영역으로 차량의 진입 여부, 상기 감지영역에서 교통 정체 여부 등을 감지할 수 있다. 상기 동작감지센서(2)는, 상기 물체의 좌표값을 감지하여 물체존재신호를 상기 신호처리부(4)로 전송한다.
상기 신호처리부(4)는, 상기 동작감지센서(2)로부터 상기 물체존재신호를 수신한다. 상기 신호처리부(4)는, 상기 복수의 노드 가로등들(20)마다 설치되는 것으로 예를 들어 설명하나, 상기 복수의 노드 가로등들(20)과 신호를 수신하는 한 개의 중앙 서버 유닛인 것도 가능하다.
상기 신호처리부(4)는, 상기 동작감지센서(2)로부터 수신한 상기 물체존재신호에 따라 상기 물체의 이동속도와 이동 방향을 계산한다. 또한, 상기 신호처리부(4)는 상기 물체존재신호에 따라 상기 물체가 상기 감지영역에 새로 진입한 신규 물체인지 이미 감지된 기존 물체인지 판단한다. 또한, 상기 신호처리부(4)는 상기 이동속도와 이동 방향에 따라 상기 노드 가로등을 중심으로 점등영역의 크기를 계산한다. 상기 신호처리부(4)는, 상기 물체의 이동속도, 이동 방향, 신규 물체 여부, 기존 물체 여부, 점등영역(LZ, Light Zone)의 크기, 상기 물체존재신호, 상기 점등영역 활성화 신호를 출력한다.
상기 근거리무선통신부(6)는, 서로 인접하는 노드 가로등들이 근거리 무선통신하도록 하는 기기이다. 상기 근거리무선통신부(6)는, 상기 신호처리부(4)로부터 상기 물체의 이동 방향과 상기 점등영역의 크기에 대한 신호를 입력받는다. 상기 근거리무선통신부(6)는, 상기 복수의 노드 가로등들(20) 중에서 상기 노드 가로등에 인접하고 상기 점등영역에 포함되어 통신하고 함께 점등되어야 하는 추가점등 가로등을 설정한다. 상기 근거리무선통신부(6)는, 상기 추가점등 가로등에 상기 점등영역의 크기와 상기 점등영역 활성화 신호를 출력한다. 상기 근거리무선통신부(6)는 상기 노드 가로등에 인접한 복수의 노드 가로등들에 각각 설치된 근거리무선통신부와 통신한다. 상기 근거리무선통신부(6)는 RF통신이나 지그비(Zigbee) 통신을 한다. 상기 복수의 노드 가로등들은 도로 위에서 최대 2km의 거리에 일정간격으로 연속적으로 설치되고, 상기 RF 통신은 최대 10km 거리 범위 내에서 통신이 가능하므로 상기 노드 가로등들 사이의 통신에 적합하다. 또한, 상기 복수의 노드 가로등들은 도로 위에서 최대 50m 이하의 간격으로 이격되게 설치되고, 상기 지그비 통신은 최대 100m 거리 범위내에서 통신이 가능하므로 상기 노드 가로등들 사이의 통신에 적합하다. 다만, 이에 한정되지 않고, 지그비 통신외에 지웨이브 등 다양한 통신을 이용하는 것이 가능하다.
상기 점등 제어부(8)는, 상기 신호처리부(4)나 상기 근거리무선통신부(6)로부터 신호를 입력받는다. 상기 점등 제어부(8)는 상기 신호처리부(4)로부터 상기 물체존재신호와 상기 점등영역 활성화 신호를 입력받고, 상기 근거리무선통신부(6)로부터 상기 점등영역 활성화신호를 입력받는다. 상기 점등 제어부(8)는 입력된 신호에 따라 상기 노드 가로등의 디밍(Dimming)값을 제어하여 상기 노드 가로등을 점등한다.
상기와 같이 구성된 본 발명의 제1실시예에 따른 가로등의 조명 제어방법을 설명하면 다음과 같다.
도 2는 본 발명의 제1실시예에 따른 가로등의 조명 제어방법이 도시된 도면이다.
도 2를 참조하면, 상기 복수의 노드 가로등들(20) 중에서 제1노드 가로등(21)을 중심으로 설명한다. 즉, 상기 제1노드 가로등(21)의 동작감지센서(2)가 물체를 감지한 것으로 예를 들어 설명한다.
먼저, 상기 동작감지센서(2)가 미리 설정된 감지영역에서 물체의 존재여부를 감지하는 물체감지단계를 수행한다. 상기 동작감지센서(2)는 감지된 물체존재신호를 상기 신호처리부(4)로 송신한다.(S1) 상기 물체존재신호는 상기 감지영역에 존재하는 물체의 좌표값을 포함한다.
상기 신호처리부(4)는, 상기 동작감지센서(2)로부터 상기 물체존재신호를 수신한다. 상기 신호처리부(4)는 상기 동작감지센서(2)로부터 상기 물체존재신호가 수신되면 상기 감지영역에 상기 물체가 존재한다고 판단한다.(S2)
상기 신호처리부(4)는 상기 물체가 상기 감지영역에 새로 진입한 신규 물체인지 이미 감지된 기존 물체인지 판단하는 물체판단단계를 수행한다.(S3)
상기 신규 물체와 상기 기존 물체의 구분은 상기 물체존재신호에 포함된 좌표값, 상기 좌표값의 개수, 상기 물체의 이동 경로에 따른 연속성 여부에 따라 판단할 수 있다.
기저장된 좌표값과 상기 물체존재신호에 포함된 새로운 좌표값을 비교하여, 상기 물체의 이동 경로에 따른 연속성 여부를 판별하고, 상기 물체의 연속성이 있으면 상기 물체가 기존 물체라고 판단하고, 상기 물체의 연속성이 없으면 신규물체라고 판단할 수 있다. 상기 기저장된 좌표값은 상기 조명제어장치(10)에 구비된 데이터베이스(미도시)에 임시 저장된 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 데이터베이스 이외에 상기 신호처리부(4)나 상기 점등 제어부(8)에 임시 저장되는 것도 물론 가능하다.
한편, 상기 물체존재신호에 포함된 좌표값의 개수가 기저장된 좌표값의 개수보다 증가하면, 신규 물체라고 판단할 수 있다.
상기 신규 물체가 아니고 기존 물체라고 판단하면, 상기 제1노드 가로등(21)의 현재 점등 상태를 유지한다.(S12)
상기 신규 물체라고 판단되면, 상기 신호처리부(4)는 상기 신규 물체의 이동 방향과 이동속도를 계산한다.(S4)
상기 이동속도는, 상기 물체존재신호에 포함된 좌표값들의 차이와 상기 동작감지센서(2)가 각 좌표값들을 감지한 시간을 이용하여 계산할 수 있다. 상기 신규 물체의 개수가 여러개일 경우, 감지된 모든 물체의 이동속도들의 평균값을 내거나 가장 큰 값을 상기 이동속도로 산출한다.
상기 신호처리부(4)는, 상기 이동속도에 따라 상기 제1노드 가로등(21)을 중심으로 점등되어야 할 점등영역의 크기를 계산하는 계산단계를 수행한다.(S5)
상기 점등영역의 크기는, 점등해야할 의 개수를 포함한다. 상기 점등해야할 의 개수는, 상기 이동속도와 상기 복수의 노드 가로등들(20)사이의 거리를 이용하여 계산할 수 있다. 상기 점등영역의 크기는 상기 이동속도에 비례하게 설정된다. 예를 들어, 상기 신규 물체의 이동속도가 빠르면, 상기 제1노드 가로등(21)의 전방에 위치한 인접 의 점등 개수를 증가시키고, 상기 신규 물체의 이동속도가 느리면 상기 제1노드 가로등(21)의 전방에 위치한 인접 의 점등 개수를 감소시킬 수 있다.
상기 계산단계 이후, 상기 신호처리부(4)는, 상기 신규 물체의 이동방향과 상기 점등영역의 크기에 대한 신호를 상기 근거리무선통신부(6)에 입력한다.(S6)
상기 근거리무선통신부(6)는, 상기 신규 물체의 이동방향과 상기 점등영역의 크기에 대한 신호를 수신하면, 상기 제1노드 가로등(21)에 인접한 복수의 가로등들(20) 중에서 상기 점등영역에 포함되는 적어도 하나 이상의 가로등을 추가점등 가로등으로 설정한다.(S7) 후술하는 도 3a를 참조하면, 2개의 추가점등 가로등이 설정되는 것으로 예를 들어 설명한다. 상기 추가점등 가로등의 개수는, 상기 이동방향과 상기 이동속도에 따라 다르게 설정된다. 즉, 물체를 감지한 상기 제1노드 가로등(21) 이외에 인접한 가로등을 추가점등 가로등으로 설정하여, 물체를 감지한 상기 제1노드 가로등(21) 뿐만 아니라 추가점등 가로등이 함께 점등되도록 제어한다.
상기 근거리무선통신부(6)는, 상기 추가점등 가로등에 점등영역 활성화 신호를 송신한다.(S8) 상기 점등영역 활성화 신호는, 해당 가로등이 점등영역에 포함되어 점등하라는 제어신호이다. 상기 근거리무선통신부(6)는, 상기 추가점등 가로등에 각각 설치된 근거리무선통신부들과 각각 통신하여, 상기 점등영역 활성화 신호를 송신한다.
상기 추가점등 가로등의 각 근거리무선통신부는, 상기 점등영역 활성화 신호를 송신하면, 상기 추가점등 가로등의 점등 제어부에 신호를 송신한다. 상기 추가점등 가로등의 점등 제어부는, 상기 점등영역 활성화 신호를 전달받으면, 기입력된 물체존재신호의 유무에 따라 상기 추가점등 가로등의 디밍값을 다르게 제어하여 점등한다.
즉, 상기 추가점등 가로등의 점등 제어부는, 기입력된 물체존재신호가 없으면, 상기 추가점등 가로등이 소등 상태이거나 설정 디밍값으로 점등된 상태라고 판단하여 상기 추가점등 가로등의 디밍값을 정격값 이상으로 상향 설정하여 점등한다. 상기 설정 디밍값은 30 내지 50% 범위이고, 상기 정격값은 100%인 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 설정 디밍값과 상기 정격값은 관리자의 선택이나 주변 환경 등 다양한 요인들에 따라 다양하게 설정될 수 있다.
상기 추가점등 가로등의 점등 제어부는, 기입력된 물체존재신호가 있으면, 상기 추가점등 가로등의 디밍값이 상기 정격값 이상으로 설정되어 점등된 상태라고 판단하여, 현재 점등 상태를 유지하도록 제어할 수 있다.
한편, 상기 계산단계 이후, 상기 신호처리부(4)는, 상기 기입력된 점등영역 활성화 신호가 있는지 판단한다.(S9) 상기 기입력된 점등영역 활성화 신호는 상기 데이터베이스에 임시 저장된 신호이다.
상기 기입력된 점등영역 활성화 신호가 있으면, 상기 제1노드 가로등(21)의 디밍값이 상기 정격값인 100%로 설정되어 점등된 상태라고 판단하여, 현재 점등 상태를 유지하도록 제어한다.(S12)
상기 기입력된 점등영역 활성화 신호가 없으면, 상기 신호처리부(4)는 상기 점등 제어부(8)에 상기 물체존재신호와 상기 점등영역 활성화 신호를 입력한다. (S10)
또한, 상기 신호처리부(4)는, 상기 점등영역 활성화 신호를 상기 데이터 베이스에 임시 저장할 수 있다.
상기 점등 제어부(8)에 상기 점등영역 활성화 신호가 입력되면, 상기 점등 제어부(8)는 기입력된 물체존재신호가 있는지 판단한다.(S11) 상기 기입력된 물체존재신호는 상기 데이터베이스에 임시 저장된 신호이다.
상기 기입력된 물체존재신호가 있으면, 상기 제1노드 가로등(21)의 디밍값이 상기 정격값 인 100%로 설정되어 이미 점등된 상태라고 판단하여, 현재 점등 상태를 유지하도록 제어한다.(S12)
상기 기입력된 점등영역 활성화 신호가 없으면, 상기 제1노드 가로등(21)이 소등 상태이거나 설정 디밍값으로 점등된 상태라고 판단하여, 상기 디밍값을 상기 정격값인 100%로 상향 설정하여 점등한다.(S13)
또한, 상기 신호처리부(4)는 상기 물체존재신호를 상기 데이터 베이스에 임시 저장할 수 있다.
한편, 상기 물체감지단계(S1)에서 상기 동작감지센서(2)로부터 상기 신호처리부(4)로 상기 물체존재신호가 송신되지 않으면, 상기 신호처리부(4)는 기입력된 물체존재신호가 있는지 판단한다.(S14)
즉, 상기 신호처리부(4)는 새로 수신되는 물체존재신호가 없을 경우, 기입력된 물체존재신호가 있는지를 확인한다. 상기 기입력된 물체존재신호는 상기 데이터베이스에 임시 저장된 신호이다.
상기 기입력된 물체존재신호가 없으면, 상기 제1노드 가로등(21)의 현재의 점등 상태를 유지하거나 실행을 종료한다. 상기 기입력된 물체존재신호가 없는 경우, 상기 현재의 점등 상태는 소등 상태이거나 상기 설정 디밍값인 30 내지 50% 범위로 점등된 상태이다.
즉, 상기 기입력된 물체존재신호가 있으면, 상기 신호처리부(4)는 상기 점등 제어부(8)에 물체부재신호를 새로 입력한다.(S15)
상기 점등 제어부(8)는, 상기 물체부재신호가 새로 입력되면, 기입력된 점등영역 활성화 신호가 있는지 판단한다.(S16)
상기 기입력된 점등영역 활성화 신호가 없으면, 상기 점등 제어부(8)는, 상기 제1노드 가로등(21)을 상기 설정 디밍값인 30 내지 50% 범위로 점등한다.(S17) 즉, 물체가 감지되지 않더라도 안전을 위하여 상기 제1노드 가로등(21)을 30 내지 50% 디밍값으로 점등시킨다. 한편, 상기 물체존재신호와 상기 기입력된 점등영역 활성화 신호가 없는 경우, 기상 정보나 시간 정보에 따라 상기 제1노드 가로등(21)의 디밍값을 제어하는 것도 물론 가능하다. 상기 기상 정보나 시간 정보는 외부 기관으로부터 주기적으로 수신할 수 있다. 예를 들어, 안개가 끼거나 흐린 날씨나 해가 지고 어두운 시간에는 상기 물체가 감지되지 않더라도 안전을 위하여 상기 제1노드 가로등(21)을 30 내지 50% 디밍값으로 점등시킬 수 있다.
상기 기입력된 점등영역 활성화 신호가 있으면, 상기 점등 제어부(8)는, 상기 제1노드 가로등(21)의 현재 점등 상태를 유지한다.(S18) 상기 기입력된 점등영역 활성화 신호가 있으면, 상기 제1노드 가로등(21)이 점등된 상태라고 판단할 수 있으므로, 현재의 점등 상태를 유지한다.
한편, 상기 실시예에서는, 상기 점등영역의 크기를 상기 신규 물체의 이동방향과 속도에 따라 계산하는 것으로 예를 들어 설명하였으나, 이에 한정되지 않고 상기 점등 영역의 크기가 수동 또는 반자동의 방식으로 사용자에 의해 미리 입력되어 저장되는 것도 물론 가능하다.
상기 수동 방식은, 사용자가 시스템의 초기 설정시 점등 영역의 크기로서 점등되어야 할 가로등의 개수를 수동으로 입력하는 방식이다. 상기 반자동의 방식은, 시스템에 복수의 점등 모드들이 미리 설정되고, 사용자는 초기 설정시 상기 복수의 점등 모드들 중에서 어느 하나의 모드를 선택하면 선택된 모드에 따른 점등 영역의 크기로서 점등되어야 할 가로등의 개수가 설정되는 것이다. 즉, 상기 반작동의 방식에서는 사용자가 점등되어야 할 가로등의 개수를 입력하지 않고, 점등 모드를 선택하는 것이다. 예를 들어, 상기 복수의 점등 모드들은 절전 모드, 일반 모드, 안전 모드 등을 포함할 수 있으며, 절전 모드는 점등되어야 할 가로등의 개수가 가장 적게 미리 설정되고, 안전 모드는 점등되어야 할 가로등의 개수가 가장 많이 미리 설정된 상태이고, 사용자는 가로등의 개수를 직접 입력할 필요없이 상기 점등 모드들 중에 하나를 선택하여 입력하는 방식이다.
도 3은 본 발명의 제1실시예에 따른 가로등의 조명 제어를 구현한 상태를 나타낸 도면이다.
도 3을 참조하면, 도로 위에 설치된 복수의 노드 가로등들(20) 중에서 차량이 진입하는 측에 설치된 노드 가로등부터 제1,2,3,4,5,6,7,8노드 가로등(21~28)이라 칭하여 설명한다. 상기 제1,2,3,4,5,6,7,8노드 가로등(21~28)마다 상기 조명제어장치(10)가 각각 구비된다.
도 3a를 참조하면, 상기 제1노드 가로등(21)의 감지 영역에 2대의 제1,2차량(A)(B)이 진입한다. 상기 제1,2차량(A)(B)이 진입하면, 상기 제1노드 가로등(21)의 점등 제어부(8)에 상기 물체존재신호와 상기 점등영역 활성화 신호가 모두 입력된다. 따라서, 상기 재1노드 가로등(21)의 디밍값이 상기 정격값인 100%로 설정되어 점등된다.
상기 제1노드 가로등(21)의 근거리무선통신부(6)는, 상기 제1노드 가로등(21)과 인접한 제2,3노드 가로등(22)(23)을 상기 추가점등 가로등으로 설정한다. 상기 제1노드 가로등(21)의 근거리무선통신부(6)는, 상기 제2,3노드 가로등(22)(23)의 각 근거리무선통신부에 무선 통신을 통해 점등영역 활성화 신호를 송신한다. 상기 제2,3노드 가로등(22)(23)은, 상기 점등영역 활성화 신호를 수신받으면, 기입력된 물체존재신호의 유무에 따라 디밍값을 다르게 제어한다.
즉, 상기 제2,3노드 가로등(22)(23)은 상기 점등영역 활성화 신호를 받은 상태에서, 기입력된 물체존재신호가 있으면, 디밍값이 상기 정격값인 100%로 설정되어 점등된 상태라고 판단하여 현재 점등 상태를 유지한다.
상기 제2,3노드 가로등(22)(23)은 상기 점등영역 활성화 신호를 받고, 기입력된 물체존재신호가 없으면, 상기 제2,3노드 가로등(22)(23)이 소등된 상태이거나 상기 설정 디밍값으로 점등된 상태라고 판단하여 디밍값을 상기 정격값인 100%로 상향 설정하여 점등한다.
따라서, 도 3a에 도시된 바와 같이, 상기 제1노드 가로등(21)에 상기 제1,2차량(A)(B)이 진입하면, 상기 제1노드 가로등(21)과 상기 제2,3노드 가로등(22)(23)의 디밍값이 상기 정격값인 100%로 설정되어 모두 점등된다.
한편, 도 3b를 참조하면, 상기 제1차량(A)과 상기 제2차량(B)이 소정의 거리만큼 이동한 상태이다.
상기 제1차량(A)과 상기 제2차량(B)의 이동 속도는 다른 것으로 예를 들어 설명한다.
상기 제1차량(A)은 상기 제2노드 가로등(22)의 감지영역에 진입하면, 상기 제2노드 가로등(22)의 점등 제어부(8)에는 상기 물체존재신호와 상기 점등영역 활성화 신호가 입력된다. 따라서, 상기 제2노드 가로등(22)의 디밍값이 상기 정격값인 100%로 설정되어 점등된다.
상기 제1노드 가로등(21)에서는 물체가 감지되지 않으므로 기입력된 물체존재신호가 있더라도 물체부재신호가 새로 입력된다.
또한, 상기 제1노드 가로등(21)에는 상기 점등영역 활성화 신호가 없으므로, 상기 제1노드 가로등(21)은 상기 설정 디밍값인 30 내지 50%로 하향 설정되어 점등된다.
상기 제2노드 가로등(22)의 근거리무선통신부(6)는, 상기 제2노드 가로등(22)과 인접한 제3,4노드 가로등(23)(24)을 상기 추가점등 가로등으로 설정한다. 상기 제2노드 가로등(22)의 근거리무선통신부(6)는, 상기 제3,4노드 가로등(23)(24)의 각 근거리무선통신부에 무선 통신을 통해 점등영역 활성화 신호를 송신한다. 상기 제3,4노드 가로등(23)(24)은, 상기 점등영역 활성화 신호를 수신받으면, 기입력된 물체존재신호의 유무에 따라 디밍값을 다르게 제어한다. 즉, 상기 제3,4노드 가로등(23)(24)은 상기 점등영역 활성화 신호를 받은 상태에서, 기입력된 물체존재신호가 있으면, 디밍값이 상기 정격값인 100%로 설정되어 점등된 상태라고 판단하여 현재 점등 상태를 유지한다.
상기 제3노드 가로등(23)은 상기 제2차량(B)에 의해 물체존재신호가 있으므로, 디밍값이 상기 정격값인 100%로 설정되어 점등된 상태를 유지한다.
상기 제4노드 가로등(24)은 상기 점등영역 활성화 신호를 받은 상태에서 기입력된 물체존재신호가 없으므로, 상기 제4노드 가로등(24)이 소등된 상태이거나 상기 설정 디밍값으로 점등된 상태라고 판단하여 상기 제4노드 가로등(24)의 디밍값을 상기 정격값인 100%로 상향 설정하여 점등한다.
따라서, 상기 제2노드 가로등(22)에 상기 제1차량(A)이 진입하면, 상기 제2노드 가로등(22)과 상기 제3,4노드 가로등(23)(24)의 디밍값이 상기 정격값인 100%로 설정되어 모두 점등된다.
한편, 상기 제2차량(B)은 상기 제3노드 가로등(23)의 감지영역에 진입하므로, 상기 제3노드 가로등(23)의 점등 제어부(8)에는 상기 물체존재신호와 상기 점등영역 활성화 신호가 모두 입력된다. 따라서, 상기 제3노드 가로등(23)의 디밍값이 상기 정격값인 100%로 설정되어 점등된다.
상기 제3노드 가로등(23)의 근거리무선통신부(6)는, 상기 제3노드 가로등(23)과 인접한 제4,5노드 가로등(24)(25)을 상기 추가점등 가로등으로 설정한다. 상기 제3노드 가로등(23)의 근거리무선통신부(6)는, 상기 제4,5노드 가로등(24)(25)의 각 근거리무선통신부에 무선 통신을 통해 점등영역 활성화 신호를 송신한다. 상기 제4,5노드 가로등(24)(25)은, 상기 점등영역 활성화 신호를 수신받으면, 기입력된 물체존재신호의 유무에 따라 디밍값을 다르게 제어한다.
상기 제4,5노드 가로등(24)(25)은 상기 점등영역 활성화 신호를 받은 상태에서, 기입력된 물체존재신호가 있으면, 디밍값이 상기 정격값인 100%로 설정되어 점등된 상태라고 판단하여 현재 점등 상태를 유지한다.
상기 제4노드 가로등(24)은 상기 점등영역 활성화 신호를 받은 상태에서 기입력된 물체존재신호가 없으므로, 상기 제4노드 가로등(24)이 소등된 상태이거나 상기 설정 디밍값으로 점등된 상태라고 판단하여, 상기 제4노드 가로등(24)의 디밍값을 상기 정격값인 100%로 상향 설정하여 점등한다.
상기 제5노드 가로등(25)은 상기 점등영역 활성화 신호를 받은 상태에서 기입력된 물체존재신호가 없으므로, 상기 제5노드 가로등(25)이 소등된 상태이거나 상기 설정 디밍값으로 점등된 상태라고 판단하여 상기 제5노드 가로등(25)의 디밍값을 상기 정격값인 100%로 상향 설정하여 점등한다.
따라서, 도 3b에 도시된 바와 같이, 상기 제2노드 가로등(22)의 감지영역에 상기 제1차량(A)이 진입하고, 상기 제3노드 가로등(23)의 감지영역에 상기 제2차량(B)이 진입하면, 상기 제2,3,4,5노드 가로등(22)(23)(24)(25)의 디밍값을 상기 정격값인 100%로 모두 점등된다.
한편, 도 3c를 참조하면, 상기 제1차량(A)과 상기 제2차량(B)이 소정의 거리만큼 더 이동한 상태이다.
상기 제1차량(A)이 상기 제4노드 가로등(24)의 감지영역에 진입하면, 상기 제4노드 가로등(24)의 점등 제어부(8)에는 상기 물체존재신호와 상기 점등영역 활성화 신호가 입력된다. 따라서, 상기 제4노드 가로등(24)의 디밍값을 상기 정격값인 100%로 점등된다.
상기 제1,2,3노드 가로등(21)(22)(23)에서는 물체가 감지되지 않으므로 기입력된 물체존재신호가 있더라도 물체부재신호가 새로 입력된다. 또한, 상기 제1,2,3노드 가로등(21)(22)(23)에 상기 점등영역 활성화 신호가 없으므로, 상기 제1,2,3노드 가로등(21)(22)(23)은 상기 설정 디밍값인 30 내지 50%로 하향 설정되어 점등된다.
상기 제4노드 가로등(24)의 근거리무선통신부(6)는, 상기 제4노드 가로등(24)과 인접한 제5,6노드 가로등(25)(26)을 상기 추가점등 가로등으로 설정한다. 상기 제4노드 가로등(24)의 근거리무선통신부(6)는, 상기 제5,6노드 가로등(25)(26)의 각 근거리무선통신부에 무선 통신을 통해 점등영역 활성화 신호를 송신한다. 상기 제5,6노드 가로등(25)(26)은, 상기 점등영역 활성화 신호를 수신받으면, 기입력된 물체존재신호의 유무에 따라 디밍값을 다르게 제어한다.
상기 제5,6노드 가로등(25)(26)은 상기 점등영역 활성화 신호를 받은 상태에서, 기입력된 물체존재신호가 있으면, 디밍값이 상기 정격값인 100%로 설정되어 점등된 상태라고 판단하여 현재 점등 상태를 유지한다.
상기 제5노드 가로등(25)은 상기 점등영역 활성화 신호를 받은 상태에서 기입력된 물체존재신호가 없으므로, 상기 제5노드 가로등(25)이 소등된 상태이거나 상기 설정 디밍값으로 점등된 상태라고 판단하여, 상기 제5노드 가로등(25)의 디밍값을 상기 정격값 인 100%로 상향 설정하여 점등한다.
상기 제6노드 가로등(26)도 상기 점등영역 활성화 신호를 받은 상태에서 기입력된 물체존재신호가 없으므로, 상기 제6노드 가로등(26)이 소등된 상태이거나 상기 설정 디밍값으로 점등된 상태라고 판단하여 상기 제6노드 가로등(26)의 디밍값을 상기 정격값인 100%로 상향 설정하여 점등한다.
한편, 상기 제2차량(B)은 상기 제6노드 가로등(26)의 감지영역에 진입하므로, 상기 제6노드 가로등(26)의 점등 제어부(8)에는 상기 물체존재신호와 상기 점등영역 활성화 신호가 입력된다. 따라서, 상기 제6노드 가로등(26)의 디밍값을 상기 정격값인 100%로 설정하여 점등된다.
상기 제6노드 가로등(26)의 근거리무선통신부(6)는, 상기 제6노드 가로등(26)과 인접한 제7,8노드 가로등(27)(28)을 상기 추가점등 가로등으로 설정한다. 상기 제6노드 가로등(26)의 근거리무선통신부(6)는, 상기 제7,8노드 가로등(27)(28)의 각 근거리무선통신부에 무선 통신을 통해 점등영역 활성화 신호를 송신한다. 상기 제7,8노드 가로등(27)(28)은, 상기 점등영역 활성화 신호를 수신받으면, 기입력된 물체존재신호의 유무에 따라 디밍값을 다르게 제어한다.
상기 제7,8노드 가로등(27)(28)은 상기 점등영역 활성화 신호를 받은 상태에서, 기입력된 물체존재신호가 있으면, 디밍값이 상기 정격값인 100%로 설정되어 점등된 상태라고 판단하여 현재 점등 상태를 유지한다.
상기 제7노드 가로등(27)은 상기 점등영역 활성화 신호를 받은 상태에서 기입력된 물체존재신호가 없으므로, 상기 제7노드 가로등(27)이 소등된 상태이거나 상기 설정 디밍값으로 점등된 상태라고 판단하여, 상기 제7노드 가로등(27)의 디밍값을 상기 정격값인 100%로 상향 설정하여 점등한다.
상기 제8노드 가로등(28)은 상기 점등영역 활성화 신호를 받은 상태에서 기입력된 물체존재신호가 없으므로, 상기 제8노드 가로등(28)이 소등된 상태이거나 상기 설정 디밍값으로 점등된 상태라고 판단하여 상기 제8노드 가로등(28)의 디밍값을 상기 정격값인 100%로 상향 설정하여 점등한다.
따라서, 도 3c에 도시된 바와 같이, 상기 제4노드 가로등(24)의 감지영역에 상기 제1차량(A)이 진입하고, 상기 제6노드가로등(26)의 감지영역에 상기 제2차량(B)이 진입하면, 상기 제4,5,6,7,8노드 가로등(24)(25)(26)(27)(28)의 디밍값을 상기 정격값인 100%로 모두 점등된다.
도 4는 본 발명의 제2실시예에 따른 가로등의 조명 제어방법이 도시된 도면이다.
도 4를 참조하면, 상기 복수의 노드 가로등들(20) 중에서 제1노드 가로등(21)을 중심으로 설명한다. 즉, 상기 제1노드 가로등(21)의 동작감지센서(2)가 물체를 감지한 것으로 예를 들어 설명한다.
도 4를 참조하면, 본 발명의 제2실시예에 따른 가로등의 조명 제어방법은, 상기 물체감지단계(S1)에서 상기 동작감지센서(2)로부터 상기 신호처리부(4)로 상기 물체존재신호가 송신되지 않는 경우 제어방법이 상기 일 실시예와 상이하고 그 외 나머지 구성은 유사하므로, 상이한 구성에 대해 상세히 설명하고 유사 구성에 대한 상세한 설명은 생략한다.
상기 물체감지단계(S1)에서 상기 동작감지센서(2)로부터 상기 신호처리부(4)로 상기 물체존재신호가 송신되지 않으면, 상기 신호처리부(4)는 기입력된 물체존재신호가 있는지 판단한다.(S24)
상기 기입력된 물체존재신호가 있으면, 상기 신호처리부(4)는 상기 점등 제어부(8)에 물체부재신호를 새로 입력한다.(S25)
상기 점등 제어부(8)는, 상기 물체부재신호가 새로 입력되면, 기입력된 점등영역 활성화 신호가 있는지 판단한다.(S26)
상기 기입력된 점등영역 활성화 신호가 없으면, 상기 점등 제어부(8)는, 상기 제1노드 가로등(21)을 상기 설정 디밍값인 30 내지 50% 범위로 점등한다.(S27) 즉, 물체가 감지되지 않더라도 안전을 위하여 상기 제1노드 가로등(21)을 30 내지 50% 디밍값으로 점등시킨다. 한편, 상기 물체존재신호와 상기 기입력된 점등영역 활성화 신호가 없는 경우, 기상 정보나 시간 정보에 따라 상기 제1노드 가로등(21)의 디밍값을 제어하는 것도 물론 가능하다. 상기 기상 정보나 시간 정보는 외부 기관으로부터 주기적으로 수신할 수 있다. 예를 들어, 안개가 끼거나 흐린 날씨나 해가 지고 어두운 시간에는 상기 물체가 감지되지 않더라도 안전을 위하여 상기 제1노드 가로등(21)을 30 내지 50% 디밍값으로 점등시킬 수 있다.
한편, 상기 기입력된 점등영역 활성화 신호가 있으면, 상기 점등 제어부(8)는, 상기 제1노드 가로등(21)의 디밍값을 상기 정격값인 100%로 설정하여 제어한다.(S28) 즉, 상기 물체존재신호가 없더라도 상기 점등영역 활성화 신호가 있으면, 상기 제1노드 가로등(21)의 디밍값을 상기 정격값인 100%로 설정하여 점등시킬 수 있다.
한편, 도 5는 본 발명의 제3실시예에 따른 가로등용 제어어장치를 개략적으로 도시한 블록도이다. 도 6은 본 발명의 제3실시예에 따른 가로등의 제어방법이 도시된 순서도이다. 도 7은 본 발명의 제3실시예에 따른 가로등의 제어를 구현한 상태를 나타낸 도면이다.
도 5 및 도 7을 참조하면, 본 발명의 제3실시예에 따른 가로등의 제어시스템은, 도로 위에 설치된 복수의 노드(node) 가로등들(310~360)을 포함한다. 자동차가 주행하는 도로 위에서 서로 소정간격 이격되게 설치된 복수의 가로등들을 노드(node) 가로등들(310~360)이라 칭한다.
이하, 본 실시예에서는, 상기 복수의 노드 가로등들(310~360)은 6개의 제1,2,3,4,5,6노드 가로등(310)(320)(330)(340)(350)(360)을 예를 들어 설명하나, 이에 한정되지 않고, 상기 복수의 노드 가로등들의 개수는 다양하게 설정 가능하다.
상기 복수의 노드 가로등들(310~360)의 제어 구성은 모두 동일하다. 상기 복수의 노드 가로등들(310~360)은, 각각 동작감지센서, 무선 통신부, 신호처리부 및 점등 제어부를 모두 포함한다. 이하, 상기 제1노드 가로등(310)의 제어 구성요소를 중심으로 상세히 설명한다.
상기 제1노드 가로등(310)은, 도로 위의 물체를 감지하는 동작감지센서(311)와, 상기 동작감지센서(311)에서 감지된 신호를 처리하는 신호처리부(312), 인접하는 가로등과 통신하는 무선 통신부(313), 상기 제1노드 가로등(310)의 점등을 제어하는 점등 제어부(314)를 포함한다.
본 실시예에서는, 상기 복수의 노드 가로등들(310~360)마다 물체를 감지하는 동작감지센서(311)(321)(331)(341)(351)(361)가 구비된 것으로 예를 들어 설명한다.
상기 동작감지센서(311)는, 상기 복수의 노드 가로등들마다 설정된 감지영역에서 물체의 존재를 감지한다. 상기 동작감지센서(311)는 UWB(Ultra Wide Band) 방식의 도플러 레이더 센서를 이용하는 것으로 예를 들어 설명한다. 상기 물체는 차량, 자전거, 오토바이 및 보행자 등 이동하는 물체를 모두 포함하며, 이하 본 실시예에서는 차량인 것으로 예를 들어 설명한다. 상기 동작감지센서(311)는, 상기 감지영역에서 차량의 유, 무, 상기 감지영역으로 차량의 진입 여부, 상기 감지영역에서 교통 정체 여부 등을 감지할 수 있다. 상기 동작감지센서(311)는, 상기 물체의 좌표값을 상기 신호처리부(312)에 입력한다. 즉, 상기 제1노드 가로등(310)의 동작감지센서(311)가 물체를 감지하면, 물체의 위치에 대한 물체 좌표값을 상기 제1노드 가로등(310)의 신호처리부(312)에 입력한다.
상기 신호처리부(312)는, 상기 동작감지센서(311)로부터 상기 물체 좌표값을 입력받는다. 상기 신호처리부(312)는, 상기 물체 좌표값에 따라 물체의 존재여부를 판단하고, 상기 물체가 신규 물체인지 기존 물체인지 판단한다. 또한, 상기 신호처리부(312)는, 물체존재신호의 활성화 여부를 판단한다. 또한, 상기 신호처리부(312)는, 상기 물체 좌표값에 따라 상기 신규물체의 속력과 이동방향을 계산하고, 계산된 속력과 이동방향에 따라 점등영역(Light zone)의 크기도 계산한다. 상기 신호처리부(312)는 상기 신규물체의 이동방향과 상기 점등영역의 크기를 무선 통신부(313)에 입력한다.
상기 무선 통신부(313)는, 서로 인접하는 가로등들이 근거리 무선통신한다. 상기 근거리 무선 통신은, RF통신이나 지그비(Zigbee) 통신을 포함한다. 상기 복수의 노드 가로등들은 도로 위에서 최대 2km의 거리에 일정간격으로 연속적으로 설치되고, 상기 RF 통신은 최대 10km 거리 범위 내에서 통신이 가능하므로 상기 노드 가로등들 사이의 통신에 적합하다. 또한, 상기 복수의 노드 가로등들은 도로 위에서 최대 50m 이하의 간격으로 이격되게 설치되고, 상기 지그비 통신은 최대 100m 거리 범위내에서 통신이 가능하므로 상기 노드 가로등들 사이의 통신에 적합하다. 다만, 이에 한정되지 않고, 지그비 통신 외에 지웨이브 등 다양한 통신을 이용하는 것이 가능하다.
상기 무선 통신부(313)는, 상기 신호처리부(312)로부터 상기 신규물체의 이동방향과 상기 점등영역의 크기를 입력받고, 상기 복수의 노드 가로등들 중에서 통신해야할 통신 가로등들을 설정한다.
상기 통신 가로등들은, 상기 점등영역의 크기에 따라 라이브(Live) 점등 가로등(L)과 가상(Pseudo) 점등 가로등(P)으로 구분하여 설정된다.
상기 라이브 점등 가로등(L)은, 상기 무선 통신부(313)로부터 라이브 점등영역 활성화 신호(Ls, Live light zone active signal, Ls)를 전송받고 즉시 설정 디밍값으로 점등되는 추가 점등 가로등이다. 상기 설정 디밍값은 100%이다.
상기 가상 점등 가로등(P)은, 상기 무선 통신부(313)로부터 가상 점등영역 활성화 신호(Ps, Pseudo light zone active signal, Ps)를 전송받고 상기 가상 점등영역 활성화 신호에서 미리 설정된 점등시점에 상기 설정 디밍값으로 점등 예정인 점등 예정 가로등이다. 상기 점등시점은, 상기 라이브 점등 가로등(L)이 점등된 이후 설정시간이 경과한 시점으로 설정된다.
본 실시예에서는, 상기 제1노드 가로등(310)의 동작감지센서(311)가 신규물체를 감지하는 것으로 예를 들어 설명하므로, 상기 제2,3,4노드 가로등(320)(330)(340)이 상기 라이브 점등 가로등(L)으로 설정되며, 상기 제5,6노드 가로등(350)(360)이 상기 가상 점등 가로등(P)으로 설정된다.
상기 라이브 점등 가로등(L)의 개수나 상기 가상 점등 가로등(P)의 개수는 상기 점등영역의 크기에 따라 설정된다. 다만, 이에 한정되지 않고, 상기 가상 점등 가로등(P)의 개수는 상기 라이브 점등 가로등(L)의 개수에 따라 설정되거나, 미리 정해진 개수로 설정되는 것도 물론 가능하다.
상기 점등 제어부(314)는, 상기 제1노드 가로등(310)의 디밍(dimming) 값을 제어하여 점등한다. 상기 점등 제어부(314)는, 상기 물체존재신호, 상기 라이브 점등영역 활성화 신호(Ls), 상기 가상 점등영역 활성화 신호(Ps)를 입력받고, 그에 따라 디밍값을 출력한다.
상기 제2노드 가로등(320)도, 도로 위의 물체를 감지하는 동작감지센서(321)와, 상기 동작감지센서(321)에서 감지된 신호를 처리하는 신호처리부(322), 인접하는 가로등과 통신하는 무선 통신부(323), 상기 제2노드 가로등(320)의 점등을 제어하는 점등 제어부(324)를 포함한다. 또한, 상기 제3,4,5,6노드 가로등(330)(340)(350)(360)의 구성 및 동작도 동일하므로 이하 상세한 설명은 생략한다.
상기와 같이 구성된 본 발명의 제3실시예에 따른 가로등의 제어방법을 설명하면, 다음과 같다.
도 6을 참조하면, 상기 복수의 노드 가로등들(310~360) 중에서 제1노드 가로등(310)의 동작감지센서(311)가 물체를 감지한 것으로 예를 들어 설명한다.
상기 제1노드 가로등(310)의 동작감지센서(311)가 물체를 감지하면, 물체의 좌표값을 상기 제1노드 가로등(310)의 신호처리부(312)로 입력한다.(S301)
상기 제1노드 가로등(310)의 신호처리부(312)는, 입력된 좌표값에 따라 물체의 존재 여부를 판단한다.(S302)
상기 제1노드 가로등(310)의 신호처리부(312)는, 상기 물체의 존재가 있다고 판단되면, 상기 제1노드 가로등(310)에 기입력된 물체존재신호가 있는지 판단한다.(S303)
상기 기입력된 물체존재신호가 있다고 판단되면, 상기 제1노드 가로등(310)의 현 상태를 유지하도록 한다.(S312) 즉, 상기 기입력된 물체존재신호가 있다고 판단되면, 상기 제1노드 가로등(310)은 디밍값이 100%로 설정되어 점등된 상태라고 판단하고, 상기 제1노드 가로등(310)의 현 상태를 유지하도록 한다.
한편, 상기 기입력된 물체존재신호가 없다고 판단되면, 상기 제1노드 가로등(310)의 신호처리부(312)는, 상기 물체에 대한 물체존재신호를 새로 생성하여, 상기 제1노드 가로등(310)의 점등제어부(314)에 상기 물체존재신호를 입력한다.(S304)
상기 제1노드 가로등(310)의 점등제어부(314)는, 상기 물체존재신호를 입력받으면, 상기 제1노드 가로등(310)의 디밍값을 100%로 설정하여 상기 제1노드 가로등(310)을 점등시킨다.(S305)
또한, 상기 제1노드 가로등(310)의 신호처리부(312)는, 상기 물체가 신규 물체인지 기존 물체인지 판단한다.(S306)
상기 동작감지센서(311)로부터 입력된 물체의 좌표값 수가 미리 저장되어 있는 기존 물체의 좌표값 수보다 많이 측정되면, 신규 물체라고 판단할 수 있다. 또한, 새로 입력된 물체의 좌표값 수가 미리 저장된 기존 물체의 좌표값 수 이하이면, 새로 입력된 물체의 좌표값과 미리 저장된 기존 물체의 좌표값을 참조하여, 물체의 이동 경로의 연속성 여부를 판별한다. 상기 물체의 이동 경로의 연속성이 있다고 판단되면, 기존 물체라고 판단할 수 있다. 상기 물체의 이동 경로의 연속성이 없다고 판단되면, 신규 물체라고 판단할 수 있다. 상기 이동 경로의 연속성을 판단하기 위해서는 하나의 물체가 최소 2개 이상의 좌표 이력을 가지도록 물체의 좌표값을 저장하여 관리한다.
상기 신규 물체가 아니라고 판단되면, 상기 제1노드 가로등(310)의 현 상태를 유지하고, 실행을 종료한다.(S312)
한편, 상기 신규 물체라고 판단되면, 상기 제1노드 가로등(310)의 신호처리부(312)는, 상기 신규 물체의 속력과 이동방향을 계산한다.(S307)
상기 제1노드 가로등(310)의 신호처리부(312)는, 상기 신규 물체의 시간에 따른 좌표값들의 거리차와 상기 동작감지센서(314)가 측정하는 일정한 주기 시간을 이용하여 상기 신규물체의 속력을 계산한다. 또한, 상기 신규 물체의 개수가 여러개일 경우, 감지된 모든 물체의 속력들의 평균값을 이용하거나, 감지된 모든 물체의 속력 중 최대값을 사용할 수 있다.
상기 제1노드 가로등(310)의 신호처리부(312)는, 상기 신규 물체의 속력과 이동방향, 상기 노드 가로등들이 설치된 물리적인 거리를 이용하여, 점등영역의 크기를 계산한다.(S308)
상기 점등영역의 크기가 계산되면, 켜져야 할 가로등의 개수가 결정된다. 상기 켜져야 할 가로등의 개수가 결정되면, 상기 제1노드 가로등(310)이 통신해야할 통신 가로등의 개수도 결정된다. 상기 신규 물체의 이동 속도에 따라 상기 점등영역의 크기는 자동적으로 가변된다.
상기 제1노드 가로등(310)의 신호처리부(312)는, 상기 무선 통신부(313)에 상기 신규물체의 이동방향과 상기 점등영역의 크기를 입력한다.(S309)
상기 제1노드 가로등(310)의 무선 통신부(313)는, 상기 입력된 값에 따라 상기 복수의 노드 가로등들(310~360) 중에서 통신해야할 통신 가로등들을 설정한다.(S310)
상기 제1노드 가로등(310)의 무선 통신부(313)는, 상기 점등영역의 크기에 따라 통신해야 할 통신 가로등들의 통신 주소를 결정한다. 상기 통신 가로등들의 통신 주소는 상기 무선 통신부(313)내의 통신 네트워크 데이터 베이스로부터 참조한다.
상기 제1노드 가로등(310)의 무선 통신부(313)는, 상기 통신 가로등들 중에서 상기 라이브 점등 가로등(L)과 상기 가상 점등 가로등(P)을 구분하여 설정하고, 상기 라이브 점등 가로등(L)으로 설정된 노드 가로등의 무선 통신부에는 상기 라이브 점등영역 활성화 신호(Live light zone active signal, Ls)를 전송하고, 상기 가상 점등 가로등(P)으로 설정된 노드 가로등의 무선 통신부에는 상기 가상 점등영역 활성화 신호(Pseudo light zone active signal, Ps)를 전송한다.
상기 라이브 점등 가로등(L)의 개수는 상기 점등영역의 크기에 비례하게 설정된다. 상기 가상 점등 가로등(P)은, 상기 신규 물체의 이동방향을 따라 상기 라이브 점등 가로등(L)보다 전방에 배치되고, 상기 라이브 점등 가로등(L)의 개수나 상기 점등영역의 크기에 따라 개수가 정해질 수 있다.
상기 라이브 점등 가로등(L)은, 상기 제1노드 가로등(310)으로부터 상기 라이브 점등영역 활성화 신호(Ls)를 수신받고, 상기 라이브 점등영역 활성화 신호(Ls)를 수신받은 즉시 미리 설정된 설정 디밍값으로 점등하는 가로등이다. 여기서, 상기 설정 디밍값은 100%이다.
상기 가상 점등 가로등(P)은, 상기 제1노드 가로등(310)으로부터 가상 점등영역 활성화 신호(Ps)를 수신받고, 미리 설정된 점등시점에 상기 설정 디밍값으로 점등 예정인 가로등이다. 상기 점등 시점은, 상기 가상 점등영역 활성화 신호(Ps)를 수신받은 후 미리 설정된 설정시간이 경과한 시점으로 설정된다.
이하, 본 실시예에서는, 도 7을 참조하면, 상기 제1노드 가로등(310)에서 상기 신규물체가 감지되면, 3개의 상기 제2,3,4노드 가로등(320)(330)(340)이 상기 라이브 점등 가로등(L)으로 설정되고, 상기 제4노드 가로등(340)보다 전방에 배치된 2개의 상기 제5,6노드 가로등(350)(360)은 상기 가상 점등 가로등(P)으로 설정되는 것으로 예를 들어 설명한다.
따라서, 상기 제2,3,4노드 가로등(320)(330)(340)은 상기 라이브 점등영역 활성화 신호(Ls)를 수신받은 즉시 상기 100%의 디밍값으로 점등된다.
상기 제5,6노드 가로등(350)(360)은 즉시 점등되지 않고 상기 가상 점등영역 활성화 신호(Ps)를 받은 이후 대기 상태이다가 상기 설정시간이 경과한 상기 점등 시점에 상기 100%의 디밍값으로 점등된다.
이 때, 상기 제5노드 가로등(350)의 점등 시점과 상기 제6가로등(360)의 점등 시점은 서로 다르게 설정된다.
본 실시예에서는, 상기 가상 점등 가로등(P)이 복수개가 설정될 경우, 상기 복수의 가상 점등 가로등들(P)의 각 점등 시점은 미리 설정된 시간 간격으로 순차적으로 점등하도록 설정되는 것으로 예를 들어 설명한다. 즉, 첫 번째 점등 예정 가로등인 상기 제5노드 가로등(350)이 상기 가상 점등영역 활성화 신호(Ps)를 수신한 후 1분 후에 점등되는 것으로 설정되면, 두 번째 점등 예정 가로등인 상기 제6노드 가로등(360)은 상기 가상 점등영역 활성화 신호(Ps)를 수신한 후 상기 1분의 2배인 2분 후에 점등되는 것으로 설정할 수 있다.
상기와 같이, 복수의 가상 점등 가로등들(P)은 미리 설정된 시간 간격으로 순차적으로 점등하도록 설정될 수 있다.
다만, 이에 한정되지 않고, 상기 복수의 가상 점등 가로등들(P)의 각 점등 시점은, 상기 라이브 점등 가로등(L)과 상기 가상 점등 가로등(P) 사이의 거리에 비례하여 점차 늦어지도록 설정되는 것도 가능하다. 또한, 상기 점등 시점은, 상기 신규 물체의 이동 속력에 따라 다르게 설정되는 것도 물론 가능하다.
또한, 상기 점등 시점 이전에는, 상기 제5,6노드 가로등(350)(360)은, 30% 내지 50%의 디밍값으로 점등된 상태를 유지할 수 있다. 즉, 밤시간이나 도로 안전상황을 고려하여, 상기 디밍값을 30% 내지 50%로 설정할 수 있다.
한편, 상기 가상 점등 가로등(P)에 상기 라이브 점등영역 활성화 신호(Ls)가 기입력된 상태이면, 상기 가상 점등영역 활성화 신호(Ps)는 비활성화된다. 이 때, 상기 가상 점등영역 활성화 신호(Ps)는 즉시 비활성화되는 것도 가능하고, 소정의 시간이 경과한 이후 비활성화되는 것도 가능하다. 즉, 상기 라이브 점등영역 활성화 신호(Ls)가 입력되었다가 없어질 수 있으므로, 상기 가상 점등영역 활성화 신호(Ps)를 즉시 비활성화시키지 않고 소정의 시간이 경과한 이후 비활성화시킬 수 있다.
상기와 같이, 상기 제1노드 가로등(310)에서 상기 신규 물체를 감지한 이후, 즉시 점등해야 할 상기 라이브 점등 가로등(L)을 설정하여 신호를 전송하는 것 뿐만 아니라, 설정시간이 경과한 이후 점등 예정인 상기 가상 점등 가로등(P)도 설정하여 신호를 전송한다.
따라서, 추후 상기 제1노드 가로등(310)보다 전방에 배치된 상기 제2,3,4노드 가로등(320)(330)(340) 중 적어도 하나에서 통신 장애가 발생하거나 신규 물체를 감지하지 못하거나 점등영역의 크기에 대한 계산 오류가 발생하는 등의 비정상적인 문제가 발생하여, 상기 제5노드 가로등(350)이나 상기 제6노드 가로등(360)에 상기 라이브 점등영역 활성화 신호가 전송되지 못하더라도 상기 제5,6노드 가로등(350)(360)은 기입력된 상기 가상 점등영역 활성화 신호에 따라 점등될 수 있다. 즉, 상기 복수의 노드 가로등들(310~360) 중에서 어느 하나에서 통신 장애가 발생하거나 동작감지센서가 물체를 감지하지 못하거나 점등영역의 크기에 대한 계산 오류가 발생하는 등의 비정상적인 문제가 발생하더라도 상기 노드 가로등들(310~360)이 정상적으로 점등될 수 있으므로, 안정성이 향상될 수 있다.
한편, 상기 물체의 존재 여부를 판단하는 단계(S302)에서 상기 물체의 존재가 없다고 판단되면, 상기 제1노드 가로등(310)의 신호처리부(312)는 기입력된 물체존재신호가 있는지 판단한다.(S313)
상기 제1노드 가로등(310)에 기입력된 물체존재신호가 없다고 판단되면, 상기 점등제어부(314)에 물체부재신호를 새로 입력한다.(S314)
또한, 상기 제1노드 가로등(310)의 점등 제어부(314)는, 상기 제1노드 가로등(310)이 상기 가상 점등영역 활성화 신호(Ps)에 따른 점등 시점인지를 판단한다.(S315)
즉, 상기 제1노드 가로등(310)이 물체를 감지하지 않은 상태이더라도 상기 제1노드 가로등(310)의 이전에 배치된 노드 가로등으로부터 상기 가상 점등영역 활성화 신호(Ps)를 받은 상태일 수 있으므로, 상기 가상 점등영역 활성화 신호(Ps)에 따른 점등 시점인지를 판단한다.
상기 제1노드 가로등(310)의 점등 제어부(314)는, 상기 점등 시점이라고 판단되면, 기입력된 라이브 점등영역 활성화 신호(Ls)가 있는지 판단한다.(S316)
즉, 상기 라이브 점등영역 활성화 신호(Ls)는 상기 가상 점등영역 활성화 신호(Ps)에 우선 적용되므로, 상기 라이브 점등영역 활성화 신호(Ls)가 기입력되었는지 판단한다.
상기 제1노드 가로등(310)의 점등 제어부(314)는, 상기 기입력된 라이브 점등영역 활성화 신호(Ls)가 없다고 판단되면, 상기 제1노드 가로등(310)의 디밍값을 100%로 설정하여 점등한다.(S317)
즉, 상기 제1노드 가로등(310)에 상기 기입력된 라이브 점등영역 활성화 신호(Ls)가 없으면, 상기 제1노드 가로등(310)이 소등 상태이거나 미리 설정된 설정 디밍값 미만으로 점등된 상태이므로, 상기 제1노드 가로등(310)의 디밍값을 정격값인 100%로 상향 설정하여 점등한다.
한편, 상기 제1노드 가로등(310)의 점등 제어부(314)는, 상기 점등 시점이 아니라고 판단되면, 상기 제1노드 가로등(310)의 현 상태를 유지한다.(S312)
상기 제1노드 가로등(310)에 상기 물체부재신호가 입력된 상태이면서 상기 점등 시점이 아니므로, 상기 제1노드 가로등(310)이 소등 상태이거나 미리 설정된 설정 디밍값 미만인 30% 내지 50% 점등된 상태이므로, 현 상태를 유지한다.
또한, 상기 제1노드 가로등(310)의 점등 제어부(314)는, 상기 기입력된 라이브 점등영역 활성화 신호(Ls)가 있다고 판단되면, 상기 제1노드 가로등(310)의 현 상태를 유지한다.(S312)
상기 제1노드 가로등(310)에 상기 기입력된 라이브 점등영역 활성화 신호(Ls)가 있으면, 상기 제1노드 가로등(310)의 디밍값은 100%로 설정되어 이미 점등된 상태이므로, 현 상태를 유지한다.
한편, 상기 실시예에서는, 상기 제1노드 가로등(310)의 신호 처리부(312)가 상기 신규물체의 속력, 이동방향 및 상기 점등영역의 크기를 계산하는 것(S307)(S308)으로 예를 들어 설명하였으나, 이에 한정되지 않고 상기 점등 영역의 크기가 수동 또는 반자동의 방식으로 사용자에 의해 미리 입력되어 저장되는 것도 물론 가능하다.
상기 수동 방식은, 사용자가 시스템의 초기 설정시 점등 영역의 크기로서 점등되어야 할 가로등의 개수를 수동으로 입력하는 방식이다. 상기 반자동의 방식은, 시스템에 복수의 점등 모드들이 미리 설정되고, 사용자는 초기 설정시 상기 복수의 점등 모드들 중에서 어느 하나의 모드를 선택하면 선택된 모드에 따른 점등 영역의 크기로서 점등되어야 할 가로등의 개수가 설정되는 것이다. 즉, 상기 반작동의 방식에서는 사용자가 점등되어야 할 가로등의 개수를 입력하지 않고, 점등 모드를 선택하는 것이다. 예를 들어, 상기 복수의 점등 모드들은 절전 모드, 일반 모드, 안전 모드 등을 포함할 수 있으며, 절전 모드는 점등되어야 할 가로등의 개수가 가장 적게 미리 설정되고, 안전 모드는 점등되어야 할 가로등의 개수가 가장 많이 미리 설정된 상태이고, 사용자는 가로등의 개수를 직접 입력할 필요없이 상기 점등 모드들 중에 하나를 선택하여 입력하는 방식이다.
따라서, 상기 제1노드 가로등(310)의 신호 처리부(312)가 상기 신규 물체의 진입 신호를 상기 무선 통신부(313)에 입력하면, 상기 무선 통신부(313)는 미리 설정된 점등 영역의 크기에 따라 통신 가로등들을 설정할 수 있다.
한편, 도 8은 본 발명의 제4실시예에 따른 가로등의 제어를 구현한 상태를 나타낸 도면이다.
도 8을 참조하면, 총 6개의 노드 가로등들(410~460) 중에서 3개의 제1노드 가로등(410), 제3노드 가로등(430), 제5노드 가로등(450)에만 제1,3,5동작감지센서(411)(431)(451)가 설치된 것으로 예를 들어 설명한다.
도 8a를 참조하면, 상기 제1노드 가로등(410)의 동작감지센서(411)가 신규물체를 감지한다.
상기 제1노드 가로등(410)의 무선 통신부는, 상기 제2,3노드 가로등(420)(430)을 라이브 점등 가로등(L)으로 설정하고 라이브 점등영역 활성화 신호(Ls)를 전송하고, 상기 제4노드 가로등(440)을 가상 점등 가로등(P)으로 설정하고 가상 점등영역 활성화 신호(Ps)를 전송한다.
상기 제2,3노드 가로등(420)(430)은 상기 라이브 점등영역 활성화 신호(Ls)를 수신한 즉시 100%의 디밍값으로 점등된다.
상기 제4노드 가로등(440)은 상기 가상 점등영역 활성화 신호(Ps)를 수신한 이후 대기상태이다가 설정 시간이 경과한 점등시점이 되면 100%의 디밍값으로 점등된다.
이후, 도 8b를 참조하면, 상기 신규물체가 주행하여 상기 제2노드 가로등(420)의 하부를 통과한다.
상기 제2노드 가로등(420)에는 동작감지센서가 없으므로, 상기 제2노드 가로등(420)은 상기 신규물체를 감지하지 못하고, 상기 라이브 점등영역 활성화 신호(Ls)나 상기 가상 점등영역 활성화 신호(Ps)와 같은 신호를 인근 가로등에 전송하지 않는다.
상기 제2노드 가로등(420)이 신호를 전송하지 않더라도, 상기 제2,3,4노드 가로등(420)(430)(440)은 100%의 디밍값으로 점등될 수 있다.
즉, 상기 제4노드 가로등(440)은, 상기 제1노드 가로등(410)으로부터 상기 가상 점등영역 활성화 신호(Ps)를 이미 수신한 상태이므로, 별도의 신호가 없더라도 상기 점등시점이 되면 100%의 디밍값으로 자동 점등될 수 있다.
도 8c를 참조하면, 상기 신규물체가 주행하여 상기 제3노드 가로등(430)의 하부를 통과하면, 상기 제3노드 가로등(430)의 동작감지센서가 신규물체를 감지한다.
상기 제3노드 가로등(430)의 무선 통신부는, 상기 제4,5노드 가로등(440)(450)을 라이브 점등 가로등(L)으로 설정하고 라이브 점등영역 활성화 신호(Ls)를 전송하고, 상기 제6노드 가로등(460)을 가상 점등 가로등(P)으로 설정하고 가상 점등영역 활성화 신호(Ps)를 전송한다.
상기 제4,5노드 가로등(440)(450)은 상기 라이브 점등영역 활성화 신호(Ls)를 수신한 즉시 100%의 디밍값으로 점등된다.
상기 제6노드 가로등(460)은 상기 가상 점등영역 활성화 신호(Ps)를 수신한 이후 대기상태이다가 설정 시간이 경과한 점등시점이 되면 100%의 디밍값으로 점등된다.
상기와 같은 본 발명의 제4실시예에서는, 상기 동작감지센서를 모든 노드 가로등에 설치하지 않아도 되므로, 설치 비용이 절감될 수 있다.
본 실시예에서는, 상기 동작감지센서를 2개의 노드 가로등마다 1개씩 설치하는 것으로 예를 들어 설명하였으나, 이에 한정되지 않고 동작감지센서의 설치 간격을 조절할 수 있다. 상기 동작감지센서의 설치 간격은, 상기 가상 점등영역 활성화 신호의 점등시점을 고려하여 조절할 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
본 발명에 따르면 도로에 설치된 복수의 가로등들의 밝기를 보다 효율적으로 제어할 수 있는 가로등의 제어장치를 제조할 수 있다.

Claims (19)

  1. 복수의 노드(node) 가로등들 중에서 어느 하나의 제1노드 가로등에 설치된 동작감지센서가 미리 설정된 감지영역에서 물체의 존재여부를 감지하고, 감지된 물체존재신호를 신호처리부로 송신하는 물체감지단계와;
    상기 신호처리부는 상기 물체존재신호를 수신하면, 상기 물체가 상기 감지영역에 새로 진입한 신규 물체인지 이미 감지된 기존 물체인지 판단하는 물체판단단계와;
    상기 물체판단단계에서 상기 물체가 신규 물체라고 판단되면, 상기 신호처리부는 상기 제1노드 가로등을 중심으로 점등영역의 크기를 결정하는 점등영역 계산단계와;
    상기 신호처리부가 상기 제1노드 가로등에 설치된 점등 제어부에 상기 물체존재신호와 점등영역 활성화 신호를 입력하고, 상기 점등영역의 크기에 대한 신호를 상기 제1노드 가로등에 설치된 근거리무선통신부에 입력하는 신호입력단계와;
    상기 근거리무선통신부가 상기 점등영역의 크기에 대한 신호를 수신하면, 상기 제1노드 가로등에 인접하는 상기 복수의 노드 가로등들 중에서 상기 점등영역에 포함되는 적어도 하나 이상의 가로등을 추가점등 가로등으로 설정하고, 상기 추가점등 가로등에 상기 점등영역 활성화 신호를 송신하는 통신단계와;
    상기 신호입력단계에서 상기 제1노드 가로등의 점등 제어부가 상기 물체존재신호와 상기 점등영역 활성화 신호를 입력받으면, 상기 물체존재신호와 상기 점등영역 활성화 신호에 따라 상기 제1노드 가로등의 디밍값을 제어하여 상기 제1노드 가로등을 점등하고,
    상기 통신단계에서 상기 추가점등 가로등의 점등 제어부가 상기 점등영역 활성화 신호를 수신하면, 상기 점등영역 활성화 신호에 따라 상기 추가 점등 가로등의 디밍값을 제어하여 상기 추가점등 가로등을 점등하는 점등단계를 포함하는 가로등의 제어방법.
  2. 청구항 1에 있어서,
    상기 물체판단단계에서 상기 물체가 상기 신규 물체가 아니고 기존 물체라고 판단하면,
    상기 제1노드 가로등의 현재 점등 상태를 유지하는 가로등의 제어방법.
  3. 청구항 1에 있어서,
    상기 점등단계에서 상기 제1노드 가로등의 점등 제어부는 기입력된 물체존재신호가 없다고 판단되면, 상기 제1노드 가로등의 디밍값을 정격값 이상으로 상향 설정하여 점등하고,
    상기 기입력된 물체존재신호가 있다고 판단되면, 상기 제1노드 가로등의 현재 점등 상태를 유지하는 가로등의 제어방법.
  4. 청구항 1에 있어서,
    상기 점등단계에서 상기 추가점등 가로등의 점등 제어부는, 기입력된 물체존재신호가 없다고 판단되면, 상기 추가점등 가로등의 디밍값을 정격값 이상으로 상향 설정하여 점등하고,
    상기 기입력된 물체존재신호가 있다고 판단되면, 상기 추가점등 가로등의 현재 점등 상태를 유지하는 가로등의 제어방법.
  5. 청구항 1에 있어서,
    상기 신호처리부가 상기 동작감지센서로부터 상기 물체존재신호를 수신받지 않으면,
    상기 신호처리부는 상기 점등 제어부에 기입력된 물체존재신호가 있는지 판단하고,
    상기 기입력된 물체존재신호가 있다고 판단되면, 상기 신호처리부가 상기 점등 제어부에 물체부재신호를 입력하고,
    상기 점등 제어부에 상기 물체부재신호가 입력되면, 상기 점등 제어부는 기입력된 점등영역 활성화 신호의 유무에 따라 상기 제1노드 가로등의 디밍값을 다르게 제어하는 가로등의 제어방법.
  6. 청구항 5에 있어서,
    상기 점등 제어부에 상기 물체부재신호가 입력되면, 상기 점등 제어부는 기입력된 점등영역 활성화 신호가 있는지 판단하고,
    상기 기입력된 점등영역 활성화 신호가 없다고 판단되면, 상기 점등 제어부는 미리 설정된 설정 디밍값에 따라 상기 제1노드 가로등을 점등하고,
    상기 기입력된 점등영역 활성화 신호가 있다고 판단되면, 상기 점등 제어부는 상기 제1노드 가로등의 디밍값을 정격값 이상으로 상향 설정하여 점등하는 가로등의 제어방법.
  7. 청구항 5에 있어서,
    상기 점등 제어부에 상기 물체부재신호가 입력되면, 상기 점등 제어부는 기입력된 점등영역 활성화 신호가 있는지 판단하고,
    상기 기입력된 점등영역 활성화 신호가 없다고 판단되면, 상기 점등 제어부는 미리 설정된 설정 디밍값에 따라 상기 제1노드 가로등을 점등하고,
    상기 기입력된 점등영역 활성화 신호가 있다고 판단되면, 상기 제1노드 가로등의 현재의 점등 상태를 유지하는 가로등의 제어방법.
  8. 청구항 1에 있어서,
    상기 점등영역 계산단계에서는,
    상기 신호처리부가 상기 신규 물체의 이동방향과 이동속도를 계산하고, 상기 이동방향과 상기 이동속도에 따라 상기 제1노드 가로등을 중심으로 점등영역의 크기를 계산하는 가로등의 제어방법.
  9. 청구항 1에 있어서,
    상기 통신단계에서는,
    상기 제1노드 가로등의 근거리무선통신부는, 상기 복수의 노드 가로등들 중에서 통신해야할 통신 가로등들을 설정하고,
    상기 통신 가로등들 중 상기 추가 점등 가로등을 라이브 점등 가로등을 설정하고, 상기 점등영역 활성화 신호는 라이브 점등영역 활성화 신호(Live light zone active signal)이고,
    상기 통신 가로등들 중에서 상기 신규물체의 이동방향에서 상기 라이브 점등 가로등보다 전방에 배치된 가로등 중 적어도 하나를 가상 점등 가로등으로 설정하여 상기 가상 점등 가로등에 가상 점등영역 활성화 신호(Pseudo light zone active signal)를 전송하는 가로등의 제어방법.
  10. 청구항 9에 있어서,
    상기 라이브 점등 가로등은, 상기 라이브 점등영역 활성화신호를 수신한 즉시 미리 설정된 설정 디밍값으로 점등하는 단계와;
    상기 가상 점등 가로등은, 상기 가상 점등영역 활성화 신호를 수신한 후 설정시간이 경과한 시점으로 설정된 점등시점에 상기 설정 디밍값으로 자동 점등하는 가로등의 제어방법.
  11. 청구항 9에 있어서,
    상기 가상 점등 가로등이 복수개가 설정되면,
    상기 복수의 가상 점등 가로등들의 각 점등시점은, 미리 설정된 시간 간격으로 순차적으로 점등하도록 설정되는 가로등의 제어방법.
  12. 청구항 9에 있어서,
    상기 가상 점등 가로등이 복수개가 설정되면,
    상기 복수의 가상 점등 가로등들의 각 점등시점은, 상기 라이브 점등 가로등과 상기 가상 점등 가로등 사이의 거리에 비례하여 늦어지도록 설정되는 가로등의 제어방법.
  13. 청구항 9에 있어서,
    상기 가상 점등 가로등에 상기 라이브 점등영역 활성화 신호가 기입력된 상태이면, 상기 가상 점등영역 활성화 신호는 비활성화되는 가로등의 제어방법.
  14. 청구항 9에 있어서,
    상기 가상 점등 가로등에 상기 라이브 점등영역 활성화 신호가 기입력된 상태이면, 상기 가상 점등영역 활성화 신호는 소정의 시간이 경과한 이후 비활성화되는 가로등의 제어방법.
  15. 청구항 9에 있어서,
    상기 가상 점등 가로등에 상기 라이브 점등영역 활성화 신호가 새로 입력되면, 상기 가상 점등영역 활성화 신호는 비활성화되는 가로등의 제어방법.
  16. 청구항 9에 있어서,
    상기 제1노드 가로등의 신호처리부는, 상기 신규물체의 속력과 이동방향을 계산하고, 계산된 속력과 이동방향에 따라 상기 점등 영역의 크기를 계산하고,
    상기 제1노드 가로등의 무선 통신부는, 상기 계산된 점등 영역의 크기에 따라 상기 통신 가로등들의 통신 주소를 결정하는 가로등의 제어방법.
  17. 청구항 9에 있어서,
    상기 복수의 노드 가로등들은 미리 설정된 설정개수씩 그룹으로 설정되고,
    상기 동작감지센서는, 상기 그룹마다 적어도 하나의 노드 가로등에 설치된 가로등의 제어방법.
  18. 청구항 9에 있어서,
    상기 제1노드 가로등의 신호처리부가 상기 물체가 존재하지 않는다고 판단하면,
    상기 제1노드 가로등의 신호처리부는, 상기 제1노드 가로등에 기입력된 물체존재신호가 있는지 판단하고, 상기 기입력된 물체존재신호가 없다고 판단되면, 물체부재신호를 입력하고,
    상기 물체부재신호를 입력한 이후, 상기 가상 점등영역 활성화 신호에 따른 점등 시점인지 판단하고,
    상기 점등 시점이라고 판단되면, 상기 라이브 점등영역 활성화 신호가 기입력된 상태인지 판단하고,
    상기 라이브 점등영역 활성화 신호의 입력이 없다고 판단되면, 상기 제1노드 가로등의 디밍값을 상기 설정 디밍값으로 설정하여 점등하고,
    상기 라이브 점등영역 활성화 신호의 입력이 있다고 판단되면, 상기 제1노드 가로등의 점등 상태를 유지하는 가로등의 제어방법.
  19. 동작감지센서로부터 수신한 신호에 따라 물체 존재 여부를 판단하고, 물체가 존재한다고 판단되면 기입력된 물체존재신호가 있는지 판단하여 상기 기입력된 물체존재신호가 없으면 물체존재신호를 새로 생성하고, 상기 물체가 존재하지 않고 상기 기입력된 물체존재신호도 없다고 판단되면 물체부재신호를 생성하며, 상기 물체가 존재한다고 판단되면 상기 물체가 신규 물체인지 기존 물체인지를 판단하여 상기 신규물체라고 판단되면, 점등영역의 크기를 계산하는 신호 처리부와;
    상기 신호처리부로부터 상기 물체존재신호를 입력받으면, 미리 설정된 설정디밍값으로 점등하고, 상기 신호처리부로부터 상기 물체부재신호를 입력받고, 주변 가로등들 중 어느 하나로부터 점등영역 활성화 신호(light zone active signal)를 수신하면, 미리 설정된 설정 디밍값으로 점등하는 점등 제어부와;
    상기 점등영역의 크기에 따라 상기 주변 가로등들 중에서 상기 점등영역에 포함되는 적어도 하나 이상의 가로등을 추가 점등 가로등으로 설정하고, 상기 추가 점등 가로등에 상기 점등영역 활성화 신호를 송신하는 근거리무선통신부를 포함하는 가로등의 제어장치.
PCT/KR2017/003725 2016-05-10 2017-04-05 가로등의 제어방법 및 이를 이용한 제어장치 WO2017195986A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/476,873 US10849208B2 (en) 2016-05-10 2017-04-05 Method for controlling streetlight, and control apparatus using same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR10-2016-0056862 2016-05-10
KR1020160056862A KR101640895B1 (ko) 2016-05-10 2016-05-10 가로등의 제어방법
KR1020160088679A KR102340722B1 (ko) 2016-05-10 2016-07-13 가로등의 제어방법
KR10-2016-0088679 2016-07-13
KR1020160109160A KR101692217B1 (ko) 2016-08-26 2016-08-26 가로등의 제어방법
KR10-2016-0109160 2016-08-26
KR1020170019994A KR20180093631A (ko) 2017-02-14 2017-02-14 가로등의 제어방법
KR10-2017-0019994 2017-02-14
KR1020170026946A KR101746512B1 (ko) 2017-03-02 2017-03-02 가로등용 제어장치
KR10-2017-0026946 2017-03-02

Publications (1)

Publication Number Publication Date
WO2017195986A1 true WO2017195986A1 (ko) 2017-11-16

Family

ID=60267754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003725 WO2017195986A1 (ko) 2016-05-10 2017-04-05 가로등의 제어방법 및 이를 이용한 제어장치

Country Status (2)

Country Link
US (1) US10849208B2 (ko)
WO (1) WO2017195986A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381652A (zh) * 2019-07-08 2019-10-25 武汉诚信卓远科技发展有限公司 智能灯光控制方法、设备及计算机可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430601B (zh) * 2020-10-29 2023-10-03 Oppo广东移动通信有限公司 照明控制方法及相关装置
WO2022190132A1 (en) * 2021-03-10 2022-09-15 Devendrasinh Gulabsinh Rajput Street light device
CN114923149A (zh) * 2022-07-20 2022-08-19 深圳市华慧能节能科技有限公司 一种数据智能采集的智慧路灯及其控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235116A (ja) * 2007-03-22 2008-10-02 Toshiba Lighting & Technology Corp 照明装置
KR20090065112A (ko) * 2007-12-17 2009-06-22 주식회사 한썸 가로등 제어장치 및 그 방법
KR20110094549A (ko) * 2010-02-17 2011-08-24 엘티오전자 주식회사 복수의 가로등의 디밍 방법
JP2012123921A (ja) * 2010-12-06 2012-06-28 Sharp Corp 道路照明装置
KR20130093385A (ko) * 2012-02-14 2013-08-22 재단법인 철원플라즈마 산업기술연구원 가로등 시스템 및 그 제어방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200258569Y1 (ko) 2001-09-24 2001-12-29 이상현 교통자료에 따른 가로등 및 조명등 제어장치
US20070014119A1 (en) * 2005-07-12 2007-01-18 Burkett Karl A Variable lighting system for optimizing night visibility
US8476565B2 (en) * 2007-06-29 2013-07-02 Orion Energy Systems, Inc. Outdoor lighting fixtures control systems and methods
US9215778B2 (en) * 2012-10-22 2015-12-15 Petra Solar, Inc. Distributed street lights monitoring, command and control combined with solar photo voltaic cell
ES2791714T3 (es) * 2013-03-18 2020-11-05 Signify Holding Bv Métodos y aparatos de gestión de información y de control de redes de iluminación exterior
US20170042003A1 (en) * 2015-08-06 2017-02-09 Stmicroelectronics, Inc. Intelligent lighting and sensor system and method of implementation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235116A (ja) * 2007-03-22 2008-10-02 Toshiba Lighting & Technology Corp 照明装置
KR20090065112A (ko) * 2007-12-17 2009-06-22 주식회사 한썸 가로등 제어장치 및 그 방법
KR20110094549A (ko) * 2010-02-17 2011-08-24 엘티오전자 주식회사 복수의 가로등의 디밍 방법
JP2012123921A (ja) * 2010-12-06 2012-06-28 Sharp Corp 道路照明装置
KR20130093385A (ko) * 2012-02-14 2013-08-22 재단법인 철원플라즈마 산업기술연구원 가로등 시스템 및 그 제어방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381652A (zh) * 2019-07-08 2019-10-25 武汉诚信卓远科技发展有限公司 智能灯光控制方法、设备及计算机可读存储介质

Also Published As

Publication number Publication date
US10849208B2 (en) 2020-11-24
US20200092973A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2017195986A1 (ko) 가로등의 제어방법 및 이를 이용한 제어장치
WO2016114488A1 (ko) 통행차량 검지를 위한 검지영역 설정 방법과 이를 이용한 교통 신호 제어방법
WO2018182275A1 (en) Method and device for controlling driving based on sensing information
WO2019050238A1 (ko) 횡단보도 음성안내 보조장치
WO2011053089A2 (ko) 조명 제어 장치
WO2019107782A1 (ko) 정보 제공을 위한 시스템, 서버 및 방법
WO2016021961A1 (ko) 차량용 헤드램프 구동장치 및 이를 구비한 차량
WO2018101664A1 (ko) 보행자 보호 시스템 및 그 동작 방법
WO2013022188A2 (ko) 계층적 구조의 식별정보를 이용한 교통 신호 제어 장치 및 방법
WO2013032267A1 (ko) 안전운전 정보제공 가로등 및 그 가로등을 이용한 안전운전 정보제공 시스템
WO2018105842A1 (ko) 레이더 기반 고 정밀 돌발상황 검지 시스템
WO2015182803A1 (ko) 거울을 이용한 전반사형태 레인센서
WO2017082606A1 (ko) 스마트 대피 유도 시스템 및 그 방법
WO2017026642A1 (ko) 횡단보도의 교통신호안전시스템
WO2017057951A1 (ko) 가시광통신 기기 등록 및 가시광통신 신호와 무선통신 신호의 결합 장치 및 방법
WO2022203125A1 (ko) 터널 내 및 모든 도로 주행 안전 장치
WO2010013907A2 (ko) 레이저 디스플레이 시스템의 화이트 밸런스 조정 장치 및 방법
WO2011019241A2 (ko) 터널등의 색온도 제어장치 및 색온도 조절용 터널등기구
WO2021085786A1 (ko) 집적 회로 및 그것을 포함하는 시스템 제어 장치
WO2020071604A1 (ko) 광섬유 발광형 표지 장치
WO2017010593A1 (ko) 제스쳐 인식 장치
WO2012157793A1 (en) Gesture recognition method and apparatus
WO2016099014A1 (ko) 횡단보도의 보행자안전시스템
KR20180126426A (ko) 가로등의 제어방법
WO2020017850A1 (ko) 조명 제어 시스템

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796286

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796286

Country of ref document: EP

Kind code of ref document: A1