WO2017193443A1 - 液晶面板结构及制作方法 - Google Patents

液晶面板结构及制作方法 Download PDF

Info

Publication number
WO2017193443A1
WO2017193443A1 PCT/CN2016/085779 CN2016085779W WO2017193443A1 WO 2017193443 A1 WO2017193443 A1 WO 2017193443A1 CN 2016085779 W CN2016085779 W CN 2016085779W WO 2017193443 A1 WO2017193443 A1 WO 2017193443A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid crystal
substrate
alignment
ito electrode
Prior art date
Application number
PCT/CN2016/085779
Other languages
English (en)
French (fr)
Inventor
李吉
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/115,691 priority Critical patent/US10295865B2/en
Publication of WO2017193443A1 publication Critical patent/WO2017193443A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133734Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by obliquely evaporated films, e.g. Si or SiO2 films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal panel structure and a manufacturing method thereof.
  • Thin Film Transistor Liquid Crystal Display has many advantages such as thin body, power saving, and no radiation, and has been widely used.
  • Most of the LCDs on the market are backlight type liquid crystal display devices, which include a liquid crystal display panel and a backlight module.
  • a liquid crystal display panel comprises a color filter (CF) substrate, a thin film transistor (TFT) substrate, a liquid crystal (LC) layer sandwiched between the CF substrate and the TFT substrate, and a sealant frame (Sealant). )composition.
  • the working principle of the liquid crystal display panel is to place liquid crystal molecules in two parallel glass substrates, and control the liquid crystal molecules to change direction by energizing or not the glass substrate, and refract the light of the backlight module to produce a picture.
  • the liquid crystal display panel it is also required to form an alignment film on the TFT substrate and the CF substrate respectively.
  • the LC can generate a pretilt angle in a certain direction, thereby providing a load bearing angle to the liquid crystal molecules (
  • the pretilt angle has an important influence on the driving voltage, contrast, response time, and viewing angle of the TFT-LCD.
  • the material of the alignment film is usually made of polyimide (PI) material, which is mainly divided into a friction-aligned PI material and light. Oriented PI materials, however, any alignment material has its own disadvantages. Among them, the friction-aligned PI material forms an alignment film by rubbing alignment method.
  • the rubbing alignment method is a contact-type mechanical friction on the surface of the polymer PI film with a flannel roller, and the energy provided by rubbing the surface of the polymer makes the polymer
  • the main chain is oriented by extension, thereby controlling the branch to interact with the LC, so that the LC is aligned in the direction of the pretilt angle; therefore, problems such as dust particles, static electricity, and brush marks are easily caused in the frictional alignment to reduce the process yield.
  • the photo-aligned PI material forms an alignment film by photo-alignment technology.
  • the photo-alignment method utilizes photochemical reaction of the ultraviolet photopolymer monomer material to generate anisotropy, and the liquid crystal molecules interact with the surface of the alignment film.
  • the liquid crystal molecules are arranged along the direction of the maximum force defined by the light alignment.
  • the light alignment type PI material can solve the above problems, but the heat resistance and aging resistance are limited due to material properties. Poor, while the ability to anchor LC is also weak, which affects the quality of the panel.
  • the PI material itself has high polarity and high water absorption, storage and transportation are liable to cause deterioration and uneven alignment, and the PI material is expensive, and the process of forming a film on the TFT-LCD is complicated. This leads to an increase in panel costs.
  • the TFT-LCD display panel can be divided into three types, namely Twisted Nematic (TN), In-Plane Switching (IPS) type, and vertical alignment. (Vertical Alignment, VA) type.
  • TN Twisted Nematic
  • IPS In-Plane Switching
  • VA Vertical Alignment
  • the VA type liquid crystal display has a very high contrast ratio with respect to other types of liquid crystal displays, and has a very wide application in a large-sized display such as a television.
  • the Polymer Stabilized-Vertical Alignment (PSVA) technology can make the liquid crystal display panel have the advantages of faster response time and high transmittance, and is characterized by ultraviolet light (UV) illumination in the liquid crystal material.
  • UV ultraviolet light
  • An object of the present invention is to provide a liquid crystal panel structure using a silicon nitride film which is physically and chemically stable as an alignment layer for aligning liquid crystals, which has high reliability and simple fabrication process.
  • Another object of the present invention is to provide a method for fabricating a liquid crystal panel, which uses a silicon nitride film with stable physical and chemical properties as an alignment layer for aligning liquid crystals, which has high reliability and simple fabrication process.
  • the present invention firstly provides a liquid crystal panel structure including an upper substrate and a lower substrate disposed opposite to each other, and a liquid crystal layer disposed between the upper substrate and the lower substrate;
  • the upper substrate includes a first substrate, and a first alignment layer disposed on a side of the first substrate adjacent to the liquid crystal layer;
  • the lower substrate includes a second substrate, and a second alignment layer disposed on a side of the second substrate adjacent to the liquid crystal layer;
  • the first and second alignment layers are silicon nitride films subjected to ion beam bombardment treatment on a surface close to one side of the liquid crystal layer;
  • the material of the liquid crystal layer contains liquid crystal molecules, and the first and second alignment layers are in contact with liquid crystal molecules in the liquid crystal layer to align them.
  • the upper substrate further includes a black matrix, a color filter film, a first ITO electrode layer, and a spacer;
  • the black matrix is disposed on a side of the first substrate adjacent to the liquid crystal layer, and the color filter film is disposed on a side of the first substrate and the black matrix adjacent to the liquid crystal layer
  • the first ITO electrode layer is disposed on a side of the color filter film adjacent to the liquid crystal layer, and the spacer is disposed on a side of the first ITO electrode layer adjacent to the liquid crystal layer.
  • the first alignment layer is disposed on a side of the first ITO electrode layer adjacent to the liquid crystal layer.
  • the lower substrate further includes a TFT array layer, a passivation protective layer, and a second ITO electrode layer;
  • the TFT array layer is disposed on a side of the second substrate opposite to the liquid crystal layer, and the passivation protective layer is disposed on a side of the TFT array layer adjacent to the liquid crystal layer, Two ITO electrode layers are disposed on a side of the passivation protective layer adjacent to the liquid crystal layer, and the second alignment layer is disposed on a side of the second ITO electrode layer adjacent to the liquid crystal layer.
  • the lower substrate further includes a TFT array layer and a patterned second ITO electrode layer;
  • the TFT array layer is disposed on a side of the second substrate opposite to the liquid crystal layer, and the second alignment layer is disposed on a side of the TFT array layer adjacent to the liquid crystal layer, a second ITO electrode layer is disposed on a side of the second alignment layer adjacent to the liquid crystal layer;
  • the second ITO electrode layer has a gap thereon, and the second alignment layer is in contact with liquid crystal molecules in the liquid crystal layer through a gap on the second ITO electrode layer.
  • the first and second alignment layers have a thickness of 40 to 80 nm, and the surfaces of the first and second alignment layers adjacent to the liquid crystal layer are subjected to ion beam bombardment treatment by argon plasma, the first and the The second alignment layer provides a pretilt angle of 80 to 90° to the liquid crystal molecules in the liquid crystal layer.
  • the invention also provides a method for fabricating a liquid crystal panel, comprising the following steps:
  • Step 1 Providing a first substrate, depositing a silicon nitride film on one side of the first substrate by a PECVD method, and performing ion beam bombardment on the surface to form a first alignment layer to obtain an upper substrate. ;
  • Step 2 providing a second substrate, depositing a silicon nitride film on one side of the second substrate by PECVD and performing ion beam bombardment on the surface to form a second alignment layer to obtain a lower substrate ;
  • Step 3 depositing a liquid crystal material containing liquid crystal molecules on one side of the upper substrate or the lower substrate, and providing one side of the first substrate with the first alignment layer and the second substrate One side of the second alignment layer faces, and the upper substrate and the lower substrate are vacuum-paired to form a liquid crystal layer between the upper substrate and the lower substrate to obtain a liquid crystal panel;
  • the first and second alignment layers are in contact with liquid crystal molecules in the liquid crystal layer, and are aligned.
  • the process of depositing a silicon nitride film by PECVD is specifically: introducing silane, ammonia, and nitrogen into the PECVD reaction chamber, and forming a nitride by reaction at a temperature of 280 to 350 ° C. a silicon film, wherein a gas flow ratio of silane, ammonia gas, and nitrogen gas is 100:1:200, and the formed silicon nitride film has a thickness of 40 to 80 nm;
  • the ion beam bombardment treatment is performed on the surface of the silicon nitride film, specifically, argon gas is introduced into the ion beam bombardment reactor to form argon plasma at a working pressure of 10 -4 Torr.
  • the ion beam composed of argon plasma bombards the surface of the silicon nitride film at an angle of 30 to 50° with the surface of the silicon nitride film, wherein the concentration of the argon plasma in the ion beam bombardment reactor is 10 14 to 10 15 ions/ Cm 2 .
  • the step 1 further includes forming a black matrix on the first substrate, forming a color filter film on the first substrate and the black matrix, in the color, before forming the first alignment layer Forming a first ITO electrode layer on the filter film, forming a spacer on the first ITO electrode layer;
  • the first alignment layer is formed on the first ITO electrode layer, and the obtained upper substrate comprises a first substrate, a black matrix, a color filter film, a first ITO electrode layer, and a spacer. And the first alignment layer.
  • the step 2 further includes: forming a TFT array layer on the second substrate, forming a passivation protective layer on the TFT array layer, before the forming the second alignment layer, Forming a second ITO electrode layer on the protective layer;
  • the second alignment layer is formed on the second ITO electrode layer, and the obtained lower substrate comprises a second substrate, a TFT array layer, a passivation protective layer, a second ITO electrode layer, And a second alignment layer.
  • the step 2 further includes: forming a TFT array layer on the second substrate after forming the second alignment layer, and forming a second alignment layer on the second alignment layer after forming the second alignment layer a patterned second ITO electrode layer;
  • the second alignment layer is formed on the TFT array layer to protect the TFT array layer, and the obtained lower substrate comprises a second substrate, a TFT array layer, and a second alignment. a layer, and a second ITO electrode layer;
  • the second ITO electrode layer has a gap thereon.
  • the second alignment layer is in contact with the liquid crystal molecules in the liquid crystal layer through a gap on the second ITO electrode layer.
  • the present invention also provides a liquid crystal panel structure comprising an upper substrate and a lower substrate disposed opposite to each other, and a liquid crystal layer disposed between the upper substrate and the lower substrate;
  • the upper substrate includes a first substrate, and a first alignment layer disposed on a side of the first substrate adjacent to the liquid crystal layer;
  • the lower substrate includes a second substrate, and a second alignment layer disposed on a side of the second substrate adjacent to the liquid crystal layer;
  • the first and second alignment layers are silicon nitride films subjected to ion beam bombardment treatment on a surface close to one side of the liquid crystal layer;
  • the material of the liquid crystal layer comprises liquid crystal molecules, the first and second alignment layers and the liquid crystal
  • the liquid crystal molecules in the layer are in contact with each other and are aligned;
  • the upper substrate further includes a black matrix, a color filter film, a first ITO electrode layer, and a spacer;
  • the black matrix is disposed on a side of the first substrate adjacent to the liquid crystal layer, and the color filter film is disposed on a side of the first substrate and the black matrix adjacent to the liquid crystal layer
  • the first ITO electrode layer is disposed on a side of the color filter film adjacent to the liquid crystal layer, and the spacer is disposed on a side of the first ITO electrode layer adjacent to the liquid crystal layer.
  • the first alignment layer is disposed on a side of the first ITO electrode layer adjacent to the liquid crystal layer;
  • the thickness of the first and second alignment layers is 40-80 nm, and the surface of the first and second alignment layers adjacent to the liquid crystal layer is subjected to ion beam bombardment treatment by argon plasma, the first The second alignment layer provides a pretilt angle of 80 to 90° to the liquid crystal molecules in the liquid crystal layer.
  • the invention has the advantages that the liquid crystal panel structure and the manufacturing method of the invention adopt the silicon nitride film as the alignment layer for aligning the liquid crystal, and have the following advantages compared with the prior art:
  • silicon nitride is more stable in physical and chemical properties, and can provide more reliable reliability of liquid crystal panels;
  • the surface of the silicon nitride film can be subjected to ion beam bombardment treatment to provide a suitable pretilt angle to the liquid crystal. Compared with the current PSVA technology, no UV illumination is required to provide a pretilt angle to the liquid crystal;
  • Silicon nitride growth process In the TFT-LCD manufacturing industry, the equipment and process are quite mature. In addition, the silicon nitride film can also be used as a passivation protective layer, thereby greatly reducing process cost and material cost. .
  • FIG. 1 is a schematic structural view of a first embodiment of a liquid crystal panel structure of the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of a liquid crystal panel structure of the present invention.
  • FIG. 3 is a schematic flow chart of a method of fabricating a liquid crystal panel of the present invention.
  • the liquid crystal panel structure of the present embodiment includes an upper substrate 10 and a lower substrate 20 disposed opposite to each other, and the upper substrate 10 and The liquid crystal layer 30 between the lower substrates 20.
  • the upper substrate 10 is a color filter substrate, and includes a first substrate substrate 11 , a black matrix 13 disposed on the first substrate substrate 11 , and the first substrate substrate 11 and the black matrix 13 .
  • a color filter layer 14 a first ITO electrode layer 15 disposed on the color filter layer 14 , a spacer 16 disposed on the first ITO electrode layer 15 , and a first ITO electrode layer 15 .
  • the first alignment layer 12, the first alignment layer 12 also covers the spacer 16. .
  • the lower substrate 20 is a TFT array substrate, and includes a second substrate substrate 21, a TFT array layer 23 disposed on the second substrate substrate 21, and passivation provided on the TFT array layer 23. a protective layer 24 and a second alignment layer 22 disposed on the passivation protective layer 24.
  • the first and second alignment layers 12 and 22 are silicon nitride (SiNx) films subjected to ion beam bombardment treatment on a surface close to the liquid crystal layer 30 side.
  • the material of the liquid crystal layer 30 includes liquid crystal molecules 31, and the first and second alignment layers 12 and 22 are in contact with the liquid crystal molecules 31 in the liquid crystal layer 30 to align them.
  • the first and second alignment layers 12 and 22 have a thickness of 40 to 80 nm, and the surfaces of the first and second alignment layers 12 and 22 adjacent to the liquid crystal layer 30 are at an angle thereto.
  • the bombardment treatment of the ion beam of the argon plasma preferably, the angle of the ion beam of the argon plasma and the surface of the first and second alignment layers 12, 22 on the side close to the liquid crystal layer 30 is 30 to 50°, the first The second alignment layers 12, 22 provide a pretilt angle of 80 to 90° to the liquid crystal molecules 31 in the liquid crystal layer 30.
  • the lower substrate 20 includes a second substrate 21 and a TFT.
  • the array layer 23, the second ITO electrode layer 25', and the second alignment layer 22, in particular, the second ITO electrode layer 25' is a patterned film layer having a pattern with a gap thereon.
  • the substrate 20 is not included in the passivation protective layer 24, and the second alignment layer 22 is disposed between the TFT array layer 23 and the second ITO electrode layer 25' instead of the passivation protective layer 24 in the first embodiment, and The second alignment layer 22 is in contact with the liquid crystal molecules 31 in the liquid crystal layer 30 through a gap on the second ITO electrode layer 25', so that the second alignment layer 22 is used both as a passivation in this embodiment.
  • the protective layer protects the TFT array layer 23 and serves as an alignment layer to align the liquid crystal molecules 31.
  • the first alignment layer 12 of the upper substrate 10 and the second alignment layer 22 of the lower substrate 20 are silicon nitride films subjected to ion beam bombardment treatment on the surface of the liquid crystal layer 30 side.
  • the alignment layer has more stable physical and chemical properties, which can provide more reliable reliability of the liquid crystal panel;
  • the pretilt angle provided to the liquid crystal molecules 31 can be adjusted in the range of 80 to 90°, so that the liquid crystal molecules 31 can be provided with a suitable pretilt angle, and compared with the current PSVA technology, no UV illumination is required.
  • the liquid crystal provides a pretilt angle process, and further, the reactive type monomer is not required to be added to the liquid crystal layer 30 relative to the PSVA technology, thereby further improving the reliability of the liquid crystal panel; further, the silicon nitride growth process is in the TFT-LCD.
  • equipment and processes are quite mature, which greatly reduces process costs and material costs.
  • the present invention further provides a method for fabricating a liquid crystal panel, including the following steps:
  • Step 1 providing a first base substrate 11, forming a black matrix 13 on the first base substrate 11, forming a color filter film 14 on the first base substrate 11 and the black matrix 13, A first ITO electrode layer 15 is formed on the color filter film 14, a spacer 16 is formed on the first ITO electrode layer 15, and a silicon nitride film is deposited on the ITO electrode layer 15 by PECVD.
  • the surface is subjected to ion beam bombardment treatment to form the first alignment layer 12, and the first alignment substrate 12, the black matrix 13, the color filter film 14, the first ITO electrode layer 15, the spacer 16, and the first alignment are obtained.
  • Step 2 providing a second substrate substrate 21, forming a TFT array layer 23 on the second substrate substrate 21, and forming a passivation protective layer 24 on the TFT array layer 23, in the passivation protective layer 24 Forming a second ITO electrode layer 25 thereon, depositing a silicon nitride film on the second ITO electrode layer 25 by PECVD, and performing ion beam bombardment treatment on the surface thereof to form a second alignment layer 22, thereby obtaining a second alignment layer 22
  • the process of depositing a silicon nitride film by PECVD is specifically: introducing silane (SiH 4 ), ammonia (NH 3 ), and nitrogen (N 2 into the PECVD reaction chamber).
  • a silicon nitride film is formed by a reaction at a temperature of 280 to 350 ° C, wherein a gas flow ratio of silane, ammonia gas, and nitrogen gas is 100:1:200, and a thickness of the formed silicon nitride film is 40 ⁇ 80nm.
  • the process of performing ion beam bombardment on the surface of the silicon nitride film is specifically: introducing argon gas into the ion beam bombardment reactor to form argon plasma at 10 -4 Torr.
  • the ion beam composed of argon plasma under working pressure bombards the surface of the silicon nitride film at an angle of 30 to 50° with the surface of the silicon nitride film, wherein the concentration of the argon plasma in the ion beam bombardment reactor is 10 14 to 10 15 ions/cm 2 .
  • Step 3 depositing a liquid crystal material containing liquid crystal molecules 31 on one side of the upper substrate 10 or the lower substrate 20, and providing the first substrate substrate 11 with one side and the second of the first alignment layer 12
  • the substrate substrate 21 is provided with one side of the second alignment layer 22 facing each other, and the upper substrate 10 and the lower substrate 20 are vacuum-paired to form a liquid crystal layer 30 between the upper substrate 10 and the lower substrate 20, thereby obtaining The liquid crystal panel shown in Fig. 1.
  • first and second alignment layers 12, 22 are in contact with the liquid crystal molecules 31 in the liquid crystal layer 30, and are aligned.
  • the difference from the above embodiment is that, in the step 2, after the TFT array layer 23 is formed, the passivation protective layer 24 is not formed, but Depositing a silicon nitride film on the TFT array layer 23 by PECVD and subjecting the surface thereof to ion beam bombardment treatment to form a second alignment layer 22, and then forming a patterned pattern on the second alignment layer 22.
  • the ITO electrode layer 25' so that the lower substrate obtained in the step 2 does not include the passivation protective layer 24, and the liquid crystal panel shown in FIG. 2 is obtained in the step 3, wherein the second alignment layer 22 passes through the second ITO electrode.
  • the gap on the layer 25' is in contact with the liquid crystal molecules 31 in the liquid crystal layer 30, so that the second alignment layer 22 serves as both a passivation protective layer for protecting the TFT array layer 23 in the present embodiment, and
  • the alignment layer aligns the liquid crystal molecules 31.
  • the first alignment layer 12 of the upper substrate 10 and the second alignment layer 22 of the lower substrate 20 each have a silicon nitride film whose surface has been subjected to ion beam bombardment treatment, compared to the PI alignment film.
  • the alignment layer has more stable physical and chemical properties, so that the liquid crystal panel can be provided with more reliable reliability; in addition, the surface of the silicon nitride film can be treated by ion beam bombardment, and the pretilt angle provided to the liquid crystal molecules 31 can be 80-90.
  • the adjustment is made within the range of ° so that the liquid crystal molecules 31 can be provided with a suitable pretilt angle, and the process of providing a pretilt angle to the liquid crystal is not required compared to the current PSVA technology, further with respect to the PSVA technology, the liquid crystal layer 30
  • the reaction type monomer is not required to be added, thereby further improving the reliability of the liquid crystal panel; further, the silicon nitride growth process, in the TFT-LCD manufacturing industry, the equipment and the process are quite mature, thereby greatly reducing the process cost. And material costs.
  • the first alignment layer of the upper substrate and the second alignment layer of the lower substrate each adopt a silicon nitride film whose surface is subjected to ion beam bombardment treatment, compared with the PI alignment.
  • the alignment layer has more stable physical and chemical properties, which can provide more reliable reliability of the liquid crystal panel; in addition, the surface of the silicon nitride film can be treated by ion beam bombardment, and the pretilt angle provided to the liquid crystal molecules can be within a certain range.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

一种液晶面板结构及制作方法,上基板(10)的第一配向层(12)与下基板(20)的第二配向层(22)均采用表面经过离子束轰击处理的氮化硅膜,相比于采用PI配向膜材,配向层具有更为稳定的物理、及化学性质,从而可以提供液晶面板更可靠的信赖性;另外氮化硅膜表面通过配合离子束轰击处理,对液晶分子(31)提供的预倾角可在一定范围内进行调整,从而可以对液晶分子(31)提供合适的预倾角,且与目前的PSVA技术相比,不需要UV光照来对液晶提供预倾角的过程,进而液晶层(30)中不需要加入反应型单体,从而进一步提高了液晶面板的信赖性;再者,氮化硅的生长工艺,在TFT-LCD制造业中,设备和工艺均相当成熟,从而大大缩减了制程成本和材料成本。

Description

液晶面板结构及制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种液晶面板结构及制作方法。
背景技术
薄膜晶体管液晶显示装置(Thin Film Transistor Liquid Crystal Display,TFT-LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。现有市场上的LCD大部分为背光型液晶显示装置,其包括液晶显示面板及背光模组(backlight module)。通常液晶显示面板由彩膜(Color Filter,CF)基板、薄膜晶体管(Thin Film Transistor,TFT)基板、夹于CF基板与TFT基板之间的液晶(LC,Liquid Crystal)层及密封胶框(Sealant)组成。液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,通过玻璃基板通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。
在液晶显示面板中,还需要在TFT基板及CF基板上分别形成一层配向膜,该配向膜与LC接触后,能够使得LC产生一定方向的预倾角,从而给液晶分子提供一个承载的角度(预倾角的大小对TFT-LCD的驱动电压、对比度、响应时间、视角等具有重要影响),配向膜的材料通常选用聚酰亚胺(Polyimide,PI)材料,主要分为摩擦配向型PI材料和光配向型PI材料,但是,无论哪种配向材料都有各自的缺点。其中,摩擦配向型PI材料通过摩擦配向法(Rubbing)形成配向膜,摩擦配向法是在高分子PI膜表面用绒布滚轮进行接触式的定向机械摩擦,摩擦高分子表面所提供的能量使高分子主链因延伸而定向排列,从而控制支链与LC相互作用,使LC按照预倾角的方向排列;因此,在摩擦配向时容易造成粉尘颗粒、静电残留、刷痕等问题降低工艺良率。而光配向型PI材料通过光配向法(photo-alignment technology)形成配向膜,光配向法是利用紫外光敏聚合物单体材料的光化学反应产生各向异性,液晶分子与配向膜表面支链相互作用,为达到能量最小的稳定状态,液晶分子沿着光配向所定义的受力最大的方向排列,该光配向型PI材料可以解决上述问题,但由于材料特性受限,耐热性和耐老化性不佳,同时锚定LC的能力也较弱,从而影响面板的品质。除此之外,PI材料本身就具有高极性和高吸水性,存储和运送容易造成变质而导致配向不均,并且PI材料价格昂贵,在TFT-LCD上成膜的工艺也较为复杂, 导致面板成本提高。
另外,就目前主流市场上的TFT-LCD显示面板而言,可分为三种类型,分别是扭曲向列(Twisted Nematic,TN)、平面转换(In-Plane Switching,IPS)型、及垂直配向(Vertical Alignment,VA)型。其中VA型液晶显示器相对其他种类的液晶显示器具有极高的对比度,在大尺寸显示,如电视等方面具有非常广的应用。其中,聚合物稳定垂直配向(Polymer Stabilized-Vertical Alignment,PSVA)技术能够使液晶显示面板具有较快的响应时间、穿透率高等优点,其特点是通过紫外光(UV)光照使液晶材料中的反应型单体在配向膜表面形成聚合物突起,从而使液晶分子具有预倾角。
发明内容
本发明的目的在于提供一种液晶面板结构,采用物理、化学性质稳定的氮化硅膜作为对液晶进行配向的配向层,可靠性高,制作工艺简单。
本发明的目的还在于提供一种液晶面板的制作方法,采用物理、化学性质稳定的氮化硅膜作为对液晶进行配向的配向层,可靠性高,制作工艺简单。
为实现上述目的,本发明首先提供一种液晶面板结构,包括相对设置的上基板与下基板、及设于所述上基板与下基板之间的液晶层;
所述上基板包括第一衬底基板、及设于所述第一衬底基板靠近所述液晶层一侧的第一配向层;
所述下基板包括第二衬底基板、及设于所述第二衬底基板靠近所述液晶层一侧的第二配向层;
所述第一、第二配向层为靠近所述液晶层一侧的表面经过离子束轰击处理的氮化硅膜;
所述液晶层的材料包含液晶分子,所述第一、第二配向层与所述液晶层中的液晶分子相接触,对其进行配向。
所述上基板还包括黑色矩阵、彩色滤光膜、第一ITO电极层、及隔垫物;
所述黑色矩阵设于所述第一衬底基板靠近所述液晶层的一侧上,所述彩色滤光膜设于所述第一衬底基板与黑色矩阵靠近所述液晶层的一侧上,所述第一ITO电极层设于所述彩色滤光膜靠近所述液晶层的一侧上,所述隔垫物设于所述第一ITO电极层靠近所述液晶层的一侧上,所述第一配向层设于所述第一ITO电极层靠近所述液晶层的一侧上。
可选的,所述下基板还包括TFT阵列层、钝化保护层、及第二ITO电极层;
所述TFT阵列层设于所述第二衬底基板靠近所述液晶层的一侧上,所述钝化保护层设于所述TFT阵列层靠近所述液晶层的一侧上,所述第二ITO电极层设于所述钝化保护层靠近所述液晶层的一侧上,所述第二配向层设于所述第二ITO电极层靠近所述液晶层的一侧上。
可选的,所述下基板还包括TFT阵列层、及图案化的第二ITO电极层;
所述TFT阵列层设于所述第二衬底基板靠近所述液晶层的一侧上,所述第二配向层设于所述TFT阵列层靠近所述液晶层的一侧上,所述第二ITO电极层设于第二配向层靠近所述液晶层的一侧上;
所述第二ITO电极层上具有间隙,所述第二配向层通过所述第二ITO电极层上的间隙与所述液晶层中的液晶分子相接触。
所述第一、第二配向层的厚度为40~80nm,所述第一、第二配向层靠近所述液晶层一侧的表面经过氩等离子体的离子束轰击处理,所述第一、第二配向层对所述液晶层中的液晶分子提供80~90°的预倾角。
本发明还提供一种液晶面板的制作方法,包括以下步骤:
步骤1、提供第一衬底基板,在所述第一衬底基板的一侧通过PECVD法沉积一层氮化硅膜并对其表面进行离子束轰击处理,形成第一配向层,得到上基板;
步骤2、提供第二衬底基板,在所述第二衬底基板的一侧通过PECVD法沉积一层氮化硅膜并对其表面进行离子束轰击处理,形成第二配向层,得到下基板;
步骤3、在所述上基板或下基板的一侧上滴注包含液晶分子的液晶材料,并使所述第一衬底基板设有第一配向层的一侧与第二衬底基板设有第二配向层的一侧相面对,将上基板和下基板进行真空对组贴合,形成上基板和下基板之间的液晶层,得到液晶面板;
所述第一、第二配向层与所述液晶层中的液晶分子相接触,对其进行配向。
所述步骤1和步骤2中,通过PECVD法沉积形成氮化硅膜的过程具体为,向PECVD反应室内通入硅烷、氨气、和氮气,在280~350℃的温度下通过反应形成氮化硅膜,其中,硅烷、氨气、和氮气的气体流量比为100:1:200,所形成的氮化硅膜的厚度为40~80nm;
所述步骤1和步骤2中,对氮化硅膜表面进行离子束轰击处理的过程具体为,向离子束轰击反应器内通入氩气,形成氩等离子,在10-4Torr的 工作压力下由氩等离子构成的离子束按照与氮化硅膜表面为30~50°的角度对氮化硅膜表面进行轰击,其中,离子束轰击反应器内氩等离子的浓度为1014~1015离子/cm2
所述步骤1还包括,在形成第一配向层之前,在所述第一衬底基板上形成黑色矩阵,在所述第一衬底基板和黑色矩阵上形成彩色滤光膜,在所述彩色滤光膜上形成第一ITO电极层,在所述第一ITO电极层上形成隔垫物;
所述步骤1中,第一配向层形成于所述第一ITO电极层上,所得到的上基板包括第一衬底基板、黑色矩阵、彩色滤光膜、第一ITO电极层、隔垫物、及第一配向层。
可选的,所述步骤2还包括,在形成第二配向层之前,在所述第二衬底基板上形成TFT阵列层,在所述TFT阵列层上形成钝化保护层,在所述钝化保护层上形成第二ITO电极层;
所述步骤2中,所述第二配向层形成于所述第二ITO电极层上,所得到的下基板包括第二衬底基板、TFT阵列层、钝化保护层、第二ITO电极层、及第二配向层。
可选的,所述步骤2还包括,在形成第二配向层之前,在所述第二衬底基板上形成TFT阵列层,在形成第二配向层之后,在所述第二配向层上形成图案化的第二ITO电极层;
所述步骤2中,所述第二配向层形成于所述形成TFT阵列层上,对所述TFT阵列层进行保护,所得到的下基板包括第二衬底基板、TFT阵列层、第二配向层、及第二ITO电极层;
所述第二ITO电极层上具有间隙,所述步骤3得到的液晶面板中,所述第二配向层通过所述第二ITO电极层上的间隙与所述液晶层中的液晶分子相接触。
本发明还提供一种液晶面板结构,包括相对设置的上基板与下基板、及设于所述上基板与下基板之间的液晶层;
所述上基板包括第一衬底基板、及设于所述第一衬底基板靠近所述液晶层一侧的第一配向层;
所述下基板包括第二衬底基板、及设于所述第二衬底基板靠近所述液晶层一侧的第二配向层;
所述第一、第二配向层为靠近所述液晶层一侧的表面经过离子束轰击处理的氮化硅膜;
所述液晶层的材料包含液晶分子,所述第一、第二配向层与所述液晶 层中的液晶分子相接触,对其进行配向;
其中,所述上基板还包括黑色矩阵、彩色滤光膜、第一ITO电极层、及隔垫物;
所述黑色矩阵设于所述第一衬底基板靠近所述液晶层的一侧上,所述彩色滤光膜设于所述第一衬底基板与黑色矩阵靠近所述液晶层的一侧上,所述第一ITO电极层设于所述彩色滤光膜靠近所述液晶层的一侧上,所述隔垫物设于所述第一ITO电极层靠近所述液晶层的一侧上,所述第一配向层设于所述第一ITO电极层靠近所述液晶层的一侧上;
其中,所述第一、第二配向层的厚度为40~80nm,所述第一、第二配向层靠近所述液晶层一侧的表面经过氩等离子体的离子束轰击处理,所述第一、第二配向层对所述液晶层中的液晶分子提供80~90°的预倾角。
本发明的有益效果:本发明的液晶面板结构及制作方法,采用氮化硅膜作为对液晶进行配向的配向层,相比于现有技术具有以下优势:
(1)氮化硅相较于PI材料,其物理、化学性质更为稳定,可以提供液晶面板更可靠的信赖性;
(2)氮化硅膜表面通过离子束轰击处理后可以对液晶提供合适的预倾角,与目前的PSVA技术相比,不需要UV光照来对液晶提供预倾角的过程;
(3)与PSVA技术相比,由于不需要进行后续的UV光照反应,无需在液晶材料中添加反应型单体,进一步提高了液晶面板的信赖性;
(4)氮化硅的生长工艺,在TFT-LCD制造业中,设备和工艺均相当成熟,另外,氮化硅膜还可以同时用作钝化保护层,从而大大缩减了制程成本和材料成本。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的液晶面板结构的第一实施例的结构示意图;
图2为本发明的液晶面板结构的第二实施例的结构示意图;
图3为本发明的液晶面板的制作方法的流程示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段极其效果,以下结合本发明的优选实施例极其附图进行详细描述。
请参阅图1,为本发明的液晶面板结构的第一实施例的结构示意图,本实施例的液晶面板结构包括,相对设置的上基板10与下基板20、及设于所述上基板10与下基板20之间的液晶层30。
具体地,所述上基板10为彩膜基板,包括第一衬底基板11、设于第一衬底基板11上的黑色矩阵13、设于所述第一衬底基板11与黑色矩阵13上的彩色滤光层14、设于所述彩色滤光层14上的第一ITO电极层15、设于第一ITO电极层15上的隔垫物16、及设于第一ITO电极层15上的第一配向层12,第一配向层12也覆盖于隔垫物16上。。
具体地,所述下基板20为TFT阵列基板,包括第二衬底基板21、设于所述第二衬底基板21上的TFT阵列层23、设于所述TFT阵列层23上的钝化保护层24、及设于所述钝化保护层24上的第二配向层22。
具体地,所述第一、第二配向层12、22为靠近所述液晶层30一侧的表面经过离子束轰击处理的氮化硅(SiNx)膜。
具体地,所述液晶层30的材料包含液晶分子31,所述第一、第二配向层12、22与所述液晶层30中的液晶分子31相接触,对其进行配向。
具体地,所述第一、第二配向层12、22的厚度为40~80nm,所述第一、第二配向层12、22靠近所述液晶层30一侧的表面经过与其呈一定角度的氩等离子体的离子束的轰击处理,优选地,氩等离子体的离子束与第一、第二配向层12、22靠近液晶层30一侧的表面的角度呈30~50°,所述第一、第二配向层12、22对所述液晶层30中的液晶分子31提供80~90°的预倾角。
请参阅图2,为本发明的液晶面板结构的第二实施例的结构示意图,与上述第一实施例相比,在本实施例中,所述下基板20包括第二衬底基板21、TFT阵列层23、,第二ITO电极层25’、及第二配向层22,特别的,该第二ITO电极层25’为图案化(pattern)的膜层,其上为具有间隙的图案,所述下基板20不包括钝化保护层24,所述第二配向层22取代第一实施例中钝化保护层24而位于TFT阵列层23与所述第二ITO电极层25’之间,并且所述第二配向层22通过第二ITO电极层25’上的间隙与所述液晶层30中的液晶分子31相接触,从而所述第二配向层22在本实施例中既用作钝化保护层对TFT阵列层23进行保护,又用作配向层对液晶分子31进行配向。
本发明的液晶面板结构,上基板10的第一配向层12与下基板20的第二配向层22为靠近所述液晶层30一侧的表面经过离子束轰击处理的氮化硅膜,相比于采用PI配向膜材,配向层具有更为稳定的物理、化学性质,从而可以提供液晶面板更可靠的信赖性;另外氮化硅膜表面通过配合离子 束轰击处理,对液晶分子31提供的预倾角可在80~90°范围内进行调整,从而可以对液晶分子31提供合适的预倾角,且与目前的PSVA技术相比,不需要UV光照来对液晶提供预倾角的过程,进一步地相对于PSVA技术,液晶层30中不需要加入反应型单体,从而进一步提高了液晶面板的信赖性;再者,氮化硅的生长工艺,在TFT-LCD制造业中,设备和工艺均相当成熟,从而大大缩减了制程成本和材料成本。
请参阅图3,本发明还提供一种液晶面板的制作方法,包括以下步骤:
步骤1、提供第一衬底基板11,在所述第一衬底基板11上形成黑色矩阵13,在所述第一衬底基板11和黑色矩阵13上形成彩色滤光膜14,在所述彩色滤光膜14上形成第一ITO电极层15,在所述第一ITO电极层15上形成隔垫物16,在所述ITO电极层15上通过PECVD法沉积一层氮化硅膜并对其表面进行离子束轰击处理,形成第一配向层12,得到包括第一衬底基板11、黑色矩阵13、彩色滤光膜14、第一ITO电极层15、隔垫物16、及第一配向层12的上基板10。
步骤2、提供第二衬底基板21,在所述第二衬底基板21上形成TFT阵列层23,在所述TFT阵列层23上形成钝化保护层24,在所述钝化保护层24上形成第二ITO电极层25,在所述第二ITO电极层25上通过PECVD法沉积一层氮化硅膜并对其表面进行离子束轰击处理,形成第二配向层22,得到包括第二衬底基板21、TFT阵列层23、钝化保护层24、第二ITO电极层25、及第二配向层22的下基板20。
具体地,所述步骤1和步骤2中,通过PECVD法沉积形成氮化硅膜的过程具体为,向PECVD反应室内通入硅烷(SiH4)、氨气(NH3)、和氮气(N2),在280~350℃的温度下通过反应形成氮化硅膜,其中,硅烷、氨气、和氮气的气体流量比为100:1:200,所形成的氮化硅膜的厚度为40~80nm。
具体地,所述步骤1和步骤2中,对氮化硅膜表面进行离子束轰击处理的过程具体为,向离子束轰击反应器内通入氩气,形成氩等离子,在10-4Torr的工作压力下由氩等离子构成的离子束按照与氮化硅膜表面为30~50°的角度对氮化硅膜表面进行轰击,其中,离子束轰击反应器内氩等离子的浓度为1014~1015离子/cm2
步骤3、在所述上基板10或下基板20的一侧上滴注包含液晶分子31的液晶材料,并使所述第一衬底基板11设有第一配向层12的一侧与第二衬底基板21设有第二配向层22的一侧相面对,将上基板10和下基板20进行真空对组贴合,形成上基板10和下基板20之间的液晶层30,得到如图1所示的液晶面板。
具体地,所述第一、第二配向层12、22与所述液晶层30中的液晶分子31相接触,对其进行配向。
在本发明的液晶面板的制作方法的另一实施例中,与上述实施例相比,区别在于,所述步骤2中,在形成TFT阵列层23之后,不形成钝化保护层24,而是在所述TFT阵列层23上通过PECVD法沉积一层氮化硅膜并对其表面进行离子束轰击处理,形成第二配向层22,然后在所述第二配向层22上形成图案化的第二ITO电极层25’,从而该步骤2得到的下基板不包括钝化保护层24,步骤3中得到为如图2所示的液晶面板,其中所述第二配向层22通过第二ITO电极层25’上的间隙与所述液晶层30中的液晶分子31相接触,从而所述第二配向层22在本实施例中既用作钝化保护层对TFT阵列层23进行保护,又用作配向层对液晶分子31进行配向。
本发明的液晶面板的制作方法,上基板10的第一配向层12与下基板20的第二配向层22均采用表面经过离子束轰击处理的氮化硅膜,相比于采用PI配向膜材,配向层具有更为稳定的物理、化学性质,从而可以提供液晶面板更可靠的信赖性;另外氮化硅膜表面通过配合离子束轰击处理,对液晶分子31提供的预倾角可在80~90°范围内进行调整,从而可以对液晶分子31提供合适的预倾角,且与目前的PSVA技术相比,不需要UV光照来对液晶提供预倾角的过程,进一步地相对于PSVA技术,液晶层30中不需要加入反应型单体,从而进一步提高了液晶面板的信赖性;再者,氮化硅的生长工艺,在TFT-LCD制造业中,设备和工艺均相当成熟,从而大大缩减了制程成本和材料成本。
综上所述,本发明的液晶面板结构及制作方法,上基板的第一配向层与下基板的第二配向层均采用表面经过离子束轰击处理的氮化硅膜,相比于采用PI配向膜材,配向层具有更为稳定的物理、化学性质,从而可以提供液晶面板更可靠的信赖性;另外氮化硅膜表面通过配合离子束轰击处理,对液晶分子提供的预倾角可在一定范围内进行调整,从而可以对液晶分子提供合适的预倾角,且与目前的PSVA技术相比,不需要UV光照来对液晶提供预倾角的过程,进而液晶层中不需要加入反应型单体,从而进一步提高了液晶面板的信赖性;再者,氮化硅的生长工艺,在TFT-LCD制造业中,设备和工艺均相当成熟,从而大大缩减了制程成本和材料成本。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (13)

  1. 一种液晶面板结构,包括相对设置的上基板与下基板、及设于所述上基板与下基板之间的液晶层;
    所述上基板包括第一衬底基板、及设于所述第一衬底基板靠近所述液晶层一侧的第一配向层;
    所述下基板包括第二衬底基板、及设于所述第二衬底基板靠近所述液晶层一侧的第二配向层;
    所述第一、第二配向层为靠近所述液晶层一侧的表面经过离子束轰击处理的氮化硅膜;
    所述液晶层的材料包含液晶分子,所述第一、第二配向层与所述液晶层中的液晶分子相接触,对其进行配向。
  2. 如权利要求1所述的液晶面板结构,其中,所述上基板还包括黑色矩阵、彩色滤光膜、第一ITO电极层、及隔垫物;
    所述黑色矩阵设于所述第一衬底基板靠近所述液晶层的一侧上,所述彩色滤光膜设于所述第一衬底基板与黑色矩阵靠近所述液晶层的一侧上,所述第一ITO电极层设于所述彩色滤光膜靠近所述液晶层的一侧上,所述隔垫物设于所述第一ITO电极层靠近所述液晶层的一侧上,所述第一配向层设于所述第一ITO电极层靠近所述液晶层的一侧上。
  3. 如权利要求1所述的液晶面板结构,其中,所述下基板还包括TFT阵列层、钝化保护层、及第二ITO电极层;
    所述TFT阵列层设于所述第二衬底基板靠近所述液晶层的一侧上,所述钝化保护层设于所述TFT阵列层靠近所述液晶层的一侧上,所述第二ITO电极层设于所述钝化保护层靠近所述液晶层的一侧上,所述第二配向层设于所述第二ITO电极层靠近所述液晶层的一侧上。
  4. 如权利要求1所述的液晶面板结构,其中,所述下基板还包括TFT阵列层、及图案化的第二ITO电极层;
    所述TFT阵列层设于所述第二衬底基板靠近所述液晶层的一侧上,所述第二配向层设于所述TFT阵列层靠近所述液晶层的一侧上,所述第二ITO电极层设于第二配向层靠近所述液晶层的一侧上;
    所述第二ITO电极层上具有间隙,所述第二配向层通过所述第二ITO电极层上的间隙与所述液晶层中的液晶分子相接触。
  5. 如权利要求1所述的液晶面板结构,其中,所述第一、第二配向层 的厚度为40~80nm,所述第一、第二配向层靠近所述液晶层一侧的表面经过氩等离子体的离子束轰击处理,所述第一、第二配向层对所述液晶层中的液晶分子提供80~90°的预倾角。
  6. 一种液晶面板的制作方法,包括以下步骤:
    步骤1、提供第一衬底基板,在所述第一衬底基板的一侧通过PECVD法沉积一层氮化硅膜并对其表面进行离子束轰击处理,形成第一配向层,得到上基板;
    步骤2、提供第二衬底基板,在所述第二衬底基板的一侧通过PECVD法沉积一层氮化硅膜并对其表面进行离子束轰击处理,形成第二配向层,得到下基板;
    步骤3、在所述上基板或下基板的一侧上滴注包含液晶分子的液晶材料,并使所述第一衬底基板设有第一配向层的一侧与第二衬底基板设有第二配向层的一侧相面对,将上基板和下基板进行真空对组贴合,形成上基板和下基板之间的液晶层,得到液晶面板;
    所述第一、第二配向层与所述液晶层中的液晶分子相接触,对其进行配向。
  7. 如权利要求6所述的液晶面板的制作方法,其中,所述步骤1和步骤2中,通过PECVD法沉积形成氮化硅膜的过程具体为,向PECVD反应室内通入硅烷、氨气、和氮气,在280~350℃的温度下通过反应形成氮化硅膜,其中,硅烷、氨气、和氮气的气体流量比为100:1:200,所形成的氮化硅膜的厚度为40~80nm;
    所述步骤1和步骤2中,对氮化硅膜表面进行离子束轰击处理的过程具体为,向离子束轰击反应器内通入氩气,形成氩等离子,在10-4Torr的工作压力下由氩等离子构成的离子束按照与氮化硅膜表面为30~50°的角度对氮化硅膜表面进行轰击,其中,离子束轰击反应器内氩等离子的浓度为1014~1015离子/cm2
  8. 如权利要求6所述的液晶面板的制作方法,其中,所述步骤1还包括,在形成第一配向层之前,在所述第一衬底基板上形成黑色矩阵,在所述第一衬底基板和黑色矩阵上形成彩色滤光膜,在所述彩色滤光膜上形成第一ITO电极层,在所述第一ITO电极层上形成隔垫物;
    所述步骤1中,第一配向层形成于所述第一ITO电极层上,所得到的上基板包括第一衬底基板、黑色矩阵、彩色滤光膜、第一ITO电极层、隔垫物、及第一配向层。
  9. 如权利要求6所述的液晶面板的制作方法,其中,所述步骤2还包 括,在形成第二配向层之前,在所述第二衬底基板上形成TFT阵列层,在所述TFT阵列层上形成钝化保护层,在所述钝化保护层上形成第二ITO电极层;
    所述步骤2中,所述第二配向层形成于所述第二ITO电极层上,所得到的下基板包括第二衬底基板、TFT阵列层、钝化保护层、第二ITO电极层、及第二配向层。
  10. 如权利要求6所述的液晶面板的制作方法,其中,所述步骤2还包括,在形成第二配向层之前,在所述第二衬底基板上形成TFT阵列层,在形成第二配向层之后,在所述第二配向层上形成图案化的第二ITO电极层;
    所述步骤2中,所述第二配向层形成于所述形成TFT阵列层上,对所述TFT阵列层进行保护,所得到的下基板包括第二衬底基板、TFT阵列层、第二配向层、及第二ITO电极层;
    所述第二ITO电极层上具有间隙,所述步骤3得到的液晶面板中,所述第二配向层通过所述第二ITO电极层上的间隙与所述液晶层中的液晶分子相接触。
  11. 一种液晶面板结构,包括相对设置的上基板与下基板、及设于所述上基板与下基板之间的液晶层;
    所述上基板包括第一衬底基板、及设于所述第一衬底基板靠近所述液晶层一侧的第一配向层;
    所述下基板包括第二衬底基板、及设于所述第二衬底基板靠近所述液晶层一侧的第二配向层;
    所述第一、第二配向层为靠近所述液晶层一侧的表面经过离子束轰击处理的氮化硅膜;
    所述液晶层的材料包含液晶分子,所述第一、第二配向层与所述液晶层中的液晶分子相接触,对其进行配向;
    其中,所述上基板还包括黑色矩阵、彩色滤光膜、第一ITO电极层、及隔垫物;
    所述黑色矩阵设于所述第一衬底基板靠近所述液晶层的一侧上,所述彩色滤光膜设于所述第一衬底基板与黑色矩阵靠近所述液晶层的一侧上,所述第一ITO电极层设于所述彩色滤光膜靠近所述液晶层的一侧上,所述隔垫物设于所述第一ITO电极层靠近所述液晶层的一侧上,所述第一配向层设于所述第一ITO电极层靠近所述液晶层的一侧上;
    其中,所述第一、第二配向层的厚度为40~80nm,所述第一、第二配 向层靠近所述液晶层一侧的表面经过氩等离子体的离子束轰击处理,所述第一、第二配向层对所述液晶层中的液晶分子提供80~90°的预倾角。
  12. 如权利要求11所述的液晶面板结构,其中,所述下基板还包括TFT阵列层、钝化保护层、及第二ITO电极层;
    所述TFT阵列层设于所述第二衬底基板靠近所述液晶层的一侧上,所述钝化保护层设于所述TFT阵列层靠近所述液晶层的一侧上,所述第二ITO电极层设于所述钝化保护层靠近所述液晶层的一侧上,所述第二配向层设于所述第二ITO电极层靠近所述液晶层的一侧上。
  13. 如权利要求11所述的液晶面板结构,其中,所述下基板还包括TFT阵列层、及图案化的第二ITO电极层;
    所述TFT阵列层设于所述第二衬底基板靠近所述液晶层的一侧上,所述第二配向层设于所述TFT阵列层靠近所述液晶层的一侧上,所述第二ITO电极层设于第二配向层靠近所述液晶层的一侧上;
    所述第二ITO电极层上具有间隙,所述第二配向层通过所述第二ITO电极层上的间隙与所述液晶层中的液晶分子相接触。
PCT/CN2016/085779 2016-05-13 2016-06-15 液晶面板结构及制作方法 WO2017193443A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/115,691 US10295865B2 (en) 2016-05-13 2016-06-15 Liquid crystal panel structure and manufacture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610323197.1A CN105785658B (zh) 2016-05-13 2016-05-13 液晶面板结构及制作方法
CN201610323197.1 2016-05-13

Publications (1)

Publication Number Publication Date
WO2017193443A1 true WO2017193443A1 (zh) 2017-11-16

Family

ID=56379736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085779 WO2017193443A1 (zh) 2016-05-13 2016-06-15 液晶面板结构及制作方法

Country Status (3)

Country Link
US (2) US10295865B2 (zh)
CN (1) CN105785658B (zh)
WO (1) WO2017193443A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107132698A (zh) * 2017-06-20 2017-09-05 合肥市惠科精密模具有限公司 一种复合配向型液晶面板结构
CN107102482A (zh) * 2017-06-20 2017-08-29 合肥市惠科精密模具有限公司 一种液晶面板
US11505454B2 (en) * 2019-09-25 2022-11-22 Taiwan Semiconductor Manufacturing Company Ltd. MEMS structure and manufacturing method thereof
CN111273475B (zh) * 2020-03-27 2021-05-28 Tcl华星光电技术有限公司 显示装置、显示面板及其制作方法
CN113871864A (zh) * 2020-06-30 2021-12-31 成都天马微电子有限公司 液晶天线及其制作方法
CN113885246B (zh) * 2020-07-03 2023-02-28 京东方科技集团股份有限公司 黑矩阵结构及其制造方法、显示基板、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1888966A (zh) * 2006-07-26 2007-01-03 广辉电子股份有限公司 主动元件阵列基板以及彩色滤光基板的制作方法
CN1896824A (zh) * 2005-07-12 2007-01-17 三星电子株式会社 液晶显示器及其制造方法和制造设备
US20090244461A1 (en) * 2008-04-01 2009-10-01 Samsung Electronics Co., Ltd. Method of manufacturing liquid crystal display
CN101556406A (zh) * 2008-04-11 2009-10-14 台湾薄膜电晶体液晶显示器产业协会 显示器基板和液晶盒的制作方法
CN102062968A (zh) * 2009-11-16 2011-05-18 台湾薄膜电晶体液晶显示器产业协会 液晶显示面板的制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3308626B2 (ja) * 1992-02-12 2002-07-29 キヤノン株式会社 液晶性化合物、これを含む液晶組成物、それを有する液晶素子、それらを用いた表示方法、および表示装置
US5936695A (en) * 1996-03-29 1999-08-10 Kabushiki Kaisha Toshiba Liquid crystal display device and method of fabricating same
US6724449B1 (en) * 2000-03-27 2004-04-20 International Business Machines Corporation Vertical aligned liquid crystal display and method using dry deposited alignment layer films
US6660341B2 (en) * 2001-06-07 2003-12-09 International Business Machines Corporation Tilted vertical alignment of liquid crystals employing inorganic thin film composition and ion beam treatment
TWI291584B (en) * 2005-07-01 2007-12-21 Taiwan Tft Lcd Ass Method to apply a liquid-crystal cell alignment by hydrogen ion beam
US7369204B1 (en) * 2006-07-21 2008-05-06 Research Foundation Of The University Of Central Florida Fast response liquid crystal mode
KR101350908B1 (ko) * 2006-12-05 2014-01-16 부산대학교 산학협력단 액정 표시 패널 및 그 제조 방법
KR101348760B1 (ko) * 2007-01-20 2014-01-08 삼성디스플레이 주식회사 이온 포착 구조를 구비한 액정표시패널 및 이를 포함한액정표시장치
KR101960827B1 (ko) * 2013-05-03 2019-03-22 삼성디스플레이 주식회사 액정 조성물, 액정 표시 장치 및 액정 표시 장치 제조 방법
KR20150021622A (ko) * 2013-08-20 2015-03-03 삼성디스플레이 주식회사 표시패널
KR102183991B1 (ko) * 2014-09-15 2020-11-30 삼성디스플레이 주식회사 액정표시패널 및 이의 제조 방법
CN104597661B (zh) * 2014-11-21 2017-06-27 深圳市华星光电技术有限公司 垂直配向液晶显示器及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1896824A (zh) * 2005-07-12 2007-01-17 三星电子株式会社 液晶显示器及其制造方法和制造设备
CN1888966A (zh) * 2006-07-26 2007-01-03 广辉电子股份有限公司 主动元件阵列基板以及彩色滤光基板的制作方法
US20090244461A1 (en) * 2008-04-01 2009-10-01 Samsung Electronics Co., Ltd. Method of manufacturing liquid crystal display
CN101556406A (zh) * 2008-04-11 2009-10-14 台湾薄膜电晶体液晶显示器产业协会 显示器基板和液晶盒的制作方法
CN102062968A (zh) * 2009-11-16 2011-05-18 台湾薄膜电晶体液晶显示器产业协会 液晶显示面板的制造方法

Also Published As

Publication number Publication date
US10564478B2 (en) 2020-02-18
US20180088371A1 (en) 2018-03-29
CN105785658A (zh) 2016-07-20
US20190187498A1 (en) 2019-06-20
US10295865B2 (en) 2019-05-21
CN105785658B (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
WO2017193443A1 (zh) 液晶面板结构及制作方法
US7935396B2 (en) Liquid crystal display device
US6027772A (en) Optical alignment composition, alignment layer formed using the same and LCD having the alignment layer
WO2018214251A1 (zh) 液晶材料、液晶显示面板及其制造方法
WO2004053582A1 (ja) 液晶表示装置およびその製造方法
US6660341B2 (en) Tilted vertical alignment of liquid crystals employing inorganic thin film composition and ion beam treatment
US20140307211A1 (en) Liquid crystal display
CN105372879A (zh) 液晶面板及其配向膜的制作方法
JP6541885B2 (ja) 表示パネルの作製方法及び液晶表示装置
KR100767587B1 (ko) 코팅형 보상필름을 적용한 액정표시장치 및 그 제조방법
KR20050070609A (ko) 코팅형 보상필름을 적용한 액정표시장치 및 그 제조방법
US8384864B2 (en) System for forming alignment layer of liquid crystal display device and operation method thereof
KR20020017047A (ko) 액정 표시 장치 및 그의 제조 방법
WO2020186567A1 (zh) 液晶显示面板的制作方法及液晶显示面板
US7554639B2 (en) Method to control the pretilt angle of liquid crystal device
US20190113812A1 (en) Method for producing liquid crystal panel
JP2000227595A (ja) 液晶表示素子の製造方法
KR20110099939A (ko) 광 조사를 통한 액정과 광경화성 단분자 혼합물의 수직 배향을 이용한 액정 표시 장치 및 그 방법
KR100245052B1 (ko) 액정표시소자의 배향막 및 배향처리 방법
KR100437822B1 (ko) 액정표시소자 및 그 제조방법
KR20080079138A (ko) 액정표시 장치의 배향막 형성 방법
JP2006178016A (ja) 液晶表示素子及びその製造方法
JPH06337418A (ja) 液晶電気光学装置
KR20040036953A (ko) 액정 표시 장치
Liu et al. 48.4: Flexible Liquid Crystal Display Film by Plasma Alignment Method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15115691

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901398

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901398

Country of ref document: EP

Kind code of ref document: A1