WO2017188127A1 - 部品取付システムおよび部品取付方法 - Google Patents

部品取付システムおよび部品取付方法 Download PDF

Info

Publication number
WO2017188127A1
WO2017188127A1 PCT/JP2017/015926 JP2017015926W WO2017188127A1 WO 2017188127 A1 WO2017188127 A1 WO 2017188127A1 JP 2017015926 W JP2017015926 W JP 2017015926W WO 2017188127 A1 WO2017188127 A1 WO 2017188127A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
machining
bone member
camera
detection device
Prior art date
Application number
PCT/JP2017/015926
Other languages
English (en)
French (fr)
Inventor
健治 笠原
周平 瀬川
一範 原
裕規 ▲高▼山
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to US16/097,385 priority Critical patent/US10799937B2/en
Publication of WO2017188127A1 publication Critical patent/WO2017188127A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/02Riveting procedures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/14Riveting machines specially adapted for riveting specific articles, e.g. brake lining machines
    • B21J15/142Aerospace structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/28Control devices specially adapted to riveting machines not restricted to one of the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/36Rivet sets, i.e. tools for forming heads; Mandrels for expanding parts of hollow rivets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/38Accessories for use in connection with riveting, e.g. pliers for upsetting; Hand tools for riveting
    • B21J15/42Special clamping devices for workpieces to be riveted together, e.g. operating through the rivet holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/10Aligning parts to be fitted together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/10Aligning parts to be fitted together
    • B23P19/12Alignment of parts for insertion into bores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/04Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass for both machining and other metal-working operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • B25J11/007Riveting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/086Proximity sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/022Optical sensing devices using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/061Frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/30Particular elements, e.g. supports; Suspension equipment specially adapted for portable riveters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/30Particular elements, e.g. supports; Suspension equipment specially adapted for portable riveters
    • B21J15/32Devices for inserting or holding rivets in position with or without feeding arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/01Aircraft parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor

Definitions

  • the present invention relates to a component mounting system and a component mounting method for mounting a component on a bone member.
  • Non-Patent Document 1 and Non-Patent Document 2 an assembly jig is used when attaching a component to a bone member. Position parts (outer plate and various stringers) on the jig locator (positioning block and plate) and contour bar (outer plate surface positioning template of the machine structure) of this assembly jig, and fasten each part with rivets. By doing so, high-precision component mounting accuracy is realized.
  • Non-Patent Document 1 and Non-Patent Document 2 described above parts are positioned using an assembly jig in order to satisfy the high component mounting accuracy of an aircraft.
  • positioning with high accuracy as described above is difficult only by using a robot.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a component mounting system and a component mounting method that improve the accuracy of the mounting position of a component on a bone member using a robot. Yes.
  • a component mounting system is a component mounting system for mounting a component to a bone member with a fastener, and drills the bone member and the component along a processing axis and fastens them with the fastener.
  • An alignment unit that aligns the attachment position on the bone member with the machining axis, a robot that conveys the component to the attachment position on the bone member, and the attachment provided on the machining axis.
  • a detection device including a sensor that detects a tilt of the component conveyed to the mounting position, the robot including an image captured by the camera.
  • the machining position and machining direction of the component are set to the machining axis based on the position of the component obtained from the above and the inclination of the component detected by the sensor. To align with.
  • the position of the part is detected by the camera provided on the machining axis, the inclination of the part is detected by the sensor, and the machining position and machining direction of the part are adjusted based on the detection result with respect to the machining axis. is doing. Thereby, it is not necessary to move the component on the machining axis from the detection position of the component, and the component can be attached to the bone member with high accuracy.
  • the positioning unit may be a transport device that moves the bone member in a direction orthogonal to the machining axis. According to this configuration, since the bone member is moved with respect to the machining axis by the conveying device, the positioning accuracy of the component with respect to the bone member can be increased.
  • the senor includes a laser irradiation unit that irradiates the component with a laser, the camera images the component on which the laser is projected, and the detection device is imaged by the camera.
  • An image processing unit may be included that determines the position and inclination of the component by processing the captured image. According to this configuration, since the camera is also used as a detection device that detects the laser projected onto the component by the laser irradiation unit, it is possible to reduce cost and suppress enlargement.
  • the senor is a first sensor
  • the detection device is a first detection device
  • a detection device may be further provided.
  • the second sensor includes a laser irradiation unit that irradiates the component with a laser, and an image acquisition unit that images the component on which the laser is projected, and the second detection device. May include an image processing unit that processes an image picked up by the image acquisition unit to determine the inclination and height of the component.
  • the inclination of the component can be detected from one side due to restrictions such as the shape of the component. For this reason, the positioning accuracy of the component with respect to the bone member can be increased.
  • the camera is a first camera
  • the detection device is a first detection device
  • the component There may be further provided a third detection device including a second camera for detecting the position.
  • the third detection device may include an image processing unit that processes an image captured by the second camera to obtain the position and rotation of the component. According to this configuration, for example, even when the component is large, the position of the component can be detected at two locations, so that the positioning accuracy of the component with respect to the bone member can be increased.
  • the fastener may be a rivet
  • the processing machine may be a riveter that drills the bone member and the component along the processing axis and fastens them with the rivet.
  • the bone member and the component may be used in an aircraft. According to this configuration, even when extremely high positioning accuracy is required as in an aircraft, the required accuracy can be satisfied.
  • the mounting position on the bone member is aligned with the machining axis
  • the component is transported to the mounting position on the bone member, and the mounting position on the machining axis.
  • the position of the part is obtained from an image obtained by imaging the part conveyed to the mounting position, the inclination of the part conveyed to the mounting position is detected, and the processing position and the processing direction of the part based on the position and inclination of the part Is aligned with the machining axis, and the bone member and the part are drilled along the machining axis and fastened by a fastener.
  • the present invention has the above-described configuration, and provides an effect that it is possible to provide a component mounting system and a component mounting method that improve the accuracy of the mounting position of a component on a bone member using a robot.
  • FIG. 5A is a diagram illustrating a state in which the bone member is fixed to the alignment portion.
  • FIG. 5B is a diagram illustrating a state in which a positioning pin is inserted into the first reference hole of the bone member and the second reference hole of the first positioner.
  • FIG. 7A is a diagram illustrating a state in which the hand unit is arranged on the pallet.
  • FIG. 7B is a diagram illustrating a state in which a component is gripped by the hand unit. It is a figure which shows the state which has arrange
  • positioned the process position of components in the predetermined position on the process axis of a riveter It is a figure which shows the state which has detected the position and inclination of components by the 1st sensor.
  • FIG. 10A is a diagram illustrating a state in which a component is brought close to a bone member.
  • FIG. 10B is a diagram illustrating a state in which the central axis of the pressure foot is aligned with the machining axis.
  • FIG. 10C is a diagram illustrating a state in which the component and the bone member are sandwiched and fixed by the pressure foot and the rowork lamp.
  • FIG. 11A is a diagram illustrating a state in which gripping of the component by the hand unit is released.
  • FIG. 11B is a diagram illustrating a state in which the robot is separated from the riveter.
  • FIG. 12A is a side view of a state where the drill is lowered along the machining axis while rotating the drill.
  • FIG. 12A is a side view of a state where the drill is lowered along the machining axis while rotating the drill.
  • FIG. 12B is a cross-sectional view showing a state in which parts and bone members are drilled by a drill.
  • FIG. 13A is a side view of a state where the central axis of the shaft portion of the rivet is aligned with the machining axis.
  • FIG. 13B is a side view of the state where the upper anvil is lowered.
  • FIG. 13C is a side view of a state in which a rivet is inserted into the opened hole.
  • FIG. 14A is a view of the attachment position on the bone member and the processing axis of the riveter as viewed from above.
  • FIG. 14B is a view of another attachment position on the bone member and a processing axis of the riveter as viewed from above.
  • FIG. 14A is a view of the attachment position on the bone member and the processing axis of the riveter as viewed from above.
  • FIG. 14B is a view of another attachment position on the bone member and a processing axis of the riveter as
  • FIG. 15A is a view of a component mounting system according to Embodiment 2 of the present invention as viewed from above.
  • FIG. 15B is a perspective view showing the second detection device and components of FIG. 15A.
  • FIG. 15C is a side view of the second detection device, the component, and the robot. It is the figure which looked at the component attachment system which concerns on Embodiment 3 of this invention from upper direction. It is the figure which looked at the component attachment system of FIG. 16 from the side.
  • FIG. 18A is a side view of a component mounting system according to another embodiment of the present invention.
  • FIG. 18B is a side view of a state in which the first camera of FIG. 18A is arranged on the processing axis of the riveter.
  • the direction parallel to the machining axis of the riveter is referred to as the Z direction
  • the machining axis of the riveter and the base axis of the robot are connected
  • the direction orthogonal to the Z direction is referred to as the X direction
  • the orthogonal direction is referred to as the Y direction.
  • the configuration of the component mounting system 10 according to the first embodiment will be described with reference to FIGS. 1 to 3.
  • the bone member 70 is not limited to an aircraft frame, and an aircraft bone member other than a frame such as a stringer and a bone member other than an aircraft can be adopted as the bone member 70.
  • the part 80 is not limited to an aircraft part, and a part other than an aircraft can be used for the part 80.
  • the component mounting system 10 includes an alignment unit 20, a robot 30, a riveter 40, a first detection device 50, and a control device 60.
  • the alignment unit 20 is a device that aligns the mounting position on the bone member 70 with respect to the machining shaft 41.
  • a conveyance device that conveys the bone member 70 is used.
  • the alignment unit 20 includes a first positioner 21 and a second positioner 22 that move the bone member 70.
  • the first positioner 21 has a shape corresponding to the shape of the bone member 70 in a direction orthogonal to the machining axis 41 of the riveter 40, and is, for example, an arc shape with respect to the arc-shaped bone member 70.
  • the upper surface of the first positioner 21 is a surface on which the bone member 70 is placed, and is disposed so as to be orthogonal to the processing axis 41 of the riveter 40 and to be horizontal, for example.
  • the first positioner 21 is movable in the circumferential direction ( ⁇ direction) with respect to the center of the arc.
  • the second positioner 22 is disposed below the first positioner 21, and can support the first positioner 21 and move in the X direction and the Y direction.
  • the bone member 70 is moved in a direction (for example, the horizontal direction) orthogonal to the machining axis 41 by the first positioner 21 and the second positioner 22.
  • the robot 30 conveys the part 80 to the attachment position on the bone member 70, and based on the image captured by the first camera 51 and the position and inclination of the part 80 detected by the first sensor, This is an apparatus for aligning the machining direction with respect to the machining axis 41.
  • the robot 30 is disposed closer to the center than the arc-shaped first positioner 21.
  • a robot such as a horizontal articulated type or a vertical articulated type is used as the robot 30.
  • the robot 30 includes an arm unit 31, a wrist unit 32, and a hand unit 33.
  • the arm portion 31 is connected to a base shaft 34 extending in the Z direction by a rotary joint, and can turn around the base shaft 34 or move the wrist portion 32 in X, Y, and Z directions.
  • the base shaft 34 is provided, for example, in a direction parallel to the machining shaft 41 of the riveter 40.
  • the wrist part 32 is connected to the tip of the arm part 31 by a rotary joint, and the hand part 33 can be moved in the Z direction with respect to the arm part 31.
  • the hand unit 33 is connected to the wrist unit 32 and can grip the component 80 or the like by suction or clamping.
  • Each joint is provided with a servomotor for driving (not shown) and an encoder (not shown) for detecting the rotation angle of the servomotor.
  • the riveter 40 is a device for drilling the bone member 70 and the part 80 along the machining axis 41 and fastening them with the rivets 42 to attach the part 80 to the bone member 70.
  • the processing shaft 41 is a reference line for aligning the center line of the shaft portion of the rivet 42 during fastening.
  • the riveter 40 for example, a C-bone member type is used.
  • the riveter 40 has a C-shaped main body as viewed from the side, and an internal space is provided in the main body. The internal space is open to the robot 30 side.
  • a drill 43 and an upper anvil 44 are arranged in the space above the internal space.
  • the drill 43 and the upper anvil 44 are attached to the first displacement portion 45 side by side in the X direction with a space therebetween.
  • the first displacement part 45 extends in the X direction, and the positions of the drill 43 and the upper anvil 44 can be moved in the X direction, and these are arranged on the machining shaft 41 of the riveter 40. Since the upper space is open to the internal space, the drill 43 and the upper anvil 44 can be moved down to move to the internal space.
  • the drill 43 is, for example, a tool for drilling the bone member 70 and the part 80 by a rotating operation, and has a cylindrical shape.
  • the drill 43 is arranged so that its rotational axis is parallel to the machining axis 41.
  • the upper anvil 44 is a tool for grasping the rivet 42 and inserting it into the holes of the bone member 70 and the part 80 and pressing the rivet 42 from above.
  • the upper anvil 44 is arranged so that the center line of the shaft portion of the gripped rivet 42 and the direction in which the rivet 42 is pressed are parallel to the machining shaft 41.
  • the first detection device 50 and the pressure foot 46 are arranged at the upper part in the internal space.
  • the first detection device 50 and the pressure foot 46 are attached to the second displacement portion 47 side by side in the X direction with a space therebetween.
  • the second displacement portion 47 extends in the X direction, and the positions of the first detection device 50 and the pressure foot 46 can be moved in the X direction, and these are arranged on the machining shaft 41 of the riveter 40.
  • the first detection device 50 detects the position and inclination of the component 80, and includes a camera (first camera) 51, a laser irradiation unit (first laser irradiation unit) 52, and an image processing unit 53.
  • the first laser irradiation unit 52 is provided integrally with the first camera 51.
  • the image processing unit 53 is provided in the control device 60, but the image processing unit 53 may be provided separately from the control device 60.
  • the first camera 51 is provided on the machining axis 41 and is arranged so that its optical axis coincides with the machining axis 41 of the riveter 40.
  • the first camera 51 images the component 80 conveyed to the attachment position of the bone member 70.
  • the first camera 51 outputs the acquired image of the component 80 to the image processing unit 53.
  • the contour of the part 80 with design information such as CAD stored in the control device 60, the position (X coordinate and Y coordinate) and rotation (inclination RZ around the Z axis) of the part 80 are obtained.
  • the first laser irradiation unit 52 is a device that irradiates the component 80 conveyed to the mounting position with a laser.
  • the first laser irradiation unit 52 may be arranged on the machining axis 41 of the riveter 40 or may be arranged in the vicinity of the machining axis 41.
  • An image of the component 80 onto which the laser is projected by the first laser irradiation unit 52 is acquired by the first camera 51 and output to the image processing unit 53.
  • the height (Z coordinate) and inclination (inclination RX around the X axis and inclination RY around the Y axis) of the part 80 are determined based on the position or shape of the laser projected on the part 80.
  • the first camera 51 also functions as a light receiving unit of the first laser irradiation unit 52, and the first camera 51 and the first laser irradiation unit 52 detect a tilt of the component 80 conveyed to the mounting position (first sensor). 1 sensor).
  • the pressure foot 46 is a tool for pressing the component 80 from above when drilling and inserting and caulking the rivet 42.
  • the pressure foot 46 has a cylindrical shape having a hollow portion so that the drill 43 or the upper anvil 44 is inserted into the internal space.
  • the cylindrical central axis coincides with or is parallel to the machining axis 41 of the riveter 40, and the lower end thereof is disposed on a plane orthogonal to the machining axis 41.
  • the lower work lamp 48 and the lower anvil 49 are arranged in the lower part of the internal space.
  • the low work lamp 48 is a tool for pressing the component 80 from below when drilling and inserting and caulking the rivet 42.
  • the lower work lamp 48 has a cylindrical shape so that the drill 43 or the lower anvil 49 is inserted into the inner space thereof.
  • a cylindrical central axis having a hollow portion coincides with or is parallel to the machining axis 41 of the riveter 40, and its upper end is disposed on a plane orthogonal to the machining axis 41.
  • the lower anvil 49 is a tool that, when caulking the rivet 42, presses the rivet 42 from below and crushes the lower part of the rivet 42.
  • the lower anvil 49 has a cylindrical shaft portion, and is arranged so that the center line of the shaft portion and the pressing direction coincide with the machining shaft 41.
  • the first positioner 21 of the alignment unit 20 is disposed so that the bone member 70 is disposed below the first detection device 50 and the pressure foot 46 and above the lower work lamp 48 and the lower anvil 49. Has been placed.
  • the first positioner 21 is arranged so that the bone member 70 is sandwiched between the first positioner 21 and the robot 30 in the X direction.
  • the control device 60 includes a calculation unit (not shown) and a storage unit (not shown).
  • the control device 60 is a robot controller including a computer such as a microcontroller.
  • the control device 60 may be configured by a single control device 60 that performs centralized control, or may be configured by a plurality of control devices 60 that perform distributed control in cooperation with each other.
  • ROM, RAM, and the like are used, and information such as a basic program as a robot controller and various fixed data is stored.
  • the calculation unit uses a CPU or the like, and controls each component of the component mounting system 10 by reading and executing software such as a basic program stored in the storage unit.
  • the bone member 70 is fixed to the alignment unit 20 (step S1).
  • the first positioner 21 is moved and arranged at a predetermined set position.
  • the bone member 70 is provided with first reference holes 71 in advance at three locations.
  • the first reference hole 71 is aligned with the second reference hole 24 of the first positioner 21, and the positioning pin 23 is inserted into the first reference hole 71 and the second reference hole 24, so that the bone member is inserted.
  • 70 is aligned and fixed on the first positioner 21.
  • the first reference hole 71 is disposed at a predetermined position with respect to the outline of the bone member 70, and the second reference hole 24 is disposed at a predetermined position of the first positioner 21. Therefore, the position on the bone member 70 with respect to the first positioner 21 can be specified by matching the first reference hole 71 and the second reference hole 24. Further, the bone member 70 is disposed in a direction perpendicular to the machining axis 41 of the riveter 40 by the first positioner 21 in a direction perpendicular to the machining axis 41 of the riveter 40.
  • the attachment position of the bone member 70 is positioned with respect to the processing shaft 41 of the riveter 40 (step S2). As shown in FIG. 6, the first positioner 21 is moved in the circumferential direction and the second positioner 22 is moved in the X direction and the Y direction so that the attachment position of the bone member 70 is located on the machining shaft 41 of the riveter 40.
  • the component 80 is gripped and moved (step S3).
  • the arm unit 31 is turned to move the hand unit 33 to the pallet.
  • Various components 80 are arranged at predetermined positions on the pallet. For this reason, the hand part 33 is moved to the position of the pallet with the component 80 according to the attachment position.
  • the hand unit 33 is moved in the Z direction by the wrist unit 32, and the component 80 is gripped by the hand unit 33.
  • the arm portion 31 is turned with respect to the base shaft 34, and the machining position of the component 80 is moved to a predetermined position on the machining axis 41 of the riveter 40.
  • the predetermined position is above the bone member 70 and below the first detection device 50, the component 80 does not contact the bone member 70, and a predetermined interval is provided between the component 80 and the bone member 70. It is done.
  • step S4 the position and inclination of the component 80 are measured (step S4).
  • the first detection device 50 is moved in the X direction by the second displacement unit 47 so that the optical axis of the first camera 51 coincides with the machining axis 41.
  • the first laser irradiation unit 52 irradiates the component 80 with laser from above the component 80.
  • An image of the upper surface of the component 80 onto which the laser is projected is acquired from above the component 80 by the first camera 51 and output to the image processing unit 53.
  • the image processing unit 53 acquires the contour of the component 80 from the image, and acquires the amount of deviation of the contour of the component 80 with respect to the first reference information stored in advance in the storage unit. From this deviation amount, a positional deviation amount ⁇ X in the X direction, a positional deviation amount ⁇ Y in the Y direction, and a rotational deviation amount ⁇ RZ around the Z axis are calculated.
  • the first reference information is information indicating the contour of the part 80 at a predetermined position based on the design information of the part 80, and is set in advance so that the machining position of the part 80 is located on the machining axis 41 of the riveter 40. ing.
  • the image processing unit 53 acquires the shape and length of the laser projected onto the component 80 from the image, and acquires the amount of deviation of the laser shape and length with respect to the second reference information stored in advance in the storage unit. To do. From this deviation amount, a deviation amount ⁇ Z in the Z direction, an inclination deviation amount ⁇ RX around the X axis, and an inclination deviation amount ⁇ RY around the Y axis are calculated.
  • the second reference information is information indicating the shape and length of the laser projected at a predetermined position.
  • step S5 it is determined whether or not the deviation amounts of the position and inclination of the component 80 are within a predetermined threshold (step S5). If each deviation amount is within the threshold (step S5: YES), the process proceeds to step S7. On the other hand, if each shift amount is larger than the threshold value (step S5: NO), the process proceeds to step S6.
  • step S6 the position of the component 80 is corrected.
  • the arm unit 31, the wrist unit 32, and the hand unit 33 are moved so as to eliminate each shift amount.
  • the machining position of the part 80 is arranged at a predetermined position on the machining axis 41, and the inclination and position of the part 80 are corrected so that the machining direction of the part 80 at the machining position matches the machining axis 41.
  • the position and inclination of the component 80 are measured again (step S4), and it is determined whether or not each deviation amount is within a predetermined threshold (step S5). This operation is repeated until the value is within the threshold. In this way, the part 80 is positioned with respect to the machining shaft 41 of the riveter 40.
  • the component 80 is fixed to the riveter 40 (step S7).
  • the component 80 corrected to an appropriate posture is lowered along the machining axis 41 in the posture and brought close to the bone member 70.
  • the position of only the Z direction of the component 80 along the machining axis 41 is changed, and the other positions and inclinations in the X direction and the Y direction are not changed.
  • the lower surface of the component 80 is brought into contact with the upper surface of the bone member 70.
  • the lower surface of the bone member 70 is disposed on the upper end of the rowork lamp 48, and the bone member 70 is supported by the rowork lamp 48.
  • the pressure foot 46 is moved in the X direction by the second displacement portion 47 so that the center axis of the pressure foot 46 coincides with the machining axis 41.
  • the pressure foot 46 is lowered to bring the lower end of the pressure foot 46 into contact with the upper surface of the component 80.
  • the component 80 and the bone member 70 are sandwiched and fixed by the pressure foot 46 and the low work lamp 48.
  • step S8 the gripping of the component 80 is released (step S8).
  • the gripping of the component 80 by the hand unit 33 is released.
  • the arm unit 31 is turned to separate the robot 30 from the riveter 40.
  • the part 80 and the bone member 70 are drilled along the machining axis 41 (step S9).
  • the drill 43 is lowered along the machining axis 41 while rotating.
  • the drill 43 advances into the hollow portion of the pressure foot 46, drills the part 80 and the bone member 70 along the machining axis 41, and enters the hollow portion of the rowork lamp 48. Since the machining position of the component 80 and the attachment position of the bone member 70 are located on each axis, a hole (first hole) is provided at the attachment position, and a hole (second hole) is provided at the machining position.
  • step S10 the component 80 and the bone member 70 are fastened by the rivet 42 (step S10).
  • the upper anvil 44 is moved in the X direction by the first displacement portion 45 so that the central axis of the shaft portion of the rivet 42 coincides with the machining axis 41.
  • the rivet 42 is lowered along the machining axis 41 by the upper anvil 44.
  • the lower anvil 49 is placed in the hollow portion of the low work lamp 48.
  • the center line of the shaft portion of the rivet 42, the hollow portion of the pressure foot 46, the first hole, the second hole, the hollow portion of the lower work lamp 48, and the shaft of the lower anvil 49 are arranged on the machining shaft 41. Accordingly, the rivet 42 advances through the hollow portion of the pressure foot 46, the first hole, and the second hole, and the lower anvil 49 is raised after the insertion of the rivet 42 is completed. Thereby, the lower end portion of the rivet 42 is crushed, the rivet 42 is caulked, and the component 80 and the bone member 70 are fastened by the rivet 42.
  • step S11 when there is another machining position in the same component 80 (step S11: YES), the machining shaft 41 of the riveter 40 is placed at the attachment position of the bone member 70 as shown in FIG. 14B. Positioning is performed (step S12). Since the process in step S12 is the same as the process in step S2, the description thereof is omitted. At this time, the pressure foot 46 is raised, the low work lamp 48 is lowered, and the bone member 70 is moved by the first positioner 21. Since the part 80 is already fixed to the bone member 70 by the rivet 42, the part 80 is positioned with respect to the machining shaft 41 simultaneously with the bone member 70.
  • step S13 the component 80 is fixed to the riveter 40 (step S13). Since the process in step S13 is the same as the process in step S7, the description thereof is omitted. Then, the part 80 and the bone member 70 are drilled (step S14). Since the process of step S14 is the same as the process of step S9, the description thereof is omitted. Then, the component 80 and the bone member 70 are fastened by the rivet 42 (step S15). Since the process in step S15 is the same as the process in step S10, description thereof is omitted.
  • the first camera 51 is provided on the machining axis 41, the position and inclination of the component 80 on the machining axis 41 can be detected. Based on this position and inclination, the machining position and machining direction of the part 80 can be aligned with the machining axis 41. Thereby, it is not necessary to move the part 80 on the machining shaft 41 from the aligned position, and the positional deviation of the part 80 due to the movement can be prevented, and the part 80 can be positioned and attached to the bone member 70 with high accuracy.
  • the positioning position 20 aligns the mounting position of the bone member 70 with respect to the machining shaft 41 of the riveter 40. Further, the machining position of the component 80 is aligned with the machining axis 41 of the riveter 40 by the robot 30. For this reason, the mounting position of the bone member 70 and the processing position of the component 80 are fixed by the rivet 42 only by drilling the component 80 and the bone member 70 along the processing axis 41 and inserting the rivet 42 into each hole. Can do.
  • the robot 30 is used for positioning the component 80, and the conveying device is used for the positioning unit 20 for positioning the bone member 70.
  • the positioning accuracy of the component 80 and the bone member 70 is improved, and the time and cost can be reduced as compared with the manual operation by the worker.
  • there is no need to use an expensive positioning jig cost can be reduced, and it is not necessary to secure a storage place for a large positioning jig, which is excellent in convenience.
  • the first camera 51 and the first laser irradiation unit 52 are integrally provided, whereby the first detection device 50 can be downsized.
  • the first detection device 50 can be reduced in size and cost. It is done.
  • the image processing unit 53 obtains the position and rotation of the component 80 based on the image of the component 80 by the first camera 51. However, when the machining position of the part 80 is arranged on the machining axis 41 and the machining direction of the part 80 at the machining position is matched with the machining axis 41, the image processing unit 53 determines the position of the part based on the image from the first camera 51. You may only ask for it.
  • the first camera 51 captures an image of the component 80 onto which the laser from the first laser irradiation unit 52 is projected, and the height and inclination of the component 80 are determined based on this image. Asked. However, when the machining position of the part 80 is arranged on the machining axis 41 and the machining direction of the part 80 at the machining position is made coincident with the machining axis 41, the image processing unit 53 is inclined based on the image by the first camera 51. You may only ask for it.
  • the component mounting system 10 according to Embodiment 2 further includes a second detection device 54 shown in FIGS. 15A to 15C in addition to the components of the component mounting system 10 according to Embodiment 1.
  • the second detection device 54 is provided at a position other than on the machining shaft 41, for example, at a position other than the internal space of the riveter 40.
  • the second detection device 54 includes a sensor (second sensor) that detects the inclination of the component 80 from a direction different from that of the first sensor, and an image processing unit 53.
  • the second sensor includes an image acquisition unit 55 and a laser irradiation unit (second laser irradiation unit) 56.
  • the image processing unit 53 of the first detection device 50 also serves as the image processing unit 53 of the second detection device 54, but the image processing unit 53 of the second detection device 54 is an image of the first detection device 50. It may be provided separately from the processing unit 53.
  • the image processing unit 53 is provided in the control device 60, but the image processing unit 53 may be provided separately from the control device 60.
  • the image acquisition unit 55 is a light receiving unit that receives the laser beam emitted from the second laser irradiation unit 56, and for example, a camera that acquires an image of the component 80 is used.
  • the image acquisition unit 55 is arranged such that the optical axis of the camera is parallel to the machining axis 41 of the riveter 40.
  • the image acquisition unit 55 outputs the acquired image of the component 80 to the image processing unit 53.
  • the second laser irradiation unit 56 is a device that irradiates the component 80 with a laser.
  • the image of the component 80 onto which the laser is projected by the second laser irradiation unit 56 is acquired by the image acquisition unit 55 and output to the image processing unit 53.
  • the height (Z coordinate) and inclination (inclination RX around the X axis and inclination RY around the Y axis) of the part 80 are determined based on the position or shape of the laser projected on the part 80.
  • the first camera 51 and the first laser irradiation unit 52 are arranged so as to be positioned above the component 80 during image acquisition and laser irradiation. As a result, an image on the upper side of the component 80 is acquired by the first camera 51, and a laser is irradiated on the upper side of the component 80 by the first laser irradiation unit 52.
  • the image acquisition unit 55 and the second laser irradiation unit 56 are arranged so as to be positioned below the component 80 at the time of image acquisition and laser irradiation. Thereby, the lower image of the component 80 is acquired by the image acquisition unit 55, and the laser is irradiated to the lower side of the component 80 by the second laser irradiation unit 56.
  • the positional relationship with respect to the components 80 of the 1st camera 51 and the 1st laser irradiation part 52, the image acquisition part 55, and the 2nd laser irradiation part 56 may be opposite.
  • the first camera 51 and the first laser irradiation unit 52 are arranged above the component 80, and the image acquisition unit 55 and the second laser irradiation unit 56 are arranged below the component 80.
  • the first detection device 50 has a height (Z coordinate) and an inclination (an inclination RX around the X axis and an inclination around the Y axis). RY) may not be detected.
  • the second detection device 54 is used.
  • the operation (component mounting method) of the component mounting system 10 using the second detection device 54 is executed by the processing shown in FIG. Note that the processing in the second embodiment other than steps S3 to S6 is the same as the processing in the first embodiment, and a description thereof will be omitted.
  • step S3 the component 80 is gripped and moved.
  • the arm unit 31 is turned to move the component 80 above the second detection device 54.
  • the interval between the component 80 and the second detection device 54 is determined in advance.
  • the second laser irradiation unit 56 of the second detection device 54 irradiates the laser below the component 80 from below the component 80.
  • An image on the lower side of the component 80 on which the laser is projected is acquired by the image acquisition unit 55 from below the component 80 and output to the image processing unit 53.
  • the image processing unit 53 acquires the shape and length of the laser projected on the component 80 from the image, and acquires the amount of deviation of the laser shape and length with respect to the second reference information stored in advance in the storage unit. From this deviation amount, a deviation amount ⁇ Z in the Z direction, an inclination deviation amount ⁇ RX around the X axis, and an inclination deviation amount ⁇ RY around the Y axis are calculated.
  • the position of the component 80 is corrected so as to eliminate each shift amount such as the height and inclination of the component 80.
  • the arm part 31, the wrist part 32, and the hand part 33 are moved.
  • the arm portion 31 is turned to move the machining position of the component 80 to a predetermined position on the machining axis 41 of the riveter 40.
  • step S4 the position and rotation of the component 80 are measured, and the amount of deviation is calculated.
  • step S6 the position of the part 80 is corrected so as to eliminate the deviation.
  • the arm part 31, the wrist part 32, and the hand part 33 are moved.
  • the machining position of the part 80 is arranged at a predetermined position on the machining axis 41, and the inclination and position of the part 80 are corrected so that the machining direction of the part 80 at the machining position matches the machining axis 41. .
  • the component 80 is positioned with respect to the machining shaft 41 of the riveter 40.
  • the second laser irradiation unit 56 irradiates the component 80 with a laser from a direction different from that of the first laser irradiation unit 52, and the image acquisition unit 55 outputs an image of the component 80 onto which the laser is projected. Get an image.
  • the first laser irradiation unit 52 and the first camera 51 cannot detect the position and inclination of the component 80
  • the position and inclination of the component 80 are detected by the second laser irradiation unit 56 and the image acquisition unit 55. Can be detected.
  • the component 80 can be positioned and attached to the bone member 70 with high accuracy.
  • the second laser irradiation unit 56 and the image acquisition unit 55 are provided at positions other than on the processing axis 41.
  • the image acquisition unit 55, or the image acquisition unit 55 and the second laser irradiation unit 56 may be provided on the processing shaft 41.
  • the image acquisition unit 55 is disposed so as to sandwich the component 80 between the first camera 51. Thereby, it is not necessary to move the component 80 onto the machining shaft 41 from the position detected by the second laser irradiation unit 56 and the image acquisition unit 55, and the positioning accuracy between the component 80 and the bone member 70 can be further increased.
  • the image acquisition unit 55 captures an image of the component 80 onto which the laser from the second laser irradiation unit 56 is projected, and the image processing unit 53 determines the height and inclination of the component 80 based on this image. Asked. However, when the machining position of the part 80 is arranged on the machining axis 41 and the machining direction of the part 80 at the machining position is made coincident with the machining axis 41, the image processing unit 53 is inclined based on the image by the image acquisition unit 55. You may only ask for it.
  • the component mounting system 10 according to Embodiment 3 further includes a third detection device 57 shown in FIG. 17 in addition to the components of the component mounting system 10 according to Embodiment 1.
  • the third detection device 57 includes the second camera 58 and the image processing unit 53, and detects the position and inclination of the component 80.
  • the image processing unit 53 of the first detection device 50 also serves as the image processing unit 53 of the third detection device 57, but the image processing unit 53 of the third detection device 57 is an image of the first detection device 50. It may be provided separately from the processing unit 53. In this embodiment, the image processing unit 53 is provided in the control device 60, but the image processing unit 53 may be provided separately from the control device 60.
  • the second camera 58 is provided at a position other than the machining axis 41, for example, between the machining axis 41 and the robot 30, and images the component 80 conveyed to the mounting position.
  • the optical axis of the second camera 58 is arranged parallel to the machining axis 41 of the riveter 40.
  • the second camera 58 is attached to the second displacement portion 47 along with the first detection device 50 and the pressure foot 46 in the X direction, and is disposed closer to the robot 30 than the first detection device 50.
  • the second camera 58 outputs the acquired image of the component 80 to the image processing unit 53.
  • the contour of the part 80 With design information such as CAD stored in the control device 60, the position (X coordinate and Y coordinate) and rotation (inclination RZ around the Z axis) of the part 80 are obtained.
  • the first camera 51 Since the first camera 51 is arranged on the processing axis 41 when acquiring an image, the position and inclination of the part 80 in the vicinity of the processing axis 41 are acquired by the first camera 51. For example, when the part 80 is long, if the position and inclination of the part 80 are slightly deviated from the desired ones, the deviation of the part 80 away from the machining position becomes larger than the vicinity of the machining axis 41. In such a case, the third detection device 57 is used. The operation (component mounting method) of the component mounting system 10 using the third detection device 57 is executed by the process shown in FIG. Note that the processing in the third embodiment other than steps S3 to S6 is the same as the processing in the first embodiment, and a description thereof will be omitted.
  • step S3 the machining position of the component 80 is moved to a predetermined position on the machining axis 41 of the riveter 40 by the robot 30.
  • the first camera 51 is moved in the X direction by the second displacement unit 47 so that the optical axis of the first camera 51 coincides with the machining axis 41.
  • the second camera 58 is disposed between the machining axis 41 and the robot 30.
  • step S4 the position and inclination of the part 80 are measured.
  • the first laser irradiation unit 52 irradiates the part 80 near the machining axis 41 with laser, and an image of the part 80 onto which the laser is projected is acquired by the first camera 51 and output to the image processing unit 53.
  • the image processing unit 53 calculates each shift amount at the processing position based on this image.
  • an image of the part 80 away from the machining axis 41 is acquired by the second camera 58 and output to the image processing unit 53.
  • the image processing unit 53 obtains a positional deviation amount ⁇ X in the X direction of the component 80 from the reference position, a positional deviation amount ⁇ Y in the Y direction, and a rotational deviation amount ⁇ RZ around the Z axis.
  • step S6 If each displacement amount such as the position and inclination of the component 80 is larger than the threshold value (step S5: NO), the position of the component 80 is corrected so as to eliminate each displacement amount (step S6). Thereby, the inclination and position of the component 80 are corrected, the entire component 80 is arranged at a desired position, and the component 80 is positioned with respect to the machining axis 41 of the riveter 40.
  • the second camera 58 is provided between the machining axis 41 and the robot 30 in addition to the first camera 51. Thereby, even if it is a case where a deviation from a desired position is likely to occur at a part away from the processing axis 41 such as the long part 80, the position and inclination of this part can be detected by the second camera 58. Then, by correcting the position and inclination of the component 80 based on the detection result and the detection result from the first detection device 50, the component 80 can be positioned and attached to the bone member 70 with high accuracy.
  • the image processing unit 53 obtains the position and rotation of the component 80 based on the image of the component 80 by the second camera 58.
  • the image processing unit 53 determines the position of the part based on the image from the second camera 58. You may only ask for it.
  • the component mounting system 10 according to the third embodiment may further include the second detection device 54 according to the second embodiment.
  • a conveying device that conveys the bone member 70 is used for the alignment unit 20.
  • the alignment unit 20 is not limited to this as long as it aligns the processing position of the bone member 70 with the processing axis 41 of the riveter 40.
  • the processing shaft 41 of the riveter 40 may be moved with respect to the processing position of the bone member 70.
  • the conveying device is used for the alignment unit 20, but a positioning jig may be used for the alignment unit 20 instead.
  • the positioning jig is a jig that indicates an attachment position (an attachment position of the component 80) with respect to the contour of the bone member 70.
  • an operator specifies an attachment position on the bone member 70 using a positioning jig, and aligns the bone member 70 with the riveter 40 so that the attachment position is located on the machining shaft 41. Also in this case, the robot 30 aligns the machining position of the component 80 with respect to the machining axis 41 of the riveter 40 based on the position and inclination detected by the first detection device 50. For this reason, the rivet 40 strikes the bone member 70 and the component 80 along the machining axis 41, whereby the component 80 can be positioned and attached to the bone member 70 with high accuracy.
  • the first laser irradiation unit 52 and the first camera 51 of the first detection device 50 are provided integrally.
  • the 1st laser irradiation part 52 and the 1st camera 51 may be provided separately.
  • the laser from the first laser irradiation unit 52 is acquired not by the first camera 51 but by another light receiving unit.
  • This light receiving unit may be a camera or an object that detects the laser reflected by the component 80.
  • the light receiving unit is provided integrally with the first laser irradiation unit 52.
  • the first camera 51, the first laser irradiation unit 52, and the pressure foot 46 are attached to the second displacement unit 47 along the X direction.
  • the order of arrangement is not limited to this order. Note that when the second camera 58 is attached to the second displacement portion 47, the second camera 58 is disposed closer to the robot 30 than the first camera 51.
  • steps S3 to S6 of FIG. 4 as shown in FIG. 18A, the position and inclination of the component 80 are detected by being arranged on the machining axis 41 of the first laser irradiation unit 52. Further, as shown in FIG. 18B, the first camera 51 is arranged on the machining axis 41, and the position and inclination of the component 80 are detected.
  • the image processing unit 53 obtains each displacement amount at the processing position, and the position and inclination of the component 80 are corrected by the robot 30 so that each displacement amount is eliminated. Thereby, the component 80 can be positioned and attached to the bone member 70 with high accuracy.
  • the first camera 51 and the first laser irradiation unit 52 are used for the first detection device 50.
  • the first detection device 50 is not limited to the first camera 51 and the first laser irradiation unit 52 as long as the position and inclination of the component 80 can be detected.
  • the image acquisition unit 55 and the second laser irradiation unit 56 are used for the second detection device 54.
  • the second detection device 54 is not limited to the image acquisition unit 55 and the second laser irradiation unit 56 as long as the position and inclination of the component 80 can be detected.
  • the second camera 58 is used as the third detection device 57.
  • the third detection device 57 is not limited to the second camera 58 as long as the position and inclination of the component 80 can be detected.
  • the rivet 42 is used as a fastener and the riveter 40 is used as a processing machine.
  • a fastener other than a rivet such as a bolt / nut type fastener commonly called a high lock, may be used.
  • the processing machine instead of caulking the rivet 42 and fastening it, the processing machine fits the bolt to the nut and fastens it.
  • the component mounting system and the component mounting method of the present invention are useful as a component mounting system and a component mounting method that improve the accuracy of the mounting position of a component on a bone member using a robot.
  • Component mounting system 20 Positioning unit 30: Robot 40: Riveter (processing machine) 41: Machining axis 42: Rivet (fastener) 51: First camera (camera, sensor, first camera, first sensor) 52: 1st laser irradiation part (sensor, 1st sensor) 54: Second detection device (second sensor) 58: Second camera 70: Bone member 80: Parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Multimedia (AREA)
  • Manipulator (AREA)
  • Automatic Assembly (AREA)

Abstract

部品取付システム(10)は、骨部材(70)に部品(80)をファスナ(42)により取り付ける部品取付システムであって、骨部材および部品を加工軸41に沿って穿孔しファスナにより締結する加工機(40)と、骨部材上の取付位置を加工軸に対して位置合わせする位置合わせ部(20)と、骨部材上の取付位置に部品を搬送するロボット(30)と、加工軸上に設けられ、かつ、取付位置に搬送された部品を撮像するカメラを含むとともに、取付位置に搬送された部品の傾きを検出するセンサを含む検出装置と、を備え、ロボットは、カメラにより撮像された画像から求められた部品の位置およびセンサにより検出された部品の傾きに基づいて部品の加工位置および加工方向を加工軸に対して位置合わせする。

Description

部品取付システムおよび部品取付方法
 本発明は、骨部材に部品を取り付ける部品取付システムおよび部品取付方法に関する。
 たとえば、航空機などの骨部材(たとえば、フレームやストリンガー)に部品を取り付ける場合、長さが10~20mの骨部材に対しても部品の取付位置に高い精度(たとえば、要求精度±0.5mm)が要求される。このため、たとえば、非特許文献1および非特許文献2に示されるように、骨部材に部品を取り付ける際に組立治具を用いている。この組立治具の治具ロケータ(位置決め用ブロック、プレート)およびコンタバー(機体構造の外板表面位置決め用型板)などに部品(外板および各種ストリンガ等)を位置決めし、各部品をリベットで締結することにより、高精度な部品の取付精度を実現している。
「航空機&ロケットの生産技術」ASTME 編著、半田邦夫・佐々木健次 共訳、1996年、(株)大河出版、P164~172「組立治具のタイプ」
「航空機生産工学」半田邦夫著、2002年、オフィスHANS、P236「3.中型旅客機の翼構造組立」
 上記非特許文献1および非特許文献2では、航空機の高い部品取付精度を満足するために組立治具を用いて部品の位置決めを行っていた。これに対し、ロボットを用いて骨部材上に部品を位置決めすることが考えられる。しかしながら、単にロボットを用いただけでは、上述したような高い精度での位置決めは困難である。
 本発明はこのような課題を解決するためになされたものであり、ロボットを用いた骨部材に対する部品の取付位置の精度の向上を図った部品取付システムおよび部品取付方法を提供することを目的としている。
 本発明のある態様に係る部品取付システムは、骨部材に部品をファスナにより取り付ける部品取付システムであって、前記骨部材および前記部品を加工軸に沿って穿孔し前記ファスナにより締結する加工機と、前記骨部材上の取付位置を前記加工軸に対して位置合わせする位置合わせ部と、前記骨部材上の取付位置に前記部品を搬送するロボットと、前記加工軸上に設けられ、かつ、前記取付位置に搬送された前記部品を撮像するカメラを含むとともに、前記取付位置に搬送された前記部品の傾きを検出するセンサを含む検出装置と、を備え、前記ロボットは、前記カメラにより撮像された画像から求められた前記部品の位置および前記センサにより検出された前記部品の傾きに基づいて前記部品の加工位置および加工方向を前記加工軸に対して位置合わせする。
 この構成によれば、加工軸上に設けられたカメラにより部品の位置を検出し、センサにより部品の傾きを検出し、この加工軸に対して検出結果に基づき部品の加工位置および加工方向を調整している。これにより、部品の検出位置から加工軸上に部品を移動させる必要がなく、部品を骨部材に対して高精度に位置合わせして取り付けることができる。
 この部品取付システムでは、前記位置合わせ部は、前記加工軸に対して直交する方向に前記骨部材を移動させる搬送装置であってもよい。この構成によれば、搬送装置により骨部材を加工軸に対して移動させるため、骨部材に対する部品の位置決め精度を高めることができる。
 また、部品取付システムでは、前記センサは、前記部品にレーザを照射するレーザ照射部を含み、前記カメラは、前記レーザが投影された前記部品を撮像し、前記検出装置は、前記カメラにより撮像された画像を処理して前記部品の位置および傾きを求める画像処理部を含んでいてもよい。この構成によれば、カメラは、レーザ照射部による部品に投影されたレーザを検出する検出装置としても兼用されるため、コストの低減および大型化の抑制が図られる。
 さらに、部品取付システムでは、前記センサは第1センサであり、前記検出装置は第1検出装置であり、前記第1センサとは異なる方向から前記部品の傾きを検出する第2センサを含む第2検出装置をさらに備えていてもよい。さらに、この部品取付システムでは、前記第2センサは、前記部品にレーザを照射するレーザ照射部と、前記レーザが投影された前記部品を撮像する画像取得部と、を含み、前記第2検出装置は、前記画像取得部により撮像された画像を処理して前記部品の傾きおよび高さを求める画像処理部を含んでもよい。この構成によれば、たとえば、部品形状などの制約によって一方から部品の傾きが検出できない場合であっても、他方から部品の傾きを検出することができる。このため、骨部材に対する部品の位置決め精度を高めることができる。
 部品取付システムでは、前記カメラは第1カメラであり、前記検出装置は第1検出装置であり、前記加工軸上以外に設けられ、かつ、前記取付位置に搬送された前記部品を撮像し前記部品の位置を検出する第2カメラを含む第3検出装置をさらに備えていてもよい。さらに、この部品取付システムでは、前記第3検出装置は、前記第2カメラにより撮像された画像を処理して前記部品の位置および回転を求める画像処理部を含んでもよい。この構成によれば、たとえば、部品が大きい場合であっても、2か所で部品の位置を検出することができるため、骨部材に対する部品の位置決め精度を高めることができる。
 部品取付システムでは、前記ファスナはリベットであり、前記加工機は、前記骨部材および前記部品を前記加工軸に沿って穿孔し前記リベットにより締結するリベッタであってもよい。
 部品取付システムでは、前記骨部材および前記部品は航空機に用いられてもよい。この構成によれば、航空機のような非常に高い位置決め精度が求められる場合であっても、その要求精度を満たすことができる。
 本発明の他の態様に係る部品取付方法では、骨部材上の取付位置を加工軸に対して位置合わせし、前記骨部材上の取付位置に部品を搬送し、前記加工軸上において前記取付位置に搬送された前記部品を撮像した画像から前記部品の位置を求め、前記取付位置に搬送された前記部品の傾きを検出し、前記部品の位置および傾きに基づいて前記部品の加工位置および加工方向を前記加工軸に対して位置合わせし、前記骨部材および前記部品を前記加工軸に沿って穿孔しファスナにより締結する。
 本発明は、以上に説明した構成を有し、ロボットを用いた骨部材に対する部品の取付位置の精度の向上を図った部品取付システムおよび部品取付方法を提供することができるという効果を奏する。
 本発明の上記目的、他の目的、特徴および利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本発明の実施の形態1に係る部品取付システムを示す斜視図である。 図1に示す部品取付システムを上方から視た図である。 図1に示す部品取付システムを側方から視た図である。 部品の取付方法の一例を示すフローチャートである。 図5Aは、骨部材を位置合わせ部に固定した状態を示す図である。図5Bは、骨部材の第1基準孔および第1ポジショナの第2基準孔に位置決めピンを挿入した状態を示す図である。 第1ポジショナを周方向、X方向およびY方向に移動させて、骨部材上の取付位置をリベッタの加工軸上に位置させている状態を示す図である。 図7Aは、ハンド部をパレットに配置した状態を示す図である。図7Bは、ハンド部により部品を把持した状態を示す図である。 部品の加工位置をリベッタの加工軸上の所定の位置に配置した状態を示す図である。 第1センサにより部品の位置および傾きを検出している状態を示す図である。 図10Aは、部品を骨部材に近づけた状態を示す図である。図10Bは、プレッシャーフットの中心軸を加工軸に一致させた状態を示す図である。図10Cは、部品および骨部材はプレッシャーフットおよびロワークランプにより挟んで固定した状態を示す図である。 図11Aは、ハンド部による部品の把持を解除した状態を示す図である。図11Bは、ロボットをリベッタから離した状態を示す図である。 図12Aは、ドリルを回転させながら加工軸に沿って下降させた状態を側方から視た図である。図12Bは、ドリルにより部品および骨部材を穿孔した状態を示す断面図である。 図13Aは、リベットの軸部の中心軸が加工軸に一致させた状態を側方から視た図である。図13Bは、アッパーアンビルを下降させた状態を側方から視た図である。図13Cは、開けられた孔にリベットを挿入させた状態を側方から視た図である。 図14Aは、骨部材上の取付位置およびリベッタの加工軸を上方から視た図である。図14Bは、骨部材上の他の取付位置およびリベッタの加工軸を上方から視た図である。 図15Aは、本発明の実施の形態2に係る部品取付システムを上方から視た図である。図15Bは、図15Aの第2検出装置および部品を示す斜視図である。図15Cは、第2検出装置、部品およびロボットを側方から視た図である。 本発明の実施の形態3に係る部品取付システムを上方から視た図である。 図16の部品取付システムを側方から視た図である。 図18Aは、本発明のその他の実施の形態に係る部品取付システムを側方から視た図である。図18Bは、図18Aの第1カメラをリベッタの加工軸に配置した状態を側方から視た図である。
 以下、本発明の実施の形態を、図面を参照しながら具体的に説明する。なお、以下では全ての図面を通じて同一または相当する要素には同一の参照符号を付して、その重複する説明を省略する。また、説明の便宜上、リベッタの加工軸に対し平行な方向をZ方向と称し、リベッタの加工軸とロボットの基軸とを結びZ方向に直交する方向をX方向と称し、Z方向およびX方向に直交する方向をY方向と称する。
 (実施の形態1)
 実施の形態1に係る部品取付システム10の構成について、図1~図3を参照して説明する。なお、以下、航空機のフレーム(骨部材)70に部品80を取り付けるシステムに本発明に係る部品取付システム10を適用した場合について説明する。ただし、骨部材70は航空機のフレームに限定されず、ストリンガなどのフレーム以外の航空機の骨部材、および、航空機以外の骨部材を骨部材70として採用することができる。また、部品80は航空機の部品に限定されず、航空機以外の部品を部品80に用いることもできる。
 部品取付システム10は、位置合わせ部20、ロボット30、リベッタ40、第1検出装置50および制御装置60を備えている。位置合わせ部20は、骨部材70上の取付位置を加工軸41に対して位置合わせする装置であり、たとえば、骨部材70を搬送する搬送装置が用いられる。位置合わせ部20は、骨部材70を移動させる第1ポジショナ21および第2ポジショナ22を有している。
 第1ポジショナ21は、リベッタ40の加工軸41に直交する方向において骨部材70の形状に対応した形状を有しており、たとえば、弧形状の骨部材70に対して弧形状である。第1ポジショナ21の上面は、骨部材70を載置する面であって、リベッタ40の加工軸41に直交し、たとえば水平になるように配置されている。第1ポジショナ21は弧の中心に対して周方向(θ方向)に移動可能である。
 第2ポジショナ22は第1ポジショナ21の下に配置されており、第1ポジショナ21を支持してX方向およびY方向に移動させることができる。このように、第1ポジショナ21および第2ポジショナ22によって骨部材70は加工軸41に直交する方向(たとえば、水平方向)に移動させられる。
 ロボット30は、骨部材70上の取付位置に部品80を搬送し、第1カメラ51により撮像された画像および第1センサにより検出された部品80の位置および傾きに基づいて部品80の加工位置および加工方向を加工軸41に対して位置合わせする装置である。ロボット30は、弧形状の第1ポジショナ21よりその中心側に配置されている。たとえば、ロボット30として、水平多関節型・垂直多関節型などのロボットが用いられる。ロボット30は、アーム部31、リスト部32およびハンド部33を有している。
 アーム部31はZ方向に延びる基軸34と回転関節により連結され、基軸34のまわりに旋回したり、リスト部32をX、Y、Zの各方向に移動させたりすることが可能である。この基軸34は、リベッタ40の加工軸41に対して、たとえば平行な方向に設けられる。リスト部32は、アーム部31の先端と回転関節により連結され、アーム部31に対しハンド部33をZ方向に移動可能である。ハンド部33は、リスト部32に連結され、部品80などを吸着または挟持などにより把持可能である。各関節には駆動用のサーボモータ(図示せず)、および、そのサーボモータの回転角を検出するエンコーダ(図示せず)等が設けられている。
 リベッタ40は、骨部材70および部品80を加工軸41に沿って穿孔しリベット42により締結して、部品80を骨部材70に取り付ける装置である。この加工軸41は、締結の際にリベット42の軸部の中心線を合わせる基準線である。
 リベッタ40は、たとえば、C骨部材型が用いられる。リベッタ40は、側面視によりC字型の本体を有しており、本体には内部空間が設けられている。内部空間は、ロボット30側に開口している。
 内部空間より上側の空間には、ドリル43およびアッパーアンビル44が配置されている。ドリル43およびアッパーアンビル44は、互いに間隔を空けてX方向に並んで第1変位部45に取り付けられている。第1変位部45はX方向に延びて、ドリル43およびアッパーアンビル44の位置をX方向に移動可能であって、これらをリベッタ40の加工軸41へ配置する。上側の空間は内部空間に開口しているため、ドリル43およびアッパーアンビル44を下降させることにより、内部空間に移動させることができる。
 ドリル43は、たとえば、回転動作によって骨部材70および部品80を穿孔する工具であって、円柱形状を有している。ドリル43はその回転軸が加工軸41に対して平行になるように配置されている。アッパーアンビル44は、リベット42を把持して骨部材70および部品80の各孔に挿入し、リベット42をその上方から押さえてかしめるための工具である。アッパーアンビル44は、把持したリベット42の軸部の中心線、および、リベット42を押さえる方向が加工軸41に対して平行になるように配置されている。
 内部空間内の上部に、第1検出装置50およびプレッシャーフット46が配置されている。第1検出装置50およびプレッシャーフット46は、互いに間隔を空けてX方向に並んで第2変位部47に取り付けられている。第2変位部47は、X方向に延びて、第1検出装置50およびプレッシャーフット46の位置をX方向に移動可能であって、これらをリベッタ40の加工軸41へ配置する。
 第1検出装置50は、部品80の位置および傾きを検出するものであって、カメラ(第1カメラ)51、レーザ照射部(第1レーザ照射部)52および画像処理部53により構成されている。この実施の形態では、第1レーザ照射部52は第1カメラ51と一体的に設けられている。また、この実施の形態では、画像処理部53は制御装置60に設けられているが、画像処理部53は制御装置60とは別に設けられていてもよい。
 第1カメラ51は、加工軸41上に設けられ、かつ、その光軸がリベッタ40の加工軸41に一致するように配置されている。第1カメラ51は骨部材70の取付位置に搬送された部品80を撮像する。第1カメラ51は取得した部品80の画像を画像処理部53に出力する。この部品80の輪郭と制御装置60に記憶されたCADなどの設計情報との比較により部品80の位置(X座標およびY座標)および回転(Z軸周りの傾きRZ)が求められる。
 第1レーザ照射部52は、取付位置に搬送された部品80にレーザを照射する装置である。第1レーザ照射部52はリベッタ40の加工軸41上に配置されていてもよいし、加工軸41の近傍に配置されていてもよい。第1レーザ照射部52によるレーザが投影された部品80の画像は第1カメラ51により取得され、画像処理部53に出力される。この部品80に投影されたレーザの位置または形などにより部品80の高さ(Z座標)および傾き(X軸周りの傾きRXおよびY軸周りの傾きRY)が求められる。このため、第1カメラ51は第1レーザ照射部52の受光部としても機能し、第1カメラ51および第1レーザ照射部52は取付位置に搬送された部品80の傾きを検出するセンサ(第1センサ)として機能する。
 プレッシャーフット46は、穿孔、ならびに、リベット42の挿入およびかしめを行う際に部品80をその上方から押さえる工具である。プレッシャーフット46は、その内部空間にドリル43またはアッパーアンビル44が挿入されるように、中空部を有する円筒形状である。円筒形状の中心軸はリベッタ40の加工軸41に一致またはそれに平行であって、その下端は加工軸41に直交する面に配置される。
 内部空間内の下部に、ロワークランプ48およびロワーアンビル49が配置されている。ロワークランプ48は、穿孔、ならびに、リベット42の挿入およびかしめを行う際に部品80をその下方から押さえる工具である。ロワークランプ48は、その内部空間にドリル43またはロワーアンビル49が挿入されるように、円筒形状である。中空部を有する円筒形状の中心軸はリベッタ40の加工軸41に一致またはそれに平行であって、その上端は加工軸41に直交する面に配置される。
 ロワーアンビル49は、リベット42のかしめを行う際にリベット42をその下方から押さえて、リベット42の下部を押し潰す工具である。ロワーアンビル49は、円柱形状の軸部を有しており、軸部の中心線および押さえる方向が加工軸41に一致するように配置されている。
 内部空間の内部では、第1検出装置50およびプレッシャーフット46の下方であってロワークランプ48およびロワーアンビル49の上方に骨部材70が配置されるように、位置合わせ部20の第1ポジショナ21が配置されている。第1ポジショナ21は、X方向においてロボット30との間に骨部材70を挟むように配置されている。
 制御装置60は、演算部(図示せず)および記憶部(図示せず)を備えている。制御装置60は、例えばマイクロコントローラ等のコンピュータを備えたロボットコントローラである。なお、制御装置60は、集中制御する単独の制御装置60によって構成されていてもよいし、互いに協働して分散制御する複数の制御装置60によって構成されていてもよい。
 記憶部には、ROM、RAM等が用いられ、ロボットコントローラとしての基本プログラム、各種固定データ等の情報が記憶されている。演算部は、CPU等が用いられ、記憶部に記憶された基本プログラム等のソフトウェアを読み出して実行することにより、部品取付システム10の各構成部を制御する。
 次に、部品取付システム10の動作(部品取付方法)について、図4~図14を参照して説明する。図4の各ステップS1~S15に示される部品取付システム10の動作は制御装置60により制御される。
 まず、位置合わせ部20に骨部材70を固定する(ステップS1)。たとえば、図5Aに示すように、第1ポジショナ21を移動させて所定のセット位置に配置する。骨部材70には3か所に第1基準孔71が予め設けられている。図5Bに示すように、第1基準孔71を第1ポジショナ21の第2基準孔24に一致させて、第1基準孔71および第2基準孔24に位置決めピン23を挿入して、骨部材70を第1ポジショナ21上に位置合わせして固定する。
 なお、第1基準孔71は骨部材70の輪郭に対して所定の位置に配置され、第2基準孔24は第1ポジショナ21の所定の位置に配置されている。よって、第1基準孔71と第2基準孔24とを一致させることにより、第1ポジショナ21に対する骨部材70上の位置を特定することができる。また、リベッタ40の加工軸41に対して直交する方向の第1ポジショナ21によって、骨部材70はその加工面がリベッタ40の加工軸41に対して直交する方向に配置される。
 続いて、リベッタ40の加工軸41に対して骨部材70の取付位置を位置決めする(ステップS2)。図6に示すように、骨部材70の取付位置がリベッタ40の加工軸41上に位置するように、第1ポジショナ21を周方向、第2ポジショナ22をX方向およびY方向に移動させる。
 続いて、部品80を把持して移動する(ステップS3)。図7Aに示すように、アーム部31を旋回させて、ハンド部33をパレットに移動させる。このパレットには所定の位置に各種の部品80が配置されている。このため、取付位置に応じた部品80のあるパレットの位置にハンド部33を移動させる。そして、図7Bに示すように、リスト部32によりハンド部33をZ方向に移動させて、ハンド部33で部品80を把持する。
 図8に示すように、アーム部31を基軸34に対して旋回させて、部品80の加工位置をリベッタ40の加工軸41上の所定の位置に移動させる。この所定の位置は骨部材70より上方であって第1検出装置50より下方であり、部品80は骨部材70に接触せず、部品80と骨部材70との間には所定の間隔が設けられる。
 続いて、部品80の位置および傾きを計測する(ステップS4)。図9に示すように、第1カメラ51の光軸が加工軸41に一致するように、第1検出装置50を第2変位部47によりX方向に移動させる。そして、第1レーザ照射部52により部品80より上方から部品80に対してレーザを照射する。このレーザが投影された部品80の上面の画像を部品80より上方から第1カメラ51により取得し画像処理部53に出力する。
 画像処理部53は、画像から部品80の輪郭を取得し、記憶部に予め記憶されている第1基準情報に対する部品80の輪郭のズレ量を取得する。このズレ量からX方向の位置ズレ量ΔX、Y方向の位置ズレ量ΔYおよびZ軸周りの回転のズレ量ΔRZを算出する。なお、第1基準情報は、部品80の設計情報に基づき、所定の位置における部品80の輪郭を示す情報であり、部品80の加工位置がリベッタ40の加工軸41に位置するように予め設定されている。
 また、画像処理部53は、画像から部品80に投影されたレーザの形状および長さを取得し、記憶部に予め記憶されている第2基準情報に対するレーザの形状および長さのズレ量を取得する。このズレ量からZ方向のズレ量ΔZ、X軸周りの傾きのズレ量ΔRX、および、Y軸周りの傾きのズレ量ΔRYを算出する。なお、第2基準情報は、所定の位置に投影されたレーザの形状および長さを示す情報である。
 続いて、部品80の位置および傾きの各ズレ量が所定の閾値以内か否かを判定する(ステップS5)。各ズレ量が閾値以内であれば(ステップS5:YES)、ステップS7の処理に進む。一方、各ズレ量が閾値より大きければ(ステップS5:NO)、ステップS6の処理に進む。
 ステップS6の処理では、部品80の位置などを補正する。たとえば、各ズレ量を無くすように、アーム部31、リスト部32およびハンド部33を動かす。これにより、部品80の加工位置が加工軸41上の所定の位置に配置され、加工位置における部品80の加工方向が加工軸41に一致するように、部品80の傾きおよび位置などが補正される。補正後、再び部品80の位置および傾きを計測し(ステップS4)、各ズレ量が所定の閾値以内か否かを判定する(ステップS5)。閾値以内となるまでこの作業を繰り返す。こうして、リベッタ40の加工軸41に対して部品80の位置決めが行われる。
 続いて、部品80をリベッタ40に固定する(ステップS7)。図10Aに示すように、適正な姿勢に補正された部品80を、その姿勢のまま、加工軸41に沿って下降させて骨部材70に近づける。これにより、加工軸41に沿った部品80のZ方向のみの位置が変化し、これ以外のX方向およびY方向の位置および傾きは変化しない。そして、部品80の下面を骨部材70の上面に接触させる。この際、骨部材70の下面がロワークランプ48の上端上に配置されており、骨部材70はロワークランプ48に支持されている。
 そして、図10Bに示すように、プレッシャーフット46の中心軸が加工軸41に一致するように、プレッシャーフット46を第2変位部47によりX方向に移動させる。図10Cに示すように、プレッシャーフット46を下降させて、プレッシャーフット46の下端を部品80の上面に接触させる。これにより、部品80および骨部材70はプレッシャーフット46およびロワークランプ48により挟まれて固定される。
 続いて、部品80の把持を解除する(ステップS8)。図11Aに示すように、ハンド部33による部品80の把持を解除する。この際、部品80はプレッシャーフット46およびロワークランプ48により固定されているため、部品80の位置および傾きは変化しない。そして、図11Bに示すように、アーム部31を旋回させて、ロボット30をリベッタ40から離す。
 続いて、部品80および骨部材70を加工軸41に沿って穿孔する(ステップS9)。図12Aに示すように、ドリル43を回転させながら加工軸41に沿って下降させる。これにより、図12Bに示すように、ドリル43がプレッシャーフット46の中空部に進行し、部品80および骨部材70を加工軸41に沿って穿孔して、ロワークランプ48の中空部に進入する。この部品80の加工位置および骨部材70の取付位置は各軸上に位置しているため、取付位置に孔(第1孔)が設けられ、加工位置に孔(第2孔)が設けられる。
 続いて、部品80および骨部材70をリベット42により締結する(ステップS10)。図13Aに示すように、リベット42の軸部の中心軸が加工軸41に一致するように、アッパーアンビル44を第1変位部45によりX方向に移動させる。そして、図13Bに示すように、アッパーアンビル44によりリベット42を加工軸41に沿って下降させる。この際、図13Cに示すように、ロワーアンビル49をロワークランプ48の中空部内に配置しておく。これにより、リベット42の軸部、プレッシャーフット46の中空部、第1孔、第2孔、ロワークランプ48の中空部およびロワーアンビル49の軸の各中心線が加工軸41上に並ぶ。よって、リベット42がプレッシャーフット46の中空部、第1孔および第2孔を進行し、リベット42の挿入が完了した後にロワーアンビル49を上昇させる。これにより、リベット42の下端部が押し潰されて、リベット42がかしめられ、部品80および骨部材70がリベット42により締結される。
 続いて、図14Aに示すように、同じ部品80において他の加工位置がある場合(ステップS11:YES)、図14Bに示すように、その骨部材70の取付位置にリベッタ40の加工軸41を位置決めする(ステップS12)。このステップS12の処理は、ステップS2の処理と同様であるため、その説明を省略する。この際、プレッシャーフット46を上昇させて、ロワークランプ48を下降させて、骨部材70を第1ポジショナ21により移動させる。部品80は骨部材70にリベット42により既に固定されているため、部品80は骨部材70と同時に加工軸41に対して位置決めされる。
 続いて、部品80をリベッタ40に固定する(ステップS13)。このステップS13の処理は、ステップS7の処理と同様であるため、その説明を省略する。そして、部品80および骨部材70を穿孔する(ステップS14)。このステップS14の処理は、ステップS9の処理と同様であるため、その説明を省略する。そして、部品80および骨部材70をリベット42により締結する(ステップS15)。このステップS15の処理は、ステップS10の処理と同様であるため、その説明を省略する。
 上記構成によれば、第1カメラ51が加工軸41上に設けられているため、加工軸41上における部品80の位置および傾きを検出することができる。この位置および傾きに基づいて部品80の加工位置およびその加工方向を加工軸41に合わせることができる。これにより、位置合わせした場所から加工軸41上に部品80を移動させる必要がなく、移動による部品80の位置ずれを防ぎ、部品80を骨部材70に高精度で位置決めして取り付けることができる。
 また、位置合わせ部20によりリベッタ40の加工軸41に対して骨部材70の取付位置の位置合わせが行われる。また、ロボット30によりリベッタ40の加工軸41に対して部品80の加工位置の位置合わせが行われる。このため、部品80および骨部材70を加工軸41に沿って穿孔し、各孔にリベット42を挿入するだけで、骨部材70の取付位置と部品80の加工位置とをリベット42により固定することができる。
 さらに、部品80の位置決めにロボット30を用い、骨部材70の位置決めを行う位置合わせ部20に搬送装置を用いている。これにより、部品80および骨部材70の位置決め精度が向上すると共に、作業員による手作業に比べて時間およびコストの低減を図ることができる。さらに、高価な位置決め治具を用いる必要がなく、コストの削減が図られ、また、大きな位置決め治具の保管場所を確保する必要がなく、利便性に優れている。
 また、第1カメラ51および第1レーザ照射部52を一体的に設けていることにより、第1検出装置50の小型化が図られる。第1レーザ照射部52による部品80に投影されたレーザの画像を第1カメラ51により取得することにより、レーザの検出装置を設ける必要がなく、第1検出装置50の小型化およびコスト削減が図られる。
 なお、図9の例では、第1カメラ51による部品80の画像に基づいて画像処理部53は部品80の位置および回転を求めた。ただし、部品80の加工位置を加工軸41上に配置させ、加工位置における部品80の加工方向を加工軸41に一致させる場合、第1カメラ51による画像に基づいて画像処理部53は部品の位置だけを求めてもよい。
 また、図9の例では、第1レーザ照射部52によるレーザが投影された部品80の画像を第1カメラ51が撮像し、この画像に基づいて部品80の高さおよび傾きを画像処理部53は求めた。ただし、部品80の加工位置を加工軸41上に配置させ、加工位置における部品80の加工方向を加工軸41に一致させる場合、第1カメラ51による画像に基づいて画像処理部53は部品の傾きだけを求めてもよい。
 (実施の形態2)
 実施の形態2に係る部品取付システム10は、実施の形態1に係る部品取付システム10の各構成に加えて、図15A~図15Cに示す第2検出装置54をさらに備えている。第2検出装置54は、加工軸41上以外の位置、たとえば、リベッタ40の内部空間以外の位置に設けられている。
 第2検出装置54は、第1センサとは異なる方向から部品80の傾きを検出するセンサ(第2センサ)および画像処理部53を含む。第2センサは、画像取得部55およびレーザ照射部(第2レーザ照射部)56により構成されている。この実施の形態では、第1検出装置50の画像処理部53が第2検出装置54の画像処理部53を兼用するが、第2検出装置54の画像処理部53は第1検出装置50の画像処理部53とは別に設けられていてもよい。また、この実施の形態では、画像処理部53は制御装置60に設けられているが、画像処理部53は制御装置60とは別に設けられていてもよい。
 画像取得部55は、第2レーザ照射部56により照射されたレーザを受光する受光部であって、たとえば、部品80の画像を取得するカメラが用いられる。画像取得部55はカメラの光軸がリベッタ40の加工軸41に対して平行に配置されている。画像取得部55は取得した部品80の画像を画像処理部53に出力する。
 第2レーザ照射部56は、部品80にレーザを照射する装置である。第2レーザ照射部56によるレーザが投影された部品80の画像は画像取得部55により取得され、画像処理部53に出力される。この部品80に投影されたレーザの位置または形などにより部品80の高さ(Z座標)および傾き(X軸周りの傾きRXおよびY軸周りの傾きRY)が求められる。
 第1カメラ51および第1レーザ照射部52は、画像の取得およびレーザの照射の際に部品80より上方に位置するように配置されている。これにより、第1カメラ51により部品80の上側の画像が取得され、第1レーザ照射部52により部品80の上側にレーザが照射される。これに対して、画像取得部55および第2レーザ照射部56は、画像の取得およびレーザの照射の際に部品80より下方に位置するように配置されている。これにより、画像取得部55により部品80の下側の画像が取得され、第2レーザ照射部56により部品80の下側にレーザが照射される。なお、第1カメラ51および第1レーザ照射部52と画像取得部55および第2レーザ照射部56との部品80に対する位置関係は反対であってもよい。第1カメラ51および第1レーザ照射部52が部品80より上方に配置され、画像取得部55および第2レーザ照射部56が部品80より下方に配置される。
 たとえば、部品80が小さかったり、部品80の形状が複雑であったりして、第1検出装置50では部品80の高さ(Z座標)および傾き(X軸周りの傾きRXおよびY軸周りの傾きRY)を検出できない場合がある。この場合、第2検出装置54を用いる。
 この第2検出装置54を用いた部品取付システム10の動作(部品取付方法)について、図4に示す処理によって実行される。なお、ステップS3~S6以外の実施の形態2における処理は、実施の形態1における処理と同様であるため、その説明を省略する。
 ステップS3において、部品80を把持して移動する。
 まず、アーム部31を旋回させて、部品80を第2検出装置54の上方に移動させる。この部品80と第2検出装置54との間隔は予め定められている。
 そして、部品80の位置および傾きを計測する。第2検出装置54の第2レーザ照射部56により部品80より下方から部品80の下側にレーザを照射する。このレーザが投影された部品80の下側の画像を部品80より下方から画像取得部55により取得し画像処理部53に出力する。
 画像処理部53は、画像から部品80に投影されたレーザの形状および長さを取得し、記憶部に予め記憶されている第2基準情報に対するレーザの形状および長さのズレ量を取得する。このズレ量からZ方向のズレ量ΔZ、X軸周りの傾きのズレ量ΔRX、および、Y軸周りの傾きのズレ量ΔRYを算出する。
 次に、部品80の高さおよび傾きなどの各ズレ量を無くすように、部品80の位置などを補正する。ここで、アーム部31、リスト部32およびハンド部33を動かす。
 更に、図8に示すように、アーム部31を旋回させて、部品80の加工位置をリベッタ40の加工軸41上の所定の位置に移動させる。
 その後、ステップS4において部品80の位置および回転を計測し、ズレ量を算出する。
 続いて、部品80の位置および回転の各ズレ量が閾値より大きければ(ステップS5:NO)、各ズレ量を無くすように、部品80の位置などを補正する(ステップS6)。ここで、アーム部31、リスト部32およびハンド部33を動かす。これにより、部品80の加工位置が加工軸41上の所定の位置に配置され、加工位置における部品80の加工方向が加工軸41に一致するように、部品80の傾きおよび位置などが補正される。これにより、リベッタ40の加工軸41に対して部品80の位置決めが行われる。
 上記構成によれば、第1レーザ照射部52と異なる方向から第2レーザ照射部56は部品80にレーザを照射し、このレーザが投影された部品80の画像を画像取得部55が部品80の画像を取得する。これにより、第1レーザ照射部52および第1カメラ51では部品80の位置および傾きを検出できないような場合であっても、第2レーザ照射部56および画像取得部55により部品80の位置および傾きを検出することができる。そして、この検出結果に基づいて部品80の位置および傾きなどを補正することにより、部品80を骨部材70に高精度に位置決めして取り付けることができる。
 なお、図15Aの例では、第2レーザ照射部56および画像取得部55が加工軸41上以外の位置に設けられていた。しかしながら、画像取得部55、または、画像取得部55および第2レーザ照射部56が加工軸41上に設けられていてもよい。この場合、画像取得部55は第1カメラ51との間に部品80を挟むように配置されている。これにより、第2レーザ照射部56および画像取得部55により検出した位置から加工軸41上へ部品80を移動させる必要がなく、部品80と骨部材70との位置決め精度をより高めることができる。
 また、図15Aの例では、第2レーザ照射部56によるレーザが投影された部品80の画像を画像取得部55が撮像し、この画像に基づいて部品80の高さおよび傾きを画像処理部53は求めた。ただし、部品80の加工位置を加工軸41上に配置させ、加工位置における部品80の加工方向を加工軸41に一致させる場合、画像取得部55による画像に基づいて画像処理部53は部品の傾きだけを求めてもよい。
 (実施の形態3)
 実施の形態3に係る部品取付システム10は、実施の形態1に係る部品取付システム10の各構成に加えて、図17に示す第3検出装置57をさらに備えている。第3検出装置57は、第2カメラ58および画像処理部53により構成され、部品80の位置および傾きを検出する。
 この実施の形態では、第1検出装置50の画像処理部53が第3検出装置57の画像処理部53を兼用するが、第3検出装置57の画像処理部53は第1検出装置50の画像処理部53とは別に設けられていてもよい。また、この実施の形態では、画像処理部53は制御装置60に設けられているが、画像処理部53は制御装置60とは別に設けられていてもよい。
 第2カメラ58は、加工軸41上以外の位置、たとえば、加工軸41とロボット30との間に設けられ、取付位置に搬送された部品80を撮像する。第2カメラ58はその光軸がリベッタ40の加工軸41に対して平行に配置されている。たとえば、第2カメラ58は、第1検出装置50およびプレッシャーフット46と共にX方向に並んで第2変位部47に取り付けられ、第1検出装置50よりロボット30側に配置されている。
 第2カメラ58は取得した部品80の画像を画像処理部53に出力する。この部品80の輪郭と制御装置60に記憶されたCADなどの設計情報との比較により部品80の位置(X座標およびY座標)および回転(Z軸周りの傾きRZ)が求められる。
 第1カメラ51は、画像の取得の際に加工軸41上に配置されているため、加工軸41近傍の部品80の位置および傾きが第1カメラ51により取得される。たとえば、部品80が長い場合、この部品80の位置および傾きが所望のものから僅かにずれていると、部品80の加工位置から離れた部分のずれは加工軸41近傍よりも大きくなる。このような場合に、第3検出装置57を用いる。この第3検出装置57を用いた部品取付システム10の動作(部品取付方法)について、図4に示す処理によって実行される。なお、ステップS3~S6以外の実施の形態3における処理は、実施の形態1における処理と同様であるため、その説明を省略する。
 ステップS3において、図16および図17に示すように、部品80の加工位置をリベッタ40の加工軸41上の所定の位置にロボット30により移動させる。そして、第1カメラ51の光軸が加工軸41に一致するように、第1カメラ51を第2変位部47によりX方向に移動させる。これにより、第2カメラ58は加工軸41とロボット30との間に配置される。
 そして、ステップS4において、部品80の位置および傾きを計測する。第1レーザ照射部52により加工軸41近傍の部品80にレーザを照射し、このレーザが投影された部品80の画像を第1カメラ51により取得し画像処理部53に出力する。画像処理部53は、この画像に基づいて、加工位置における各ズレ量を算出する。
 また、部品80において加工軸41から離れた部分の画像を第2カメラ58により取得し画像処理部53に出力する。画像処理部53は、基準位置からの部品80のX方向の位置ズレ量ΔX、Y方向の位置ズレ量ΔYおよびZ軸周りの回転のズレ量ΔRZを求める。
 部品80の位置および傾きなどの各ズレ量が閾値より大きければ(ステップS5:NO)、各ズレ量を無くすように、部品80の位置などを補正する(ステップS6)。これにより、部品80の傾きおよび位置などが補正され、部品80の全体が所望の位置に配置されて、リベッタ40の加工軸41に対して部品80の位置決めが行われる。
 上記構成によれば、第1カメラ51に加えて、加工軸41とロボット30との間に第2カメラ58を設けている。これにより、長い部品80など加工軸41から離れた部分で所望の位置からずれが生じやすいような場合であっても、この部分の位置および傾きを第2カメラ58により検出することができる。そして、この検出結果と第1検出装置50からの検出結果に基づいて部品80の位置および傾きなどを補正することにより、部品80を骨部材70に高精度に位置決めして取り付けることができる。
 なお、図17の例では、第2カメラ58による部品80の画像に基づいて画像処理部53は部品80の位置および回転を求めた。ただし、部品80の加工位置を加工軸41上に配置させ、加工位置における部品80の加工方向を加工軸41に一致させる場合、第2カメラ58による画像に基づいて画像処理部53は部品の位置だけを求めてもよい。
 (その他の実施の形態)
 なお、上記全実施の形態は、互いに相手を排除しない限り、互いに組み合わせてもよい。たとえば、実施の形態3に係る部品取付システム10は、実施の形態2に係る第2検出装置54をさらに備えていてもよい。
 さらに、上記全実施の形態では、骨部材70を搬送する搬送装置を位置合わせ部20に用いた。これに対して、位置合わせ部20は、骨部材70の加工位置をリベッタ40の加工軸41に対して位置合わせするものであれば、これに限定されない。たとえば、リベッタ40の加工軸41を骨部材70の加工位置に対して移動させるものであってもよい。
 また、上記全実施の形態では、位置合わせ部20に搬送装置を用いたが、これに代えて、位置決め治具を位置合わせ部20に用いてもよい。位置決め治具は、骨部材70の輪郭に対して取付位置(部品80の取付位置)を示す治具である。
 この場合、作業員が位置決め治具を用いて骨部材70に取付位置を特定し、取付位置が加工軸41上に位置するように骨部材70をリベッタ40に対して位置合わせする。この場合も、第1検出装置50により検出された位置および傾きに基づいて部品80の加工位置をリベッタ40の加工軸41に対してロボット30により位置合わせする。このため、骨部材70および部品80にリベット42を加工軸41に沿ってリベッタ40が打ち付けることにより、部品80を骨部材70に対して高精度に位置決めして取り付けることができる。
 さらに、上記全実施の形態では、第1検出装置50の第1レーザ照射部52および第1カメラ51が一体的に設けられている。これに対して、図18Aおよび図18Bに示すように、第1レーザ照射部52と第1カメラ51とが別に設けられていてもよい。この場合、第1レーザ照射部52によるレーザを第1カメラ51ではなく、他の受光部により取得される。この受光部はカメラであってもよいし、部品80により反射されたレーザを検出する物であってもよい。受光部は第1レーザ照射部52と一体的に設けられている。
 この場合、第1カメラ51、第1レーザ照射部52およびプレッシャーフット46がX方向に並んで第2変位部47に取り付けられている。並ぶ順番はこの順に限定されない。なお、第2カメラ58が第2変位部47に取り付けられている場合には、第2カメラ58は第1カメラ51よりロボット30に近い側に配置される。
 図4のステップS3~S6において、図18Aに示すように、第1レーザ照射部52の加工軸41上に配置し、部品80の位置および傾きを検出する。また、図18Bに示すように、第1カメラ51を加工軸41上に配置し、部品80の位置および傾きを検出する。そして、画像処理部53により加工位置における各ズレ量を求め、各ズレ量が無くなるようにロボット30により部品80の位置および傾きなどを補正する。これにより、部品80を骨部材70に高精度に位置決めして取り付けることができる。
 また、上記全実施の形態では、第1検出装置50に第1カメラ51および第1レーザ照射部52を用いた。ただし、部品80の位置および傾きを検出することができるものであれば、第1カメラ51および第1レーザ照射部52に第1検出装置50は限定されない。また、第2検出装置54に画像取得部55および第2レーザ照射部56を用いた。ただし、部品80の位置および傾きを検出することができるものであれば、画像取得部55および第2レーザ照射部56に第2検出装置54は限定されない。さらに、第3検出装置57に第2カメラ58を用いた。ただし、部品80の位置および傾きを検出することができるものであれば、第2カメラ58に第3検出装置57は限定されない。
 また、上記全実施の形態では、リベット42をファスナに用い、リベッタ40を加工機に用いたが、これに限定されない。たとえば、通称ハイロックと呼ばれるボルト・ナット型のファスナなど、リベット以外のファスナを用いることもできる。この場合、加工機は、リベット42をかしめて締結する代わりに、ボルトをナットに嵌めて締結する。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施の形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。
 本発明の部品取付システムおよび部品取付方法は、ロボットを用いた骨部材に対する部品の取付位置の精度の向上を図った部品取付システムおよび部品取付方法等として有用である。
10   :部品取付システム
20   :位置合わせ部
30   :ロボット
40   :リベッタ(加工機)
41   :加工軸
42   :リベット(ファスナ)
51   :第1カメラ(カメラ、センサ、第1カメラ、第1センサ)
52   :第1レーザ照射部(センサ、第1センサ)
54   :第2検出装置(第2センサ)
58   :第2カメラ
70   :骨部材
80   :部品

Claims (10)

  1.  骨部材に部品をファスナにより取り付ける部品取付システムであって、
     前記骨部材および前記部品を加工軸に沿って穿孔し前記ファスナにより締結する加工機と、
     前記骨部材上の取付位置を前記加工軸に対して位置合わせする位置合わせ部と、
     前記骨部材上の取付位置に前記部品を搬送するロボットと、
     前記加工軸上に設けられ、かつ、前記取付位置に搬送された前記部品を撮像するカメラを含むとともに、前記取付位置に搬送された前記部品の傾きを検出するセンサを含む検出装置と、を備え、
     前記ロボットは、前記カメラにより撮像された画像から求められた前記部品の位置および前記センサにより検出された前記部品の傾きに基づいて前記部品の加工位置および加工方向を前記加工軸に対して位置合わせする、部品取付システム。
  2.  前記位置合わせ部は、前記加工軸に対して直交する方向に前記骨部材を移動させる搬送装置である、請求項1に記載の部品取付システム。
  3.  前記センサは、前記部品にレーザを照射するレーザ照射部を含み、
     前記カメラは、前記レーザが投影された前記部品を撮像し、
     前記検出装置は、前記カメラにより撮像された画像を処理して前記部品の傾きを求める画像処理部を含む、請求項1または2に記載の部品取付システム。
  4.  前記センサは第1センサであり、前記検出装置は第1検出装置であり、
     前記第1センサとは異なる方向から前記部品の傾きを検出する第2センサを含む第2検出装置をさらに備えている、請求項1乃至3のいずれか一項に記載の部品取付システム。
  5.  前記第2センサは、前記部品にレーザを照射するレーザ照射部と、前記レーザが投影された前記部品を撮像する画像取得部と、を含み、
     前記第2検出装置は、前記画像取得部により撮像された画像を処理して前記部品の傾きおよび高さを求める画像処理部を含む、請求項4に記載の部品取付システム。
  6.  前記カメラは第1カメラであり、前記検出装置は第1検出装置であり、
     前記加工軸上以外に設けられ、かつ、前記取付位置に搬送された前記部品を撮像し前記部品の位置を検出する第2カメラを含む第3検出装置をさらに備えている、請求項1乃至5のいずれか一項に記載の部品取付システム。
  7.  前記第3検出装置は、前記第2カメラにより撮像された画像を処理して前記部品の位置および回転を求める画像処理部を含む、請求項6に記載の部品取付システム。
  8.  前記ファスナはリベットであり、
     前記加工機は、前記骨部材および前記部品を前記加工軸に沿って穿孔し前記リベットにより締結するリベッタである、請求項1乃至7のいずれか一項に記載の部品取付システム。
  9.  前記骨部材および前記部品は航空機に用いられる、請求項1乃至8のいずれか一項に記載の部品取付システム。
  10.  骨部材上の取付位置を加工軸に対して位置合わせし、
     前記骨部材上の取付位置に部品を搬送し、
     前記加工軸上において前記取付位置に搬送された前記部品を撮像した画像から前記部品の位置を求め、
     前記取付位置に搬送された前記部品の傾きを検出し、
     前記部品の位置および傾きに基づいて前記部品の加工位置および加工方向を前記加工軸に対して位置合わせし、
     前記骨部材および前記部品を前記加工軸に沿って穿孔しファスナにより締結する、部品取付方法。
PCT/JP2017/015926 2016-04-28 2017-04-20 部品取付システムおよび部品取付方法 WO2017188127A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/097,385 US10799937B2 (en) 2016-04-28 2017-04-20 Component mounting system and component mounting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016091284A JP6568500B2 (ja) 2016-04-28 2016-04-28 部品取付システムおよび部品取付方法
JP2016-091284 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017188127A1 true WO2017188127A1 (ja) 2017-11-02

Family

ID=60160418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015926 WO2017188127A1 (ja) 2016-04-28 2017-04-20 部品取付システムおよび部品取付方法

Country Status (3)

Country Link
US (1) US10799937B2 (ja)
JP (1) JP6568500B2 (ja)
WO (1) WO2017188127A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3656511A1 (de) * 2018-11-21 2020-05-27 Siemens Aktiengesellschaft Vorrichtung zur form- und/oder kraftschlüssigen verbindung und verfahren
CN112025722A (zh) * 2020-08-19 2020-12-04 上海拓璞数控科技股份有限公司 C型自动钻铆设备及工件法向测量和调整方法
RU2818145C1 (ru) * 2023-09-04 2024-04-24 Акционерное общество "Туполев" (АО "Туполев") Способ оценки позиционирования навесного агрегата относительно внешних поверхностей планера летательного аппарата

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016108874A1 (de) 2016-05-13 2017-11-16 Broetje-Automation Gmbh Verfahren zum Befüllen einer Nietkassette mit Nietelementen
IT201600083531A1 (it) * 2016-08-08 2018-02-08 Cosberg Spa Apparato di rivettatura per impianti di assemblaggio
WO2018088139A1 (ja) * 2016-11-11 2018-05-17 三菱重工業株式会社 部品製造方法及び部品製造システム
US10824137B2 (en) * 2017-06-19 2020-11-03 Panasonic Intellectual Property Management Co., Ltd. Mounting board manufacturing system
JP7000254B2 (ja) * 2018-06-01 2022-01-19 トヨタ自動車株式会社 ホイールアライメント調整システム
CN109015642A (zh) * 2018-08-16 2018-12-18 苏州市运泰利自动化设备有限公司 上下料控制方法及系统
EP4008542A1 (en) * 2020-11-18 2022-06-08 The Boeing Company Aircraft frame fabrication line
US11926435B2 (en) 2020-11-18 2024-03-12 The Boeing Company Indexing for airframes undergoing pulsed-line assembly
US11845566B2 (en) 2020-11-18 2023-12-19 The Boeing Company Frame fabrication line
EP4000902A1 (en) * 2020-11-18 2022-05-25 The Boeing Company Indexing for airframes undergoing pulsed-line assembly
EP4016210A1 (en) * 2020-12-17 2022-06-22 Airbus Operations GmbH Positioning-, drilling-, and joining methods for a machine tool device
CN113042675A (zh) * 2021-03-31 2021-06-29 南京航空航天大学 用于自动抓钉机器人的多功能末端执行器及其使用方法
CN113618390A (zh) * 2021-08-20 2021-11-09 西北工业大学 一种航空发动机垂直自动装配对中装置及其使用方法
CN114683040B (zh) * 2022-06-01 2023-01-10 南通迪欧安普光电科技有限公司 一种水平仪激光发射器的组装设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183400A (ja) * 1988-01-18 1989-07-21 Asahi Eng Co Ltd 精密穿孔装置
EP0512649A1 (en) * 1991-05-08 1992-11-11 Construcciones Aeronauticas, S.A. Improvements to riveting machines
JPH0623640U (ja) * 1992-08-31 1994-03-29 ダイハツ工業株式会社 リベット締結装置
JP2000135541A (ja) * 1998-10-28 2000-05-16 Fuji Heavy Ind Ltd 打鋲方法及び打鋲装置
JP2010082802A (ja) * 2009-11-26 2010-04-15 Yaskawa Electric Corp 自動機械システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146924A (en) * 1975-09-22 1979-03-27 Board Of Regents For Education Of The State Of Rhode Island System for visually determining position in space and/or orientation in space and apparatus employing same
US5189514A (en) * 1991-08-29 1993-02-23 General Dynamics Corporation Convair Division Guidance system for automatic riveters
US5237468A (en) * 1991-10-15 1993-08-17 International Business Machines Corporation Camera and gripper assembly for an automated storage library
FR2940449A1 (fr) * 2008-12-24 2010-06-25 Snecma Procede de controle non destructif d'une piece mecanique
WO2013073683A1 (ja) * 2011-11-16 2013-05-23 日産自動車株式会社 接合体の製造方法およびその製造装置
US9610693B2 (en) * 2012-01-17 2017-04-04 The Boeing Company Robot for clamping onto upright frame members
US9737967B2 (en) * 2014-12-17 2017-08-22 Embraer S.A. Universal magnetic table jig assemblies and methods for positioning a workpiece, especially for the fabrication of aircraft structural components
US9862096B2 (en) * 2015-03-30 2018-01-09 The Boeing Company Automated dynamic manufacturing systems and related methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183400A (ja) * 1988-01-18 1989-07-21 Asahi Eng Co Ltd 精密穿孔装置
EP0512649A1 (en) * 1991-05-08 1992-11-11 Construcciones Aeronauticas, S.A. Improvements to riveting machines
JPH0623640U (ja) * 1992-08-31 1994-03-29 ダイハツ工業株式会社 リベット締結装置
JP2000135541A (ja) * 1998-10-28 2000-05-16 Fuji Heavy Ind Ltd 打鋲方法及び打鋲装置
JP2010082802A (ja) * 2009-11-26 2010-04-15 Yaskawa Electric Corp 自動機械システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3656511A1 (de) * 2018-11-21 2020-05-27 Siemens Aktiengesellschaft Vorrichtung zur form- und/oder kraftschlüssigen verbindung und verfahren
WO2020104354A1 (de) * 2018-11-21 2020-05-28 Siemens Aktiengesellschaft Vorrichtung zur form- und/oder kraftschlüssigen verbindung und verfahren
US11668331B2 (en) 2018-11-21 2023-06-06 Siemens Aktiengesellschaft Device for interlocking and/or frictional connection, and method
CN112025722A (zh) * 2020-08-19 2020-12-04 上海拓璞数控科技股份有限公司 C型自动钻铆设备及工件法向测量和调整方法
RU2818145C1 (ru) * 2023-09-04 2024-04-24 Акционерное общество "Туполев" (АО "Туполев") Способ оценки позиционирования навесного агрегата относительно внешних поверхностей планера летательного аппарата

Also Published As

Publication number Publication date
US10799937B2 (en) 2020-10-13
JP2017196713A (ja) 2017-11-02
US20190143399A1 (en) 2019-05-16
JP6568500B2 (ja) 2019-08-28

Similar Documents

Publication Publication Date Title
JP6568500B2 (ja) 部品取付システムおよび部品取付方法
US10500731B2 (en) Robot system including robot supported by movable carriage
US9579712B2 (en) Apparatus and method for realizing a plurality of riveted connections along the surface of a workpiece
JP6698695B2 (ja) 物体において穿孔された造作の検査
US11433543B2 (en) Calibration method for operation apparatus, operation apparatus system, and control apparatus
US8761936B2 (en) Teaching line correcting apparatus, teaching line correcting method, and program thereof
WO2016174445A1 (en) Drilling apparatus for drilling aircraft panels
CN116940451A (zh) 机器人系统以及工件供给方法
Holt et al. Robotic drilling and countersinking on highly curved surfaces
JP2001079637A (ja) 自動打鋲装置
JP2017052068A (ja) 締結作業方法及び締結システム
EP3088137A1 (en) Robotic arm end effector for drilling aircraft panels
WO2018029844A1 (ja) 対基板作業機
CN110977950B (zh) 一种机器人抓取定位方法
JP2017007064A (ja) 組立方法
EP3088129A1 (en) Inspection of drilled features in objects
WO2018016025A1 (ja) 対基板作業機
JP5479312B2 (ja) ワークの特定部位認識方法及びその装置
WO2016174443A1 (en) Robotic arm end effector for drilling aircraft panels
GB2537920A (en) Drilling apparatus
JP2016022515A (ja) 接合状態の検査方法及び検査装置
EP3088138A1 (en) Drilling apparatus for drilling aircraft panels
JP2001079636A (ja) 自動打鋲装置
JP3040192B2 (ja) インナーリードボンディング方法
CN117600512A (zh) 一种用于气动打孔机的定位系统及方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789410

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789410

Country of ref document: EP

Kind code of ref document: A1