WO2017187691A1 - 画像処理装置、撮像装置、画像処理方法、および、プログラム - Google Patents

画像処理装置、撮像装置、画像処理方法、および、プログラム Download PDF

Info

Publication number
WO2017187691A1
WO2017187691A1 PCT/JP2017/003096 JP2017003096W WO2017187691A1 WO 2017187691 A1 WO2017187691 A1 WO 2017187691A1 JP 2017003096 W JP2017003096 W JP 2017003096W WO 2017187691 A1 WO2017187691 A1 WO 2017187691A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
unit
motion
amount
cut
Prior art date
Application number
PCT/JP2017/003096
Other languages
English (en)
French (fr)
Inventor
幸直 見城
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/085,676 priority Critical patent/US10979653B2/en
Publication of WO2017187691A1 publication Critical patent/WO2017187691A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2628Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/683Vibration or motion blur correction performed by a processor, e.g. controlling the readout of an image memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • H04N5/77Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera
    • H04N5/772Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera the recording apparatus and the television camera being placed in the same enclosure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/91Television signal processing therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/531Control of the integration time by controlling rolling shutters in CMOS SSIS

Definitions

  • the present technology relates to an image processing device, an imaging device, an image processing method, and a program for causing a computer to execute the method.
  • the present invention relates to an image processing apparatus, an imaging apparatus, an image processing method, and a program for causing a computer to execute the method, which hold a frame in a frame memory.
  • image processing such as electronic camera shake correction and image composition processing has been performed for the purpose of improving image quality in an imaging device that captures an image.
  • electronic camera shake correction is a process in which the size of a region to be cut out in a frame is determined in advance, and the region is moved from the initial position along the direction of camera shake and cut out.
  • the image composition process is a process for composing a plurality of frames for the purpose of expanding the dynamic range and reducing noise.
  • an apparatus for performing such image processing for example, an image for which electronic frame correction is further performed on the synthesized frame by synthesizing a frame delayed by a frame memory and a frame before the delay to generate a synthesized frame.
  • a processing apparatus has been proposed (see, for example, Patent Document 1).
  • the present technology has been created in view of such a situation, and an object thereof is to reduce the capacity of the frame memory in an apparatus that performs image processing using the frame memory.
  • the present technology has been made to solve the above-described problems.
  • the first aspect of the present technology is that each time an input frame is captured by the imaging unit, the input frame is based on the movement of the imaging unit.
  • a cutout processing unit that cuts out a current cutout frame, a frame memory that holds the current cutout frame as a past cutout frame, and a synthesis processing unit that combines the current cutout frame and the past cutout frame and outputs the combined frame
  • a motion amount acquisition unit that acquires a motion amount of the imaging unit within a period from one to the other of the exposure timings of each of the two continuous composite frames as a composite inter-frame motion amount
  • a composite frame correction unit that cuts out a part of the composite frame as an output frame based on the amount of motion between the composite frames. This brings about the effect that a part of the composite frame is cut out as an output frame based on the inter-frame motion amount.
  • the image processing apparatus may further include a motion amount acquisition unit that acquires the amount as a motion amount within the composite frame, and the cutout processing unit cuts out the current cutout frame based on the motion amount within the composite frame and supplies the current cutout frame to the holding unit. . This brings about the effect that the current cut frame is cut out based on the amount of motion within the combined frame.
  • the inter-frame motion amount is calculated by calculating the motion amount in the first prediction period from the first start timing to start the calculation of the inter-frame motion amount to the start timing.
  • the motion amount acquisition unit may acquire the first prediction value based on the motion amount up to the first start timing. This brings about the effect that the first predicted value is acquired based on the amount of motion up to the first start timing.
  • the length of the first prediction period may not exceed a predetermined threshold. This brings about the effect that the amount of motion within the first prediction period below the threshold is acquired.
  • the motion amount in the combined frame is the amount of motion in the second prediction period from the second start timing to start the calculation of the motion amount in the combined frame to the start timing.
  • the motion amount acquisition unit may acquire the second prediction value based on the motion amount of the imaging unit up to the second start timing. This brings about the effect that the second predicted value is acquired based on the amount of motion up to the second start timing.
  • the length of the second prediction period may not exceed the predetermined threshold. This brings about the effect that the amount of motion within the second prediction period below the threshold is acquired.
  • the image processing apparatus further includes a subject motion detection unit that detects a motion vector indicating a direction in which the subject has moved based on the two continuous current cut frames.
  • the current cut frame and the past cut frame may be synthesized based on the vector. This brings about the effect that the current cut frame and the past cut frame are synthesized based on the motion vector.
  • the second aspect of the present technology provides an imaging unit that captures an input frame, and an input that extracts a part of the input frame as a current cut frame based on the movement of the imaging unit each time the input frame is captured.
  • An image pickup apparatus comprising: a frame cutout processing unit; a frame memory that holds the current cut frame as a past cut frame; and a combination processing unit that combines the current cut frame and the past cut frame and outputs the resultant frame. This brings about the effect that a part of the input frame is cut out before the frame synthesis.
  • a sensor for detecting the movement of the imaging unit may be further provided. This brings about the effect
  • Embodiment Example of combining after cutting out a part of a frame
  • First modification example Example of combining after cutting out a part of a frame
  • Second Modification Example 4 Third modification
  • FIG. 1 is a block diagram illustrating a configuration example of the imaging apparatus 100 according to the embodiment.
  • the imaging apparatus 100 captures image data (frames), and includes an imaging lens 110, an imaging element 120, a motion detection sensor 130, an image processing unit 200, a recording unit 140, and a control unit 150.
  • a digital camera such as a digital still camera or a digital video camera, a smartphone or a personal computer having an imaging function is assumed.
  • the imaging lens 110 is a lens that collects light and guides it to the imaging device 120.
  • the image sensor 120 photoelectrically converts incident light from the imaging lens 110 under the control of the control unit 150 and images image data.
  • the image sensor 120 supplies image data as an input frame to the image processing unit 200 via a signal line 129.
  • the unit including the imaging lens 110 and the imaging element 120 is an example of an imaging unit described in the claims.
  • the motion detection sensor 130 detects the motion of the imaging device 100.
  • a gyro sensor that detects an angle (in other words, an angular velocity) that the imaging device 100 has rotated within a unit time is used as the motion detection sensor 130.
  • the motion detection sensor 130 measures the rotation angle within the time for each unit time, and supplies a sensor signal indicating the measured value to the image processing unit 200 via the signal line 139.
  • the motion detection sensor 130 is an example of a sensor described in the claims.
  • the image processing unit 200 performs predetermined image processing on an input frame using a sensor signal under the control of the control unit 150.
  • the image processing unit 200 supplies the image-processed frame as an output frame to the recording unit 140 via the signal line 209.
  • the recording unit 140 records an output frame.
  • the control unit 150 controls the entire imaging apparatus 100.
  • the control unit 150 supplies an imaging control signal to the imaging device 120 via the signal line 158, and supplies a timing signal indicating timing for performing image processing to the image processing unit 200 via the signal line 159.
  • the imaging control signal includes a vertical synchronization signal Vsync indicating imaging timing, an exposure period, and the like.
  • the frequency of the vertical synchronization signal Vsync is, for example, 30 hertz (Hz).
  • the frequency of the vertical synchronization signal Vsync is not limited to 30 hertz (Hz), and may be 60 hertz (Hz).
  • FIG. 2 is an example of a perspective view of the imaging apparatus 100 according to the embodiment.
  • the optical axis of the imaging apparatus 100 is taken as the z axis.
  • an axis orthogonal to the z axis and parallel to the long side of the image sensor 120 is an x axis
  • an axis orthogonal to the z axis and the x axis is a y axis.
  • the motion detection sensor 130 measures the angle at which the imaging device 100 is rotated about the z axis within the unit time as the roll angle.
  • the motion detection sensor 130 measures the angle at which the imaging apparatus 100 is rotated about the x axis within a unit time as a pitch angle, and measures the angle at which the imaging apparatus 100 is rotated about the y axis as a yaw angle.
  • the motion detection sensor 130 measures angles for all three axes, but may measure angles for only two axes. Further, although the motion detection sensor 130 measures an angle, a physical quantity other than the angle may be measured as long as the motion of the imaging device 100 can be detected. For example, the motion detection sensor 130 may measure acceleration in the x-axis direction or the y-axis direction.
  • FIG. 3 is a block diagram illustrating a configuration example of the image processing unit 200 according to the embodiment.
  • the image processing unit 200 includes a camera motion calculation unit 210, a correction amount calculation unit 220, a cutout processing unit 240, a subject motion detection unit 250, an image composition unit 260, and a rotation correction unit 270.
  • the camera motion calculation unit 210 acquires the amount of motion of the imaging apparatus 100 within a certain period by calculating the sensor signal.
  • the camera motion calculation unit 210 supplies the calculation result to the correction amount calculation unit 220.
  • the camera motion calculation unit 210 is an example of a motion amount acquisition unit described in the claims.
  • the correction amount calculation unit 220 uses the calculation result of the camera motion calculation unit 210 to calculate the correction amount from the initial position of the cutout region in the cutout processing unit 240 and the rotation correction unit 270.
  • This correction amount includes an x component, a y component, and a roll angle component.
  • the x component is the amount of movement when the cutout region is translated along the x-axis direction
  • the y component is the amount of movement when the region is translated along the y-axis direction.
  • the roll angle component is a rotation angle when a part of the frame is rotated.
  • the correction amount calculation unit 220 supplies the x component and the y component to the cutout processing unit 240 and supplies the roll angle component to the rotation correction unit 270.
  • the cutout processing unit 240 cuts out a part of the input frame based on the correction amount (x component and y component) every time the input frame is imaged. In this input frame, a cut-out area having a predetermined size is set in advance. The cutout processing unit 240 translates the cutout region from the initial position by the x component along the x axis, and moves the cutout region from the initial position by the y component along the y axis. Then, the cutout processing unit 240 cuts out the cutout area after the parallel movement as a cutout frame from the input frame. The cutout processing unit 240 supplies the cutout frame to the subject motion detection unit 250.
  • the subject motion detection unit 250 detects a motion vector of a subject from a plurality of continuous cut frames.
  • the subject motion detection unit 250 detects a moving subject from a plurality of continuous cut frames using, for example, an inter-frame difference method or a block matching method, and obtains a motion vector indicating the direction and distance in which the moving subject has moved. .
  • the subject motion detection unit 250 supplies the motion vector to the image composition unit 260.
  • the image composition unit 260 synthesizes continuous N (N is an integer of 2 or more) cut out frames.
  • the image composition unit 260 generates one composite frame for every N frames and supplies the composite frame to the rotation correction unit 270 as a composite frame.
  • the rotation correction unit 270 rotates a part of the cutout area in the composite frame based on the correction amount (roll angle component).
  • the rotation correction unit 270 cuts out the rotated cutout area as an output frame and outputs it to the recording unit 140.
  • the rotation correction unit 270 is an example of a composite frame correction unit described in the claims.
  • FIG. 4 is a block diagram illustrating a configuration example of the camera motion calculation unit 210 in the embodiment.
  • the camera motion calculation unit 210 includes a prediction calculation unit 211, a combined inter-frame motion amount integrator 212, and N combined intra-frame motion amount integrators 213.
  • the prediction calculation unit 211 obtains a function for calculating the amount of motion of the imaging device 100 within the prediction period based on the sensor signal history before the predetermined prediction period. For example, the prediction calculation unit 211 obtains an m-order polynomial that best fits a curve representing temporal variation of the sensor signal before the prediction period. The prediction calculation unit 211 supplies the obtained m-th order coefficient to the inter-frame motion amount integrator 212 and the N intra-frame motion amount integrators 213.
  • the inter-frame motion amount integrator 212 calculates the motion amount m0 of the imaging apparatus 100 within the integration period Pm0 between two consecutive composite frames.
  • This movement amount m0 includes a pitch angle component, a yaw angle component, and a roll angle component. Further, the calculation of the movement amount m0 is started before the end of the integration period Pm0. Therefore, the inter-frame motion amount integrator 212 needs to predict the motion amount within the prediction period from the start time of the calculation of m0 to the end time of the integration period Pm0.
  • the inter-frame motion amount integrator 212 calculates the motion amount within the prediction period using an m-order polynomial and adds it to the integrated value of the motion amount up to the prediction period.
  • the inter-frame motion amount integrator 212 supplies the added value to the correction amount calculation unit 220 as the motion amount m0.
  • the intra-frame motion amount integrator 213 calculates the motion amount mn for the nth (n is an integer from 1 to N) out of the N cut-out frames to be combined. First, a specific timing between the center-of-gravity timing Tc1 of the first exposure period among the N sheets and the center-of-gravity timing TcN of the N-th exposure period is set as the start timing Ts.
  • the amount of motion within the integration period from the start timing Ts to Tcn is calculated as mn.
  • the combined intra-frame motion amount integrator 213 needs to predict the motion amount up to the end timing.
  • the start timing of the calculation of the motion amount mn is later than the end timing of the corresponding integration period, it is not necessary to predict the motion amount.
  • the combined intra-frame motion amount integrator 213 performs a prediction calculation using an m-order polynomial as necessary to obtain the motion amount mn, and supplies the motion amount mn to the correction amount calculation unit 220.
  • the vertical synchronization signal Vsync rises at a constant cycle.
  • the vertical synchronization signal Vsync rises at timings Tv1, Tv2, and Tv3.
  • Tc11 and Tc12 be the center-of-gravity timings of the exposure periods of the two input frames imaged between timing Tv1 and timing Tv2. Further, the center-of-gravity timings of the exposure periods of the two input frames imaged between the timing Tv_2 and the timing Tv3 are Tc21 and Tc22. Further, an intermediate timing between Tc11 and Tc12 is set as a start timing Ts1, and an intermediate timing between Tc21 and Tc22 is set as a start timing Ts2.
  • the motion detection sensor 130 detects a motion and outputs a sensor signal every time a cycle shorter than the vertical synchronization signal Vsync elapses.
  • the inter-frame motion amount integrator 212 calculates the amount of motion during the integration period from the starting point timing Ts1 to the starting point timing Ts2 as m0.
  • the combined intra-frame motion amount integrator 213 corresponding to the first frame calculates the amount of motion in the adjustment period from the start point timing Ts2 to the timing Tc21 as m1.
  • the combined frame motion amount integrator 213 corresponding to the second frame calculates the motion amount within the adjustment period from the start timing Ts2 to the timing Tc22 as the motion amount m2.
  • the calculation of the motion amount m1 needs to be completed by the timing TL21 when the first line of the two images to be combined ends. This is because the holding of the first frame is started after this timing TL21, and the clipping region is adjusted by the amount of movement m1 at the time of holding. In addition to the movement amount m1, the movement amount m0 is also used for calculating the correction amount of the first frame. For this reason, the movement amount m0 also needs to be completed by the timing TL21.
  • the inter-frame motion amount integrator 212 starts the calculation of the motion amount m0 at the timing Tm0 before the time TL21 by the time required for the calculation of m0.
  • the timing Tm0 is, for example, before the end time Ts2 of the integration period of m0.
  • the inter-frame motion amount integrator 212 needs to predict and calculate the motion amount within the prediction period from the timing Tm0 to the start timing Ts2.
  • the inter-frame motion amount integrator 212 obtains a measured value of the motion amount by integrating the sensor signals from the start timing Ts1 to the timing Tm0, and adds the measured value to the predicted value to obtain m0.
  • the hatched period in the figure indicates the prediction period.
  • the combined intra-frame motion amount integrator 213 starts the calculation of the motion amount m1 at the timing Tm1 before the timing TL21 by the time required for the calculation of m1.
  • This timing Tm1 is, for example, before the start timing Ts2.
  • the combined intra-frame motion amount integrator 213 needs to predict and calculate the motion amount within the prediction period from the timing Tm1 to the start point timing Ts2.
  • the combined intra-frame motion amount integrator 213 calculates an actual value of the motion amount by integrating the sensor signals from timing Tc21 to timing Tm1, and calculates m1 by adding it to the predicted value.
  • the hatched period in the figure indicates the prediction period.
  • the calculation of the motion amount m2 may be completed by the timing when the exposure of the first line of the second frame of the two images to be combined is completed.
  • the combined frame motion amount integrator 213 starts calculating the motion amount m2 at the timing Tc22. This timing Tc22 is after the start timing Ts2. For this reason, the combined intra-frame motion amount integrator 213 does not perform the prediction calculation, and obtains the motion amount m2 by integrating the sensor signals from the start timing Ts2 to the timing Tc22.
  • the cutout processing unit 240 moves the cutout areas of two consecutive frames in parallel according to the calculated motion amounts m1 and m2, and cuts out the cutout areas. Since these movement amounts m1 and m2 start from a common timing (Ts2), the position of the cut-out area of each frame can be aligned with the area where the same subject appears in two frames.
  • Ts2 a common timing
  • the cutout processing unit 240 translates the cutout region of the second frame to be synthesized according to the amount of motion within the length L from the timing Tc21 to the timing Tc22. In this case, even in the first frame, the cutout region is translated in accordance with the amount of motion within the period of length L up to timing Tc21.
  • this method eliminates the need for the prediction calculation for the first sheet, but increases the amount of parallel movement of the cutout areas of the first sheet and the second sheet.
  • the cutout region can be moved only within a certain frame, if the amount of movement is large, there is a risk that the accuracy of alignment in composition is reduced.
  • the accuracy of electronic camera shake correction between synthesized frames will be greatly deteriorated by greatly removing the time centroid of the synthesized result.
  • the cutout area is moved in parallel according to the amount of movement from the start timing Ts2 between the timings Tc21 and Tc22 to Tc21 and Tc22, so the movement amount of the cutout area is relatively small. can do. Therefore, the alignment accuracy in the synthesis can be increased. In addition, it is possible to prevent a reduction in the accuracy of electronic camera shake correction between composite frames.
  • the timings Tm0 and Tm1 for calculating the motion amounts m0 and m1 are set before the start timing Ts2, but the timing is not limited to this.
  • the image synthesis unit 260 synthesizes a long exposure frame and a short exposure frame (so-called high dynamic range synthesis).
  • Tm0 and Tm1 may be later than the start point timing Ts2, as illustrated in FIG. Is no longer necessary.
  • FIG. 6 is a diagram for explaining the prediction calculation in the embodiment.
  • the inter-frame motion amount integrator 212 needs to start calculating the motion amount m0 at the timing Tm0 before the end of the integration period of the motion amount m0 (Ts2). For this reason, the combined intra-frame motion amount integrator 213 predicts and calculates the motion amount within the period from the timing Tm0 to the starting point timing Ts2.
  • FIG. 7 is a block diagram illustrating a configuration example of the correction amount calculation unit 220 in the embodiment.
  • the correction amount calculation unit 220 includes a camera shake correction amount calculation unit 230 and N combined intra-frame correction amount calculation units 221.
  • the camera shake correction amount calculation unit 230 calculates a correction amount s0 corresponding to the amount of motion between two consecutive composite frames from the amount of motion m0.
  • the amount of movement s0 includes an x component, a y component, and a roll angle component.
  • the camera shake correction amount calculation unit 230 supplies s0 (x, y) that is the x component and the y component of the motion amount s0 to the N composite intra-frame correction amount calculation units 221.
  • the camera shake correction amount calculation unit 230 supplies s0 (Roll), which is a roll angle component of the movement amount s0, to the rotation correction unit 270.
  • the intra-composition correction amount calculation unit 221 calculates the correction amount sn of the nth frame among the N frames to be combined from the motion amount mn and the correction amount s0 (x, y).
  • the correction amount sn includes an x component, a y component, and a roll angle component.
  • the combined intra-frame correction amount calculation unit 221 converts the pitch angle component and the yaw angle component of the motion amount mn into an x component and a y component. Then, the combined intra-frame correction amount calculation unit 221 calculates the correction amount sn using the following equation and supplies the calculated correction amount sn to the cutout processing unit 240.
  • sn (x) is the x component of the correction amount sn
  • s0 (x) is the x component of the correction amount s0
  • mn (x) is an x component of the motion amount mn
  • sn (y) is the y component of the correction amount sn
  • s0 (y) is the y component of the correction amount s0.
  • mn (y) is a y component of the motion amount mn.
  • FIG. 8 is a block diagram illustrating a configuration example of the camera shake correction amount calculation unit 230 according to the embodiment.
  • the camera shake correction amount calculation unit 230 includes a coordinate conversion unit 231 and a cutout position determination unit 232.
  • the cutout position determination unit 232 includes a high-pass filter 233, a camera work estimation unit 234, an ideal cutout position determination unit 235, and a correction frame limit processing unit 236.
  • the coordinate conversion unit 231 converts, for example, the pitch angle component and the yaw angle component of the movement amount m0 into an x component and a y component by the following equation.
  • Lx and Ly are coefficients determined by the focal length of the lens.
  • tan () is a tangent function.
  • m0 (Yaw) is a yaw angle component of the motion amount m0
  • m0 (Pitch) is a pitch angle component of the motion amount m0.
  • the coordinate conversion unit 231 supplies m0 (x, y) after conversion to the high-pass filter 233, the camera work estimation unit 234, and the ideal cutout position determination unit 235.
  • the high-pass filter 233 passes a component having a frequency higher than a predetermined cutoff frequency at m0 (x, y) as a high-frequency component HPF (m0).
  • the high pass filter 233 supplies the high frequency component HPF (m0) to the ideal cutout position determination unit 235.
  • the camera work estimation unit 234 estimates whether or not a specific photographing operation (for example, pan photographing) has been performed by the photographer.
  • the camera work estimation unit 234 generates a coefficient R2 indicating the estimation result and supplies the coefficient R2 to the ideal cutout position determination unit 235.
  • the coefficient R2 is, for example, a real number from “0” to “1”, and a value closer to “1” is set as the operation is similar to pan shooting.
  • the ideal cutout position determination unit 235 calculates the correction amount s0 ′ using the following equation.
  • the correction amount s0 ′ includes an x component and a y component.
  • the ideal cutout position determination unit 235 supplies the calculated correction amount s0 ′ to the correction frame limit processing unit 236.
  • s ′ (k) s0 (k ⁇ 1) + R1 ⁇ ⁇ HPF (m0) + R1 ⁇ (1-R2) ⁇ ⁇ m0-HPF (m0) ⁇
  • R2 is a camera shake correction coefficient, and a real number “0” to “1” is set.
  • s0 ′ (k) is the correction amount of the kth frame
  • s0 ′ (k ⁇ 1) is the correction amount s0 of the k ⁇ 1th frame.
  • s ′ (k) is output as the current s0 ′.
  • the correction frame restriction processing unit 236 restricts the position of the cutout region within a certain correction frame.
  • the size of the correction frame on the x axis is ⁇ cx
  • the size of the correction frame on the y axis is ⁇ cy.
  • the in-correction frame restriction processing unit 236 performs restriction processing on the x component and y component of the correction amount s0 ′, and the x component and y component after the restriction processing, the roll angle component m0 (Roll) of the movement amount m0, and Is output as s0.
  • the x component and y component s0 (x, y) of the correction amount s0 are input to the N composite intra-frame correction amount calculation units 221, and the remaining roll angle component s0 (Roll) is input to the rotation correction unit 270. Is input.
  • cx corresponds to sx-rx
  • cy corresponds to sy-ry
  • sx and sy are the sizes of correction frames on the x-axis and y-axis of the entire electronic image stabilization
  • rx and ry are the sizes of the correction frames on the x-axis and the y-axis at the time of rotation correction in the electronic camera shake correction.
  • FIG. 9 is a block diagram illustrating a configuration example of the cutout processing unit 240 in the embodiment.
  • the cutout processing unit 240 includes a selector 241, a correction amount selection control unit 242, and an alignment processing unit 243.
  • the correction amount selection control unit 242 supplies the selector 241 with a selection signal SEL indicating one of the N correction amounts sn.
  • the correction amount selection control unit 242 generates a selection signal SEL indicating the n-th correction amount when the n-th frame among the N frames is captured based on the timing signal from the control unit 150.
  • the selector 241 selects one of the N correction amounts sn according to the selection signal SEL.
  • the selector 241 supplies the alignment processing unit 243 with s ′ (x, y) that is the x component and y component of the selected correction amount sn, and supplies the remaining roll angle component s ′ (Roll) to the subject motion detection unit.
  • the image is supplied to the image composition unit 260 via 250.
  • the alignment processing unit 243 corrects the position of the cutout area with the correction amount s ′ (x, y) in the input frame, and cuts out the corrected cutout area.
  • the alignment processing unit 243 supplies the cut-out region to the subject motion detection unit 250 as a cut-out frame.
  • FIG. 10 is a block diagram illustrating a configuration example of the subject motion detection unit 250.
  • the subject motion detection unit 250 includes a gain adjustment unit 251, a post-adjustment motion detection unit 252, and a frame memory 253.
  • the gain adjusting unit 251 adjusts the pixel value with a predetermined gain in the cut-out frame.
  • the gain adjustment unit 251 supplies the adjusted cut-out frame to the frame memory 253 and the adjusted motion detection unit 252.
  • the frame memory 253 holds a cut frame.
  • the cut-out frame before gain adjustment is supplied to the image composition unit 260 in addition to the gain adjustment unit 251.
  • the post-adjustment motion detection unit 252 detects the motion vector of the subject from the past cutout frame held in the frame memory 253 and the current cutout frame from the gain adjustment unit 251.
  • the post-adjustment motion detection unit 252 supplies the detected motion vector to the image composition unit 260.
  • FIG. 11 is a block diagram illustrating a configuration example of the image composition unit 260 in the embodiment.
  • the image composition unit 260 includes an image composition processing unit 261 and a frame memory 262.
  • the frame memory 262 holds N-1 cut frames.
  • the image composition processing unit 261 synthesizes the current cut frame from the subject motion detection unit 250 and the past cut frame held in the frame memory 262.
  • the image composition processing unit 261 translates the N cut-out frames to be synthesized based on the motion vector detected by the subject motion detection unit 250 and translates the one corresponding to the motion vector within a certain frame. Perform alignment. Then, the image composition processing unit 261 obtains an average value of corresponding pixel values in each of the N frames after the alignment, and generates a composite frame including pixels of the average value. Thereby, noise mixed in the video signal can be reduced. Such a synthesis process is called three-dimensional noise reduction. The image composition processing unit 261 supplies the combined frame to the rotation correction unit 270 as a composite frame.
  • the image composition processing unit 261 is an example of a composition processing unit described in the claims.
  • the image composition unit 260 may perform composition processing (such as high dynamic range composition) other than three-dimensional noise reduction.
  • composition processing such as high dynamic range composition
  • the image sensor 120 captures a plurality of cut-out frames with different exposure times, and the image composition unit 260 adds corresponding pixel values in these frames to generate a composite frame.
  • the dynamic range can be expanded more than before the composition.
  • FIG. 12 is a diagram illustrating an example of the sizes of the input frame, the cutout frame, and the output frame in the embodiment.
  • a shows an example of the size of the input frame 500
  • b in the figure shows an example of a cutout frame held in the frame memory 262.
  • the hatched portion of b in the figure shows a cut frame in the frame memory 262.
  • C in the figure shows an example of the output frame 502.
  • a width W that is the length on the x-axis of the input frame 500 and a height H that is the length on the y-axis are expressed by the following equations.
  • W w + 2cx + 2rx + 2nx Equation 1
  • H h + 2cy + 2rx + 2ny Equation 2
  • cx sx ⁇ rx Equation 3
  • cy sy ⁇ ry Equation 4
  • w is the width of the output frame 502
  • sx is the size of the correction frame on the x-axis in the clipping process (ie, camera shake correction) by the clipping processor 240.
  • rx is the size of the correction frame on the x axis in the rotation correction by the rotation correction unit 270.
  • nx is the size of the frame on the x-axis used for alignment at the time of composition by the image composition unit 260.
  • h is the height of the output frame 502, and sy is the size of the correction frame on the Y axis in camera shake correction.
  • rx is the size of the correction frame on the y-axis in the rotation correction.
  • ny is the size of the frame on the y-axis used for alignment during synthesis.
  • a cut-out area having a width of W-2cx and a height of H-2cy is provided in the input frame 500.
  • the cutout processing unit 240 translates the cutout region within the correction frame having the size of sx and sy according to the movement of the imaging apparatus 100, cuts out the cutout region after the movement, and outputs the cutout region as a cutout frame.
  • This cut-out frame is held in the frame memory 262.
  • the image composition unit 260 performs alignment within the nx and ny frames to synthesize two cut frames.
  • the rotation correction unit 270 generates the output frame 502 by rotating the composite frame within the rx and ry correction frames.
  • FIG. 13 is a diagram illustrating an example of the sizes of the input frame, the frame after rotation correction, and the output frame in the comparative example.
  • the imaging apparatus performs camera shake correction (cutout process) after sequentially executing the synthesis process and the rotation correction.
  • a shows an example of the size of the input frame
  • b in the figure shows an example of the frame 505 after rotation correction.
  • a hatched portion of a in the figure indicates an input frame in the frame memory.
  • C in the figure shows an example of the output frame 506.
  • the imaging device of the comparative example holds the input frame as it is in the frame memory in the synthesis.
  • the size of this input frame is expressed by Equation 1 and Equation 2.
  • the imaging apparatus synthesizes the past frame held in the frame memory and the current frame, and performs rotation correction. By these processes, a combined frame 505 having a width of W-2rx-2nx and a height of H-2ry-2rn is generated.
  • the imaging apparatus generates an output frame 506 by cutting out the cutout frame within the correction frame in accordance with the movement of the imaging apparatus.
  • the capacity of the frame memory required for synthesizing must be equal to or larger than the data amount of the input frame before the clipping.
  • the imaging apparatus 100 performs the clipping process before the synthesis process, so the capacity of the frame memory 262 may be equal to or greater than the data amount of the clipped frame after the clipping. Therefore, compared with the comparative example, the capacity of the frame memory required for synthesis can be reduced. Thereby, the amount of calculation at the time of a synthesis process and the cost of an imaging device can be reduced.
  • FIG. 14 is a flowchart illustrating an example of the operation of the imaging apparatus 100 according to the embodiment. This operation is started, for example, when an operation (such as pressing an imaging button) for starting imaging of a moving image or a still image is performed.
  • an operation such as pressing an imaging button
  • the imaging apparatus 100 captures a frame while detecting its own movement (step S901). Then, the imaging apparatus 100 performs electronic camera shake correction that cuts out a part of the frame based on its own movement (step S902).
  • the imaging apparatus 100 detects a motion vector of the subject by comparing a plurality of continuous cutout frames (step S903). Then, the imaging apparatus 100 performs alignment based on the motion vector, and synthesizes N cut-out frames (step S904). Then, the imaging apparatus 100 performs rotation correction on the composite frame to generate an output frame (step S905). After step S905, the imaging apparatus 100 repeatedly executes step S901 and subsequent steps.
  • the imaging apparatus 100 cuts out a part of a frame and then holds the frame memory 262 for synthesis, the capacity of the frame memory 262 is cut out and data of the frame is cut out. The amount can be suppressed.
  • the imaging apparatus 100 performs rotation correction.
  • the capacity of the frame memory 262 increases by the size of the correction frame in the rotation correction.
  • the imaging apparatus 100 according to the first modification of this embodiment is different from the embodiment in that the capacity of the frame memory 262 is further reduced.
  • FIG. 15 is a block diagram illustrating a configuration example of the image processing unit 200 according to the first modification of the embodiment.
  • the image processing unit 200 of the first modification is different from the embodiment in that the rotation correction unit 270 is not provided.
  • the image composition unit 260 of the first modification outputs the composite frame as an output frame.
  • the imaging apparatus 100 does not perform the rotation correction on the composite frame, and thus the capacity of the frame memory 262 corresponding to the rotation correction correction frame. Can be reduced.
  • the imaging apparatus 100 performs rotation correction and object motion vector detection.
  • the frame memory 262 has a capacity corresponding to the size of the frame in the rotation correction and composition processing. It will increase.
  • the imaging apparatus 100 according to the first modification of this embodiment is different from the embodiment in that the capacity of the frame memory 262 is further reduced.
  • FIG. 16 is a block diagram illustrating a configuration example of the image processing unit 200 according to the first modification of the embodiment.
  • the image processing unit 200 according to the first modification differs from the embodiment in that the subject motion detection unit 250 and the rotation correction unit 270 are not provided.
  • the cutout processing unit 240 according to the first modification supplies the cutout frame to the image composition unit 260, and the image composition unit 260 outputs the composite frame as an output frame.
  • FIG. 17 is a diagram summarizing the effects of the above-described embodiment, the first and second modified examples, and the comparative example. Since the imaging apparatus 100 according to the embodiment detects a motion vector of a subject, the effect of improving the image quality by image synthesis is increased. In addition, since the imaging apparatus 100 according to the embodiment performs rotation correction, the effect of improving image quality by electronic camera shake correction is increased.
  • the effect of improving image quality by electronic camera shake correction is reduced.
  • the second modified example since the motion vector of the subject is not further detected, the effect of improving the image quality by image synthesis is reduced.
  • the comparative example since the motion vector of the subject is detected and the rotation is corrected, the effect of improving the image quality by the image synthesis and the electronic camera shake correction is increased.
  • FIG. 18 is a diagram for comparing the amount of frame memory used during the synthesis processing of the embodiment, the first and second modifications, and the comparative example.
  • the S outc 0 is expressed by the following equation.
  • S outc 0 r1 2 ⁇ (w + 2rx + 2nx) ⁇ (h + 2ry + 2ny)
  • r1 represents a reduction rate of the size or width of the target frame for motion detection with respect to the cut-out frame before synthesis.
  • the target frame for motion detection is a frame that is a target for motion detection of the subject using the block matching method or the like.
  • the reason for performing motion detection by reducing the frame in this way is to reduce the calculation cost. In the synthesis, this reduced frame is not used, and N cut-out frames are synthesized at the same scale.
  • S mc 0 ⁇ (N ⁇ 1) + r1 2 ⁇ ⁇ (w + 2rx + 2nx) ⁇ (h + 2ry + 2ny)
  • the size S inc 1 of the frame to be synthesized is expressed by the following equation.
  • S inc 1 (w + 2nx) ⁇ (h + 2ny)
  • S outc 1 r1 2 ⁇ (w + 2nx) ⁇ (h + 2ny)
  • the usage amount S mc 1 of the frame memory 262 in the first modification is expressed by the following equation.
  • S mc 1 ⁇ (N ⁇ 1) + r1 2 ⁇ ⁇ (w + 2nx) ⁇ (h + 2ny)
  • the size S inc 2 of the frame to be combined is the same as S inc 1 in the first modified example.
  • the frame memory usage S mc 2 in the second modification is expressed by the following equation.
  • S mc 2 (N ⁇ 1) ⁇ (w + 2nx) ⁇ (h + 2ny)
  • S inc S (w + 2sx + 2nx) ⁇ (h + 2sy + 2ny)
  • S cc S of the combined frame in the comparative example is expressed by the following equation.
  • S outc S r1 2 ⁇ (w + 2sx + 2nx) ⁇ (h + 2sy + 2ny)
  • the frame memory usage S mc S in the comparative example is expressed by the following equation.
  • S mc S ⁇ (N ⁇ 1) + r1 2 ⁇ ⁇ (w + 2sx + 2nx) ⁇ (h + 2sy + 2ny)
  • FIG. 19 is a diagram for comparing the amount of frame memory used during camera shake correction in the embodiment, the first and second modified examples, and the comparative example.
  • the size S ins 0 of the frame subject to camera shake correction in the embodiment is the same as S inc S.
  • the camera shake correction target frame size in the first and second modified examples is the same as S inc 0 of the embodiment.
  • the reduction ratio r1 is set to 0.5
  • the reduction ratio r2 is set to 0.25.
  • the ratio of sx, sy, cx, cy, rx, ry, nx, ny, w and h to the width W and height H of the input frame is set as follows.
  • the frame size to be synthesized, the range to be reduced by synthesis, and the use of the frame memory in the embodiment, the first and second modified examples, and the comparative example Find the amount.
  • the usage amount of the frame memory of the comparative example is 1.250
  • the usage amount of the embodiment may be 0.945, and the capacity of the frame memory can be reduced.
  • 0.800 in the first modification and 0.640 in the second modification may be sufficient, and the capacity of the frame memory can be further reduced.
  • the various conditions are the same as in the case of FIG. If the amount of use of the frame memory of the comparative example is 0.9216, the amount of use of the embodiment may be 0.6880, and the capacity of the frame memory can be reduced.
  • the result obtained in FIG. 20 is normalized by the size of the imaging frame.
  • the use amount of the frame memory according to the embodiment is small and the first and second use amounts are smaller than those of the comparative example.
  • Various conditions other than the number N of frames to be combined are the same as in the case of FIG.
  • the amount of use of the frame memory of the embodiment is smaller than that of the comparative example, and the first and second amounts of use are even smaller.
  • the result obtained in FIG. 23 is normalized by the size of the imaging frame.
  • Motion detection is performed by block matching.
  • the granularity of motion detection at the time of composition processing is s1, and the granularity of motion detection at the time of electronic camera shake correction is s2.
  • the granularity indicates the ratio of the total coordinates for executing block matching to the entire frame. For example, when executing block matching with all coordinates of a frame, the granularity is 100%.
  • block matching is executed by skipping one pixel in the X-axis direction and the Y-axis direction, the granularity is 25%.
  • the detection frame sizes at the time of camera motion detection in the comparative example are px and py. Further, the detection frame sizes at the time of detecting the motion vector of the subject in the embodiment, the first and second modified examples, and the comparative example are assumed to be qx and qy.
  • the frame size S inm 0 of the subject motion detection target in the embodiment is the same as S outc 0.
  • the detection range of subject motion detection in the embodiment is (2qx) ⁇ (2qy).
  • the frame size S inm 1 to be detected for the movement of the subject in the first modification is the same as S outc 1.
  • the detection range of subject motion detection in the first modification is (2qx) ⁇ (2qy).
  • the calculation amount Q1 of the subject motion detection process of the first modified example is expressed by the following equation.
  • Q1 (N ⁇ 1) ⁇ r1 2 ⁇ (w + 2nx) ⁇ (h + 2ny) ⁇ s1 2 ⁇ 2qx ⁇ 2qy
  • the frame size Sinm0 that is the detection target of the movement of the subject in the comparative example is the same as that of SoutcS.
  • the detection range of subject motion detection in the comparative example is (2px + 2qx) ⁇ (2py + 2qy).
  • the first and second modified examples, and the comparative example using the same conditions as in FIG. 20 and the relational expressions illustrated in FIG. 25 the frame size and detection of the detection target at the time of subject motion detection Find the range and complexity.
  • the particle sizes s1 and s2 are both set to 0.125.
  • the calculation amount of the comparative example is 9.375E-05
  • the calculation amount of the embodiment is reduced to 2.025E-05.
  • the calculation amount of the first modification is 1.500E-05, which is further reduced.
  • the calculation result of FIG. 26 is normalized by the calculation amount of the embodiment.
  • the imaging apparatus 100 does not detect a motion vector and does not perform rotation correction.
  • the capacity of 262 can be reduced.
  • the imaging apparatus 100 predicts its own motion amount within a certain prediction period, and performs electronic camera shake correction based on the motion amount.
  • the imaging apparatus 100 according to the third modification of this embodiment is different from the embodiment in that the prediction accuracy of the motion amount of the imaging apparatus 100 is improved.
  • the length of the prediction period is limited to a predetermined threshold value or less so that the prediction accuracy is equal to or greater than the allowable value.
  • the timing Ts2 ′ closer to Tc21 than Ts2 is used as the start point.
  • the period from the start timing Tm0 or Tm1 to the start timing Ts2 ′ is the prediction period.
  • the start timing Ts2 ′ is a timing at which the prediction period becomes equal to or less than the threshold value.
  • the prediction accuracy can be improved as compared with the embodiment.
  • the accuracy of electronic camera shake correction for the composite frame is reduced. This is because, based on the assumption that the image synthesis unit 260 synthesizes two frames to be synthesized at the same ratio, the timing division of camera shake correction is temporarily placed as Ts2.
  • the threshold is set in consideration of a balance between improvement in prediction accuracy and reduction in accuracy of electronic camera shake correction.
  • N 2
  • the period from Tm0 or Tm1 to Ts2 ′ is the prediction period
  • the integration period corresponding to the second frame is from Ts2 ′ to Tc22.
  • the integration period corresponding to the third frame is from Ts2 ′ to the timing Tc23 of the third exposure center of gravity
  • the integration period corresponding to the fourth frame is from Ts2 ′ to the fourth frame. Until the exposure center of gravity timing Tc24.
  • the prediction period for predicting the motion amount of the imaging apparatus 100 is limited to the threshold value or less, and thus the motion amount prediction accuracy can be improved. .
  • the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it.
  • a recording medium for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
  • this technique can also take the following structures.
  • a cut-out processing unit that cuts out a part of the input frame as a current cut-out frame based on the movement of the image pickup unit every time the input frame is picked up by the image pickup unit;
  • a frame memory for holding the current cut frame as a past cut frame;
  • An image processing apparatus comprising: a synthesis processing unit that synthesizes the current cut frame and the past cut frame and outputs a synthesized frame.
  • a motion amount acquisition unit that acquires a motion amount of the imaging unit within a period from one to the other of the exposure timings of each of the two consecutive composite frames as a composite inter-frame motion amount;
  • the image processing device further comprising: a combined frame correction unit that cuts out a part of the combined frame as an output frame based on the amount of movement between the combined frames.
  • a movement amount acquisition unit for acquiring the amount as a quantity;
  • the inter-frame motion amount is a first prediction value indicating the motion amount within a first prediction period from a first start timing at which calculation of the inter-frame motion amount starts to the start timing.
  • the motion amount acquisition unit acquires the first predicted value based on the motion amount up to the first start timing.
  • the length of the first prediction period does not exceed a predetermined threshold.
  • the amount of motion within the combined frame is a second predicted value indicating the amount of motion within a second prediction period from a second start timing at which calculation of the amount of motion within the combined frame is started to the start timing.
  • the image processing device Including The image processing device according to (4) or (5), wherein the motion amount acquisition unit acquires the second predicted value based on a motion amount of the imaging unit up to the second start timing. (7) The image processing device according to (6), wherein a length of the second prediction period does not exceed the predetermined threshold. (8) a subject motion detection unit that detects a motion vector indicating a direction in which the subject has moved based on the two continuous current cut frames; The image processing device according to any one of (1) to (7), wherein the synthesis processing unit synthesizes the current cut frame and the past cut frame based on the motion vector.
  • an imaging unit that captures an input frame;
  • An input frame cutout processing unit that cuts out a part of the input frame as a current cutout frame based on the movement of the image pickup unit each time the input frame is imaged;
  • a frame memory for holding the current cut frame as a past cut frame;
  • An imaging apparatus comprising: a synthesis processing unit that synthesizes the current cut frame and the past cut frame and outputs the synthesized frame.
  • An input frame cutout processing procedure for cutting out a part of the input frame as a current cutout frame based on the movement of the image pickup unit every time the input frame is picked up by the image pickup unit;
  • An image processing method comprising: a synthesis processing procedure for synthesizing the past cut frame held in a frame memory that holds the current cut frame as a past cut frame and the current cut frame and outputting the synthesized frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Hardware Design (AREA)
  • Studio Devices (AREA)

Abstract

フレームメモリを用いて画像処理を行う装置において、フレームメモリの容量を削減する。 画像処理装置は、切り出し処理部、フレームメモリおよび合成処理部を具備する。切り出し処理部は、入力フレームが撮像部により撮像されるたびに撮像部の動きに基づいて前記入力フレームの一部を現在切出しフレームとして切り出す。フレームメモリは、現在切出しフレームを過去切出しフレームとして保持する。合成処理部は、現在切出しフレームと過去切出しフレームとを合成して合成フレームとして出力する。

Description

画像処理装置、撮像装置、画像処理方法、および、プログラム
 本技術は、画像処理装置、撮像装置、画像処理方法、および、当該方法をコンピュータに実行させるためのプログラムに関する。詳しくは、フレームメモリにフレームを保持する画像処理装置、撮像装置、画像処理方法、および、当該方法をコンピュータに実行させるためのプログラムに関する。
 従来より、画像を撮像する撮像装置においては画像の画質を向上させる目的で、電子手ブレ補正や画像合成処理などの画像処理が行われている。これらの処理のうち電子手ブレ補正は、フレーム内において切り出す領域のサイズを予め定めておき、手ブレの方向に沿って、その領域を初期位置から移動させて切り出す処理である。また、画像合成処理は、ダイナミックレンジの拡大やノイズの低減を目的として、複数のフレームを合成する処理である。このような画像処理を行う装置として、例えば、フレームメモリで遅延させたフレームと遅延前のフレームとを合成して合成フレームを生成し、その合成フレームに対して、さらに電子手ブレ補正を行う画像処理装置が提案されている(例えば、特許文献1参照。)。
特開2009-232382号公報
 上述の従来技術では、フレームメモリを用いた合成処理の後に電子手ブレ補正が行われる。しかしながら、この構成では、画像の解像度が高くなるほど、合成に必要なフレームメモリの容量が大きくなるという問題がある。このフレームメモリの容量が増大すると、合成処理に要する計算量や、撮像装置のコストが上昇するため、フレームメモリの容量は小さいことが望ましい。
 本技術はこのような状況に鑑みて生み出されたものであり、フレームメモリを用いて画像処理を行う装置において、フレームメモリの容量を削減することを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、入力フレームが撮像部により撮像されるたびに前記撮像部の動きに基づいて前記入力フレームの一部を現在切出しフレームとして切り出す切り出し処理部と、前記現在切出しフレームを過去切出しフレームとして保持するフレームメモリと、前記現在切出しフレームと前記過去切出しフレームとを合成して合成フレームとして出力する合成処理部とを具備する画像処理装置、画像処理方法、および、当該方法をコンピュータに実行させるためのプログラムである。これにより、フレームの合成前に入力フレームの一部が切り出されるという作用をもたらす。
 また、この第1の側面において、連続する2枚の前記合成フレームのそれぞれの露光タイミングの一方から他方までの期間内の前記撮像部の動き量を合成フレーム間動き量として取得する動き量取得部と、前記合成フレーム間動き量に基づいて前記合成フレームの一部を出力フレームとして切り出す合成フレーム補正部とをさらに具備してもよい。これにより、合成フレーム間動き量に基づいて合成フレームの一部が出力フレームとして切り出されるという作用をもたらす。
 また、この第1の側面において、連続する2枚の前記現在切り出しフレームの一方の露光タイミングと他方の露光タイミングとの間の起点タイミングから前記一方の露光タイミングまでの期間内の前記撮像部の動き量を合成フレーム内動き量として取得する動き量取得部をさらに具備し、前記切り出し処理部は、前記合成フレーム内動き量に基づいて前記現在切り出しフレームを切り出して前記保持部に供給してもよい。これにより、合成フレーム内動き量に基づいて現在切り出しフレームが切り出されるという作用をもたらす。
 また、この第1の側面において、前記合成フレーム間動き量は、前記合成フレーム間動き量の演算を開始する第1の開始タイミングから前記起点タイミングまでの第1の予測期間内の前記動き量を示す第1の予測値を含み、前記動き量取得部は、前記第1の開始タイミングまでの前記動き量に基づいて前記第1の予測値を取得してもよい。これにより、第1の開始タイミングまでの動き量に基づいて第1の予測値が取得されるという作用をもたらす。
 また、この第1の側面において、前記第1の予測期間の長さは、所定の閾値を超えなくてもよい。これにより、閾値以下の第1の予測期間内の動き量が取得されるという作用をもたらす。
 また、この第1の側面において、前記合成フレーム内動き量は、前記合成フレーム内動き量の演算を開始する第2の開始タイミングから前記起点タイミングまでの第2の予測期間内の前記動き量を示す第2の予測値を含み、前記動き量取得部は、前記第2の開始タイミングまでの前記撮像部の動き量に基づいて前記第2の予測値を取得してもよい。これにより、第2の開始タイミングまでの動き量に基づいて第2の予測値が取得されるという作用をもたらす。
 また、この第1の側面において、前記第2の予測期間の長さは、前記所定の閾値を超えなくてもよい。これにより、閾値以下の第2の予測期間内の動き量が取得されるという作用をもたらす。
 また、この第1の側面において、連続する2枚の前記現在切り出しフレームに基づいて被写体が動いた方向を示す動きベクトルを検出する被写体動き検出部をさらに具備し、前記合成処理部は、前記動きベクトルに基づいて前記現在切出しフレームと前記過去切出しフレームとを合成してもよい。これにより、動きベクトルに基づいて現在切出しフレームと過去切出しフレームとが合成されるという作用をもたらす。
 また、本技術の第2の側面は、入力フレームを撮像する撮像部と、前記入力フレームが撮像されるたびに前記撮像部の動きに基づいて前記入力フレームの一部を現在切出しフレームとして切り出す入力フレーム切り出し処理部と、前記現在切出しフレームを過去切出しフレームとして保持するフレームメモリと、前記現在切出しフレームと前記過去切出しフレームとを合成して合成フレームとして出力する合成処理部とを具備する撮像装置。これにより、フレームの合成前に入力フレームの一部が切り出されるという作用をもたらす。
 また、この第2の側面において、前記撮像部の動きを検出するセンサをさらに具備してもよい。これにより、センサにより検出された動きに基づいて入力フレームの一部が切り出されるという作用をもたらす。
 本技術によれば、フレームメモリを用いて画像処理を行う装置において、フレームメモリの容量を削減することができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の実施の形態における撮像装置の一構成例を示すブロック図である。 本技術の実施の形態における撮像装置の斜視図の一例である。 本技術の実施の形態における画像処理部の一構成例を示すブロック図である。 本技術の実施の形態におけるカメラ動き演算部の一構成例を示すブロック図である。 本技術の実施の形態におけるカメラ動き演算部の動作の一例を示すタイミングチャートである。 本技術の実施の形態における予測演算について説明するための図である。 本技術の実施の形態における補正量演算部の一構成例を示すブロック図である。 本技術の実施の形態における手ブレ補正量演算部の一構成例を示すブロック図である。 本技術の実施の形態における切り出し処理部の一構成例を示すブロック図である。 本技術の実施の形態における被写体動き検出部の一構成例を示すブロック図である。 本技術の実施の形態における画像合成部の一構成例を示すブロック図である。 本技術の実施の形態における入力フレーム、切り出しフレームおよび出力フレームのそれぞれのサイズの一例を示す図である。 比較例における入力フレームと、回転補正後のフレームと、出力フレームとのそれぞれのサイズの一例を示す図である。 本技術の実施の形態における撮像装置の動作の一例を示すフローチャートである。 本技術の実施の形態の第1の変形例における画像処理部の一構成例を示すブロック図である。 本技術の実施の形態の第2の変形例における画像処理部の一構成例を示すブロック図である。 本技術の実施の形態と、第1および第2の変形例と、比較例とのそれぞれの効果をまとめた図である。 本技術の実施の形態と、第1および第2の変形例と、比較例とのそれぞれの合成処理時のフレームメモリ使用量を比較するための図である。 本技術の実施の形態と、第1および第2の変形例と、比較例とのそれぞれの手ブレ補正時のフレームメモリ使用量を比較するための図である。 本技術の実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=2の合成処理時のフレームメモリ使用量の具体例である。 本技術の実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=2の手ブレ補正時のフレームメモリ使用量の具体例である。 本技術の実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=2の合成処理時のフレームメモリ使用量を示すグラフである。 本技術の実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=4の合成処理時のフレームメモリ使用量の具体例である。 本技術の実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=4の合成処理時のフレームメモリ使用量を示すグラフである。 本技術の実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=2の被写体動き検出時の計算量を比較するための図である。 本技術の実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=2の被写体動き検出時の計算量の具体例である。 本技術の実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=2の被写体動き検出時の計算量を示すグラフである。 本技術の実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=4の被写体動き検出時の計算量の具体例である。 本技術の実施の形態の第3の変形例におけるN=2の際のカメラ動き演算部の動作の一例を示すタイミングチャートである。 本技術の実施の形態の第3の変形例におけるN=4の際のカメラ動き演算部の動作の一例を示すタイミングチャートである。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.実施の形態(フレームの一部を切り出してから合成する例)
 2.第1の変形例
 3.第2の変形例
 4.第3の変形例
 <1.実施の形態>
 [撮像装置の構成例]
 図1は、実施の形態における撮像装置100の一構成例を示すブロック図である。この撮像装置100は、画像データ(フレーム)を撮像するものであり、撮像レンズ110、撮像素子120、動き検出センサ130、画像処理部200、記録部140および制御部150を備える。撮像装置100としては、デジタルスチルカメラやデジタルビデオカメラなどのデジタルカメラの他、撮像機能を持つスマートフォンやパーソナルコンピュータなどが想定される。
 撮像レンズ110は、光を集光して撮像素子120に導くレンズである。撮像素子120は、制御部150の制御に従って撮像レンズ110からの入射光を光電変換して画像データを撮像するものである。この撮像素子120は、画像データを入力フレームとして画像処理部200に信号線129を介して供給する。なお、撮像レンズ110および撮像素子120を含むユニットは、特許請求の範囲に記載の撮像部の一例である。
 動き検出センサ130は、撮像装置100の動きを検出するものである。例えば、単位時間内に撮像装置100が回転した角度(言い換えれば、角速度)を検出するジャイロセンサが動き検出センサ130として用いられる。動き検出センサ130は、単位時間ごとに、その時間内の回転角度を測定し、その測定値を示すセンサ信号を画像処理部200に信号線139を介して供給する。なお、動き検出センサ130は、特許請求の範囲に記載のセンサの一例である。
 画像処理部200は、制御部150の制御に従って、入力フレームに対する所定の画像処理をセンサ信号を用いて行うものである。この画像処理部200は、画像処理後のフレームを出力フレームとして記録部140に信号線209を介して供給する。
 記録部140は、出力フレームを記録するものである。制御部150は、撮像装置100全体を制御するものである。この制御部150は、撮像制御信号を撮像素子120に信号線158を介して供給し、画像処理を行うタイミングを示すタイミング信号を画像処理部200に信号線159を介して供給する。
 ここで、撮像制御信号は、撮像タイミングを示す垂直同期信号Vsyncや、露光期間などを含む。垂直同期信号Vsyncの周波数は、例えば、30ヘルツ(Hz)である。なお、垂直同期信号Vsyncの周波数は、30ヘルツ(Hz)に限定されず、60ヘルツ(Hz)などであってもよい。
 図2は、実施の形態における撮像装置100の斜視図の一例である。この撮像装置100の光軸をz軸とする。また、z軸に直交し、撮像素子120の長辺に平行な軸をx軸とし、z軸およびx軸に直交する軸をy軸とする。動き検出センサ130は、単位時間が経過するたびに、その単位時間内にz軸周りに撮像装置100が回転した角度をロール角として測定する。また、動き検出センサ130は、単位時間内にx軸周りに撮像装置100が回転した角度をピッチ角として測定し、y軸周りに回転した角度をヨー角として測定する。
 なお、動き検出センサ130は、3軸の全てについて角度を測定しているが、2軸のみについて角度を測定してもよい。また、動き検出センサ130は、角度を測定しているが、撮像装置100の動きを検出することができるのであれば、角度以外の物理量を測定してもよい。例えば、動き検出センサ130は、x軸方向やy軸方向の加速度を測定してもよい。
 [画像処理部の構成例]
 図3は、実施の形態における画像処理部200の一構成例を示すブロック図である。この画像処理部200は、カメラ動き演算部210、補正量演算部220、切り出し処理部240、被写体動き検出部250、画像合成部260および回転補正部270を備える。
 カメラ動き演算部210は、センサ信号に対する演算により撮像装置100の一定期間内の動き量を取得するものである。このカメラ動き演算部210は、演算結果を補正量演算部220に供給する。なお、カメラ動き演算部210は、特許請求の範囲に記載の動き量取得部の一例である。
 補正量演算部220は、カメラ動き演算部210の演算結果を用いて、切り出し処理部240および回転補正部270において切り出し領域の初期位置からの補正量を演算するものである。この補正量は、x成分、y成分およびロール角成分を含む。x成分は、切り出し領域をx軸方向に沿って平行移動させる際の移動量であり、y成分は、その領域をy軸方向に沿って平行移動させる際の移動量である。ロール角成分は、フレームの一部を回転させる際の回転角度である。補正量演算部220は、x成分およびy成分を切り出し処理部240に供給し、ロール角成分を回転補正部270に供給する。
 切り出し処理部240は、入力フレームが撮像されるたびに補正量(x成分およびy成分)に基づいて入力フレームの一部を切り出すものである。この入力フレームにおいては、所定サイズの切り出し領域が予め設定される。切り出し処理部240は、x軸に沿ってx成分だけ切り出し領域を初期位置から平行移動し、y軸に沿ってy成分だけ切り出し領域を初期位置から平行移動する。そして、切り出し処理部240は、平行移動後の切り出し領域を入力フレームから切り出しフレームとして切り出す。切り出し処理部240は、その切り出しフレームを被写体動き検出部250に供給する。
 被写体動き検出部250は、連続する複数の切り出しフレームから、被写体の動きベクトルを検出するものである。この被写体動き検出部250は、例えば、フレーム間差分法やブロックマッチング法を用いて、連続する複数の切り出しフレームから動被写体を検出し、その動被写体が動いた方向および距離を示す動きベクトルを求める。被写体動き検出部250は、動きベクトルを画像合成部260に供給する。
 画像合成部260は、連続するN(Nは2以上の整数)枚の切り出しフレームを合成するものである。この画像合成部260は、N枚ごとに1枚の合成フレームを生成し、合成フレームとして回転補正部270に供給する。
 前述の撮像素子120は、垂直同期信号Vsyncに同期して、そのVsyncの周期内にN枚のフレームを撮像する。例えば、N=2とし、垂直同期信号Vsyncを30ヘルツ(Hz)とすると、1秒間に60枚の入力フレームが撮像され、1秒間に30枚の合成フレームが生成される。
 回転補正部270は、補正量(ロール角成分)に基づいて合成フレーム内の一部の切り出し領域を回転させるものである。この回転補正部270は、回転後の切り出し領域を出力フレームとして切り出して記録部140に出力する。なお、回転補正部270は、特許請求の範囲に記載の合成フレーム補正部の一例である。
 [カメラ動き演算部の構成例]
 図4は、実施の形態におけるカメラ動き演算部210の一構成例を示すブロック図である。このカメラ動き演算部210は、予測演算部211と、合成フレーム間動き量積分器212と、N個の合成フレーム内動き量積分器213とを備える。
 予測演算部211は、所定の予測期間の前のセンサ信号の履歴に基づいて、その予測期間内の撮像装置100の動き量を算出するための関数を求めるものである。予測演算部211は、例えば、予測期間前のセンサ信号の時間的変動を表す曲線に最もよくフィッティングするm次多項式を求める。この予測演算部211は、求めたm次多項式の係数を合成フレーム間動き量積分器212とN個の合成フレーム内動き量積分器213とに供給する。
 合成フレーム間動き量積分器212は、連続する2つの合成フレームの間の積算期間Pm0内の撮像装置100の動き量m0を演算するものである。この動き量m0は、ピッチ角成分、ヨー角成分およびロール角成分を含む。また、動き量m0の演算は、その積算期間Pm0の終了前に開始される。このため、合成フレーム間動き量積分器212は、m0の演算の開始時点から積算期間Pm0の終了時点までの予測期間内の動き量を予測する必要がある。
 そこで、合成フレーム間動き量積分器212は、予測期間内の動き量をm次多項式を用いて演算し、予測期間までの動き量の積算値に加算する。合成フレーム間動き量積分器212は、加算した値を動き量m0として補正量演算部220に供給する。
 合成フレーム内動き量積分器213は、合成対象のN枚の切り出しフレームのうちn(nは、1乃至Nの整数)番目について動き量mnを演算するものである。まず、N枚のうち最初の露光期間の重心のタイミングTc1と、N枚目の露光期間の重心のタイミングTcNとの間の特定のタイミングが起点タイミングTsとして設定される。
 n枚目の露光期間の重心のタイミングTcnとすると、起点タイミングTsからTcnまでの積算期間内の動き量がmnとして演算される。ここで、動き量mnの演算の開始タイミングが、対応する積算期間の終了タイミングよりも前である場合に合成フレーム内動き量積分器213は、その終了タイミングまでの動き量を予測する必要がある。一方、動き量mnの演算の開始タイミングが、対応する積算期間の終了タイミングよりも後の場合には、動き量を予測する必要が無い。合成フレーム内動き量積分器213は、必要に応じてm次多項式により予測演算を行って動き量mnを求め、補正量演算部220に供給する。
 図5におけるaは、実施の形態におけるカメラ動き演算部210の動作の一例を示すタイミングチャートである。垂直同期信号Vsyncは、一定の周期で立ち上がる。例えば、タイミングTv1、Tv2およびTv3で垂直同期信号Vsyncが立ち上がる。
 N=2とした場合、垂直同期信号Vsyncの周期内に、2枚の入力フレームが撮像される。タイミングTv1からタイミングTv2までの間に撮像された2枚の入力フレームのそれぞれの露光期間の重心のタイミングをTc11、Tc12とする。また、タイミングTv_2からタイミングTv3までの間に撮像された2枚の入力フレームのそれぞれの露光期間の重心のタイミングをTc21、Tc22とする。また、Tc11およびTc12の中間のタイミングを起点タイミングTs1とし、Tc21およびTc22の中間のタイミングを起点タイミングTs2とする。
 動き検出センサ130は、垂直同期信号Vsyncより短い周期が経過するたびに動きを検出してセンサ信号を出力する。
 合成フレーム間動き量積分器212は、起点タイミングTs1から起点タイミングTs2までの積算期間の動き量をm0として演算する。一方、1枚目に対応する合成フレーム内動き量積分器213は、起点タイミングTs2からタイミングTc21までの調整期間内の動き量をm1として演算する。
 また、2枚目に対応する合成フレーム内動き量積分器213は、起点タイミングTs2からタイミングTc22までの調整期間内の動き量を動き量m2として演算する。
 ここで、動き量m1の演算は、合成対象の2枚のうち1枚目において1ライン目の露光が終了するタイミングTL21までに完了する必要がある。このタイミングTL21以降に、1枚目のフレームの保持が開始され、この保持の際に、動き量m1により切り出し領域が調整されるためである。また、この1枚目のフレームの補正量の演算には、動き量m1に加えて動き量m0も用いられる。このため、動き量m0もタイミングTL21までに完了する必要がある。
 そこで、合成フレーム間動き量積分器212は、タイミングTL21よりも、m0の演算に要する時間だけ前のタイミングTm0において動き量m0の演算を開始する。このタイミングTm0は、例えば、m0の積算期間の終了時Ts2よりも前である。このため、合成フレーム間動き量積分器212は、タイミングTm0から起点タイミングTs2までの予測期間内の動き量を予測値として予測演算する必要がある。合成フレーム間動き量積分器212は、起点タイミングTs1からタイミングTm0までのセンサ信号の積算により動き量の実測値を求め、その実測値を予測値に加算してm0とする。同図における斜線の期間は、予測期間を示す。
 また、合成フレーム内動き量積分器213は、タイミングTL21よりも、m1の演算に要する時間だけ前のタイミングTm1において動き量m1の演算を開始する。このタイミングTm1は、例えば、起点タイミングTs2よりも前である。このため、合成フレーム内動き量積分器213は、タイミングTm1から起点タイミングTs2までの予測期間内の動き量を予測値として予測演算する必要がある。合成フレーム内動き量積分器213は、タイミングTc21からタイミングTm1までのセンサ信号の積算により動き量の実測値を求め、予測値に加算してm1を演算する。同図における斜線の期間は、予測期間を示す。
 また、動き量m2の演算は、合成対象の2枚のうち2枚目のフレームの1ライン目の露光が終了するタイミングまでに完了すればよい。例えば、合成フレーム内動き量積分器213は、タイミングTc22に動き量m2の演算を開始する。このタイミングTc22は、起点タイミングTs2の後である。このため、合成フレーム内動き量積分器213は、予測演算を行わず、起点タイミングTs2からタイミングTc22までのセンサ信号の積算により動き量m2を求める。
 切り出し処理部240は、演算された動き量m1およびm2に応じて、連続する2枚のフレームのそれぞれの切り出し領域を平行移動させて切り出す。これらの動き量m1およびm2は、共通のタイミング(Ts2)を起点としているため、2枚のフレームで同じ被写体が写った領域に、それぞれのフレームの切り出し領域の位置を合わせることができる。
 ここで、切り出し処理部240が、タイミングTc21からタイミングTc22までの長さLの期間内の動き量に応じて合成対象の2枚目のフレームの切り出し領域を平行移動することも考えられる。この場合は、1枚目のフレームにおいてもタイミングTc21までの長さLの期間内の動き量に応じて切り出し領域が平行移動される。しかし、この方法では、1枚目の予測演算の必要がなくなる一方で、1枚目および2枚目のそれぞれの切り出し領域の平行移動の移動量が大きくなってしまう。実際には、一定の枠内でしか切り出し領域を移動できないため、移動量が大きいと合成において位置合わせの精度が低下するおそれがある。また、合成結果の時刻重心を大きく外して、合成フレーム間の電子手ブレ補正の精度が大きく劣化するおそれがある。
 これに対して、撮像装置100では、タイミングTc21およびTc22の中間の起点タイミングTs2からTc21やTc22までの動き量に応じて切り出し領域を平行移動しているため、切り出し領域の移動量を比較的小さくすることができる。したがって、合成における位置合わせの精度を高くすることができる。また、合成フレーム間の電子手ブレ補正の精度の低下を防止することができる。
 なお、動き量m0、m1の演算を行うタイミングTm0、Tm1を起点タイミングTs2よりも前としているが、このタイミングに限定されない。例えば、長時間露光のフレームと短時間露光のフレームとを画像合成部260が合成する場合(いわゆる、ハイダイナミックレンジ合成)がある。このハイダイナミックレンジ合成において長時間露光のフレームが最初のフレームである場合には図5におけるbに例示するように、Tm0、Tm1が起点タイミングTs2よりも後になることがあり、その際は予測演算が不要となる。
 図6は、実施の形態における予測演算について説明するための図である。前述したように、合成フレーム間動き量積分器212は、動き量m0の積算期間の終了時(Ts2)よりも前のタイミングTm0において動き量m0の演算を開始する必要がある。このため、合成フレーム内動き量積分器213は、タイミングTm0から起点タイミングTs2までの期間内の動き量を予測演算する。
 予測演算においては、タイミングTm0までのセンサ信号の軌跡に最もよくフィッティングするm次多項式が用いられる。同図における黒丸は、実測されたセンサ信号のプロットを示し、白丸は、m次多項式から演算された値のプロットを示す。
 [補正量演算部の構成例]
 図7は、実施の形態における補正量演算部220の一構成例を示すブロック図である。この補正量演算部220は、手ブレ補正量演算部230と、N個の合成フレーム内補正量演算部221とを備える。
 手ブレ補正量演算部230は、動き量m0から、連続する2枚の合成フレーム間の動き量に応じた補正量s0を演算するものである。この動き量s0は、x成分、y成分およびロール角成分を含む。手ブレ補正量演算部230は、動き量s0のx成分およびy成分であるs0(x、y)をN個の合成フレーム内補正量演算部221に供給する。また、手ブレ補正量演算部230は、動き量s0のロール角成分であるs0(Roll)を回転補正部270に供給する。
 合成フレーム内補正量演算部221は、動き量mnおよび補正量s0(x、y)から、合成対象のN枚のうちn番目のフレームの補正量snを演算するものである。この補正量snは、x成分、y成分およびロール角成分を含む。合成フレーム内補正量演算部221は、例えば、動き量mnのピッチ角成分およびヨー角成分をx成分およびy成分に変換する。そして、合成フレーム内補正量演算部221は、次の式を用いて補正量snを演算して切り出し処理部240に供給する。
  sn(x)=s0(x)+mn(x)
  sn(y)=s0(y)+mn(y)
上式において、sn(x)は、補正量snのx成分であり、s0(x)は、補正量s0のx成分である。また、mn(x)は、動き量mnのx成分である。sn(y)は、補正量snのy成分であり、s0(y)は、補正量s0のy成分である。また、mn(y)は、動き量mnのy成分である。
 [手ブレ補正量演算部の構成例]
 図8は、実施の形態における手ブレ補正量演算部230の一構成例を示すブロック図である。この手ブレ補正量演算部230は、座標変換部231、切り出し位置決定部232を備える。切り出し位置決定部232は、ハイパスフィルタ233、カメラワーク推定部234、理想切り出し位置決定部235、および、補正枠内制限処理部236を備える。
 座標変換部231は、例えば、次の式により動き量m0のピッチ角成分およびヨー角成分をx成分およびy成分に変換するものである。
  m0(x)=Lx×tan{m0(Yaw)}
  m0(y)=Ly×tan{m0(Pitch)}
上式において、LxおよびLyは、レンズの焦点距離により決定される係数である。また、tan()は、正接関数である。m0(Yaw)は、動き量m0のヨー角成分であり、m0(Pitch)は、動き量m0のピッチ角成分である。
 座標変換部231は、変換後のm0(x、y)をハイパスフィルタ233、カメラワーク推定部234および理想切り出し位置決定部235に供給する。
 ハイパスフィルタ233は、m0(x、y)において所定のカットオフ周波数より高い周波数の成分を高周波数成分HPF(m0)として通過させるものである。ハイパスフィルタ233は、高周波数成分HPF(m0)を理想切り出し位置決定部235に供給する。
 カメラワーク推定部234は、撮影者により特定の撮影操作(例えば、パン撮影)が行われたか否かを推定するものである。カメラワーク推定部234は、推定結果を示す係数R2を生成し、理想切り出し位置決定部235に供給する。この係数R2は、例えば、「0」乃至「1」の実数であり、パン撮影に類似する操作であるほど「1」に近い値が設定される。
 理想切り出し位置決定部235は、次の式を使用して、補正量s0'を算出するものである。この補正量s0'は、x成分およびy成分を含む。理想切り出し位置決定部235は、算出した補正量s0'を補正枠内制限処理部236に供給する。
  s'(k)=s0(k-1)+R1・{HPF(m0)
        +R1・(1-R2)・{m0-HPF(m0)}
上式において、R2は、手ブレ補正係数であり、「0」乃至「1」の実数が設定される。s0'(k)は、k番目のフレームの補正量であり、s0'(k-1)は、k-1番目のフレームの補正量s0である。これらのうちs'(k)が、今回のs0'として出力される。
 補正枠内制限処理部236は、切り出し領域の位置を一定の補正枠内に制限するものである。例えば、x軸上の補正枠のサイズは、±cxであり、y軸上の補正枠のサイズは、±cyである。補正枠内制限処理部236は、補正量s0'のx成分およびy成分に対して制限処理を行い、制限処理後のx成分およびy成分と、動き量m0のロール角成分m0(Roll)とを含む補正量をs0として出力する。この補正量s0のx成分およびy成分であるs0(x、y)は、N個の合成フレーム内補正量演算部221に入力され、残りのロール角成分s0(Roll)は、回転補正部270に入力される。
 ここで、cxは、sx-rxに該当し、cyは、sy-ryに該当する。sxおよびsyは、電子手ブレ補正全体のx軸およびy軸における補正枠のサイズである。rxおよびryは、電子手ブレ補正のうち、回転補正時のx軸およびy軸における補正枠のサイズである。
 [切り出し処理部の構成例]
 図9は、実施の形態における切り出し処理部240の一構成例を示すブロック図である。この切り出し処理部240は、セレクタ241、補正量選択制御部242および位置合わせ処理部243を備える。
 補正量選択制御部242は、N個の補正量snのいずれかを示す選択信号SELをセレクタ241に供給するものである。この補正量選択制御部242は、制御部150からのタイミング信号に基づいてN枚のうちn番目のフレームが撮像された際にn番目の補正量を示す選択信号SELを生成する。
 セレクタ241は、選択信号SELに従ってN個の補正量snのいずれかを選択するものである。このセレクタ241は、選択した補正量snのx成分およびy成分であるs'(x、y)を位置合わせ処理部243に供給し、残りのロール角成分s'(Roll)を被写体動き検出部250を介して画像合成部260に供給する。
 位置合わせ処理部243は、入力フレームが入力されるたびに、その入力フレームにおいて補正量s'(x、y)により切り出し領域の位置を補正し、補正後の切り出し領域を切り出すものである。この位置合わせ処理部243は、切り出した領域を切り出しフレームとして被写体動き検出部250に供給する。
 [被写体動き検出部の構成例]
 図10は、被写体動き検出部250の一構成例を示すブロック図である。この被写体動き検出部250は、ゲイン調整部251、調整後動き検出部252およびフレームメモリ253を備える。
 ゲイン調整部251は、切り出しフレームにおいて画素値を所定のゲインにより調整するものである。このゲイン調整部251は、調整後の切り出しフレームをフレームメモリ253および調整後動き検出部252に供給する。フレームメモリ253は、切り出しフレームを保持するものである。また、ゲイン調整前の切り出しフレームは、ゲイン調整部251の他、画像合成部260にも供給される。
 調整後動き検出部252は、フレームメモリ253に保持された過去の切り出しフレームと、ゲイン調整部251からの現在の切り出しフレームとから、被写体の動きベクトルを検出するものである。この調整後動き検出部252は、検出した動きベクトルを画像合成部260に供給する。
 [画像合成部の構成例]
 図11は、実施の形態における画像合成部260の一構成例を示すブロック図である。この画像合成部260は、画像合成処理部261およびフレームメモリ262を備える。
 フレームメモリ262は、N-1枚の切り出しフレームを保持するものである。画像合成処理部261は、被写体動き検出部250からの現在の切り出しフレームと、フレームメモリ262に保持された過去の切り出しフレームとを合成するものである。
 画像合成処理部261は、まず、被写体動き検出部250により検出された動きベクトルに基づいて合成対象のN枚の切り出しフレームのうち、動きベクトルに対応するものを平行移動させて一定の枠内で位置合わせを行う。そして、画像合成処理部261は、位置合わせ後のN枚のフレームのそれぞれにおいて対応する画素値の平均値を求め、その平均値の画素からなる合成フレームを生成する。これにより、映像信号に混在するノイズを低減することができる。このような合成処理は、3次元ノイズリダクションと呼ばれる。画像合成処理部261は、合成後のフレームを合成フレームとして回転補正部270に供給する。なお、画像合成処理部261は、特許請求の範囲に記載の合成処理部の一例である。
 なお、画像合成部260は、3次元ノイズリダクション以外の合成処理(ハイダイナミックレンジ合成など)を行ってもよい。ハイダイナミックレンジ合成において、撮像素子120は、露光時間の異なる複数の切り出しフレームを撮像し、画像合成部260は、それらのフレームにおいて対応する画素値を加算して合成フレームを生成する。これにより、ダイナミックレンジを合成前よりも拡大することができる。
 図12は、実施の形態における入力フレーム、切り出しフレームおよび出力フレームのそれぞれのサイズの一例を示す図である。同図におけるaは、入力フレーム500のサイズの一例を示し、同図におけるbは、フレームメモリ262に保持される切り出しフレームの一例を示す。同図におけるbの斜線部分は、フレームメモリ262内の切り出しフレームを示す。同図におけるcは、出力フレーム502の一例を示す。
 入力フレーム500のx軸上の長さである幅Wと、y軸上の長さである高さHは、次の式により表される。
  W=w+2cx+2rx+2nx         ・・・式1
  H=h+2cy+2rx+2ny         ・・・式2
  cx=sx-rx                ・・・式3
  cy=sy-ry                ・・・式4
 式3および式4を式1および式2に代入することにより、次の式が得られる。
  W=w+2sx+2nx
  H=h+2sx+2ny
 ここで、wは、出力フレーム502の幅であり、sxは、切り出し処理部240による切り出し処理(すなわち、手ブレ補正)におけるx軸上の補正枠のサイズである。rxは、回転補正部270による回転補正におけるx軸上の補正枠のサイズである。nxは、画像合成部260による合成時の位置合わせに用いられるx軸上の枠のサイズである。hは、出力フレーム502の高さであり、syは、手ブレ補正におけるY軸上の補正枠のサイズである。rxは、回転補正におけるy軸上の補正枠のサイズである。nyは、合成時の位置合わせに用いられるy軸上の枠のサイズである。
 入力フレーム500内には、幅がW-2cxで、高さがH-2cyの切り出し領域が設けられる。切り出し処理部240は、撮像装置100の動きに応じて、sxおよびsyのサイズの補正枠内で切り出し領域を平行移動し、移動後の切り出し領域を切り出して切り出しフレームとして出力する。この切り出しフレームは、フレームメモリ262に保持される。
 続いて、画像合成部260は、nx、nyの枠内で位置合わせを行って2枚の切り出しフレームを合成する。そして、回転補正部270は、rx、ryの補正枠内で合成フレームを回転させて出力フレーム502を生成する。
 図13は、比較例における入力フレームと、回転補正後のフレームと、出力フレームとのそれぞれのサイズの一例を示す図である。この比較例においては、撮像装置は、合成処理および回転補正を順に実行した後に手ブレ補正(切り出し処理)を実行するものとする。同図におけるaは、入力フレームのサイズの一例を示し、同図におけるbは、回転補正後のフレーム505の一例を示す。同図におけるaの斜線部分は、フレームメモリ内の入力フレームを示す。同図におけるcは、出力フレーム506の一例を示す。
 比較例の撮像装置は、合成において入力フレームをそのままフレームメモリに保持する。この入力フレームのサイズは、式1および式2により表される。そして、撮像装置は、フレームメモリに保持した過去のフレームと、現在のフレームとを合成し、回転補正を行う。これらの処理により、幅がW-2rx-2nxで、高さがH-2ry-2rnの合成フレーム505が生成される。最後に撮像装置は、その撮像装置の動きに応じて補正枠内で切り出しフレームを切り出して出力フレーム506を生成する。
 このように、合成処理の後に切り出し処理を行う比較例では、合成に要するフレームメモリの容量は、切り出す前の入力フレームのデータ量以上でなければならない。
 これに対して、撮像装置100では、図12に例示したように、合成処理の前に切り出し処理を行うため、フレームメモリ262の容量は、切り出した後の切り出しフレームのデータ量以上で済む。したがって、比較例と比較して、合成に要するフレームメモリの容量を削減することができる。これにより、合成処理時の計算量や、撮像装置のコストを低減することができる。
 [撮像装置の動作例]
 図14は、実施の形態における撮像装置100の動作の一例を示すフローチャートである。この動作は、例えば、動画や静止画の撮像を開始するための操作(撮像ボタンの押下など)が行われたときに開始する。
 撮像装置100は、自身の動きを検出しつつ、フレームを撮像する(ステップS901)。そして、撮像装置100は、自身の動きに基づいてフレームの一部を切り出す電子手ブレ補正を行う(ステップS902)。
 続いて撮像装置100は、連続する複数の切り出しフレームを比較して被写体の動きベクトルを検出する(ステップS903)。そして、撮像装置100は、その動きベクトルに基づいて位置合わせを行い、N枚の切り出しフレームを合成する(ステップS904)。そして、撮像装置100は、合成フレームに対して回転補正を行い、出力フレームを生成する(ステップS905)。ステップS905の後に撮像装置100は、ステップS901以降を繰り返し実行する。
 このように、本技術の実施の形態によれば、撮像装置100は、フレームの一部を切り出してから、フレームメモリ262に保持して合成を行うため、フレームメモリ262の容量を切り出しフレームのデータ量に抑制することができる。
 <2.第1の変形例>
 上述の実施の形態では、撮像装置100は、回転補正を行っていたが、この構成では、回転補正における補正枠のサイズの分、フレームメモリ262の容量が増大してしまう。この実施の形態の第1の変形例の撮像装置100は、フレームメモリ262の容量をさらに削減する点において実施の形態と異なる。
 図15は、実施の形態の第1の変形例における画像処理部200の一構成例を示すブロック図である。この第1の変形例の画像処理部200は、回転補正部270を備えない点において実施の形態と異なる。第1の変形例の画像合成部260は、合成フレームを出力フレームとして出力する。
 このように、本技術の実施の形態の第1の変形例によれば、撮像装置100は、合成フレームに対して回転補正を行わないため、回転補正の補正枠の分、フレームメモリ262の容量を削減することができる。
 <3.第2の変形例>
 上述の実施の形態では、撮像装置100は、回転補正と被写体の動きベクトルの検出とを行っていたが、この構成では、回転補正や合成処理における枠のサイズの分、フレームメモリ262の容量が増大してしまう。この実施の形態の第1の変形例の撮像装置100は、フレームメモリ262の容量をさらに削減する点において実施の形態と異なる。
 図16は、実施の形態の第1の変形例における画像処理部200の一構成例を示すブロック図である。この第1の変形例の画像処理部200は、被写体動き検出部250および回転補正部270を備えない点において実施の形態と異なる。第1の変形例の切り出し処理部240は、切り出しフレームを画像合成部260に供給し、画像合成部260は、合成フレームを出力フレームとして出力する。
 図17は、上述の実施の形態と、第1および第2の変形例と、比較例とのそれぞれの効果をまとめた図である。実施の形態の撮像装置100は、被写体の動きベクトルの検出を行うため、画像合成による画質向上の効果が大きくなる。また、実施の形態の撮像装置100は、回転補正を行うため、電子手ブレ補正による画質向上の効果が大きくなる。
 一方、第1の変形例では、回転補正を行わないため、電子手ブレ補正による画質向上の効果が小さくなる。また、第2の変形例では、さらに被写体の動きベクトルの検出も行わないため、画像合成による画質向上の効果も小さくなる。また、比較例では、被写体の動きベクトルの検出と回転補正とを行うため、画像合成および電子手ブレ補正による画質向上の効果が大きくなる。
 図18は、実施の形態と、第1および第2の変形例と、比較例とのそれぞれの合成処理時のフレームメモリ使用量を比較するための図である。実施の形態における合成対象のフレームのサイズSinc0は、次の式により表される。
  Sinc0=(w+2rx+2nx)×(h+2ry+2ny)
 実施の形態における合成後のフレーム(合成フレーム)のサイズは、Soutc0は、次の式により表される。
  Soutc0=r1×(w+2rx+2nx)×(h+2ry+2ny)
上式において、r1は、合成前の切り出しフレームに対する、動き検出の対象フレームのサイズの幅または高さの縮小率を示す。ここで、動き検出の対象フレームとは、ブロックマッチング法などを用いた前述の被写体動き検出の対象となるフレームである。このようにフレームを縮小して動き検出を行うのは、計算コストを低減するためである。なお、合成においては、この縮小したフレームは用いられず、N枚の切り出しフレームが等倍のスケールで合成される。
 実施の形態におけるフレームメモリ262の切り出しフレームに要する使用量Smc0は、次の式により表される。
  Smc0={(N-1)+r1}×(w+2rx+2nx)
      ×(h+2ry+2ny)
 次に、第1の変形例では、合成対象のフレームのサイズSinc1は、次の式により表される。
  Sinc1=(w+2nx)×(h+2ny)
 第1の変形例における合成後のフレームのサイズSoutc1は、次の式により表される。
  Soutc1=r1×(w+2nx)×(h+2ny)
 第1の変形例におけるフレームメモリ262の使用量Smc1は、次の式により表される。
  Smc1={(N-1)+r1}×(w+2nx)×(h+2ny)
 また、第2の変形例において合成対象のフレームのサイズSinc2は、第1の変形例のSinc1と同じである。
 第2の変形例におけるフレームメモリの使用量Smc2は、次の式により表される。
  Smc2=(N-1)×(w+2nx)×(h+2ny)
 一方、比較例における合成対象のフレームのサイズSincSは、次の式により表される。
  SincS=(w+2sx+2nx)×(h+2sy+2ny)
 また、比較例における合成後のフレームのサイズSccSは、次の式により表される。
  SoutcS=r1×(w+2sx+2nx)×(h+2sy+2ny)
 また、比較例におけるフレームメモリの使用量SmcSは、次の式により表される。
  SmcS={(N-1)+r1}×(w+2sx+2nx)
      ×(h+2sy+2ny)
 図19は、実施の形態と、第1および第2の変形例と、比較例とのそれぞれの手ブレ補正時のフレームメモリ使用量を比較するための図である。実施の形態における手ブレ補正対象のフレームのサイズSins0は、SincSと同様である。また、実施の形態における手ブレ補正時のフレームメモリの使用量Sms0は、次の式により表される。
  S0=(w+2rx)×(h+2ry)
 次に、第1および第2の変形例における手ブレ補正対象のフレームのサイズは、実施の形態のSinc0と同様である。
 一方、比較例における手ブレ補正対象のフレームのサイズSinsSは、次の式により表される。また、比較例における手ブレ補正時のフレームメモリの使用量SmsSは、SinsSと同様である。
  SinsS=(w+2sx)×(h+2sy)
 図20は、実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=2の手ブレ補正時のフレームメモリ使用量を比較するための図である。縮小率r1を0.5とし、縮小率r2を0.25とする。また、入力フレームの幅Wおよび高さHに対する、sx、sy、cx、cy、rx、ry、nx、ny、wおよびhの比率を次のように設定する。
  W:sx=100%:10%
  H:sy=100%:10%
  W:cx=100%:8%
  H:cy=100%:5%
  W:rx=100%:2%
  H:ry=100%:5%
  W:nx=100%:2%
  H:ny=100%:2%
  W:w=100%:76%
  H:h=100%:76%
 これらの設定値と、図18に例示した関係式とを用いて実施の形態と第1および第2の変形例と比較例とにおいて合成対象のフレームサイズ、合成により縮小する範囲およびフレームメモリの使用量を求める。この結果、比較例のフレームメモリの使用量を1.250とすると、実施の形態の使用量は0.945でよく、フレームメモリの容量を削減することができる。また、第1の変形例では0.800、第2の変形例では0.640でよく、フレームメモリの容量をさらに削減することができる。
 図21は、実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=2の手ブレ補正時のフレームメモリ使用量の具体例である。諸条件は、図20の場合と同様である。比較例のフレームメモリの使用量を0.9216とすると、実施の形態の使用量は0.6880でよく、フレームメモリの容量を削減することができる。
 図22は、実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=2の合成処理時のフレームメモリ使用量を示すグラフである。ここでは、図20で得られた結果に対して、撮像フレームのサイズで正規化が行われている。図22に例示するように、比較例に対して、実施の形態のフレームメモリの使用量は小さく、第1および第2の使用量はさらに小さい。
 図23は、実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=4の合成処理時のフレームメモリ使用量の具体例である。合成対象のフレーム数N以外の諸条件は、図20の場合と同様である。同図に例示するように、比較例に対して、実施の形態のフレームメモリの使用量は小さく、第1および第2の使用量はさらに小さい。
 図24は、実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=2の合成処理時のフレームメモリ使用量を示すグラフである。ここでは、図23で得られた結果に対して、撮像フレームのサイズで正規化が行われている。
 図25は、実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=2の被写体動き検出時の計算量を比較するための図である。動きの検出は、ブロックマッチングにより行われるものとする。合成処理時の動き検出の粒度をs1とし、電子手ブレ補正時の動き検出の粒度をs2とする。ここで、粒度は、フレーム全体に対する、ブロックマッチングを実行する座標の合計の比率を示す。例えば、フレームの全ての座標でブロックマッチングを実行する際は、粒度は100%となる。また、X軸方向およびY軸方向において1画素飛ばしでブロックマッチングを実行する場合には粒度は25%となる。また、比較例におけるカメラの動き検出時の検出枠サイズをpxおよびpyとする。また、実施の形態と第1および第2の変形例と比較例とにおける被写体の動きベクトル検出時の検出枠サイズをqxおよびqyとする。
 実施の形態の被写体の動きの検出対象のフレームサイズSinm0は、Soutc0と同様である。また、実施の形態の被写体動き検出の検出範囲は、(2qx)×(2qy)である。また、実施の形態の被写体動き検出処理の計算量Q0は、次の式により表される。
  Q0=(N-1)×r1×(w+2rx+2nx)
      ×(h+2ry+2ny)×s1×2qx×2qy
 次に、第1の変形例の被写体の動きの検出対象のフレームサイズSinm1は、Soutc1と同様である。また、第1の変形例の被写体動き検出の検出範囲は、(2qx)×(2qy)である。また、第1の変形例の被写体動き検出処理の計算量Q1は、次の式により表される。
  Q1=(N-1)×r1×(w+2nx)
      ×(h+2ny)×s1×2qx×2qy
 一方、比較例の被写体の動きの検出対象のフレームサイズSinm0は、SoutcSと同様である。また、比較例の被写体動き検出の検出範囲は、(2px+2qx)×(2py+2qy)である。また、比較例の被写体動き検出処理の計算量QSは、次の式により表される。
  QS=(N-1)×r12×(w+2sx+2nx)
     ×(h+2sy+2ny)
     ×s12×(2px+2qx)×(2py+2qy)
 図26は、実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=2の被写体動き検出時の計算量の具体例である。図20と同様の諸条件と、図25に例示した関係式とを用いて実施の形態と第1および第2の変形例と比較例とにおいて、被写体動き検出時の検出対象のフレームサイズ、検出範囲および計算量を求める。ただし、粒度s1およびs2はいずれも0.125に設定される。また、WおよびHに対するpx、py、qx、qyの比率は、次のように設定される。
  W:px=100%:3%
  H:py=100%:5%
  W:qx=100%:3%
  H:qy=100%:5%
 比較例の計算量を9.375E-05とすると、実施の形態の計算量は2.025E-05に減少する。また、第1の変形例の計算量は1.500E-05となり、さらに減少する。
 図27は、実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=2の被写体動き検出時の計算量を示すグラフである。図27では、図26の計算結果について、実施の形態の計算量により、正規化が行われている。
 図28は、実施の形態と、第1および第2の変形例と、比較例とのそれぞれのN=4の被写体動き検出時の計算量の具体例である。N以外の諸条件は、図26の場合と同様とする。比較例の計算量を2.813E-04とすると、実施の形態の計算量は6.075E-05となる。また、第1の変形例の計算量は4.500E-05となる。
 このように、本技術の実施の形態の第2の変形例によれば、撮像装置100は、動きベクトルの検出と回転補正とを行わないため、合成処理および回転補正における枠の分、フレームメモリ262の容量を削減することができる。また、被写体動き検出時の計算量を削減することができる。
 <4.第3の変形例>
 上述の実施の形態では、撮像装置100は、一定の予測期間内の自身の動き量を予測し、その動き量に基づいて電子手ブレ補正を行っていた。しかし、予測期間が長いほど、動き量の予測精度が低下し、電子手ブレ補正後の画質が低下するという問題がある。この実施の形態の第3の変形例の撮像装置100は、撮像装置100の動き量の予測精度を向上させた点において実施の形態と異なる。
 図29は、実施の形態の第3の変形例におけるN=2の際のカメラ動き演算部の動作の一例を示すタイミングチャートである。この第3の変形例では、予測期間の長さは、許容値以上の予測精度になるような所定の閾値以下に制限される。開始タイミングTm0から起点タイミングTs2までの期間と、開始タイミングTm1から起点タイミングTs2までの期間とのいずれかが閾値を超える場合には、Ts2よりもTc21に近いタイミングTs2'が起点として用いられる。この場合、開始タイミングTm0またはTm1から起点タイミングTs2'までの期間が予測期間となる。起点タイミングTs2'は、予測期間が閾値以下になるタイミングである。
 このように、予測期間を閾値以下に制限することにより、実施の形態よりも予測精度を向上させることができる。ただし、その一方で、合成フレームに対する電子手ブレ補正の精度が低下する。これは、画像合成部260が合成対象の2枚のフレームを同程度の比率で合成するという仮定のもとで、手ブレ補正のタイミングの区切りをTs2と仮置きしているためである。閾値は、予測精度の向上と、電子手ブレ補正の精度の低下とのバランスを考慮して設定される。
 図30は、実施の形態の第3の変形例におけるN=4の際のカメラ動き演算部の動作の一例を示すタイミングチャートである。N=2の場合と同様に、Tm0またはTm1からTs2'までの期間が予測期間となり、2枚目のフレームに対応する積算期間は、Ts2'からTc22までとなる。また、3枚目のフレームに対応する積算期間は、Ts2'から、3枚目の露光重心のタイミングTc23までとなり、4枚目のフレームに対応する積算期間は、Ts2'から、4枚目の露光重心のタイミングTc24までとなる。
 このように、本技術の実施の形態の第3の変形例によれば、撮像装置100の動き量を予測する予測期間を閾値以下に制限するため、動き量の予測精度を向上させることができる。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
 なお、本技術は以下のような構成もとることができる。
(1)入力フレームが撮像部により撮像されるたびに前記撮像部の動きに基づいて前記入力フレームの一部を現在切出しフレームとして切り出す切り出し処理部と、
 前記現在切出しフレームを過去切出しフレームとして保持するフレームメモリと、
 前記現在切出しフレームと前記過去切出しフレームとを合成して合成フレームとして出力する合成処理部と
を具備する画像処理装置。
(2)連続する2枚の前記合成フレームのそれぞれの露光タイミングの一方から他方までの期間内の前記撮像部の動き量を合成フレーム間動き量として取得する動き量取得部と、
 前記合成フレーム間動き量に基づいて前記合成フレームの一部を出力フレームとして切り出す合成フレーム補正部と
をさらに具備する前記(1)記載の画像処理装置。
(3)連続する2枚の前記現在切り出しフレームの一方の露光タイミングと他方の露光タイミングとの間の起点タイミングから前記一方の露光タイミングまでの期間内の前記撮像部の動き量を合成フレーム内動き量として取得する動き量取得部をさらに具備し、
 前記切り出し処理部は、前記合成フレーム内動き量に基づいて前記現在切り出しフレームを切り出して前記保持部に供給する
前記(2)記載の画像処理装置。
(4)前記合成フレーム間動き量は、前記合成フレーム間動き量の演算を開始する第1の開始タイミングから前記起点タイミングまでの第1の予測期間内の前記動き量を示す第1の予測値を含み、
 前記動き量取得部は、前記第1の開始タイミングまでの前記動き量に基づいて前記第1の予測値を取得する
前記(3)記載の画像処理装置。
(5)前記第1の予測期間の長さは、所定の閾値を超えない
前記(4)記載の画像処理装置。
(6)前記合成フレーム内動き量は、前記合成フレーム内動き量の演算を開始する第2の開始タイミングから前記起点タイミングまでの第2の予測期間内の前記動き量を示す第2の予測値を含み、
 前記動き量取得部は、前記第2の開始タイミングまでの前記撮像部の動き量に基づいて前記第2の予測値を取得する
前記(4)または(5)に記載の画像処理装置。
(7)前記第2の予測期間の長さは、前記所定の閾値を超えない
前記(6)記載の画像処理装置。
(8)連続する2枚の前記現在切り出しフレームに基づいて被写体が動いた方向を示す動きベクトルを検出する被写体動き検出部をさらに具備し、
 前記合成処理部は、前記動きベクトルに基づいて前記現在切出しフレームと前記過去切出しフレームとを合成する
前記(1)から(7)のいずれかに記載の画像処理装置。
(9)入力フレームを撮像する撮像部と、
 前記入力フレームが撮像されるたびに前記撮像部の動きに基づいて前記入力フレームの一部を現在切出しフレームとして切り出す入力フレーム切り出し処理部と、
 前記現在切出しフレームを過去切出しフレームとして保持するフレームメモリと、
 前記現在切出しフレームと前記過去切出しフレームとを合成して合成フレームとして出力する合成処理部と
を具備する撮像装置。
(10)前記撮像部の動きを検出するセンサをさらに具備する
前記(9)記載の撮像装置。
(11)入力フレームが撮像部により撮像されるたびに前記撮像部の動きに基づいて前記入力フレームの一部を現在切出しフレームとして切り出す入力フレーム切り出し処理手順と、
 前記現在切出しフレームを過去切出しフレームとして保持するフレームメモリに保持された前記過去切り出しフレームと前記現在切出しフレームとを合成して合成フレームとして出力する合成処理手順と
を具備する画像処理方法。
(12)入力フレームが撮像部により撮像されるたびに前記撮像部の動きに基づいて前記入力フレームの一部を現在切出しフレームとして切り出す切り出し処理手順と、
 前記現在切出しフレームを過去切出しフレームとして保持するフレームメモリに保持された前記過去切り出しフレームと前記現在切出しフレームとを合成して合成フレームとして出力する合成処理手順と
をコンピュータに実行させるためのプログラム。
 100 撮像装置
 110 撮像レンズ
 120 撮像素子
 130 動き検出センサ
 140 記録部
 150 制御部
 200 画像処理部
 210 カメラ動き演算部
 211 予測演算部
 212 合成フレーム間動き量積分器
 213 合成フレーム内動き量積分器
 220 補正量演算部
 221 合成フレーム内補正量演算部
 230 手ブレ補正量演算部
 231 座標変換部
 232 切り出し位置決定部
 233 ハイパスフィルタ
 234 カメラワーク推定部
 235 理想切り出し位置決定部
 236 補正枠内制限処理部
 240 切り出し処理部
 241 セレクタ
 242 補正量選択制御部
 243 位置合わせ処理部
 250 被写体動き検出部
 251 ゲイン調整部
 252 調整後動き検出部
 253、262 フレームメモリ
 260 画像合成部
 261 画像合成処理部
 270 回転補正部

Claims (12)

  1.  入力フレームが撮像部により撮像されるたびに前記撮像部の動きに基づいて前記入力フレームの一部を現在切出しフレームとして切り出す切り出し処理部と、
     前記現在切出しフレームを過去切出しフレームとして保持するフレームメモリと、
     前記現在切出しフレームと前記過去切出しフレームとを合成して合成フレームとして出力する合成処理部と
    を具備する画像処理装置。
  2.  連続する2枚の前記合成フレームのそれぞれの露光タイミングの一方から他方までの期間内の前記撮像部の動き量を合成フレーム間動き量として取得する動き量取得部と、
     前記合成フレーム間動き量に基づいて前記合成フレームの一部を出力フレームとして切り出す合成フレーム補正部と
    をさらに具備する請求項1記載の画像処理装置。
  3.  連続する2枚の前記現在切り出しフレームの一方の露光タイミングと他方の露光タイミングとの間の起点タイミングから前記一方の露光タイミングまでの期間内の前記撮像部の動き量を合成フレーム内動き量として取得する動き量取得部をさらに具備し、
     前記切り出し処理部は、前記合成フレーム内動き量に基づいて前記現在切り出しフレームを切り出して前記保持部に供給する
    請求項2記載の画像処理装置。
  4.  前記合成フレーム間動き量は、前記合成フレーム間動き量の演算を開始する第1の開始タイミングから前記起点タイミングまでの第1の予測期間内の前記動き量を示す第1の予測値を含み、
     前記動き量取得部は、前記第1の開始タイミングまでの前記動き量に基づいて前記第1の予測値を取得する
    請求項3記載の画像処理装置。
  5.  前記第1の予測期間の長さは、所定の閾値を超えない
    請求項4記載の画像処理装置。
  6.  前記合成フレーム内動き量は、前記合成フレーム内動き量の演算を開始する第2の開始タイミングから前記起点タイミングまでの第2の予測期間内の前記動き量を示す第2の予測値を含み、
     前記動き量取得部は、前記第2の開始タイミングまでの前記撮像部の動き量に基づいて前記第2の予測値を取得する
    請求項4記載の画像処理装置。
  7.  前記第2の予測期間の長さは、前記所定の閾値を超えない
    請求項6記載の画像処理装置。
  8.  連続する2枚の前記現在切り出しフレームに基づいて被写体が動いた方向を示す動きベクトルを検出する被写体動き検出部をさらに具備し、
     前記合成処理部は、前記動きベクトルに基づいて前記現在切出しフレームと前記過去切出しフレームとを合成する
    請求項1記載の画像処理装置。
  9.  入力フレームを撮像する撮像部と、
     前記入力フレームが撮像されるたびに前記撮像部の動きに基づいて前記入力フレームの一部を現在切出しフレームとして切り出す入力フレーム切り出し処理部と、
     前記現在切出しフレームを過去切出しフレームとして保持するフレームメモリと、
     前記現在切出しフレームと前記過去切出しフレームとを合成して合成フレームとして出力する合成処理部と
    を具備する撮像装置。
  10.  前記撮像部の動きを検出するセンサをさらに具備する
    請求項9記載の撮像装置。
  11.  入力フレームが撮像部により撮像されるたびに前記撮像部の動きに基づいて前記入力フレームの一部を現在切出しフレームとして切り出す入力フレーム切り出し処理手順と
     前記現在切出しフレームを過去切出しフレームとして保持するフレームメモリに保持された前記過去切り出しフレームと前記現在切出しフレームとを合成して合成フレームとして出力する合成処理手順と
    を具備する画像処理方法。
  12.  入力フレームが撮像部により撮像されるたびに前記撮像部の動きに基づいて前記入力フレームの一部を現在切出しフレームとして切り出す切り出し処理手順と
     前記現在切出しフレームを過去切出しフレームとして保持するフレームメモリに保持された前記過去切り出しフレームと前記現在切出しフレームとを合成して合成フレームとして出力する合成処理手順と
    をコンピュータに実行させるためのプログラム。
PCT/JP2017/003096 2016-04-26 2017-01-30 画像処理装置、撮像装置、画像処理方法、および、プログラム WO2017187691A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/085,676 US10979653B2 (en) 2016-04-26 2017-01-30 Image processing apparatus, imaging apparatus, image processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016087820A JP6759680B2 (ja) 2016-04-26 2016-04-26 画像処理装置、撮像装置、画像処理方法、および、プログラム
JP2016-087820 2016-04-26

Publications (1)

Publication Number Publication Date
WO2017187691A1 true WO2017187691A1 (ja) 2017-11-02

Family

ID=60160201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003096 WO2017187691A1 (ja) 2016-04-26 2017-01-30 画像処理装置、撮像装置、画像処理方法、および、プログラム

Country Status (3)

Country Link
US (1) US10979653B2 (ja)
JP (1) JP6759680B2 (ja)
WO (1) WO2017187691A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190139230A1 (en) * 2016-06-08 2019-05-09 Sharp Kabushiki Kaisha Image processing device, image processing program, and recording medium
WO2020137503A1 (ja) * 2018-12-27 2020-07-02 ソニーセミコンダクタソリューションズ株式会社 画像処理装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108989796A (zh) * 2018-08-09 2018-12-11 浙江大华技术股份有限公司 一种图像采集设备选择方法及装置
JP2020137044A (ja) 2019-02-25 2020-08-31 ソニーセミコンダクタソリューションズ株式会社 音声信号処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142507A (ja) * 2005-11-15 2007-06-07 Matsushita Electric Ind Co Ltd 撮像装置
JP2009060167A (ja) * 2007-08-29 2009-03-19 Sanyo Electric Co Ltd 撮像装置
JP2009188754A (ja) * 2008-02-06 2009-08-20 Olympus Imaging Corp 撮像装置におけるパン又はチルト検出方法、及び撮像装置
JP2015118147A (ja) * 2013-12-17 2015-06-25 キヤノン株式会社 撮像装置およびその制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4401949B2 (ja) 2004-11-26 2010-01-20 キヤノン株式会社 動画撮像装置及び動画撮像方法
US7956899B2 (en) * 2007-08-29 2011-06-07 Sanyo Electric Co., Ltd. Imaging device and image processing apparatus
JP4492724B2 (ja) 2008-03-25 2010-06-30 ソニー株式会社 画像処理装置、画像処理方法、プログラム
JP5843454B2 (ja) * 2011-03-15 2016-01-13 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
JP6147172B2 (ja) * 2013-11-20 2017-06-14 キヤノン株式会社 撮像装置、画像処理装置、画像処理方法、及びプログラム
US9449374B2 (en) * 2014-03-17 2016-09-20 Qualcomm Incoporated System and method for multi-frame temporal de-noising using image alignment
JP6317635B2 (ja) * 2014-06-30 2018-04-25 株式会社東芝 画像処理装置、画像処理方法及び画像処理プログラム
JP6395506B2 (ja) * 2014-08-22 2018-09-26 キヤノン株式会社 画像処理装置および方法、プログラム、並びに撮像装置
US9560287B2 (en) * 2014-12-19 2017-01-31 Sony Corporation Noise level based exposure time control for sequential subimages
US10397600B1 (en) * 2016-01-29 2019-08-27 Google Llc Dynamic reference motion vector coding mode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142507A (ja) * 2005-11-15 2007-06-07 Matsushita Electric Ind Co Ltd 撮像装置
JP2009060167A (ja) * 2007-08-29 2009-03-19 Sanyo Electric Co Ltd 撮像装置
JP2009188754A (ja) * 2008-02-06 2009-08-20 Olympus Imaging Corp 撮像装置におけるパン又はチルト検出方法、及び撮像装置
JP2015118147A (ja) * 2013-12-17 2015-06-25 キヤノン株式会社 撮像装置およびその制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190139230A1 (en) * 2016-06-08 2019-05-09 Sharp Kabushiki Kaisha Image processing device, image processing program, and recording medium
US10937174B2 (en) * 2016-06-08 2021-03-02 Sharp Kabushiki Kaisha Image processing device, image processing program, and recording medium
WO2020137503A1 (ja) * 2018-12-27 2020-07-02 ソニーセミコンダクタソリューションズ株式会社 画像処理装置
EP3905656A4 (en) * 2018-12-27 2022-02-23 Sony Semiconductor Solutions Corporation IMAGE PROCESSING DEVICE

Also Published As

Publication number Publication date
US10979653B2 (en) 2021-04-13
JP6759680B2 (ja) 2020-09-23
US20200228728A1 (en) 2020-07-16
JP2017199995A (ja) 2017-11-02

Similar Documents

Publication Publication Date Title
JP3770271B2 (ja) 画像処理装置
US8760526B2 (en) Information processing apparatus and method for correcting vibration
JP6087671B2 (ja) 撮像装置およびその制御方法
WO2017187691A1 (ja) 画像処理装置、撮像装置、画像処理方法、および、プログラム
JP2012037779A (ja) 防振制御装置及びその制御方法、及び、防振制御装置を搭載した撮像装置
WO2008032442A1 (fr) Dispositif de traitement d'images, caméra électronique et programme de traitement d'images
JP2011029735A (ja) 画像処理装置、撮像装置及び画像処理方法
JP2011029735A5 (ja)
JP2013165487A (ja) 画像処理装置、撮像装置、およびプログラム
JP2014039223A5 (ja) 画像処理装置、その制御方法、および制御プログラム
JP2008277896A (ja) 撮像装置および撮像方法
JP4947576B2 (ja) 撮像装置、ぶれ補正方法及び撮像方法
JP5211589B2 (ja) 画像処理装置、電子カメラ、および画像処理プログラム
JP4715366B2 (ja) 複数画像合成方法及び複数画像合成装置
JP3564247B2 (ja) 画像動き補正装置
JP6282133B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP6223161B2 (ja) 画像処理装置およびそれを備えた撮像装置、画像処理方法
JP2011114486A (ja) 撮像装置
JP2012199803A (ja) 撮像装置、及びその制御方法、プログラム
US20180302589A1 (en) Moving image reproduction apparatus having function of correcting camera shake during moving image reproduction, method of controlling the same, and storage medium
JP6730423B2 (ja) 画像処理装置、画像処理方法および画像処理プログラム
JP2003078808A (ja) 動きベクトル検出装置および方法、手振れ補正装置および方法、並びに撮像装置
JP2015080157A (ja) 画像処理装置、画像処理方法及びプログラム
JP4619895B2 (ja) 撮像装置、画像処理装置、撮像方法、及び画像処理方法
JP2015195497A (ja) 撮像装置、その制御方法、および制御プログラム

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788981

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788981

Country of ref document: EP

Kind code of ref document: A1