WO2017187581A1 - 電動機及び空気調和機 - Google Patents

電動機及び空気調和機 Download PDF

Info

Publication number
WO2017187581A1
WO2017187581A1 PCT/JP2016/063296 JP2016063296W WO2017187581A1 WO 2017187581 A1 WO2017187581 A1 WO 2017187581A1 JP 2016063296 W JP2016063296 W JP 2016063296W WO 2017187581 A1 WO2017187581 A1 WO 2017187581A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
resin
yoke
axial direction
rotor
Prior art date
Application number
PCT/JP2016/063296
Other languages
English (en)
French (fr)
Inventor
山本 峰雄
及川 智明
石井 博幸
洋樹 麻生
隼一郎 尾屋
優人 浦邊
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201690000351.5U priority Critical patent/CN208599186U/zh
Priority to JP2018514039A priority patent/JP6524342B2/ja
Priority to PCT/JP2016/063296 priority patent/WO2017187581A1/ja
Publication of WO2017187581A1 publication Critical patent/WO2017187581A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to an electric motor including a rotor having a rotor magnet and an air conditioner including the electric motor.
  • the rotor described in Patent Document 1 includes an annular rotor magnet and an annular position detection magnet disposed at one end of the rotor magnet.
  • the rotor magnet includes an annular yoke formed from a resin containing soft magnetic powder or ferrite powder, and an annular resin magnet portion formed on the outer peripheral surface of the yoke and formed from a resin containing rare earth magnetic powder.
  • the yoke is provided with a plurality of grooves extending radially from the inner peripheral surface of the yoke to the outer peripheral surface of the yoke on one end surface thereof.
  • the plurality of grooves serve as an injection path for the resin containing the rare earth magnetic powder, and are filled with a plurality of rib-like runners.
  • the resin magnet portion has, on one end surface thereof, a plurality of pedestals on which position detection magnets are placed, and a plurality of protrusions that are respectively arranged outside the plurality of pedestals and hold the position detection magnets from the outside.
  • the plurality of bases and the plurality of protrusions are formed via the plurality of rib-like runners described above.
  • the present invention has been made in view of the above, and an object thereof is to obtain an electric motor capable of reducing the amount of rare earth magnetic powder used for a rotor magnet.
  • an electric motor includes an annular first magnet and position detection arranged at one end of the first magnet in the axial direction of the first magnet. And a first annular layer formed of a resin containing at least one of a soft magnetic powder and a ferrite powder. A second annular layer disposed on the outer peripheral surface of the first annular layer and formed of a resin containing rare earth magnetic powder, the first annular layer being a periphery of the first magnet. An end surface having a plurality of grooves arranged in a direction is provided in the axial direction, and each of the plurality of grooves extends from an inner peripheral surface of the first annular layer to an outer peripheral surface of the first annular layer.
  • the second annular layer has a plurality of rib portions arranged in the plurality of grooves and extending from an inner peripheral surface of the second annular layer, and the length of each of the plurality of rib portions in the radial direction is , Smaller than the length of each of the plurality of grooves in the radial direction.
  • FIG. 3 is a longitudinal sectional view showing the configuration of the electric motor according to the first embodiment. The figure which shows an example of a structure of the air conditioner which concerns on Embodiment 2.
  • FIG. 3 is a longitudinal sectional view showing the configuration of the electric motor according to the first embodiment. The figure which shows an example of a structure of the air conditioner which concerns on Embodiment 2.
  • FIG. 1 is a perspective view showing a configuration of a yoke in the present embodiment
  • FIG. 2 is another perspective view showing a configuration of the yoke in the present embodiment
  • FIG. 3 is a configuration of a rotor magnet in the present embodiment
  • FIG. 4 is another perspective view showing the configuration of the rotor magnet in the present embodiment
  • FIG. 5 is a perspective view showing the configuration of the rotor magnet with a runner in the present embodiment.
  • FIG. 7 is a perspective view showing a method for assembling the rotor according to the present embodiment
  • FIG. 7 is a perspective view showing a configuration of the rotor according to the present embodiment.
  • the yoke 1 is a first annular layer.
  • the yoke 1 is formed from a resin containing at least one of soft magnetic powder and ferrite powder.
  • the resin is a thermoplastic resin, for example, nylon.
  • the yoke 1 is obtained by injection molding a resin containing at least one of soft magnetic powder and ferrite powder.
  • the yoke 1 has a cylindrical portion 2 that is a first cylindrical portion.
  • the cylindrical portion 2 has end surfaces 3a and 3b which are first and second end surfaces that are spaced apart from each other in the axial direction. End surfaces 3 a and 3 b are end surfaces of the cylindrical portion 2.
  • the end surface 3a faces the sensor magnet 22 described later in the axial direction.
  • the cylindrical portion 2 has an outer peripheral surface 4a and an inner peripheral surface 4b that are spaced apart from each other in the radial direction.
  • the 1st cylindrical part does not need to be cylindrical, for example, an outer periphery may be a wave shape.
  • the “axial direction” is an axial direction of a rotor magnet 15 described later. Since the yoke 1 is arranged coaxially with the rotor magnet 15, the axial direction of the rotor magnet 15 is the axial direction of the yoke 1. The axial direction of the rotor magnet 15 is also the axial direction of the rotor 30 described later. Similarly, the “radial direction” is the radial direction of the rotor magnet 15, the radial direction of the yoke 1, and the radial direction of the rotor 30.
  • the yoke 1 has a plurality of pedestals 5 on the end surface 3a.
  • the plurality of pedestals 5 are arranged at equal intervals in the circumferential direction.
  • the “circumferential direction” is the circumferential direction of the rotor magnet 15, the circumferential direction of the yoke 1, and the circumferential direction of the rotor 30.
  • the plurality of pedestals 5 are respectively arranged at the positions of the plurality of magnetic poles.
  • the number of pedestals 5 is ten, and the number of magnetic poles of the rotor 30 is ten.
  • Sensor magnets 22 are placed on the plurality of bases 5.
  • the plurality of pedestals 5 are formed integrally with the cylindrical portion 2.
  • the yoke 1 has a plurality of protrusions 7 on the end surface 3a.
  • the protrusion 7 is disposed outside the base 5 in the radial direction.
  • the height of the protrusion 7 is larger than the height of the base 5.
  • the height of the protrusion 7 is a height from the end surface 3a in the axial direction. The same applies to the height of the base 5.
  • the protrusion 7 is formed integrally with the base 5.
  • the yoke 1 has a plurality of connecting portions 6 on the end surface 3a.
  • the connection part 6 is arrange
  • Two pedestals 5 adjacent to each other in the circumferential direction are a first pedestal and a second pedestal, respectively.
  • the projection 7 arranged outside the first pedestal in the radial direction is a first projection
  • the projection 7 arranged outside the second pedestal in the radial direction is a second projection.
  • the plurality of connecting portions 6 and the plurality of pedestals 5 are alternately arranged in the circumferential direction, and the plurality of connecting portions 6 connect the plurality of pedestals 5 together.
  • the plurality of connecting portions 6 are formed integrally with the plurality of bases 5.
  • the plurality of bases 5 are reinforced by a plurality of connecting portions 6. Thereby, the quality of the yoke 1 can be improved.
  • the height of the connecting portion 6 is smaller than the height of the pedestal 5.
  • the height of the connecting portion 6 is the height from the end surface 3a in the axial direction.
  • the connection part 6 is spaced apart from both the outer peripheral surface 4a and the inner peripheral surface 4b in the radial direction.
  • the connection part 6 is arrange
  • the connecting portion 6 is arcuate in plan view from the axial direction.
  • the yoke 1 has a plurality of recesses 8 on the outer peripheral edge of the end surface 3a. That is, the plurality of concave portions 8 are formed in the cylindrical portion 2.
  • the plurality of recesses 8 are arranged at equal intervals in the circumferential direction.
  • the recess 8 is disposed between the magnetic poles. That is, the recess 8 is disposed between the protrusions 7 adjacent to each other in the circumferential direction.
  • the concave portion 8 has a semicircular shape in plan view from the axial direction.
  • the recess 8 is formed with a certain depth in the axial direction from the end surface 3a.
  • the recess 8 is concave with respect to both the end surface 3a and the outer peripheral surface 4a.
  • the plurality of recesses 8 function as detents for the resin magnet portion 16 formed on the outer peripheral surface 4 a of the yoke 1.
  • the recess 8 is a first recess.
  • the yoke 1 has a plurality of recesses 10 arranged on the end surface 3b at equal intervals in the circumferential direction.
  • the recess 10 is disposed between the magnetic poles.
  • the recessed part 10 is arrange
  • the number of recesses 10 is equal to the number of magnetic poles.
  • the recess 10 is circular in plan view from the axial direction.
  • the recess 10 is a second recess.
  • a gate mark 10 a is disposed at the center of the recess 10.
  • the gate trace 10a is a processing trace of a gate port for injecting a resin containing at least one of soft magnetic powder and ferrite powder.
  • the gate port is disposed between the pedestals 5 in a plan view from the axial direction. Thereby, the position of the base 5 becomes a weld position, and it becomes possible to ensure a sufficient thickness on the base 5.
  • the recess 10 has such a depth that the gate mark 10a does not appear from the end face 3b. As a result, burrs remaining on the gate mark 10a are not exposed from the end face 3b, and the quality of the yoke 1 is improved.
  • the yoke 1 has a plurality of grooves 11 arranged at equal intervals in the circumferential direction on the end surface 3b.
  • the groove 11 is disposed between the recesses 10 adjacent to each other in the circumferential direction. That is, the plurality of grooves 11 and the plurality of recesses 10 are alternately arranged in the circumferential direction.
  • the groove 11 extends in the radial direction from the inner peripheral surface 4b to the outer peripheral surface 4a.
  • the plurality of grooves 11 extend radially from the center of the yoke 1 in a plan view from the axial direction.
  • the plurality of grooves 11 are arranged at the positions of the plurality of magnetic poles, respectively.
  • the groove 11 serves as a resin injection path containing rare earth magnetic powder.
  • a hollow portion is formed inside the yoke 1 by the inner peripheral surface 4b.
  • the inner peripheral surface 4b includes a tapered portion 4b1 disposed on the end surface 3a side and a straight portion 4b2 disposed on the end surface 3b side.
  • the taper portion 4b1 has a tapered shape in which the inner diameter decreases in the axial direction from the end surface 3a toward the end surface 3b.
  • the straight portion 4b2 has a constant inner diameter regardless of the position in the axial direction.
  • the taper part 4b1 is formed by a movable mold among molds not shown, and the straight part 4b2 is formed by a fixed mold among molds not shown.
  • the mold is a mold for forming the yoke 1.
  • the yoke 1 has a plurality of notches 12 on the inner periphery of the end surface 3b.
  • the plurality of notches 12 are arranged at equal intervals in the circumferential direction.
  • the notch 12 is disposed between the magnetic poles.
  • the notch 12 has a constant circumferential width and is inclined with respect to the axial direction.
  • the yoke 1 can be oriented anisotropically. That is, when the yoke 1 is formed, a magnet is arranged around the mold and an orientation magnetic field is applied to the yoke 1 so that the soft magnetic powder or ferrite powder contained in the yoke 1 is anisotropic with respect to the polar direction. Oriented. Since the magnetic flux is concentrated at the magnetic pole center due to the anisotropic orientation, the magnetic force can be increased.
  • the rotor magnet 15 includes a yoke 1 and a resin magnet portion 16 disposed on the outer peripheral surface 4 a of the yoke 1.
  • the rotor magnet 15 is annular.
  • Resin magnet portion 16 is a second annular layer.
  • the resin magnet part 16 is formed from resin containing rare earth magnetic powder.
  • the rare earth magnetic powder is, for example, samarium iron nitrogen (SmFeN) magnet powder or neodymium magnet powder.
  • the resin is a thermoplastic resin, such as nylon.
  • the resin magnet portion 16 is obtained by injection molding a resin containing rare earth magnetic powder.
  • the resin magnet portion 16 is integrally formed on the outer peripheral surface 4 a of the yoke 1.
  • a resin containing rare earth magnetic powder is referred to as a resin magnet.
  • the resin magnet part 16 has a cylindrical part 21 that is a second cylindrical part.
  • the cylindrical portion 21 has end surfaces 21a and 21b that are third and fourth end surfaces that are spaced apart from each other in the axial direction.
  • the end surface 21a is disposed at the position of the end surface 3a in the axial direction. That is, the end surface 21a is flush with the end surface 3a.
  • the end surface 21b is disposed at the position of the end surface 3b in the axial direction. That is, the end surface 21b is flush with the end surface 3b.
  • the cylindrical portion 21 has an outer peripheral surface 21c and an inner peripheral surface 21d that are spaced apart from each other in the radial direction.
  • Resin magnet portion 16 has a plurality of rib portions 20 connected to cylindrical portion 21.
  • the plurality of rib portions 20 are respectively disposed in the grooves 11.
  • the plurality of rib portions 20 are disposed at the positions of the plurality of magnetic poles, respectively.
  • the rib portion 20 extends inward from the inner peripheral surface 21d of the cylindrical portion 21 by a certain length in the radial direction.
  • the length of the rib portion 20 in the radial direction is smaller than the length of the groove 11 in the radial direction. That is, the rib part 20 has the front end surface 20a which does not reach the inner peripheral surface 4b of the yoke 1 in the radial direction.
  • the distal end surface 20a is disposed on the outer side in the radial direction than the inner peripheral surface 4b.
  • the resin magnet portion 16 has a plurality of convex portions 19 on the inner peripheral surface 21 d of the cylindrical portion 21.
  • the plurality of convex portions 19 are fitted with the plurality of concave portions 10 provided in the yoke 1, respectively.
  • the resin magnet portion 16 is formed integrally with the yoke 1 by placing the yoke 1 in a mold (not shown) and then injecting the resin magnet onto the yoke 1.
  • the mold is a mold for molding the resin magnet portion 16.
  • magnets are arranged around the mold and an orientation magnetic field is applied to the resin magnet part 16, so that the rare earth magnetic powder contained in the resin magnet part 16 is different from the polar direction. Oriented.
  • the movable side and fixed side molds have a core part into which the hollow part of the yoke 1 is inserted.
  • the yoke 1 is inserted into the core portion from the end surface 3a side, and is incorporated into the movable side mold.
  • the inner peripheral surface 4b of the yoke 1 has the straight portion 4b2.
  • the movable mold has a plurality of recesses into which the plurality of protrusions 7 of the yoke 1 are respectively fitted. Thereby, when applying an orientation magnetic field to the resin magnet part 16, the yoke 1 is positioned with respect to the position of the magnet that generates the orientation magnetic field.
  • a donut-shaped runner 17 serving as a resin magnet injection path is formed inside the yoke 1.
  • the donut-shaped runner 17 is formed on the end surfaces of the core portions of the movable side and fixed side molds.
  • the donut-shaped runner 17 has a plurality of resin injection portions 14 arranged at equal intervals in the circumferential direction.
  • the number of resin injection portions 14 is half the number of magnetic poles.
  • a plurality of rib-like runners 18 extend in the radial direction from the outer peripheral surface of the donut-like runner 17.
  • the number of rib-like runners 18 is the same as the number of grooves 11 and is the same as the number of magnetic poles.
  • the plurality of rib-like runners 18 are respectively disposed in the plurality of grooves 11.
  • the width of the rib-shaped runner 18 is equal to the width of the groove 11, and the height of the rib-shaped runner 18 is equal to the depth of the groove 11.
  • the plurality of rib-like runners 18 serve as resin magnet injection paths, similarly to the donut-like runner 17.
  • the injection state of the resin magnet is made uniform with respect to the magnetic poles, the state of magnetic field orientation is also made uniform, and the quality of the rotor magnet 15 can be improved.
  • the resin magnet flows into the outer peripheral surface 4a of the yoke 1 from the plurality of resin injection portions 14 through the donut-shaped runner 17 and the plurality of rib-shaped runners 18 in order. Thereby, the cylindrical part 21 is formed.
  • the resin magnet is filled in a plurality of recesses 8 provided on the end surface 3 a of the yoke 1.
  • a plurality of convex portions 19 that are respectively fitted to the plurality of concave portions 8 are formed on the inner peripheral surface 21 d of the cylindrical portion 21.
  • the resin magnet is integrally formed with the yoke 1, and the rotor magnet 15a with a runner shown in FIG. 5 is obtained. Thereafter, the rib-like runner 18 is cut, a part of the rib-like runner 18 remains in the groove 11 to become the rib portion 20, and the remaining portion of the rib-like runner 18 is removed together with the donut-like runner 17. Thus, the rotor magnet 15 shown in FIGS. 3 and 4 is obtained.
  • the axial direction runner is connected to the some resin injection
  • the total number of runners can be reduced by reducing the number of resin injection portions 14 to half the number of magnetic poles as compared to the case where the number of resin injection portions 14 is the number of magnetic poles.
  • the total amount of runners is reduced, so that the reuse ratio is reduced, the deterioration of the physical properties of the resin magnet is suppressed, and the quality of the product can be improved.
  • the physical properties of the resin magnet are mainly mechanical strength characteristics.
  • the rotor 30 includes a rotor magnet 15, a sensor magnet 22 that is an annular position detection magnet disposed at one end of the rotor magnet 15 in the axial direction, and a shaft 28 that passes through the rotor magnet 15 and the sensor magnet 22. And a resin portion 31 that integrates the rotor magnet 15, the sensor magnet 22, and the shaft 28.
  • the resin portion 31 is formed of a thermoplastic resin, and the thermoplastic resin is, for example, polybutylene terephthalate.
  • the rotor magnet 15 is a first magnet
  • the sensor magnet 22 is a second magnet.
  • Sensor magnet 22 is placed on a plurality of pedestals 5.
  • the sensor magnet 22 is arranged coaxially with the rotor magnet 15.
  • the sensor magnet 22 includes steps 25a and 25b at both ends of the inner peripheral surface in the axial direction.
  • the sensor magnet 22 has a symmetrical shape in the axial direction.
  • the steps 25a and 25b are covered by the resin portion 31 and serve as a retaining for the sensor magnet 22 in the axial direction.
  • the sensor magnet 22 includes a plurality of rib portions 26 arranged in the circumferential direction on the inner circumferential surface. A configuration in which only one of the steps 25a and 25b is provided is also possible.
  • the plurality of rib portions 26 are covered with the resin portion 31 and serve as a rotation stopper in the circumferential direction of the sensor magnet 22.
  • the resin portion 31 is arranged in the circumferential direction with the cylindrical portion 23 formed on the outer peripheral surface of the shaft 28, the cylindrical portion 24 formed on the inner peripheral surface of the yoke 1, and the cylindrical portion 23 and the cylindrical portion 24 have a diameter.
  • a plurality of rib portions 32 connected in the direction and a plurality of gate convex portions 33 connected to the cylindrical portion 24 and disposed between the adjacent rib portions 32 are provided.
  • the gate convex portion 33 extends in the radial direction with a length that does not reach the cylindrical portion 24 from the cylindrical portion 23.
  • the gate protrusion 33 serves as an injection port for thermoplastic resin.
  • the thermoplastic resin is directly injected from the gate convex portion 33 onto the outer peripheral surface of the shaft 28, and can fill the cylindrical portion 23 earliest. Thereby, the weld strength of the cylindrical portion 23 can be improved, and the quality of the rotor 30 can be improved.
  • the number of ribs 32 and the number of gate protrusions 33 are each half the number of magnetic poles.
  • the number, thickness, and length of the rib portions 32 are not limited to the illustrated example. The same applies to the gate protrusion 33.
  • the resin portion 31 fills a plurality of gaps formed between the plurality of connecting portions 6 and the sensor magnet 22.
  • the resin portion 31 fills the protrusion 7 by a certain height from the end surface 3a in the axial direction. A part of the protrusion 7 is exposed from the resin portion 31. Further, the resin portion 31 connects the protrusions 7 adjacent to each other in the circumferential direction. Since the plurality of protrusions 7 are exposed from the resin portion 31, the plurality of protrusions 7 can also be used for positioning when the rotor 30 is magnetized.
  • the rotor magnet 15 is installed in the lower mold of the vertical molding machine.
  • the rotor magnet 15 is incorporated into the lower mold from the end surface 3b side where the notch 12 is provided.
  • the rotor magnet 15 is incorporated into the lower mold such that the notch 12 is fitted into the convex portion of the mold. Thereby, the coaxiality of the rotor magnet 15 and the shaft 28 is ensured after molding.
  • the shaft 28 is installed at the center of the rotor magnet 15, the sensor magnet 22 is installed on the plurality of bases 5, and the sensor magnet 22 is held by the plurality of protrusions 7.
  • the shaft 28, and the sensor magnet 22 are assembled in the lower mold, the upper mold and the lower mold of the mold are combined, and a thermoplastic resin is injected into the mold.
  • thermoplastic resin reaches the rotor magnet 15 and the sensor magnet 22 through the plurality of gate convex portions 33, the cylindrical portion 23, the plurality of rib portions 32, and the cylindrical portion 24 in order.
  • the thermoplastic resin passes through a plurality of gaps formed between the plurality of connecting portions 6 and the sensor magnet 22, and is filled on the outer peripheral sides of the plurality of bases 5 and the plurality of connecting portions 6.
  • the thermoplastic resin is filled in the axial direction so as to fill the protrusions 7 by a certain height from the end surface 3a.
  • the protrusion 7 is not embedded in the thermoplastic resin, and a part thereof is exposed from the thermoplastic resin.
  • thermoplastic resin is filled in the plurality of gaps as described above, and is filled so as to connect the protrusions 7 adjacent to each other in the circumferential direction. That is, the plurality of protrusions 7 are connected to each other by the resin portion 31.
  • Such a resin part 31 improves the transmission of the rotational torque of the rotor magnet 15 to the shaft 28.
  • thermoplastic resin is filled so as to fill the plurality of recesses 10 and the plurality of bases 5.
  • transmission of torque is improved and the resin portion 31 is prevented from rotating with respect to the rotor magnet 15.
  • thermoplastic resin is molded and contracted in the radial direction, the resin portion 31 is caught by the plurality of recesses 10 and the plurality of pedestals 5, the generation of gaps is suppressed, and the reduction in bonding force is suppressed. That is, by using the plurality of recesses 10 and the plurality of pedestals 5, it is not necessary to add a structure that suppresses a decrease in coupling force, so that cost and noise can be reduced.
  • FIG. 8 is a longitudinal sectional view showing the configuration of the electric motor according to the present embodiment.
  • the electric motor 40 includes an annular stator 41 and a rotor 30 disposed inside the stator 41.
  • the stator 41 is covered with a resin portion 42.
  • the resin part 42 is formed from a thermosetting resin.
  • the thermosetting resin is, for example, a bulk molding compound.
  • Bearings 44 a and 44 b are attached to the shaft 28 of the rotor 30.
  • the bearing 44 a is fitted into a bracket 43 attached to the resin portion 42.
  • the bearing 44 b is attached to the resin portion 42.
  • the plurality of pedestals 5, the plurality of protrusions 7, and the plurality of connecting portions 6 are made of resin containing at least one of soft magnetic powder and ferrite powder as part of the yoke 1. Is formed. Thereby, the amount of rare earth magnetic powder used for the rotor magnet 15 can be reduced, and the manufacturing cost of the rotor 30 can be reduced.
  • a plurality of grooves 11 serving as resin magnet injection paths are formed in the end surface 3b of the yoke 1, and the rib-like runners 18 formed in the grooves 11 are cut out in the paths, so that the rib portions 20 is formed.
  • the amount of rare earth magnetic powder used for the rotor magnet 15 can be reduced.
  • the injection path of the resin magnet is not formed in the base 5, the structure of the base 5 is simplified, the structure of the mold is simplified, and the manufacturing cost is reduced.
  • the height of the connecting portion 6 is lower than the height of the base 5.
  • the connecting portion 6 is disposed at the center of the end surface 3a in the radial direction. Thereby, the thickness of the part of the inner peripheral side of the connection part 6 in the resin part 31 and the thickness of the part of the outer peripheral side of the connection part 6 in the resin part 31 become equal, and sink marks at the time of molding are suppressed, The rotor 30 is firmly integrated, and the quality of the rotor 30 can be improved.
  • the resin portion 31 fills the protrusion 7 by a certain height from the end surface 3a in the axial direction.
  • the resin part 31 connects the plurality of protrusions 7 to each other. Thereby, the rotor 30 is firmly integrated and the quality of the rotor 30 can be improved.
  • a plurality of recesses 8 are formed on the outer peripheral edge of the end surface 3a of the yoke 1.
  • a resin magnet is injected into the plurality of recesses 8, and the plurality of protrusions 19 that are a part of the resin magnet portion 16 are respectively connected to the plurality of recesses 8. Mating. Thereby, the resin magnet part 16 is prevented from rotating in the circumferential direction with respect to the yoke 1.
  • the plurality of concave portions 8 and the plurality of convex portions 19 are effective for preventing rotation and transmitting torque, and the quality of the rotor 30 can be improved.
  • the resin magnet is filled in the plurality of grooves 11 to form a plurality of rib portions 20.
  • the plurality of rib portions 20 serve to prevent the resin magnet portion 16 from rotating with respect to the yoke 1, thereby improving the torque transmission of the rotor 30. Further, the plurality of rib portions 20 suppress the positional deviation of the resin magnet portion 16 in the axial direction.
  • the plurality of protrusions 7 can be used for positioning when the rotor 30 is magnetized.
  • the height of the rib-like runner 18 is equal to the depth of the groove 11. Therefore, the upper end surface of the rib portion 20 obtained by cutting off a part of the rib-like runner 18 is disposed at the position of the end surface 3b of the yoke 1 in the axial direction. Further, the end surface 21b of the resin magnet portion 16 is disposed at the position of the end surface 3b of the yoke 1 in the axial direction. Therefore, the resin magnet portion 16 does not have a shape that protrudes outward from the end surface 3b of the yoke 1 in the axial direction. Thereby, when the rotor magnet 15, the sensor magnet 22, and the shaft 28 are integrated with the thermoplastic resin, the thickness of the resin provided outside the end surface 3b of the yoke 1 in the axial direction can be suppressed. Cost can be reduced.
  • the plurality of grooves 11 of the yoke 1 are used as resin magnet injection paths. Thereby, the injection
  • FIG. FIG. 9 is a diagram illustrating an example of the configuration of the air conditioner according to the present embodiment.
  • the air conditioner 300 includes an indoor unit 301 and an outdoor unit 302 connected to the indoor unit 301.
  • the indoor unit 301 has a blower 303.
  • the outdoor unit 302 includes a blower 304 and a compressor 305. Blowers 303 and 304 and compressor 305 each have the electric motor of the first embodiment. Thereby, cost reduction and quality improvement of the air conditioner 300 can be achieved.
  • the electric motor of Embodiment 1 can also be mounted on electrical equipment other than the air conditioner, and in this case as well, the same effects as in this embodiment can be obtained.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

電動機の回転子は、回転子マグネット15を有する。回転子マグネット15は、ヨーク1と、ヨーク1の外側に配置され、希土類磁性粉末を含む樹脂から形成された樹脂マグネット部16とを有する。ヨーク1の端面3b上には、周方向に交互に配列された複数の溝11及び複数の凹部10を有する。溝11は、ヨーク1の内周面4bから外周面4aまで径方向に伸びる。樹脂マグネット部16は、複数の溝11内にそれぞれ配置された複数のリブ部20を有する。径方向におけるリブ部20の長さは、径方向における溝11の長さよりも小さい。

Description

電動機及び空気調和機
 本発明は、回転子マグネットを有する回転子を備えた電動機及び当該電動機を備えた空気調和機に関する。
 特許文献1に記載された回転子は、環状の回転子マグネットと、回転子マグネットの一端に配置された環状の位置検出用マグネットとを備える。回転子マグネットは、軟磁性粉末又はフェライト粉末を含む樹脂から形成された環状のヨークと、ヨークの外周面に形成され、希土類磁性粉末を含む樹脂から形成された環状の樹脂マグネット部とを備える。
 ここで、ヨークはその一端面上に、ヨークの内周面からヨークの外周面まで放射状に伸びる複数の溝を備える。複数の溝は、樹脂マグネット部が形成される際に、希土類磁性粉末を含む樹脂の注入経路となり、それぞれ複数のリブ状ランナーにより埋められる。
 一方、樹脂マグネット部はその一端面上に、位置検出用マグネットが載置される複数の台座と、複数の台座の外側にそれぞれ配置され、位置検出用マグネットを外側から保持する複数の突起とを備える。複数の台座及び複数の突起は、上記した複数のリブ状ランナーを介して形成される。
特開2011-120334号公報
 一般に、希土類磁性粉末の使用量が増加するとコストが増大するので、希土類磁性粉末の使用量の削減が望まれている。
 本発明は、上記に鑑みてなされたものであって、回転子マグネットに使用される希土類磁性粉末の使用量の削減が可能な電動機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る電動機は、環状の第1のマグネットと前記第1のマグネットの軸方向における前記第1のマグネットの一端に配置された位置検出用の環状の第2のマグネットとを有する回転子を備えた電動機であって、前記第1のマグネットは、軟磁性粉末及びフェライト粉末の少なくとも一方を含む樹脂から形成された第1の環状層と、前記第1の環状層の外周面上に配置され、希土類磁性粉末を含む樹脂から形成された第2の環状層とを有し、前記第1の環状層は、前記第1のマグネットの周方向に配列された複数の溝が形成された端面を前記軸方向に有し、前記複数の溝の各々は、前記第1の環状層の内周面から前記第1の環状層の外周面まで前記第1のマグネットの径方向に伸び、前記第2の環状層は、前記複数の溝内に配置され前記第2の環状層の内周面から伸びる複数のリブ部を有し、前記径方向における前記複数のリブ部の各々の長さは、前記径方向における前記複数の溝の各々の長さよりも小さい。
 本発明によれば、回転子マグネットに使用される希土類磁性粉末の使用量の削減が可能になるという効果を奏する。
実施の形態1におけるヨークの構成を示す斜視図 実施の形態1におけるヨークの構成を示す別の斜視図 実施の形態1における回転子マグネットの構成を示す斜視図 実施の形態1における回転子マグネットの構成を示す別の斜視図 実施の形態1におけるランナー付の回転子マグネットの構成を示す斜視図 実施の形態1に係る回転子の組立て方法を示す斜視図 実施の形態1に係る回転子の構成を示す斜視図 実施の形態1に係る電動機の構成を示す縦断面図 実施の形態2に係る空気調和機の構成の一例を示す図
 以下に、本発明の実施の形態に係る電動機及び空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本実施の形態におけるヨークの構成を示す斜視図、図2は、本実施の形態におけるヨークの構成を示す別の斜視図、図3は、本実施の形態における回転子マグネットの構成を示す斜視図、図4は、本実施の形態における回転子マグネットの構成を示す別の斜視図、図5は、本実施の形態におけるランナー付の回転子マグネットの構成を示す斜視図、図6は、本実施の形態に係る回転子の組立て方法を示す斜視図、図7は、本実施の形態に係る回転子の構成を示す斜視図である。
 まず、主に図1及び図2を参照して、ヨーク1の構成について説明する。ヨーク1は、第1の環状層である。ヨーク1は、軟磁性粉末及びフェライト粉末の少なくとも一方を含む樹脂から形成される。ここで、樹脂は熱可塑性樹脂であり、例えばナイロンである。ヨーク1は、軟磁性粉末及びフェライト粉末の少なくとも一方を含む樹脂を射出成形して得られる。
 ヨーク1は、第1の筒状部である円筒部2を有する。円筒部2は、軸方向に互いに離間して配置された第1及び第2の端面である端面3a,3bを有する。端面3a,3bは円筒部2の端面である。端面3aは、後述するセンサマグネット22と軸方向に対向する。円筒部2は、径方向に互いに離間して配置された外周面4a及び内周面4bを有する。なお、第1の筒状部は円筒状でなくてもよく、例えば外周が波形状でもよい。
 ここで、「軸方向」は、後述する回転子マグネット15の軸方向である。ヨーク1は回転子マグネット15と同軸で配置されるので、回転子マグネット15の軸方向はヨーク1の軸方向である。また、回転子マグネット15の軸方向は、後述する回転子30の軸方向でもある。同様に、「径方向」は、回転子マグネット15の径方向であり、ヨーク1の径方向でもあり、回転子30の径方向でもある。
 ヨーク1は、端面3a上に複数の台座5を有する。複数の台座5は、周方向に等間隔で配列される。ここで、「周方向」は、回転子マグネット15の周方向であり、ヨーク1の周方向でもあり、回転子30の周方向でもある。
 複数の台座5は、それぞれ複数の磁極の位置に配置される。図示例では、台座5の個数は10個であり、回転子30の磁極数は10個である。複数の台座5上には、センサマグネット22が載置される。複数の台座5は、円筒部2と一体に形成される。
 ヨーク1は、端面3a上に複数の突起7を有する。突起7は、径方向において台座5の外側に配置される。突起7の高さは、台座5の高さよりも大きい。ここで、突起7の高さは、軸方向における端面3aからの高さである。これは、台座5の高さについても同様である。突起7は、台座5と一体に形成される。
 ヨーク1は、端面3a上に複数の連結部6を有する。連結部6は、周方向に互いに隣接する台座5間に配置され、周方向に互いに隣接する台座5を連結する。周方向に互いに隣接する2つの台座5はそれぞれ第1の台座、第2の台座である。径方向において第1の台座の外側に配置された突起7は第1の突起、径方向において第2の台座の外側に配置された突起7は第2の突起である。複数の連結部6及び複数の台座5は周方向に交互に配列され、複数の連結部6は複数の台座5を一体に連結する。複数の連結部6は、複数の台座5と一体に形成される。複数の台座5は、複数の連結部6により補強される。これにより、ヨーク1の品質の向上が図られる。
 連結部6の高さは、台座5の高さよりも小さい。ここで、連結部6の高さは、軸方向における端面3aからの高さである。また、連結部6は、径方向において外周面4a及び内周面4bの双方から離間して配置される。具体的には、連結部6は、径方向において端面3aの中央に配置される。連結部6は、軸方向からの平面視で弧状である。
 ヨーク1は、端面3aの外周縁に複数の凹部8を有する。すなわち、複数の凹部8は円筒部2に形成される。複数の凹部8は、周方向に等間隔で配列される。凹部8は、磁極間に配置される。すなわち、凹部8は、周方向に互いに隣接する突起7間に配置される。凹部8は、軸方向からの平面視で半円形状である。凹部8は、端面3aから軸方向に一定の深さで形成される。凹部8は、端面3a及び外周面4aの双方に対して凹状である。後述するように、複数の凹部8は、ヨーク1の外周面4aに形成される樹脂マグネット部16の回り止めとして機能する。凹部8は第1の凹部である。
 ヨーク1は、端面3b上に周方向に等間隔で配列された複数の凹部10を有する。凹部10は、磁極間に配置される。凹部10は、軸方向からの平面視で、台座5間に配置される。凹部10の個数は磁極数に等しい。凹部10は、軸方向からの平面視で、円形である。凹部10は第2の凹部である。凹部10の中心には、ゲート跡10aが配置される。ゲート跡10aは、軟磁性粉末及びフェライト粉末の少なくとも一方を含む樹脂を注入するためのゲート口の処理跡である。このようにゲート口の個数を磁極数に等しくすることで、上記した樹脂の注入状態が磁極に対して均一化され、磁場の配向状態も均一化されて、ヨーク1の品質が向上する。
 また、ゲート口は、軸方向からの平面視で、台座5間に配置される。これにより、台座5の位置がウェルド位置となり、台座5に十分な肉厚を確保することが可能となる。
 凹部10は、ゲート跡10aが端面3bから表出しないような深さを有する。これにより、ゲート跡10aに残るバリが端面3bから表出せず、ヨーク1の品質が向上する。
 ヨーク1は、端面3b上に周方向に等間隔で配列された複数の溝11を有する。溝11は、周方向に互いに隣接する凹部10間に配置される。すなわち、複数の溝11及び複数の凹部10は、周方向に交互に配列される。溝11は、内周面4bから外周面4aまで径方向に伸びている。複数の溝11は、軸方向からの平面視で、ヨーク1の中心から放射状に伸びている。複数の溝11は、それぞれ複数の磁極の位置に配置される。後述するように、溝11は、樹脂マグネット部16をヨーク1の外周面4aに形成する際に、希土類磁性粉末を含む樹脂の注入経路となる。
 ヨーク1の内側には内周面4bによって中空部が形成される。内周面4bは、端面3a側に配置されるテーパ部4b1と端面3b側に配置されるストレート部4b2とからなる。ここで、テーパ部4b1は、軸方向に端面3aから端面3bに向かうにつれて内径が縮小するテーパ状である。ストレート部4b2は、軸方向の位置によらず内径が一定である。テーパ部4b1は図示しない金型のうち可動側金型により形成され、ストレート部4b2は図示しない金型のうち固定側金型で形成される。ここで、金型はヨーク1の成形用の金型である。
 ヨーク1は、端面3bの内周縁に複数の切欠き12を有する。複数の切欠き12は、周方向に等間隔で配列される。切欠き12は、磁極間に配置される。切欠き12は、周方向の幅が一定であり、軸方向に対して傾斜している。
 ヨーク1は、極異方に配向させることができる。すなわち、ヨーク1の成形時に、金型の周囲に磁石を配置し、ヨーク1に配向磁場を印加することで、ヨーク1に含まれる軟磁性粉末又はフェライト粉末は極方向に対して異方的に配向される。極異方の配向により、磁極中心に磁束が集中するので、磁力を高めることが可能となる。
 次に、主に図3及び図4を参照して、回転子マグネット15の構成について説明する。回転子マグネット15は、ヨーク1と、ヨーク1の外周面4a上に配置された樹脂マグネット部16とを有する。回転子マグネット15は環状である。
 樹脂マグネット部16は、第2の環状層である。樹脂マグネット部16は、希土類磁性粉末を含む樹脂から形成される。ここで、希土類磁性粉は、例えばサマリウム鉄窒素(SmFeN)磁石粉末又はネオジム磁石粉末である。樹脂は熱可塑性樹脂であり、例えばナイロンである。樹脂マグネット部16は、希土類磁性粉末を含む樹脂を射出成形して得られる。樹脂マグネット部16は、ヨーク1の外周面4a上に一体に成形される。以下では、希土類磁性粉末を含む樹脂を樹脂マグネットという。
 樹脂マグネット部16は、第2の筒状部である円筒部21を有する。円筒部21は、軸方向に互いに離間して配置された第3及び第4の端面である端面21a,21bを有する。端面21aは、軸方向において端面3aの位置に配置される。すなわち、端面21aは端面3aと面一である。端面21bは、軸方向において端面3bの位置に配置される。すなわち、端面21bは端面3bと面一である。円筒部21は、径方向に互いに離間して配置された外周面21c及び内周面21dを有する。
 樹脂マグネット部16は、円筒部21に連結された複数のリブ部20を有する。複数のリブ部20は、それぞれ溝11内に配置される。複数のリブ部20は、それぞれ複数の磁極の位置に配置される。リブ部20は、径方向において円筒部21の内周面21dから内向きに一定の長さ伸びている。径方向におけるリブ部20の長さは、径方向における溝11の長さよりも小さい。すなわち、リブ部20は、径方向にヨーク1の内周面4bまで達しない先端面20aを有する。換言すれば、先端面20aは、内周面4bよりも径方向における外側に配置される。
 樹脂マグネット部16は、円筒部21の内周面21dに複数の凸部19を有する。複数の凸部19は、それぞれヨーク1に設けられた複数の凹部10と嵌合する。
 次に、図1から図5を参照して、回転子マグネット15の製造方法の概略について説明する。樹脂マグネット部16は、ヨーク1を図示しない金型内に収めた後、ヨーク1に樹脂マグネットを射出することでヨーク1と一体的に成形される。ここで、金型は樹脂マグネット部16の成形用の金型である。
 樹脂マグネット部16を成形する際に、金型の周囲に磁石を配置し、樹脂マグネット部16に配向磁場を印加することで、樹脂マグネット部16に含まれる希土類磁性粉末は極方向に対して異方的に配向される。
 金型のうち可動側及び固定側金型は、ヨーク1の中空部が挿入される芯部を有する。ヨーク1は、端面3a側から芯部に挿通され、可動側金型に組み込まれる。上記したように、ヨーク1の内周面4bはストレート部4b2を有する。ストレート部4b2と芯部との隙間を抑制することで、当該隙間への樹脂マグネットの漏れが抑制され、回転子マグネット15の品質が向上する。
 なお、可動側金型は、ヨーク1の複数の突起7がそれぞれ嵌め合される複数の凹部を有する。これにより、樹脂マグネット部16に配向磁場を印加する際に、配向磁場を生成する磁石の位置に対するヨーク1の位置決めがされる。
 ヨーク1の内側には、樹脂マグネットの注入経路となるドーナツ状ランナー17が形成される。ドーナツ状ランナー17は、可動側及び固定側金型の芯部の端面上に形成される。ドーナツ状ランナー17は、周方向に等間隔で配列された複数の樹脂注入部14を有する。樹脂注入部14の個数は磁極数の半分である。
 ドーナツ状ランナー17の外周面からは複数のリブ状ランナー18が径方向に延出している。リブ状ランナー18の個数は、溝11の個数と同じであり、磁極数と同じである。複数のリブ状ランナー18は、それぞれ複数の溝11内に配置される。リブ状ランナー18の幅は溝11の幅に等しく、リブ状ランナー18の高さは溝11の深さに等しい。複数のリブ状ランナー18は、ドーナツ状ランナー17と同様に、樹脂マグネットの注入経路となる。リブ状ランナー18の個数を磁極数に等しくすることで、磁極に対して樹脂マグネットの注入状態が均一化され、磁場の配向の状態も均一化され、回転子マグネット15の品質の向上が図れる。
 樹脂マグネットは、複数の樹脂注入部14からドーナツ状ランナー17及び複数のリブ状ランナー18を順に経てヨーク1の外周面4a上に流れ込む。これにより、円筒部21が形成される。また、樹脂マグネットは、ヨーク1の端面3aに設けられた複数の凹部8内に充填される。これにより、円筒部21の内周面21dには、複数の凹部8にそれぞれ嵌合する複数の凸部19が形成される。
 以上のようにして、樹脂マグネットがヨーク1に一体に成形され、図5に示すランナー付の回転子マグネット15aが得られる。その後、リブ状ランナー18は切断され、リブ状ランナー18の一部は溝11内に残ってリブ部20となり、リブ状ランナー18の残部はドーナツ状ランナー17とともに除去される。こうして、図3及び図4に示す回転子マグネット15が得られる。
 なお、図示は省略しているが、複数の樹脂注入部14にはそれぞれ軸方向ランナーがつながっている。図示例のように、樹脂注入部14の個数を磁極数の半分にすることで、樹脂注入部14の個数を磁極数にする場合に比べて、ランナー総量を低減することができる。また、製品に使用されないランナーを再利用する場合、ランナー総量が減ることにより、再利用比率が減少し、樹脂マグネットの物性の低下が抑制され、製品の品質の向上が図れる。ここで、樹脂マグネットの物性は主に機械的強度特性である。
 次に、主に図6及び図7を参照して、本実施の形態に係る回転子30の構成について説明する。回転子30は、回転子マグネット15と、軸方向における回転子マグネット15の一端に配置された環状の位置検出用マグネットであるセンサマグネット22と、回転子マグネット15及びセンサマグネット22を貫通するシャフト28と、回転子マグネット15、センサマグネット22及びシャフト28を一体にする樹脂部31とを備える。ここで、樹脂部31は熱可塑性樹脂から形成され、熱可塑性樹脂は例えばポリブチレンテレフタレートである。回転子マグネット15は第1のマグネット、センサマグネット22は第2のマグネットである。
 センサマグネット22は、複数の台座5上に載置される。センサマグネット22は、回転子マグネット15と同軸で配置される。センサマグネット22は、軸方向における内周面の両端部に段差25a,25bを備える。センサマグネット22は、軸方向に対称な形状を有する。段差25a,25bは、樹脂部31によって覆われて、センサマグネット22の軸方向の抜け止めとなる。センサマグネット22は、周方向に配列された複数のリブ部26を内周面に備える。なお、段差25a,25bのうちいずれか一方のみを設ける構成も可能である。複数のリブ部26は、樹脂部31によって覆われて、センサマグネット22の周方向の回り止めとなる。
 樹脂部31は、シャフト28の外周面に形成される円筒部23と、ヨーク1の内周面に形成される円筒部24と、周方向に配列され、円筒部23と円筒部24とを径方向に連結する複数のリブ部32と、円筒部24に連結され、各々が互いに隣接するリブ部32間に配置される複数のゲート凸部33とを有する。
 ゲート凸部33は、円筒部23から円筒部24に達しない長さで径方向に延びている。ゲート凸部33は、熱可塑性樹脂の注入口となる。熱可塑性樹脂は、ゲート凸部33からシャフト28の外周面に直接射出され、円筒部23を最も早く充填させることができる。これにより、円筒部23のウェルド強度の向上が図れ、回転子30の品質の向上が図られる。
 図示例では、リブ部32の個数とゲート凸部33の個数は、それぞれ磁極数の半分である。なお、リブ部32の個数、厚さ及び長さは図示例に限定されない。ゲート凸部33についても同様である。
 樹脂部31は、複数の連結部6とセンサマグネット22との間に形成される複数の隙間を埋める。また、樹脂部31は、軸方向に端面3aから一定の高さだけ突起7を埋める。突起7の一部は樹脂部31から表出している。さらに、樹脂部31は、周方向に互いに隣接する突起7同士を連結する。複数の突起7は樹脂部31から表出するため、複数の突起7は回転子30の着磁の際の位置決めにも利用することができる。
 次に、回転子30の製造方法の概略について説明する。まず、縦型成形機の金型の下型内に、回転子マグネット15が設置される。回転子マグネット15は、切欠き12が設けられた端面3b側から下型内に組み込まれる。この際、回転子マグネット15は、切欠き12が金型の凸部に嵌め合されるようにして下型内に組み込まれる。これにより、成形後に回転子マグネット15とシャフト28との同軸性が確保される。
 続いて、シャフト28が回転子マグネット15の中央に設置され、センサマグネット22が複数の台座5上に設置され、センサマグネット22は複数の突起7によって保持される。回転子マグネット15、シャフト28及びセンサマグネット22が下型内に組み込まれた後、金型の上型と下型とが合わせられ、金型内に熱可塑性樹脂が注入される。
 熱可塑性樹脂は、複数のゲート凸部33、円筒部23、複数のリブ部32及び円筒部24を順に経て、回転子マグネット15及びセンサマグネット22に達する。熱可塑性樹脂は、複数の連結部6とセンサマグネット22との間に形成される複数の隙間を通過し、複数の台座5及び複数の連結部6の外周側に充填される。この際、熱可塑性樹脂は、軸方向に端面3aから一定の高さだけ突起7を埋めるように充填される。ただし、突起7は、熱可塑性樹脂中に埋設されず、一部は熱可塑性樹脂から表出する。また、熱可塑性樹脂は、上記した複数の隙間に充填されるとともに、周方向に互いに隣接する突起7同士を連結するように充填される。すなわち、複数の突起7は樹脂部31により互いに連結される。このような樹脂部31により、回転子マグネット15の回転トルクのシャフト28への伝達が向上する。
 また、熱可塑性樹脂は、複数の凹部10及び複数の台座5を埋めるように充填される。これにより、トルクの伝達が向上するとともに、樹脂部31は回転子マグネット15に対して回り止めされる。また、熱可塑性樹脂が径方向に成形収縮しても、樹脂部31は複数の凹部10及び複数の台座5で引っ掛かり、隙間の発生が抑制され、結合力の低下が抑制される。つまり、複数の凹部10及び複数の台座5を利用することで、結合力の低下を抑制する構造を付加する必要がないので、低コスト化及び低騒音化が図れる。
 なお、樹脂マグネット部16の端面21a,21bを金型で押えて熱可塑性樹脂を充填することにより、端面21a,21bでのバリの発生が抑制され、バリ取り作業が発生せず、生産性が向上するとともに製品の品質も向上する。
 図8は、本実施の形態に係る電動機の構成を示す縦断面図である。電動機40は、環状の固定子41と、固定子41の内側に配置された回転子30とを備える。ここで、固定子41は、樹脂部42で覆われている。樹脂部42は、熱硬化性樹脂から形成される。熱硬化性樹脂は、例えばバルクモールディングコンパウンドである。回転子30のシャフト28には軸受44a,44bが取り付けられる。軸受44aは、樹脂部42に取り付けられたブラケット43に嵌め込まれる。軸受44bは、樹脂部42に取り付けられる。
 以上に説明したように、本実施の形態では、複数の台座5、複数の突起7及び複数の連結部6は、ヨーク1の一部として、軟磁性粉末及びフェライト粉末の少なくとも一方を含む樹脂から形成されている。これにより、回転子マグネット15に使用される希土類磁性粉末の使用量の削減が可能になり、回転子30の製造コストも低減される。
 また、本実施の形態では、ヨーク1の端面3bに樹脂マグネットの注入経路となる複数の溝11が形成され、溝11内に形成されるリブ状ランナー18が経路中で切除されて、リブ部20が形成される。これにより、リブ状ランナー18の一部を再利用することができるので、回転子マグネット15に使用される希土類磁性粉末の使用量の削減が可能になる。また、台座5に樹脂マグネットの注入経路が形成されないので、台座5の構造が簡素化され、金型の構造も簡素化され、製造コストも低減される。
 本実施の形態では、連結部6の高さは台座5の高さよりも低い。これにより、回転子マグネット15、センサマグネット22及びシャフト28を熱可塑性樹脂で一体にする際に、台座5及び連結部6の外周側への熱可塑性樹脂の注入経路を台座5間に確保することができる。
 また、連結部6は、径方向において端面3aの中央に配置される。これにより、樹脂部31のうち連結部6の内周側の部分の肉厚と樹脂部31のうち連結部6の外周側の部分の肉厚とが均等となり、成形時のヒケが抑制され、回転子30が強固に一体化され、回転子30の品質の向上を図ることができる。
 本実施の形態では、樹脂部31は、軸方向に端面3aから一定の高さだけ突起7を埋める。また、樹脂部31は、複数の突起7を互いに連結する。これにより、回転子30が強固に一体化され、回転子30の品質の向上を図ることができる。
 本実施の形態では、ヨーク1の端面3aの外周縁に複数の凹部8が形成される。ヨーク1の外周面4aに樹脂マグネット部16を形成する際に、複数の凹部8には樹脂マグネットが注入され、樹脂マグネット部16の一部である複数の凸部19が複数の凹部8とそれぞれ嵌合する。これにより、樹脂マグネット部16は、ヨーク1に対して周方向に回り止めされる。特に、ヨーク1の外周が真円の場合には、複数の凹部8及び複数の凸部19は、回り止め及びトルクの伝達に効果的であり、回転子30の品質の向上を図ることができる。
 樹脂マグネットは、複数の溝11内に充填され、複数のリブ部20が形成される。複数のリブ部20は、樹脂マグネット部16のヨーク1に対する回り止めとなり、回転子30のトルクの伝達が向上する。また、複数のリブ部20は、軸方向における樹脂マグネット部16の位置ずれを抑制する。
 突起7の一部は、回転子30から表出する。そのため、複数の突起7は、回転子30を着磁する際の位置決めとして利用できる。
 本実施の形態では、リブ状ランナー18の高さは溝11の深さに等しい。そのため、リブ状ランナー18の一部を切除して得られるリブ部20の上端面は軸方向においてヨーク1の端面3bの位置に配置される。また、樹脂マグネット部16の端面21bは軸方向においてヨーク1の端面3bの位置に配置される。従って、樹脂マグネット部16は、軸方向においてヨーク1の端面3bよりも外側に凸となる形状を有しない。これにより、回転子マグネット15、センサマグネット22及びシャフト28を熱可塑性樹脂で一体にする際に、軸方向にヨーク1の端面3bよりも外側に設けられる樹脂の厚さを抑制することができ、コストを低減することができる。
 本実施の形態では、ヨーク1の複数の溝11が樹脂マグネットの注入経路とされている。これにより、樹脂マグネットの注入経路が簡素化され、樹脂マグネット部16の品質の向上が図られる。
実施の形態2.
 図9は、本実施の形態に係る空気調和機の構成の一例を示す図である。空気調和機300は、室内機301と、室内機301に接続される室外機302とを備える。室内機301は送風機303を有する。室外機302は送風機304及び圧縮機305を有する。送風機303,304及び圧縮機305は、それぞれ実施の形態1の電動機を有する。これにより、空気調和機300の低コスト化及び品質向上を図ることができる。
 なお、実施の形態1の電動機は、空気調和機以外の電気機器に搭載することもでき、この場合も、本実施の形態と同様の効果を得ることができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 ヨーク、2,21,23,24 円筒部、3a,3b,21a,21b 端面、4a,21c 外周面、4b,21d 内周面、4b1 テーパ部、4b2 ストレート部、5 台座、6 連結部、7 突起、8,10 凹部、10a ゲート跡、11 溝、12 切欠き、14 樹脂注入部、15 回転子マグネット、16 樹脂マグネット部、19 凸部、20,26,32 リブ部、20a 先端面、22 センサマグネット、25a,25b 段差、28 シャフト、30 回転子、31,42 樹脂部、33 ゲート凸部、40 電動機、41 固定子、43 ブラケット、44a,44b 軸受、300 空気調和機、301 室内機、302 室外機、303,304 送風機、305 圧縮機。

Claims (5)

  1.  環状の第1のマグネットと前記第1のマグネットの軸方向における前記第1のマグネットの一端に配置された位置検出用の環状の第2のマグネットとを有する回転子を備えた電動機であって、
     前記第1のマグネットは、
     軟磁性粉末及びフェライト粉末の少なくとも一方を含む樹脂から形成された第1の環状層と、
     前記第1の環状層の外周面上に配置され、希土類磁性粉末を含む樹脂から形成された第2の環状層と
     を有し、
     前記第1の環状層は、前記第1のマグネットの周方向に配列された複数の溝が形成された端面を前記軸方向に有し、
     前記複数の溝の各々は、前記第1の環状層の内周面から前記第1の環状層の外周面まで前記第1のマグネットの径方向に伸び、
     前記第2の環状層は、前記複数の溝内に配置され前記第2の環状層の内周面から伸びる複数のリブ部を有し、
     前記径方向における前記複数のリブ部の各々の長さは、前記径方向における前記複数の溝の各々の長さよりも小さい電動機。
  2.  前記第1の環状層は、
     前記端面から前記軸方向に離間して配置され、前記第2のマグネットと対向する他の端面と、
     前記他の端面上に配置され、前記周方向に配列されるとともに、前記第2のマグネットが載置される第1及び第2の台座と、
     前記他の端面上に配置され、前記第1及び第2の台座を連結するとともに、前記軸方向における前記他の端面からの高さが前記軸方向における前記他の端面からの前記第1及び第2の台座の各々の高さよりも小さい連結部と
     を有する請求項1に記載の電動機。
  3.  前記第1の環状層は、前記他の端面の外周縁に形成された凹部を有し、
     前記第2の環状層は、前記凹部と嵌合する凸部を有する請求項2に記載の電動機。
  4.  前記第1の環状層は、
     前記端面上に配置され、前記第1のマグネットの径方向においてそれぞれ前記第1及び第2の台座の外側に配置され、前記軸方向における前記端面からの各々の高さが前記軸方向における前記端面からの前記第1及び第2の台座の各々の高さよりも大きい第1及び第2の突起
     を有し、
     前記第1及び第2突起は、前記回転子の磁極の位置にそれぞれ配置され、
     前記凹部は、前記第1及び第2の突起間に配置される請求項3に記載の電動機。
  5.  請求項1から4のいずれか1項に記載の電動機を備えた空気調和機。
PCT/JP2016/063296 2016-04-27 2016-04-27 電動機及び空気調和機 WO2017187581A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201690000351.5U CN208599186U (zh) 2016-04-27 2016-04-27 电动机以及空调机
JP2018514039A JP6524342B2 (ja) 2016-04-27 2016-04-27 電動機及び空気調和機
PCT/JP2016/063296 WO2017187581A1 (ja) 2016-04-27 2016-04-27 電動機及び空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063296 WO2017187581A1 (ja) 2016-04-27 2016-04-27 電動機及び空気調和機

Publications (1)

Publication Number Publication Date
WO2017187581A1 true WO2017187581A1 (ja) 2017-11-02

Family

ID=60161436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063296 WO2017187581A1 (ja) 2016-04-27 2016-04-27 電動機及び空気調和機

Country Status (3)

Country Link
JP (1) JP6524342B2 (ja)
CN (1) CN208599186U (ja)
WO (1) WO2017187581A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120334A (ja) * 2009-12-01 2011-06-16 Mitsubishi Electric Corp 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
JP2012151979A (ja) * 2011-01-18 2012-08-09 Mitsubishi Electric Corp 電動機の回転子及びモールド電動機及び空気調和機及びモールド電動機の製造方法
JP2015220794A (ja) * 2014-05-14 2015-12-07 三菱電機株式会社 電動機の回転子、および空気調和機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120334A (ja) * 2009-12-01 2011-06-16 Mitsubishi Electric Corp 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
JP2012151979A (ja) * 2011-01-18 2012-08-09 Mitsubishi Electric Corp 電動機の回転子及びモールド電動機及び空気調和機及びモールド電動機の製造方法
JP2015220794A (ja) * 2014-05-14 2015-12-07 三菱電機株式会社 電動機の回転子、および空気調和機

Also Published As

Publication number Publication date
CN208599186U (zh) 2019-03-15
JP6524342B2 (ja) 2019-06-05
JPWO2017187581A1 (ja) 2018-07-12

Similar Documents

Publication Publication Date Title
JP6874630B2 (ja) 回転電機ロータ及びその製造方法
WO2012137464A1 (en) Rotor unit, rotating electrical machine, and method for manufacturing rotor unit
JP6026000B2 (ja) 電動機の回転子、電動機、及び空気調和機
US10326339B2 (en) Rotor of electric motor, electric motor, and air conditioner
WO2017159858A1 (ja) 電動機用ロータ、およびブラシレスモータ
WO2015145901A1 (ja) アキシャルエアギャップ型電動機及び電動機用ボビン
JP6320860B2 (ja) 回転子積層鉄心及びその製造方法
JP4812787B2 (ja) ポンプ用電動機の回転子及びポンプ用電動機及びポンプ及びポンプ用電動機の回転子の製造方法
US10734854B2 (en) Rotor and motor
CN102916511A (zh) 旋转电机
JP2009017712A (ja) 永久磁石モータ及びその製造方法
JP4942806B2 (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
WO2017187580A1 (ja) 電動機及び空気調和機
JP5159734B2 (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
JP4942802B2 (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
JP6692870B2 (ja) アウターロータ型電動機用ロータ
WO2017187581A1 (ja) 電動機及び空気調和機
JP2011120334A (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
CN111224480A (zh) 电枢模具结构
JP5917193B2 (ja) ロータ、モータ及びロータの製造方法
JP6545383B2 (ja) 回転子、電動機、空気調和機、及び回転子の製造方法
JP2011061936A (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
JP2007325354A (ja) 電磁機械の固定子およびその製造方法
WO2017203570A1 (ja) Ipmモータのロータ、ipmモータ、及びipmモータのロータの製造方法
WO2023007708A1 (ja) ロータ及びモータ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018514039

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900451

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900451

Country of ref document: EP

Kind code of ref document: A1