WO2017187476A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2017187476A1
WO2017187476A1 PCT/JP2016/062894 JP2016062894W WO2017187476A1 WO 2017187476 A1 WO2017187476 A1 WO 2017187476A1 JP 2016062894 W JP2016062894 W JP 2016062894W WO 2017187476 A1 WO2017187476 A1 WO 2017187476A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
air conditioner
temperature
room temperature
indoor
Prior art date
Application number
PCT/JP2016/062894
Other languages
English (en)
French (fr)
Inventor
聡規 中村
琢也 向山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16900349.8A priority Critical patent/EP3450865B1/en
Priority to JP2018513950A priority patent/JPWO2017187476A1/ja
Priority to US16/076,799 priority patent/US10712067B2/en
Priority to PCT/JP2016/062894 priority patent/WO2017187476A1/ja
Publication of WO2017187476A1 publication Critical patent/WO2017187476A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner that controls the rotation speed of a compressor based on a difference between a set temperature and a room temperature.
  • an air conditioner has a refrigeration cycle configured by sequentially connecting a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger.
  • Such an air conditioner has a sensor that detects the temperature of the installed room, obtains the difference between the set temperature set by the user and the room temperature detected by the sensor, and the room temperature becomes the set temperature. Control which changes the rotation speed of a compressor is performed so that it may approach.
  • the specifications of buildings where air conditioners are installed are diverse. For example, building materials that are excellent in airtightness and heat insulation may be used in buildings built in regions affected by hot heat or in cold regions.
  • the air conditioning load of such a building is relatively low compared to other general buildings.
  • the air conditioning load varies depending on the design of the building and the installation position of the air conditioner. Furthermore, even in the same building, the air conditioning load varies depending on the outside air condition. Accordingly, the air conditioner is required to appropriately control the air condition according to the air conditioning load of the installed environment.
  • Patent Document 1 describes an air conditioner that performs control to correct a lower limit value of an operating frequency of a compressor according to occurrence of a thermostat off, and to return the lower limit value to before correction according to a change in an air conditioning load thereafter. ing.
  • the compressor has a minimum operable frequency to maintain quality. Therefore, when the compressor is already operating at the lowest frequency, the control of Patent Document 1 may not be able to sufficiently cope with the air conditioning load. For example, when the indoor load is extremely light as in a highly airtight and highly insulated house, in the air conditioner of Patent Document 1, immediately after startup, before the operating frequency is corrected, the room temperature reaches the temperature at which the thermostat is turned off. There may be a phenomenon in which the compressor is frequently turned on and off at short time intervals. As a result, there is a problem that power consumption increases.
  • the present invention has been made to solve the above-described problems, and can perform air conditioning according to the required load of the air-conditioned space and perform air conditioning according to the situation of the installation location. It aims at providing the air conditioner which can be performed.
  • An air conditioner is an air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are sequentially connected, and the space in which the air conditioner is installed.
  • Room temperature detecting means for detecting the room temperature of the air conditioner, and control means for controlling the rotation speed of the compressor so that the room temperature of the space approaches the set temperature of the air conditioner, and the control means is for heating the air conditioner.
  • the compressor is controlled based on the operating state of the compressor and the amount of change in the room temperature detected by the room temperature detecting means. Therefore, air conditioning control suitable for the air conditioning load can be performed, power consumption of the air conditioner can be suppressed, and comfort can be improved.
  • FIG. FIG. 1 is a configuration diagram of an air conditioner according to Embodiment 1 of the present invention.
  • An air conditioner 10 shown in FIG. 1 includes an indoor unit 11 and an outdoor unit 12.
  • the indoor unit 11 includes an indoor heat exchanger 4, a blower fan 6 for sending air into the room where the indoor unit 11 is installed, a room temperature thermistor 7 for detecting the temperature in the room, and a detection result of the room temperature thermistor 7.
  • Indoor temperature storage means 17 for storing the temperature
  • infrared sensor 8 for detecting the temperature of the indoor floor surface
  • indoor floor surface temperature storage means 18 for storing the detection result of the infrared sensor 8, and timing means. 19.
  • the time measuring means 19 starts counting a predetermined time interval ⁇ t1 and time interval ⁇ t2.
  • the room temperature storage means 17 stores the room temperature detected by the room temperature thermistor 7 every time the time measuring means 19 counts the time interval ⁇ t1.
  • the indoor floor surface temperature storage means 18 stores the floor temperature detected by the infrared sensor 8 every time the time measuring means 19 counts the time interval ⁇ t2.
  • the outdoor unit 12 includes a compressor 1, an outdoor heat exchanger 2, an expansion valve 3, and a control unit 20.
  • the control means 20 includes a rotation speed adjustment means 21 that adjusts the room temperature in the room where the indoor unit 11 is installed, and a compressor control means 22 that controls the rotation speed of the compressor 1.
  • the compressor 1, the outdoor heat exchanger 2, the expansion valve 3, and the indoor heat exchanger 4 are sequentially connected by a refrigerant pipe to constitute a refrigerant circuit.
  • the refrigerant circulates in the refrigerant circuit along a path indicated by a solid line arrow in FIG. 1, and when performing a heating operation, the refrigerant passes through a refrigerant circuit along a path indicated by a broken line arrow in FIG. Circulate inside.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 4.
  • the refrigerant condenses by exchanging heat with the air taken in by the indoor unit 11, expands in the expansion valve 3, and flows into the outdoor heat exchanger 2 in the state of a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the refrigerant evaporates by exchanging heat with the air sucked by the outdoor unit 12 and is sucked into the compressor 1 again.
  • the rotation speed adjusting means 21 of the control means 20 is a compressor control means based on the room temperature detected by the room temperature thermistor 7, the indoor floor temperature detected by the infrared sensor 8, and the set temperature set by the user.
  • a control signal is output to 22.
  • the compressor control means 22 controls the rotation speed of the compressor 1 based on the control signal output from the rotation speed adjustment means 21.
  • FIG. 2 is a flowchart showing the basic operation of air conditioning control in the first embodiment of the present invention.
  • the flowchart of FIG. 2 shows a processing procedure during heating operation.
  • the compressor 1 is in an OFF state.
  • step S10 is checked difference between the indoor set temperature T SET set by the remote control or the like by the user, the indoor temperature T A detected by the room temperature thermistor 7 The Specifically, the indoor temperature T A is checked the set temperature T or the SET is less than the value obtained by subtracting the operating threshold alpha.
  • the process proceeds to step S11.
  • step S11 a signal for instructing the compressor control means 22 to turn on the compressor 1 is output from the rotation speed adjusting means 21, and an ON signal is output from the compressor control means 22 to the compressor 1.
  • step S10 is greater than the room temperature T A is obtained by subtracting the operating threshold ⁇ from the set temperature T SET values, even indoor temperature T A is lower than the set temperature T SET, the start of the operation of the compressor 1 not enough to increase the indoor temperature T a. Therefore, if it is confirmed that the difference between the set temperature T SET and the compartment temperature T A is less than the operating threshold alpha, it does not proceed to step S11, the stop state the compressor 1 is continued, the processing in step S10 is repeated.
  • step S12 the set temperature T SET, the difference between the indoor temperature T A detected by the room temperature thermistor 7 after the compressor 1 is ON is checked. Specifically, the indoor temperature T A is checked whether there are subtracted the value above the stop threshold value ⁇ from the set temperature T SET. When it is confirmed indoor temperature T A is from the set temperature T SET stop threshold value ⁇ obtained by subtracting the value above, the process proceeds to step S13. In this case, the room temperature T A can be determined to have continued to rise further reaches the set temperature T SET.
  • step S13 a signal for instructing the compressor control means 22 to turn off the compressor 1 is output from the rotation speed adjusting means 21, and an OFF signal is output from the compressor control means 22 to the compressor 1. Turns off.
  • the indoor temperature T A is less than the value obtained by subtracting the stop threshold value ⁇ from the set temperature T SET, potentially increasing the indoor temperature T A is insufficient. Therefore, in this case, the process does not proceed to step S13, the operation state of the compressor 1 is continued, and the process of step S12 is repeated.
  • the set temperature T SET is 24 ° C.
  • the operation threshold ⁇ is + 0.5 ° C.
  • the stop threshold ⁇ is ⁇ 0.5 ° C.
  • the compressor 1 is turned on based on the comparison result between the indoor temperature when the operation of the air conditioner 10 is started and the indoor temperature in the OFF state and the set temperature. It is determined whether to turn off the compressor 1 based on the comparison result between the room temperature after the compressor 1 is turned on and the set temperature. In the case of the cooling operation, it is checked whether T A ⁇ T SET + ⁇ is satisfied in the process corresponding to Step S10, and whether T A ⁇ T SET + ⁇ is satisfied in the process corresponding to Step S12.
  • FIG. 3 is a flowchart showing a processing procedure of a subroutine when the compressor is stopped in the first embodiment of the present invention.
  • step S20 when the time measuring means 19 has previously counted the time interval ⁇ t1, it is detected by the room temperature thermistor 7, and the room temperature T A-1 stored in the room temperature storage means 17 and the room temperature thermistor 7 at the present time are detected. It is checked that the difference from the indoor temperature T A is equal to or less than the threshold value ⁇ T A1 (first threshold value, fifth threshold value).
  • ⁇ T A1 first threshold value, fifth threshold value
  • step S21 the rotation speed adjustment means 21 transmits a signal for reducing the rotation speed when restarting the operation of the compressor 1 by a predetermined amount ⁇ f with respect to the rotation speed before the stop to the compressor control means 22.
  • the same value may be used for the threshold value ⁇ T A1 during the heating operation and during the cooling operation, or different values may be used.
  • step S20 If it is confirmed in step S20 that the difference between the previously stored room temperature T A-1 and the current room temperature T A is greater than the threshold value ⁇ T A1 , the process proceeds to step S22.
  • step S22 it is checked whether the difference between the room temperature T A-1 stored last time and the current room temperature T A is greater than a threshold value ⁇ T A — high (second threshold value, sixth threshold value).
  • a threshold value ⁇ T A — high second threshold value, sixth threshold value.
  • step S22 it is checked whether satisfy T A -T A-1 ⁇ ⁇ T A_high. If the difference between the previously stored room temperature T A-1 and the current room temperature T A is equal to or greater than the threshold value ⁇ T A — high, it is determined that the temperature change that proceeds while the compressor 1 is stopped is large and the air conditioning load is high. Is done. In this case, the process proceeds to step S23, where the rotation speed adjusting means 21 generates a signal for increasing the rotation speed when restarting the operation of the compressor 1 by a predetermined amount ⁇ f with respect to the rotation speed before the stop. 22 to send.
  • the threshold value ⁇ TA_high may be the same value during heating operation or cooling operation, or may be different.
  • ⁇ t1 is 30 seconds
  • ⁇ TA_high is 1.0 ° C.
  • ⁇ f is 10 rps
  • TA -1 is 24.5 ° C.
  • the rotation speed before the compressor 1 is stopped is 60 rps.
  • the indoor temperature T A that is detected after 30 seconds if it is 23.5 ° C., which by the processing of step S25, the rotational speed when the operation of the compressor 1 is restarted is increased by Delta] f, 70 rps (60 rps + 10 rps).
  • the air temperature load is low when the inclination (rise) of the room temperature is small in the cooling operation, and when the inclination (fall) of the room temperature is small in the heating operation. To be judged. And the process which reduces the rotation speed of the compressor 1 by predetermined amount is performed. Further, when the compressor 1 is stopped, when the inclination of the room temperature is large, it is determined that the air conditioning load is high, and processing for increasing the number of revolutions when restarting the operation of the compressor 1 is performed.
  • FIG. 4 is a flowchart showing a modification of the subroutine of the first embodiment when the compressor is stopped.
  • step S200 the same processing as step S20 in the flowchart shown in FIG. 3 is performed. That is, it is checked whether the difference between the previously stored room temperature T A-1 and the current room temperature T A is equal to or less than the threshold value ⁇ T A1 . If it is confirmed that the difference between the room temperature T A-1 and the room temperature T A is equal to or less than the threshold value ⁇ T A1 , the process proceeds to step S201. In step S201, it is checked whether or not the air conditioner 10 is in the heating operation. If it is confirmed that the air conditioner 10 is not in the heating operation but in the cooling operation, the process proceeds to step S202.
  • step S202 processing similar to that in step S21 in the flowchart of FIG. 3 is executed. That is, the rotation speed adjusting means 21 transmits a signal for reducing the rotation speed when restarting the operation of the compressor 1 by a predetermined amount ⁇ f to the compressor control means 22 with respect to the rotation speed before stopping.
  • step S201 If it is confirmed in step S201 that the air conditioner 10 is in the heating operation, the process proceeds to step S203.
  • the heating operation it is conceivable that the airflow does not reach the floor surface in the room where the indoor unit 11 is installed, and warm air stays near the ceiling in the room. In this case, the room temperature detected by the room temperature thermistor 7 gradually decreases, whereas the floor temperature detected by the infrared sensor 8 decreases rapidly.
  • step S203 the floor surface temperature T F-1, when the difference between the floor surface temperature T F which is detected by the infrared sensor 8 at the moment is less than the threshold value [Delta] T F, the process proceeds to step S202.
  • the rotation speed adjustment means 21 sends a signal for reducing the rotation speed when restarting the operation of the compressor 1 by ⁇ f to the compressor control means 22 relative to the rotation speed before stopping. Send.
  • .DELTA.t2 30 seconds, 0.5 ° C. and [Delta] T F, 10 rps a Delta] f, T F-1 to 24.5 ° C., the rotational speed of the previous stop the compressor 1 to 60 rps.
  • the rotation speed when the operation of the compressor 1 is restarted is reduced by ⁇ f by the process of step S22. 50 rps (60 rps-10 rps).
  • step S204 the same process as step S22 in the flowchart of FIG. 3 is executed. That is, the difference between the room temperature T A-1 and the current indoor temperature T A that is previously stored is checked whether the threshold [Delta] T A_high larger. The difference between the previously stored room temperature T A-1 and the current room temperature T A is equal to or greater than the threshold value ⁇ T A — high, and it is determined that the temperature change that progresses while the compressor 1 is stopped is large and the air conditioning load is high. Then, the process proceeds to step S205.
  • step S205 the same process as step S23 in the flowchart of FIG. 3 is executed. That is, the rotation speed adjusting means 21 transmits a signal for increasing the rotation speed when restarting the operation of the compressor 1 by a predetermined amount ⁇ f with respect to the rotation speed before the stop to the compressor control means 22.
  • the air-conditioning load is determined to be low when the inclination (down) of the room temperature and the inclination (down) of the floor temperature are small in the heating operation. Is done. And the process which reduces the rotation speed of the compressor 1 by predetermined amount is performed.
  • FIG. 5 is a flowchart showing a processing procedure of a subroutine during operation of the compressor according to Embodiment 1 of the present invention.
  • time counting means 19 is the last, the indoor temperature T A-1 stored in the room temperature storing means 17 upon counting a time interval .DELTA.t1, currently the indoor temperature T A detected by the room temperature thermistor 7 It is checked whether the difference is equal to or greater than a threshold value ⁇ T A2 (third threshold value, seventh threshold value). In the case of the heating operation, the room temperature rises while the compressor 1 is in operation, so it is checked whether T A ⁇ T A ⁇ 1 ⁇ ⁇ T A2 is satisfied.
  • step S31 the difference between the room temperature T A-1 and the room temperature T A is equal to or greater than the threshold value ⁇ T A2 .
  • the inclination of the room temperature during the operation of the compressor 1 in the case of heating operation, the temperature rises, In this case, the drop is relatively steep. That is, it can be determined that the air conditioning load is low.
  • step S31 the rotation speed adjustment means 21 transmits a signal for reducing the rotation speed of the operation of the compressor 1 by a predetermined amount ⁇ f with respect to the current rotation speed to the compressor control means 22.
  • the same value may be used for the threshold value ⁇ T A2 during the heating operation and during the cooling operation, or different values may be used.
  • ⁇ t1 is 30 seconds
  • ⁇ T A2 is 0.5 ° C.
  • ⁇ f is 10 rps
  • T A-1 is 23.5 ° C.
  • the rotation speed before the compressor 1 is stopped is 60 rps.
  • the rotational speed of the compressor 1 will be reduced by Delta] f, the 50rps (60rps-10rps) .
  • the compressor 1 in addition to the process of controlling ON / OFF of the compressor 1 according to the difference between the set temperature set by the user and the room temperature detected by the room temperature thermistor 7.
  • a change in the room temperature and a change in the floor surface temperature are determined, and a process for controlling the rotational speed of the compressor 1 is performed. That is, highly accurate control of the compressor 1 can be performed according to the indoor environment in which the air conditioner 10 is installed. Therefore, for example, when the air conditioning load is low, it is possible to prevent a phenomenon in which ON / OFF of the compressor 1 is repeated at short intervals, and hunting of the room temperature can be suppressed. As a result, an increase in power consumption of the air conditioner 10 can be suppressed and comfort can be improved.
  • FIG. FIG. 6 is a table showing conditions for determining the air conditioning load during the compressor stop of the air conditioner according to Embodiment 2 of the present invention.
  • FIG. 7 is a table
  • the determination conditions shown in FIGS. 6 and 7 are applied to the air conditioner 10 having the same configuration as that of the first embodiment described with reference to FIG.
  • FIG. 6 shows conditions for determining whether the air conditioning load is high or low when the air conditioner 10 is in the heating operation and the compressor 1 is stopped.
  • FIG. 7 shows conditions for determining whether the air conditioning load is high or low when the air conditioner 10 is in the heating operation and the compressor 1 is in operation.
  • the horizontal axis of the graphs in the respective columns of the tables of FIGS. 6 and 7 is time, and the vertical axis is room temperature and floor surface temperature.
  • the time measuring means 19 counts the time interval ⁇ t1
  • the room temperature thermistor 7 detects the room temperature
  • the time measuring means 19 counts the time interval ⁇ t2
  • the infrared sensor 8 detects the floor temperature.
  • the solid line indicates a mode in which the difference between the room temperature Ta0 detected last time by the room temperature thermistor 7 and the room temperature Ta detected this time changes with time.
  • the broken line has shown the aspect from which the difference of the floor surface temperature Tf0 detected by the infrared sensor 8 last time and the floor surface temperature Tf detected this time changes with progress of time.
  • the upper left column of FIG. 6 shows a case where the rate of decrease in room temperature is slow and the rate of decrease in floor temperature is slow. In other words, both the inclination of the decrease in the indoor temperature and the inclination of the decrease in the floor temperature are gentle, and there is shown a case where there is no great difference between the decrease (change amount) in the indoor temperature and the decrease in the floor temperature. . In this case, it is determined that the air conditioning load is small. Accordingly, processing for reducing the rotational speed of the compressor 1 is performed.
  • the upper right column of FIG. 6 shows the case where the indoor temperature decreasing rate is fast and the floor surface temperature decreasing rate is slow. In other words, it shows a case where the slope of the decrease in the floor surface temperature is gentle compared to the slope of the decrease in the room temperature, that is, a case where the amount of change in the floor surface temperature is smaller than the amount of change in the room temperature.
  • floor heating provided separately from the air conditioner 10 may be operating, and it is determined that the air conditioning load is small. Accordingly, processing for reducing the rotational speed of the compressor 1 is performed.
  • the lower left column of FIG. 6 shows a case where the indoor temperature decreasing rate is slow and the floor surface temperature decreasing rate is fast.
  • the case where the amount of decrease in the floor surface temperature is extremely large compared to the amount of decrease in the room temperature that is, the case where the amount of change in the floor surface temperature is extremely large compared to the amount of change in the indoor temperature is shown.
  • the decrease in the indoor temperature is moderate, it is determined that the floor surface is rapidly cooled, the indoor load is large, or the warm airflow does not reach the floor surface. Accordingly, a process of increasing the rotational speed of the compressor 1 or increasing the rotational speed of the blower fan 6 is executed.
  • the lower right column of FIG. 6 shows a case where the indoor temperature decreasing rate is fast and the floor surface temperature decreasing rate is fast.
  • both the case where the slope of the decrease in the indoor temperature and the slope of the decrease in the floor temperature are both steep that is, the case where both the change amount of the indoor temperature and the change amount of the floor surface temperature are large are shown.
  • the room and the floor are rapidly cooled, and it is determined that the indoor load is large. Therefore, a process for increasing the rotation speed of the compressor 1 is executed.
  • the upper left column of FIG. 7 shows a case where the indoor temperature rise rate is slow and the floor temperature rise rate is slow.
  • both the case where the inclination of the increase in the indoor temperature and the inclination of the increase in the floor temperature are gentle, that is, the case where both the change amount of the indoor temperature and the change amount of the floor surface temperature are small are shown.
  • the upper right column of FIG. 7 shows the case where the indoor temperature rise rate is fast and the floor temperature rise rate is slow.
  • the case where the slope of the rise in the floor surface temperature is gentle compared to the slope of the rise in the room temperature that is, the case where the change amount of the floor surface temperature is smaller than the change amount of the indoor temperature is shown.
  • the process which increases the rotation speed of the compressor 1 or increases the rotation speed of the ventilation fan 6 is performed.
  • the lower left column of FIG. 7 shows a case where the indoor temperature rise rate is slow and the floor temperature rise rate is fast.
  • the case where the slope of the rise in the floor surface temperature is steep compared to the slope of the rise in the room temperature that is, the case where the amount of change in the floor surface temperature is larger than the amount of change in the room temperature is shown.
  • floor heating provided separately from the air conditioner 10 may be operating, and it is determined that the air conditioning load is small. Accordingly, processing for reducing the rotational speed of the compressor 1 is performed.
  • the lower right column of FIG. 7 shows a case where the indoor temperature rise rate is fast and the floor temperature rise rate is fast.
  • the slope of the rise in the indoor temperature and the slope of the rise in the floor temperature are both steep, and there is shown a case where there is no great difference between the rise (change amount) in the room temperature and the rise in the floor temperature. .
  • the room temperature and the floor temperature are rapidly increasing, and it is determined that the indoor load is small. Therefore, a process for reducing the rotational speed of the compressor 1 is executed.
  • the time interval for detecting the room temperature and the floor surface temperature is 30 seconds
  • the threshold of the ratio of the change in the indoor temperature to the change in the floor temperature is 75%
  • the increase in the number of rotations of the compressor 1 is 10 rps
  • the increase in fan speed is 100 rpm (revolution per minute)
  • the previously detected indoor temperature is 24.5 ° C
  • the floor temperature is 23.5 ° C
  • the previous compressor 1 speed is 60 rps
  • the rotation speed is 1000 rpm.
  • the room temperature is 24 ° C. and the floor surface temperature is 22.5 ° C. when 30 seconds have passed since the previous detection while the compressor 1 is stopped
  • the difference in room temperature is 0.5 ° C. (24.
  • the difference in floor temperature is 1.0 ° C (23.5 ° C-22.5 ° C)
  • the change in room temperature with respect to the change in floor temperature is 0.5. That is, it is lower than the above threshold value, and the floor surface temperature decrease rate is extremely fast relative to the indoor temperature decrease rate. Therefore, it is determined that the air conditioning load is high or the warm airflow does not reach the floor. In this case, a process of increasing the rotational speed of the compressor 1 at the next operation to 70 rps or increasing the rotational speed of the blower fan to 1100 rpm is executed.
  • the air conditioning load is based on the temperature gradient of the room temperature and the temperature gradient of the floor surface temperature in each state during the heating operation, when the compressor 1 is stopped, and during the operation. And the convection state of the warm air current is determined. Therefore, when the air conditioner 10 is installed at a high position from the floor surface, for example, even when the air conditioner 10 is installed on the upper floor of the entire building air conditioning building or in the middle of stairs, the compression is performed. The phenomenon that the ON / OFF of the machine 1 is repeated at short intervals can be prevented, the hunting of the room temperature can be suppressed, and a place close to the floor surface can be set to an appropriate temperature. That is, air conditioning control with higher accuracy according to the indoor environment can be performed, and energy saving and comfort can be improved.

Abstract

空気調和機は、圧縮機、室外熱交換器、膨張弁、及び室内熱交換器が順次接続された冷凍サイクルを有し、空気調和機が設置されている空間の室内温度を検知する室温検知手段と、圧縮機の回転数を制御する制御手段とを備えている。制御手段は、圧縮機の動作状態と設定された時間間隔で室温検知手段により検知される室内温度の変化量とに基づいて、圧縮機の運転を制御する。

Description

空気調和機
 本発明は、設定温度と室温の差分に基づいて圧縮機の回転数を制御する空気調和機に関するものである。
 従来、空気調和機は、圧縮機、室外熱交換器、膨張弁、室内熱交換器を順次接続して構成される冷凍サイクルを有している。このような空気調和機は、設置された室内の温度を検知するセンサーを有しており、使用者に設定される設定温度とセンサーにより検知される室温との差分を求め、室温が設定温度に近づくよう、圧縮機の回転数を変化させる制御が行われている。
 空気調和機が設置される建造物の仕様は多種多様である。例えば、熱暑に見舞われる地方や寒冷地に建てられる建造物には気密性や断熱性に優れた建材が用いられている場合がある。このような建造物の空調負荷は、他の一般的な建造物に比べて相対的に低い。また、建造物の設計や空気調和機の設置位置もよっても空調負荷は異なってくる。さらに、同じ建造物であっても、外気の状況により空調負荷は異なってくる。従って、空気調和機には、設置されている環境の空調負荷に応じて適切に空気調和を制御することが要求されている。
 特許文献1には、サーモスタットオフの発生に応じて圧縮機の運転周波数の下限値を補正し、その後の空調負荷の変化に応じて下限値を補正前に戻す制御を行う空気調和機が記載されている。
特開2008-196766号公報
 しかしながら、圧縮機には品質を維持するための運転可能な最低周波数が定まっている。従って、圧縮機が既に最低周波数で運転されている場合は、特許文献1の制御では、空調負荷に十分に対応できない場合がある。例えば、高気密・高断熱住宅のように室内負荷が極めて軽い場合、特許文献1の空気調和機では、起動直後、運転周波数を補正する前に室温がサーモスタットをOFFする温度に達してしまうと、圧縮機のON/OFFを短い時間間隔で頻繁に繰り返す現象が起きる場合がある。その結果、消費電力が増大するという問題がある。
 本発明は、上記のような課題を解決するためになされたものであり、空調空間の要求負荷に応じた空気調和を行うことができ、かつ設置場所の状況に応じた空気調和を行うことができる空気調和機を提供することを目的とする。
 本発明に係る空気調和機は、圧縮機、室外熱交換器、膨張弁、及び室内熱交換器が順次接続された冷凍サイクルを有する空気調和機であって、空気調和機が設置されている空間の室内温度を検知する室温検知手段と、空間の室内温度が空気調和機の設定温度に近づくよう、圧縮機の回転数を制御する制御手段とを備え、制御手段は、空気調和機の暖房運転時に圧縮機が停止中であり、かつ設定された第1の時間間隔で室温検知手段により検知される室内温度の低下量が第1の閾値以下であるとき、圧縮機の次回運転時の回転数を停止前の回転数に対して所定量低下させるものである。
 本発明に係る空気調和機によると、圧縮機の動作状態と室温検知手段により検知される室内温度の変化量とに基づいて圧縮機が制御される。従って、空調負荷に適合した空調制御を行うことができ、空気調和機の消費電力を抑制すると共に、快適性を向上することができる。
本発明の実施の形態1に係る空気調和機の構成図である。 本発明の実施の形態1における空調制御の基本動作を示すフローチャートである。 本発明の実施の形態1における圧縮機停止中のサブルーチンの処理手順を示すフローチャートである。 本発明の実施の形態1における圧縮機停止中のサブルーチンの変形例を示すフローチャートである。 本発明の実施の形態1における圧縮機運転中のサブルーチンの処理手順を示すフローチャートである。 本発明の実施の形態2に係る空気調和機の圧縮機停止中の空調負荷の判断条件を示す表である。 本発明の実施の形態2に係る空気調和機の圧縮機運転中の空調負荷の判断条件を示す表である。
 以下に、本発明における空気調和機の実施の形態を図面に基づいて詳細に説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面においては各構成部材の大きさは実際の装置とは異なる場合がある。
 実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和機の構成図である。図1に示す空気調和機10は、室内機11と室外機12とを備えている。室内機11は、室内熱交換器4と、室内機11が設置される室内へ空気を送り出すための送風ファン6と、室内の温度を検知するための室温サーミスタ7と、室温サーミスタ7の検知結果を記憶するための室内温度記憶手段17と、室内の床面の温度を検知するための赤外線センサ8と、赤外線センサ8の検知結果を記憶するための室内床面温度記憶手段18と、計時手段19とを有している。空気調和機10の運転が開始されると、計時手段19は所定の時間間隔Δt1および時間間隔Δt2のカウントを開始する。室内温度記憶手段17には、計時手段19が時間間隔Δt1をカウントする毎に、室温サーミスタ7が検知した室内温度が記憶されていく。同様に、室内床面温度記憶手段18には、計時手段19が時間間隔Δt2をカウントする毎に、赤外線センサ8が検知した床面温度が記憶されていく。室外機12は、圧縮機1と、室外熱交換器2と、膨張弁3と、制御手段20とを有している。制御手段20は、室内機11が設置される室内の室温を調整する回転数調整手段21と、圧縮機1の回転数を制御する圧縮機制御手段22と有している。圧縮機1、室外熱交換器2、膨張弁3、および室内熱交換器4が順次、冷媒配管によって接続され、冷媒回路が構成されている。
 空気調和機10が冷房運転するとき、冷媒は図1中の実線の矢印で示す経路で冷媒回路内を循環し、暖房運転するとき、冷媒は図1中の破線の矢印で示す経路で冷媒回路内を循環する。
 例えば暖房運転時、圧縮機1から吐出された高温高圧の冷媒は、室内熱交換器4へ流入する。室内熱交換器4において、室内機11が吸入する空気と熱交換することにより冷媒は凝縮し、膨張弁3で膨張して低温低圧の気液二相冷媒の状態で室外熱交換器2へ流入する。そして、室外機12が吸入する空気と熱交換することにより冷媒は蒸発し、再び圧縮機1に吸入される。
 制御手段20の回転数調整手段21は、室温サーミスタ7が検知する室内温度と、赤外線センサ8が検知する室内の床面温度と、使用者に設定される設定温度とに基づいて圧縮機制御手段22に制御信号を出力する。圧縮機制御手段22は、回転数調整手段21から出力された制御信号に基づいて、圧縮機1の回転数を制御する。
 図2は、本発明の実施の形態1における空調制御の基本動作を示すフローチャートである。図2のフローチャートは暖房運転時の処理手順を示している。空気調和機10の運転が開始された時点で圧縮機1はOFF状態である。空気調和機10の運転が開始されたら、ステップS10において、使用者によりリモートコントロール等で設定された室内の設定温度TSETと、室温サーミスタ7により検知された室内温度Tとの差分がチェックされる。具体的には、室内温度Tが設定温度TSETから運転閾値αを引いた値以下であるかチェックされる。室内温度Tが設定温度TSETから運転閾値αを引いた値以下であることが確認されたら、処理はステップS11に進む。この場合、室内温度Tを設定温度TSETに近づける必要がある。そこで、ステップS11では、回転数調整手段21から圧縮機制御手段22に圧縮機1のONを指示する信号が出され、圧縮機制御手段22からON信号が圧縮機1に出力され、圧縮機1がONする。一方、ステップS10において、室内温度Tが設定温度TSETから運転閾値αを引いた値より大きい場合、室内温度Tが設定温度TSETより低いとしても、圧縮機1の運転を開始して室内温度Tを上昇させる程度ではない。従って、設定温度TSETと室内温度Tの差分が運転閾値αより小さいことが確認されたら、ステップS11へは進まず、圧縮機1の停止状態が継続され、ステップS10の処理が繰り返される。
 ステップS11で圧縮機1がONされると、室内温度は上昇する。ステップS12において、設定温度TSETと、圧縮機1がONされた後に室温サーミスタ7により検知された室内温度Tとの差分がチェックされる。具体的には、室内温度Tが設定温度TSETから停止閾値βを引いた値以上であるかチェックされる。室内温度Tが設定温度TSETから停止閾値βを引いた値以上であることが確認されたら、処理はステップS13へ進む。この場合、室内温度Tは設定温度TSETに到達しさらに上昇を続けていると判断できる。従って、ステップS13において、回転数調整手段21から圧縮機制御手段22に圧縮機1のOFFを指示する信号が出され、圧縮機制御手段22からOFF信号が圧縮機1に出力され、圧縮機1がOFFする。一方、室内温度Tが設定温度TSETから停止閾値βを引いた値より小さい場合、室内温度Tの上昇が不十分である可能性がある。従って、この場合は、ステップS13へは進まず、圧縮機1の運転状態が継続され、ステップS12の処理を繰り返す。
 設定温度TSETを24℃、運転閾値αを+0.5℃、停止閾値βを-0.5℃とする。このとき、検知された室内温度Tが23.5℃以下の場合、圧縮機1の運転は開始され、室内温度Tが24.5℃以上の場合、圧縮機1の運転は停止される。
 なお、空気調和機10が冷房運転中も同様に、空気調和機10の運転が開始された時点の圧縮機1がOFF状態の室内温度と設定温度との比較結果に基づいて圧縮機1をONするか否かが判断され、圧縮機1がONされた後の室内温度と設定温度の比較結果に基づいて、圧縮機1をOFFするか否かが判断される。なお、冷房運転の場合、ステップS10に相当する処理では、T≧TSET+αを満たすかチェックされ、ステップS12に相当する処理では、T≦TSET+βを満たすかチェックされる。
 図3は、本発明の実施の形態1における圧縮機停止中のサブルーチンの処理手順を示すフローチャートである。ステップS20において、計時手段19が前回、時間間隔Δt1をカウントした際に室温サーミスタ7により検知され、室内温度記憶手段17に記憶された室内温度TA-1と、現時点で室温サーミスタ7により検知された室内温度Tとの差分が閾値ΔTA1(第1の閾値、第5の閾値)以下であるがチェックされる。暖房運転時、圧縮機1が停止していると室内温度Tは徐々に下がっていくので、TA-1-T≦ΔTA1を満たすかチェックされる。冷房運転時、圧縮機1が停止していると室内温度Tは徐々に上がっていくので、T-TA-1≦ΔTA1を満たすかチェックされる。室内温度TA-1と室内温度Tとの差分が閾値ΔTA1以下であることが確認されたら、処理はステップS21へ進む。前回記憶された室内温度TA-1と現時点の室内温度Tとの差分が閾値ΔTA1以下である場合とは、圧縮機1が停止している間の室内温度の傾斜(暖房運転時は室内温度の低下、冷房運転時は室内温度の上昇)が比較的緩やかである場合である。すなわち、空調負荷は低いと判断できる。そこでステップS21では、回転数調整手段21は、圧縮機1の運転を再開する際の回転数を、停止前の回転数に対して所定量Δf低下させる信号を、圧縮機制御手段22に送信する。なお、閾値ΔTA1は暖房運転時、冷房運転時で同一の値を用いてもよく、あるいは異なる値を用いてもよい。
 例えば、暖房運転時において、Δt1を30秒、ΔTを0.5℃、Δfを10rps(revolutions per second)、TA-1を24.5℃、圧縮機1の停止前の回転数を60rpsとする。このとき、30秒経過後に検知された室内温度Tが24℃である場合、ステップS21の処理により、圧縮機1の運転が再開されるときの回転数はΔfだけ低下されるため、50rps(60rps-10rps)となる。
 ステップS20において、前回記憶された室内温度TA-1と現時点の室内温度Tとの差分が閾値ΔTA1より大きいことが確認されたら、ステップS22へ進む。ステップS22では、前回記憶された室内温度TA-1と現時点の室内温度Tとの差分が、閾値ΔTA_high(第2の閾値、第6の閾値)より大きいかチェックされる。暖房運転時、圧縮機1が停止していると室内温度Tは徐々に下がっていくので、ステップS22では、TA-1-T≧ΔTA_highを満たすかチェックされる。冷房運転時、圧縮機1が停止していると室内温度Tは徐々に上がっていくので、ステップS22では、T-TA-1≧ΔTA_highを満たすかチェックされる。前回記憶された室内温度TA-1と現時点の室内温度Tとの差分が、閾値ΔTA_high以上の場合は、圧縮機1の停止中に進行する温度変化が大きく、空調負荷が高いと判断される。この場合は、ステップS23へ進み、回転数調整手段21は、圧縮機1の運転を再開する際の回転数を停止前の回転数に対して所定量Δfだけ増加させる信号を、圧縮機制御手段22に送信する。なお、閾値ΔTA_highは暖房運転時、冷房運転時で同一の値を用いてもよく、あるいは異なる値を用いてもよい。
 例えば、暖房運転時において、Δt1を30秒、ΔTA_highを1.0℃、Δfを10rps、TA-1を24.5℃、圧縮機1の停止前の回転数を60rpsとする。このとき、30秒経過後に検知された室内温度Tが23.5℃である場合、ステップS25の処理により、圧縮機1の運転が再開されるときの回転数はΔfだけ増加されるため、70rps(60rps+10rps)となる。
 以上のように、圧縮機1の停止中において、冷房運転の場合は室内温度の傾斜(上昇)が小さいとき、暖房運転の場合は室内温度の傾斜(下降)が小さいとき、空調負荷が低いと判断される。そして、圧縮機1の回転数を所定量低下させる処理が実行される。また、圧縮機1の停止中において、室内温度の傾斜が大きいとき、空調負荷は高いと判断され、圧縮機1の運転を再開する際の回転数を所定量増加させる処理が実行される。
 図4は、実施の形態1の圧縮機停止中のサブルーチンの変形例を示すフローチャートである。ステップS200では、図3に示すフローチャート中のステップS20と同様の処理が行われる。すなわち、前回記憶された室内温度TA-1と、現時点の室内温度Tとの差分が閾値ΔTA1以下であるがチェックされる。室内温度TA-1と室内温度Tとの差分が閾値ΔTA1以下であることが確認されたら、処理はステップS201へ進む。ステップS201では、空気調和機10が暖房運転中であるか否かがチェックされる。空気調和機10が暖房運転中ではなく、冷房運転中であることが確認されたら、ステップS202へ進む。空気調和機10が冷房運転中であり、かつ室内温度TA-1と室内温度Tとの差分が閾値ΔTA1以下である場合とは、圧縮機1が停止している間の室内温度の傾斜(室内温度の上昇)が比較的緩やかである場合である。すなわち、空調負荷は低いと判断できる。そこでステップS202では、図3のフローチャート中のステップS21と同様の処理が実行される。すなわち、回転数調整手段21は、圧縮機1の運転を再開する際の回転数を停止前の回転数に対して所定量Δf低下させる信号を、圧縮機制御手段22に送信する。
 ステップS201で空気調和機10が暖房運転中であることが確認されたら、ステップS203へ進む。暖房運転の場合、室内機11が設置されている室内において気流が床面に到達せず、暖かい空気が室内の天井付近に滞留していることが考えられる。この場合、室温サーミスタ7により検知される室温は緩やかに低下するのに対し、赤外線センサ8により検知される床温度は急速に低下していく。一方、計時手段19が前回、時間間隔Δt2をカウントした際に室内床面温度記憶手段18に記憶された床面温度TF-1と、現時点で赤外線センサ8により検知された床面温度Tとの差分が閾値ΔT(第4の閾値)以下である場合、圧縮機1が停止している間の床面温度の傾斜が比較的緩やかである場合である。この場合、空調負荷は低いと判断できる。ステップS203において、床面温度TF-1と、現時点で赤外線センサ8により検知された床面温度Tとの差分が閾値ΔT以下であるとき、処理はステップS202へ進む。ステップS202では、上述のように、回転数調整手段21は、圧縮機1の運転を再開する際の回転数を停止前の回転数に対してΔfだけ低下させる信号を、圧縮機制御手段22に送信する。
 例えば、Δt2を30秒、ΔTを0.5℃、Δfを10rps、TF-1を24.5℃、圧縮機1の停止前の回転数を60rpsとする。このとき、30秒経過後に検知された床面温度Tが24℃である場合、ステップS22の処理により、圧縮機1の運転が再開されるときの回転数は、Δfだけ低下されるため、50rps(60rps-10rps)となる。
 ステップS200において、前回記憶された室内温度TA-1と現時点の室内温度Tとの差分が閾値ΔTA1より大きいことが確認されたら、ステップS204へ進む。ステップS204では、図3のフローチャート中のステップS22と同様の処理が実行される。すなわち、前回記憶された室内温度TA-1と現時点の室内温度Tとの差分が、閾値ΔTA_highより大きいかチェックされる。前回記憶された室内温度TA-1と現時点の室内温度Tとの差分が、閾値ΔTA_high以上であり、圧縮機1の停止中に進行する温度変化が大きく、空調負荷が高いと判断されたら、ステップS205へ進む。ステップS205では、図3のフローチャート中のステップS23と同様の処理が実行される。すなわち、回転数調整手段21は、圧縮機1の運転を再開する際の回転数を停止前の回転数に対して所定量Δf増加させる信号を、圧縮機制御手段22に送信する。
 以上のように、この変形例においては、圧縮機1の停止中において、暖房運転の場合に室内温度の傾斜(下降)及び床面温度の傾斜(下降)が小さいとき、空調負荷が低いと判断される。そして、圧縮機1の回転数を所定量低下させる処理が実行される。
 図5は、本発明の実施の形態1における圧縮機運転中のサブルーチンの処理手順を示すフローチャートである。ステップS30において、計時手段19が前回、時間間隔Δt1をカウントした際に室内温度記憶手段17に記憶された室内温度TA-1と、現時点で室温サーミスタ7により検知された室内温度Tとの差分が閾値ΔTA2(第3の閾値、第7の閾値)以上であるかチェックされる。暖房運転時の場合、圧縮機1の運転中は室内温度が上昇していくので、T-TA-1≧ΔTA2を満たしているかチェックされる。冷房運転時の場合、圧縮機1の運転中は室内温度が低下していくので、TA-1-T≧ΔTA2を満たしているかチェックされる。室内温度TA-1と室内温度Tとの差分が閾値ΔTA2以上であることが確認されたら、処理はステップS31へ進む。室内温度TA-1と室内温度Tとの差分が閾値ΔTA2以上である場合とは、圧縮機1が運転している間の室内温度の傾斜(暖房運転の場合は上昇、冷房運転の場合は低下)が比較的急な場合である。すなわち、空調負荷は低いと判断できる。そこでステップS31において、回転数調整手段21は、圧縮機1の運転の回転数を、現在の回転数に対して所定量Δfだけ低下させる信号を圧縮機制御手段22に送信する。なお、閾値ΔTA2は暖房運転時、冷房運転時で同一の値を用いてもよく、あるいは異なる値を用いてもよい。
 例えば、空気調和機10が暖房運転中で、Δt1を30秒、ΔTA2を0.5℃、Δfを10rps、TA-1を23.5℃、圧縮機1の停止前の回転数を60rpsとする。このとき、30秒経過後に検知された室内温度Tが24℃である場合、ステップS31の処理により、圧縮機1の回転数は、Δfだけ低下されるため、50rps(60rps-10rps)となる。
 以上のように、実施の形態1によれば、使用者により設定された設定温度と室温サーミスタ7により検知された室内温度との差分に応じて圧縮機1のON・OFFを制御する処理に加えて、圧縮機1の停止中および運転中のそれぞれにおいて、室内温度の変化、床面温度の変化を判断し、圧縮機1の回転数を制御する処理が行われる。すなわち、空気調和機10が設置されている室内の環境に応じて、圧縮機1の精度の高い制御を行うことができる。従って、例えば空調負荷が低い場合に圧縮機1のON・OFFが短い間隔で繰り返される現象を防止することができ、室内温度のハンチングを抑制することができる。その結果、空気調和機10の消費電力の増加を抑制し、かつ快適性を向上させることができる。
 実施の形態2.
 図6は、本発明の実施の形態2に係る空気調和機の圧縮機停止中の空調負荷の判断条件を示す表である。また、図7は、本発明の実施の形態2に係る空気調和機の圧縮機運転中の空調負荷の判断条件を示す表である。図6および図7に示す判断条件は、図1を参照して説明した実施の形態1と同様の構成を有する空気調和機10に適用される。図6には、空気調和機10が暖房運転中で、かつ圧縮機1が停止している場合において、空調負荷の高低を判断する条件が示されている。図7には、空気調和機10が暖房運転中で、かつ圧縮機1が運転している場合において、空調負荷の高低を判断する条件が示されている。図6および図7の表の各欄のグラフの横軸は時間であり、縦軸は室内温度および床面温度である。計時手段19が時間間隔Δt1をカウントする毎に、室温サーミスタ7により室内温度が検知され、計時手段19が時間間隔Δt2をカウントする毎に、赤外線センサ8により床面温度が検知される。各欄のグラフにおいて、実線は、室温サーミスタ7により前回検知された室内温度Ta0と今回検知された室内温度Taとの差分が時間経過と共に変化する態様を示している。また、破線は、赤外線センサ8により前回検知された床面温度Tf0と今回検知された床面温度Tfとの差分が時間経過と共に変化する態様を示している。
 図6の左上欄には、室内温度の低下速度が遅く、かつ床面温度の低下速度が遅い場合が示されている。換言すると、室内温度の低下の傾斜および床面温度の低下の傾斜が共に緩やかであり、室内温度の低下量(変化量)と床面温度の低下量に大きな差が無い場合が示されている。この場合、空調負荷は小さいと判断される。従って、圧縮機1の回転数を低下する処理が行われる。
 図6の右上欄には、室内温度の低下速度が速く、かつ床面温度の低下速度が遅い場合が示されている。換言すると、室内温度の低下の傾斜に比べ、床面温度の低下の傾斜が緩やかな場合、すなわち室内温度の変化量に比べ、床面温度の変化量が小さい場合が示されている。この場合、例えば空気調和機10とは別途設けられた床暖房が稼働していることが考えられ、空調負荷は小さいと判断される。従って、圧縮機1の回転数を低下する処理が行われる。
 図6の左下欄には、室内温度の低下速度が遅く、かつ床面温度の低下速度が速い場合が示されている。換言すると、室内温度の低下量に比べ、床面温度の低下量が極めて大きい場合、すなわち室内温度の変化量に比べ、床面温度の変化量が極めて大きい場合が示されている。この場合、室内温度の低下は緩やかなものの、床面が急激に冷えており、室内負荷は大きい、若しくは暖気流が床面に届いていないと判断される。従って、圧縮機1の回転数を増加させるか、あるいは送風ファン6の回転数を増加する処理が実行される。
 図6の右下欄には、室内温度の低下速度が速く、かつ床面温度の低下速度が速い場合が示されている。換言すると、室内温度の低下の傾斜および床面温度の低下の傾斜が共に急である場合、すなわち室内温度の変化量および床面温度の変化量が共に大きい場合が示されている。この場合、室内および床面が急激に冷えており、室内負荷は大きいと判断される。従って、圧縮機1の回転数を増加させる処理が実行される。
 図7の左上欄には、室内温度の上昇速度が遅く、かつ床面温度の上昇速度が遅い場合が示されている。換言すると、室内温度の上昇の傾斜および床面温度の上昇の傾斜が共に緩やかである場合、すなわち室内温度の変化量および床面温度の変化量が共に小さい場合が示されている。この場合、室内温度および床面温度の上昇が不十分で有り、空調負荷は大きいと判断される。従って、圧縮機1の回転数を増加する処理が行われる。
 図7の右上欄には、室内温度の上昇速度が速く、かつ床面温度の上昇速度が遅い場合が示されている。換言すると、室内温度の上昇の傾斜に比べ、床面温度の上昇の傾斜が緩やかである場合、すなわち室内温度の変化量に比べ床面温度の変化量が小さい場合が示されている。この場合、床面が十分に暖まっていないため、空調負荷は大きい、若しくは暖気流が床面に届いていないと判断される。従って、圧縮機1の回転数を増加するか、送風ファン6の回転数を増加する処理が実行される。
 図7の左下欄には、室内温度の上昇速度が遅く、かつ床面温度の上昇速度が速い場合が示されている。換言すると、室内温度の上昇の傾斜に比べ、床面温度の上昇の傾斜が急である場合、すなわち室内温度の変化量に比べ、床面温度の変化量が大きい場合が示されている。この場合、例えば空気調和機10とは別途設けられた床暖房が稼働していることが考えられ、空調負荷は小さいと判断される。従って、圧縮機1の回転数を低下する処理が行われる。
 図7の右下欄には、室内温度の上昇速度が速く、かつ床面温度の上昇速度が速い場合が示されている。換言すると、室内温度の上昇の傾斜および床面温度の上昇の傾斜が共に急であり、室内温度の上昇量(変化量)と床面温度の上昇量に大きな差が無い場合が示されている。この場合、室内温度および床面温度が急激に上昇してきており、室内負荷は小さいと判断される。従って、圧縮機1の回転数を低下させる処理が実行される。
 例えば、室内温度および床面温度を検知する時間間隔を30秒、床面温度の変化量に対する室内温度の変化量の比の閾値を75%、圧縮機1の回転数の増加量を10rps、送風ファンの回転数の増加量を100rpm(revolution per minute)、前回検知された室内温度を24.5℃、床面温度を23.5℃、前回の圧縮機1の回転数を60rps、送風ファンの回転数を1000rpmとする。このとき、圧縮機1の停止中、前回の検知から30秒経過したときの室内温度が24℃、床面温度が22.5℃である場合、室内温度の差分は0.5℃(24.5℃-24℃)、床面温度の差分は1.0℃(23.5℃-22.5℃)となり、床面温度の変化量に対する室内温度の変化量は0.5となる。すなわち、上記の閾値よりも低く、室内温度の低下速度に対し、床面温度の低下速度が極端に速い。従って、空調負荷が高い、若しくは暖気流が床面に届いていないと判断される。この場合、次回運転時の圧縮機1の回転数を70rpsに増加させる、若しくは送風ファンの回転数を1100rpmに増加させる処理が実行される。
 以上のように、実施の形態2によれば、暖房運転中、圧縮機1の停止中および運転中のそれぞれの状態において、室内温度の温度傾斜と床面温度の温度傾斜とに基づいて空調負荷および暖気流の対流状態が判断される。従って、空気調和機10が床面から高い位置に据え付けられている場合、例えば全館空調の建造物の上層階や階段の途中等に空気調和機10が設置されている場合であっても、圧縮機1のON・OFFが短い間隔で繰り返される現象を防止し、室内温度のハンチングを抑制すると共に、床面に近い場所も適切な温度とすることができる。すなわち、室内の環境に応じたより精度の高い空調制御を行うことができ、省エネルギおよび快適性の向上が図られる。
 1 圧縮機、2 室外熱交換器、3 膨張弁、4 室内熱交換器、6 送風ファン、7 室温サーミスタ、8 赤外線センサ、10 空気調和機、11 室内機、12 室外機、17 室内温度記憶手段、18 室内床面温度記憶手段、19 計時手段、20 制御手段、21 回転数調整手段、22 圧縮機制御手段。

Claims (6)

  1.  圧縮機、室外熱交換器、膨張弁、及び室内熱交換器が順次接続された冷凍サイクルを有する空気調和機であって、
     前記空気調和機が設置されている空間の室内温度を検知する室温検知手段と、
     前記空間の室内温度が前記空気調和機の設定温度に近づくよう、前記圧縮機の回転数を制御する制御手段とを備え、
     前記制御手段は、
     前記空気調和機の暖房運転時に前記圧縮機が停止中であり、かつ設定された第1の時間間隔で前記室温検知手段により検知される室内温度の低下量が第1の閾値以下であるとき、前記圧縮機の次回運転時の回転数を停止前の回転数に対して所定量低下させる空気調和機。
  2.  前記制御手段は、
     前記空気調和機の暖房運転時に前記圧縮機が停止中であり、かつ前記空間の室内温度の低下量が第2の閾値以上であるとき、前記圧縮機の次回運転時の回転数を停止前の回転数に対して所定量増加させる
     請求項1に記載の空気調和機。
  3.  前記制御手段は、
     前記空気調和機の暖房運転時に前記圧縮機が運転中であり、かつ前記空間の室内温度の上昇量が第3の閾値以上であるとき、前記圧縮機の回転数を所定量低下させる
     請求項1または2に記載の空気調和機。
  4.  前記空気調和機が設置されている空間の床面温度を検知する床面温度検知手段をさらに備え、
     前記空気調和機が暖房運転中の時、
     前記制御手段は、
     前記圧縮機が停止中であり、かつ前記空間の室内温度の低下量が前記第1の閾値以下であり、設定された第2の時間間隔で前記床面温度検知手段により検知される前記空間の床面温度の低下量が第4の閾値以下であるとき、前記圧縮機の次回運転時の回転数を停止前の回転数に対して所定量低下させる
     請求項1~3のいずれか1項に記載の空気調和機。
  5.  前記制御手段は、
     前記空気調和機の冷房運転時に前記圧縮機が停止中であり、かつ設定された前記第1の時間間隔で前記室温検知手段により検知される室内温度の上昇量が第5の閾値以下であるとき、前記圧縮機の次回運転時の回転数を停止前の回転数に対して所定量低下させ、
     前記空気調和機の冷房運転時に前記圧縮機が停止中であり、かつ前記空間の室内温度の上昇量が第6の閾値以上であるとき、前記圧縮機の次回運転時の回転数を停止前の回転数に対して所定量増加させ、
     前記空気調和機の冷房運転時に前記圧縮機が運転中であり、かつ前記空間の室内温度の低下量が第7の閾値以上であるとき、前記圧縮機の回転数を所定量低下させる
     請求項1~4のいずれか1項に記載の空気調和機。
  6.  前記制御手段は、
     前記圧縮機が運転中若しくは停止中のいずれの状態にあるかに基づくと共に、前記室温検知手段により検知される前記空間の室内温度の変化速度と、前記床面温度検知手段により検知される前記空間の床面温度の変化速度とに基づいて、前記圧縮機の回転数および/または前記室内熱交換器が設置されている室内へ空気を送り出すための送風ファンの回転数を制御する
     請求項1~5のいずれか1項に記載の空気調和機。
PCT/JP2016/062894 2016-04-25 2016-04-25 空気調和機 WO2017187476A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16900349.8A EP3450865B1 (en) 2016-04-25 2016-04-25 Air conditioner
JP2018513950A JPWO2017187476A1 (ja) 2016-04-25 2016-04-25 空気調和機
US16/076,799 US10712067B2 (en) 2016-04-25 2016-04-25 Air-conditioning apparatus
PCT/JP2016/062894 WO2017187476A1 (ja) 2016-04-25 2016-04-25 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062894 WO2017187476A1 (ja) 2016-04-25 2016-04-25 空気調和機

Publications (1)

Publication Number Publication Date
WO2017187476A1 true WO2017187476A1 (ja) 2017-11-02

Family

ID=60161293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062894 WO2017187476A1 (ja) 2016-04-25 2016-04-25 空気調和機

Country Status (4)

Country Link
US (1) US10712067B2 (ja)
EP (1) EP3450865B1 (ja)
JP (1) JPWO2017187476A1 (ja)
WO (1) WO2017187476A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9010133B2 (en) * 2012-06-20 2015-04-21 Whirlpool Corporation On-line energy consumption optimization adaptive to environmental condition
CN111609526B (zh) * 2019-02-25 2023-11-14 开利公司 Hvac系统不舒适指数和显示
KR102355461B1 (ko) * 2020-01-31 2022-01-24 엘지전자 주식회사 공기조화기 및 공기조화기의 제어 방법
CN112268355B (zh) * 2020-10-29 2022-05-10 科华恒盛股份有限公司 空调目标温度调节方法及终端设备
CN112797578B (zh) * 2020-12-28 2022-02-25 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
CN113400891B (zh) * 2021-07-19 2023-03-24 安徽江淮汽车集团股份有限公司 双温区热泵空调控制方法
US20230296277A1 (en) * 2022-03-21 2023-09-21 Lennox Industries Inc. Hvac system with improved operation of a variable speed compressor during a peak demand response
WO2023207684A1 (zh) * 2022-04-29 2023-11-02 海信空调有限公司 空调器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620942A (en) * 1979-07-27 1981-02-27 Hitachi Ltd Control of air conditioner
JPS6475849A (en) * 1987-09-18 1989-03-22 Hitachi Ltd Method of controlling operation of air conditioner
JP2016053451A (ja) * 2014-09-04 2016-04-14 パナソニックIpマネジメント株式会社 空気調和機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431491A1 (en) * 1989-12-06 1991-06-12 Kabushiki Kaisha Toshiba Heat pump type heating apparatus and control method thereof
JP4439419B2 (ja) 2005-03-17 2010-03-24 株式会社Nttファシリティーズ 空調機の制御方法
US20080000246A1 (en) * 2006-06-28 2008-01-03 Computime, Ltd. Conveying Temperature Information in a Controlled Variable Speed Heating, Ventilation, and Air Conditioning (HVAC) System
JP2008196766A (ja) 2007-02-13 2008-08-28 Matsushita Electric Ind Co Ltd 空気調和機
JP5932759B2 (ja) * 2013-11-21 2016-06-08 三菱電機株式会社 空気調和機
JP6338761B2 (ja) * 2015-02-18 2018-06-06 三菱電機株式会社 空気調和システム
WO2018047264A1 (ja) * 2016-09-08 2018-03-15 三菱電機株式会社 冷凍サイクル装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620942A (en) * 1979-07-27 1981-02-27 Hitachi Ltd Control of air conditioner
JPS6475849A (en) * 1987-09-18 1989-03-22 Hitachi Ltd Method of controlling operation of air conditioner
JP2016053451A (ja) * 2014-09-04 2016-04-14 パナソニックIpマネジメント株式会社 空気調和機

Also Published As

Publication number Publication date
EP3450865A1 (en) 2019-03-06
US20190063806A1 (en) 2019-02-28
EP3450865B1 (en) 2020-02-19
JPWO2017187476A1 (ja) 2018-11-22
EP3450865A4 (en) 2019-05-22
US10712067B2 (en) 2020-07-14

Similar Documents

Publication Publication Date Title
WO2017187476A1 (ja) 空気調和機
JP6642379B2 (ja) 空調機
WO2010137344A1 (ja) 空気調和装置
JP6906311B2 (ja) 空気調和装置
US10371407B2 (en) Air conditioning apparatus
WO2018173120A1 (ja) 除湿機
KR101901300B1 (ko) 공기조화기의 제어방법
JP5695861B2 (ja) 外気処理空調機およびそれを用いたマルチ空調システム
JP2016053452A (ja) 空気調和機
JP5407342B2 (ja) 空気調和装置
JP5071063B2 (ja) 空気調和機
CN109642747B (zh) 空气调节装置
JP5863988B2 (ja) 空調装置、コントローラ、空調制御方法及びプログラム
JP6650567B2 (ja) 空気調和機
CN113551437B (zh) 空调系统以及控制方法
JP6615371B2 (ja) 冷凍サイクル装置
JP2008138960A (ja) 空気調和機
JP2006343095A (ja) 空気調和機
KR20050034080A (ko) 실내기 설치 위치에 따른 멀티형 에어컨의 운전 방법
JP6271011B2 (ja) 冷凍空調装置
JP7227103B2 (ja) 空気調和装置
JP5772665B2 (ja) ヒートポンプ式給湯装置
JP2006343096A (ja) 空気調和機
JP6906689B2 (ja) 空気調和機
JP2005133970A (ja) 空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018513950

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016900349

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016900349

Country of ref document: EP

Effective date: 20181126