WO2023207684A1 - 空调器 - Google Patents

空调器 Download PDF

Info

Publication number
WO2023207684A1
WO2023207684A1 PCT/CN2023/089055 CN2023089055W WO2023207684A1 WO 2023207684 A1 WO2023207684 A1 WO 2023207684A1 CN 2023089055 W CN2023089055 W CN 2023089055W WO 2023207684 A1 WO2023207684 A1 WO 2023207684A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
outlet
indoor
target
Prior art date
Application number
PCT/CN2023/089055
Other languages
English (en)
French (fr)
Inventor
王军
刘通
巩杨
陈守海
Original Assignee
海信空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210467128.3A external-priority patent/CN114811732B/zh
Priority claimed from CN202210467146.1A external-priority patent/CN114738892A/zh
Priority claimed from CN202210467915.8A external-priority patent/CN114659173B/zh
Application filed by 海信空调有限公司 filed Critical 海信空调有限公司
Priority to CN202380013564.6A priority Critical patent/CN117940707A/zh
Publication of WO2023207684A1 publication Critical patent/WO2023207684A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0073Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/108Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using dry filter elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide

Definitions

  • the present disclosure relates to the technical field of air conditioning equipment, and in particular to an air conditioner.
  • air conditioners have entered ordinary people's homes and become a necessity in people's daily lives.
  • people's requirements for the quality of life have become higher and higher, and they have put forward higher requirements for the functions of air conditioners, such as air purification, dehumidification, dust removal, etc.
  • the present disclosure provides an air conditioner, which includes an outdoor unit, an indoor unit, a temperature sensor, a wind speed sensor, and a controller.
  • the outdoor unit includes a compressor configured to compress refrigerant to drive the refrigerant to circulate in the air conditioner.
  • the indoor unit includes an indoor fan and a purification device.
  • the indoor fan is configured to blow air indoors.
  • the purification device is configured to purify indoor air.
  • the temperature sensor is configured to detect the actual return air temperature and cooling outlet temperature of the indoor unit.
  • the wind speed sensor is configured to detect the purified mixed air outlet wind speed of the indoor unit.
  • the controller is configured to: when the air conditioner is in a running state, control the start of the purification device; obtain the currently set standard effective temperature range, target air supply distance, obtain the actual return air temperature, the Refrigeration air outlet temperature and the purified mixed air outlet wind speed; according to the actual return air temperature and the refrigeration outlet air temperature, as well as the circulating air volume when the purification device performs the purification operation and the air conditioner performs the cooling operation.
  • Circulating air volume calculate the purified mixed air outlet temperature; calculate the real-time standard effective temperature according to the actual return air temperature, the purified mixed air outlet temperature, the purified mixed air outlet wind speed and the target air supply distance; if the If the real-time standard effective temperature is outside the preset standard effective temperature range, the rotation speed of the indoor fan and the operating frequency of the compressor are adjusted.
  • the present disclosure provides an air conditioner including an outdoor unit, an indoor unit, a temperature sensor, a wind speed sensor, and a controller.
  • the outdoor unit includes a compressor configured to compress refrigerant to drive the refrigerant to circulate in the air conditioner.
  • the indoor unit includes an indoor fan and a fresh air device.
  • the indoor fan is configured to blow air indoors.
  • the fresh air device is configured to introduce outdoor air into the room.
  • the temperature sensor is configured to detect the outdoor ambient temperature and outlet air temperature of the indoor unit.
  • the wind speed sensor is configured to detect the outlet wind speed of the indoor unit.
  • the controller is configured to: obtain the currently set standard effective temperature range, target air supply distance, the outdoor ambient temperature, the outlet air temperature and the outlet wind speed; according to the outdoor ambient temperature, the The outlet air temperature, the outlet wind speed and the target air supply distance are used to calculate the real-time standard effective temperature; if it is determined that the real-time standard effective temperature is outside the preset standard effective temperature range, it is determined whether the fresh air device is turned on Or judge the relationship between the temperature difference and the temperature threshold, and control the rotation speed of the indoor fan and the operating frequency of the compressor according to the judgment result.
  • the present disclosure provides an air conditioner, which includes an outdoor unit, an indoor unit, a temperature sensor, a wind speed sensor, and a controller.
  • the outdoor unit includes a compressor configured to compress refrigerant to drive the refrigerant to circulate in the air conditioner.
  • the indoor unit includes an indoor fan, an indoor air outlet duct, a fresh air device, a purification device and an indoor environment detection device.
  • the indoor fan is configured to blow air indoors.
  • the indoor fan supplies air to the room through the indoor air outlet duct.
  • the fresh air device is configured to introduce outdoor air into the room.
  • the new trend The device includes a fresh air duct and a fresh air outlet duct, through which outdoor air enters the room.
  • the fresh air outlet duct of the fresh air device is nested with the indoor air outlet duct, and the fresh air outlet duct is located outside the indoor air outlet duct.
  • the purification device is configured to purify indoor air.
  • the purification device includes a purification duct and a purification air outlet duct, and the purified indoor air enters the room through the purification air outlet duct.
  • the purification air outlet duct of the purification device and the indoor air outlet duct are nested, and the purification air outlet duct is located outside the indoor air outlet duct.
  • the indoor environment detection device is configured to detect the PM2.5 value and CO2 value of the indoor environment.
  • the temperature sensor is configured to detect the outdoor ambient temperature, outlet air temperature and cooling outlet temperature of the indoor unit.
  • the wind speed sensor is configured to detect the outlet wind speed of the indoor unit.
  • the controller is configured to: obtain the currently set standard effective temperature range and target air supply distance, and obtain the outdoor ambient temperature, the outlet air temperature, the cooling outlet temperature and the outlet wind speed; Determine to turn on at least one of the fresh air device or the purification device according to the PM2.5 value, CO2 value of the indoor environment and the outdoor ambient temperature; according to the outdoor ambient temperature, the combined mixed air outlet temperature, the refrigeration air outlet temperature, The combined mixed outlet wind speed and the target air supply distance calculate the real-time standard effective temperature at the center of the outlet airflow zone corresponding to the target air supply distance; if it is determined that the real-time standard effective temperature is at the preset If the temperature is outside the standard effective temperature range, the relationship between the temperature difference and the temperature threshold is judged, and the rotation speed of the indoor fan and the operating frequency of the compressor are controlled based on the judgment result.
  • Figure 1 is a structural diagram of an air conditioner according to some embodiments.
  • Figure 2 is a block diagram of an air conditioner according to some embodiments.
  • Figure 3 is a schematic diagram of a purification device according to some embodiments.
  • Figure 4 is another schematic diagram of a purification device according to some embodiments.
  • Figure 5 is a flow chart of a control method of an air conditioner according to some embodiments.
  • Figure 6 is a schematic diagram of an indoor unit of an air conditioner according to some embodiments.
  • Figure 7 is another schematic diagram of an indoor unit of an air conditioner according to some embodiments.
  • Figure 8 is a flow chart of another control method of an air conditioner according to some embodiments.
  • Figure 9 is a relationship diagram between air temperature and air supply distance of an air conditioner according to some embodiments.
  • Figure 10 is a relationship diagram between wind speed and air supply distance of an air conditioner according to some embodiments.
  • Figure 11 is a flow chart of yet another control method of an air conditioner according to some embodiments.
  • Figure 12 is a block diagram of another air conditioner according to some embodiments.
  • Figure 13 is a schematic diagram of a fresh air device according to some embodiments.
  • Figure 14 is a schematic diagram of another fresh air device according to some embodiments.
  • Figure 15 is a flow chart of yet another control method of an air conditioner according to some embodiments.
  • Figure 16 is a flow chart of yet another control method of an air conditioner according to some embodiments.
  • Figure 17 is a diagram showing the relationship between the center distance of the air outlet airflow zone and the wind speed of the air conditioner according to some embodiments.
  • Figure 18 is a relationship diagram between air temperature and air supply distance of another air conditioner according to some embodiments.
  • Figure 19 is a relationship diagram between wind speed and air supply distance of another air conditioner according to some embodiments.
  • Figure 20 is a flow chart of yet another control method of an air conditioner according to some embodiments.
  • Figure 21 is a block diagram of yet another air conditioner according to some embodiments.
  • Figure 22A is a schematic diagram of a fresh air device and a purification device according to some embodiments.
  • Figure 22B is another schematic diagram of a fresh air device and a purification device according to some embodiments.
  • Figure 22C is another schematic diagram of a fresh air device and a purification device according to some embodiments.
  • Figure 23 is another schematic diagram of a fresh air device and a purification device according to some embodiments.
  • Figure 24 is another schematic diagram of a fresh air device and a purification device according to some embodiments.
  • Figure 25 is a flow chart of yet another control method of an air conditioner according to some embodiments.
  • Figure 26 is a flow chart of yet another control method of an air conditioner according to some embodiments.
  • Figure 27 is a flowchart of yet another control method of an air conditioner according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • coupled indicates, for example, that two or more components are in direct physical or electrical contact.
  • coupled or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • FIG. 1 is a structural diagram of an air conditioner according to some embodiments
  • FIG. 2 is a block diagram of an air conditioner according to some embodiments.
  • the air conditioner 10 includes an outdoor unit 20 , an indoor unit 30 , a temperature sensor 50 , an expansion valve 60 and a wind speed sensor 70 .
  • the outdoor unit 20 of the air conditioner 10 includes a compressor 21, an outdoor heat exchanger 22, and an outdoor fan 23.
  • the indoor unit 30 of the air conditioner 10 includes an indoor heat exchanger 31, an indoor fan 32, and an indoor air outlet 33 (i.e., an indoor air outlet duct). 35), purification device 34 and indoor air outlet duct 35. At least one of the outdoor unit 20 or the indoor unit 30 is provided with an expansion valve 60 .
  • the compressor 21, the condenser (indoor heat exchanger 31 or outdoor heat exchanger 22), the expansion valve 60 and the evaporator (outdoor heat exchanger 22 or indoor heat exchanger 31) execute the refrigerant cycle of the air conditioner 10.
  • the refrigerant cycle includes a series of processes involving compression, condensation, expansion and evaporation, and supplies refrigerant to the regulated side cycle.
  • the purification device 34 is configured to filter or adsorb pollutants such as PM2.5 and total volatile organic compounds (TVOC) in the indoor air, purify the indoor air, and complete the internal circulation of the indoor air.
  • pollutants such as PM2.5 and total volatile organic compounds (TVOC)
  • the outdoor fan 23 is configured to promote heat exchange between the refrigerant flowing in the heat transfer tube of the outdoor heat exchanger 22 and outdoor air.
  • the indoor fan 32 is configured to promote heat exchange between the refrigerant flowing in the heat transfer tube of the indoor heat exchanger 31 and indoor air to assist temperature regulation.
  • the air conditioner 10 further includes a controller 40.
  • the controller 40 is coupled to the compressor 21, the indoor fan 32, the indoor air outlet 33, the purification device 34, the temperature sensor 50 and the wind speed sensor 70.
  • the controller 40 40 is configured to control the working status of each component coupled with the controller 40 .
  • the controller 40 can be divided into an indoor controller and an outdoor controller, which are used to control the structural components of the indoor unit 30 and the outdoor unit 20 respectively.
  • the temperature sensor 50 includes an outdoor temperature sensor 51 and an indoor temperature sensor 52 .
  • the outdoor temperature sensor 51 is configured to detect actual outdoor air temperature.
  • the indoor temperature sensor 52 includes an indoor environment temperature sensor 521, an outlet air temperature sensor 522 and a coil temperature sensor 523.
  • the indoor environment temperature sensor 521 is configured to detect the actual indoor air temperature
  • the outlet air temperature sensor 522 is configured to detect the outlet air temperature at the indoor air outlet 33
  • the coil temperature sensor 523 is configured to detect the temperature at the indoor coil.
  • the controller 40 may include a central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), and may be configured to operate when the processor executes storage coupled to the controller. 40, the corresponding operations described in the controller 40 are executed.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the air outlet temperature of the air conditioner is not a single cooling air temperature, but when the purification function or the fresh air function is turned on.
  • FIG. 3 is a schematic diagram of a purification device according to some embodiments
  • FIG. 4 is a schematic diagram of another purification device according to some embodiments.
  • the purification device 34 includes a purification air outlet duct 341 .
  • the purified air outlet duct 341 is nested with the indoor air outlet duct 35 of the indoor unit 30 , and the purified air outlet duct 341 is located outside the indoor air outlet duct 35 .
  • the purification air outlet duct 341 shrinks in the direction toward the indoor air outlet 33, so that the air outlet airflow of the purification device 34 and the air outlet airflow of the indoor air outlet 33 are mixed in the mixed air area A, and the air outlet of the purification device 34 The direction intersects with the air outlet direction of the indoor air outlet 33 and forms a predetermined included angle.
  • the air outlet temperature of the air conditioner 10 is not a single cooling air outlet temperature, but a mixed outlet air temperature.
  • the change in the outlet air temperature of the air conditioner 10 after the purification function is turned on is usually not considered, so that the mixed outlet air temperature is not consistent with the indoor air temperature required by the user. Matching cannot better meet the user's requirements for comfortable temperature.
  • FIG. 5 is a flowchart of a control method according to some embodiments. As shown in Figure 5, the control method includes steps S11 to S17.
  • step S11 when the air conditioner 10 is in the running state, the purification device 34 is controlled to start.
  • the controller 40 when the air conditioner 10 is in a running state, the controller 40 automatically controls the purification device 34 to start.
  • Step S12 Obtain the currently set standard effective temperature range and target air supply distance, and detect the actual return air temperature, cooling air outlet temperature and purification mixed air outlet wind speed.
  • the standard effective temperature is defined as: a person wearing standard clothing (thermal resistance 0.6clo) is at a relative humidity of 50%, the air is approximately stationary (wind speed is approximately 0.1m/s), and the air In an environment where the temperature is the same as the average radiation temperature and the metabolic rate is 1 MET (equivalent to a person sitting still), if the average skin temperature and skin humidity of the human body at this time are the same as an actual environment and actual clothing thermal resistance conditions, then the human body will be in the standard There will be the same amount of heat dissipation in the environment and the actual environment. At this time, the air temperature in the standard environment is the standard effective temperature SET of the actual environment. It is usually necessary that all or most areas in the entire room can reach the comfortable standard effective temperature SET. .
  • MET metabolic equivalent of energy
  • metuo the energy metabolic equivalent
  • the average radiation temperature Tr the air temperature Ta detected by the air conditioner
  • the relative humidity Rh is the humidity detected by the air conditioner 10.
  • the air conditioner 10 blows out
  • the relative humidity of the air is generally between 40% and 70%, and the default is 50%.
  • the thermal resistance of summer clothing is 0.6clo, and the metabolic rate is 1.0M.
  • users can set the current target standard effective temperature SET s according to their own needs, and determine the standard effective temperature range based on the target standard effective temperature SET s .
  • the standard valid temperature range is [SET s - ⁇ T, SET s + ⁇ T].
  • SET s - ⁇ T is the lower limit of the standard effective temperature range
  • SET s + ⁇ T is the upper limit of the standard effective temperature range
  • ⁇ T is the temperature constant
  • ⁇ T>0 The value of ⁇ T can be set according to actual needs.
  • the value range of ⁇ T is 0.1°C ⁇ ⁇ T ⁇ 5°C.
  • ⁇ T 1°C
  • the user can set the standard effective temperature range to [24.0°C, 26.0°C].
  • FIG. 6 is a schematic diagram of an indoor unit according to some embodiments.
  • FIG. 7 is another schematic diagram of an indoor unit according to some embodiments.
  • the user can also determine the distance between himself and the air conditioner according to his/her location. 10, or based on the distance between your work, study or leisure place (recorded as the user-set measuring point) and the air conditioner 10, determine the target air supply distance ⁇ .
  • the temperature at the indoor air outlet 33 is low, and users usually do not stand at the indoor air outlet 33 for a long time, but are located at a distance of more than 1 m from the indoor air outlet 33. Therefore, the user can set the The distance between the center of the air flow belt and the indoor air outlet 33 is, for example, 1.5 m. At this time, the target air supply distance ⁇ is 1.5 m.
  • the user can accept the wind temperature at a distance of 1.5m between himself and the indoor air outlet 33, as the distance between the two increases, the wind temperature increases, the wind speed decreases, and the standard effective temperature SET increases, making the user feel the standard
  • the effective temperature SET increases as the distance increases, which will also meet the user's demand for comfort in the cooling air output of the air conditioner 10 . If the wind speed is not considered and the wind temperature is controlled in one dimension, the operating frequency of the compressor 21 is required to be low, and the cooling capacity output of the air conditioner 10 is low, which prolongs the time for the room to reach the set target standard effective temperature SET s . , and even cannot always reach the target standard effective temperature SET s .
  • the actual return air temperature Ta is the actual indoor air temperature, which is detected by the indoor ambient temperature sensor 521 .
  • the cooling outlet air temperature Ta_out can be measured by the outlet air temperature sensor 522 or calculated by Formula 1.
  • Ta_out K1 ⁇ Te Formula 1
  • Te is the indoor coil temperature, measured by the coil temperature sensor 523 installed at the indoor coil
  • K1 is the temperature constant, which is obtained based on multiple tests or experience.
  • the purified mixed air outlet wind speed Va_out fix1 can be measured by the wind speed sensor 70 installed at the indoor air outlet 33 .
  • the outlet wind speed can be calculated by Formula 2. Therefore, the purified mixed outlet wind speed Va_out fix1 can also be calculated by Formula 2.
  • V_out in Formula 2 is Va_out fix1 .
  • V_out K2 ⁇ R Formula 2
  • R is the rotation speed of the indoor fan 32
  • K2 is the wind speed coefficient
  • Step S13 Calculate the purified mixed outlet air temperature based on the actual return air temperature Ta and the cooling outlet air temperature Ta_out.
  • the purified mixed outlet air temperature Ta_out fix1 can be detected by the outlet air temperature sensor 522 .
  • the purified mixed air outlet temperature Ta_out fix1 can also be calculated through Formula 3 according to the solution dilution principle.
  • Ta_out fix1 is the purified mixed air outlet temperature
  • V JH is the circulating air volume when the purification device 34 performs the purification operation, V JH is, for example, 100m 3 /h
  • V KT is the circulating air volume when the air conditioner 10 performs the cooling operation, V KT For example, it is 600m 3 /h.
  • the change in the outlet air temperature of the indoor unit 30 before and after the mixed air is characterized by setting the increase value K HF of the purified mixed air outlet temperature Ta_out fix1 compared to the cooling outlet temperature Ta_out.
  • the mixed air outlet temperature Ta_out The increase value K HF of the outlet air temperature after wind can be calculated by formula 4.
  • the mixed outlet temperature Ta_out fix can also be calculated according to Formula 5 based on the cooling outlet temperature Ta_out.
  • the first column on the left side of Table 1 is the cooling outlet temperature Ta_out, in °C; the second column on the left side is the circulating air volume V KT when the air conditioner 10 performs cooling operation, in unit: m 3 /h; the third column on the left side is The actual return air temperature Ta, the unit is °C; the fourth column on the left is the circulating air volume V JH when the purification device 34 performs the purification operation, the unit is m3 /h; the fifth column on the left is the purification mixed air outlet temperature Ta_out fix1 , The unit is °C; the first column on the right is the increase value K HF of the outlet air temperature after mixed air, the unit is °C.
  • the increase value K HF of the purified mixed air outlet temperature Ta_out fix1 of the indoor unit 30 compared to the cooling outlet temperature Ta_out is about 2°C ( Such as 2.1°C, 1.9°C, 1.6°C).
  • the cooling outlet temperature Ta_out can also be used to obtain Formula 6 through Formula 5, and the purified mixed air outlet temperature Ta_out fix1 can be calculated according to Formula 6.
  • Step S14 Calculate the real-time standard effective temperature based on the actual return air temperature Ta, the purified mixed outlet air temperature Ta_out fix1 , the purified mixed outlet air speed Va_out fix1 , and the target air supply distance ⁇ .
  • Step S15 Determine whether the real-time standard effective temperature SET ⁇ is outside the standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T]. If yes, step S16 is executed. If not, step S17 is executed.
  • Step S16 adjust the operating frequency F of the compressor 21 and the rotation speed R of the indoor fan 32.
  • step S17 the operating frequency F of the compressor 21 and the rotation speed R of the indoor fan 32 are maintained unchanged.
  • FIG 8 is a flowchart of another control method of an air conditioner according to some embodiments. As shown in Figure 8, step S14 includes steps S141 to step S143.
  • Step S141 obtain the currently set indoor fan gear, and determine the farthest air supply distance corresponding to the currently set indoor fan gear according to the preset correspondence relationship between the indoor fan gear and the furthest air supply distance.
  • the preset air supply distance is the farthest air supply distance ⁇ max .
  • the user adjusts the indoor fan gear according to his or her own needs to adjust the rotation speed R of the indoor fan 32 and thereby adjust the wind speed when the air from the air conditioner 10 hits the user.
  • the indoor fan gear represents the rotational speed R of the indoor fan 32.
  • the level of the indoor fan gear and the range of the rotation speed R of the indoor fan 32 corresponding to each level can be set according to the actual situation, and this disclosure is not limited.
  • the indoor fan 32 includes 5 gears, namely 1st gear, 2nd gear, 3rd gear, 4th gear and 5th gear. 1st gear corresponding
  • the rotation speed R of the indoor fan 32 is 600 rpm.
  • the rotation speed R of the indoor fan 32 corresponding to the second gear is 750 rpm.
  • the rotation speed R of the indoor fan 32 corresponding to the third gear is 900 rpm.
  • the rotation speed R of the indoor fan 32 corresponding to the fourth gear is 1050 rpm.
  • the rotation speed R of the indoor fan 32 corresponding to the fifth gear is 1200 rpm.
  • the indoor fan gear levels and the range of the rotation speed R of the indoor fan 32 corresponding to each level can be set according to actual conditions, and this disclosure is not limited.
  • the furthest air supply distance ⁇ max of the air conditioner 10 is related to the currently set indoor fan gear.
  • the corresponding relationship between the indoor fan gear and the furthest air supply distance ⁇ max is preset, for example, as shown in Table 2.
  • the longest air supply distance ⁇ max of the current air conditioner 10 can be obtained according to the currently set indoor fan gear and Table 2. For example, when the currently set indoor fan gear is level 2, the furthest air supply distance ⁇ max is 3.8m.
  • Step S142 calculate the target air temperature and target wind speed based on the actual return air temperature Ta, the purified mixed outlet air temperature Ta_out fix1 , the purified mixed outlet wind speed Va_out fix1 , the target air supply distance ⁇ and the farthest air supply distance ⁇ max .
  • FIG. 9 is a relationship diagram between wind speed and air supply distance of an air conditioner according to some embodiments.
  • FIG. 10 is a relationship diagram between wind speed and air supply distance of an air conditioner according to some embodiments.
  • the target air temperature Ta ⁇ at different target air supply distances ⁇ can be linearly fitted to the target air supply distance ⁇ as a linear function.
  • the outlet airflow zone corresponding to the target air supply distance ⁇ is calculated through Formula 7
  • the target wind speed Va ⁇ at the center of the airflow belt corresponding to the target air supply distance ⁇ is calculated through Formula 8.
  • Step S143 according to the preset corresponding relationship between wind temperature, wind speed and standard effective temperature, determine the standard effective temperature SET corresponding to the target wind temperature Ta ⁇ and the target wind speed Va ⁇ as the real-time standard effective temperature SET ⁇ .
  • the standard effective temperature SET has a positive correlation with the wind temperature, and the standard effective temperature SET has a negative correlation with the wind speed.
  • the corresponding relationship between wind temperature, wind speed and standard effective temperature is preset, for example, as shown in Table 3.
  • the first column in Table 3 is the wind speed Va in the center zone of the airflow, in m/s.
  • the first column on the left is the wind temperature, in °C.
  • the value in the table is the standard effective temperature SET, in °C.
  • the wind speed can be the mixed outlet wind speed Va_out fix , the target wind speed Va ⁇ , etc.
  • the wind temperature can be the actual return air temperature Ta, the target wind temperature Ta ⁇ , the mixed outlet temperature Ta_out fix , etc.
  • the standard effective temperature can be Real-time standard effective temperature SET ⁇ , target standard effective temperature SET s , etc.
  • the minimum division between the standard effective temperature SET and the actual return air temperature Ta is determined by the accuracy of the indoor ambient temperature sensor 521 of the air conditioner 10 .
  • the accuracy of the indoor ambient temperature sensor 521 is 0.5°C
  • the minimum division of the standard effective temperature SET and the actual return air temperature Ta is 0.5°C
  • the accuracy of the indoor ambient temperature sensor 521 is 0.1°C
  • the standard effective temperature SET is 0.1°C.
  • the indoor fan gear is related to the temperature difference E between the target cooling temperature Ts set by the user and the current actual return air temperature Ta.
  • the temperature difference The larger the value E, the larger the indoor fan speed.
  • the operating frequency F and wind speed of the compressor 21 both have a greater impact on the outlet air temperature of the air conditioner 10.
  • the operating frequency F of the compressor 21 has a greater impact on the outlet air temperature of the air conditioner 10 than the wind speed. Temperature has a great influence.
  • the control method of the air conditioner in some embodiments of the present disclosure uses a combination of the standard effective temperature SET and the temperature difference E, combined with factors such as the wind speed on the uniformity of the indoor air temperature, to try to satisfy the indoor air temperature to reach the target standard effective temperature.
  • SET s and when the indoor air temperature uniformity is good, the rotation speed R of the indoor fan 32 and the operating frequency of the compressor 21 are dynamically adjusted to achieve the target standard effective temperature SET s at the set measuring point at the target air supply distance ⁇ . need.
  • FIG 11 is a flow chart of yet another control method for an air conditioner according to some embodiments. As shown in Figure 11, in some embodiments of the present disclosure, step S16 includes steps S161 to step S1632.
  • Step S161 Determine whether the real-time standard effective temperature SET ⁇ is less than the lower limit value SET s - ⁇ T of the standard effective temperature range. If yes, step S162 is executed. If not, step S163 is executed.
  • Step S162 Determine whether the temperature difference satisfies E ⁇ Es . If yes, step S1621 is executed. If not, step S1622 is executed.
  • Es is a preset temperature threshold.
  • Step S1621 maintain the operating frequency F of the compressor 21 unchanged, and reduce the rotation speed R of the indoor fan 32 according to a preset rotation speed adjustment step.
  • the controller 40 controls the operating frequency F of the compressor 21 to remain unchanged, and controls the rotation speed R of the indoor fan 32 to decrease by ⁇ R.
  • the rotation speed adjustment step of the indoor fan 32 is ⁇ R
  • the reduced rotation speed of the indoor fan 32 is, for example, R- ⁇ R.
  • Step S1622 reduce the operating frequency F of the compressor 21 according to the preset frequency adjustment step, and reduce the rotation speed R of the indoor fan 32 according to the preset rotation speed adjustment step.
  • the controller 40 controls the rotation speed R of the indoor fan 32 to decrease by ⁇ R, and controls the operating frequency F of the compressor 21 to decrease by ⁇ F.
  • the frequency adjustment step size of the compressor 21 is ⁇ F
  • the reduced operating frequency of the compressor 21 is, for example, F- ⁇ F.
  • ⁇ F range is 0.1Hz ⁇ 20Hz.
  • Step S163 Determine whether the temperature difference satisfies E ⁇ Es . If yes, execute step S1631. If not, execute Step S1632.
  • Step S1631 increase the operating frequency F of the compressor 21 according to the preset frequency adjustment step, and increase the rotation speed R of the indoor fan 32 according to the preset rotation speed adjustment step.
  • the controller 40 controls the rotation speed R of the indoor fan 32 to increase by ⁇ R, and controls the operating frequency of the compressor 21 to increase by ⁇ F.
  • the increased rotation speed of the indoor fan 32 is, for example, R+ ⁇ R
  • the increased operating frequency of the compressor 21 is, for example, F+ ⁇ F.
  • Step S1632 Keep the operating frequency F of the compressor 21 unchanged, and increase the rotation speed R of the indoor fan 32 according to the preset rotation speed adjustment step.
  • the controller 40 controls the rotation speed of the indoor fan 32 to increase by ⁇ R, and controls the operating frequency F of the compressor 21 to remain unchanged.
  • the controller 40 calculates the real-time standard effective temperature SET ⁇ at any time, and based on the relationship between the real-time standard effective temperature SET ⁇ and the standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T] , and the relationship between the temperature difference E and the target temperature difference E s .
  • the control method of the air conditioner 10 further includes step S18.
  • step S18 after a delay of T1 seconds, the above-mentioned steps S11 to S17 are repeated.
  • the controller 40 After a delay of T1 seconds, the controller 40 reacquires the actual return air temperature Ta, cooling outlet temperature Ta_out, purified mixed outlet air speed Va_out fix1 and temperature difference E, calculates the new real-time standard effective temperature SET ⁇ , and controls the compression
  • the operating frequency F of the machine 21 and the indoor fan gear position control the real-time standard effective temperature SET ⁇ within the standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T]. Subsequently, the process is repeated with T1 seconds as a detection period.
  • T1 is, for example, 10 to 600.
  • ⁇ T 1°C
  • E s 1.5°C
  • T1 60s
  • ⁇ F 5Hz.
  • the user When the air conditioner 10 is in operation, the user turns on the purification function and makes the air conditioner 10 run in the cooling mode.
  • the user turns on the air outlet standard effective temperature SET control function and sets the target standard effective temperature SET s to 16°C. At this time, the standard is valid. Temperature range [15°C,17°C].
  • the real-time standard effective temperature SET 1.5 ⁇ 11.5°C ⁇ 15°C in the center of the outlet airflow belt at this time is obtained through Table 3.
  • the controller 40 controls the room
  • the fan gear is reduced by one gear (that is, the rotation speed R of the indoor fan 32 is reduced by one rotation speed adjustment step ⁇ R), and the operating frequency of the compressor 21 is reduced by 5 Hz.
  • the real-time standard effective temperature at this time is SET 1.5 ⁇ 14.5°C ⁇ 15°C, and E ⁇ E s at this time.
  • the controller 40 controls the indoor fan gear to decrease by one gear, and the operating frequency of the compressor 21 decreases by 5 Hz.
  • the purified mixed air outlet is calculated according to Formula 3.
  • Some embodiments of the present disclosure provide a control method for an air conditioner.
  • a purification device 34 is added to the air conditioner 10, and the purification air outlet duct 341 of the purification device 34 and the cooling air outlet duct 35 of the indoor unit 30 are nested. Therefore, the purification device 34 can not only purify indoor air, but also increase the air outlet temperature of the indoor cooling air outlet 33, prevent the air outlet temperature of the air conditioner 10 from being too low, and improve comfort.
  • some embodiments of the present disclosure effectively consider the impact of turning on the purification device 34 of the air conditioner 10 during the control process of the operating parameters of the air conditioner 10, and introduce the concept of standard ambient temperature SET, taking into account both wind speed and wind temperature.
  • the operating frequency of the compressor 21 and the rotation speed R of the indoor fan 32 can be adjusted based on the influencing factors, making the adjustment of the operating parameters of the air conditioner 10 more accurate and effective, meeting the requirements of indoor air temperature uniformity, and improving the user's comfort in the air-conditioning environment. comfort.
  • FIG 12 is a block diagram of another air conditioner according to some embodiments. As shown in Figure 12, the main difference between the air conditioner in Figure 12 and the air conditioner in Figure 2 is that the air conditioner 10 includes a fresh air device 36.
  • the fresh air device 36 is configured to introduce outdoor fresh air into the room to complete the external circulation of indoor air.
  • the controller 40 is coupled with the fresh air device 36 to control the opening or closing of the fresh air device 36 .
  • FIG. 13 is a schematic diagram of a fresh air device according to some embodiments
  • FIG. 14 is a schematic diagram of a fresh air device according to some embodiments.
  • the fresh air device 36 includes a fresh air outlet duct 361.
  • the fresh air outlet duct 361 and the indoor air outlet duct 35 are nested.
  • the fresh air outlet duct 361 shrinks in the direction toward the indoor air outlet 33, so that the outlet air flow of the fresh air device 36 and the outlet air flow of the indoor unit 30 are mixed in the mixed air area A to form a mixed outlet air flow, and the fresh air
  • the air outlet direction of the device 36 intersects with the air outlet direction of the indoor unit 30 and forms a predetermined included angle.
  • the fresh air mixed outlet temperature Ta_out fix2 can be detected by the outlet air temperature sensor 522 .
  • the fresh air mixed outlet temperature Ta_out fix2 can also be calculated through Formula 9.
  • Ta_out fix2 (Ta_out ⁇ V KT +Toutdoor ⁇ V XF )/((V KT +V XF ))
  • Ta_out is the cooling air outlet temperature
  • V KT is the circulating air volume when the air conditioner 10 performs the cooling operation
  • V KT is, for example, 600m 3 /h
  • Toutdoor is the outdoor ambient temperature
  • V XF is the circulation when the fresh air device 36 performs the fresh air operation.
  • the air volume, V XF is, for example, 100m 3 /h.
  • the indoor unit 30 before and after the mixing is characterized by setting the added value K HF of the fresh air mixed outlet temperature Ta_out fix2 compared to the cooling outlet temperature Ta_out after the fresh air outlet and the cooling air are mixed.
  • the increase value K HF of the outlet air temperature after mixed air can be calculated by formula 10.
  • the first column on the left side of Table 4 is the refrigeration outlet temperature Ta_out, the unit is °C; the second column on the left side is the air conditioner 10 execution control
  • the circulating air volume V KT during cold operation the unit is m 3 /h;
  • the third column on the left is the outdoor ambient temperature Toutdoor, the unit is °C;
  • the fourth column on the left is the circulating air volume V XF when the fresh air device 36 performs the purification operation,
  • the unit is m 3 /h;
  • the fifth column on the left is the fresh air mixed outlet temperature Ta_out fix2 , the unit is °C;
  • the first column on the right is the increase value K HF of the outlet air temperature after mixed air, the unit is °C.
  • the increase value K HF of the fresh air mixed outlet temperature Ta_out fix2 of the indoor unit 30 compared to the cooling outlet temperature Ta_out is about 3°C (such as 3.3°C, 3.0°C, 2.7°C).
  • formula 11 can also be obtained through formula 5 according to the cooling air outlet temperature Ta_out, and the fresh air mixed outlet temperature Ta_out fix2 can be calculated according to formula 11.
  • the fresh air function of the air conditioner 10 refers to the process of introducing fresh outdoor air into the room to complete the external circulation of indoor air. Since the outdoor air temperature is usually higher than the indoor temperature in summer, the introduced outdoor air will increase the indoor ambient temperature, that is, the introduced new air will offset part of the cooling capacity of the air conditioner 10, thereby increasing the operating frequency F of the compressor 21 and improving the efficiency of the air conditioner. The operating energy consumption of the device 10.
  • the relative humidity is 40%
  • the fresh air circulation volume is 100m 3 /h
  • the fresh air temperature is finally converted into an indoor temperature of 27°C, a relative humidity of 40%, and an additional cooling capacity of about 500W is required.
  • the air conditioner 10 will turn on the fresh air function. , to achieve mixed air, increase the air outlet temperature, and meet the needs of physical comfort.
  • the air conditioner 10 usually uses wind temperature as a single control target, and adjusts the operating frequency of the compressor 21 to change the cooling capacity and outlet temperature of the air conditioner 10 to meet the indoor air temperature required by the user.
  • the outlet wind speed of the air conditioner 10 has a greater impact on the uniformity of indoor air temperature, and the actual feeling of the human body is the result of the coupling of wind temperature and wind speed, and is not the feeling caused by a single wind temperature.
  • the air outlet temperature of the air conditioner 10 is constant, the greater the wind speed, the lower the body temperature is. Therefore, if the wind temperature is only used as the control target and the change in the user's standard effective temperature and the user's distance is not considered, it will be difficult to meet the user's requirements for comfortable temperature.
  • some embodiments of the present disclosure also provide a control method for an air conditioner, which is applied to the controller 40 .
  • Fig. 15 is a flowchart of yet another control method of an air conditioner according to some embodiments. As shown in Fig. 15, the control method includes steps S21 to S25.
  • Step S21 obtain the currently set standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T] and target air supply distance ⁇ , and detect the outdoor ambient temperature Toutdoor, outlet air temperature T_out and outlet wind speed V_out.
  • the outlet air temperature T_out is the cooling outlet temperature Ta_out
  • the outlet wind speed V_out is the cooling outlet wind speed Va_out
  • the outlet air temperature T_out is the fresh air mixed outlet temperature Ta_out fix2
  • the outlet wind speed V_out is the fresh air mixed outlet wind speed Va_out fix2 .
  • the outlet wind speed V_out can be measured by the wind speed sensor 70 installed in the mixed air zone A.
  • the outlet wind speed V_out can also be calculated by formula 2.
  • Step S22 Calculate the real-time standard effective temperature SET ⁇ based on the outdoor ambient temperature Toutdoor, the outlet air temperature T_out, the outlet wind speed V_out and the target air supply distance ⁇ .
  • Step S23 Determine whether the real-time standard effective temperature SET ⁇ is outside the standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T]. If yes, step S24 is executed. If not, step S25 is executed.
  • Step S24 determine whether the fresh air device 36 is turned on or determine the relationship between the temperature difference E and the temperature threshold Es , and control the rotation speed R of the indoor fan 32 and the operating frequency F of the compressor 21 based on the results.
  • Step S25 Maintain the operating frequency F of the compressor 21 and the rotation speed R of the indoor fan 32 unchanged.
  • FIG 16 is a flow chart of yet another control method according to some embodiments. As shown in Figure 16, in some implementations of the present disclosure In the embodiment, step S22 includes steps S221 to S223.
  • Step S221 Obtain the currently set rotation speed R of the indoor fan 32, and calculate the current furthest air supply distance ⁇ max based on the rotation speed R.
  • the furthest air supply distance ⁇ max of the air conditioner 10 is related to the currently set rotation speed R of the indoor fan 32 .
  • the greater the rotation speed R of the indoor fan 32 the longer the furthest air supply distance ⁇ max The bigger.
  • FIG. 17 is a diagram showing the relationship between the center distance of the air outlet airflow zone and the wind speed of the air conditioner according to some embodiments.
  • the corresponding relationship between the rotation speed R of the indoor fan 32, the air supply distance and the wind speed Va is shown in Table 5.
  • the first line in Table 5 is the distance between the center of the airflow belt and the indoor air outlet 33, that is, the air supply distance, in m; the first line on the left is the rotational speed R of the indoor fan 32, and the gear of the indoor fan 32 can be used. Characterization; the first column on the right is the furthest air supply distance ⁇ max , in m; the value in the table is the wind speed Va in the airflow center zone, in m/s.
  • K3 is a distance constant
  • K4 is an intercept.
  • K3 and K4 are both constants.
  • Step S222 calculate the target wind temperature Ta ⁇ and target wind speed Va ⁇ based on the actual return air temperature Ta, outlet air temperature T_out, outlet wind speed V_out, the farthest air supply distance ⁇ max and the target air supply distance ⁇ .
  • FIG. 18 is a relationship diagram between air temperature and air supply distance of another air conditioner according to some embodiments.
  • FIG. 19 is a relationship diagram between wind speed and air supply distance of another air conditioner according to some embodiments.
  • the target air supply distance ⁇ 1.5m
  • the controller 40 combines the outlet wind speed T_out and the farthest air supply distance ⁇ max and calculates the airflow belt center whose distance from the indoor air outlet 33 is the target air supply distance ⁇ through Formula 14. target wind speed Va ⁇ .
  • Step S223 according to the preset corresponding relationship between wind temperature, wind speed and standard effective temperature, determine the standard effective temperature SET corresponding to the target wind temperature Ta ⁇ and the target wind speed Va ⁇ as the real-time standard effective temperature SET ⁇ .
  • the controller 40 After obtaining the target air temperature Ta ⁇ and target wind speed Va ⁇ at the target air supply distance ⁇ , the controller 40 obtains the real-time standard effective temperature SET ⁇ at the target air supply distance ⁇ according to Table 3.
  • the first row in Table 6 is the wind speed Va, in m/s; the first column on the left is the standard effective temperature SET, in °C; the value in the table is the wind temperature, in °C.
  • the air conditioner 10 may accept target parameters calculated by the cloud server through a formula solving calculation program.
  • the controller 40 with an operating system can also solve the target parameter through a formula, for example, calculate the target air temperature Ta ⁇ according to Formula 13.
  • the target parameters can be obtained by looking up Table 3 or Table 6.
  • Table 7 The influence of the operating frequency and wind speed of the compressor on the cooling capacity and outlet temperature of the air conditioner
  • the operating frequency F of the compressor 21 and the outlet wind speed V_out have a greater impact on the outlet air temperature T_out, and the operating frequency F of the compressor 21 has a greater influence on the outlet air temperature T_out.
  • the influence is greater than the influence of the outlet wind speed V_out on the outlet air temperature T_out.
  • the rotation speed R of the indoor fan 32 is related to the temperature difference E between the target cooling temperature Ts set by the user and the current actual return air temperature Ta.
  • the temperature difference E approaches 0 or is a negative number, the actual return air temperature reaches the target cooling temperature Ts, that is, the indoor air temperature reaches the target cooling temperature Ts.
  • FIG 20 is a flow chart of yet another control method of an air conditioner according to some embodiments. As shown in Figure 20, in some embodiments of the present disclosure, step S24 includes steps S241 to step S2432.
  • Step S241 Determine whether the real-time standard effective temperature SET ⁇ is less than the lower limit value SET s - ⁇ T of the standard effective temperature range. If yes, step S242 is executed. If not, step S243 is executed.
  • Step S242 Determine whether the fresh air device 36 is turned on. If yes, step S2421 is executed. If not, step S2422 is executed.
  • Step S2421 Determine whether the temperature difference satisfies E ⁇ Es . If yes, step S24211 is executed. If not, step S24212 is executed.
  • Step S24211 maintain the operating frequency F of the compressor 21 unchanged, and reduce the rotation speed R of the indoor fan 32 according to the preset rotation speed adjustment step.
  • Step S24212 Reduce the operating frequency F of the compressor 21 according to the preset frequency adjustment step, and reduce the rotation speed R of the indoor fan 32 according to the preset rotation speed adjustment step.
  • Step S2422 turn on the fresh air device 36, and after a delay of T2 seconds, reacquire the outlet air temperature T_out, outlet air speed V_out and actual return air temperature Ta of the indoor unit 30.
  • the controller 40 controls the opening of the fresh air device 36 to achieve air mixing. After a delay of T2 seconds (for example, 30 seconds), after the air outlet airflow of the fresh air device 36 and the cooling airflow of the indoor unit 30 are fully mixed, the outlet air temperature is re-detected. T_out (can also be obtained indirectly through formula 11), outlet wind speed V_out (can also be obtained indirectly through formula 2) and actual return air temperature Ta, repeat step S21 to step S24.
  • Step S243 Determine whether the temperature difference satisfies E ⁇ Es . If yes, step S2431 is executed. If not, step S2432 is executed.
  • Step S2431 Determine whether the fresh air device 36 is turned on. If yes, step S24311 is executed. If not, step S24312 is executed.
  • step S24311 the fresh air device 36 is turned off, and after a delay of T2 seconds, the outlet air temperature T_out and outlet air speed V_out of the indoor unit 30 are re-detected.
  • the controller 40 controls to close the fresh air device 36, and after the air outlet air flow of the fresh air device 36 and the cooling air outlet air flow of the indoor unit 30 are fully separated, the outlet air temperature T_out (can also be obtained indirectly through Formula 11) and the outlet air speed V_out are re-detected. (can also be obtained indirectly through Formula 2) and the actual return air temperature Ta, repeat steps S21 to S24.
  • Step S24312 maintain the current operating frequency F of the compressor 21 unchanged, and increase the current rotation speed R of the indoor fan 32 according to the preset rotation speed adjustment step.
  • Step S2432 Increase the operating frequency F of the compressor 21 according to the preset frequency adjustment step, and increase the rotation speed R of the indoor fan 32 according to the preset rotation speed adjustment step.
  • the controller 40 calculates the real-time standard effective temperature SET ⁇ at any time, and based on the relationship between the real-time standard effective temperature SET ⁇ and the standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T] , the opening and closing status of the fresh air device 36, and the relationship between the temperature difference E and the target temperature difference E s , after adjusting the operating frequency F of the compressor 21 or keeping the operating frequency F of the compressor 21 unchanged, the air conditioner 10
  • the control method also includes step S26.
  • step S26 after a delay of T1 seconds, the above-mentioned steps S21 to S25 are repeated.
  • the controller 40 After a delay of T1 seconds, the controller 40 reacquires the outdoor ambient temperature Ta, outlet air temperature T_out, outlet air speed V_out and temperature difference E, calculates the new real-time standard effective temperature SET ⁇ , and controls the operating frequency of the compressor 21 F and indoor fan gear, control the real-time standard effective temperature SET ⁇ within the standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T]. Subsequently, the process is repeated with T1 seconds as a detection period.
  • T1 is, for example, 10 to 600.
  • the outlet standard effective temperature SET control function When the air conditioner 10 is running in the cooling mode, the outlet standard effective temperature SET control function is turned on, and the target standard effective temperature SET s is set to 16°C. At this time, the standard effective temperature range is [15°C, 17°C].
  • the current indoor fan gear is 4th gear
  • the rotation speed R is 1050rpm
  • ⁇ max ⁇ 4.8m is calculated according to Formula 12.
  • the fresh air device 36 has been turned on, and the relationship between the temperature difference E and the temperature threshold Es is further confirmed.
  • E ⁇ E s the controller 40 controls the indoor fan speed R to decrease by 100 rpm , and the frequency of the compressor 21 F decreases by 5Hz.
  • the outlet standard effective temperature SET control function When the air conditioner 10 is running in the cooling mode, the outlet standard effective temperature SET control function is turned on, and the target standard effective temperature SET s is set to 16°C. At this time, the standard effective temperature range is [15°C, 17°C].
  • the user sets the target cooling temperature Ts to 26°C, and the wind speed defaults to automatic control.
  • the indoor coil temperature Te 10°C is detected.
  • the current indoor fan gear is 4th gear
  • the rotation speed R is 1050rpm
  • ⁇ max ⁇ 4.8m is calculated according to Formula 12.
  • T_out 12°C
  • V_out 3m/s
  • ⁇ max 4.8m into Formula 13 and Formula 14 respectively
  • the target air temperature at the center of the outlet airflow zone at a distance of 1.5m from the indoor air outlet 33 is calculated.
  • Ta 1.5 ⁇ 16.6°C (taken as an integer multiple of 0.2)
  • the fan gear is 4th gear, the indoor fan speed R is 1050rpm, and ⁇ max ⁇ 4.8m is calculated according to Formula 12.
  • the fresh air device 36 has been turned on, and the relationship between the temperature difference E and the temperature threshold E s is further confirmed.
  • the rotation speed R is 950rpm
  • FIG. 21 is a block diagram of yet another air conditioner according to some embodiments.
  • the indoor unit 30 of the air conditioner 10 includes a purification device 34 , a fresh air device 36 , an indoor environment detection device 37 , a switching valve 38 and a fresh air purification fan 39 .
  • the controller 40 is coupled to the indoor environment monitoring device 37 , the switching valve 38 , and the fresh air purification fan 39 .
  • Figure 22A is a schematic view of the fresh air device and the purification device according to some embodiments.
  • Figure 22B is another schematic view of the fresh air device and the purification device according to some embodiments.
  • Figure 22C is a schematic view of the fresh air device and the purification device according to some embodiments. Another schematic diagram. As shown in FIGS. 22A to 22C , the fresh air device 36 also includes a fresh air duct 362 , and the purifying device 34 further includes a purifying air duct 342 .
  • the fresh air duct 362 of the fresh air device 36 and the purifying air duct of the purifying device 34 342 is connected to the same fresh air purification fan 39, and the purification device 34 and the fresh air device 36 share the fresh air purification fan 39 and high-efficiency particulate arrestance (HEPA).
  • HEPA high-efficiency particulate arrestance
  • the switching valve plate 38 is provided at the fresh air purification fan 39.
  • the controller 40 adjusts the position of the switching valve plate 38 so that the air conditioner 10 turns on at least one of the fresh air device 36 or the purification device 34.
  • the switching valve plate 38 includes three positions, which are a first position A, a second position B, and a third position C respectively.
  • the controller 40 when the switching valve 38 is in the first position A, the controller 40 turns on the fresh air device 36 and closes the purification device 34; when the switching valve 38 is in the second position B, the controller 40 simultaneously Turn on the fresh air device 36 and the purification device 34 (that is, output 1/2 of the fresh air volume and 1/2 of the purified air volume); when the switching valve 38 is in the third position C, the controller 40 turns on the purification device 34 and turns off the fresh air. Device 36.
  • Figure 23 is another schematic diagram of the fresh air device and the purification device according to some embodiments.
  • Figure 24 is another schematic diagram of the fresh air device and the purification device according to some embodiments.
  • the fresh air device 36 The fresh air outlet duct 361, the purified air outlet duct 341 of the purification device 34 and the indoor air outlet duct 35 of the indoor unit 30 are nested.
  • the fresh air outlet duct 361 and the purified air outlet duct 341 for the same pipeline.
  • the indoor environment detection device 37 includes a PM2.5 sensor and a CO2 sensor.
  • the PM2.5 sensor is configured to detect the PM2.5 value in the indoor air
  • the CO2 sensor is configured to detect the CO2 value in the indoor air.
  • the air conditioner in some embodiments of the present disclosure determines to turn on the purification device according to the outdoor ambient temperature Toutdoor. 34 or at least one of the fresh air device 36. In this way, the opening time of the fresh air device 36 can be reduced and energy consumption can be reduced.
  • FIG 25 is a flowchart of yet another control method of an air conditioner according to some embodiments. As shown in Figure 25, the control method includes steps S31 to S37.
  • Step S31 obtain PM2.5 value, CO2 value, and outdoor ambient temperature Toutdoor.
  • Step S32 determine to turn on at least one of the fresh air device 36 or the purification device 34 based on the PM2.5 value, the CO2 value and the outdoor ambient temperature Toutdoor.
  • the fresh air device 36 or the purification device 34 will affect the air outlet temperature of the indoor unit 30. After determining the operating mode and enabled functions of the air conditioner 10, the air outlet temperature of the indoor unit 30 remains stable.
  • Table 8 shows examples of reference ranges for PM2.5 values and CO2 values.
  • the controller 40 determines to turn on at least one of the fresh air device 36 or the purification device 34 according to the detected PM2.5 value and CO2 value with reference to the setting range (for example, Table 8).
  • PPM parts per million
  • concentration unit which is parts per million, that is, one part per million.
  • PPM usually refers to mole fraction or volume fraction.
  • the indoor air evaluation standard when the CO2 value in the indoor air is less than 1000PPM, it indicates that the indoor air freshness is excellent; when the PM2.5 concentration in the indoor air is less than 100, it indicates that the indoor air quality is excellent (evaluated by PM2.5 dimensions).
  • the air freshness and quality are both excellent, it is determined to turn on the purification device 34 or the fresh air device 36 according to the outdoor ambient temperature Toutdoor. For example, when the outdoor ambient temperature Toutdoor>30°C, the purification device 34 is turned on; when the outdoor ambient temperature Toutdoor ⁇ 30°C, the fresh air device 36 is turned on, which can reduce energy consumption. consumption.
  • the air outlet temperature T_out of the indoor unit 30 increases by A°C; after the purification device 34 is turned on, the air outlet temperature T_out of the indoor unit 30 increases by B°C; the fresh air device 36 and the purification device After 34 are turned on at the same time, the air outlet temperature T_out of the indoor unit 30 increases by C°C; among them, A>C>B.
  • the increase value K HF of the purified mixed air outlet temperature Ta_out fix1 of the indoor unit 30 compared to the cooling air outlet temperature Ta_out is about 2°C (such as 2.1°C, 1.9°C, 1.6°C).
  • the increase value K HF of the fresh air mixed outlet temperature Ta_out fix2 of the indoor unit 30 compared to the cooling outlet temperature Ta_out is about 3°C (such as 3.3°C, 3.0°C, 2.7°C).
  • the increase value K HF of the combined mixed air outlet temperature Ta_out fix3 of the indoor unit 30 compared to the cooling outlet temperature Ta_out is about 2.5°C.
  • the combined mixed outlet air temperature Ta_out fix3 can be detected by the outlet air temperature sensor 522 .
  • the combined mixed air outlet temperature Ta_out fix3 can also be obtained by formula 15 through formula 5, and is calculated according to formula 15.
  • Step S33 obtain the currently set standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T] and the target air supply distance ⁇ , and obtain at least one of the outdoor ambient temperature Toutdoor or the actual return air temperature Ta, and the outlet air temperature T_out and outlet wind speed V_out.
  • Step S34 Calculate the real-time standard effective temperature SET ⁇ based on at least one of the outdoor ambient temperature Toutdoor or the actual return air temperature Ta, the outlet air temperature T_out, the outlet wind speed V_out and the target air supply distance ⁇ .
  • Step S35 Determine whether the real-time standard effective temperature SET ⁇ is outside the standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T]. If yes, step S36 is executed. If not, step S37 is executed.
  • Step S36 adjust the operating frequency F of the compressor 21 and the rotation speed R of the indoor fan 32.
  • Step S37 Maintain the operating frequency F of the compressor 21 and the rotation speed R of the indoor fan 32 unchanged.
  • FIG 26 is a flow chart of yet another control method of an air conditioner according to some embodiments. As shown in Figure 26, in some embodiments of the present disclosure, step S34 includes steps S341 to step S343.
  • Step S341 obtain the currently set rotation speed R of the indoor fan 32 or the indoor fan gear, and obtain the current furthest air supply distance ⁇ based on the corresponding relationship between the rotation speed R, or the indoor fan gear and the furthest air supply distance. max .
  • the current furthest air supply distance ⁇ max is obtained through Table 2; or according to the rotation speed R of the indoor fan 32, the current furthest air supply distance ⁇ max is calculated through Formula 12.
  • Step S342 calculate the target wind temperature Ta ⁇ and target wind speed Va ⁇ based on the actual return air temperature Ta, outlet air temperature T_out, outlet wind speed V_out, the farthest air supply distance ⁇ max and the target air supply distance ⁇ .
  • the controller 40 calculates the target airflow center of the outlet airflow belt of the indoor unit 30 through formula 16. Warm Ta ⁇ .
  • the controller 40 calculates the airflow belt center whose distance from the indoor air outlet 33 is the target air supply distance ⁇ through Formula 17.
  • the target wind speed Va ⁇ is the target wind speed Va ⁇ .
  • the outlet air temperature T_out is the fresh air mixed outlet temperature Ta_out fix1 ; when the air conditioner 10 only turns on the fresh air device 36, the outlet air temperature T_out is the fresh air mixed outlet temperature.
  • Ta_out fix2 when the air conditioner 10 turns on the purification device 34 and the fresh air device 36 at the same time, the outlet air temperature T_out is the combined mixed outlet air temperature Ta_out fix3 .
  • Step S343 According to the preset corresponding relationship between wind temperature, wind speed and standard effective temperature, determine the target wind temperature Ta ⁇ and The standard effective temperature SET corresponding to the target wind speed Va ⁇ is used as the real-time standard effective temperature SET ⁇ .
  • the controller 40 After obtaining the target air temperature Ta ⁇ and target wind speed Va ⁇ at the target air supply distance ⁇ , the controller 40 obtains the real-time standard effective temperature SET ⁇ at the target air supply distance ⁇ according to Table 3.
  • FIG 27 is a flow chart of yet another control method of an air conditioner according to some embodiments. As shown in Figure 27, in some embodiments of the present disclosure, step S36 includes steps S361 to step S3632.
  • Step S361 Determine whether the real-time standard effective temperature SET ⁇ is less than the lower limit value SET s - ⁇ T of the standard effective temperature range. If yes, step S362 is executed. If not, step S363 is executed.
  • Step S362 Determine whether the temperature difference satisfies E ⁇ Es . If yes, step S3621 is executed. If not, step S3622 is executed.
  • Step S3621 maintain the current operating frequency F of the compressor 21 unchanged, and reduce the indoor fan 32 rotation speed R according to the preset rotation speed adjustment step.
  • Step S3622 reduce the operating frequency F of the compressor 21 according to the preset frequency adjustment step, and reduce the rotation speed R of the indoor fan 32 according to the preset rotation speed adjustment step.
  • Step S363 Determine whether the temperature difference satisfies E ⁇ Es . If yes, step S3631 is executed. If not, step S3632 is executed.
  • Step S3631 Increase the operating frequency F of the compressor 21 according to the preset frequency adjustment step, and increase the rotation speed R of the indoor fan 32 according to the preset rotation speed adjustment step.
  • Step S3632 Keep the operating frequency F of the compressor 21 unchanged, and increase the rotation speed R of the indoor fan 32 according to the preset rotation speed adjustment step.
  • the controller 40 calculates the real-time standard effective temperature SET_ ⁇ at any time, and based on the relationship between the real-time standard effective temperature SET ⁇ and the standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T], As well as the relationship between the temperature difference E and the target temperature difference Es , after adjusting the operating frequency F of the compressor 21 or keeping the operating frequency F unchanged, the control method of the air conditioner 10 further includes step S38.
  • step S38 after a delay of T1 seconds, the above-mentioned steps S31 to S37 are repeated.
  • the controller 40 After a delay of T1 seconds, the controller 40 reacquires the PM2.5 value, CO2 value, and outdoor ambient temperature Toutdoor, and determines to turn on at least one of the fresh air device 36 or the purification device 34 based on the PM2.5 value, CO2 value, and outdoor ambient temperature Toutdoor. one. And recalculate to obtain the new real-time standard effective temperature SET ⁇ , control the operating frequency F of the compressor 21 and the rotation speed R of the indoor fan 32, and control the real-time standard effective temperature SET ⁇ within the standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T]. Subsequently, the process is repeated with T1 seconds as a detection period.
  • T1 is, for example, 10 to 600.
  • the outlet standard effective temperature SET control function When the air conditioner 10 is running in the cooling mode, the outlet standard effective temperature SET control function is turned on, and the target standard effective temperature SET s is set to 16°C. At this time, the standard effective temperature range is [15°C, 17°C].
  • Ta 1.5 ⁇ 18.0°C (taken as an integer multiple of 0.2), target wind speed Va 1.5 ⁇ 2.0m/s.
  • the controller 40 controls the rotation speed R of the indoor fan 32 to decrease by 100 rpm, and the frequency of the compressor 21 to decrease by 5 Hz.
  • the outlet standard effective temperature SET control function When the air conditioner 10 is running in the cooling mode, the outlet standard effective temperature SET control function is turned on, and the target standard effective temperature SET s is set to 16°C. At this time, the standard effective temperature range is [15°C, 17°C].
  • ⁇ max ⁇ 4.8m is calculated.
  • the controller 40 controls Control switching valve plate 38 to position B.
  • the indoor coil temperature Te 13.5°C was detected.
  • control method of the air conditioner in some embodiments of the present disclosure introduces the concept of standard effective temperature to represent the temperature actually felt by the user. By jointly controlling the wind temperature and wind speed, the real-time standard effective temperature blown to the user will not be too cold. Meet user requirements for temperature comfort.
  • the air conditioner in some embodiments of the present disclosure performs the same process steps as the above-mentioned air conditioner control method, and has similar technical effects, which will not be described again here.
  • the computer program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.
  • the process may include the processes of the above method embodiments.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本公开一些实施例提供了一种空调器。空调器包括室外机、室内机、温度传感器、风速传感器和控制器。室外机包括压缩机,压缩机被配置为压缩冷媒,以驱动冷媒在空调器中循环。室内机包括室内风扇、室内出风管道和净化装置。室内风扇被配置为向室内送风。净化装置被配置为净化室内空气。温度传感器被配置为检测室内机的实际回风温度和制冷出风温度。风速传感器被配置为检测室内机的净化混合出风风速。

Description

空调器
本申请要求于2022年4月29日提交的、申请号为202210467915.8的中国专利申请的优先权;于2022年4月29日提交的、申请号为202210467146.1的中国专利申请的优先权、于2022年4月29日提交的、申请号为202210467128.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空气调节设备技术领域,尤其涉及一种空调器。
背景技术
随着科技的迅速发展和人们生活水平的日益提高,空调器已进入寻常百姓家,成为人们日常生活的必需品。近年来,人们对于生活质量的要求也越来越高,对空调器的功能提出了更高的要求,例如净化空气、除湿、除粉尘等。
发明内容
一方面,本公开提供一种空调器,所述空调器包括室外机、室内机、温度传感器、风速传感器和控制器。所述室外机包括压缩机,所述压缩机被配置为压缩冷媒,以驱动所述冷媒在所述空调器中循环。所述室内机包括室内风扇和净化装置。所述室内风扇被配置为向室内送风。所述净化装置被配置为净化室内空气。所述温度传感器被配置为检测所述室内机的实际回风温度和制冷出风温度。所述风速传感器被配置为检测所述室内机的净化混合出风风速。所述控制器被配置为:当所述空调器处于运行状态时,控制所述净化装置启动;获取当前设定的标准有效温度范围、目标送风距离、获取所述实际回风温度、所述制冷出风温度和所述净化混合出风风速;根据所述实际回风温度和所述制冷出风温度,以及所述净化装置执行净化操作时的循环风量和所述空调器执行制冷操作时的循环风量,计算净化混合出风温度;根据所述实际回风温度、所述净化混合出风温度、所述净化混合出风风速和所述目标送风距离,计算实时标准有效温度;若确定所述实时标准有效温度处于预设的所述标准有效温度范围外,则调整所述室内风扇的转速以及所述压缩机的运行频率。
另一方面,本公开提供一种空调器,所述空调器包括室外机、室内机、温度传感器、风速传感器和控制器。所述室外机包括压缩机,所述压缩机被配置为压缩冷媒,以驱动所述冷媒在所述空调器中循环。所述室内机包括室内风扇和新风装置。所述室内风扇被配置为向室内送风。所述新风装置被配置为将室外空气引入室内。所述温度传感器被配置为检测所述室内机的室外环境温度和出风温度。所述风速传感器被配置为检测所述室内机的出风风速。所述控制器,被配置为:获取当前设定的标准有效温度范围、目标送风距离、所述室外环境温度、所述出风温度和所述出风风速;根据所述室外环境温度、所述出风温度、所述出风风速和所述目标送风距离,计算实时标准有效温度;若确定所述实时标准有效温度处于预设的标准有效温度范围外,则判断所述新风装置是否开启或判断温度差值与温度阈值的大小关系,根据判断结果控制室内风扇的转速以及所述压缩机的运行频率。
又一方面,本公开提供一种空调器,所述空调器包括室外机、室内机、温度传感器、风速传感器和控制器。所述室外机包括压缩机,所述压缩机被配置为压缩冷媒,以驱动所述冷媒在所述空调器中循环。所述室内机包括室内风扇、室内出风管道、新风装置、净化装置和室内环境检测装置。所述室内风扇被配置为向室内送风。所述室内风扇通过所述室内出风管道向室内送风。所述新风装置被配置为将室外空气引入室内。所述新风 装置包括新风管道和新风出风管道,室外空气通过所述新风出风管道进入室内。所述新风装置的新风出风管道与所述室内出风管道嵌套设置,所述新风出风管道位于所述室内出风管道的外侧。所述净化装置被配置为净化室内空气。所述净化装置包括净化管道和净化出风管道,净化后的室内空气通过所述净化出风管道进入室内。所述净化装置的净化出风管道和所述室内出风管道嵌套设置,所述净化出风管道位于所述室内出风管道的外侧。所述室内环境检测装置被配置为检测室内环境的PM2.5值以及CO2值。所述温度传感器被配置为检测室内机的室外环境温度、出风温度和制冷出风温度。所述风速传感器被配置为检测所述室内机的出风风速。所述控制器被配置为:获取当前设定的标准有效温度范围和目标送风距离,并获取所述室外环境温度、所述出风温度、所述制冷出风温度和所述出风风速;根据室内环境的PM2.5值、CO2值以及室外环境温度确定开启新风装置或净化装置中的至少一个;根据所述室外环境温度、所述合并混合出风温度、所述制冷出风温度、所述合并混合出风风速以及所述目标送风距离计算与所述目标送风距离相对应的出风气流带中心的实时标准有效温度;若确定所述实时标准有效温度处于预设的所述标准有效温度范围外,则判断温度差值与温度阈值的大小关系,根据判断结果控制所述室内风扇的转速以及所述压缩机的运行频率。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1是根据一些实施例的一种空调器的结构图;
图2是根据一些实施例的一种空调器的框图;
图3是根据一些实施例的净化装置的一个示意图;
图4是根据一些实施例的净化装置的另一个示意图;
图5是根据一些实施例的一种空调器的控制方法的流程图;
图6是根据一些实施例的空调器的室内机的一个示意图;
图7是根据一些实施例的空调器的室内机的另一个示意图;
图8是根据一些实施例的另一种空调器的控制方法的流程图;
图9是根据一些实施例的一种空调器的风温和送风距离的关系图;
图10是根据一些实施例的一种空调器的风速和送风距离的关系图;
图11是根据一些实施例的又一种空调器的控制方法的流程图;
图12是根据一些实施例的另一种空调器的框图;
图13是根据一些实施例的一种新风装置的示意图;
图14是根据一些实施例的另一种新风装置的示意图;
图15是根据一些实施例的又一种空调器的控制方法的流程图;
图16是根据一些实施例的又一种空调器的控制方法的流程图;
图17是根据一些实施例的空调器的出风气流带中心距离与风速的关系图;
图18是根据一些实施例的另一种空调器的风温和送风距离的关系图;
图19是根据一些实施例的另一种空调器的风速和送风距离的关系图;
图20是根据一些实施例的又一种空调器的控制方法的流程图;
图21是根据一些实施例的又一种空调器的框图;
图22A是根据一些实施例的新风装置和净化装置的一种示意图;
图22B是根据一些实施例的新风装置和净化装置的另一种示意图;
图22C是根据一些实施例的新风装置和净化装置的又一种示意图;
图23是根据一些实施例的新风装置和净化装置的又一种示意图;
图24是根据一些实施例的新风装置和净化装置的又一种示意图;
图25是根据一些实施例的又一种空调器的控制方法的流程图;
图26是根据一些实施例的又一种空调器的控制方法的流程图;
图27是根据一些实施例的又一种空调器的控制方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”例如表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。图1是根据一些实施例的一种空调器的结构图;图2是根据一些实施例的一种空调器的框图。如图1和图2所示,本公开一些实施例提供一种空调器10,空调器10包括室外机20、室内机30、温度传感器50、膨胀阀60和风速传感器70。空调器10的室外机20包括压缩机21、室外换热器22和室外风扇23,空调器10的室内机30包括室内换热器31、室内风扇32、室内出风口33(即室内出风管道35的出风口)、净化装置34和室内出风管道35。室外机20或室内机30中的至少一个设置有膨胀阀60。
压缩机21、冷凝器(室内换热器31或室外换热器22)、膨胀阀60和蒸发器(室外换热器22或室内换热器31)来执行空调器10的冷媒循环。冷媒循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,并向被调节侧循环供应冷媒。
净化装置34被配置为过滤或吸附室内空气中诸如PM2.5、有机挥发物(total volatile organic compounds,TVOC)等污染物,净化室内空气,完成室内空气的内循环。
室外风扇23被配置为促进在室外换热器22的传热管中流动的冷媒与室外空气的热交换。室内风扇32被配置为促进室内换热器31的传热管中流动的冷媒与室内空气的热交换,以辅助温度调节。
在本公开一些实施例中,空调器10还包括控制器40,控制器40与压缩机21、室内风扇32、室内出风口33、净化装置34、温度传感器50以及风速传感器70耦接,控制器40被配置为控制与该控制器40耦接的各部件的工作状态。在本公开一些实施例中,控制器40可以划分为室内控制器和室外控制器,分别用于对室内机30和室外机20的结构部件进行控制。
如图2所示,温度传感器50包括室外温度传感器51和室内温度传感器52。室外温度传感器51被配置为检测实际的室外空气温度。室内温度传感器52包括室内环境温度传感器521、出风温度传感器522和盘管温度传感器523。室内环境温度传感器521被配置为检测实际的室内空气温度,出风温度传感器522被配置为检测室内出风口33处的出风温度,盘管温度传感器523被配置为检测室内盘管处的温度。
控制器40可以包括中央处理器(central processing unit,CPU)、微处理器(microprocessor)、专用集成电路(application specific integrated circuit,ASIC),并且可以被配置为当处理器执行存储在耦合到控制器40的非暂时性计算机可读介质中的程序时,执行控制器40中描述的相应操作。
当空调器开启了净化功能或新风功能中的至少一种时,可实现室内空气的循环,此时,空调器的出风温度不是单一的制冷出风温度,而是开启净化功能或新风功能中的至少一种之后的混风温度。
图3是根据一些实施例的一个净化装置的示意图,图4是根据一些实施例的另一个净化装置的示意图,如图3和图4所示,净化装置34包括净化出风管道341。净化出风管道341和室内机30的室内出风管道35嵌套设置,且净化出风管道341位于室内出风管道35的外侧。净化出风管道341在朝向室内出风口33的方向上呈收缩趋势,使得净化装置34的出风气流与室内出风口33的出风气流在混风区A处混合,且净化装置34的出风方向与室内出风口33的出风方向相交,并形成预定的夹角。
室内空气在净化装置34中进行净化时不产生热交换,因此净化过后,位于净化出风管道341处的空气温度仍与室内环境温度相等。当空调器10开启净化功能且运行在制冷模式时,经由净化出风管道341与室内出风管道35吹出的两股出风气流在混风区A处混合后形成混合出风气流,混合出风气流的混合出风温度高于空调器10未开启净化功能,且运行在制冷模式时,出风气流的制冷出风温度。
由于开启净化功能之后,空调器10的出风温度不是单一的制冷出风温度,而是混合出风温度。然而,相关技术在对空调器10的运行参数进行调整的过程中,通常没有考虑空调器10在开启净化功能之后出风温度的变化,使得混合出风温度与用户所需的室内空气温度并不匹配,无法更好地满足用户对体感舒适温度的要求。
为了解决上述技术问题,本公开一些实施例提供一种空调器10的控制方法,应用到控制器40上。图5是根据一些实施例的一种控制方法的流程图。如图5所示,该控制方法包括步骤S11至步骤S17。
步骤S11,当空调器10处于运行状态时,控制净化装置34启动。
在本公开一些实施例中,当空调器10处于运行状态时,控制器40自动控制净化装置34启动。
步骤S12,获取当前设定的标准有效温度范围和目标送风距离,并检测实际回风温度、制冷出风温度和净化混合出风风速。
需要说明的是,标准有效温度(standard effective temperature,SET)的定义为:身着标准服装(热阻0.6clo)的人处于相对湿度50%、空气近似静止(风速近似0.1m/s)、空气温度与平均辐射温度相同、代谢率为1MET(相当于人处于静止坐姿)的环境中,若此时人体的平均皮肤温度和皮肤湿度与一个实际环境和实际服装热阻条件相同,则人体在标准环境和实际环境中会有相同的散热量,此时标准环境的空气温度就是实际所处环境的标准有效温度SET,通常需要整个房间内所有区域或大部分区域都能达到舒适的标准有效温度SET。
上述单位clo为克洛,是航空医学测量绝热的单位。MET(metabolic equivalent of energy)指能量代谢当量,音译为梅脱,是以安静、坐位时的能量消耗为基础,表达各种活动时相对能量代谢水平的常用指标。
标准有效温度SET由4个环境因子(实际回风温度Ta、相对湿度Rh、风速Va、平均辐射温度Tr)和2个人体因子(人体代谢率M、服装热阻clo)参与计算,即存在关于SET=f(Ta,Va,Rh,Tr,M,clo)的函数或计算程序。假设平均辐射温度Tr=空调检测的空气温度Ta,相对湿度Rh为空调器10检测的湿度,空调器10运行在制冷模式时,空气经过蒸发器后,湿度已经下降,此时空调器10吹出的空气相对湿度一般在40%~70%之间,默认为50%。夏季服装热阻0.6clo,代谢率为1.0M。这样将SET=f(Ta,Va,Rh,Tr,M,clo)计算程序,简化为通过实际回风温度Ta和风速Va,求解标准有效温度SET,即SET=f(Ta,Va)的函数。相应的,也可以得到Ta=f(SET,Va)和Va=f(Ta,SET)的函数。
在本公开一些实施例中,用户可以根据自身的需求,设定当前的目标标准有效温度SETs,并根据目标标准有效温度SETs来确定标准有效温度范围。例如,标准有效温度范围为[SETs-ΔT,SETs+ΔT]。其中,SETs-ΔT为标准有效温度范围的下限值,SETs+ΔT为标准有效温度范围的上限值,ΔT为温度常数,且ΔT>0。ΔT的值可以根据实际需求进行设定。
在本公开一些实施例中,ΔT的取值范围为0.1℃≤ΔT≤5℃。例如,ΔT=1℃时,用户希望吹到自己身上的风的目标标准有效温度SETs趋近于25℃,则可以设置标准有效温度范围为[24.0℃,26.0℃]。
图6是根据一些实施例的室内机的一个示意图,图7是根据一些实施例的室内机的另一个示意图,如图6和图7所示,用户还可以根据自身所在位置确定自身与空调器10之间的距离,或者,根据自身工作、学习或休闲处(记为用户设定测点)与空调器10之间的距离,确定目标送风距离ρ。
需要说明的是,室内出风口33处温度较低,用户通常不会较长时间站在室内出风口33处,而是位于与室内出风口33距离在1m以上的位置,因此,用户可以设置出风气流带中心与室内出风口33的距离例如为1.5m,此时目标送风距离ρ为1.5m。若用户可接受自身与室内出风口33的距离为1.5m处的风温,随着二者之间距离的增加,风温增加,风速减小,标准有效温度SET增加,使得用户感受到的标准有效温度SET随距离增加而增加,也会满足用户期望空调器10制冷出风舒适性的需求。如果不考虑风速,单维度的控制风温,对压缩机21的运行频率要求较低,则空调器10的制冷量的输出较低,延长了室内达到设定的目标标准有效温度SETs的时间,甚至始终达不到目标标准有效温度SETs
实际回风温度Ta为实际的室内空气温度,由室内环境温度传感器521检测得到。
制冷出风温度Ta_out可以通过出风温度传感器522测得,也可以通过公式1计算得到。
Ta_out=K1×Te             公式1
其中,Te为室内盘管温度,通过设置在室内盘管处的盘管温度传感器523测得,K1为温度常数,根据多次测试或经验得到。
净化混合出风风速Va_outfix1可通过安装在室内出风口33处的风速传感器70测得。在本公开一些实施例中,出风风速可以通过公式2计算得到,因此,净化混合出风风速Va_outfix1还可以通过公式2计算得到,此时公式2中的V_out为Va_outfix1
V_out=K2×R              公式2
其中,R为室内风扇32的转速,K2为风速系数。
步骤S13,根据实际回风温度Ta和制冷出风温度Ta_out,计算净化混合出风温度。
在本公开一些实施例中,在净化出风与制冷出风充分混合时,净化混合出风温度Ta_outfix1可以通过出风温度传感器522检测得到。
在本公开另一些实施例中,还可以按照溶液稀释原理,通过公式3计算净化混合出风温度Ta_outfix1
其中,Ta_outfix1为净化混合出风温度;VJH为净化装置34执行净化操作时的循环风量,VJH例如为100m3/h;VKT为空调器10执行制冷操作时的循环风量,VKT例如为600m3/h。
在本公开一些实施例中,通过设置净化混合出风温度Ta_outfix1相比制冷出风温度Ta_out的增加值KHF,来表征混风前后的室内机30的出风温度变化情况,此时,混风后出风温度增加值KHF可以通过公式4计算得到。
KHF=Ta_outfix1-Ta_out=(Ta-Ta_out)×VJH/(VKT+VJH)    公式4
在本公开一些实施例中,还可以根据制冷出风温度Ta_out,通过公式5,计算得到混合出风温度Ta_outfix
Ta_outfix=Ta_out+KHF=K1×Te+KHF      公式5
净化出风和制冷出风混风后出风温度增加值KHF的参数如表1所示。
表1净化出风和制冷出风混风后出风温度增加值的参数
表1左侧第一列为制冷出风温度Ta_out,单位为℃;左侧第二列为空调器10执行制冷操作时的循环风量VKT,单位为m3/h;左侧第三列为实际回风温度Ta,单位为℃;左侧第四列为净化装置34执行净化操作时的循环风量VJH,单位为m3/h;左侧第五列为净化混合出风温度Ta_outfix1,单位为℃;右侧第一列为混风后出风温度增加值KHF,单位为℃。
由表1中数据可知,当空调器10开启净化功能,且运行在制冷模式时,室内机30的净化混合出风温度Ta_outfix1相比制冷出风温度Ta_out的增加值KHF约为2℃(如2.1℃、1.9℃、1.6℃)。
此时,还可以根据制冷出风温度Ta_out,通过公式5得到公式6,并根据公式6计算得到净化混合出风温度Ta_outfix1
Ta_outfix1=Ta_out+2=K1×Te+2        公式6
步骤S14,根据实际回风温度Ta、净化混合出风温度Ta_outfix1、净化混合出风风速Va_outfix1和目标送风距离ρ,计算实时标准有效温度。
步骤S15,判断实时标准有效温度SETρ是否处于标准有效温度范围[SETs-ΔT,SETs+ΔT]外,若是,则执行步骤S16,若否,则执行步骤S17。
步骤S16,调整压缩机21的运行频率F和室内风扇32的转速R。
步骤S17,维持压缩机21的运行频率F和室内风扇32的转速R不变。
图8是根据一些实施例的另一种空调器的控制方法的流程图,如图8所示,步骤S14包括步骤S141至步骤S143。
步骤S141,获取当前设定的室内风扇档位,并根据预设的室内风扇档位和最远送风距离的对应关系,确定当前设定的室内风扇档位对应的最远送风距离。
在本公开一些实施例中,预设送风距离即为最远送风距离ρmax
在本公开一些实施例中,用户根据自身需求调整室内风扇档位,来实现对室内风扇32的转速R的调整,进而调整空调器10的出风吹到用户自身时风速的大小。室内风扇档位表征室内风扇32的转速R,室内风扇档位越大,对应的室内风扇32的转速R越大。室内风扇档位的等级和每一等级对应的室内风扇32转速R的范围可以根据实际情况进行设定,本公开对此不作限定。
例如,室内风扇32包括5个档位,分别为1档、2档、3档、4档和5档。1档对应 的室内风扇32的转速R为600rpm。2档对应的室内风扇32的转速R为750rpm。3档对应的室内风扇32的转速R为900rpm。4档对应的室内风扇32的转速R为1050rpm。5档对应的室内风扇32的转速R为1200rpm。
当然,室内风扇档位的等级和每一等级对应的室内风扇32的转速R的范围均可以根据实际情况进行设定,本公开对此不作限定。
空调器10的最远送风距离ρmax与当前设定的室内风扇档位有关,预先设定室内风扇档位与最远送风距离ρmax的对应关系,例如,如表2所示。
表2室内风扇档位和最远送风距离的对应关系
如表2所示,在预设的室内风扇档位和最远送风距离ρmax的对应关系中,最远送风距离ρmax和室内风扇档位呈正相关关系。
在本公开一些实施例中,根据当前设定的室内风扇档位以及表2可得当前空调器10的最远送风距离ρmax。例如,当前设定的室内风扇档位为2档时,最远送风距离ρmax为3.8m。
步骤S142,根据实际回风温度Ta、净化混合出风温度Ta_outfix1、净化混合出风风速Va_outfix1、目标送风距离ρ和最远送风距离ρmax,计算目标风温和目标风速。
需要说明的是,目标风温Taρ为与室内出风口33之间的距离为目标送风距离ρ的出风气流带中心的风温,目标风速Vaρ为与室内出风口33之间的距离为目标送风距离ρ的出风气流带中心的风速。图9是根据一些实施例的一种空调器的风温和送风距离的关系图,图10是根据一些实施例的一种空调器的风速和送风距离的关系图。如图9所示,空调器10开启净化功能后,在室内风扇32的转速R确定时,不同目标送风距离ρ处的目标风温Taρ可以与目标送风距离ρ线性拟合为一次函数。例如,当ρ=0,Ta0=Ta_outfix1;当ρ=ρmax
根据不同的目标送风距离ρ,结合实际回风温度Ta、净化混合出风温度Ta_outfix1和最远送风距离ρmax,通过公式7,计算得到与目标送风距离ρ对应的出风气流带中心的目标风温Taρ
例如,如图9所示,当目标送风距离ρ=1.5m时,目标风温
如图10所示,在室内风扇32的转速R确定时,不同目标送风距离ρ处的目标风速Vaρ与目标送风距离ρ可以线性拟合为一次函数。例如,当ρ=0,Va0=Va_outfix1;当ρ=ρmax
根据不同的目标送风距离ρ,结合净化混合出风风速Va_outfix和最远送风距离ρmax,通过公式8,计算得到与目标送风距离ρ对应的气流带中心的目标风速Vaρ
例如,如图10所示,当目标送风距离ρ=1.5m时,目标风速
步骤S143,根据预设的风温、风速和标准有效温度的对应关系,确定目标风温Taρ和目标风速Vaρ对应的标准有效温度SET,作为实时标准有效温度SETρ
在本公开一些实施例中,在预设的风温、风速和标准有效温度的对应关系中,标准有效温度SET和风温呈正相关关系,标准有效温度SET和风速呈负相关关系。
在本公开一些实施例中,预先设定风温、风速和标准有效温度的对应关系,例如,如表3所示。
表3风温、风速和标准有效温度的对应关系

需要说明的是,表3为通过SET=f(Ta,Va)的函数解耦出的风温-风速-标准有效温度关系表。表3中首行为气流中心带的风速Va,单位为m/s,左侧第一列为风温,单位为℃,表中的值为标准有效温度SET,单位为℃。
需要说明的是,风速可以为混合出风风速Va_outfix、目标风速Vaρ等;风温可以为实际回风温度Ta、目标风温Taρ、混合出风温度Ta_outfix等;标准有效温度可以为实时标准有效温度SETρ、目标标准有效温度SETs等。
标准有效温度SET和实际回风温度Ta的最小分度由空调器10的室内环境温度传感器521的精度确定。例如,当室内环境温度传感器521的精度为0.5℃时,标准有效温度SET、实际回风温度Ta的最小分度为0.5℃;当室内环境温度传感器521的精度为0.1℃时,标准有效温度SET、实际回风温度Ta的最小分度为0.1℃。
控制器40在得到目标送风距离ρ处的目标风温Taρ和目标风速Vaρ之后,根据表3,得到与目标送风距离ρ对应的实时标准有效温度SETρ。例如,当计算得到与室内出风口33之间的距离为1.5m的出风气流带中心的目标风温Taρ为21℃,目标风速Vaρ为0.4m/s时,根据表3可得实时标准有效温度SETρ=18.5℃。
在本公开一些实施例中,当空调器10运行在制冷模式时,室内风扇档位与用户设定的目标制冷温度Ts和当前的实际回风温度Ta之间的温度差值E有关,温度差值E越大,室内风扇档位越大。目标制冷温度Ts由用户根据需求设定,温度差值E=Ta-Ts。
需要说明的是,压缩机21的运行频率F的变化对对室内空气温度能否达到目标标准有效温度SETs有重要影响,风速大小对室内空气温度的均匀性有重要影响,风速越大,越有利于促进室内空气循环,室内整体温度均匀性越好。
压缩机21的运行频率F和风速对空调器10的出风温度都有较大影响,压缩机21的运行频率F对空调器10的出风温度的影响程度比风速对空调器10的出风温度的影响程度大。
本公开一些实施例的空调器的控制方法,通过标准有效温度SET和温度差值E的组合,结合风速大小对室内空气温度的均匀性等影响因素,在尽量满足室内空气温度达到目标标准有效温度SETs,且室内空气温度均匀性好的情况下,动态调整室内风扇32的转速R和压缩机21的运行频率,实现目标送风距离ρ处的设定测点达到目标标准有效温度SETs的需求。
图11为根据一些实施例的又一种空调器的控制方法的流程图,如图11所示,在本公开一些实施例中,步骤S16包括步骤S161至步骤S1632。
步骤S161,判断实时标准有效温度SETρ是否小于标准有效温度范围的下限值SETs-ΔT,若是,则执行步骤S162,若否,则执行步骤S163。
步骤S162,判断温度差值是否满足E≥Es,若是,则执行步骤S1621,若否,则执行步骤S1622。
在本公开一些实施例中,Es为预设的温度阈值。
步骤S1621,维持压缩机21的运行频率F不变,并按照预设的转速调整步长减小室内风扇32的转速R。
控制器40控制压缩机21的运行频率F不变,并控制室内风扇32的转速R减小ΔR。在本公开一些实施例中,室内风扇32的转速调整步长为ΔR,减小后的室内风扇32的转速例如为R-ΔR。
步骤S1622,按照预设的频率调整步长减小压缩机21的运行频率F,并按照预设的转速调整步长减小室内风扇32的转速R。
此时温度差值满足E<Es,控制器40控制室内风扇32的转速R减小ΔR,并控制压缩机21的运行频率F减小ΔF。在本公开一些实施例中,压缩机21的频率调整步长为ΔF,减小后的压缩机21的运行频率例如为F-ΔF。ΔF范围为0.1Hz~20Hz。
步骤S163,判断温度差值是否满足E≥Es,若是,则执行步骤S1631,若否,则执行 步骤S1632。
步骤S1631,按照预设的频率调整步长增加压缩机21的运行频率F,并按照预设的转速调整步长增加室内风扇32的转速R。
控制器40控制室内风扇32的转速R增加ΔR,并控制压缩机21的运行频率增加ΔF。在本公开一些实施例中,增加后的室内风扇32的转速例如为R+ΔR,增加后的压缩机21的运行频率例如为F+ΔF。
步骤S1632,维持压缩机21的运行频率F不变,并按照预设的转速调整步长增加室内风扇32的转速R。
此时,温度差值E满足E<Es,控制器40控制室内风扇32的转速增加ΔR,并控制压缩机21的运行频率F不变。
在本公开一些实施例中,控制器40在任一时刻计算得出实时标准有效温度SETρ,并根据实时标准有效温度SETρ与标准有效温度范围[SETs-ΔT,SETs+ΔT]的关系,以及温度差值E与目标温度差值Es的关系,调整压缩机21的运行频率F,或保持压缩机21的运行频率F不变后,空调器10的控制方法还包括步骤S18。
步骤S18,延时T1秒以后,重复上述步骤S11至步骤S17。
延时T1秒以后,控制器40重新获取实际回风温度Ta、制冷出风温度Ta_out、净化混合出风风速Va_outfix1和温度差值E,计算得到新的实时标准有效温度SETρ,并控制压缩机21的运行频率F以及室内风扇档位,将实时标准有效温度SETρ控制在标准有效温度范围[SETs-ΔT,SETs+ΔT]内。后续以T1秒为一个检测周期,重复该过程。
T1的取值范围例如为10~600。
例如,某1.5匹机型参数设置为:△T=1℃,Es=1.5℃,T1=60s,△F=5Hz。
空调器10处于运行状态时,用户开启净化功能且使空调器10运行在制冷模式时,用户开启出风标准有效温度SET控制功能,设定目标标准有效温度SETs为16℃,此时标准有效温度范围[15℃,17℃]。用户设定目标制冷温度Ts为26℃,目标送风距离ρ为1.5m。检测得到制冷出风温度Ta_out=12℃、净化混合出风风速Va_outfix1=3m/s、实际回风温度Ta=27℃,此时温度差值E=Ta-Ts=27-26=1℃。根据公式3计算出净化混合出风温度Ta_outfix1=14℃。当前的室内风扇档位为4档,根据表2得到最远送风距离ρmax=4.8m。将Ta=27℃、Ta_outfix1=14℃、Va_outfix1=3m/s、ρmax=4.8m分别代入公式7和公式8,计算得到与室内出风口33之间的距离为1.5m处的出风气流带中心的目标风温Ta1.5≈18.0℃,目标风速Va1.5≈2.0m/s。根据目标风温Ta1.5、目标风速Va1.5,通过表3获取此时的出风气流带中心的实时标准有效温度SET1.5≈11.5℃<15℃,此时E<Es,控制器40控制室内风扇档位减小一档(即室内风扇32的转速R减小一个转速调整步长ΔR),压缩机21的运行频率减小5Hz。
延时一个周期T1秒后,重新检测得到制冷出风温度Ta_out=15℃、净化混合出风风速Va_outfix1=2.7m/s、实际回风温度Ta=26.5℃、温度差值E=26.5-26=0.5℃,根据公式3计算得到净化混合出风温度Ta_outfix1=17℃,根据表2得到ρmax=4.3m。将Ta=26.5℃、Ta_outfix1=17℃、Va_outfix1=2.7m/s、ρmax=4.4m分别代入公式7和公式8,得到与室内出风口33之间的距离为1.5m的出风气流带中心的目标风温Ta1.5≈20℃、目标风速Va1.5≈1.8m/s。根据表3得到此时的实时标准有效温度SET1.5≈14.5℃<15℃,此时E<Es,控制器40控制室内风扇档位减小一档,压缩机21的运行频率减小5Hz。
预设周期后,检测得到净化混合出风风速Va_outfix1=2.0m/s、实际回风温度Ta=26℃、温度差值E=26-26=0℃,根据公式3计算得到净化混合出风温度Ta_outfix1=18℃,根据表2得到ρmax=3.8m。将Ta=26℃、Ta_outfix1=18℃、Va_outfix1=2.2m/s、ρmax=3.8m分别代入公式7和公式8,计算得到与室内出风口33之间的距离为1.5m的出风气流带中心的目标风温Ta1.5≈21.2℃、目标风速Va1.5≈1.4m/s。根据表3获取出气流带中心1.5m处的标准 有效温度SET1.5≈16.5℃∈[15,17],达到了用户设定的目标标准有效温度SETs=16℃的需求,此时控制器40控制室内风扇32的转速R和压缩机21的运行频率F保持不变。
本公开一些实施例提供了一种空调器的控制方法,在空调器10中增设了净化装置34,并且净化装置34的净化出风管道341和室内机30的制冷出风管道35嵌套设置,由此,使净化装置34除了可以净化室内空气,还可以提高室内制冷出风口33的出风温度,防止空调器10出风温度过低,提高舒适性。
并且,本公开一些实施例在对空调器10的运行参数的控制过程中,有效考虑了空调器10开启净化装置34后的影响,且引入了标准环境温度SET的概念,同时考虑风速和风温两个影响因素来实现对压缩机21的运行频率以及室内风扇32的转速R的调整,使得对空调器10的运行参数的调整更加精准有效,满足室内空气温度均匀性的要求,提升用户在空调环境下的舒适性。
图12是根据一些实施例的另一种空调器的框图,如图12所示,图12中的空调器与图2中的空调器的主要区别在于,空调器10包括新风装置36。
新风装置36被配置为将室外新鲜空气引入室内,完成室内空气的外循环。控制器40与新风装置36耦接,以控制新风装置36的打开或关闭。
图13是根据一些实施例的一种新风装置的示意图,图14是根据一些实施例的一种新风装置的示意图。如图13和图14所示,新风装置36包括新风出风管道361。新风出风管道361和室内出风管道35嵌套设置。新风出风管道361在朝向室内出风口33的方向上呈收缩趋势,使得新风装置36的出风气流与室内机30的出风气流在混风区A处混合后形成混合出风气流,且新风装置36的出风气流方向与室内机30的出风气流方向相交,并形成预定的夹角。
室外空气在新风装置36中流动时不产生热交换,因此位于新风出风管道361处的空气温度仍与室外环境温度相等。当空调器10开启新风功能且运行在制冷模式时,经由新风装置36与室内出风口33吹出的两股出风气流,在混风区A处混合后形成的混合出风气流的新风混合出风温度Ta_outfix2,高于空调器10未开启新风功能,且运行在制冷模式时出风气流的制冷出风温度Ta_out。
在本公开的一些实施例中,新风混合出风温度Ta_outfix2可以通过出风温度传感器522检测得到。
在本公开的另一些实施例中,按照溶液稀释原理,还可以通过公式9计算新风混合出风温度Ta_outfix2
Ta_outfix2=(Ta_out×VKT+Toutdoor×VXF)/((VKT+VXF))        公式9
其中,Ta_out为制冷出风温度;VKT为空调器10执行制冷操作时的循环风量,VKT例如为600m3/h;Toutdoor为室外环境温度,VXF为新风装置36执行新风操作时的循环风量,VXF例如为100m3/h。
在本公开一些实施例中,通过设置新风出风和制冷出风混风后的新风混合出风温度Ta_outfix2相比制冷出风温度Ta_out的增加值KHF,来表征混风前后的室内机30的出风温度变化情况,此时,混风后出风温度增加值KHF可以通过公式10计算得到。
KHF=Ta_outfix2-Ta_out=(Toutdoor-Ta_out)×VXF/(VKT+VXF)     公式10
新风出风和制冷出风混风后出风温度增加值KHF的参数如表4。
表4新风出风和制冷出风混风后出风温度变化情况的参数
表4左侧第一列为制冷出风温度Ta_out,单位为℃;左侧第二列为空调器10执行制 冷操作时的循环风量VKT,单位为m3/h;左侧第三列为室外环境温度Toutdoor,单位为℃;左侧第四列为新风装置36执行净化操作时的循环风量VXF,单位为m3/h;左侧第五列为新风混合出风温度Ta_outfix2,单位为℃;右侧第一列为混风后出风温度增加值KHF,单位为℃。
由表4中数据可知,当空调器10开启新风功能,且运行在制冷模式时,室内机30的新风混合出风温度Ta_outfix2相比制冷出风温度Ta_out的增加值KHF约为3℃(如3.3℃、3.0℃、2.7℃)。
此时,还可以根据制冷出风温度Ta_out,通过公式5得到公式11,并根据公式11计算得到新风混合出风温度Ta_outfix2
Ta_outfix2=Ta_out+3=K1×Te+3       公式11
空调器10的新风功能是指将室外新鲜空气引入到室内,完成室内空气的外循环的过程。由于夏季室外空气温度通常高于室内温度,引入的室外空气会使室内环境温度增加,即引入的新风会抵消部分空调器10的制冷量,从而增加了压缩机21的运行频率F,提高了空调器10的运行能耗。
例如,当室外环境温度为35℃,相对湿度为40%,新风循环风量为100m3/h时,则将新风温度最终转化为室内温度27℃,相对湿度40%,额外需要冷量约500W。
因此,除非用户有新风功能的需求(如降低室内CO2浓度,提高室内空气新鲜度),或用户设定标准有效温度SET功能且有开启新风功能的需要时,空调器10才会开启新风功能,实现混风,提高出风温度,满足体感舒适的需求。
相关技术中,空调器10通常以风温作为单一的控制目标,通过对压缩机21的运行频率进行调整,来改变空调器10的制冷能力和出风温度,满足用户所需的室内空气温度。然而,空调器10的出风风速大小对室内空气温度的均匀性的影响更大,且人体的实际感受为风温和风速耦合后的结果,并不是单一风温产生的感受。例如,空调器10的出风温度一定时,风速越大,人体的体感温度越低。因此,若仅以风温作为控制目标,且不考虑用户体感的标准有效温度与用户距离的变化,难以满足用户对体感舒适温度的要求。
为了解决上述技术问题,本公开一些实施例还提供了一种空调器的控制方法,应用到控制器40上。
图15是根据一些实施例的又一种空调器的控制方法的流程图,如图15所示,该控制方法包括步骤S21至步骤S25。
步骤S21,获取当前设定的标准有效温度范围[SETs-ΔT,SETs+ΔT]和目标送风距离ρ,并检测室外环境温度Toutdoor、出风温度T_out和出风风速V_out。
需要说明的是,当空调器10未开启新风功能,且运行在制冷模式时,出风温度T_out为制冷出风温度Ta_out,出风风速V_out为制冷出风风速Va_out;当空调器10开启新风功能且运行在制冷模式时,出风温度T_out为新风混合出风温度Ta_outfix2,出风风速V_out为新风混合出风风速Va_outfix2
出风风速V_out可通过安装在混风区A处的风速传感器70测得。当然,出风风速V_out也可以通过公式2计算得到。
步骤S22,根据室外环境温度Toutdoor、出风温度T_out、出风风速V_out和目标送风距离ρ,计算实时标准有效温度SETρ
步骤S23,判断实时标准有效温度SETρ是否处于标准有效温度范围[SETs-ΔT,SETs+ΔT]外,若是,则执行步骤S24,若否,则执行步骤S25。
步骤S24,确定新风装置36是否开启或确定温度差值E与温度阈值Es的大小关系,根据结果控制室内风扇32的转速R以及压缩机21的运行频率F。
步骤S25,维持压缩机21的运行频率F和室内风扇32的转速R不变。
图16为根据一些实施例的又一种控制方法的流程图,如图16所示,在本公开一些实 施例中,步骤S22包括步骤S221至步骤S223。
步骤S221,获取当前设定的室内风扇32的转速R,并根据该转速R,计算当前的最远送风距离ρmax
在本公开一些实施例中,空调器10的最远送风距离ρmax与当前设定的室内风扇32的转速R有关,通常,室内风扇32的转速R越大,最远送风距离ρmax越大。
例如,图17是根据一些实施例的空调器的出风气流带中心距离与风速的关系图,其中,室内风扇32的转速R、送风距离和风速Va的对应关系如表5所示。
表5室内风扇的转速、送风距离和风速的对应关系
表5中首行为出风气流带中心与室内出风口33之间的距离,即送风距离,单位为m;左侧第一列为室内风扇32的转速R,可以用室内风扇32的档位表征;右侧第一列为最远送风距离ρmax,单位为m;表中的值为气流中心带的风速Va,单位为m/s。
根据表5,将室内风扇32的转速R与最远送风距离ρmax线性拟合为一次函数,例如为公式12,并根据室内风扇32的转速R,通过公式12,计算得到最远送风距离ρmax
ρmax=K3×R+K4           公式12
其中,K3为距离常数,K4为截距,在本公开一些实施例中,K3和K4均为常数。
步骤S222,根据实际回风温度Ta、出风温度T_out、出风风速V_out、最远送风距离ρmax和目标送风距离ρ,计算目标风温Taρ以及目标风速Vaρ
图18是根据一些实施例的另一种空调器的风温和送风距离的关系图,图19是根据一些实施例的另一种空调器的风速和送风距离的关系图。如图18所示,在室内风扇32的转速R确定时,不同目标送风距离ρ处的目标风温Taρ可以与目标送风距离ρ线性拟合为一次函数。例如,当ρ=0,Ta0=T_out;当ρ=ρmax控制器40根据不同的目标送风距离ρ,结合实际回风温度Ta、出风温度T_out和最远送风距离ρmax,通过公式13,计算出室内机30的出风气流带中心的目标风温Taρ
例如,如图18所示,当目标送风距离ρ=1.5m时,目标风温 如图19所示,在室内风扇32的转速R确定时,不同目标送风距离ρ处的目标风速Vaρ与目标送风距离ρ可以线性拟合为一次函数。例如,当ρ=0,Va0=Va_out;当ρ=ρmax
控制器40根据不同的目标送风距离ρ,结合出风风速T_out和最远送风距离ρmax,通过公式14计算出与室内出风口33之间的距离为目标送风距离ρ的气流带中心的目标风速 Vaρ
例如,如图19所示,当目标送风距离ρ=1.5m时,目标风速
步骤S223,根据预设的风温、风速和标准有效温度的对应关系,确定目标风温Taρ和目标风速Vaρ对应的标准有效温度SET,作为实时标准有效温度SETρ
控制器40在得到目标送风距离ρ处的目标风温Taρ和目标风速Vaρ之后,根据表3,得到目标送风距离ρ处的实时标准有效温度SETρ
表6标准有效温度、风速和风温的对应关系
需要说明的是,表6为通过逆函数Ta=f(SET,Va)的函数解耦出的标准有效温度-风速-风温关系表。表6中首行为风速Va,单位为m/s;左侧第一列为标准有效温度SET,单位为℃;表中的值为风温,单位为℃。
当空调器10运行在制冷模式时,在标准有效温度SET一定的情况下,存在多组风温和风速的组合。例如,设定的目标标准有效温度SETs=16℃时,存在(17℃,0.3m/s)、(17.5℃,0.6m/s)、(18.5℃,0.8m/s)、(19℃,1.0m/s)、(19.5℃,1.4m/s)、(20℃, 2.0m/s)、(20.5℃,3.0m/s)等多组出风风温T_out和出风风速V_out组合,使得人体感受到的实时标准有效温度SETρ为16℃。
根据上述组合可知,当人体感受到的实时标准有效温度SETρ一定时,空调器10的出风温度T_out越高,室内实际温度与空调器10的出风温度T_out的温度差值越小,压缩机21的功耗越小。然而,空调器10的出风温度T_out越高,出风风速V_out越高,导致室内风扇32的转速R增加,室内风扇32的功耗增加。由于压缩机21的功耗大于室内风扇32的功耗,压缩机21的功耗的减小值大于室内风扇32的功耗增加值,此时空调器10实际所需输出的冷量减少,即更加节能。
在本公开一些实施例中,空调器10可以接受云服务器通过公式求解计算程序计算出的目标参数。或者,带操作系统的控制器40还可以通过公式求解出目标参数,例如根据公式13计算得到目标风温Taρ。对于芯片的计算能力不能达到通过公式精准计算的控制器40,可通过查表3或表6获取目标参数。
表7压缩机的运行频率和风速对空调器的制冷能力和出风温度的影响程度
需要说明的是,表7中★的数量表示影响的程度,★的数量越多表示影响的程度越大。
由表7可知,压缩机21的运行频率F的变化对空调器10的制冷能力和出风温度T_out的影响,较出风风速V_out的变化对空调器10的制冷能力和出风温度T_out的影响要更为明显,而出风风速V_out对室内空气温度均匀性的影响更为明显。因此,压缩机21的运行频率F对室内空气温度能否达到设定的温度有重要影响;出风风速V_out的大小对室内空气温度的均匀性有重要影响(出风风速越大,室内空气循环越快,室内空气温度的均匀性越好);压缩机21的运行频率F和出风风速V_out对出风温度T_out都有较大影响,且压缩机21的运行频率F对出风温度T_out的影响大于出风风速V_out对出风温度T_out的影响。
室内风扇32的转速R与用户设定的目标制冷温度Ts和当前的实际回风温度Ta之间的温度差值E有关。例如,目标制冷温度Ts由用户根据需求设定,温度差值E=Ta-Ts。温度差值E越大,室内风扇32的转速R越大。温度差值E趋近于0或为负数时,则实际回风温度达到目标制冷温度Ts,即室内空气温度达到目标制冷温度Ts。
图20为根据一些实施例的又一种空调器的控制方法的流程图,如图20所示,在本公开一些实施例中,步骤S24包括步骤S241至步骤S2432。
步骤S241,判断实时标准有效温度SETρ是否小于标准有效温度范围的下限值SETs-ΔT,若是,则执行步骤S242,若否,则执行步骤S243。
步骤S242,判断新风装置36是否开启,若是,则执行步骤S2421,若否,则执行步骤S2422。
步骤S2421,判断温度差值是否满足E≥Es,若是,则执行步骤S24211,若否,则执行步骤S24212。
步骤S24211,维持压缩机21的运行频率F不变,并按照预设的转速调整步长减小室内风扇32的转速R。
步骤S24212,按照预设的频率调整步长减小压缩机21的运行频率F,并按照预设的转速调整步长减小室内风扇32的转速R。
步骤S2422,开启新风装置36,延时T2秒后,重新获取室内机30的出风温度T_out、出风风速V_out和实际回风温度Ta。
控制器40控制开启新风装置36,实现混风,延时T2秒(例如30秒)后,待新风装置36的出风气流与室内机30的制冷出风气流充分混合后,重新检测出风温度T_out(也可通过公式11间接获取)、出风风速V_out(也可通过公式2间接获取)和实际回风温度 Ta,重复执行步骤S21至步骤S24。
步骤S243,判断温度差值是否满足E≥Es,若是,则执行步骤S2431,若否,则执行步骤S2432。
步骤S2431,判断新风装置36是否开启,若是,则执行步骤S24311,若否,则执行步骤S24312。
步骤S24311,关闭新风装置36,延时T2秒后,重新检测室内机30的出风温度T_out以及出风风速V_out。
控制器40控制关闭新风装置36,待新风装置36的出风气流与室内机30的制冷出风气流充分分离后,重新检测出风温度T_out(也可通过公式11间接获取)、出风风速V_out(也可通过公式2间接获取)和实际回风温度Ta,重复执行步骤S21至步骤S24。
步骤S24312,维持压缩机21当前的运行频率F不变,并按照预设的转速调整步长增加室内风扇32当前的转速R。
步骤S2432,按照预设的频率调整步长增加压缩机21的运行频率F,并按照预设的转速调整步长增加室内风扇32的转速R。
在本公开一些实施例中,控制器40在任一时刻计算得出实时标准有效温度SETρ,并根据实时标准有效温度SETρ与标准有效温度范围[SETs-ΔT,SETs+ΔT]的关系,新风装置36的开闭状态,以及温度差值E与目标温度差值Es的关系,调整压缩机21的运行频率F,或保持压缩机21的运行频率F不变后,空调器10的控制方法还包括步骤S26。
步骤S26,延时T1秒以后,重复上述步骤S21至步骤S25。
延时T1秒以后,控制器40重新获取室外环境温度Ta、出风温度T_out、出风风速V_out和温度差值E,计算得到新的实时标准有效温度SETρ,并控制压缩机21的运行频率F以及室内风扇档位,将实时标准有效温度SETρ控制在标准有效温度范围[SETs-ΔT,SETs+ΔT]内。后续以T1秒为一个检测周期,重复该过程。
T1的取值范围例如为10~600。
例如,某3匹落地式机型参数设置为:△T1=1℃,Es=1.5℃,T1=60s,T2=30s,△F=5Hz,△R=100rpm,K3=0.0033,K4=1.3。
当空调器10运行在制冷模式时,开启出风标准有效温度SET控制功能,设定目标标准有效温度SETs为16℃,此时标准有效温度范围[15℃,17℃]。用户设定目标制冷温度Ts为26℃,风速默认为自动控制。检测得到出风温度T_out=14℃、出风风速V_out=3m/s、实际回风温度Ta=27℃,温度差值E=Ta-Ts=27-26=1℃。当前室内风扇档位为4档,转速R为1050rpm,根据公式12计算得到ρmax≈4.8m。将T_out=14℃、V_out=3m/s、ρmax=4.8m分别代入公式13和公式14,计算得到与室内出风口33之间的距离为1.5m处的出风气流带中心的目标风温Ta1.5≈18.0℃(取0.2的整数倍),目标风速Va1.5≈2.0m/s。根据目标风温Ta1.5、目标风速Va1.5,通过表3或通过函数SET=f(Ta,Va)得到此时的出风气流带中心的实时标准有效温度SET1.5≈11.5℃<15℃。
此时,控制器40确定新风装置36的开闭状态,若新风装置36处于关闭状态,则开启新风装置36,并在延时30s后,重新检测得到出风温度T_out=17℃、出风风速V_out=3m/s、实际回风温度Ta=27℃,此时温度差值E=Ta-Ts=27-26=1℃,当前室内风扇档位为4档,转速R为1050rpm,根据公式12计算得到ρmax≈4.8m。将T_out=17℃、V_out=3m/s、ρmax=4.8m分别代入公式13和公式14,计算得到与室内出风口33之间的距离为1.5m处的出风气流带中心的目标风温Ta1.5≈20℃(取0.2的整数倍),目标风速Va1.5≈2.0m/s。根据表3或通过函数SET=f(Ta,Va)得到此时的出风出气流带中心的实时标准有效温度SET1.5≈14℃<15℃。
此时,新风装置36已开启,则进一步确认温度差值E与温度阈值Es的大小关系,此时E<Es,控制器40控制室内风扇的转速R减小100rpm,压缩机21的频率F减小5Hz。
延时60s后,控制器40重新检测得到出风温度T_out=18.5℃、出风风速V_out=2.7m/s、 实际回风温度Ta=26.5℃、温度差值E=Ta-Ts=26.5-26=0.5℃,转速R为950rpm,根据公式12计算得到ρmax≈4.4m。将T_out=18.5℃、V_out=2.7m/s、ρmax=4.4m分别代入公式13和公式14,计算得到与室内出风口33之间的距离为1.5m处的出风气流带中心的目标风温Ta1.5≈21.2℃(取0.2的整数倍),目标风速Va1.5≈1.8m/s。根据表3或通过函数SET=f(Ta,Va)得到此时的出风气流带中心的标准有效温度SET1.5≈16℃∈[15,17],达到了用户设定的目标标准有效温度SETs=16℃的需求,此时控制室内风扇的转速R和压缩机21的运行频率F保持不变,新风装置36保持上一状态(此时处于开启状态)。
例如,某3匹落地式机型参数设置为:△T1=1℃,Es=1.5℃,T 1=60s,△F=5Hz,△R=100rpm,K1=1.2,KHF=3℃,K3=0.0033,K4=1.3。
当空调器10运行在制冷模式,开启出风标准有效温度SET控制功能,设定目标标准有效温度SETs为16℃,此时标准有效温度范围[15℃,17℃]。用户设定目标制冷温度Ts为26℃,风速默认为自动控制。检测得到室内盘管温度Te=10℃,当空调器10未开启新风功能,且运行在制冷模式时,代入公式1,计算得到此时的出风温度T_out=12℃,将K2和R代入公式12得到出风风速V_out=3m/s,控制器40获取室内回风温度Ta=27℃,此时温度差值E=Ta-Ts=27-26=1℃。当前室内风扇档位为4档,转速R为1050rpm,根据公式12计算得到ρmax≈4.8m。将T_out=12℃、V_out=3m/s、ρmax=4.8m分别代入公式13和公式14,计算得到与室内出风口33之间的距离为1.5m处的出风气流带中心的目标风温Ta1.5≈16.6℃(取0.2的整数倍),目标风速Va1.5≈2.0m/s。根据表3或通过函数SET=f(Ta,Va)得到此时的出风气流带中心的实时标准有效温度SET1.5≈9.8℃<15℃。
此时,控制器40确定新风装置36的开闭状态,若新风装置36处于关闭状态,则开启新风装置36,并在延时30s后,重新检测得到室内盘管温度Te=10℃,代入公式11,计算得到出风温度T_out=15℃,此时出风风速V_out=3m/s,实际回风温度Ta=27℃,温度差值E=Ta-Ts=27-26=1℃,当前室内风扇档位为4档,室内风扇的转速R为1050rpm,根据公式12计算得到ρmax≈4.8m。将T_out=15℃、V_out=3m/s、ρmax=4.8m分别代入公式13和公式14,得到与室内出风口33之间的距离为1.5m处的出风气流带中心的目标风温Ta1.5≈18.8℃(取0.2的整数倍),目标风速Va1.5≈2.0m/s。根据表3或通过函数SET=f(Ta,Va)计算得到此时的出风气流带中心的实时标准有效温度SET1.5≈12.5℃<15℃。
此时,新风装置36已开启,则进一步确认温度差值E与温度阈值Es的大小关系,此时E<Es,控制室内风扇的转速R减小100rpm(△R=100rpm),压缩机21的频率F减小5Hz(△F=5Hz)。
延时60s后,控制器40重新检测得到Te=12.5℃,代入公式11,计算得到出风温度T_out=18℃,此时出风风速V_out=2.7m/s,实际回风温度Ta=26.5℃,温度差值E=Ta-Ts=26.5-26=0.5℃,转速R为950rpm,根据公式12计算得到ρmax≈4.4m。将T_out=18℃、V_out=2.7m/s、ρmax=4.4m分别代入公式13和公式14,得到与室内出风口33之间的距离为1.5m处的出风气流带中心的目标风温Ta1.5≈20.8℃(取0.2的整数倍),目标风速Va1.5≈1.8m/s。根据表3或通过函数SET=f(Ta,Va)计算得到此时的出风气流带中心的实时标准有效温度SET1.5≈15.5℃∈[15,17],达到了用户设定的目标标准有效温度SETs=16℃的需求,控制室内风扇32的转速R和压缩机21的运行频率F保持不变,新风装置36保持上一状态(此时处于开启状态)。
图21是根据一些实施例的又一种空调器的框图。如图21所示,空调器10的室内机30包括净化装置34、新风装置36、室内环境检测装置37、切换阀片38和新风净化风扇39。控制器40和室内环境监测装置37、切换阀片38、新风净化风扇39均耦接。
图22A为根据一些实施例的新风装置和净化装置的一种示意图,图22B为根据一些实施例的新风装置和净化装置的另一种示意图,图22C为根据一些实施例的新风装置和净化装置的又一种示意图。如图22A至图22C所示,新风装置36还包括新风风道362,净化装置34还包括净化风道342。新风装置36的新风风道362与净化装置34的净化风道 342连接同一个新风净化风扇39,净化装置34和新风装置36共用新风净化风扇39和高效微粒过滤网(high-efficiency particulate arrestance,HEPA)。
切换阀片38设置在新风净化风扇39处,控制器40调节切换阀片38的位置使空调器10开启新风装置36或净化装置34中的至少一个。切换阀片38包括三个位置,分别为第一位置A、第二位置B、和第三位置C。如图22A至图22C所示,当切换阀片38处于第一位置A时,控制器40开启新风装置36,关闭净化装置34;当切换阀片38处于第二位置B时,控制器40同时开启新风装置36和净化装置34(即输出1/2的新风出风量和1/2的净化出风量);当切换阀片38处于第三位置C时,控制器40开启净化装置34,关闭新风装置36。
图23为根据一些实施例的新风装置和净化装置的又一种示意图,图24为根据一些实施例的新风装置和净化装置的又一种示意图,如图23和图24所示,新风装置36的新风出风管道361、净化装置34的净化出风管道341与室内机30的室内出风管道35嵌套设置,在本公开的一些实施例中,新风出风管道361和净化出风管道341为同一管道。
室内环境检测装置37包括PM2.5传感器和CO2传感器,PM2.5传感器被配置为检测室内空气中的PM2.5值,CO2传感器被配置为检测室内空气中的CO2值。
由于空调器10开启新风功能时,会增加压缩机21的运行频率F,提高空调器10的运行能耗,因此,本公开一些实施例的空调器,根据室外环境温度Toutdoor的情况确定开启净化装置34或新风装置36中的至少一个,这样,可以减少新风装置36的开启时间,降低能源消耗。
图25是根据一些实施例的又一种空调器的控制方法的流程图。如图25所示,该控制方法包括步骤S31至步骤S37。
步骤S31,获取PM2.5值、CO2值、和室外环境温度Toutdoor。
步骤S32,根据PM2.5值、CO2值以及室外环境温度Toutdoor确定开启新风装置36或净化装置34中的至少一个。
开启新风装置36或净化装置34中的至少一个会影响室内机30的出风温度,在确定空调器10的运行模式及开启的功能后,室内机30的出风温度维持稳定。
表8为PM2.5值和CO2值的参考范围示例。控制器40根据检测到的PM2.5值和CO2值,参考设定范围(例如表8),确定开启新风装置36或净化装置34中的至少一个。
表8 PM2.5值和CO2值的参考范围示例
上述单位PPM(parts per million)是浓度单位,为百万分率,即百万分之一。对于气体,PPM通常指摩尔分数或体积分数。
根据室内空气评价标准,当室内空气中的CO2值小于1000PPM时,表明室内空气新鲜度优良,当室内空气中的PM2.5浓度低于100时,表明室内空气质量优良(按PM2.5评价维度)。如表8所示,在空气新鲜度和质量都为优良时,根据室外环境温度Toutdoor的情况确定开启净化装置34或新风装置36。例如,当室外环境温度Toutdoor>30℃时,开启净化装置34;当室外环境温度Toutdoor≤30℃,开启新风装置36,这样可以降低能源 消耗。
在本公开一些实施例中,新风装置36开启后,室内机30的出风温度T_out提高A℃;净化装置34开启后,室内机30的出风温度T_out提高B℃;新风装置36和净化装置34同时开启后,室内机30的出风温度T_out提高C℃;其中,A>C>B。
例如,由表1和表4的数据可知,净化装置34开启后,室内机30的净化混合出风温度Ta_outfix1相比制冷出风温度Ta_out的增加值KHF约为2℃(如2.1℃、1.9℃、1.6℃)。新风装置36开启后,室内机30的新风混合出风温度Ta_outfix2相比制冷出风温度Ta_out的增加值KHF为约3℃(如3.3℃、3.0℃、2.7℃)。新风装置36和净化装置34同时开启后,室内机30的合并混合出风温度Ta_outfix3相比制冷出风温度Ta_out的增加值KHF为2.5℃左右。
在本公开一些实施例中,当新风装置36和净化装置34同时开启时,合并混合出风温度Ta_outfix3可以通过出风温度传感器522检测得到。
在本公开另一些实施例中,合并混合出风温度Ta_outfix3还可以通过公式5得到公式15,并根据公式15计算得到。
Ta_outfix3=Ta_out+2.5=K1×Te+2.5          公式15
步骤S33,获取当前设定的标准有效温度范围[SETs-ΔT,SETs+ΔT]和目标送风距离ρ,并获取室外环境温度Toutdoor或实际回风温度Ta中的至少一个、出风温度T_out和出风风速V_out。
步骤S34,根据室外环境温度Toutdoor或实际回风温度Ta中的至少一个、出风温度T_out、出风风速V_out和目标送风距离ρ,计算实时标准有效温度SETρ
步骤S35,判断实时标准有效温度SETρ是否处于标准有效温度范围[SETs-ΔT,SETs+ΔT]外,若是,则执行步骤S36,若否,则执行步骤S37。
步骤S36,调整压缩机21的运行频率F和室内风扇32的转速R。
步骤S37,维持压缩机21的运行频率F和室内风扇32的转速R不变。
图26为根据一些实施例的又一种空调器的控制方法的流程图,如图26所示,在本公开一些实施例中,步骤S34包括步骤S341至步骤S343。
步骤S341,获取当前设定的室内风扇32的转速R或室内风扇档位,并根据该转速R,或室内风扇档位与最远送风距离的对应关系,得到当前的最远送风距离ρmax
例如,根据室内风扇档位R,通过表2得到当前的最远送风距离ρmax;或根据室内风扇32的转速R,通过公式12计算得到当前的最远送风距离ρmax
步骤S342,根据实际回风温度Ta、出风温度T_out、出风风速V_out、最远送风距离ρmax和目标送风距离ρ,计算目标风温Taρ和目标风速Vaρ
控制器40根据不同的目标送风距离ρ,结合实际回风温度Ta、出风温度T_out和最远送风距离ρmax,通过公式16,计算出室内机30的出风气流带中心的目标风温Taρ
控制器40根据不同的目标送风距离ρ,结合出风风速T_out和最远送风距离ρmax,通过公式17计算出与室内出风口33之间的距离为目标送风距离ρ的气流带中心的目标风速Vaρ
需要说明的是,当空调器10只开启净化装置34时,出风温度T_out为新风混合出风温度Ta_outfix1;当空调器10只开启新风装置36时,出风温度T_out为新风混合出风温度Ta_outfix2,当空调器10同时开启净化装置34和新风装置36时,出风温度T_out为合并混合出风温度Ta_outfix3
步骤S343,根据预设的风温、风速和标准有效温度的对应关系,确定目标风温Taρ和 目标风速Vaρ对应的标准有效温度SET,作为实时标准有效温度SETρ
控制器40在得到目标送风距离ρ处的目标风温Taρ和目标风速Vaρ之后,根据表3,得到目标送风距离ρ处的实时标准有效温度SETρ
图27为根据一些实施例的又一种空调器的控制方法的流程图,如图27所示,在本公开一些实施例中,步骤S36包括步骤S361至步骤S3632。
步骤S361,判断实时标准有效温度SETρ是否小于标准有效温度范围的下限值SETs-ΔT,若是,则执行步骤S362,若否,则执行步骤S363。
步骤S362,判断温度差值是否满足E≥Es,若是,则执行步骤S3621,若否,则执行步骤S3622。
步骤S3621,维持压缩机21当前的运行频率F不变,并按照预设的转速调整步长减小室内风扇32转速R。
步骤S3622,按照预设的频率调整步长减小压缩机21运行频率F,并按照预设的转速调整步长减小室内风扇32转速R。
步骤S363,判断温度差值是否满足E≥Es,若是,则执行步骤S3631,若否,则执行步骤S3632。
步骤S3631,按照预设的频率调整步长增加压缩机21的运行频率F,并按照预设的转速调整步长增加室内风扇32的转速R。
步骤S3632,维持压缩机21的运行频率F不变,并按照预设的转速调整步长增加室内风扇32的转速R。
在本公开一些实施例中,控制器40在任一时刻计算得出实时标准有效温度SET_ρ,并根据实时标准有效温度SETρ与标准有效温度范围[SETs-ΔT,SETs+ΔT]的关系,以及温度差值E与目标温度差值Es的关系,调整压缩机21的运行频率F,或保持压缩机21的运行频率F不变后,空调器10的控制方法还包括步骤S38。
步骤S38,延时T1秒以后,重复上述步骤S31至步骤S37。
延时T1秒以后,控制器40重新获取PM2.5值、CO2值、室外环境温度Toutdoor,根据PM2.5值、CO2值以及室外环境温度Toutdoor,确定开启新风装置36或净化装置34中的至少一个。并重新计算得到新的实时标准有效温度SETρ,控制压缩机21的运行频率F以及室内风扇32的转速R,将实时标准有效温度SETρ控制在标准有效温度范围[SETs-ΔT,SETs+ΔT]内。后续以T1秒为一个检测周期,重复该过程。
T1的取值范围例如为10~600。
例如,某3匹落地式机型参数设置为:△T1=1℃,Es=1.5℃,T1=60s,△F=5Hz,△R=100rpm,K3=0.0033,K4=1.3。
当空调器10运行在制冷模式时,开启出风标准有效温度SET控制功能,设定目标标准有效温度SETs为16℃,此时标准有效温度范围[15℃,17℃]。用户设定目标制冷温度Ts为26℃,风速默认为自动控制。检测得到PM2.5=70、CO2=1500PPM,室外环境温度Toutdoor=35℃,根据表8确定空调器10需开启新风功能,控制器40控制切换阀片38到位置A。检测得到出风温度T_out=14℃、出风风速V_out=3m/s、实际回风温度Ta=27℃、温度差值E=Ta-Ts=27-26=1℃,当前室内风扇档位4档,转速R为1050rpm。根据公式12计算得到最远送风距离ρmax≈4.8m。将T_out=14℃、V_out=3m/s、ρmax=4.8m分别代入公式16和公式17,计算得到与室内出风口33之间的距离为1.5m处的出风气流带中心的目标风温Ta1.5≈18.0℃(取0.2的整数倍),目标风速Va1.5≈2.0m/s。通过表3获取或通过函数SET=f(Ta,Va)计算得到此时的出风气流带中心的实时标准有效温度SET1.5≈11.5℃<15℃。此时,E<Es,控制器40控制室内风扇32的转速R减小100rpm,压缩机21的频率减小5Hz。
延时60s后,控制器40重新检测得到PM2.5=70,CO2=1400PPM,室外环境温度Toutdoor=35℃,根据表8确定空调器10需开启新风功能,控制器40控制切换阀片38继 续在位置A。检测得到出风温度T_out=17℃、出风风速V_out=2.7m/s、实际回风温度Ta=26.5℃、温度差值E=Ta-Ts=26.5-26=0.5℃,室内风扇的转速R为950rpm。根据公式12得到最远送风距离ρmax≈4.4m。将T_out=17℃、V_out=2.7m/s、ρmax=4.4m分别代入公式16和公式17,计算得到与室内出风口33之间的距离为1.5m处的出风气流带中心的目标风温Ta1.5≈20℃(取0.2的整数倍),目标风速Va1.5≈1.8m/s。通过表3获取或通过函数SET=f(Ta,Va)计算得到此时的出风气流带中心的实时标准有效温度SET1.5≈14.5℃<15℃,此时,E<Es,控制器40控制室内风扇32的转速R减小100rpm,压缩机21的频率F减小5Hz。
预设周期后,控制器40检测得到PM2.5=75,CO2=800PPM,室外环境温度Toutdoor=35℃,根据表8以及室外环境温度Toutdoor=35℃>30℃,确定空调器10需开启净化功能,控制器40控制切换阀片38到位置C。检测得到出风温度T_out=18℃、出风风速V_out=2.0m/s、实际回风温度Ta=26℃、温度差值E=Ta-Ts=26-26=0℃,转速R为750rpm。根据公式12得到最远送风距离ρmax≈3.8m。将T_out=18℃、V_out=2.2m/s、ρmax=3.8m分别代入公式16和公式17,计算得到与室内出风口33之间的距离为1.5m处的出风气流带中心的目标风温Ta1.5≈21.2℃(取0.2的整数倍),目标风速Va1.5≈1.4m/s。通过表3获取或通过函数SET=f(Ta,Va)计算得到此时的出风气流带中心的实时标准有效温度SET1.5≈16.5℃∈[15,17],达到了用户设定的目标标准有效温度SETs=16℃的需求,控制器40控制室内风扇32的转速R和压缩机21的运行频率F保持不变,新风装置36或净化装置34保持上一状态。
例如,某3匹落地式机型参数设置为:△T1=1℃,Es=1.5℃,T1=60s,△F=5Hz,△R=100rpm,K1=1.2,KHF=2℃(净化),KHF=3℃(新风),KHF=2.5℃(新风+净化),K3=0.0033,K4=1.3。
当空调器10运行在制冷模式时,开启出风标准有效温度SET控制功能,设定目标标准有效温度SETs为16℃,此时标准有效温度范围[15℃,17℃]。用户设定目标制冷温度Ts为26℃,风速默认为自动控制。检测得到PM2.5=180、CO2=800PPM,室外环境温度Toutdoor=35℃,根据表8确定空调器10需开启净化功能,控制器40控制切换阀片38到位置C。检测得到室内盘管温度Te=10℃,代入公式5,计算得到出风温度T_out=14℃,出风风速V_out=3m/s,实际回风温度Ta=27℃,温度差值E=Ta-Ts=27-26=1℃,当前室内风扇档位为4档,转速R为1050rpm。根据公式12计算得到ρmax≈4.8m。将T_out=14℃、V_out=3m/s、ρmax=4.8m分别代入公式16和公式17,计算得到与室内出风口33之间的距离为1.5m处的出风气流带中心的目标风温Ta1.5≈18.0℃(取0.2的整数倍),目标风速Va1.5≈2.0m/s。通过表3获取或通过函数SET=f(Ta,Va)计算得到此时的出风气流带中心的实时标准有效温度SET1.5≈11.5℃<15℃,此时,E<Es,控制器40室内风扇的转速R减小100rpm,压缩机21的频率减小5Hz。
延时60s后,控制器40重新检测得到PM2.5=175,CO2=850PPM,室外环境温度Toutdoor=35℃,根据表8确定空调器10需开启净化功能,控制器40控制切换阀片38继续在位置C。检测得到室内盘管温度Te=12.5℃,代入公式5,计算得到出风温度T_out=17℃,出风风速V_out=2.7m/s,实际回风温度Ta=26.5℃,温度差值E=Ta-Ts=26.5-26=0.5℃,室内风扇32的转速R为950rpm。根据公式12计算得到ρmax≈4.4m。将T_out=17℃、V_out=2.7m/s、ρmax=4.4m分别代入公式16和公式17,计算得到与室内出风口33之间的距离为1.5m处的出风气流带中心的目标风温Ta1.5≈20℃(取0.2的整数倍),目标风速Va1.5≈1.8m/s。通过表3获取或通过函数SET=f(Ta,Va)计算得到此时的出风气流带中心的实时标准有效温度SET1.5≈14.5℃<15℃,此时E<Es,控制器40室内风扇的转速R减小100rpm,压缩机21的频率减小5Hz。
预设周期后,控制器40检测得到PM2.5=160,CO2=1150PPM,室外环境温度Toutdoor=35℃,根据表8确定空调器10需同时开启新风功能和净化功能,控制器40控 制切换阀片38到位置B。检测得到室内盘管温Te=13.5℃,代入公式5计算得到出风温度T_out=18℃,出风风速V_out=2.0m/s,实际回风温度Ta=26℃,温度差值E=Ta-Ts=26-26=0℃,室内风扇32的转速R为750rpm。根据公式12计算得到ρmax≈3.8m。将T_out=18℃、V_out=2.2m/s、ρmaxx=3.8m分别代入公式16和公式17,计算得到与室内出风口33之间的距离为1.5m处的出风气流带中心的目标风温Ta1.5≈21.2℃(取0.2的整数倍),目标风速Va1.5≈1.4m/s。通过表3获取或通过函数SET=f(Ta,Va)计算得到此时的出风气流带中心的实时标准有效温度SET1.5≈16.5℃∈[15,17],达到了用户设定的目标标准有效温度SETs=16℃的需求,控制器40控制室内风扇32的转速R和压缩机21的运行频率F保持不变。
本公开一些实施例的空调器的控制方法,引入标准有效温度的概念,表征用户实际感受到的温度,通过对风温和风速联合控制,使得吹到用户身上的实时标准有效温度不会太凉,满足用户对温度舒适性的要求。
需要说明的是,本公开一些实施例中的空调器与上述的空调器的控制方法所执行的所有流程步骤相同,且具有类似的技术效果,在此不再赘述。
本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,该计算机程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存储器(Random Access Memory,RAM)等。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (26)

  1. 一种空调器,包括:
    室外机,包括压缩机,被配置为压缩冷媒,以驱动所述冷媒在所述空调器中循环;
    室内机,包括:
    室内风扇,被配置为向室内送风;
    净化装置,被配置为净化室内空气;
    温度传感器,被配置为检测所述室内机的实际回风温度和制冷出风温度;
    风速传感器,被配置为检测所述室内机的净化混合出风风速;
    控制器,被配置为:
    当所述空调器处于运行状态时,控制所述净化装置启动;
    获取当前设定的标准有效温度范围、目标送风距离、所述实际回风温度、所述制冷出风温度和所述净化混合出风风速;
    根据所述实际回风温度和所述制冷出风温度,以及所述净化装置执行净化操作时的循环风量和所述空调器执行制冷操作时的循环风量,计算净化混合出风温度;
    根据所述实际回风温度、所述净化混合出风温度、所述净化混合出风风速和所述目标送风距离,计算实时标准有效温度;
    若确定所述实时标准有效温度处于预设的所述标准有效温度范围外,则调整所述室内风扇的转速以及所述压缩机的运行频率。
  2. 根据权利要求1所述的空调器,其中,所述根据所述实际回风温度和所述制冷出风温度,以及所述净化装置执行净化操作时的循环风量和所述空调器执行制冷操作时的循环风量,计算净化混合出风温度,包括:
    根据所述实际回风温度和所述制冷出风温度,以及所述净化装置执行净化操作时的循环风量和所述空调器执行制冷操作时的循环风量,通过以下计算公式,计算所述净化混合出风温度:
    Ta_outfix1=(Ta_out×VKT+Ta×VJH)/((VKT+VJH));
    其中,Ta_outfix1为所述净化混合出风温度,Ta_out为所述制冷出风温度;Ta为所述实际回风温度;VJH为所述净化装置执行净化操作时的循环风量;VKT为所述空调器执行制冷操作时的循环风量。
  3. 根据权利要求1或2所述的空调器,其中,所述室内机还包括室内出风管道,所述室内风扇通过所述室内出风管道向室内送风;
    所述净化装置包括净化出风管道;净化后的室内空气通过所述净化出风管道进入室内;
    所述净化装置的净化出风管道和所述室内出风管道嵌套设置,所述净化出风管道位于所述室内出风管道的外侧;
    所述根据所述实际回风温度、所述净化混合出风温度、所述净化混合出风风速和所述目标送风距离,计算实时标准有效温度,包括:
    获取当前设定的室内风扇档位;
    根据预设的室内风扇档位和预设送风距离的对应关系,确定当前设定的所述室内风扇档位对应的预设送风距离;
    根据所述实际回风温度、所述净化混合出风温度、所述净化混合出风风速、所述目标送风距离和所述预设送风距离,计算目标风温和目标风速;其中,所述目标风温为与所述室内出风管道的出风口之间的距离为所述目标送风距离的出风气流带中心的风温,所述目标风速为与所述室内出风管道的出风口之间的距离为所述目标送风距离的出风气流带中心的风速;
    根据预设的风温、风速和标准有效温度的对应关系,确定所述目标风温和所述目标风速对应的标准有效温度,作为所述实时标准有效温度。
  4. 根据权利要求3所述的空调器,其中,在所述预设的室内风扇档位和预设送风距离的对应关系中,所述预设送风距离和所述室内风扇档位呈正相关关系;
    在所述预设的风温、风速和标准有效温度的对应关系中,所述标准有效温度和所述风温呈正相关关系,所述标准有效温度和所述风速呈负相关关系。
  5. 根据权利要求3或4所述的空调器,其中,所述根据所述实际回风温度、所述净化混合出风温度、所述净化混合出风风速、所述目标送风距离和所述预设送风距离,计算目标风温和目标风速,包括:
    根据所述实际回风温度、所述净化混合出风温度、所述目标送风距离和所述预设送风距离,计算所述目标风温;
    根据所述净化混合出风风速、所述目标送风距离和所述预设送风距离,计算所述目标风速。
  6. 根据权利要求1至5中任一项所述的空调器,其中,所述若确定所述实时标准有效温度处于预设的所述标准有效温度范围外,则调整所述室内风扇的转速以及所述压缩机的运行频率,包括:
    若确定所述实时标准有效温度小于所述标准有效温度范围的下限值,则判断温度差值与所述温度阈值的大小关系;
    若确定温度差值小于预设的温度阈值,则按照预设的频率调整步长减小所述压缩机当前的运行频率,并按照预设的转速调整步长减小所述室内风扇当前的转速;
    若确定所述温度差值大于或等于所述预设的温度阈值,则维持所述压缩机当前的运行频率不变,并按照预设的转速调整步长减小所述室内风扇当前的转速;
    其中,所述温度差值为当前设定的目标制冷温度和所述实际回风温度的差值。
  7. 根据权利要求6所述的空调器,其中,所述若确定所述实时标准有效温度处于预设的所述标准有效温度范围外,则控制所述室内风扇的转速以及所述压缩机的运行频率,还包括:
    若确定所述实时标准有效温度大于所述标准有效温度范围的上限值,则判断温度差值与所述温度阈值的大小关系;
    若确定所述温度差值大于或等于所述预设的温度阈值,则按照预设的频率调整步长增加所述压缩机当前的运行频率,并按照预设的转速调整步长增加所述室内风扇当前的转速;
    若确定所述温度差值小于所述预设的温度阈值,则维持所述压缩机当前的运行频率不变,并按照预设的转速调整步长增加所述室内风扇当前的转速。
  8. 根据权利要求1至7中任一项所述的空调器,其中,
    若确定所述实时标准有效温度处于所述标准有效温度范围内,则维持所述压缩机当前的运行频率和所述室内风扇当前的转速不变。
  9. 一种空调器,包括:
    室外机,包括压缩机,被配置为压缩冷媒,以驱动所述冷媒在所述空调器中循环;
    室内机,包括:
    室内风扇,被配置为向室内送风;
    新风装置,被配置为将室外空气引入室内;
    温度传感器,被配置为检测所述室内机的室外环境温度和出风温度;
    风速传感器,被配置为检测所述室内机的出风风速;
    控制器,被配置为:
    获取当前设定的标准有效温度范围、目标送风距离、所述室外环境温度、所述出风温度和所述出风风速;
    根据所述室外环境温度、所述出风温度、所述出风风速和所述目标送风距离,计算实时标准有效温度;
    若确定所述实时标准有效温度处于预设的标准有效温度范围外,则判断所述新风装置是否开启或判断温度差值与温度阈值的大小关系,根据判断结果控制室内风扇的转速以及所述压缩机的运行频率。
  10. 根据权利要求9所述的空调器,其中,所述室内机还包括室内出风管道,所述室内风扇通过所述室内出风管道向室内送风;
    所述新风装置包括新风出风管道;
    所述新风装置的新风出风管道与所述室内出风管道嵌套设置,所述新风出风管道位于所述室内出风管道的外侧;
    所述根据所述出风温度、所述制冷出风风速和所述目标送风距离,计算实时标准有效温度,包括:
    获取当前设定的所述室内风扇的转速,并根据所述室内风扇的转速,计算当前的预设送风距离;
    根据所述出风温度、所述实际回风温度、所述出风风速、所述目标送风距离和所述预设送风距离,计算目标风温和目标风速;其中,所述目标风温为与所述室内出风管道的出风口的距离为所述目标送风距离的气流带中心的风温,所述目标风速为与所述室内出风管道的出风口的距离为所述目标送风距离的气流带中心的风速;
    根据预设的风温、风速和标准有效温度的对应关系,确定所述目标风温以及所述目标风速对应的标准有效温度,作为所述实时标准有效温度。
  11. 根据权利要求10所述的空调器,其中,根据所述出风温度、所述实际回风温度、所述出风风速、所述目标送风距离和所述预设送风距离,计算目标风温和目标风速,包 括:
    根据所述实际回风温度、所述出风温度、所述目标送风距离和所述预设送风距离,计算所述目标风温;
    根据所述出风风速、所述目标送风距离和所述预设送风距离,计算所述目标风速。
  12. 根据权利要求11所述的空调器,其中,若确定所述新风装置未开启,且所述空调器运行在制冷模式,则所述出风温度为制冷出风温度,所述出风风速为制冷出风风速;
    若确定所述新风装置开启,且所述空调器运行在制冷模式,则所述出风温度为新风混合出风温度,所述出风风速为新风混合出风风速。
  13. 根据权利要求12所述的空调器,其中,所述制冷出风温度和所述新风混合出风温度由所述温度传感器测得;
    所述制冷出风风速和所述混合出风风速由所述风速传感器测得。
  14. 根据权利要求12所述的空调器,其中,所述室内机的新风混合出风温度为新风装置的出风气流与室内机的制冷出风气流,在混风区混合后形成的混合出风气流的温度;
    所述新风混合出风温度由所述室外环境温度和所述制冷出风温度,以及所述空调器执行制冷操作时的循环风量和所述新风装置执行新风操作时的循环风量,通过以下计算公式,计算得出:
    Ta_outfix=(Ta_out×VKT+Toutdoor×VXF)/((VKT+VXF))
    其中,Ta_outfix为所述混合出风温度,Ta_out为所述制冷出风温度;Toutdoor为所述室外环境温度;VXF为所述新风装置执行新风操作时的循环风量;VKT为所述空调器执行制冷操作时的循环风量。
  15. 根据权利要求9所述的空调器,其中,
    若确定所述实时标准有效温度处于预设的标准有效温度范围外,则判断所述新风装置是否开启或判断温度差值与温度阈值的大小关系,根据判断结果控制室内风扇的转速以及所述压缩机的运行频率,包括:
    若确定所述实时标准有效温度小于所述预设的标准有效温度范围的下限值,则判断所述新风装置是否开启;
    若确定所述新风装置处于关闭状态,则开启所述新风装置,延时T2s后,重新检测所述实际回风温度,并获取所述出风温度和所述出风风速;
    若确定所述新风装置处于开启状态,则判断温度差值与温度阈值的大小关系;
    若确定所述温度差值大于或等于所述温度阈值,则维持所述压缩机当前的运行频率不变,并按照预设的转速调整步长减小所述室内风扇当前的转速;
    若确定所述温度差值小于所述温度阈值,则按照预设的频率调整步长减小所述压缩机当前的运行频率,并按照预设的转速调整步长减小所述室内风扇当前的转速;
    其中,所述温度差值为当前设定的目标制冷温度和所述实际回风温度的差值。
  16. 根据权利要求15所述的空调器,其中,所述若确定所述实时标准有效温度处于预设的标准有效温度范围外,则判断所述新风装置是否开启或判断温度差值与温度阈值 的大小关系,根据判断结果控制室内风扇的转速以及所述压缩机的运行频率,还包括:
    若确定所述实时标准有效温度大于所述预设的标准有效温度范围的上限值时,则判断所述温度差值与所述温度阈值的大小关系;
    若确定所述温度差值大于或等于所述温度阈值,则按照预设的频率调整步长增加所述压缩机当前的运行频率,并按照预设的转速调整步长增加所述室内风扇当前的转速;
    若确定所述温度差值小于所述温度阈值,则判断所述新风装置是否开启;
    若确定所述新风装置处于关闭状态,则维持所述压缩机当前的运行频率不变,并按照预设的转速调整步长增加所述室内风扇当前的转速;
    若确定所述新风装置处于开启状态,则关闭所述新风装置,延时T2s后,重新检测所述实际回风温度,并获取所述出风温度和所述出风风速。
  17. 根据权利要求15或16所述的空调器,其中,所述新风装置开启或关闭后,延时固定时间,待所述新风装置的出风气流与所述室内机的制冷出风气流混合或分离后,重新检测所述室内机的室外环境温度、出风温度以及出风风速;
    其中,所述新风装置的出风气流与所述制冷出风气流混合后,所述室内机的新风混合出风温度大于混合前的出风温度。
  18. 根据权利要求9至17中任一项所述的空调器,其中,
    若确定所述实时标准有效温度处于所述标准有效温度范围内,则维持所述压缩机的运行频率和所述室内风扇的转速不变。
  19. 一种空调器,包括:
    室外机,包括压缩机,被配置为压缩冷媒,以驱动所述冷媒在所述空调器中循环;
    室内机,包括:
    室内风扇,被配置为向室内送风;
    室内出风管道;所述室内风扇通过所述室内出风管道向室内送风;
    新风装置,被配置为将室外空气引入室内;
    所述新风装置包括新风管道和新风出风管道;室外空气通过所述新风出风管道进入室内;
    所述新风装置的新风出风管道与所述室内出风管道嵌套设置,所述新风出风管道位于所述室内出风管道的外侧;
    净化装置,被配置为净化室内空气;
    所述净化装置包括净化管道和净化出风管道;净化后的室内空气通过所述净化出风管道进入室内;
    所述净化装置的净化出风管道和所述室内出风管道嵌套设置,所述净化出风管道位于所述室内出风管道的外侧;
    室内环境检测装置,被配置为检测室内环境的PM2.5值以及CO2值;
    温度传感器,被配置为检测室内机的室外环境温度、出风温度和制冷出风温度;
    风速传感器,被配置为检测所述室内机的出风风速;
    控制器,被配置为:
    获取当前设定的标准有效温度范围和目标送风距离,并获取所述室外环境温度、所述出风温度、所述制冷出风温度和所述出风风速;
    根据室内环境的PM2.5值、CO2值以及室外环境温度确定开启新风装置或净化装置中的至少一个;
    根据所述室外环境温度、所述合并混合出风温度、所述制冷出风温度、所述合并混合出风风速以及所述目标送风距离计算与所述目标送风距离相对应的出风气流带中心的实时标准有效温度;
    若确定所述实时标准有效温度处于预设的所述标准有效温度范围外,则判断温度差值与温度阈值的大小关系,根据判断结果控制所述室内风扇的转速以及所述压缩机的运行频率。
  20. 根据权利要求19所述的空调器,其中,
    所述室内机还包括切换阀片和新风净化风扇;
    所述新风装置的出风口与所述净化装置的出风口连接同一个新风净化风扇的进风口,所述切换阀片设置在所述进风口处,以通过调节所述切换阀片的位置使所述空调器开启所述新风装置或所述净化装置中的至少一个。
  21. 根据权利要求19或20所述的空调器,其中,
    所述温度传感器还被配置为检测所述室内机的实际回风温度;
    所述根据所述室外环境温度、所述出风温度、所述制冷出风温度、所述出风风速以及所述目标送风距离计算与所述目标送风距离相对应的出风气流带中心的实时标准有效温度,包括:
    获取当前设定的所述室内风扇的转速,并根据所述室内风扇的转速,计算当前的预设送风距离;
    根据所述出风温度、所述实际回风温度、所述出风风速、所述目标送风距离和所述预设送风距离,计算目标风温和目标风速;其中,所述目标风温为与所述室内出风管道的出风口的距离为所述目标送风距离的气流带中心的风温,所述目标风速为与所述室内出风管道的出风口的距离为所述目标送风距离的气流带中心的风速;
    根据预设的风温、风速和标准有效温度的对应关系,确定所述目标风温以及所述目标风速对应的标准有效温度,作为所述实时标准有效温度。
  22. 根据权利要求21所述的空调器,其中,所述根据所述出风温度、所述实际回风温度、所述出风风速、所述目标送风距离和所述预设送风距离,计算目标风温和目标风速,包括:
    根据所述实际回风温度、所述出风温度、所述目标送风距离和所述预设送风距离,计算所述目标风温;
    根据所述出风风速、所述目标送风距离和所述预设送风距离,计算所述目标风速。
  23. 根据权利要求19-22中任一项所述的空调器,其中,所述若确定所述实时标准有效温度处于预设的所述标准有效温度范围外,则判断温度差值与温度阈值的大小关系,根据判断结果控制所述室内风扇的转速以及所述压缩机的运行频率,包括:
    若确定所述实时标准有效温度小于所述预设的标准有效温度范围的下限值,则判断温度差值与所述温度阈值的大小关系;
    若确定所述温度差值大于或等于所述预设的温度阈值,则维持所述压缩机当前的运行频率不变,并按照预设的转速调整步长减小所述室内风扇当前的转速;
    若确定所述温度差值小于所述预设的温度阈值,则按照预设的频率调整步长减小所述压缩机当前的运行频率,并按照预设的转速调整步长减小所述室内风扇当前的转速。
  24. 根据权利要求23所述的空调器,其中,所述若确定所述实时标准有效温度处于预设的所述标准有效温度范围外,则判断温度差值与温度阈值的大小关系,根据判断结果控制所述室内风扇的转速以及所述压缩机的运行频率,还包括:
    若确定所述实时标准有效温度大于所述预设的标准有效温度范围的上限值,则判断温度差值与所述温度阈值的大小关系;
    若确定所述温度差值大于或等于所述预设的温度阈值,则按照预设的频率调整步长增加所述压缩机当前的运行频率,并按照预设的转速调整步长增加所述室内风扇当前的转速;
    若确定所述温度差值小于所述预设的温度阈值,则维持所述压缩机当前的运行频率不变,并按照预设的转速调整步长增加所述室内风扇当前的转速。
  25. 根据权利要求19至24中任一项所述的空调器,其中,所述新风装置开启后,所述室内机的出风温度提高A℃;所述净化装置开启后,所述室内机的出风温度提高B℃;所述新风装置和所述净化装置同时开启后,所述室内机的出风温度提高C℃;其中,A>C>B。
  26. 根据权利要求19至25中任一项所述的空调器,其中,
    若确定所述实时标准有效温度处于所述标准有效温度范围内,则维持所述压缩机当前的运行频率和所述室内风扇当前的转速不变。
PCT/CN2023/089055 2022-04-29 2023-04-18 空调器 WO2023207684A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380013564.6A CN117940707A (zh) 2022-04-29 2023-04-18 空调器

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210467915.8 2022-04-29
CN202210467128.3A CN114811732B (zh) 2022-04-29 2022-04-29 一种新风净化空调器及其控制方法
CN202210467146.1A CN114738892A (zh) 2022-04-29 2022-04-29 一种新风空调器及其控制方法
CN202210467128.3 2022-04-29
CN202210467146.1 2022-04-29
CN202210467915.8A CN114659173B (zh) 2022-04-29 2022-04-29 一种空调器和空调器的运行参数的控制方法

Publications (1)

Publication Number Publication Date
WO2023207684A1 true WO2023207684A1 (zh) 2023-11-02

Family

ID=88517652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089055 WO2023207684A1 (zh) 2022-04-29 2023-04-18 空调器

Country Status (2)

Country Link
CN (1) CN117940707A (zh)
WO (1) WO2023207684A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050239A (ja) * 2011-08-30 2013-03-14 Mitsubishi Electric Corp 空気調和機
CN105972697A (zh) * 2016-05-26 2016-09-28 海信(山东)空调有限公司 空调
CN106051917A (zh) * 2016-07-01 2016-10-26 海信(山东)空调有限公司 空调室内机
US20190063806A1 (en) * 2016-04-25 2019-02-28 Mitsubishi Electric Corporation Air-conditioning apparatus
CN112050441A (zh) * 2019-06-06 2020-12-08 青岛海尔空调器有限总公司 新风空调的净化控制方法
CN114251793A (zh) * 2020-09-24 2022-03-29 海信(山东)空调有限公司 空调器的控制方法、装置及空调器
CN114264056A (zh) * 2021-12-30 2022-04-01 宁波奥克斯电气股份有限公司 空调送风控制方法、装置及机房空调器
CN114659173A (zh) * 2022-04-29 2022-06-24 海信(山东)空调有限公司 一种空调器和空调器的运行参数的控制方法
CN114738892A (zh) * 2022-04-29 2022-07-12 海信空调有限公司 一种新风空调器及其控制方法
CN114811732A (zh) * 2022-04-29 2022-07-29 海信空调有限公司 一种新风净化空调器及其控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050239A (ja) * 2011-08-30 2013-03-14 Mitsubishi Electric Corp 空気調和機
US20190063806A1 (en) * 2016-04-25 2019-02-28 Mitsubishi Electric Corporation Air-conditioning apparatus
CN105972697A (zh) * 2016-05-26 2016-09-28 海信(山东)空调有限公司 空调
CN106051917A (zh) * 2016-07-01 2016-10-26 海信(山东)空调有限公司 空调室内机
CN112050441A (zh) * 2019-06-06 2020-12-08 青岛海尔空调器有限总公司 新风空调的净化控制方法
CN114251793A (zh) * 2020-09-24 2022-03-29 海信(山东)空调有限公司 空调器的控制方法、装置及空调器
CN114264056A (zh) * 2021-12-30 2022-04-01 宁波奥克斯电气股份有限公司 空调送风控制方法、装置及机房空调器
CN114659173A (zh) * 2022-04-29 2022-06-24 海信(山东)空调有限公司 一种空调器和空调器的运行参数的控制方法
CN114738892A (zh) * 2022-04-29 2022-07-12 海信空调有限公司 一种新风空调器及其控制方法
CN114811732A (zh) * 2022-04-29 2022-07-29 海信空调有限公司 一种新风净化空调器及其控制方法

Also Published As

Publication number Publication date
CN117940707A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
CN100595493C (zh) 空调控制装置
CN107575994B (zh) 用于控制空调的方法及装置、空调
US11391475B2 (en) Radiant air conditioning system for controlling comfortable and healthy indoor environment based on infrared sensing technology
CN110895010B (zh) 一种空调的控制方法、装置、存储介质及空调
CN112283902A (zh) 空调器控制方法和空调器
US10962249B2 (en) Air conditioning apparatus and air conditioning control method
WO2006054586A1 (ja) 空調システム及び空調システム制御方法
WO2023207427A1 (zh) 空调器及其控制方法
CN114659173B (zh) 一种空调器和空调器的运行参数的控制方法
CN107525245B (zh) 用于控制空调的方法及装置、空调
CN108050644A (zh) 空调器控制方法和空调器
CN105135612A (zh) 一种变频空调控制方法
CN114811732B (zh) 一种新风净化空调器及其控制方法
WO2019041541A1 (zh) 用于空调自清洁的控制方法及装置、空调
CN114963426A (zh) 一种空调器恒温除湿方法、系统、存储介质及空调器
WO2023207524A1 (zh) 空调器及其控制方法
JP3239110B2 (ja) 空気調和機の制御方法
WO2023207684A1 (zh) 空调器
JPWO2020035913A1 (ja) 空調装置、制御装置、空調方法及びプログラム
JPWO2020035911A1 (ja) 空調装置、制御装置、空調方法及びプログラム
WO2024045900A1 (zh) 空调及其制冷控制方法
CN114811895A (zh) 一种空调器及其频率控制方法
CN114508824B (zh) 新风系统
WO2023207353A1 (zh) 空调器及其频率控制方法
KR20000039202A (ko) 공기조화기 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795117

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380013564.6

Country of ref document: CN