WO2023207524A1 - 空调器及其控制方法 - Google Patents

空调器及其控制方法 Download PDF

Info

Publication number
WO2023207524A1
WO2023207524A1 PCT/CN2023/085899 CN2023085899W WO2023207524A1 WO 2023207524 A1 WO2023207524 A1 WO 2023207524A1 CN 2023085899 W CN2023085899 W CN 2023085899W WO 2023207524 A1 WO2023207524 A1 WO 2023207524A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air
outlet
standard effective
wind speed
Prior art date
Application number
PCT/CN2023/085899
Other languages
English (en)
French (fr)
Inventor
王军
陈胜华
张素珍
Original Assignee
海信空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信空调有限公司 filed Critical 海信空调有限公司
Publication of WO2023207524A1 publication Critical patent/WO2023207524A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present disclosure relates to the technical field of air conditioning equipment, and in particular, to an air conditioner and a control method thereof.
  • air conditioners have entered thousands of households, offices and public places, and are even used in various means of transportation. They have become a necessity in modern daily life. They can prevent heatstroke and cool down, and provide a comfortable rest and working environment. .
  • an air conditioner in one aspect, includes an outdoor unit, an indoor unit, a temperature sensor, a wind speed sensor, a distance sensor and a controller.
  • the outdoor unit includes a compressor configured to compress refrigerant to drive the refrigerant to circulate in the air conditioner.
  • the indoor unit includes an indoor fan configured to blow air indoors.
  • the temperature sensor is configured to detect the outlet air temperature of the indoor unit.
  • the wind speed sensor is configured to detect the outlet wind speed of the indoor unit.
  • the distance sensor is provided in the indoor unit and configured to detect a user distance between a user and an air outlet of the air conditioner.
  • the controller is configured to: obtain the currently set standard effective temperature range, the user distance, the outlet air temperature and the outlet wind speed; and according to the outlet air temperature, the outlet wind speed and the The user distance calculates the real-time standard effective temperature at the center of the outlet airflow belt corresponding to the user distance; if it is determined that the real-time standard effective temperature is outside the preset standard effective temperature range, the temperature difference and the temperature threshold are determined , the rotation speed of the indoor fan and the operating frequency of the compressor are controlled according to the judgment result.
  • a control method of an air conditioner includes an outdoor unit, an indoor unit, a temperature sensor, a wind speed sensor, a distance sensor and a controller.
  • the outdoor unit includes a compressor configured to compress refrigerant to drive the refrigerant to circulate in the air conditioner.
  • the indoor unit includes an indoor fan configured to blow air indoors.
  • the temperature sensor is configured to detect the outlet air temperature of the indoor unit.
  • the wind speed sensor is configured to detect the outlet wind speed of the indoor unit.
  • the distance sensor is provided in the indoor unit and configured to detect a user distance between a user and an air outlet of the air conditioner.
  • the controller is coupled to the compressor, the indoor fan, the air flow control mechanism, the temperature sensor, the wind speed sensor and the distance sensor respectively.
  • the control method includes: obtaining the currently set standard effective temperature range, the user distance, the outlet air temperature and the outlet wind speed; and based on the outlet temperature, the outlet wind speed and the user distance. Calculate the real-time standard effective temperature at the center of the outlet airflow belt corresponding to the user distance; if it is determined that the real-time standard effective temperature is outside the preset standard effective temperature range, determine the size of the temperature difference and the temperature threshold relationship, and the rotation speed of the indoor fan and the operating frequency of the compressor are controlled according to the judgment result.
  • Figure 1 is a structural diagram of an air conditioner according to some embodiments.
  • Figure 2 is a block diagram of an air conditioner according to some embodiments.
  • Figure 3 is a flow chart of a control method of an air conditioner according to some embodiments.
  • Figure 4 is a flow chart of another control method of an air conditioner according to some embodiments.
  • Figure 5 is a schematic diagram of the air outlet direction of the indoor unit according to some embodiments.
  • Figure 6 is another schematic diagram of the air outlet direction of the indoor unit according to some embodiments.
  • Figure 7 is a flow chart of yet another control method of an air conditioner according to some embodiments.
  • Figure 8 is a graph showing the relationship between the center wind speed and the distance of the outlet airflow zone of the air conditioner according to some embodiments.
  • Figure 9 is a diagram showing the relationship between air temperature and air supply distance of the air conditioner according to some embodiments.
  • Figure 10 is a relationship diagram between wind speed and air supply distance of the air conditioner according to some embodiments.
  • Figure 11 is a flowchart of yet another control method of an air conditioner according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • coupled indicates, for example, that two or more components are in direct physical or electrical contact.
  • coupled or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • FIG. 1 is a structural diagram of an air conditioner according to some embodiments
  • FIG. 2 is a block diagram of an air conditioner according to some embodiments.
  • the air conditioner 10 includes an outdoor unit 20 , an indoor unit 30 , a temperature sensor 50 , a wind speed sensor 60 , a distance sensor 70 and an expansion valve 80 .
  • the outdoor unit 20 of the air conditioner 10 includes a compressor 21, an outdoor heat exchanger 22 and an outdoor fan 23.
  • the indoor unit 30 of the air conditioner 10 includes an indoor heat exchanger 31, an indoor fan 32, an air flow control mechanism 33 and an indoor air outlet 34. At least one of the outdoor unit 20 or the indoor unit 30 is provided with an expansion valve 80 .
  • the compressor 21, condenser (indoor heat exchanger 31 or outdoor heat exchanger 22), expansion valve 80 and evaporator (outdoor heat exchanger 22 or indoor heat exchanger 31) execute the refrigerant cycle of the air conditioner 10.
  • the refrigerant cycle includes a series of processes involving compression, condensation, expansion and evaporation, and supplies refrigerant to the regulated side cycle.
  • the compressor 21 compresses the gas-phase refrigerant in a low-temperature and low-pressure state and discharges the compressed high-temperature and high-pressure gas-phase refrigerant.
  • the high-temperature and high-pressure gas phase refrigerant flows into the condenser.
  • the condenser condenses the high-temperature and high-pressure gas phase refrigerant into a high-pressure liquid phase refrigerant, and the heat is released to the surrounding environment along with the condensation process.
  • the expansion valve 80 expands the liquid-phase refrigerant in a high-pressure state into a gas-liquid two-phase refrigerant in a low-pressure state.
  • the evaporator absorbs heat from the surrounding environment and evaporates the low-pressure gas-liquid two-phase refrigerant to form a low-temperature and low-pressure gas-phase refrigerant.
  • the low-temperature and low-pressure gas phase refrigerant returns to the compressor 21 .
  • the indoor heat exchanger 31 is configured to one of liquefy or vaporize the refrigerant by exchanging heat with indoor air and the refrigerant transported in the indoor heat exchanger 31 .
  • the outdoor heat exchanger 22 is configured to either liquefy or vaporize the refrigerant by exchanging heat with outdoor air and the refrigerant transported in the outdoor heat exchanger 22 .
  • the indoor heat exchanger 31 works as an evaporator when the air conditioner 10 operates in the cooling mode, so that the refrigerant that has been dissipated through the outdoor heat exchanger 22 absorbs heat from the indoor air through the indoor heat exchanger 31 and evaporates.
  • the indoor heat exchanger 31 operates as a condenser in the heating mode of the air conditioner 10 , so that the refrigerant that has absorbed heat through the outdoor heat exchanger 22 radiates heat to the indoor air through the indoor heat exchanger 31 and is condensed.
  • the airflow control mechanism 33 is configured to control the direction of the outlet airflow of the indoor unit 30 . It should be noted that the airflow control mechanism 33 in some embodiments of the present disclosure includes, but is not limited to, at least one of a transverse air guide plate or a longitudinal air guide plate.
  • the temperature sensor 50 includes an outdoor temperature sensor 51 and an indoor temperature sensor 52 .
  • the indoor temperature sensor 52 includes an indoor environment temperature sensor 521, an outlet air temperature sensor 522 and a coil temperature sensor 523.
  • the indoor environment temperature sensor 521 is provided in the indoor unit 30 and is configured to detect the actual indoor air temperature.
  • the outlet air temperature sensor 522 is disposed at the indoor air outlet 34 and is configured to detect the outlet air temperature of the indoor unit 30 .
  • Coil temperature sensor 523 is configured to detect the temperature at the indoor coil.
  • the wind speed sensor 60 is disposed at the indoor air outlet 34 and is configured to detect the outlet wind speed of the indoor unit 30 .
  • the ranging sensor 70 is provided in the indoor unit 30 and is configured to detect the distance between the user's position and the indoor air outlet 34 (ie, the user distance). In some embodiments of the present disclosure, the ranging sensor 70 is also used to detect the angle ⁇ between the user's position and the indoor air outlet 34 . It should be noted that the ranging sensor 70 includes but is not limited to a millimeter wave radar sensor or an infrared sensor.
  • the expansion valve 80 may be an electronic expansion valve and is connected between the outdoor heat exchanger 22 and the indoor heat exchanger 31 .
  • the electronic expansion valve 80 includes an outdoor electronic expansion valve 81 and an indoor electronic expansion valve 82 .
  • the opening of the electronic expansion valve 80 adjusts the pressure of the refrigerant flowing through the outdoor heat exchanger 22 and the indoor heat exchanger 31 to adjust the flow of refrigerant flowing between the outdoor heat exchanger 22 and the indoor heat exchanger 31 .
  • the flow rate and pressure of the refrigerant flowing between the outdoor heat exchanger 22 and the indoor heat exchanger 31 will affect the heat exchange performance of the outdoor heat exchanger 22 and the indoor heat exchanger 31 .
  • the outdoor fan 23 is configured to promote heat exchange between the refrigerant flowing in the heat transfer tube of the outdoor heat exchanger 22 and outdoor air.
  • the indoor fan 32 is configured to promote heat exchange between the refrigerant flowing in the heat transfer tube of the indoor heat exchanger 31 and indoor air to assist temperature regulation.
  • the air conditioner 10 further includes a controller 40, which is coupled to the outdoor unit 20, the indoor unit 30, the temperature sensor 50, the wind speed sensor 60, the distance sensor 70, and the expansion valve 80 to control
  • the controller 40 is configured to control the working status of each component coupled with the controller 40 .
  • the controller 40 can be divided into an indoor controller and an outdoor controller, which are used to control the structural components of the indoor unit 30 and the outdoor unit 20 respectively.
  • the controller 40 may include a central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), and may be configured to operate when the processor executes storage coupled to the controller. 40, the corresponding operations described in the controller 40 are executed.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the air conditioner 10 usually uses wind temperature as a single control target, and adjusts the operating frequency of the compressor 21 to change the cooling capacity and outlet temperature of the air conditioner 10 to meet the indoor air temperature required by the user.
  • the outlet wind speed of the air conditioner 10 has a greater impact on the uniformity of indoor air temperature, and the actual feeling of the human body is the result of the coupling of wind temperature and wind speed, not the feeling caused by a single wind temperature.
  • the air conditioner 10 When the outlet air temperature is constant, the greater the wind speed, the lower the human body's perceived temperature. Therefore, if the wind temperature is only used as the control target and the change in the user's standard effective temperature and the user's distance is not considered, it will be difficult to meet the user's requirements for comfortable temperature.
  • some embodiments of the present disclosure provide a control method for an air conditioner, which is applied to the controller 40 .
  • the control method of the air conditioner 10 in some embodiments of the present disclosure introduces the concept of standard ambient temperature, realizes the control of the operating frequency of the compressor 21 by considering the two influencing factors of wind speed and wind temperature, and detects it in real time through the ranging sensor 70
  • the user distance between the user's position and the indoor air outlet 34 controls the air outlet airflow of the indoor unit 30 to blow to the user's position, making the adjustment of the operating frequency of the air conditioner 10 more accurate and effective.
  • the user sets the measuring point or The temperature at the user's location can reach the temperature required by the user as quickly as possible.
  • FIG 3 is a flow chart of a control method for an air conditioner according to some embodiments. As shown in Figure 3, in some embodiments of the present disclosure, the control method includes steps S1 to S5.
  • Step S1 Obtain the currently set standard effective temperature range and user distance, and detect the outlet air temperature and outlet wind speed.
  • FIG. 5 is a schematic diagram of the air outlet direction of the indoor unit according to some embodiments. As shown in Figure 5, the user's position is the center of the air outlet airflow zone of the indoor unit 30, and the user's position is between the indoor air outlet 34 and the indoor air outlet 34. The distance between is the user distance ⁇ .
  • the standard effective temperature is defined as: a person wearing standard clothing (thermal resistance 0.6clo) is at a relative humidity of 50%, the air is approximately stationary (wind speed is approximately 0.1m/s), and the air In an environment where the temperature is the same as the average radiation temperature and the metabolic rate is 1 met (equivalent to a person sitting still), if the average skin temperature and skin humidity of the human body at this time are the same as an actual environment and actual clothing thermal resistance conditions, then the human body will be in the standard There will be the same amount of heat dissipation in the environment and the actual environment. At this time, the air temperature in the standard environment is the standard effective temperature SET of the actual environment. It is usually necessary that all or most areas in the entire room can reach the comfortable standard effective temperature SET. .
  • MET metabolic equivalent of energy
  • metuo the energy metabolic equivalent
  • the average radiation temperature Tr return air temperature Ta
  • the relative humidity Rh is the humidity detected by the air conditioner 10.
  • the relative humidity Rh is usually between 40% and 70%, and the default is 50%.
  • the thermal resistance of summer clothing is 0.6clo, and the metabolic rate is 1.0M.
  • users can set the current target standard effective temperature SET s according to their own needs, and determine the standard effective temperature range based on the target standard effective temperature SET s .
  • the standard effective temperature range is [SET s - ⁇ T, SET s + ⁇ T].
  • ⁇ T is the temperature constant, and ⁇ T>0.
  • the value of ⁇ T can be set according to actual needs.
  • the value range of ⁇ T is 0.1°C ⁇ ⁇ T ⁇ 5°C.
  • ⁇ T 1°C
  • the user hopes that the target standard effective temperature SET s blown onto himself is close to 25°C he can set the standard effective temperature range to [24.0°C, 26.0°C].
  • the return air temperature Ta is the actual indoor air temperature, which is detected by the indoor ambient temperature sensor 521 .
  • the outlet air temperature T_out can be detected by the outlet air temperature sensor 522 .
  • the outlet air temperature T_out can also be calculated through Formula 1.
  • T_out K1 ⁇ Te Formula 1
  • Te is the indoor coil temperature, measured by the coil temperature sensor 523 installed at the indoor coil
  • K1 is the temperature constant, which is obtained based on multiple tests or experience.
  • the outlet wind speed Va_out can be detected by the wind speed sensor 60 .
  • K2 is the wind speed coefficient
  • R is the rotation speed of the indoor fan 32.
  • Step S2 Calculate the real-time standard effective temperature SET ⁇ according to the return air temperature Ta, outlet air temperature T_out, outlet air speed Va_out and user distance ⁇ .
  • the real-time standard effective temperature SET ⁇ is the standard effective temperature at the center of the outlet airflow zone where the distance between the indoor air outlet 34 and the user's location is the user distance ⁇ .
  • Step S3 Determine whether the real-time standard effective temperature SET ⁇ is outside the standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T]. If yes, step S4 is executed. If not, step S5 is executed.
  • Step S4 Determine the relationship between the temperature difference and the temperature threshold, and adjust the operating frequency F of the compressor 21 and the rotation speed R of the indoor fan 32 based on the result.
  • E 1 is a preset temperature threshold.
  • Step S5 Maintain the operating frequency F of the compressor 21 and the rotation speed R of the indoor fan 32 unchanged.
  • the air conditioner 10 When the air conditioner 10 is running in the cooling mode, as the distance between the user's position and the indoor air outlet 34 increases, the wind temperature increases, the wind speed decreases, and the temperature felt by the human body increases; conversely, as the user As the distance decreases, the wind temperature decreases, the wind speed increases, and the temperature felt by the human body decreases. That is, the temperature felt by the user changes with the change of the user's distance.
  • the controller 40 controls the air flow control mechanism 33 so that the air outlet airflow of the indoor unit 30 can be blown to the user's location in real time to satisfy the user's requirements for the air conditioner. 10 air outlet comfort requirements to better provide users with a comfortable air-conditioning environment.
  • Figure 4 is a flow chart of another control method of an air conditioner according to some embodiments.
  • the ranging sensor 70 is also configured to detect the relationship between the user's location and indoor exit.
  • the control method of the air conditioner 10 further includes steps S100 to S101.
  • Step S100 the ranging sensor 70 measures the user distance ⁇ and the angle ⁇ between the user's position and the indoor air outlet 34 .
  • angle ⁇ between the user's position and the indoor air outlet 34 refers to the air outlet air between the user's position and the length direction of the indoor unit 30 on a horizontal plane with the same height as the indoor air outlet 34 . direction of flow, the angle between.
  • Figure 6 is another schematic diagram of the air outlet direction of the indoor unit according to some embodiments. As shown in Figure 6, taking the outlet airflow direction perpendicular to the length direction of the indoor unit 30 as a reference of 0°, the outlet airflow is clockwise.
  • the angle ⁇ of deflection (direction A in Figure 6) is a negative number, and the angle ⁇ of deflection of the outlet air flow in the counterclockwise direction (direction B in Figure 6) is a positive number.
  • Step S101 according to the user distance ⁇ and the angle ⁇ between the user's position and the indoor air outlet 34, the airflow control mechanism 33 is controlled to move the airflow from the indoor unit 30 to the user's position.
  • the ranging sensor 70 detects and accurately locates the relative positional relationship between the user's position and the indoor air outlet 34 in real time based on the user distance ⁇ and the angle ⁇ between the user's position and the indoor air outlet 34 .
  • the controller 40 obtains the user distance ⁇ and the deflection angle ⁇ , and controls the movement of the airflow control mechanism 33 through the user distance ⁇ and the deflection angle ⁇ , so that the airflow from the indoor unit 30 blows to the user's position to maintain the user's position.
  • the position is located at the center of the air outlet airflow zone of the indoor unit 30, which meets the user's requirements for the directional air outlet of the air conditioner 10, that is, the air blowing function can be realized while controlling the air temperature and wind speed.
  • the controller 40 when the user's position changes, the controller 40 obtains the changed user distance ⁇ and deflection angle ⁇ through the ranging sensor 70 , and after the user is located at the changed position T1 seconds, The controller 40 controls the movement of the airflow control mechanism 33 so that the airflow from the indoor unit 30 blows to the changed user position.
  • T1 is, for example, 30s.
  • FIG. 7 is a flow chart of yet another control method of an air conditioner according to some embodiments. As shown in Figure 7, in some embodiments of the present disclosure, step S2 includes steps S21 to step S23.
  • Step S21 Obtain the currently set rotation speed R of the indoor fan 32, and calculate the current target air supply distance based on the rotation speed R.
  • the target air supply distance of the air conditioner 10 may be the farthest air supply distance ⁇ max , which is related to the currently set rotation speed R of the indoor fan 32 .
  • the greater the rotation speed R of the indoor fan 32 the greater the rotation speed R.
  • Figure 8 is a diagram showing the relationship between the center wind speed and the distance of the outlet airflow zone of the air conditioner according to some embodiments.
  • the corresponding relationship between the rotation speed R of the indoor fan 32, the air supply distance and the wind speed is as shown in Table 1.
  • Table 1 is a correspondence table of the rotation speed, air supply distance and wind speed of the indoor fan of a certain 1.5 HP air conditioner 10.
  • the first row in Table 1 is the distance between the center of the airflow belt and the indoor air outlet 34, that is, the air supply distance, in m; the first column on the right is the target air supply distance, in m; the first column on the left is the target air supply distance, in m;
  • the rotation speed R of the indoor fan 32 can be characterized by the gear position of the indoor fan 32; the value in the table is the wind speed Va in the center zone of the outlet air flow, and the unit is m/s.
  • K3 is a distance constant
  • K4 is an intercept.
  • K3 and K4 are both constants.
  • Step S22 Calculate the target air temperature and target wind speed based on the outlet air temperature Ta_out, return air temperature Ta, outlet air speed Va_out, user distance ⁇ and target air supply distance ⁇ max of the indoor unit 30 .
  • the target wind temperature Ta ⁇ is the wind temperature at the center of the airflow zone at a distance ⁇ from the indoor air outlet 34 to the user
  • the target wind speed Va ⁇ is the distance from the indoor air outlet 34 to the user.
  • the wind speed at the center of the outlet airflow zone at a distance from ⁇ .
  • Figure 9 is a relationship diagram between the air temperature and the air supply distance of the air conditioner according to some embodiments.
  • the target air temperature Ta ⁇ at the center of the outlet airflow belt corresponding to the user distance ⁇ is calculated through Formula 4.
  • Ta ⁇ Ta.
  • Figure 10 is a relationship diagram between the wind speed and the air supply distance of the air conditioner according to some embodiments.
  • the target wind speed Va ⁇ at the center of the outlet airflow belt corresponding to the user distance ⁇ is calculated through Formula 5.
  • Step S23 According to the preset corresponding relationship between wind temperature, wind speed and standard effective temperature, the standard effective temperature SET corresponding to the target wind temperature Ta ⁇ and the target wind speed Va ⁇ is determined as the real-time standard effective temperature SET ⁇ .
  • the corresponding relationship between wind temperature, wind speed and standard effective temperature is preset, for example, as shown in Table 2.
  • the first row in Table 2 is wind speed, in m/s; the first column on the left is wind temperature, in °C; the value in the table is the standard effective temperature SET, in °C.
  • the wind speed may be the outlet wind speed Va_out, the target wind speed Va ⁇ , etc.
  • the wind temperature may be Return air temperature Ta, outlet air temperature Ta_out, target air temperature Ta ⁇ , etc.
  • the standard effective temperature can be real-time standard effective temperature SET ⁇ , target standard effective temperature SET s , etc.
  • the minimum division of the standard effective temperature SET and the return air temperature Ta is determined by the accuracy of the indoor ambient temperature sensor 521 of the air conditioner 10 .
  • the accuracy of the indoor ambient temperature sensor 521 is 0.5°C
  • the minimum division of the standard effective temperature SET and the return air temperature Ta is 0.5°C
  • the accuracy of the indoor ambient temperature sensor 521 is 0.1°C
  • the standard effective temperature SET is 0.1°C.
  • the controller 40 After obtaining the target wind temperature Ta ⁇ and target wind speed Va ⁇ at the user distance ⁇ , the controller 40 obtains the real-time standard effective temperature SET ⁇ at the user distance ⁇ according to Table 2.
  • the first row in Table 3 is wind speed in m/s; the first column on the left is the standard effective temperature SET in °C; the value in the table is wind temperature in °C.
  • the target wind temperature Ta ⁇ is obtained according to Table 3.
  • the air conditioner 10 may accept target parameters calculated by the cloud server through a formula solving calculation program.
  • the controller 40 with an operating system can also directly solve the target parameters through formulas, for example, calculate the target air temperature Ta ⁇ according to Formula 4.
  • the target parameters can also be obtained by looking up Table 2 or Table 3.
  • Table 4 shows the impact of the rotation speed R of the indoor fan 32 and the operating frequency F of the compressor on the target air temperature Ta ⁇ , the target wind speed Va ⁇ , and the real-time standard effective temperature SET ⁇ .
  • the change in the operating frequency F of the compressor 21 has an important impact on the target air temperature Ta ⁇ and the real-time standard effective temperature SET ⁇ (for example, the compressor 21
  • the operating frequency F increases, the target wind temperature Ta ⁇ decreases, and the real-time standard effective temperature SET ⁇ decreases).
  • Table 5 shows the degree of influence of the operating frequency F of the compressor 21 and the outlet air speed Va_out on the cooling capacity and outlet air temperature T_out of the air conditioner 10 .
  • the operating frequency F of the compressor 21 and the outlet wind speed Va_out have a greater impact on the outlet air temperature T_out, and the operating frequency F of the compressor 21 has a greater influence on the outlet air temperature T_out.
  • the influence is greater than that of the outlet wind speed Va_out on the outlet air temperature T_out Influence.
  • some embodiments of the present disclosure set the temperature difference E, combined with the influence of the uniformity of the indoor air temperature, to try to satisfy the indoor air temperature to reach the set target standard effective temperature SET s , and when the uniformity of the indoor air temperature is good, the rotation speed R of the indoor fan 32 and the operating frequency F of the compressor 21 are dynamically adjusted to achieve the user's measuring point or the user's location reaching the preset target standard effective temperature SET s needs.
  • the rotation speed R of the indoor fan 32 is related to the temperature difference E between the target cooling temperature Ts set by the user and the current actual return air temperature Ta.
  • the temperature difference E approaches 0 or is a negative number, the actual return air temperature reaches the cooling target temperature, that is, the indoor air temperature reaches the cooling target temperature.
  • FIG 11 is a flow chart of yet another control method of an air conditioner according to some embodiments. As shown in Figure 11, in some embodiments of the present disclosure, step S4 includes steps S41 to S432.
  • Step S41 Determine whether the real-time standard effective temperature SET ⁇ satisfies SET ⁇ ⁇ SET s - ⁇ T. If yes, step S42 is executed. If not, step S43 is executed.
  • Step S42 Determine whether the temperature difference satisfies E ⁇ E 1 . If yes, step S421 is executed. If not, step S422 is executed.
  • Step S421 maintain the operating frequency F of the compressor 21 unchanged, and reduce the rotation speed R of the indoor fan 32 according to the preset gear adjustment step.
  • the controller 40 controls the rotation speed R of the indoor fan 32 to decrease by ⁇ R, and controls the operating frequency F of the compressor 21 to remain unchanged.
  • the gear adjustment step of the indoor fan 32 is ⁇ R
  • the reduced rotational speed of the indoor fan 32 is, for example, R- ⁇ R.
  • Step S422 reduce the operating frequency F of the compressor 21 according to the preset frequency adjustment step, and reduce the rotation speed R of the indoor fan 32 according to the preset gear adjustment step.
  • the controller 40 controls the rotation speed R of the indoor fan 32 to decrease by ⁇ R, and controls the operating frequency of the compressor 21 to decrease by ⁇ F.
  • the frequency adjustment step size of the compressor 21 is ⁇ F
  • the reduced operating frequency of the compressor 21 is, for example, F- ⁇ F.
  • ⁇ F range is 0.1Hz ⁇ 20Hz.
  • Step S43 Determine whether the temperature difference satisfies E ⁇ E 1 . If yes, step S431 is executed. If not, step S432 is executed.
  • Step S431 increase the operating frequency F of the compressor 21 according to the preset frequency adjustment step, and increase the rotation speed R of the indoor fan 32 according to the preset gear adjustment step.
  • the controller 40 controls the rotation speed R of the indoor fan 32 to increase by ⁇ R, and controls the operating frequency F of the compressor 21 to increase by ⁇ F.
  • the increased rotation speed of the indoor fan 32 is, for example, R+ ⁇ R
  • the increased operating frequency of the compressor 21 is, for example, F+ ⁇ F.
  • Step S432 Keep the operating frequency F of the compressor 21 unchanged, and increase the rotation speed R of the indoor fan 32 according to the preset gear adjustment step.
  • the controller 40 controls the rotation speed of the indoor fan 32 to increase by ⁇ R, and controls the operating frequency F of the compressor 21 to remain unchanged.
  • the controller 40 calculates the real-time standard effective temperature SET ⁇ at any time, and calculates the real-time standard effective temperature SET ⁇ and the standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T], and the relationship between the temperature difference E and the temperature threshold E 1 , after adjusting the operating frequency F of the compressor 21, or keeping the operating frequency F of the compressor 21 unchanged, the control method of the air conditioner 10 also includes Step S6.
  • Step S6 After a delay of T2 seconds, repeat the above steps S1 to S5.
  • the controller 40 After a delay of T2 seconds, the controller 40 reacquires the return air temperature Ta, outlet air temperature Ta_out, outlet air speed Va_out and temperature difference E, calculates the new real-time standard effective temperature SET ⁇ , and controls the operating frequency of the compressor 21 F and the rotation speed R of the indoor fan 32, the real-time standard effective temperature SET ⁇ is controlled within the standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T]. Subsequently, the process is repeated with T2 seconds as a detection period.
  • the value range of T2 is, for example, 10 to 600.
  • the user presets parameters such as the target cooling temperature Ts of the air conditioner 10, the rotation speed R of the indoor fan 32, and the user distance ⁇ .
  • the default initial setting target standard effective temperature SET s is 16°C.
  • the outlet wind speed Va_out defaults to automatic control, and the initial indoor fan gear is the gear preset by the user, such as 1 to 5 gears or automatic gears.
  • the airflow control mechanism 33 is controlled to guide the center of the airflow from the air conditioner to blow toward the user's location.
  • the current rotation speed R of the indoor fan 32 is obtained, and the target air supply distance ⁇ max is calculated through Formula 3.
  • the outlet air flow of the indoor unit 30 corresponding to the user distance ⁇ is calculated.
  • the controller 40 controls the rotation speed R of the indoor fan 32 to decrease by ⁇ R, and controls the operating frequency F of the compressor 21 to remain unchanged; if the temperature If the difference E ⁇ E s , the rotation speed R of the indoor fan 32 is controlled to decrease by ⁇ R, and the operating frequency F of the compressor 21 is controlled to decrease by ⁇ F.
  • the return air temperature Ta, outlet air temperature Ta_out, outlet air speed Va_out and temperature difference E are re-detected, a new real-time standard effective temperature SET ⁇ is calculated, and the operating frequency F of the compressor 21 is controlled.
  • the rotation speed R of the indoor fan 32 controls the real-time standard effective temperature SET ⁇ within the standard effective temperature range [SET s - ⁇ T, SET s + ⁇ T]. Subsequently, the process is repeated with T2 seconds as a detection cycle.
  • the value range of T2 is, for example, 10 to 600 seconds.
  • the user turns on the outlet standard effective temperature SET control function and sets the target standard effective temperature SET s to 16°C.
  • the standard effective temperature range is [15°C, 17°C].
  • the calculated distance to the indoor air outlet 34 is 1.5m.
  • Some embodiments of the present disclosure provide a control method for an air conditioner. Since the temperature actually felt by the human body is a real body feeling combined with temperature, humidity, and wind speed, the standard effective temperature is based on parameters such as temperature, humidity, and wind speed. The real feelings of actual temperature, humidity, and wind speed on the human body. And the air conditioner 10 usually only takes the wind temperature as the control target. If the wind speed is not considered and the wind temperature is controlled in one dimension, the requirement for the operating frequency of the compressor 21 is low, the cooling capacity output of the air conditioner 10 will be reduced, and the cooling capacity of the air conditioner 10 will be prolonged. The time it takes for the indoor air to reach the set target standard effective temperature SET s is shortened, and it may even never reach the target standard effective temperature SET s .
  • some embodiments of the present disclosure introduce the concept of standard ambient temperature SET, and control the operating frequency of the compressor 21 by simultaneously considering the two influencing factors of wind speed and wind temperature, so that the overall indoor air temperature reaches the comfort zone.
  • the cooling capacity output of the air conditioner 10 will not be significantly reduced.
  • the computer program can be stored in a computer-readable storage medium.
  • the program During execution, the process may include the processes of the embodiments of each of the above methods.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

提供一种空调器(10)及其控制方法,空调器(10)包括室外机(20)、室内机(30)、温度传感器(50)、风速传感器(60)、测距传感器(70)和控制器(40)。室外机(20)包括压缩机(21)。室内机(30)包括室内风扇(32)。温度传感器(50)被配置为检测出风温度。风速传感器(60)被配置为检测出风风速。测距传感器(70),被配置为检测用户距离。控制器(40)被配置为:获取当前设定的标准有效温度范围、用户距离、出风温度和出风风速;根据出风温度、出风风速以及用户距离计算与用户距离相对应的出风气流带中心的实时标准有效温度;若确定实时标准有效温度处于预设的标准有效温度范围外,则判断温度差值与温度阈值的大小关系,根据判断结果控制室内风扇(32)的转速以及压缩机(21)的运行频率。

Description

空调器及其控制方法
本申请要求于2022年4月29日提交的、申请号为202210467124.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空气调节设备技术领域,尤其涉及一种空调器及其控制方法。
背景技术
随着人类生活水平的提高,空调器已经进入千家万户、办公场所和公共场所,甚至应用在各种交通工具上,成为现代日常生活的必需品,能防暑降温,提供一个舒适的休息及工作环境。
发明内容
一方面,一种空调器,所述空调器包括室外机、室内机、温度传感器、风速传感器、测距传感器和控制器。所述室外机包括压缩机,所述压缩机被配置为压缩冷媒,以驱动所述冷媒在所述空调器中循环。所述室内机包括室内风扇,所述室内风扇被配置为向室内送风。所述温度传感器被配置为检测所述室内机的出风温度。所述风速传感器被配置为检测所述室内机的出风风速。所述测距传感器设置于所述室内机内,被配置为检测用户与所述空调器的出风口之间的用户距离。所述控制器被配置为:获取当前设定的标准有效温度范围、所述用户距离、所述出风温度和所述出风风速;根据所述出风温度、所述出风风速以及所述用户距离计算与所述用户距离相对应的出风气流带中心的实时标准有效温度;若确定所述实时标准有效温度处于预设的所述标准有效温度范围外,则判断温度差值与温度阈值的大小关系,根据判断结果控制所述室内风扇的转速以及所述压缩机的运行频率。
另一方面,提供一种空调器的控制方法,其中,所述空调器包括室外机、室内机、温度传感器、风速传感器、测距传感器和控制器。所述室外机包括压缩机,所述压缩机被配置为压缩冷媒,以驱动所述冷媒在所述空调器中循环。所述室内机包括室内风扇,所述室内风扇被配置为向室内送风。所述温度传感器被配置为检测所述室内机的出风温度。所述风速传感器被配置为检测所述室内机的出风风速。所述测距传感器设置于所述室内机内,被配置为检测用户与所述空调器的出风口之间的用户距离。所述控制器分别与所述压缩机、所述室内风扇、所述气流控制机构、所述温度传感器、所述风速传感器和所述测距传感器耦接。所述控制方法包括:获取当前设定的标准有效温度范围、所述用户距离、所述出风温度和所述出风风速;根据所述出风温度、所述出风风速以及所述用户距离计算与所述用户距离相对应的出风气流带中心的实时标准有效温度;若确定所述实时标准有效温度处于预设的所述标准有效温度范围外,则判断温度差值与温度阈值的大小关系,根据判断结果控制所述室内风扇的转速以及所述压缩机的运行频率。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1是根据一些实施例的一种空调器的结构图;
图2是根据一些实施例的一种空调器的框图;
图3是根据一些实施例的一种空调器的控制方法的流程图;
图4是根据一些实施例的另一种空调器的控制方法的流程图;
图5是根据一些实施例的室内机出风方向的一种示意图;
图6是根据一些实施例室内机出风方向的另一种示意图;
图7是根据一些实施例的又一种空调器的控制方法的流程图;
图8是根据一些实施例的空调器的出风气流带中心风速与距离的关系图;
图9是根据一些实施例的空调器的风温与送风距离的关系图;
图10是根据一些实施例的空调器的风速和送风距离的关系图;
图11是根据一些实施例的又一种空调器的控制方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”例如表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
图1是根据一些实施例的一种空调器的结构图,图2是根据一些实施例的一种空调器框图。如图1和图2所示,本公开一些实施例提供一种空调器10,空调器10包括室外机20、室内机30、温度传感器50、风速传感器60、测距传感器70和膨胀阀80。空调器10的室外机20包括压缩机21、室外换热器22和室外风扇23,空调器10的室内机30包括室内换热器31、室内风扇32、气流控制机构33和室内出风口34。室外机20或室内机30中的至少一个设置有膨胀阀80。压缩机21、冷凝器(室内换热器31或室外换热器22)、膨胀阀80和蒸发器(室外换热器22或室内换热器31)来执行空调器10的冷媒循环。冷媒循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,并向被调节侧循环供应冷媒。
压缩机21压缩处于低温低压状态的气相冷媒并排出压缩后的高温高压的气相冷媒,高温高压的气相冷媒流入冷凝器。冷凝器将高温高压的气相冷媒冷凝成高压状态的液相冷媒,热量随着冷凝过程释放到周围环境。膨胀阀80将高压状态的液相冷媒膨胀为低压状态的气液两相态冷媒。蒸发器从周围环境中吸取热量并将低压状态的气液两相态冷媒蒸发形成低温低压的气相冷媒,低温低压状态的气相冷媒返回到压缩机21中。
室内换热器31被配置为通过将室内空气与在室内换热器31中传输的冷媒进行热交换对冷媒进行液化或汽化中的一种。室外换热器22被配置为通过将室外空气与在室外换热器22中传输的冷媒进行热交换对冷媒进行液化或汽化中的另一种。例如,室内换热器31在空调器10运行在制冷模式时作为蒸发器进行工作,使得经由室外换热器22散热后的冷媒通过室内换热器31吸收室内空气的热量而蒸发。室内换热器31在空调器10的制热模式下作为冷凝器进行工作,使得经由室外换热器22吸热后的冷媒通过室内换热器31将热量散发至室内空气而冷凝。
气流控制机构33被配置为控制室内机30的出风气流的方向。需要说明的是,本公开一些实施例中的气流控制机构33包括但不限于横向导风板或纵向导风板中的至少一个。
温度传感器50包括室外温度传感器51和室内温度传感器52。室内温度传感器52包括室内环境温度传感器521、出风温度传感器522和盘管温度传感器523。室内环境温度传感器521设置在室内机30内,被配置为检测实际的室内空气温度。出风温度传感器522设置在室内出风口34处,被配置为检测室内机30的出风温度。盘管温度传感器523被配置为检测室内盘管处的温度。
风速传感器60设置在室内出风口34处,被配置为检测室内机30的出风风速。
测距传感器70设置在室内机30内,被配置为检测用户所处位置与室内出风口34之间的距离(即用户距离)。在本公开一些实施例中,测距传感器70还用于检测用户所处位置与室内出风口34之间的角度θ。需要说明的是,测距传感器70包括但不限于毫米波雷达传感器或红外传感器。
膨胀阀80可以是电子膨胀阀,连接于室外换热器22与室内换热器31之间。电子膨胀阀80包括室外电子膨胀阀81和室内电子膨胀阀82。由电子膨胀阀80的开度大小调节流经室外换热器22和室内换热器31的冷媒压力,以调节流通于室外换热器22和室内换热器31之间的冷媒流量。流通于室外换热器22和室内换热器31之间的冷媒的流量和压力将影响室外换热器22和室内换热器31的换热性能。
室外风扇23被配置为促进在室外换热器22的传热管中流动的冷媒与室外空气的热交换。室内风扇32被配置为促进室内换热器31的传热管中流动的冷媒与室内空气的热交换,以辅助温度调节。
在本公开一些实施例中,空调器10还包括控制器40,控制器40与室外机20、室内机30、温度传感器50、风速传感器60、测距传感器70、以及膨胀阀80耦接,控制器40被配置为控制与该控制器40耦接的各部件的工作状态。控制器40可以划分为室内控制器和室外控制器,分别用于对室内机30和室外机20的结构部件进行控制。
控制器40可以包括中央处理器(central processing unit,CPU)、微处理器(microprocessor)、专用集成电路(application specific integrated circuit,ASIC),并且可以被配置为当处理器执行存储在耦合到控制器40的非暂时性计算机可读介质中的程序时,执行控制器40中描述的相应操作。
相关技术中,空调器10通常以风温作为单一的控制目标,通过对压缩机21的运行频率进行调整,来改变空调器10的制冷能力和出风温度,满足用户所需的室内空气温度。然而,空调器10的出风风速大小对室内空气温度的均匀性的影响更大,且人体的实际感受为风温和风速耦合后的结果,并不是单一风温产生的感受,例如,空调器10的出风温度一定时,风速越大,人体的体感温度越低。因此,若仅以风温作为控制目标,且不考虑用户体感的标准有效温度与用户距离的变化,难以满足用户对体感舒适温度的要求。
为了解决上述技术问题,本公开一些实施例提供一种空调器的控制方法,应用到控制器40上。本公开一些实施例的空调器10的控制方法,引入了标准环境温度的概念,通过考虑风速和风温两个影响因素来实现对压缩机21的运行频率的控制,并通过测距传感器70实时检测用户所处位置与室内出风口34之间的用户距离,控制室内机30的出风气流吹向用户所处位置,使得对空调器10的运行频率的调整更加精准有效,用户设定测点或用户所在位置的温度能够尽快达到用户所需的温度。
图3为根据一些实施例的一种空调器的控制方法的流程图,如图3所示,在本公开一些实施例中,该控制方法包括步骤S1至步骤S5。
步骤S1,获取当前设定的标准有效温度范围和用户距离,并检测出风温度和出风风速。
用户距离ρ由测距传感器70检测得到。图5是根据一些实施例的室内机出风方向的一种示意图,如图5所示,用户所处位置为室内机30的出风气流带中心位置,用户所处位置与室内出风口34之间的距离为用户距离ρ。
需要说明的是,标准有效温度(standard effective temperature,SET)的定义为:身着标准服装(热阻0.6clo)的人处于相对湿度50%、空气近似静止(风速近似0.1m/s)、空气温度与平均辐射温度相同、代谢率为1met(相当于人处于静止坐姿)的环境中,若此时人体的平均皮肤温度和皮肤湿度与一个实际环境和实际服装热阻条件相同,则人体在标准环境和实际环境中会有相同的散热量,此时标准环境的空气温度就是实际所处环境的标准有效温度SET,通常需要整个房间内所有区域或大部分区域都能达到舒适的标准有效温度SET。
上述单位clo为克洛,是航空医学测量绝热的单位。MET(metabolic equivalent of energy)指能量代谢当量,音译为梅脱,是以安静、坐位时的能量消耗为基础,表达各种活动时相对能量代谢水平的常用指标。
标准有效温度SET由4个环境因子(回风温度Ta、相对湿度Rh、风速Va、平均辐射温度Tr)和2个人体因子(人体代谢率M、服装热阻clo)参与计算,即存在关于SET=f(Ta,Va,Rh,Tr,M,clo)的函数或计算程序。假设平均辐射温度Tr=回风温度Ta,相对湿度Rh为空调器10检测的湿度,空调器10运行在制冷模式时,室内空气经过蒸发器后,湿度已经下降,此时空调器10吹出的空气的相对湿度Rh通常在40%~70%之间,默认为50%。夏季服装热阻0.6clo,代谢率为1.0M。如此,可以将SET=f(Ta,Va,Rh,Tr,M,clo)计算程序,简化为通过回风温度Ta和风速Va,求解标准有效温度SET,即SET=f(Ta,Va)的函数。相应的,也可以得到Ta=f(SET,Va)和Va=f(Ta,SET)的函数。
在本公开一些实施例中,用户可以根据自身的需求,设定当前的目标标准有效温度SETs,并根据目标标准有效温度SETs来确定标准有效温度范围。标准有效温度范围为[SETs-ΔT,SETs+ΔT]。其中,ΔT为温度常数,且ΔT>0。ΔT的值可以根据实际需求进行设定。
在本公开一些实施例中,ΔT的取值范围为0.1℃≤ΔT≤5℃。例如,ΔT=1℃时,用户希望吹到自己身上的目标标准有效温度SETs趋近于25℃,则可以设置标准有效温度范围为[24.0℃,26.0℃]。
回风温度Ta为实际的室内空气温度,由室内环境温度传感器521检测得到。
出风温度T_out可以通过出风温度传感器522检测得到。当然,出风温度T_out还可以通过公式1计算得到。
T_out=K1×Te       公式1
其中,Te为室内盘管温度,通过设置在室内盘管处的盘管温度传感器523测得,K1为温度常数,根据多次测试或经验得到。
出风风速Va_out可以通过风速传感器60检测得到。当然,出风风速Va_out还可以通过公式2计算得到。
Va_out=K2×R       公式2
其中,K2为风速系数,R为室内风扇32的转速。
步骤S2,根据回风温度Ta、出风温度T_out、出风风速Va_out和用户距离ρ,计算实时标准有效温度SETρ
实时标准有效温度SETρ为室内出风口34与用户所处位置之间的距离为用户距离ρ的出风气流带中心的标准有效温度。
步骤S3,判断实时标准有效温度SETρ是否处于标准有效温度范围[SETs-ΔT,SETs+ΔT]外,若是,则执行步骤S4,若否,则执行步骤S5。
步骤S4,确定温度差值与温度阈值的大小关系,并根据结果调整压缩机21的运行频率F和室内风扇32的转速R。
在本公开一些实施例中,E1为预设的温度阈值。
步骤S5,维持压缩机21的运行频率F和室内风扇32的转速R不变。
当空调器10运行在制冷模式时,随着用户所处位置与室内出风口34之间的用户距离的增加,风温上升,风速下降,人体感受到的温度随之上升;反之,随着用户距离的减小,风温下降,风速上升,人体感受到的温度随之下降,即用户体感的温度随用户距离的变化而变化。
为了解决上述问题,在本公开一些实施例的控制方法中,控制器40通过控制气流控制机构33,使室内机30的出风气流可以实时的吹向用户所处位置,以满足用户对空调器10的出风舒适性的要求,更好地为用户提供舒适的空调环境。
图4是根据一些实施例的另一种空调器的控制方法的流程图,如图4所示,在本公开一些实施例中,测距传感器70还被配置为检测用户所处位置与室内出风口34之间的角度θ,此时,空调器10的控制方法还包括步骤S100至步骤S101。
步骤S100,由测距传感器70测出用户距离ρ以及用户所处位置与室内出风口34之间的角度θ。
需要说明的是,用户所处位置与室内出风口34之间的角度θ,是指用户所处位置与在与室内出风口34等高的水平面上,垂直于室内机30的长度方向的出风气流方向,之间的夹角。
图6是根据一些实施例的室内机出风方向的另一种示意图,如图6所示,以垂直于室内机30的长度方向的出风气流方向为0°基准,出风气流向顺时针方向(图6中A方向)偏转的角度θ为负数,出风气流向逆时针方向(图6中B方向)偏转的角度θ为正数。
步骤S101,根据用户距离ρ和用户所处位置与室内出风口34之间的角度θ,控制气流控制机构33运动,使室内机30的出风气流吹向用户所处位置。
测距传感器70通过用户距离ρ和用户所处位置与室内出风口34之间的角度θ,实时检测并精确定位用户所处位置与室内出风口34的相对位置关系。控制器40获取用户距离ρ和偏转的角度θ,并通过用户距离ρ和偏转的角度θ,控制气流控制机构33运动,使室内机30的出风气流吹向用户所处位置,以保持用户所处位置位于室内机30的出风气流带中心,满足用户对空调器10的定向出风的要求,即在控制风温和风速的同时实现风吹人功能。
在本公开一些实施例中,当用户所处位置发生改变时,控制器40通过测距传感器70获取改变后的用户距离ρ和偏转的角度θ,且在用户位于改变后的位置T1秒后,控制器40控制气流控制机构33运动,使室内机30的出风气流吹向改变后的用户所处位置。T1例如为30s。
图7是根据一些实施例的又一种空调器的控制方法的流程图,如图7所示,在本公开一些实施例中,步骤S2包括步骤S21至步骤S23。
步骤S21,获取当前设定的室内风扇32的转速R,并根据该转速R,计算当前的目标送风距离。
在本公开一些实施例中,空调器10的目标送风距离可以为最远送风距离ρmax,与当前设定的室内风扇32的转速R有关,通常,室内风扇32的转速R越大,目标送风距离ρmax越大。
图8是根据一些实施例的空调器的出风气流带中心风速与距离的关系图,其中,室内风扇32的转速R、送风距离和风速的对应关系如表1所示。
表1室内风扇的转速、送风距离和风速的对应关系
表1为某1.5匹空调器10的室内风扇的转速、送风距离和风速的对应关系表。表1中首行为出风气流带中心与室内出风口34之间的距离,即送风距离,单位为m;右侧第一列为目标送风距离,单位为m;左侧第一列为室内风扇32的转速R,可以用室内风扇32的档位表征;表中的值为出风气流中心带的风速Va,单位为m/s。根据表1,将室内风扇32的转速R与目标送风距离ρmax线性拟合为一次函数,例如为公式3,并根据室内风扇32的转速R,通过公式3,计算得到当前的目标送风距离ρmax
ρmax=K3*R+K4       公式3
其中,K3为距离常数,K4为截距,在本公开一些实施例中,K3和K4都为常数。
步骤S22,根据室内机30的出风温度Ta_out、回风温度Ta、出风风速Va_out、用户距离ρ和目标送风距离ρmax,计算目标风温和目标风速。需要说明的是,目标风温Taρ为与室内出风口34之间的距离为用户距离ρ的出风气流带中心的风温,目标风速Vaρ为与室内出风口34之间的距离为用户距离ρ的出风气流带中心的风速。
图9是根据一些实施例的空调器的风温与送风距离的关系图,如图9所示,将出风气流带中心的目标风温Taρ与用户距离ρ线性拟合为一次函数,例如,当ρ=0时,Ta0=Ta_out;当ρ=ρmax时,Taρmax=Ta。
根据不同的用户距离ρ,结合回风温度Ta、出风温度Ta_out和目标送风距离ρmax,通过公式4计算出与用户距离ρ相对应的出风气流带中心的目标风温Taρ
例如,如图9所示,当ρ=1.5m时,
再例如,当ρ>ρmax时,Taρ=Ta。
图10是根据一些实施例的空调器的风速和送风距离的关系图,如图10所示,将出风气流带中心的风速Va与用户距离ρ线性拟合为一次函数,例如,当ρ=0时,Va0=Va_out;当ρ=ρmax时,Vaρmax=0。
根据不同的用户距离ρ,结合出风风速Va_out和目标送风距离ρmax,通过公式5计算出与用户距离ρ相对应的出风气流带中心的目标风速Vaρ
例如,如图10所示,当ρ=1.5m时,
再例如,当ρ>ρmax,Vaρ=0。
步骤S23,根据预设的风温、风速和标准有效温度的对应关系,确定目标风温Taρ和目标风速Vaρ对应的标准有效温度SET,作为实时标准有效温度SETρ
在本公开一些实施例中,预先设定风温、风速和标准有效温度的对应关系,例如,如表2所示。
表2风温、风速和标准有效温度的对应关系

需要说明的是,表2为通过SET=f(Ta,Va)的函数解耦出的风温-风速-标准有效温度关系表。表2中首行为风速,单位为m/s;左侧第一列为风温,单位为℃;表中的值为标准有效温度SET,单位为℃。
在本公开一些实施例中,风速可以为出风风速Va_out、目标风速Vaρ等;风温可以为 回风温度Ta、出风温度Ta_out、目标风温Taρ等;标准有效温度可以为实时标准有效温度SETρ、目标标准有效温度SETs等。
标准有效温度SET和回风温度Ta的最小分度由空调器10的室内环境温度传感器521的精度确定。例如,当室内环境温度传感器521的精度为0.5℃时,标准有效温度SET、回风温度Ta的最小分度为0.5℃;当室内环境温度传感器521的精度为0.1℃时,标准有效温度SET、回风温度Ta的最小分度为0.1℃。
控制器40在得到用户距离ρ处的目标风温Taρ和目标风速Vaρ之后,根据表2得到用户距离ρ处的实时标准有效温度SETρ
表3标准有效温度、风速和风温的对应关系
需要说明的是,表3为通过Ta=f(SET,Va)的函数解耦出的标准有效温度-风速-风温关系表。表3中首行为风速,单位为m/s;左侧第一列为标准有效温度SET,单位为℃;表中的值为风温,单位为℃。
在得到当前设定的目标标准有效温度SETs和当前设定的目标风速Vaρ之后,根据表3得到目标风温Taρ。例如,当用户设定目标标准有效温度SETs为25℃,目标风速Vaρ为 0.3m/s时,根据表3可得目标风温Taρ=25.5℃。
在本公开一些实施例中,空调器10可以接受云服务器通过公式求解计算程序计算出的目标参数。带操作系统的控制器40还可以采用直接通过公式求解出目标参数,例如根据公式4计算得到目标风温Taρ。对于芯片的计算能力不能达到通过公式精准计算的控制器40,还可以通过查表2或表3获取目标参数。
在本公开一些实施例中,表4为室内风扇32的转速R和压缩机的运行频率F对目标风温Taρ、目标风速Vaρ、以及实时标准有效温度SETρ的影响。
表4室内风扇的转速和压缩机的运行频率对目标风温、目标风速以及实时标准有效温度的影响
由表4可知,室内风扇32的转速R的变化对目标风温Taρ的影响可以忽略不计,然而,室内风扇32的转速R的变化对目标风速Vaρ和实时标准有效温度SETρ有重要影响(例如,室内风扇32的转速R上升,则目标风速Vaρ上升,实时标准有效温度SETρ下降)。压缩机21的运行频率F的变化对目标风速Vaρ无影响,然而,压缩机21的运行频率F的变化对目标风温Taρ和实时标准有效温度SETρ有重要影响(例如,压缩机21的运行频率F上升,则目标风温Taρ下降,实时标准有效温度SETρ下降)。
根据表3和表4可知,当空调器10运行在制冷模式时,在标准有效温度SET一定的情况下,存在多组风温和风速的组合。例如,设定的目标标准有效温度SETs=16℃时,存在(17℃,0.3m/s)、(17.5℃,0.6m/s)、(18.5℃,0.8m/s)、(19℃,1.0m/s)、(19.5℃,1.4m/s)、(20℃,2.0m/s)、(20.5℃,3.0m/s)等多组出风风温T_out和出风风速Va_out组合,使得人体感受到的实时标准有效温度SETρ为16℃。根据上述组合可知,当人体感受到的实时标准有效温度SETρ一定时,空调器10的出风温度T_out越高,室内实际温度与空调器10的出风温度T_out的温度差值越小,压缩机21的功耗越小。然而,空调器10的出风温度T_out越高,出风风速Va_out越高,导致室内风扇32的转速R增加,室内风扇32的功耗增加。由于压缩机21的功耗大于室内风扇32的功耗,压缩机21的功耗的减小值大于室内风扇32的功耗增加值,此时空调器10实际所需输出的冷量减少,即更加节能。
表5为压缩机21的运行频率F和出风风速Va_out对空调器10的制冷能力和出风温度T_out的影响程度。
表5压缩机的运行频率和风速对空调器的制冷能力和出风温度的影响程度
需要说明的是,表5中★的数量表示影响的程度,★的数量越多表示影响的程度越大。
由表5可知,压缩机21的运行频率F的变化对空调器10的制冷能力和出风温度T_out的影响,较出风风速Va_out的变化对空调器10的制冷能力和出风温度T_out的影响要更为明显,而出风风速Va_out对室内空气温度均匀性的影响更为明显。因此,压缩机21的运行频率F对室内空气温度能否达到设定的温度有重要影响;出风风速Va_out的大小对室内空气温度的均匀性有重要影响(出风风速越大,室内空气循环越快,室内空气温度的均匀性越好);压缩机21的运行频率F和出风风速Va_out对出风温度T_out都有较大影响,且压缩机21的运行频率F对出风温度T_out的影响大于出风风速Va_out对出风温度T_out的 影响。
当空调器10运行在制冷运行模式时,本公开一些实施例通过设定温度差值E,结合室内空气温度的均匀性等影响,在尽量满足室内空气温度达到设定的目标标准有效温度SETs,且室内空气温度的均匀性好的情况下,动态调整室内风扇32的转速R以及压缩机21的运行频率F,以实现用户测点或者用户所处位置达到预设的目标标准有效温度SETs的需求。
室内风扇32的转速R与用户设定的目标制冷温度Ts和当前的实际回风温度Ta之间的温度差值E有关。例如,目标制冷温度Ts由用户根据需求设定,温度差值E=Ta-Ts。温度差值E越大,室内风扇32的转速R越大。温度差值E趋近于0或为负数时,则实际回风温度达到制冷目标温度,即室内空气温度达到制冷目标温度。
图11为根据一些实施例的又一种空调器的控制方法的流程图,如图11所示,在本公开一些实施例中,步骤S4包括步骤S41至S432。
步骤S41,判断实时标准有效温度SETρ是否满足SETρ<SETs-ΔT,若是,则执行步骤S42,若否,则执行步骤S43。
步骤S42,判断温度差值是否满足E≥E1,若是,则执行步骤S421,若否,则执行步骤S422。
步骤S421,维持压缩机21的运行频率F不变,并按照预设的档位调整步长减小室内风扇32的转速R。
控制器40控制室内风扇32的转速R降低ΔR,并控制压缩机21的运行频率F不变。在本公开一些实施例中,室内风扇32的档位调整步长为ΔR,减小后的室内风扇32的转速例如为R-ΔR。
步骤S422,按照预设的频率调整步长减小压缩机21的运行频率F,并按照预设的档位调整步长减小室内风扇32的转速R。
此时,温度差值E满足E<E1,控制器40控制室内风扇32的转速R降低ΔR,并控制压缩机21的运行频率降低ΔF。在本公开一些实施例中,压缩机21的频率调整步长为ΔF,减小后的压缩机21的运行频率例如为F-ΔF。ΔF范围为0.1Hz~20Hz。
步骤S43,判断温度差值是否满足E≥E1,若是,则执行步骤S431,若否,则执行步骤S432。
步骤S431,按照预设的频率调整步长增加压缩机21的运行频率F,并按照预设的档位调整步长增加室内风扇32的转速R。
控制器40控制室内风扇32的转速R增加ΔR,并控制压缩机21的运行频率F增加ΔF。在本公开一些实施例中,增加后的室内风扇32的转速例如为R+ΔR,增加后的压缩机21的运行频率例如为F+ΔF。
步骤S432,维持压缩机21的运行频率F不变,并按照预设的档位调整步长增加室内风扇32的转速R。
此时,温度差值E满足E<E1,控制器40控制室内风扇32的转速增加ΔR,并控制压缩机21的运行频率F不变。
在本公开一些实施例中,如图11所示,控制器40在任一时刻计算得出实时标准有效温度SETρ,并根据实时标准有效温度SETρ与标准有效温度范围[SETs-ΔT,SETs+ΔT]的关系,以及温度差值E与温度阈值E1的关系,调整压缩机21的运行频率F,或保持压缩机21的运行频率F不变后,空调器10的控制方法还包括步骤S6。
步骤S6,延时T2秒以后,重复上述步骤S1至步骤S5。
延时T2秒以后,控制器40重新获取回风温度Ta、出风温度Ta_out、出风风速Va_out和温度差值E,计算得到新的实时标准有效温度SETρ,并控制压缩机21的运行频率F以及室内风扇32的转速R,将实时标准有效温度SETρ控制在标准有效温度范围[SETs-ΔT, SETs+ΔT]内。后续以T2秒为一个检测周期,重复该过程。
T2的取值范围例如为10~600。
在本公开一些实施例中,如图11所示,空调器10运行在制冷模式时,用户预先设定空调器10的目标制冷温度Ts、室内风扇32的转速R、用户距离ρ等参数。用户开启出风标准有效温度SET功能后,当用户未自行设置目标标准有效温度SETs时,默认初始设定目标标准有效温度SETs为16℃。出风风速Va_out默认为自动控制,初始室内风扇档位为用户预先设置的档位,如1~5档或自动档。
控制器40通过温度传感器60和风速传感器70检测得到或者通过公式1和公式2间接获取出风温度T_out、出风风速Va_out,并检测得到回风温度Ta、用户距离ρ及用户与室内出风口34之间的角度θ,计算得到温度差值E(E=Ta-Ts)。同时控制气流控制机构33,引导空调出风的气流中心吹向用户所处位置。获取当前室内风扇32的转速R,通过公式3计算得到目标送风距离ρmax。将回风温度Ta、出风温度T_out、出风风速Va_out、目标送风距离ρmax和用户距离ρ分别代入公式4和公式5,计算得到与用户距离ρ相对应的室内机30的出风气流带中心的目标风温Taρ和目标风速Vaρ,根据表2获取或通过SET=f(Ta,Va)的函数计算得到与用户距离ρ相对应的室内机30的出风气流带中心的实时标准有效温度SETρ,并将实时标准有效温度SETρ与标准有效温度范围[SETs-ΔT,SETs+ΔT]进行比较。
当SETρ>SETs+ΔT时,若温度差值E≥Es,则控制室内风扇32的转速R增加△R,同时控制压缩机21的运行频率F增加△F;若温度差值E<Es,则控制室内风扇32的转速R增加△R,并控制压缩机21的运行频率F保持不变。
当SETρ<SETs-ΔT时,若温度差值E≥Es,则控制器40控制室内风扇32的转速R减小△R,并控制压缩机21的运行频率F保持不变;若温度差值E<Es,则控制室内风扇32的转速R减小△R,同时控制压缩机21的运行频率F减小△F。
当SETs-ΔT≤SETρ≤SETs+ΔT时,控制室内风扇32的转速R和压缩机21的运行频率F保持不变。
在延时T2秒以后,重新检测回风温度Ta、出风温度Ta_out、出风风速Va_out和温度差值E,计算得到新的实时标准有效温度SETρ,并控制压缩机21的运行频率F以及室内风扇32的转速R,将实时标准有效温度SETρ控制在标准有效温度范围[SETs-ΔT,SETs+ΔT]内,后续以T2秒为一个检测周期,重复该过程。T2的取值范围例如为10~600秒。
例如:某1.5匹机型参数设置为:ΔT=1℃,E1=1.5℃,T2=60s,ΔF=5Hz,ΔR=100rpm,K3=0.0033,K4=1.3。
空调器10运行在制冷模式时,用户开启出风标准有效温度SET控制功能,设定目标标准有效温度SETs为16℃,此时标准有效温度范围[15℃,17℃]。设定目标制冷温度Ts为26℃,用户距离ρ为1.5m,用户所处位置与室内出风口34之间的θ为-10°,检测得到出风温度T_out=12℃、出风风速Va_out=3m/s、回风温度Ta=27℃,此时温度差值E=Ta-Ts=27-26=1℃,室内风扇32的档位4档,室内风扇32的转速R为1050rpm,控制气流控制机构33向与室内出风口34之间的夹角为-10°的方向送风。通过公式3计算出ρmax=K3×R+K4=0.0033×1050+1.3≈4.8m。将Ta=27℃、Ta_out=12℃、Va_out=3m/s、ρmax=4.8m、ρ=1.5m分别代入公式4和公式5,计算得到与室内出风口34之间的距离为1.5m的气流带中心的目标风温Ta1.5=1.5(Ta-Ta_out)/ρmax+Ta_out=1.5×(27-12)/4.8+12≈16.8℃(取0.2的整数倍)、Va1.5=-1.5Va_out/ρmax+Va_out=-1.5×3/4.8+3≈2.0m/s。根据表2获取或通过SET=f(Ta,Va)的函数计算出此时室内机30的出风气流带中心的实时标准有效温度SET1.5≈10℃<15℃,此时E=27-26=1℃<1.5℃,E<E1。控制器40控制室内风扇32的转速R减小100rpm,压缩机21的运行频率减小5Hz。
延时一个周期T2秒后,重新检测得到出风温度T_out=15℃、出风风速Va_out=2.7m/s、回风温度Ta=26.5℃、温度差值E=26.5-26=0.5℃,转速R为950rpm。根据公式3计算得到 ρmax=K3*R+K4=0.0033*950+1.3≈4.4m。将Ta=26.5℃、Ta_out=15℃、Va_out=2.7m/s和ρmax=4.4m分别代入公式4和公式5,分别计算得到与室内出风口34之间的距离为1.5m的气流带中心的目标风温Ta1.5=1.5(Ta-T_out)/ρmax+T_out=1.5(26.5-15)/4.8+15≈19℃(取0.2的整数倍)、目标风速Va1.5=-1.5Va_out/ρmax+Va_out=-1.5*2.7/4.4+2.7≈1.8m/s。根据表2获取或通过SET=f(Ta,Va)的函数计算得到此时的实时标准有效温度SET1.5≈13.2℃<15℃,此时E=26.5-26=0.5℃,E<E1。控制器40控制转速R下降100rpm,压缩机21的运行频率F减小5Hz(△F=5Hz)。
预设周期后,检测得到风温度T_out=18℃、出风风速Va_out=2.0m/s、回风温度Ta=26℃、温度差值E=26-26=0℃,转速R为750rpm。根据公式3计算得到ρmax=K3*R+K4=0.0033*750+1.3≈3.8m。将Ta=26℃、T_out=18℃、Va_out=2.2m/s、ρmax=3.8m分别代入公式4和公式5,计算得到与室内出风口34之间的距离为1.5m的气流带中心的目标风温Ta1.51.5(Ta-T_out)/ρmax+T_out=1.5(26-18)/3.7+18≈21.2℃、目标风速Va1.5=-1.5Va_out/ρmax+Va_out=-1.5*2.2/3.8+2.2≈1.4m/s。根据表2获取或通过SET=f(Ta,Va)的函数计算得到此时的实时标准有效温度SET1.5≈16.5℃∈[15,17],达到了用户设定的目标标准有效温度SETs=16℃的需求,此时控制器40控制室内风扇32的转速R和压缩机21的运行频率F保持不变。
本公开一些实施例提供了一种空调器的控制方法,由于人体实际感受到的温度为温度、湿度、风速综合的真实体感感受,而标准有效温度以温度、湿度、风速等参数为基础,反映实际温度、湿度、风速在人体身上的真实感受。且空调器10通常单一地以风温作为控制目标,如果不考虑风速,单维度的控制风温,对压缩机21的运行频率的要求较低,则降低空调器10的制冷量的输出,延长了室内空气达到设定的目标标准有效温度SETs的时间,甚至始终达不到目标标准有效温度SETs。因此,本公开一些实施例引入了标准环境温度SET的概念,通过同时考虑风速和风温两个影响因素来实现对压缩机21的运行频率的控制,使得在整体室内空气温度达到舒适区间的基础上还不会大幅降低空调器10的制冷量的输出。
本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成的,该计算机程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存储器(Random Access Memory,RAM)等。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (15)

  1. 一种空调器,包括:
    室外机,包括压缩机,被配置为压缩冷媒,以驱动所述冷媒在所述空调器中循环;
    室内机,包括室内风扇,被配置为向室内送风;温度传感器,被配置为检测所述室内机的出风温度;
    风速传感器,被配置为检测所述室内机的出风风速;
    测距传感器,设置于所述室内机内,被配置为检测用户与所述空调器的出风口之间的用户距离;
    控制器,被配置为:
    获取当前设定的标准有效温度范围、所述用户距离、所述出风温度和所述出风风速;
    根据所述出风温度、所述出风风速以及所述用户距离计算与所述用户距离相对应的出风气流带中心的实时标准有效温度;
    若确定所述实时标准有效温度处于预设的所述标准有效温度范围外,则判断温度差值E与温度阈值E1的大小关系,根据判断结果控制所述室内风扇的转速以及所述压缩机的运行频率。
  2. 根据权利要求1所述的空调器,其中,所述测距传感器还被配置为检测用户所处位置与所述空调器的出风口之间的角度;
    所述室内机还包括气流控制机构,被配置为控制所述出风口的出风气流的方向;
    所述控制器还被配置为:
    根据所述用户距离以及所述角度,控制所述气流控制机构运动,使所述空调器的出风口的出风气流吹向用户所处位置。
  3. 根据权利要求2所述的空调器,其中,
    所述温度传感器还被配置为检测所述室内机的回风温度;
    所述控制器还被配置为:
    获取当前设定的所述室内风扇的转速,并根据所述室内风扇的转速,计算当前的目标送风距离;
    根据所述出风温度、所述回风温度、所述出风风速、所述用户距离和所述目标送风距离,计算目标风温和目标风速;其中,所述目标风温为与所述空调器的出风口的距离为所述用户距离的气流带中心的风温,所述目标风速为与所述空调器的出风口的距离为所述用户距离的气流带中心的风速;
    根据预设的风温、风速和标准有效温度的对应关系,确定所述目标风温和所述目标风速对应的所述标准有效温度,作为所述实时标准有效温度。
  4. 根据权利要求3所述的空调器,其中,所述控制器还被配置为:
    根据所述回风温度、所述出风温度、所述用户距离和所述目标送风距离,计算所述目标风温;
    根据所述出风风速、所述用户距离和所述目标送风距离,计算所述目标风速。
  5. 根据权利要求1至4中任一项所述的空调器,其中,所述标准有效温度范围为[SETs-ΔT,SETs+ΔT];
    所述控制器还被配置为:
    若确定所述实时标准有效温度满足SETρ<SETs-ΔT,则判断温度差值E与所述温度阈值E1的大小关系;
    若确定所述温度差值E满足E≥E1,则维持所述压缩机当前的运行频率不变,并按照预设的档位调整步长减小所述室内风扇当前的转速;
    若确定所述温度差值E满足E<E1,则按照预设的频率调整步长减小所述压缩机当前的运行频率,并按照预设的档位调整步长减小所述室内风扇当前的转速;
    其中,所述温度差值为当前设定的目标制冷温度和所述回风温度的差值;
    SETρ为所述实时标准有效温度,SETs为设定的标准有效温度,ΔT>0。
  6. 根据权利要求5所述的空调器,其中,所述控制器还被配置为:
    若确定所述实时标准有效温度满足SETρ>SETs+ΔT,则判断所述温度差值E与所述温度阈值E1的大小关系;
    若确定所述温度差值E满足E≥E1,则按照预设的频率调整步长增加所述压缩机当前的运行频率,并按照预设的档位调整步长增加所述室内风扇当前的转速;
    若确定所述温度差值E满足E<E1,则维持所述压缩机当前的运行频率不变,并按照预设的档位调整步长增加所述室内风扇当前的转速。
  7. 根据权利要求1至6中任一项所述的空调器,其中,所述控制器还被配置为:
    若确定所述实时标准有效温度处于所述标准有效温度范围内,则维持所述压缩机的运行频率和所述室内风扇的转速不变。
  8. 根据权利要求7所述的空调器,其中,
    所述标准有效温度范围为[SETs-ΔT,SETs+ΔT];
    所述控制器还被配置为:
    若确定所述实时标准有效温度处于所述标准有效温度范围[SETs-ΔT,SETs+ΔT],则维持所述压缩机当前的运行频率和所述室内风扇电机当前的转速不变;
    其中,SETs为设定的标准有效温度,ΔT>0。
  9. 一种空调器的控制方法,其中,
    所述空调器包括:
    室外机,包括:压缩机,被配置为压缩冷媒,以驱动所述冷媒在所述空调器中循环;
    室内机,包括:
    室内风扇,被配置为向室内送风;
    气流控制机构,被配置为控制所述出风口的出风气流的方向;
    温度传感器,被配置为检测所述室内机的出风温度;
    风速传感器,被配置为检测所述室内机的出风风速;
    测距传感器,设置于所述室内机内,被配置为检测用户与所述空调器的出风口之间的用户距离,以及用户所处位置与所述空调器的出风口之间的角度;
    控制器,分别与所述压缩机、所述室内风扇、所述气流控制机构、所述温度传 感器、所述风速传感器和所述测距传感器耦接;
    所述控制方法包括:
    获取当前设定的标准有效温度范围、所述用户距离、所述出风温度、所述和所述出风风速;
    根据所述出风温度、所述出风风速以及所述用户距离计算与所述用户距离相对应的出风气流带中心的实时标准有效温度,并根据所述用户距离以及所述角度,控制所述气流控制机构运动,使所述空调器的出风口的出风气流吹向用户所处位置;
    若确定所述实时标准有效温度处于预设的所述标准有效温度范围外,则判断温度差值E与温度阈值E1的大小关系,根据判断结果控制所述室内风扇的转速以及所述压缩机的运行频率。
  10. 根据权利要求9所述的控制方法,其中,
    所述温度传感器还被配置为检测所述室内机的回风温度;
    所述根据所述室内机的出风温度、出风风速以及所述用户距离计算与所述用户距离相对应的出风气流带中心实际的标准有效温度,包括:
    获取当前设定的所述室内风扇的转速,并根据所述室内风扇的转速,计算当前的目标送风距离;
    根据所述室内机的出风温度、回风温度、出风风速、所述用户距离和所述目标送风距离,计算目标风温以及目标风速;其中,所述目标风温为与所述空调器的出风口的距离为所述用户距离的气流带中心的风温,所述目标风速为与所述空调器的出风口的距离为所述用户距离的气流带中心的风速;
    根据预设的风温、风速和标准有效温度的对应关系,确定所述目标风温和所述目标风速对应的所述标准有效温度,作为所述实时标准有效温度。
  11. 根据权利要求10所述的控制方法,其中,所述根据所述室内机的出风温度、回风温度、出风风速、所述用户距离和所述目标送风距离,计算目标风温以及目标风速,包括:
    根据所述回风温度、所述出风温度、所述用户距离和所述目标送风距离,计算所述目标风温;
    根据所述出风风速、所述用户距离和所述目标送风距离,计算所述目标风速。
  12. 根据权利要求9至11中任一项所述的控制方法,其中,所述标准有效温度范围为[SETs-ΔT,SETs+ΔT];
    所述若确定所述实时标准有效温度处于预设的所述标准有效温度范围外,则判断温度差值E与温度阈值E1的大小关系,根据判断结果控制所述室内风扇的转速以及所述压缩机的运行频率,包括:
    若确定所述实时标准有效温度满足SETρ<SETs-ΔT,则判断温度差值E与所述温度阈值E1的大小关系;
    若确定所述温度差值E满足E≥E1,则维持所述压缩机当前的运行频率不变,并按照预设的档位调整步长减小所述室内风扇当前的转速;
    若所述温度差值E满足E<E1,则按照预设的频率调整步长减小所述压缩机当前的运 行频率,并按照预设的档位调整步长减小所述室内风扇当前的转速;
    其中,所述温度差值为当前设定的目标制冷温度和所述回风温度的差值;
    SETρ为所述实时标准有效温度,SETs为设定的标准有效温度,ΔT>0。
  13. 根据权利要求12所述的控制方法,其中,若确定所述实时标准有效温度处于预设的所述标准有效温度范围外,则判断温度差值E与温度阈值E1的大小关系,根据判断结果控制所述室内风扇的转速以及所述压缩机的运行频率,还包括:
    若确定所述实时标准有效温度满足SETρ>SETs+ΔT,则判断所述温度差值E与所述温度阈值E1的大小关系;
    若确定所述温度差值E满足E≥E1,则按照预设的频率调整步长增加所述压缩机当前的运行频率,并按照预设的档位调整步长增加所述室内风扇当前的转速;
    若确定所述温度差值E满足E<E1,则维持所述压缩机当前的运行频率不变,并按照预设的档位调整步长增加所述室内风扇当前的转速。
  14. 根据权利要求9至13中任一项所述的控制方法,其中,
    若确定所述实时标准有效温度处于所述标准有效温度范围内,则维持所述压缩机的运行频率和所述室内风扇的转速不变。
  15. 根据权利要求14所述的控制方法,其中,
    所述标准有效温度范围为[SETs-ΔT,SETs+ΔT];
    若确定所述实时标准有效温度处于所述标准有效温度范围[SETs-ΔT,SETs+ΔT],则维持所述压缩机当前的运行频率和所述室内风扇电机当前的转速不变;
    其中,SETs为设定的标准有效温度,ΔT>0。
PCT/CN2023/085899 2022-04-29 2023-04-03 空调器及其控制方法 WO2023207524A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210467124.5 2022-04-29
CN202210467124.5A CN114777308A (zh) 2022-04-29 2022-04-29 一种空调器及其控制方法

Publications (1)

Publication Number Publication Date
WO2023207524A1 true WO2023207524A1 (zh) 2023-11-02

Family

ID=82435251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085899 WO2023207524A1 (zh) 2022-04-29 2023-04-03 空调器及其控制方法

Country Status (2)

Country Link
CN (1) CN114777308A (zh)
WO (1) WO2023207524A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114777308A (zh) * 2022-04-29 2022-07-22 海信空调有限公司 一种空调器及其控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060029096A (ko) * 2004-09-30 2006-04-04 삼성전자주식회사 공기조화기의 쾌적운전 제어장치 및 그 방법
JP2011247452A (ja) * 2010-05-24 2011-12-08 Dai-Dan Co Ltd 作業エリア温度コントロールシステム
CN104251539A (zh) * 2014-09-12 2014-12-31 广东美的制冷设备有限公司 空调器及其控制方法和控制装置
CN109405213A (zh) * 2018-10-26 2019-03-01 美的集团武汉制冷设备有限公司 空调器及其控制方法、控制装置、可读存储介质
CN114251793A (zh) * 2020-09-24 2022-03-29 海信(山东)空调有限公司 空调器的控制方法、装置及空调器
CN114251792A (zh) * 2020-09-24 2022-03-29 海信(山东)空调有限公司 空调器的控制方法、装置及空调器
CN114659255A (zh) * 2022-04-29 2022-06-24 海信(山东)空调有限公司 一种空调器及其运行参数的控制方法
CN114777308A (zh) * 2022-04-29 2022-07-22 海信空调有限公司 一种空调器及其控制方法
CN114811732A (zh) * 2022-04-29 2022-07-29 海信空调有限公司 一种新风净化空调器及其控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103113B2 (ja) * 1987-10-28 1994-12-14 松下電器産業株式会社 空調制御装置
JPH05149608A (ja) * 1991-11-29 1993-06-15 Daikin Ind Ltd 空気調和装置の運転制御装置
JPH11248282A (ja) * 1998-02-26 1999-09-14 Matsushita Electric Ind Co Ltd 多室形空気調和装置
CN104006483B (zh) * 2013-02-21 2017-09-22 广东美的制冷设备有限公司 空调器的控制方法
CN103940058B (zh) * 2014-03-31 2017-02-08 广东美的制冷设备有限公司 空调器的控制方法、空调器的控制装置和空调器
CN106322638A (zh) * 2015-06-30 2017-01-11 青岛海尔空调器有限总公司 一种空调器及其送风控制方法和系统
CN106123239B (zh) * 2016-07-22 2019-07-23 青岛海尔空调器有限总公司 空调控制方法
CN106766008A (zh) * 2017-02-23 2017-05-31 广东美的暖通设备有限公司 风机档位的控制方法、装置和空调器
CN107514752A (zh) * 2017-08-22 2017-12-26 广东美的制冷设备有限公司 空调器的控制方法、空调器及计算机可读存储介质
CN107917508A (zh) * 2017-09-29 2018-04-17 青岛海尔空调器有限总公司 空调及其控制方法
JP7034254B2 (ja) * 2018-03-16 2022-03-11 三菱電機株式会社 空気調和機
CN109539462A (zh) * 2018-11-14 2019-03-29 海信(山东)空调有限公司 空调控制方法及装置
CN113983641A (zh) * 2021-11-25 2022-01-28 海信(广东)空调有限公司 空调器的控制方法、装置、空调器及计算机可读存储介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060029096A (ko) * 2004-09-30 2006-04-04 삼성전자주식회사 공기조화기의 쾌적운전 제어장치 및 그 방법
JP2011247452A (ja) * 2010-05-24 2011-12-08 Dai-Dan Co Ltd 作業エリア温度コントロールシステム
CN104251539A (zh) * 2014-09-12 2014-12-31 广东美的制冷设备有限公司 空调器及其控制方法和控制装置
CN109405213A (zh) * 2018-10-26 2019-03-01 美的集团武汉制冷设备有限公司 空调器及其控制方法、控制装置、可读存储介质
CN114251793A (zh) * 2020-09-24 2022-03-29 海信(山东)空调有限公司 空调器的控制方法、装置及空调器
CN114251792A (zh) * 2020-09-24 2022-03-29 海信(山东)空调有限公司 空调器的控制方法、装置及空调器
CN114659255A (zh) * 2022-04-29 2022-06-24 海信(山东)空调有限公司 一种空调器及其运行参数的控制方法
CN114777308A (zh) * 2022-04-29 2022-07-22 海信空调有限公司 一种空调器及其控制方法
CN114811732A (zh) * 2022-04-29 2022-07-29 海信空调有限公司 一种新风净化空调器及其控制方法

Also Published As

Publication number Publication date
CN114777308A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2023207427A1 (zh) 空调器及其控制方法
WO2019105028A1 (zh) 空调器及其控制方法和装置
WO2023207524A1 (zh) 空调器及其控制方法
CN112283902A (zh) 空调器控制方法和空调器
CN105042797B (zh) 一种壁挂式变频空调器控制方法
CN102425841A (zh) 一种基于变频压缩机的机房空调控制方法
CN107421177A (zh) 三过热度调节电子膨胀阀的空调及其控制方法
JP2004218879A (ja) 空気調和機及びその制御方法
CN114636241B (zh) 空调器及其温湿度调控方法、计算机可读存储介质
CN114719427B (zh) 一种空调器和空调器的频率控制方法
CN108613343A (zh) 一种空调器的控制方法及控制系统
WO2023279850A1 (zh) 空调器的控制方法、空调器、存储介质及程序产品
CN106482295A (zh) 室内风机控制方法及装置
CN114838404B (zh) 空调器及空调器的舒适控制方法
CN114659173B (zh) 一种空调器和空调器的运行参数的控制方法
JP2012026654A (ja) 空調機
CN109668267A (zh) 空气调节设备的控制方法、装置和空气调节设备
CN114963426A (zh) 一种空调器恒温除湿方法、系统、存储介质及空调器
WO2019041541A1 (zh) 用于空调自清洁的控制方法及装置、空调
CN114811732A (zh) 一种新风净化空调器及其控制方法
JP3239110B2 (ja) 空気調和機の制御方法
CN105091242B (zh) 一种壁挂式空调器控制方法
CN114811895B (zh) 一种空调器及其频率控制方法
WO2023207353A1 (zh) 空调器及其频率控制方法
KR100315783B1 (ko) 공기 조화기의 토출기류 제어 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794959

Country of ref document: EP

Kind code of ref document: A1