WO2017186022A1 - 电枢、用于电枢的端部模块和用于装配电枢的方法 - Google Patents

电枢、用于电枢的端部模块和用于装配电枢的方法 Download PDF

Info

Publication number
WO2017186022A1
WO2017186022A1 PCT/CN2017/080887 CN2017080887W WO2017186022A1 WO 2017186022 A1 WO2017186022 A1 WO 2017186022A1 CN 2017080887 W CN2017080887 W CN 2017080887W WO 2017186022 A1 WO2017186022 A1 WO 2017186022A1
Authority
WO
WIPO (PCT)
Prior art keywords
end module
armature
core
patch
wires
Prior art date
Application number
PCT/CN2017/080887
Other languages
English (en)
French (fr)
Other versions
WO2017186022A8 (zh
Inventor
杨飞
Original Assignee
上海浦赛动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海浦赛动力科技有限公司 filed Critical 上海浦赛动力科技有限公司
Priority to EP17788674.4A priority Critical patent/EP3432446A4/en
Priority to US16/093,967 priority patent/US20190123608A1/en
Publication of WO2017186022A1 publication Critical patent/WO2017186022A1/zh
Publication of WO2017186022A8 publication Critical patent/WO2017186022A8/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • H02K15/0081Connecting winding sections; Forming leads; Connecting leads to terminals for form-wound windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0414Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils
    • H02K15/0421Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils consisting of single conductors, e.g. hairpins
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/085Forming windings by laying conductors into or around core parts by laying conductors into slotted stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/09Forming windings by laying conductors into or around core parts by laying conductors into slotted rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/10Applying solid insulation to windings, stators or rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/06Machines characterised by the wiring leads, i.e. conducting wires for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/09Machines characterised by wiring elements other than wires, e.g. bus rings, for connecting the winding terminations

Definitions

  • the present invention relates to an armature, and in particular to an armature that uses a patch cord to form a winding.
  • the invention also relates to an end module for an armature and a method for assembling an armature.
  • the armature is a key component that plays a key role in the process of converting the mechanical energy into electrical energy.
  • a generator it is a component that generates an electromotive force, such as a rotor in a DC generator or a stator in an alternator;
  • an electric motor it is a component that generates electromagnetic force, such as a rotor in a DC motor.
  • the armature is divided into two categories: DC armature and AC armature, which are used for DC motors and AC motors, respectively.
  • the armature mainly includes an armature winding and an armature core (iron core).
  • the armature winding is the part that induces an electric potential and generates electromagnetic torque for electromechanical energy conversion.
  • the armature core is both a part of the main magnetic circuit and a support member of the armature winding, and the armature winding is embedded in the slot of the armature core.
  • the armature is the part of the motor that is equipped with winding wires.
  • the wire moves relative to the magnetic field, so that the wire in the generator will generate an induced electromotive force, and the energized wire in the motor will be subjected to ampere force in the magnetic field. Turn.
  • armature cores are generally made of silicon steel sheets.
  • Silicon steel is a steel containing silicon (also known as bismuth), which has a silicon content of 0.8 to 4.8%.
  • Silicon steel is used to make the core of the armature because silicon steel itself is a magnetic material with strong magnetic permeability. In the energized coil, it can generate a large magnetic induction, which can reduce the volume of the armature.
  • the core of the armature is usually laminated with silicon steel sheets insulated from each other, so that the eddy current flows in the elongated loop through a small cross section to increase the eddy current. The resistance on the path.
  • a plurality of grooves are generally provided in the armature core for arranging the wires to form winding coils.
  • the armature winding is composed of a certain number of armature coils connected according to a certain regularity. It is the circuit part of the DC motor, and is also the part that induces the electromotive force and generates electromagnetic torque for electromechanical energy conversion.
  • the coil is wound with an insulated circular or rectangular cross-section wire, and the upper and lower layers are embedded in the recess of the armature core, and the upper and lower coils and between the coil and the armature core are properly insulated. The wedge is pressed tight.
  • the coil is also called an element. Two effective edges of each element that can cut the magnetic flux induced electromotive force in the groove are called element edges, and the part of the element outside the groove does not cut the magnetic flux, and does not induce electromotive force. Ends.
  • Each component has two lead wires. One is the head end and the other is the tail end.
  • the coils constituting the armature winding may be wound by a continuous wire along the core, or the plug wires may be electrically connected by first inserting a plurality of independent plug wires into the grooves of the core. Connected to form.
  • One of the objects of the present invention is to provide a novel armature that is capable of having a smaller size while providing the same power.
  • an armature provided by an embodiment of the present invention includes: a core; a plurality of independent patch wires, each of the patch wires being respectively disposed in a corresponding recess of the iron core; at least one end portion a module, wherein the end module is provided with a plurality of circuits, and the end modules are mounted to the axial ends of the cores such that respective plug wires are formed by respective circuits in the end modules Electrical connections thus form the corresponding windings.
  • the present invention creatively provides an end module in the armature, the end module being provided with a plurality of circuits, the end modules being mounted to the axial ends of the core to enable corresponding
  • the patch wires are electrically connected to each other by respective circuits in the end modules to form respective windings.
  • the circuitry within the end module can provide circuitry between the ends of the patch cords of the prior art to achieve the same circuit functionality as the prior art. It is especially important that since the end modules are pre-fabricated, the internal circuitry can be arranged by various well-established techniques in the prior art, such as integrated circuit technology, so that the end modules can be made to have special Small size (core axially), which can effectively reduce the size of the armature.
  • electrical connections can be made between the end module and the patch wire by various mature techniques in the prior art, such as automatic soldering technology, it is not necessary to perform any bending on the patch cord, thereby effectively improving production efficiency and Yield.
  • the end module has an integrated structure to provide a more compact and reliable structure. Still further, the end module is preferably flat to provide as small a dimension as possible in the axial direction of the core.
  • the end module is provided with a plurality of pads, each of which corresponds to a respective one of the patch wires, and each of the patch wires is electrically connected to a corresponding circuit through a corresponding pad.
  • the pads are preferably connected to the respective patch wires by soldering.
  • the pad preferably includes a soldering end and a circuit end, the soldering end is exposed on a surface of the end module and is electrically connected to the plug wire by soldering, the circuit end being at the end The inside of the module is electrically connected to the corresponding circuit.
  • the end module further includes a heat conducting layer that abuts the core when the end module is mounted to the core.
  • the end module is provided with a plurality of openings, each of which passes through a corresponding one of the openings.
  • the patch cord is substantially straight elongated.
  • the at least one end module preferably includes a first end module and a second end module, the first end module and the second end module being respectively mounted at two axial ends of the core.
  • the patch cord is substantially U-shaped and includes two straight segments and a curved segment, wherein the straight segments are inserted into the interior of the corresponding grooves of the core, the curved segments being located in the grooves external.
  • the at least one end module is preferably an end module mounted on an axial end of the core.
  • an end module for an armature comprising: a core; a plurality of independent patch wires, each of the patch wires being respectively disposed on a corresponding one of the cores Inside the groove; a plurality of circuits are disposed in the end module, and the end modules are mounted to the axial ends of the cores such that the respective patch wires are electrically connected to each other through corresponding circuits in the end modules Corresponding windings.
  • the end module has an integral structure. Further, the end module is preferably flat.
  • the end module is provided with a plurality of pads, each of which corresponds to a respective one of the patch wires, and each of the patch wires is electrically connected to a corresponding circuit through a corresponding pad. Further, the pads are preferably connected to the respective patch wires by soldering.
  • the pad includes a soldering end and a circuit end, the soldering end being exposed on a surface of the end module and electrically connected to a corresponding patch wire by soldering, the circuit end being at the end module The interior is electrically connected to the corresponding circuit.
  • the end module further includes a heat conducting layer that abuts the core when the end module is mounted to the core.
  • the end module is provided with a plurality of openings, each of which passes through a corresponding one of the openings.
  • a method for assembling an armature comprising: providing a core and a plurality of independent patch wires, and arranging each of the patch wires respectively in respective recesses of the core Providing at least one end module, the end module being provided with a plurality of circuits; mounting the end module to an axial end of the core such that a corresponding patch passes through the end Corresponding circuits within the module are electrically connected to each other to form a corresponding winding.
  • mounting the end module to the end of the core comprises: inserting a patch into a corresponding opening of the end module; and soldering the patch to a corresponding pad in the end module To achieve an electrical connection to each other, wherein the pads are electrically connected to respective circuits within the end modules.
  • the patch cord is substantially straight elongated, and the at least one end module comprises a first end module and a second end module, the first end module and the second end module being respectively mounted on Two axial ends of the core.
  • the patch cord is substantially U-shaped and includes two straight segments and a curved segment, wherein the straight segment is disposed in the groove, the curved segment is located outside the groove, and the end module is mounted on the One axial end of the core.
  • the advantages of the present invention are particularly that the size of the armature can be effectively reduced, and the production efficiency and the yield can be effectively improved.
  • FIG. 1 and 2 are perspective views of an armature according to an embodiment of the present invention, wherein the armature shown in Fig. 1 is in an assembled state, and Fig. 2 is an exploded perspective view of the armature.
  • FIG. 3 and 4 show the core of the armature shown in Fig. 1, wherein Fig. 3 is a perspective view of the core, and Fig. 4 is a plan view of the core.
  • FIG. 5 and FIG. 6 are schematic views showing the arrangement of the patch wires in the armature of FIG. 1, wherein FIG. 5 is a perspective view of the patch cord arrangement, and FIG. 6 is a top view thereof.
  • FIG. 7 and 8 are schematic views showing the arrangement of the insulating paper in the armature of Fig. 1, wherein Fig. 5 is a perspective view of the arrangement of the insulating paper, and Fig. 8 is a plan view thereof.
  • FIGS. 9 and 10 are schematic views of the end module of the armature of Fig. 1, wherein Fig. 9 is a perspective view of the end module, and Fig. 10 is a top view of the end module.
  • Figure 11 is an enlarged schematic view showing an axial sectional view of the end module shown in Figure 9, in which part of the contents are omitted to clearly and concisely show the internal configuration of the end module, particularly showing the patch and the end.
  • the electrical connection between the corresponding circuits within the module is not limited.
  • Figure 12 shows a radial cross-sectional view of the end module of Figure 9.
  • Figures 13a-13d illustrate various illustrative patch cords that may be used with the armature of Figure 1.
  • Figures 14a-14e illustrate an exemplary method for assembling the armature of Figure 1.
  • Figure 15 illustrates an armature in accordance with another embodiment of the present invention.
  • Figure 16 illustrates an armature in accordance with yet another embodiment of the present invention.
  • FIG. 1 a perspective view of an armature 60 in accordance with an embodiment of the present invention, wherein Figure 1 shows the armature 60 in an assembled state and Figure 2 shows an exploded view of the armature 60.
  • the armature 60 includes a core 10, and the two axial ends of the core 10 are each provided with an end module 30 (30').
  • the armature 60 shown in Fig. 1 further includes a plurality of patch cords 20 disposed in the recess 11 (Fig. 3) of the core 10 and passing through respective end modules 30 (30') at both ends.
  • each of the patch cords 20 is electrically connected to each other by respective circuits within the end modules to form a complete winding, wherein each winding includes two more stubs extending from the end modules, the patch cords being used for each The lead wire of the winding.
  • the armature has six lead wires, that is to say, the illustrated armature has three windings, and each winding is electrically connected by a plurality of plug wires through corresponding circuits in the two end modules. A coil in which each winding has two lead wires.
  • each of the patch cords 20 is not directly in contact with the core in the recess of the core 10 or is covered by the insulating paper 40, as will be further explained below.
  • FIG. 1 a core 10 of the armature of Figure 1, wherein Figure 3 is a perspective view of the core 10 and Figure 4 is a top plan view of the core 10.
  • the core 10 is formed by laminating a plurality of silicon steel sheets, each of which is insulated from each other. Each of the silicon steel sheets is provided with a plurality of grooves 11 for arranging the patch wires 20.
  • the material of the core 10 may also be other suitable materials other than the silicon steel sheet, such as: pure iron, mild steel, silicon-free steel, iron-nickel alloy, iron-aluminum alloy, amorphous alloy, microcrystalline alloy, and the like. Those skilled in the art will appreciate that different materials may have different properties of the core 10, and thus may be fabricated by selecting a suitable material according to the specific use environment of the armature.
  • FIG. 5 there is shown a schematic view of the arrangement of the patch cords 20 in the armature of Figure 1, wherein Figure 5 is a perspective view of the arrangement of the patch cords 20, and Figure 6 is a top plan view thereof.
  • these patch cords 20 are arranged substantially coaxially with a substantially uniform spacing between the patch cords 20.
  • the arrangement of these patch cords can also have other different configurations.
  • FIG. 7 there is shown a schematic view of the arrangement of the insulating paper 40 in the armature of Figure 1, wherein Figure 5 is a perspective view of the arrangement of the insulating paper 40, and Figure 6 is a top plan view thereof.
  • each of the patch wires is disposed in the recess of the core, but each of the patch cords is wrapped by the insulating paper 40 in order to ensure insulation between the patch cords and between the patch cords and the core.
  • the insulating paper 40 is folded from a single sheet having insulating properties to have substantially the same cross section as the patch 20.
  • the material of the insulating paper 40 and the folding method are well known in the art.
  • these folded insulating papers 40 are arranged substantially coaxially and have a substantially uniform spacing between the insulating papers 40, which is consistent with the arrangement of the patch wires 20 in the core 10.
  • the arrangement of these insulating papers 40 may also have other different configurations corresponding to the patch cords 20.
  • FIG. 9 a schematic view of the end module 30 of the armature 60 of Figure 1, wherein Figure 9 is a perspective view of the end module 30 and Figure 10 is a top plan view of the end module 30. Since the end module 30 and the end module 30' shown in FIG. 1 have differences in specific circuit design, both have the same principle and structural scheme, so those skilled in the art will understand one of the end modules. After the structure and principle, it is of course possible to understand the design requirements and specific content of the other end module. To this end, for the sake of brevity, only one of the end modules 30 will be described. As shown, the end module 30 is integrally formed It is a substantially flat annular shape whose inner diameter and outer diameter substantially coincide with the core 10.
  • the end module 30 is provided with a plurality of axially extending openings 31 for the patch wires 20 to pass therethrough.
  • the position of each opening 31 corresponds to the position of the patch 20 in the core 10.
  • Each of the openings 31 is provided with a pad 32 for making an electrical connection with the patch wire 20 through the horn 33 (FIG. 11), thereby further via the pad 32 and the circuitry 34 within the end module 30. (Fig. 11) An electrical connection is formed, which will be described in further detail later in this document.
  • FIG. 11 there is shown an enlarged schematic view of an axial cross-sectional view of the end module 30 of Fig. 9, with portions omitted to clearly and concisely illustrate the internal construction of the end module 30, particularly The electrical connection between line 20 and corresponding circuit 34 within the end module.
  • a pad layer, a circuit layer, and a heat conductive layer 35 are respectively included from top to bottom.
  • the pad layer is composed of a plurality of individual pads 32, which are composed of a conductive material.
  • the pad 32 includes a solder end 36 and a circuit end 37 that is exposed on the surface of the end module 30 to enable soldering by soldering when the armature is assembled 33 is electrically connected to the patch cord 20, and the circuit terminal 37 is electrically connected to a corresponding one of the circuits 34 inside the end module 30.
  • Only two circuit layers are shown in the figure, each circuit layer comprising a plurality of separate circuits 34, but the number of circuit layers can vary as needed, depending on the connection requirements between the patch wires 20.
  • An insulating layer is disposed between the respective layers, and the insulating layer may be an insulating paste as needed, or may be selected as an insulating fiber to provide electrical insulation while preventing loss of insulation due to overheating.
  • the heat conducting layer 35 is located on the other surface of the end module 30 opposite the layer of the pad 32, and the heat conducting layer 35 abuts against the core 10 when the end module 30 is mounted to the core 10.
  • a radial cross-sectional view of the end module 30 of Figure 9 is illustrated.
  • a plurality of circuits 34 are disposed within the end module 30, and these circuits 34 are electrically coupled to the circuit terminals 36 of the respective pads 32, respectively, such that when the two patch wires 20 are respectively soldered to the corresponding pads 32, When the electrical connections are made by the horns 33, the two plug wires 20 are connected to each other by the circuit 34 in the end module 30. Since both ends of the core 10 of the armature 60 are respectively provided with an end module, one end of the plug wire 20 is electrically connected to other plug wires through corresponding circuits in the end module corresponding to the end portion.
  • the other end of the patch will be electrically connected to the other patch through a corresponding circuit in the corresponding other end module, such that a plurality of patch cords can pass through the two end modules 30 and 30'
  • the corresponding circuits are connected in turn until they are connected to the two longer patch wires 20 (see Fig. 1) used as the lead wires, thereby forming a complete coil (winding).
  • the circuitry 34 within the end module 30 can be arranged by various techniques in the prior art, such as printed circuit or integrated circuit technology, such that the end module 30 can be fabricated to have The particularly small size (core 10 in the axial direction) can effectively reduce the size of the armature 60.
  • the end module can be connected to the harness forming circuit by various mature techniques in the prior art, such as automatic soldering technology, it is not necessary to perform any bending on the patch cord, so that the production efficiency and the yield can be effectively improved. .
  • patch cords 20 that may be used with the armature 60 of Figure 1.
  • these patch cords are generally straight, except for the configuration of their ends, where the patch cord of Figure 13a has a hook-shaped end, the plug of 13b has a double-eye end, and the plug of 13c
  • the wire has a Y-shaped end, and the 13d wire has a fisheye end.
  • These end configurations can be used for one end of the patch cord or for both ends of the patch cord, and the patch cord can also be selected for other suitable end configurations to meet specific needs, such as for convenient soldering. Wait.
  • the patch cord has various suitable cross sections, but is preferably a flat patch cord having a square cross section.
  • FIG. 14a the core 10 is provided; in Fig. 14b, the insulating paper 40 is distributed in the respective grooves 11 of the core 10; in Fig. 14c, the respective plug wires 20 are respectively inserted into the corresponding insulating paper 40; in Fig. 14d, One end module 30 is mounted to one end of the core 10, wherein each of the plug wires 20 is inserted into a corresponding opening 31 in the end module 30, respectively, and the corresponding end of the patch 20 is corresponding to the end module 30.
  • the soldering end of the pad 32 is soldered; in Fig.
  • the other end module 30' is mounted to the other end of the core 10, and likewise, each of the patch wires 20 is inserted into the corresponding opening in the end module 30'.
  • the corresponding end of the patch cord 20 is soldered to the soldered end of the corresponding pad on the end module 30'.
  • the circuit arrangement of each end module is designed according to the windings that need to be formed, and those skilled in the art can design corresponding circuits according to the windings described. It will be appreciated that based on the circuit arrangement within the end module, the respective patch cords may be electrically connected to each other by respective circuits within the end module to form respective windings.
  • the end modules can be connected to the patch cord forming circuitry by various well-established techniques in the prior art, such as automated soldering techniques. Since the method does not require any bending of the plug wire, the production efficiency and the yield can be effectively improved.
  • Figure 15 shows an armature 60 in accordance with another embodiment of the present invention.
  • the armature 60 is similar to the embodiment of FIG. 1, and also has a core 10, a patch cord 20 disposed in the recess of the core 10, and an end module 30.
  • the core 10 and the end module 30 in the armature 60 shown in Fig. 15 have the same configuration and function as the armature shown in Fig. 1.
  • the patch cord 20 is substantially U-shaped and includes two straight segments 21 and one curved segment 22, wherein each straight segment 21 is arranged In one of the grooves, the curved section 22 is located outside the recess, and accordingly, the armature is mounted with an end module 30 only at one axial end of the core 10.
  • the armature is mounted with an end module 30 only at one axial end of the core 10.
  • the patch cords only need to be connected to each other at one end to form a complete coil or winding, so the armature only needs to have one end module on one end.
  • Figure 16 shows an armature 60 in accordance with yet another embodiment of the present invention.
  • the armature 60 is similar to the embodiment of Fig. 15 and also has a core 10, a patch cord 20 disposed in the recess of the core 10, and an end module 30.
  • the core and the wire in the armature shown in Fig. 16 have the same configuration and function as those shown in Fig. 15.
  • the main difference between the armature shown in FIG. 16 and the armature shown in FIG. 15 is that the ends of the patch wires 20 are not connected to each other by the end modules, but are usually passed through a conventional method such as turning, welding, or the like. The ends of the patch cords are connected to each other.
  • an end module 30' is provided on one end of the core 10, and the end module 30' is only used to connect a number of specific patch wires through a specific circuit to form a profile line (such as a star line). , the bridge line, etc.).
  • a profile line such as a star line. , the bridge line, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

一种电枢(60)、一种用于电枢的端部模块(30)和一种用于装配电枢的方法。电枢包括:铁心(10);多根独立的插线(20),每根插线布置于铁心的相应的凹槽(11)内;至少一个端部模块,端部模块内设有多条电路(34),并且端部模块安装至铁心的轴向端部上,以使相应的插线通过端部模块内相应的电路相互形成电连接从而构成相应的绕组。该电枢具有更小的尺寸,并且可以提高生产效率和成品率。

Description

电枢、用于电枢的端部模块和用于装配电枢的方法 技术领域
本发明涉及一种电枢,尤其是使用插线来形成绕组的电枢。本发明还涉及一种用于电枢的端部模块和一种用于装配电枢的方法。
背景技术
电枢是在电机实现机械能与电能相互转换过程中起着关键和枢纽作用的部件。对于发电机来说,它是产生电动势的部件,如直流发电机中的转子或者交流发电机中的定子;对于电动机来说,它是产生电磁力的部件,如直流电动机中的转子。电枢分直流电枢和交流电枢两大类,它们分别用于直流电机和交流电机。
电枢主要包括电枢绕组和电枢铁心(铁芯)。电枢绕组是感生电势、产生电磁转矩进行机电能量转换的部分。电枢铁心既是主磁路的一部分又是电枢绕组的支撑部件,电枢绕组嵌置在电枢铁心的槽内。换句话说,电枢是电机中装有绕组导线的部件,导线相对磁场运动,从而在发电机中的导线将产生感应电动势,而在电动机中的通电导线将在磁场中受安培力作用而发生转动。
常用的电枢铁心一般都是用硅钢片制做的。硅钢是一种含硅(硅也称矽)的钢,其含硅量在0.8~4.8%。采用硅钢来制作电枢的铁心是因为硅钢本身是一种导磁能力很强的磁性物质,在通电线圈中,它可以产生较大的磁感应强度,从而可以使电枢的体积缩小。另外,为了减小用于交变电流的电枢的涡流损耗,电枢的铁心通常使用彼此绝缘的硅钢片叠成,使涡流在狭长形的回路中,通过较小的截面,以增大涡流通路上的电阻。此外,电枢铁心中一般设置有众多凹槽,用于布置导线形成绕组线圈。
电枢绕组由一定数目的电枢线圈按一定的规律连接组成,其是直流电机的电路部分,也是感生电动势、产生电磁转矩进行机电能量转换的部分。线圈用绝缘的圆形或矩形截面的导线绕成,分上下两层嵌放在电枢铁心的凹槽内,上下层线圈之间以及线圈与电枢铁心之间都要妥善地绝缘,并用槽楔压紧。线圈也称为元件,每一元件的两个位于凹槽中能切割磁通感生电动势的有效边称为元件边,元件的位于凹槽外的部分不切割磁通,不感生电动势,称为端部。每个元件有两根引出线, 一根为首端,一根为尾端。在现有技术中,构成电枢绕组的线圈可以是由一根连续的导线沿着铁心缠绕而成,也可以通过先将多根独立的插线插入铁心的凹槽中再将插线相互电连接而形成。
对于现有技术的电枢,技术人员一直希望能够在保持其功率和性能的条件使其具有尽可能小的尺寸,这样就可以做出尽可能小的电机,因为当前妨碍电机被设计成小尺寸化的一个主要障碍就是电枢的尺寸。为此,技术人员已经从电枢材料的选择、电枢结构的设计等等多个方面进行了多种尝试,并且已经取得了一定的成就。但是,很明显,整个电机领域还是希望电枢能够被设计得更小,尤其是随着当前新的技术需求的产生,小尺寸大功率的电枢或电机更是成为了迫切需要解决的技术问题。甚至可以说,一些行业的技术突破正是取决于能够提供足够小的电枢或电机,比如电动车行业的独立四驱技术,如果想要实现完美的独立四驱,用于驱动每个车轮的电机必须足够小才能良好地被安装至车轮上并提供足够的驱动力。
技术问题
本发明的目的之一在于提供一种新型的电枢,其能够在提供相同功率的情况下具有更小的尺寸。
技术解决方案
为解决上述解决问题,本发明的一个实施例提供的电枢包括:铁心;多根独立的插线,每根所述插线分别布置于所述铁心的相应的凹槽内;至少一个端部模块,所述端部模块内设有多条电路,并且所述端部模块安装至所述铁心的轴向端部上,以使相应的插线通过所述端部模块内相应的电路相互形成电连接从而构成相应的绕组。
本发明的做出基于发明人对现有技术缺陷的独特认识。在现有技术中,为了将电枢中的独立插线相互连接起来构成线圈或绕组,需要通过人工将每一根插线的端部弯折排布好并将相应的插线焊接起来。可以明白,现有技术中的将插线相互连接起来的过程无法实现机械化或自动化,效率低下,并且废品率很高。更为不利的是,由于插线必须保持绝缘,所以插线的端部在弯折排布时其弯折的角度不能太大,否则很容易损坏插线的绝缘层。然而,太小的弯折角度会使得插线的端部在铁心轴向上的尺寸过大,从而使得电枢的整体体积很大。本发明人认识到,在特定的条件下,对于电枢线圈而言,为了保持电枢的功率或者切割磁通量,插线的有效边不得减小,只能减小端部的尺寸。
为此,本发明创造性地在电枢中设置了端部模块,所述端部模块内设有多条电路,所述端部模块安装至所述铁心的轴向端部上,以使相应的插线通过所述端部模块内相应的电路相互形成电连接从而构成相应的绕组。可以明白,该端部模块内的电路可以提供现有技术中的插线端部之间的电路,从而实现与现有技术相同的电路功能。尤其重要的是,由于端部模块是事先制作好的,其内部的电路可以通过现有技术中的各种成熟的技术来布置,比如集成电路技术,从而使得端部模块可以被制造成具有特别小的尺寸(铁心轴向上),这可以有效地减小电枢的尺寸。此外,由于可以通过现有技术中的各种成熟的技术在端部模块与插线之间形成电连接,比如自动焊接技术,无需对插线实施任何的弯折,所以可以有效提高生产效率和成品率。
优选地,所述端部模块具有一体化的结构,从而提供更为紧凑且可靠的结构。更进一步地,所述端部模块优选呈扁平状,以提供在铁心轴向上的尽可能小的尺寸。
优选地,所述端部模块设置有多个焊盘,每个焊盘对应于相应的一根插线,每根插线通过相应的焊盘与相应的电路形成电连接。进一步地,所述焊盘优选通过焊接而连接至相应的插线。进一步地,所述焊盘优选包括焊接端和电路端,所述焊接端露出于所述端部模块的表面并通过焊接而与所述插线形成电连接,所述电路端在所述端部模块内部与相应的电路形成电连接。
优选地,所述端部模块还包括导热层,当端部模块安装至铁心上时,所述导热层紧靠所述铁心。
优选地,所述端部模块设有多个开孔,每根所述插线穿过相应的一个开孔。
优选地,所述插线大致呈直长条形。进一步地,所述至少一个端部模块优选包括第一端部模块和第二端部模块,该第一端部模块和第二端部模块分别安装在所述铁心的两个轴向端部。
优选地,所述插线大致呈U形,并且包括两个直线段和一个弯曲段,其中所述直线段插入所述铁心的相应的凹槽的内部,所述弯曲段位于所述凹槽的外部。更近一步地,所述至少一个端部模块优选为安装在所述铁心的一个轴向端部上的一个端部模块。
根据本发明的一个实施例还提供一种用于电枢的端部模块,所述电枢包括:铁心;多根独立的插线,每根所述插线分别布置于所述铁心的相应的凹槽内;所述 端部模块内设有多条电路,并且所述端部模块安装至所述铁心的轴向端部上,以使相应的插线通过所述端部模块内相应的电路相互形成电连接从而构成相应的绕组。
优选地,所述端部模块具有一体的结构。更进一步地,所述端部模块优选呈扁平状。
优选地,所述端部模块设置有多个焊盘,每个焊盘对应于相应的一根插线,每根插线通过相应的焊盘与相应的电路形成电连接。更进一步地,所述焊盘优选通过焊接而连接至相应的插线。
优选地,所述焊盘包括焊接端和电路端,所述焊接端露出于所述端部模块的表面并通过焊接而与相应的插线形成电连接,所述电路端在所述端部模块内部与相应的电路形成电连接。
优选地,所述端部模块还包括导热层,当端部模块安装至铁心上时,所述导热层紧靠所述铁心。
优选地,所述端部模块设有多个开孔,每根所述插线穿过相应的一个开孔。
根据本发明的实施例还提供一种用于装配电枢的方法,包括:提供铁心和多根独立的插线,并将每根所述插线分别布置于所述铁心的相应的凹槽内;提供至少一个端部模块,所述端部模块内设有多条电路;将所述端部模块安装至所述铁心的轴向端部上,以使相应的插线通过所述端部模块内相应的电路相互形成电连接从而构成相应的绕组。
优选地,将所述端部模块安装至所述铁心的端部包括:将插线插入所述端部模块的相应的开孔中;并且将插线与端部模块中相应的焊盘相焊接以实现相互之间的电连接,其中所述焊盘与端部模块内相应的电路相互电连接。
优选地,所述插线大致呈直长条形,并且所述至少一个端部模块包括第一端部模块和第二端部模块,该第一端部模块和第二端部模块分别安装在所述铁心的两个轴向端部。
优选地,所述插线大致呈U形,并包括两个直线段和一个弯曲段,其中直线段被布置于所述凹槽内,弯曲段位于凹槽外,并且端部模块安装在所述铁心的一个轴向端部上。
有益效果
本发明的优点尤其在于可以有效地减小电枢的尺寸,并且可以有效提高生产效率和成品率。
本发明的其他特征及有益效果可以通过以下的详细描述及附图内容而变得清楚明白。
附图说明
以下将结合附图对本发明的具体实施方式进行详细的描述。
图1和图2示出了根据本发明的一个具体实施例的电枢的立体示意图,其中图1示出的电枢处于组装状态,而图2为该电枢的分解示意图。
图3和图4示出了图1所示电枢的铁心,其中图3是铁心的立体示意图,图4是该铁心的俯视图。
图5和图6示出了图1的电枢中的插线的排布示意图,其中图5为插线排布的立体示意图,而图6为其俯视图。
图7和图8示出了图1的电枢中的绝缘纸的排布示意图,其中图5为绝缘纸排布的立体示意图,而图8为其俯视图。
图9和图10示出了图1的电枢的端部模块的示意图,其中图9为端部模块的立体示意图,图10为端部模块的俯视图。
图11示出了图9所示端部模块的轴向剖视图的放大示意图,其中的部分内容被省略以能清晰而简明地示出端部模块的内部构造,尤其示出了插线与端部模块内相应的电路之间的电连接关系。
图12示出了图9所示端部模块的一个径向剖视图。
图13a-13d示出了可用于图1所示电枢的多种例示的插线。
图14a-14e示出用于装配图1所示电枢的一种例示的方法。
图15示出了根据本发明的另一个实施例的电枢。
图16示出了根据本发明的又一个实施例的电枢。
本发明的最佳实施方式
参见图1和图2,其示出了根据本发明的一个具体实施例的电枢60的立体示意图,其中图1示出了电枢60处于组装状态,而图2为该电枢60的分解示意图。从图中可以看出,该电枢60包括铁心10,铁心10的两个轴向端部各设置有一个端部模块30(30’)。图1所示的电枢60还包括众多插线20,这些插线20布置于铁心10的凹槽11(图3)中并在两端分别穿过相应的端部模块30(30’)。这些插线20通过所述端部模块内的相应的电路相互电连接而构成完整的绕组,其中每个绕组均包括两根伸出端部模块较多的插线,该插线用作每个绕组的引出线。从 图中可以看到,该电枢具有六根引出线,也就是说,图示的电枢具有三个绕组,每个绕组由多根插线通过两个端部模块内相应的电路相互电连接而构成线圈,其中每个绕组的具有两根引出线。从图2中还可以看出,每根插线20在铁心10的凹槽中不是直接与铁心接触的,还是被绝缘纸40包覆,这在下文中还将做进一步说明。
进一步参见图3和图4,其示出了图1所示电枢的铁心10,其中图3是铁心10的立体示意图,图4是该铁心10的俯视图。该铁心10由多个硅钢片叠合而成,每个硅钢片相互绝缘。每个硅钢片设置有多个凹槽11,用于布置插线20。铁心10的材料也可以使用除硅钢片之外的其他合适的材料,比如:纯铁、软钢、无硅钢、铁镍合金、铁铝合金、非晶态合金、微晶合金等。本领域技术人员明白,不同的材料可以使得铁心10具有不同的性能,进而可以根据电枢的具体使用环境而选择合适的材料来制作。
进一步参见图5和图6,其示出了图1所示电枢中的插线20的排布示意图,其中图5为插线20排布的立体示意图,而图6为其俯视图。从图中可以看出,这些插线20大致同轴地布置,并且插线20之间具有大致均匀的间距。但是,本领域技术人员可以明白,这些插线的排布也可以具有其他不同的构型。
进一步参见图7和图8,其示出了图1的电枢中的绝缘纸40的排布示意图,其中图5为绝缘纸40排布的立体示意图,而图6为其俯视图。如前文所述,每根插线被布置于铁心的凹槽中,但是为了保证插线之间以及插线与铁心之间的绝缘,每根插线均被绝缘纸40包扎。通常情况下,绝缘纸40由单张具有绝缘性质的薄片折叠成具有与插线20大致相同的横截面。绝缘纸40的材料以及折叠方法为本领域技术所公知。从图中可以看出,这些折叠好的绝缘纸40大致同轴地布置,并且绝缘纸40之间具有大致均匀的间距,这与插线20在铁心10中的布置是一致的。同样地,本领域技术人员可以明白,这些绝缘纸40的排布与插线20对应地也可以具有其他不同的构型。
进一步参见图9和图10,其示出了图1所示的电枢60的端部模块30的示意图,其中图9为端部模块30的立体示意图,图10为端部模块30的俯视图。由于图1所示的端部模块30和端部模块30’虽然在具体的电路设计上具有差异,但是两者具有相同的原理和结构方案,所以本领域技术人员在明白其中一个端部模块的结构和原理后,也当然能够明白另一个端部模块的设计要求和具体内容。为此,为了简洁起见,仅仅介绍其中一个端部模块30。如图所示,端部模块30一体形成 为大致呈扁平形的环状,其内径和外径与铁心10大致一致。端部模块30上设置有众多沿轴向的开孔31,这些开孔31用于插线20从中穿过。各个开孔31的位置与插线20在铁心10中的位置对应。每个开孔31均设置有一个焊盘32,该焊盘32用于与插线20通过焊头33(图11)形成电连接,从而进一步经由焊盘32与端部模块30内的电路34(图11)形成电连接,本文之后的内容将对此做进一步详细的描述。
进一步参见图11,其示出了图9所示端部模块30的轴向剖视图的放大示意图,其中的部分内容被省略以能清晰而简明地示出端部模块30的内部构造,尤其是插线20与端部模块内相应的电路34之间的电连接关系。如图所示,在端部模块30的轴向上,从上至下分别包括焊盘层、电路层、导热层35。焊盘层由多个独立的焊盘32组成,焊盘32由导电材料组成。如图所示,所述焊盘32包括焊接端36和电路端37,所述焊接端36露出于所述端部模块30的表面,以能在装配电枢时通过由焊接形成的焊头33而与所述插线20形成电连接,所述电路端37在所述端部模块30内部与相应的一个电路34形成电连接。图中仅仅示出了两个电路层,每个电路层包括多个独立的电路34,但是电路层的数量可以根据需要而不同,这取决于插线20之间的连接需要。各个层之间设置有绝缘层,绝缘层根据需要可以是绝缘胶,或者选择为绝缘纤维以在提供电绝缘的同时还能防止因为过热而导致绝缘的丧失。所述导热层35位于端部模块30的与焊盘32层相对的另一个表面,当端部模块30安装至铁心10上时,所述导热层35紧靠所述铁心10。
进一步参见图12,其示出了图9所示端部模块30的一个径向剖视图。从图中可以看出,端部模块30内布置有众多电路34,这些电路34分别与相应的焊盘32的电路端36电连接,从而当两根插线20分别与相应焊盘32的焊接端36通过焊头33形成电连接时,这两根插线20即通过端部模块30内的该电路34相互连接起来。由于所述电枢60的铁心10的两端分别设置有一个端部模块,插线20的一个端部将通过该端部所对应的端部模块内相应的电路与其他的插线形成电连接,而该插线的另一个端部将通过对应的另一个端部模块内的相应的电路与另一根插线形成电连接,从而,多根插线可通过两个端部模块30和30’内的相应的电路依次连接起来,直至连接至用作引出线的两根较长的插线20(见图1),从而构成一个完整的线圈(绕组)。端部模块30内部的电路34可以通过现有技术中的各种技术来布置,比如印刷电路或集成电路技术,从而使得端部模块30可以被制造成具有 特别小的尺寸(铁心10轴向上),这可以有效地减小电枢60的尺寸。此外,由于可以通过现有技术中的各种成熟的技术使端部模块与插线形成电路连接,比如自动焊接技术,无需对插线实施任何的弯折,所以可以有效提高生产效率和成品率。
进一步参见图13a-13d,其示出了可用于图1所示电枢60的多种例示的插线20。如图所示,这些插线均大致呈直线,不同之处在于其端部的构型,其中图13a的插线具有鱼钩状端部,13b的插线具有双眼型端部,13c的插线具有Y型端部,13d的插线具有鱼眼型端部。这些端部构型可以用于插线的一个端部,也可以用于插线的两个端部,而且插线也可以选择为其他合适的端部构型以满足特定的需要,比如方便焊接等。此外,本领域技术人员将明白,插线具有各种合适的横截面,但是优选为具有方形横截面的扁插线。
接下来参见图14a-14e,其示出用于装配图1所示电枢的一种例示的方法。图14a中,提供铁心10;图14b中,在铁心10的各个凹槽11中分布布置绝缘纸40;图14c中,将各根插线20分别插入对应的绝缘纸40内;图14d中,将一个端部模块30安装至铁心10的一个端部,其中每根插线20分别插入端部模块30中对应的开孔31内,并且将插线20的对应端部与端部模块30上的对应的焊盘32的焊接端焊接;图14e中,将另一个端部模块30’安装至铁心10的另一个端部,同样地,每根插线20分别插入端部模块30’中对应的开孔内,并且将插线20的对应端部与端部模块30’上对应的焊盘的焊接端焊接。每个端部模块的电路设置是根据所需形成的绕组进行设计的,并且本领域技术人员可以根据所述的绕组而设计相应的电路。可以明白,基于端部模块内的电路设置,相应的插线可通过所述端部模块内相应的电路相互形成电连接从而构成相应的绕组。可以通过现有技术中的各种成熟的技术将端部模块与插线形成电路连接,比如自动焊接技术。由于该方法无需对插线实施任何的弯折,所以可以有效提高生产效率和成品率。
图15示出了根据本发明的另一个实施例的电枢60。如图所示,该电枢60与图1所示实施例类似,也具有铁心10、布置于铁心10凹槽中的插线20和端部模块30。其中,图15所示的电枢60中的铁心10和端部模块30与图1所示的电枢具有相同的构型和功能。然而,图15所示电枢与图1所示电枢的主要区别在于,插线20为大致为U型,其包括两个直线段21和一个弯曲段22,其中每个直线段21被布置于一个所述凹槽内,弯曲段22位于凹槽外,相应地,该电枢只在所述铁心10的一个轴向端部上安装有一个端部模块30。可以明白,由于该电枢所使用的 是U型插线,插线仅仅需要在一个端部被相互连接起来就可以构成完整的线圈或绕组,所以该电枢只需在一个端部上设置一个端部模块就可以了。
图16示出了根据本发明的又一个实施例的电枢60。如图所示,该电枢60与图15所示实施例类似,也具有铁心10、布置于铁心10凹槽中的插线20和端部模块30。其中,图16所示的电枢中的铁心和插线与图15中所示出的具有相同的构型和功能。然而,图16所示电枢与图15所示电枢的主要区别在于,插线20的端部之间并没有通过端部模块来相互连接,而是通过通常的比如扭头、焊接等方式在插线的端部相互连接起来。相反地,在铁心10的一个端部上设置有一个端部模块30’,该端部模块30’仅仅用于将若干特定插线通过特定的电路连接起来,起到异型线(如星点线、过桥线等)的作用。
上文通过附图和优选实施例对本发明进行了详细展示和说明,然而本发明不限于这些实施例,本领域技术人员从中推导出来的其他方案也在本发明的保护范围之内。

Claims (24)

  1. 一种电枢(60),其包括:
    铁心(10);
    多根独立的插线(20),每根所述插线(20)分别布置于所述铁心(10)的相应的凹槽(11)内;
    至少一个端部模块(30,30’),所述端部模块(30,30’)内设有多条电路(34),并且所述端部模块(30,30’)安装至所述铁心(10)的轴向端部上,以使相应的插线(20)通过所述端部模块(30,30’)内相应的电路(34)相互形成电连接从而构成相应的绕组。
  2. 根据权利要求1所述的电枢,其特征在于,所述端部模块(30,30’)被设置成具有一体的结构。
  3. 根据权利要求2所述的电枢,其特征在于,所述端部模块(30,30’)呈扁平状。
  4. 根据权利要求1所述的电枢,其特征在于,所述端部模块(30,30’)设置有多个焊盘(32),每个焊盘(32)对应于相应的一根插线(20),每根插线(20)通过相应的焊盘(32)与相应的电路(34)形成电连接。
  5. 根据权利要求4所述的电枢,其特征在于,所述焊盘(32)通过焊接而连接至相应的插线(20)。
  6. 根据权利要求4所述的电枢,其特征在于,所述焊盘(32)包括焊接端(36)和电路端(37),所述焊接端(36)露出于所述端部模块(30,30’)的表面并通过焊接而与所述插线(20)形成电连接,所述电路端(37)在所述端部模块(30,30’)内部与相应的电路(34)形成电连接。
  7. 根据权利要求1所述的电枢,其特征在于,所述端部模块(30,30’)还包括导热层(35),当端部模块(30,30’)安装至铁心(10)上时,所述导热层(35)紧靠所述铁心(10)。
  8. 根据权利要求1所述的电枢,其特征在于,所述端部模块(30,30’)设有多个开孔(31),每根所述插线(20)穿过相应的一个开孔(31)。
  9. 根据权利要求1所述的电枢,其特征在于,所述插线(20)大致呈直长条形。
  10. 根据权利要求9所述的电枢,其特征在于,所述至少一个端部模块(30,30’)包括第一端部模块(30)和第二端部模块(30’),该第一端部模块(30)和第二端部模块(30’)分别安装在所述铁心(10)的两个轴向端部。
  11. 根据权利要求1所述的电枢,其特征在于,所述插线(20)大致呈U形,并包括两个直线段(21)和一个弯曲段(22),其中所述直线段(21)插入所述铁心(10)的相应的凹槽(11)的内部,所述弯曲段(22)位于所述凹槽(11)的外部。
  12. 根据权利要求11所述的电枢,其特征在于,所述至少一个端部模块(30,30’)为安装在所述铁心(10)的一个轴向端部上的一个端部模块(30’)。
  13. 一种用于电枢(60)的端部模块(30,30’),所述电枢(60)包括:
    铁心(10);
    多根独立的插线(20),每根所述插线(20)分别布置于所述铁心(10)的相应的凹槽(11)内;
    其特征在于,所述端部模块(30,30’)内设有多条电路(34),并且所述端部模块(30,30’)安装至所述铁心(10)的轴向端部上,以使相应的插线(20)通过所述端部模块(30,30’)内相应的电路(34)相互形成电连接从而构成相应的绕组。
  14. 根据权利要求13所述的端部模块,其特征在于,所述端部模块(30,30’)具有一体的结构。
  15. 根据权利要求14所述的端部模块,其特征在于,所述端部模块(30,30’)呈扁平状。
  16. 根据权利要求13所述的端部模块,其特征在于,所述端部模块(30,30’)设置有多个焊盘(32),每个焊盘(32)对应于相应的一根插线(20),每根插线(20)通过相应的焊盘(32)与相应的电路(34)形成电连接。
  17. 根据权利要求16所述的端部模块,其特征在于,所述焊盘(32)通过焊接而连接至相应的插线(20)。
  18. 根据权利要求16所述的端部模块,其特征在于,所述焊盘(32)包括焊接端(36)和电路端(37),所述焊接端(36)露出于所述端部模块(30,30’)的表面并通 过焊接而与相应的插线(20)形成电连接,所述电路端(37)在所述端部模块(30,30’)内部与相应的电路(34)形成电连接。
  19. 根据权利要求13所述的端部模块,其特征在于,所述端部模块(30,30’)还包括导热层(35),当端部模块(30,30’)安装至铁心(10)上时,所述导热层(35)紧靠所述铁心(10)。
  20. 根据权利要求13所述的端部模块,其特征在于,所述端部模块(30,30’)设有多个开孔(31),每根所述插线(20)穿过相应的一个开孔(31)。
  21. 一种用于装配电枢的方法,包括:
    提供铁心(10)和多根独立的插线(20),并将每根所述插线(20)分别布置于所述铁心(10)的相应的凹槽(11)内;
    提供至少一个端部模块(30,30’),所述端部模块(30,30’)内设有多条电路(34);
    将所述端部模块(30,30’)安装至所述铁心(10)的轴向端部上,以使相应的插线(20)通过所述端部模块(30,30’)内相应的电路(34)相互形成电连接从而构成相应的绕组。
  22. 根据权利要求21所述的方法,其特征在于,将所述端部模块(30,30’)安装至所述铁心(10)的端部包括:
    将插线(20)插入所述端部模块(30,30’)的相应的开孔(31)中;并且
    将插线(20)与端部模块(30,30’)中相应的焊盘(32)相焊接以实现相互之间的电连接,其中所述焊盘(32)与端部模块(30,30’)内相应的电路(34))相互电连接。
  23. 根据权利要求21所述方法,其特征在于,所述插线(20)大致呈直长条形,并且所述至少一个端部模块(30,30’)包括第一端部模块(30)和第二端部模块(30’),该第一端部模块(30)和第二端部模块(30’)分别安装在所述铁心(10)的两个轴向端部。
  24. 根据权利要求21所述的方法,其特征在于,所述插线(20)大致呈U形,并包括两个直线段(21)和一个弯曲段(22),其中直线段(21)被布置于所述凹槽(11)的内部,弯曲段(22)位于凹槽(11)的外部,并且端部模块(30,30’)安装在所述铁心(10)的一个轴向端部上。
PCT/CN2017/080887 2016-04-29 2017-04-18 电枢、用于电枢的端部模块和用于装配电枢的方法 WO2017186022A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17788674.4A EP3432446A4 (en) 2016-04-29 2017-04-18 ARMATURE, END ENCLOSURE MODULE, AND REINFORCEMENT ASSEMBLY METHOD
US16/093,967 US20190123608A1 (en) 2016-04-29 2017-04-18 Armature, an end module for an armature and a method for assembling an armature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610284242.7A CN105762947B (zh) 2016-04-29 2016-04-29 电枢、用于电枢的端部模块和用于装配电枢的方法
CN201610284242.7 2016-04-29

Publications (2)

Publication Number Publication Date
WO2017186022A1 true WO2017186022A1 (zh) 2017-11-02
WO2017186022A8 WO2017186022A8 (zh) 2019-04-04

Family

ID=56323169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080887 WO2017186022A1 (zh) 2016-04-29 2017-04-18 电枢、用于电枢的端部模块和用于装配电枢的方法

Country Status (4)

Country Link
US (1) US20190123608A1 (zh)
EP (1) EP3432446A4 (zh)
CN (1) CN105762947B (zh)
WO (1) WO2017186022A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762947B (zh) * 2016-04-29 2017-06-27 上海浦赛动力科技有限公司 电枢、用于电枢的端部模块和用于装配电枢的方法
JP7293627B2 (ja) * 2018-12-05 2023-06-20 株式会社デンソー 回転電機及び回転電機の製造方法
CN113595300B (zh) * 2021-08-09 2022-11-22 浙江盘毂动力科技有限公司 集成定子绕组过桥线的电路板
WO2023145211A1 (ja) * 2022-01-25 2023-08-03 日本発條株式会社 電機子の製造方法
JP7263635B1 (ja) * 2022-01-25 2023-04-24 日本発條株式会社 電機子の製造方法
CN115118108B (zh) * 2022-08-30 2023-01-10 深圳市合利士智能装备有限公司 插线机及其插线方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1665101A (zh) * 2004-03-02 2005-09-07 株式会社日立制作所 旋转电机
CN101651378A (zh) * 2008-08-12 2010-02-17 通用电气公司 定子及其制造方法
CN102593976A (zh) * 2011-01-04 2012-07-18 阿斯莫有限公司 电动机
CN104852498A (zh) * 2015-04-21 2015-08-19 李龙 集中绕组电机的绕组端接线盘
CN105762947A (zh) * 2016-04-29 2016-07-13 上海浦赛动力科技有限公司 电枢、用于电枢的端部模块和用于装配电枢的方法
CN205647047U (zh) * 2016-04-29 2016-10-12 上海浦赛动力科技有限公司 电枢及用于电枢的端部模块

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2875754B2 (ja) * 1994-04-15 1999-03-31 小倉クラッチ株式会社 電磁連結装置のアーマチュア組立体
JP3550880B2 (ja) * 1996-05-31 2004-08-04 株式会社日立製作所 モータ及びモータの固定子コイル端末線接続方法
JP3900717B2 (ja) * 1998-11-16 2007-04-04 トヨタ自動車株式会社 回転電機
JP3586186B2 (ja) * 2000-11-15 2004-11-10 株式会社日立製作所 回転電機の固定子
CN1279677C (zh) * 2003-01-30 2006-10-11 株式会社电装 具有抗冲击和抗振动的终端连接件的车辆交流发电机
CN102299593B (zh) * 2011-08-18 2013-05-22 陕西航空电气有限责任公司 一种多导体并联绕组元件的成型方法
CN104205575B (zh) * 2012-03-29 2017-03-01 本田技研工业株式会社 旋转电机的定子结构
CN202586564U (zh) * 2012-05-21 2012-12-05 常州市旭泉精密电机有限公司 定子带有接线板的新型步进电机
DE102013206593A1 (de) * 2013-04-12 2014-10-30 Siemens Aktiengesellschaft xialflussmaschine in Leichtbauweise
KR20160014148A (ko) * 2014-07-28 2016-02-11 현대모비스 주식회사 헤어핀 권선모터의 고정자 어셈블리
JP6539997B2 (ja) * 2014-11-25 2019-07-10 日本電産株式会社 モータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1665101A (zh) * 2004-03-02 2005-09-07 株式会社日立制作所 旋转电机
CN101651378A (zh) * 2008-08-12 2010-02-17 通用电气公司 定子及其制造方法
CN102593976A (zh) * 2011-01-04 2012-07-18 阿斯莫有限公司 电动机
CN104852498A (zh) * 2015-04-21 2015-08-19 李龙 集中绕组电机的绕组端接线盘
CN105762947A (zh) * 2016-04-29 2016-07-13 上海浦赛动力科技有限公司 电枢、用于电枢的端部模块和用于装配电枢的方法
CN205647047U (zh) * 2016-04-29 2016-10-12 上海浦赛动力科技有限公司 电枢及用于电枢的端部模块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432446A4 *

Also Published As

Publication number Publication date
WO2017186022A8 (zh) 2019-04-04
CN105762947A (zh) 2016-07-13
EP3432446A4 (en) 2019-02-27
EP3432446A1 (en) 2019-01-23
US20190123608A1 (en) 2019-04-25
CN105762947B (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
WO2017186022A1 (zh) 电枢、用于电枢的端部模块和用于装配电枢的方法
KR101035764B1 (ko) 전기 기기의 코어 백 및 그의 제조 방법
US7582999B2 (en) Electric machine having a magnetically inducible core
JP5590490B2 (ja) アキシャル型動電型装置用の箔コイル構造およびその巻線方法
JP6056100B2 (ja) 渦巻型コイル
WO2018012127A1 (ja) コアレスコイル及びこのコアレスコイルの製造方法
KR101071001B1 (ko) 전기 기기의 고정자
JP4254152B2 (ja) Acモータの固定子
CN105931815A (zh) 平面变压器
JP2004153874A (ja) モータの固定子
US10431366B2 (en) Noise filter
US8575797B2 (en) Low profile permanent magnet synchronous motor with segment structure
JP2005150195A (ja) トランス
CN205647047U (zh) 电枢及用于电枢的端部模块
JP2007173263A (ja) エッジワイズ巻電磁コイル及び製造方法
JP4722373B2 (ja) 溶接トランス
US11050317B2 (en) Rotary electric machine and manufacturing method thereof
JP2004208464A (ja) 電動機の巻線構造
JP2001052945A (ja) 閉磁路インダクタおよびその製造方法。
CN202503414U (zh) 一种同步电机磁极线圈
CN210325464U (zh) 磁感线圈
JP2971943B2 (ja) 薄型トランス
JP2002075738A (ja) コイル及びそれを用いたコイル部品
JP2007201235A (ja) シート巻線及びシート巻線変圧器
JP2005026268A (ja) 積層コモンモードフィルタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017788674

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017788674

Country of ref document: EP

Effective date: 20181015

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788674

Country of ref document: EP

Kind code of ref document: A1