WO2017185677A1 - 一种低裂纹敏感性低屈强比特厚钢板及其制备方法 - Google Patents

一种低裂纹敏感性低屈强比特厚钢板及其制备方法 Download PDF

Info

Publication number
WO2017185677A1
WO2017185677A1 PCT/CN2016/102490 CN2016102490W WO2017185677A1 WO 2017185677 A1 WO2017185677 A1 WO 2017185677A1 CN 2016102490 W CN2016102490 W CN 2016102490W WO 2017185677 A1 WO2017185677 A1 WO 2017185677A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
steel plate
cooling
rolling
stage
Prior art date
Application number
PCT/CN2016/102490
Other languages
English (en)
French (fr)
Inventor
孙宪进
高助忠
胡建国
李经涛
苗丕峰
吴小林
石艾来
赵孚
许峰
方寿玉
Original Assignee
江阴兴澄特种钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴兴澄特种钢铁有限公司 filed Critical 江阴兴澄特种钢铁有限公司
Priority to EP16900185.6A priority Critical patent/EP3309276B1/en
Priority to ES16900185T priority patent/ES2723700T3/es
Priority to US15/735,489 priority patent/US10781510B2/en
Publication of WO2017185677A1 publication Critical patent/WO2017185677A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation

Definitions

  • the present invention relates to the field of steel plate forging technology, and in particular to a low crack sensitivity, low yield bit thick steel plate suitable for use in a low temperature environment of -60 ° C and a method of manufacturing the same.
  • Patent Publication No. CN102433507A discloses a low-yield ratio easy-welding high-strength steel plate and a preparation process thereof, which are designed with low carbon, Nb, Cr microalloying compositions, and have a yield strength of 460-560 MPa.
  • the tensile strength is 700-790 MPa, and the yield ratio is ⁇ 0.7.
  • the patented product is completely different in composition from the present invention, and is only used under the condition of -20 ° C, and does not satisfy the condition of -60 ° C; the thickness specification is only 30 mm thick, for Large thickness steel plates do not guarantee performance.
  • Patent Publication No. CN103114186A discloses a technical solution for a controlled cooling method of a weldable high-performance steel sheet, which is designed and controlled by microalloying elements such as low carbon, Nb, V, Cr, B, Ti, etc.
  • a controlled cooling process a low yield ratio steel plate with a thickness of 12-60 mm and a temperature of -40 ° C of Pcm ⁇ 0.21 can be obtained, the yield strength is 530 MPa, the tensile strength is > 700 MPa, and the yield ratio is ⁇ 0.8, -40.
  • the technical problem to be solved by the present invention is to provide a method capable of being made at -60 ° C for the above prior art.
  • a high-strength steel plate having a thickness of 40-70 mm, a carbon equivalent ⁇ 0.43, a cold crack sensitivity coefficient (Pcm) ⁇ 0.20, and a yield ratio ⁇ 0.80 and a method for producing the same.
  • the technical solution adopted by the present invention to solve the above problems is: a steel plate excellent in welding resistance and low-layer resistance to lamellar tearing, the chemical composition mass percentage of the steel plate is C 0.05-0.09; Si 0.2-0.4; Mn 1.3-1.6; Al 0.02-0.04; Nb 0.03-0.08; V 0.03-0.08; Cr 0.1-0.5; Ni 0.1-0.5; Mo 0.1-0.3; Cu 0.2-0.5; Ti 0.01-0.02; P ⁇ 0.015; ⁇ 0.003; N ⁇ 0.007, the balance is Fe and unavoidable impurities, carbon equivalent ⁇ 0.43, cold crack sensitivity coefficient Pcm ⁇ 0.20.
  • the smelting process of steel plate is: KR hot metal pretreatment _ converter smelting - LF refining _RH vacuum degassing _ slab continuous casting _ slow cooling _ control rolling _ control cooling _ fine inspection _ performance testing _ packaging warehousing.
  • the thickness of the steel sheet of the present application is 40 to 70 mm, the yield strength is ⁇ 460 MPa, the tensile strength is 570 to 760 MPa, the yield ratio is ⁇ 0.80, the elongation is ⁇ 17%, and the 1/4 thickness of the steel sheet at -60 °C and 1
  • the Charpy impact energy at /2 thickness is >150J, and the Z-direction reduction ratio is ⁇ 35%, which can meet the service in the ultra-low temperature environment of -60 °C.
  • C The main elements affecting strength, low temperature toughness and weldability, the strength of the steel is increased in a solid solution strengthening form, and if the carbon content is too low (less than 0.03%), the strength cannot be ensured, and the carbon content is too high (high) At 0.10%), it will adversely affect the toughness and weldability of steel.
  • the C content of the invention is selected in the range of 0.05-0.09%, and the low temperature toughness and weldability are ensured on the basis of ensuring the strength of the steel sheet.
  • Si Deoxidizing element, which acts as a solid solution strengthening, and an excessive Si content adversely affects surface quality, toughness, and weldability, and the Si content of the present invention is selected from the range of 0.2 to 0.4%.
  • Mn the main alloying element affecting strength, low temperature toughness and weldability, a typical austenite stabilizing element, which acts as a solid solution strengthening, and the Mn content below 0.8% can not act as a solid solution strengthening agent. Too high will increase the carbon equivalent and crack sensitivity coefficient of steel, which will adversely affect the weldability of steel. Similarly, Mn tends to segregate in the core of the steel plate, which adversely affects the low temperature impact toughness of the steel core.
  • the Mn content of the present invention is selected in the range of 1.3-1.6%;
  • A1 Deoxidizing element, which functions as deoxidation and nitrogen fixation, and forms A1N to refine grains.
  • Nb mainly refines the grain elements, and significantly refines the austenite grains by the pinning action and the precipitation strengthening effect during the rolling process, and improves the austenite recrystallization temperature, which is favorable for the improvement of strength and toughness.
  • the selection range of the Nb content of the invention is 0.03-0.08%
  • V a carbonitride forming element, in the form of dispersion strengthening, increasing the strength and toughness of the steel by forming V (C, N), refining the ferrite grain size, and if the content is too high, the weldability is generated. Negative Effects.
  • the V content of the present invention can be selected in the range of 0.03-0.08%.
  • Cr a medium carbide forming element capable of remarkably improving the hardenability and strength of steel. Excessive addition will adversely affect the low temperature impact toughness and weldability of the steel.
  • the Cr content of the present invention can be selected from the range of 0.1 to 0.5.
  • Ni It is possible to improve the strength of steel and improve low temperature impact toughness. If the Ni content is too high, the iron oxide scale will have a higher viscosity, which will affect the surface quality of the steel sheet. At the same time, too high Ni increases the carbon equivalent and crack sensitivity coefficient of the steel sheet, which affects the weldability of the steel sheet.
  • the Ni content of the present invention is selected in the range of 0.1 to 0.5%.
  • Mo can significantly delay the pearlite phase transition, and ensure the bainite structure at a lower cooling rate. In the ultra-thickness and low yield ratio steel, it can ensure that the ferrite bain is obtained in the entire thickness section. Body biphasic organization. The range of Mo content in the present invention is 0.1-0.3%.
  • Cu mainly functions as solid solution strengthening and precipitation strengthening, and can improve the atmospheric corrosion resistance of steel and reduce the hydrogen induced cracking sensitivity of the steel sheet; too high may adversely affect the weldability of the steel sheet.
  • the C u content of the present invention is selected in the range of 0.2 to 0.5%.
  • Ti a strong nitride forming element, which acts as a precipitation strengthening by forming TiN, effectively refining crystal grains, and improving low temperature toughness, and the addition of Nb and Ti can further increase the recrystallization temperature of austenite, and the content is too high. It will have an adverse effect on toughness.
  • the Ti content of the present invention is selected in the range of 0.01 to 0.02%.
  • P, S As a main impurity element in the steel, the low-temperature impact toughness of the steel sheet, especially the core portion of the steel sheet, may be adversely affected, and the lower the control, the better. According to the existing actual production conditions, the P and S contents of the present invention are selected in the range of P ⁇ 0.015 ⁇ 3 ⁇ 4, S ⁇ 0.003 ⁇ 3 ⁇ 4.
  • the method for preparing the low crack sensitivity low yield ratio steel sheet includes the following process steps:
  • the continuous casting slab is subjected to two-stage rolling, the first stage is rough rolling, the rolling temperature is 1050-1150 ° C, the average rolling reduction rate of single pass is ⁇ 15%; the second stage is finishing rolling , rolling temperature is 840-900 ° C, cumulative pass reduction rate ⁇ 60 ⁇ 3 ⁇ 4;
  • control cooling is divided into two stages, the first stage is air cooling stage, the quenching temperature is 800-860 ° C, the final cooling temperature is 600-750 ° C; the second stage is acceleration In the cooling stage, the cooling rate is 13-17 ° C / s, and the final cooling temperature is 300-450 ° C.
  • the present invention is directed to a low crack-sensitive low-buckle bit-thickness high-strength steel sheet used at -60 ° C, and has a composition of low carbon, low carbon equivalent, and low crack sensitivity coefficient, and is high in process.
  • the present invention is designed with a low carbon, low carbon equivalent and low crack sensitivity component, C 0.05-0.09%, carbon equivalent ⁇ 0.43, and crack sensitivity coefficient Pcm ⁇ 0.20, ensuring the weldability of the steel sheet.
  • the 40-70mm thick extra-thick steel plate produced according to the present invention has excellent properties of low yield ratio and high low temperature toughness, has a yield strength of ⁇ 460 MP a and a tensile strength of 570- on the basis of good weldability. Between 760MP a, the yield ratio is ⁇ 0.80, the elongation is ⁇ 17%, the 1/4 thickness of the steel plate at -60°C and the Charpy impact energy at 1/2 thickness are ⁇ 150J, and the Z-direction reduction is ⁇ 35%. , can be used under low temperature conditions of -60 ° C. Brief description of the drawing
  • FIG. 1 is a microstructural view of a 1/4 thickness position of a 70 mm thick steel plate according to an embodiment of the present invention
  • FIG. 2 is a microstructural view of a 1/2 thickness position of a 70 mm thick steel plate according to an embodiment of the present invention.
  • Two embodiments relate to a steel plate manufacturing method: KR hot metal pretreatment_converter smelting-LF refining_RH vacuum degassing_continuous casting_continuous casting blank with cover slow cooling_continuous casting blank inspection and cleaning_casting billet heating_ High-pressure water descaling_Control rolling_Control cooling_Hot straightening_Air cooling, manufacturing two sets of low crack-sensitive low-refractive-ratio high-strength steel sheets for low temperature use of 70 mm in thickness.
  • it is also fully applicable to the manufacture of steel plates with a thickness of 70 mm or less.
  • the specific process of the heating, rolling and slow cooling stages is as follows: heating the 370 mm thick continuous casting billet to 1180 ° C, holding for 180 min (Example 1) or heating to 1220 ° C, holding for 150 min (Example 2), After the continuous casting billet is discharged, high-pressure water is used for descaling; then, two-stage rolling is performed, the first stage is rough rolling, the rolling temperature is 106 0 ° C (Example 1) or 1100 ° C (Example 2), the thickness of the intermediate blank 240mm, single pass average reduction rate of 1 6%; second stage rolling temperature is 860 ° C, cumulative pass reduction rate of 65% (Example 1) or second stage rolling temperature 840 ° C, cumulative road The secondary reduction ratio was 65% (Example 2), and the final steel sheet thickness was 70 mm (Example 1) and 70 mm (Example 2); after rolling, the steel sheet was air-cooled to 680 ° C (Example 1) and 650 ° C (Example)
  • the ultra-low carbon, low carbon equivalent and low crack sensitive component design adopted by the invention successfully manufactures low crack sensitivity and low yield strength under the condition of 40-70 mm thickness-60 ° C by controlled rolling and controlled cooling process. Compared with steel plates, it fills the domestic gap.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种低裂纹敏感性低屈强比特厚钢板,该钢板的化学成分质量百分含量为C 0.05-0.09;Si 0.2-0.4;Mn 1.3-1.6;Al 0.02-0.04;Nb 0.03-0.08;V 0.03-0.08;Cr 0.1-0.5;Ni 0.1-0.5;Mo 0.1-0.3;Cu 0.2-0.5;Ti 0.01-0.02;P≤0.015;S≤0.003;N≤0.007,余量为Fe及不可避免的杂质,碳当量≤0.43,冷裂纹敏感系数Pcm≤0.20。经KR铁水预处理-转炉冶炼-LF精炼-RH真空脱气-连铸-连铸坯加罩缓冷-铸坯加热-控制轧制-控制冷却-热矫直-空冷等工艺步骤,制造厚度在40-70mm的低裂纹敏感性低屈强比钢板。

Description

一种氏裂纹敏感性氏屈强比特厚钢板及其制备方法 技术领域
[0001] 本发明涉及钢板锻造技术领域, 具体涉及一种适于 -60°C低温环境下使用的低 裂纹敏感性、 低屈强比特厚钢板及其制造方法。
背景技术
[0002] 随着工业技术和经济的不断发展, 高强度结构钢越来越多的应用在造船、 海工 装备、 建筑结构、 铁路运输、 桥梁建设、 大型钢结构等领域中, 强度的升高可 以大大减少钢材的总使用量, 在减少资源投入的同吋, 使总体建造装备轻量化 。 然而, 随着钢板强度的升高, 与普通低合金结构钢相比, 也带来了一些负面 性能。 其中, 屈强比升高、 焊接性能下降、 低温韧性下降是主要负面影响, 严 重制约了高强钢的推广和发展。 低屈强比、 高低温韧性和良好的焊接性已经成 为第三代高性能结构钢的主要发展方向。 目前, 低碳设计的低裂纹敏感性低屈 强比的可在 -60°C下使用的 40-70mm厚度的高强高韧性钢板在国内还未见有报道
[0003] 专利公告号为 CN102433507A的发明专利公幵了一种低屈强比易焊接高强钢板 及其制备工艺, 采用低碳、 Nb、 Cr微合金化成分设计, 屈服强度为 460-560MPa , 抗拉强度为 700-790MPa, 屈强比 < 0.7。 但是, 该专利产品在成分设计上与本 发明完全不同, 同吋, 仅满足 -20°C条件下使用, 不满足 -60°C条件下使用; 厚度 规格上, 仅做到 30mm厚度, 对于更大厚度的钢板则无法保证性能。
[0004] 专利公告号为 CN103114186A的发明专利公幵了一种易焊接高性能钢板的控制 冷却方法的技术方案, 采用低碳、 Nb、 V、 Cr、 B、 Ti等微合金元素设计以及控 轧控冷工艺, 可获得 Pcm≤0.21的 12-60mm厚度 -40°C条件下使用的低屈强比钢板 , 屈服强度〉 530MPa, 抗拉强度〉 700MPa, 屈强比 < 0.8, -40。C冲击功〉 120J 技术问题
[0005] 本发明所要解决的技术问题是针对上述现有技术提供一种可在 -60°C条件下使 用的 40-70mm厚度, 碳当量≤0.43、 冷裂纹敏感系数 (Pcm) ≤0.20、 屈强比≤0.80 的高强钢板及其制造方法。
问题的解决方案
技术解决方案
[0006] 本发明解决上述问题所采用的技术方案为: 一种易焊接低温抗层状撕裂性能优 异的钢板, 该钢板的化学成分质量百分含量为 C 0.05-0.09; Si 0.2-0.4; Mn 1.3-1.6; Al 0.02-0.04; Nb 0.03-0.08; V 0.03-0.08; Cr 0.1-0.5; Ni 0.1-0.5; Mo 0.1-0.3; Cu 0.2-0.5; Ti 0.01-0.02; P≤0.015; S <0.003; N≤0.007, 余量为 Fe及 不可避免的杂质, 碳当量≤0.43, 冷裂纹敏感系数 Pcm≤0.20。
[0007] 钢板的冶炼流程为: KR铁水预处理 _转炉冶炼一LF精炼 _RH真空脱气_板坯 连铸 _缓冷 _控制轧制_控制冷却_精检_性能检测_包装入库。
[0008] 本申请钢板的厚度为 40〜70mm, 屈服强度≥460MPa, 抗拉强度 570〜760MPa , 屈强比≤0.80, 延伸率≥17%, -60°C下钢板的 1/4厚度和 1/2厚度处夏比冲击功均 >150J, Z向断面收缩率≥35%, 可满足在 -60°C超低温环境下服役。
[0009] 本发明中所含有所有组分的作用及其含量选择理由具体说明如下:
[0010] C: 影响强度、 低温韧性和焊接性的主要元素, 以固溶强化形式提高钢的强度 , 碳含量过低吋 (低于 0.03%) , 则不能保证强度, 碳含量过高 (高于 0.10%) 会对钢的韧性及焊接性产生不利影响。 本发明 C含量选择范围为 0.05-0.09%, 在 保证钢板强度的基础上, 保证具有良好的低温韧性和焊接性。
[0011] Si: 脱氧元素, 起固溶强化作用, Si含量过高会对表面质量、 韧性及焊接性能 产生不利影响, 本发明 Si含量选择范围为 0.2-0.4%。
[0012] Mn: 影响强度、 低温韧性和焊接性的主要合金元素, 典型的奥氏体稳定化元 素, 起固溶强化作用, Mn含量在低于 0.8%吋则无法起到固溶强化的作用, 过高 会提高钢的碳当量和裂纹敏感系数, 对钢的焊接性产生不利影响; 同吋, Mn容 易在钢板心部产生偏析, 对钢板心部的低温冲击韧性产生不利影响。 本发明 Mn 含量的选择范围为 1.3-1.6%;
[0013] A1: 脱氧元素, 起脱氧和固氮的作用, 形成 A1N起到细化晶粒的作用。 本发明 [0014] Nb: 主要细化晶粒元素, 在轧制过程中通过钉扎作用和沉淀强化作用显著细化 奥氏体晶粒, 提高奥氏体再结晶温度, 有利于强度和韧性的提高。 本发明 Nb含 量的选择范围为 0.03-0.08%
[0015] V: 碳氮化物形成元素, 以弥散强化的形式, 通过形成 V (C, N) 提高钢的强 度和韧性, 细化铁素体晶粒度, 含量过高则会对焊接性产生不利影响。 本发明 V 含量的选择范围为 0.03-0.08%。
[0016] Cr: 中等碳化物形成元素, 能够显著提高钢的淬透性和强度。 添加过量, 则会 对钢的低温冲击韧性和焊接性产生不利影响。 本发明 Cr含量的选择范围为 0.1-0.5 。
[0017] Ni: 能够同吋提高钢的强度和改善低温冲击韧性。 Ni含量过高吋, 会粘度较高 的氧化铁皮, 影响钢板表面质量。 同吋, 太高的 Ni提高钢板的碳当量和裂纹敏 感系数, 影响钢板的焊接性。 本发明 Ni含量的选择范围为 0.1-0.5%。
[0018] Mo: 能够显著推迟珠光体相变, 在较低冷速下保证得到贝氏体组织, 在特厚 低屈强比钢中, 能够保证在整个厚度断面上均得到铁素体贝氏体双相组织。 本 发明中 Mo含量的选择范围为 0.1-0.3%
[0019] Cu: 主要起到固溶强化和沉淀强化的作用, 同吋能够提高钢的耐大气腐蚀性能 , 降低钢板的氢致裂纹敏感性; 过高会对钢板的焊接性产生不利影响。 本发明 C u含量的选择范围为 0.2-0.5%。
[0020] Ti: 强氮化物形成元素, 通过形成 TiN起到析出强化的作用, 有效细化晶粒, 提高低温韧性, Nb和 Ti复合加入可进一步提高奥氏体的再结晶温度, 含量过高 则会对韧性产生不利影响。 本发明 Ti含量的选择范围为 0.01-0.02%。
[0021] P、 S: 作为钢中的主要杂质元素, 对钢板尤其是钢板心部的低温冲击韧性会产 生不利影响, 控制越低越好。 根据现有实际生产条件, 本发明 P、 S含量的选择 范围为 P≤0.015<¾, S≤0.003<¾。
[0022] 上述低裂纹敏感性低屈强比钢板的制备方法包含如下工艺步骤:
[0023] (1) 在炼钢工序中, 采用 KR铁水预处理、 转炉冶炼、 LF精炼、 RH真空脱气 处理生产出高纯净钢水, 然后通过特厚连铸板坯生产工艺生产出 150-450mm厚度 连铸板坯, 将连铸坯加罩堆垛缓冷扩氢处理, 堆垛缓冷吋间≥120小吋; [0024] (2) 将连铸坯加热至 1130-1250°C, 保温 150-180min, 使钢中的合金元素充分 固溶以保证性能的均匀性, 连铸坯出炉后高压水除鳞;
[0025] (3) 将连铸坯进行两阶段轧制, 第一阶段为粗轧, 幵轧温度在 1050-1150°C, 单道次平均压下率≥15%; 第二阶段为精轧, 幵轧温度为 840-900°C, 累计道次压 下率≥60<¾;
[0026] (4) 轧后进行控制冷却, 控制冷却分为两个阶段, 第一阶段为空冷阶段, 幵 冷温度 800-860°C, 终冷温度 600-750°C; 第二阶段为加速冷却阶段, 冷却速度为 13-17°C/s, 终冷温度 300-450°C。
[0027] (5) 控制控冷之后, 进行热矫直, 最后空冷到室温即得钢板成品。
[0028] 本发明针对在 -60°C条件下使用的低裂纹敏感性低屈强比特厚高强钢板, 成分 上采用低碳、 低碳当量和低裂纹敏感系数的成分设计, 工艺上, 采用高纯净钢 的冶炼、 以 150-450mm厚度连铸板坯作为原料, 采取控制轧制加控制冷却的方法 生产出 40-70mm厚度、 可在 -60°C条件下使用的低裂纹敏感性低屈强比特厚高强 钢板。
发明的有益效果
有益效果
[0029] 与现有技术相比, 本发明的优点在于:
[0030] (1) 本发明采用低碳、 低碳当量和低裂纹敏感性成分设计, C 0.05-0.09%, 碳 当量≤0.43, 裂纹敏感系数 Pcm≤0.20, 确保钢板的易焊接性。
[0031] 按照本发明生产的 40-70mm厚度特厚钢板, 在具备良好的焊接性基础上, 还具 有低屈强比高低温韧性的优异性能, 屈服强度≥460MPa, 抗拉强度在 570-760MP a之间, 屈强比≤0.80, 延伸率≥17%, -60°C下钢板的 1/4厚度和 1/2厚度处夏比冲 击功均≥150J, Z向断面收缩率≥35%, 能够满足在 -60°C的低温条件下使用。 对附图的简要说明
附图说明
[0032] 图 1为本发明实施例 70mm厚度钢板 1/4厚度位置的显微组织图;
[0033] 图 2为本发明实施例 70mm厚度钢板 1/2厚度位置的显微组织图。 实施该发明的最佳实施例
本发明的最佳实施方式
[0034] 以下结合附图实施例对本发明作进一步详细描述。
[0035] 实施例 1-2:
[0036] 两实施例所涉及钢板制造方法: KR铁水预处理 _转炉冶炼一LF精炼 _RH真空 脱气 _连铸 _连铸坯加罩缓冷_连铸坯检査清理_铸坯加热_高压水除鳞 _控 制轧制 _控制冷却_热矫直 _空冷, 制造两组厚度 70mm的低温使用的低裂纹敏 感性低屈强比高强钢板。 当然也完全适用于 70mm以下厚度钢板的制造。
[0037] 上述加热、 轧制和缓冷阶段的具体工艺为: 将 370mm厚度连铸坯加热至 1180°C , 保温 180min (实施例 1) 或加热至 1220°C, 保温 150min (实施例 2) , 连铸坯 出炉后使用高压水除鳞; 然后进行两阶段轧制, 第一阶段为粗轧, 幵轧温度 106 0°C (实施例 1) 或 1100°C (实施例 2) , 中间坯厚度 240mm, 单道次平均压下率 1 6%; 第二阶段幵轧温度为 860°C, 累计道次压下率 65% (实施例 1) 或第二阶段 幵轧温度 840°C, 累计道次压下率 65% (实施例 2) , 最终钢板厚度为 70mm (实 施例 1) 和 70mm (实施例 2) ; 轧后钢板空冷到 680°C (实施例 1) 和 650°C (实施 例 2) ; 然后进行加速冷却, 冷速 13-17°C/s, 终冷温度为 400°C (实施例 1) 和 430 °C (实施例 2) , 最后空冷到室温。
[0038] 实施例 1和 2制得的钢板化学成分见表 1, 钢板的力学性能见表 2, 钢板 1/4和 1/2 厚度处的显微组织如图 1和图 2所示。
[0039] 表 1实施例 1和 2的低裂纹敏感性低屈强比特厚钢板的化学成分 (wt.%)
[]
[表 1]
Figure imgf000008_0001
[0040] Ceq=C+Mn/6+ (Cr+Mo+V) /5+ (Ni+Cu) /15
[0041] Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B
[0042]
[0043] 表 2实施例 1和 2低裂纹敏感性低屈强比特厚钢板的力学性能 碰 雄 2 向断窗
J;
Axon
ΜΡΆ %
J 2*L2 0.75
稱 1 m 腳 27_5 072
m 25 S "2¾232 l«
1/2 4W 657 0.73
[0044]
[0045] 本发明通过的超低碳、 低碳当量和低裂纹敏感性成分设计, 通过控轧控冷工艺 成功制造了 40-70mm厚度 -60°C条件下使用的低裂纹敏感性低屈强比钢板, 填补 了国内空白。
本发明的实施方式
[0046] 在此处键入本发明的实施方式描述段落。 工业实用性
[0047] 在此处键入工业实用性描述段落。
序列表自由内容
[0048] 在此处键入序列表自由内容描述段落。

Claims

权利要求书
[权利要求 1] 一种低裂纹敏感性低屈强比特厚钢板, 其特征在于: 该钢板的化学成 分质量百分含量为 C 0.05-0.09; Si 0.2-0.4; Mn 1.3-1.6; Al 0.02-0.04 ; Nb 0.03-0.08; V 0.03-0.08; Cr 0.1-0.5; Ni 0.1-0.5; Mo 0.1-0.3; Cu 0.2-0.5; Ti 0.01-0.02; P≤0.015; S <0.003; N≤0.007, 余量为 Fe及不 可避免的杂质, 碳当量≤0.43, 冷裂纹敏感系数 Pcm≤0.20。
[权利要求 2] 根据权利要求 1所述的低裂纹敏感性低屈强比特厚钢板, 其特征在于
: 该钢板的厚度为 40〜70mm, 屈服强度≥460MPa, 抗拉强度 570〜76 OMPa, 屈强比≤0.80, 延伸率≥17<¾, -60°C下钢板的 1/4厚度和 1/2厚度 处夏比冲击功均≥1501, Z向断面收缩率≥35%, 可在 -60°C下服役。
[权利要求 3] —种制造权利要求 1所述低裂纹敏感性低屈强比特厚钢板的方法, 其 特征在于: 包含以下工艺步骤:
(1) 采用 KR铁水预处理、 转炉冶炼、 LF精炼、 RH真空脱气处理生 产出高纯净钢水, 然后通过特厚连铸板坯生产工艺生产出 150-450mm 厚度连铸板坯, 将连铸坯加罩堆垛缓冷扩氢处理, 堆垛缓冷吋间≥12 0小吋;
(2) 将连铸坯加热至 1130-1250°C, 保温 150-180min, 连铸坯出炉后 高压水除鳞;
(3) 将连铸坯进行两阶段轧制, 第一阶段为粗轧, 幵轧温度在 1050- 1150°C, 单道次平均压下率≥15%; 第二阶段为精轧, 幵轧温度为 840 -900°C, 累计道次压下率≥60<¾;
(4) 轧后进行控制冷却, 控制冷却分为两个阶段, 第一阶段为空冷 阶段, 幵冷温度 800-860°C, 终冷温度 600-750°C; 第二阶段为加速冷 却阶段, 冷却速度为 13-17°C/s, 终冷温度 300-450°C;
(5) 控制控冷之后, 进行热矫直, 最后空冷到室温即得钢板成品。
PCT/CN2016/102490 2016-04-28 2016-10-19 一种低裂纹敏感性低屈强比特厚钢板及其制备方法 WO2017185677A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16900185.6A EP3309276B1 (en) 2016-04-28 2016-10-19 Low-crack-sensitivity and low-yield-ratio ultra-thick steel plate and preparation method therefor
ES16900185T ES2723700T3 (es) 2016-04-28 2016-10-19 Placa de acero ultra-espesa de sensibilidad débil a la fusiración y baja relación de límite de elasticidad a la tracción y su método de fabricación
US15/735,489 US10781510B2 (en) 2016-04-28 2016-10-19 Thick steel plate with low cracking sensitivity and low yield ratio and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610272418.7A CN105803325B (zh) 2016-04-28 2016-04-28 一种低裂纹敏感性低屈强比特厚钢板及其制备方法
CN201610272418.7 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017185677A1 true WO2017185677A1 (zh) 2017-11-02

Family

ID=56458747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102490 WO2017185677A1 (zh) 2016-04-28 2016-10-19 一种低裂纹敏感性低屈强比特厚钢板及其制备方法

Country Status (5)

Country Link
US (1) US10781510B2 (zh)
EP (1) EP3309276B1 (zh)
CN (1) CN105803325B (zh)
ES (1) ES2723700T3 (zh)
WO (1) WO2017185677A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111926162A (zh) * 2020-07-13 2020-11-13 首钢集团有限公司 一种性能优良的特厚钢板及其制备方法
CN113231468A (zh) * 2021-02-25 2021-08-10 石钢京诚装备技术有限公司 低硬度38CrMoAl棒材的生产方法
CN114150220A (zh) * 2021-11-26 2022-03-08 湖南华菱湘潭钢铁有限公司 一种低碳当量正火容器钢板的生产方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803325B (zh) * 2016-04-28 2017-10-27 江阴兴澄特种钢铁有限公司 一种低裂纹敏感性低屈强比特厚钢板及其制备方法
CN106435379B (zh) * 2016-10-17 2019-01-11 江阴兴澄特种钢铁有限公司 550MPa级特厚易焊接高韧性抗层状撕裂钢板及其制造方法
WO2018072076A1 (zh) * 2016-10-18 2018-04-26 江阴兴澄特种钢铁有限公司 一种连铸坯制造的厚度达177.8mm齿条钢板及其制造方法
CN106567011A (zh) * 2016-11-09 2017-04-19 江阴兴澄特种钢铁有限公司 适用于‑60℃的易焊接高强高韧性特厚钢板及其制造方法
CN107502821B (zh) * 2017-08-29 2019-06-25 江阴兴澄特种钢铁有限公司 一种特厚规格超低温环境下使用的经济型x70管线钢板及其制造方法
CN107630166B (zh) * 2017-09-26 2019-03-29 首钢集团有限公司 一种连铸坯生产易焊接特厚桥梁用钢及其生产方法
CN107937802A (zh) * 2017-10-26 2018-04-20 江阴兴澄特种钢铁有限公司 一种低温条件下使用的60‑80mm厚低裂纹敏感性、易焊接管件用钢板及其制造方法
CN108034885B (zh) * 2017-11-09 2020-05-15 江阴兴澄特种钢铁有限公司 一种低温条件下使用的低裂纹敏感性管件用钢板及其制造方法
CN108754327B (zh) * 2018-06-15 2019-07-30 马鞍山钢铁股份有限公司 一种屈服强度460MPa级桥梁结构用高韧性耐候热轧H型钢及其生产方法
JP7188187B2 (ja) * 2019-02-28 2022-12-13 Jfeスチール株式会社 鋳片の冷却方法
CN110331332A (zh) * 2019-06-28 2019-10-15 江阴兴澄特种钢铁有限公司 一种用dq替代调质工艺生产超低温条件下使用的特厚管件用钢板及其制造方法
CN110846570A (zh) * 2019-10-28 2020-02-28 南京钢铁股份有限公司 一种高韧性q460级高强度钢板及其制造方法
CN114075638B (zh) * 2020-08-18 2023-08-15 中国石油化工股份有限公司 一种钢材料、膨胀波纹管用钢及其制备方法
CN112195396A (zh) * 2020-09-10 2021-01-08 江阴兴澄特种钢铁有限公司 一种兼具抗hic及耐冲刷深海钻探隔水管用x80管线用钢板及其制造方法
CN112301205B (zh) * 2020-10-19 2022-04-29 攀钢集团攀枝花钢铁研究院有限公司 一种高屈强比珠光体钢轨及其制备方法
CN112609131B (zh) * 2020-10-27 2022-03-15 河钢股份有限公司承德分公司 一种低碳铝镇静冷镦钢及其生产方法
CN113025885A (zh) * 2021-02-08 2021-06-25 江阴兴澄特种钢铁有限公司 一种具有良好抗hic性能的低屈强比高强管线钢板及其制造方法
CN113528966A (zh) * 2021-07-19 2021-10-22 新疆八一钢铁股份有限公司 一种厚度50-80mm建筑结构用钢板的生产方法
CN113699431A (zh) * 2021-08-26 2021-11-26 广东韶钢松山股份有限公司 一种减少低合金钢表面裂纹的方法
CN113913695B (zh) * 2021-10-13 2022-10-18 鞍钢股份有限公司 耐腐蚀抗疲劳水下油气采输用管线钢及其生产方法
CN114480961B (zh) * 2021-12-24 2023-03-10 安阳钢铁集团有限责任公司 一种冷裂纹敏感系数≤0.19的620MPa级高强钢及其生产方法
CN114807750B (zh) * 2022-04-06 2023-09-15 江阴兴澄特种钢铁有限公司 一种薄规格500MPa级低屈强比高韧性桥梁钢板及其制造方法
CN114807557B (zh) * 2022-05-31 2024-03-15 江苏省沙钢钢铁研究院有限公司 适用于大热输入焊接的低屈强比钢板及其生产方法
CN115351094A (zh) * 2022-06-28 2022-11-18 武安市裕华钢铁有限公司 一种低焊接裂纹敏感性制管用碳素结构钢的生产方法
CN115198193A (zh) * 2022-07-28 2022-10-18 湖南华菱湘潭钢铁有限公司 一种tmcp工艺特厚规格海上风电用钢eh36及其生产方法
CN115094340A (zh) * 2022-07-28 2022-09-23 湖南华菱湘潭钢铁有限公司 一种低屈强高韧性比q500gj钢板的生产方法
CN115216680A (zh) * 2022-07-28 2022-10-21 湖南华菱湘潭钢铁有限公司 一种低碳当量低裂纹敏感系数海上风电用钢eh36及其生产方法
CN115927952B (zh) * 2022-10-21 2024-02-06 燕山大学 一种690MPa级抗氢致延迟断裂的低焊接裂纹敏感性调质钢及其制造方法
CN115572912B (zh) * 2022-11-08 2023-12-15 鞍钢股份有限公司 一种经济型460MPa级别工程结构用钢板冷却均匀性控制方法
CN116334504B (zh) * 2022-12-14 2024-06-18 鞍钢股份有限公司 一种低成本特厚低温海工钢板及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520818B2 (ja) * 1999-10-08 2004-04-19 Jfeスチール株式会社 耐歪時効脆化性に優れた高強度支保工用h形鋼
CN101660100A (zh) * 2008-08-27 2010-03-03 宝山钢铁股份有限公司 一种强韧性匹配良好的特厚调质钢板及其制造方法
CN102080183A (zh) * 2010-12-29 2011-06-01 南阳汉冶特钢有限公司 特厚建筑用结构钢板q345gj系列钢板及其生产方法
CN102345049A (zh) * 2011-06-28 2012-02-08 南阳汉冶特钢有限公司 一种低合金q345c-z35厚板及其生产方法
CN105803325A (zh) * 2016-04-28 2016-07-27 江阴兴澄特种钢铁有限公司 一种低裂纹敏感性低屈强比特厚钢板及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2901890B2 (ja) * 1995-02-01 1999-06-07 株式会社神戸製鋼所 耐溶接割れ性に優れた引張強度590N/mm2以上の低降伏比型高張力鋼板およびその製造方法
JPH1180833A (ja) * 1997-09-05 1999-03-26 Nkk Corp 耐hic性に優れた高強度ラインパイプ用鋼板の製造方法
JP3589071B2 (ja) * 1998-03-24 2004-11-17 住友金属工業株式会社 溶接性、強度および靱性に優れた極厚形鋼の製造法
JP3960341B2 (ja) * 2005-05-17 2007-08-15 住友金属工業株式会社 熱加工制御型590MPa級H形鋼及びその製造方法
CN101096738A (zh) * 2006-06-26 2008-01-02 舞阳钢铁有限责任公司 低焊接裂纹敏感性钢板及其生产方法
JP5098256B2 (ja) * 2006-08-30 2012-12-12 Jfeスチール株式会社 耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板およびその製造方法
JP4940886B2 (ja) * 2006-10-19 2012-05-30 Jfeスチール株式会社 耐hic特性に優れたラインパイプ用高強度鋼板およびその製造方法
JP5223379B2 (ja) * 2007-03-08 2013-06-26 新日鐵住金株式会社 低温靭性に優れるスパイラルパイプ用高強度熱延鋼板およびその製造方法
JP5481976B2 (ja) * 2009-07-10 2014-04-23 Jfeスチール株式会社 高強度溶接鋼管用高張力熱延鋼板およびその製造方法
BR112012007753B1 (pt) * 2009-10-08 2021-11-16 Nippon Steel Corporation Tubo de aço de alta resistência. chapa de aço para tubo de aço de alta resistência, e processos para produção dos mesmos
CN102409251A (zh) * 2010-09-21 2012-04-11 鞍钢股份有限公司 610MPa级低焊接裂纹敏感性特厚钢板及其制造方法
CN104451387B (zh) * 2014-12-19 2016-09-21 山东钢铁股份有限公司 一种09MnNiDR特厚低温容器板及其生产方法
CN105112806A (zh) * 2015-09-25 2015-12-02 江苏省沙钢钢铁研究院有限公司 屈服强度460MPa级高止裂韧性钢板及其生产方法
JP6179609B2 (ja) * 2016-01-08 2017-08-16 新日鐵住金株式会社 冷間加工性に優れた厚肉高強度鋼板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520818B2 (ja) * 1999-10-08 2004-04-19 Jfeスチール株式会社 耐歪時効脆化性に優れた高強度支保工用h形鋼
CN101660100A (zh) * 2008-08-27 2010-03-03 宝山钢铁股份有限公司 一种强韧性匹配良好的特厚调质钢板及其制造方法
CN102080183A (zh) * 2010-12-29 2011-06-01 南阳汉冶特钢有限公司 特厚建筑用结构钢板q345gj系列钢板及其生产方法
CN102345049A (zh) * 2011-06-28 2012-02-08 南阳汉冶特钢有限公司 一种低合金q345c-z35厚板及其生产方法
CN105803325A (zh) * 2016-04-28 2016-07-27 江阴兴澄特种钢铁有限公司 一种低裂纹敏感性低屈强比特厚钢板及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111926162A (zh) * 2020-07-13 2020-11-13 首钢集团有限公司 一种性能优良的特厚钢板及其制备方法
CN113231468A (zh) * 2021-02-25 2021-08-10 石钢京诚装备技术有限公司 低硬度38CrMoAl棒材的生产方法
CN114150220A (zh) * 2021-11-26 2022-03-08 湖南华菱湘潭钢铁有限公司 一种低碳当量正火容器钢板的生产方法

Also Published As

Publication number Publication date
CN105803325A (zh) 2016-07-27
CN105803325B (zh) 2017-10-27
EP3309276A1 (en) 2018-04-18
US20180155810A1 (en) 2018-06-07
US10781510B2 (en) 2020-09-22
EP3309276A4 (en) 2018-04-18
ES2723700T3 (es) 2019-08-30
EP3309276B1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
WO2017185677A1 (zh) 一种低裂纹敏感性低屈强比特厚钢板及其制备方法
WO2022022047A1 (zh) 一种低温环境下使用的低屈强比粒状贝氏体高强钢板及其制造方法
US20070193666A1 (en) High Strength Dual Phase Steel With Low Yield Ratio, High Toughness and Superior Weldability
US8303734B2 (en) High strength thick steel material and high strength giant H-shape excellent in toughness and weldability and methods of production of same
WO2013044640A1 (zh) 一种低屈强比高韧性钢板及其制造方法
CN109536846B (zh) 屈服强度700MPa级高韧性热轧钢板及其制造方法
WO2016119500A1 (zh) 一种具有高止裂性能的钢板及其制造方法
CN108467993A (zh) 一种低温管线用超宽高韧性热轧厚板及其生产方法
WO2009056055A1 (fr) Tôle d&#39;acier à limite d&#39;élasticité de grade 800 mpa et faible sensibilité à la fissuration de soudure, et son procédé de fabrication
WO2019218657A1 (zh) 一种屈服强度460MPa级热轧高韧性耐低温H型钢及其制备方法
CN111876691A (zh) 一种超厚高韧性耐候桥梁钢板及其生产方法
WO2022022040A1 (zh) 一种355MPa级别海洋工程用耐低温热轧H型钢及其制备方法
CN110735085A (zh) 一种薄规格Q345qE、Q370qE钢板的制造方法
CN111235464B (zh) 一种钛微合金化经济型高强耐候钢及其生产方法
WO2013044641A1 (zh) 一种屈服强度700MPa级高强度高韧性钢板及其制造方法
KR20070027733A (ko) 음향 이방성이 작고 용접성이 우수한 고장력 강판 및 그제조 방법
WO2023103514A1 (zh) 一种抗酸性能优良的管线钢及其制造方法
WO2014114158A1 (zh) 一种高强度钢板及其制造方法
CN113061701A (zh) 一种低压缩比特厚细晶粒结构钢板及其制备方法
CN109943771B (zh) 一种高韧性可焊接细晶粒结构钢板及其生产方法
CN106521332A (zh) 一种抗应力导向氢致开裂用钢板及其生产方法
CN112593155B (zh) 一种高强度建筑结构用抗震耐火耐候钢板及制备方法
CN111051555A (zh) 钢板及其制造方法
CN110952040B (zh) EH460级150-200mm特厚钢板的生产方法
CN110592484B (zh) 一种低温韧性优异的460MPa级低焊接裂纹敏感性耐火钢及其生产方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15735489

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE