WO2013044641A1 - 一种屈服强度700MPa级高强度高韧性钢板及其制造方法 - Google Patents

一种屈服强度700MPa级高强度高韧性钢板及其制造方法 Download PDF

Info

Publication number
WO2013044641A1
WO2013044641A1 PCT/CN2012/076052 CN2012076052W WO2013044641A1 WO 2013044641 A1 WO2013044641 A1 WO 2013044641A1 CN 2012076052 W CN2012076052 W CN 2012076052W WO 2013044641 A1 WO2013044641 A1 WO 2013044641A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength
steel sheet
equal
sheet according
toughness
Prior art date
Application number
PCT/CN2012/076052
Other languages
English (en)
French (fr)
Inventor
张爱文
焦四海
张庆峰
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to KR1020147000186A priority Critical patent/KR20140026600A/ko
Priority to JP2014517406A priority patent/JP5750547B2/ja
Priority to EP12836495.7A priority patent/EP2762594B1/en
Priority to BR112013032424-4A priority patent/BR112013032424B1/pt
Priority to US14/129,103 priority patent/US9771639B2/en
Priority to RU2014110117/02A priority patent/RU2593567C2/ru
Priority to ES12836495.7T priority patent/ES2610246T3/es
Publication of WO2013044641A1 publication Critical patent/WO2013044641A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the present invention relates to a high strength and high toughness steel sheet, and in particular to a high strength and high toughness steel sheet having a yield strength greater than 700 MPa and a method for producing the same.
  • the steel plate of the invention has good low temperature toughness and is suitable for high-strength, high-toughness and impact-resistant structural steel plates in industries such as automobiles, construction machinery and ship hull structures. Background technique
  • low-alloy high-strength steel is widely used in military, automobile, mining machinery, construction machinery, agricultural machinery and railway transportation.
  • the complexity, large-scale and lightweight of various military and civilian equipment put forward higher requirements for this type of steel, that is, low-alloy high-strength steel sheets used to manufacture these equipments not only require more High hardness and strength, but also good toughness and formability.
  • the development and application of high-strength steel sheets have developed rapidly.
  • This type of steel is developed on the basis of low-alloy high-strength weldable steel.
  • the service life can be several times that of traditional structural steel plates.
  • the production process is relatively simple. Generally, it is directly cooled or quenched after rolling, or it is extracted offline. Fire process, or enhanced by controlled rolling and controlled cooling process.
  • high-strength steel In the production of low-alloy high-strength steel sheets for automobiles, construction machinery and ship hull structures, the traditional process adds more precious alloy elements such as Cu, Ni, Cr and Mo, which is costly. At present, high-strength steel begins to be low-cost economy. Type and high cost and high performance development.
  • the alloying elements added by high-strength steel produced by domestic steel mills are mostly rich in resources such as V, Ti, Cr, Si, Mn, B, RE, etc., and the addition amount is generally 3%.
  • high-strength steels of ship hull structure, automobile, mining machinery, engineering machinery and other industries with higher strength level, such as 700MPa grade high-strength steel plate with yield strength it is necessary to supplement a certain amount of Cu, Ni, Cr, Mo and other elements to improve performance.
  • This steel has a yield strength of up to 700 MPa, but has low temperature toughness and cannot be used for -60 °C or even -80 °C low temperature impact on military ship hull structures and civil equipment.
  • high-strength steels with a yield strength of 700 MPa or more still rely mainly on imports.
  • Patent documents relating to high-strength and high-toughness steel sheets having a yield strength of about 700 MPa or more such as WO 200039352 A, disclose a low-temperature steel having a low carbon content (0.03-0.12%) and a high nickel content ( The method of not less than 1.0%) produces high-strength steel with good low-temperature toughness, and its lower cooling rate (10 °C/s) can reach a tensile strength of 930 MPa or more.
  • WO 9905335A whose composition has a low carbon content of 0.05-0.10%, but is alloyed with a higher content of Mn, Ni, Mo and Nb. After hot rolling, it is only quenched and tempered, and the tensile strength of the steel sheet can be achieved. Above 830 MPa, its -40 °C Xia's impact energy is at least 175J.
  • An object of the present invention is to provide a high-strength and high-toughness steel sheet having a yield strength of 700 MPa or more, particularly a medium-thick steel sheet having a thickness of 6 to 25 mm.
  • the present invention has a high strength and high toughness medium-thickness steel plate having a yield strength of 700 MPa or more, and the chemical composition thereof has a weight percentage of C: 0.03-0.06%, Si ⁇ 0.30%, Mn: 1.0-1.5%, P. ⁇ 0.020%, S ⁇ 0.010%, Al: 0.02-0.05%, Ti: 0.005-0.025%, N ⁇ 0.006%, Ca ⁇ 0.005%, and one or more of Cr 0.75%, Ni 0.40%, and Mo 0.30% The balance is iron and inevitable impurities.
  • C 0.031-0.059%.
  • Si 0.03-0.30%.
  • Mn 1.02-1.5%.
  • P is 0.015%.
  • S 0.005%.
  • Al 0.02-0.046%.
  • Ni 0.10-0.40, more preferably 0.13-0.36%.
  • Cr 0.3-0.75%, more preferably 0.32-0.75%.
  • Mo 0.10-0.30%, more preferably 0.13-0.26%.
  • Ti 0.01 to 0.025%.
  • N 0.005%.
  • the content refers to the content by weight.
  • the structure of the steel sheet is tempered martensite + dispersed carbide.
  • Another object of the present invention is to provide a method for producing the above high strength and high toughness medium and thick steel plate, the method comprising:
  • the molten steel is subjected to continuous decasting or die casting after vacuum degassing. After casting, it needs to be initially rolled into a slab; the continuous casting billet or billet is heated at 1100-1250 °C and then subjected to one or more passes in the austenite recrystallization zone. Secondary rolling, total reduction rate > 70%; finish rolling temperature > 860 ° ( ;
  • the steel plate After rolling, the steel plate is rapidly water-cooled to 200-300 °C at 15-50 °C / s, air-cooled 5-60 s;
  • the cooled steel plate enters the in-line heating furnace and is rapidly heated at 1-10 °C / s to 450-550 °C for tempering for 15-45 seconds, and then air-cooled.
  • the finishing temperature is 860-900 °C.
  • the cooled steel sheet enters the in-line heating furnace and is rapidly heated at -10 ° C / s to 450-500 ° C for tempering for 15-45 s, and then air-cooled.
  • the in-line heating furnace is an induction heating furnace.
  • the post-rolling cooling rate of the steel sheet cannot be lower than 15 °C/s.
  • the purpose is to ensure that the martensite structure is obtained after cooling, avoiding the formation of bainite.
  • the upper limit of the cooling rate is limited by the cooling capacity of the equipment after cooling and the final cooling temperature. Therefore, the present invention uses a cooling rate range of 15-50 ° C / s.
  • the invention realizes fine grain strengthening, phase transformation strengthening and precipitation strengthening by suitable component design, heating, controlled rolling, rapid cooling and tempering after rolling, improves the strength and hardness of the steel plate, and has high low temperature toughness.
  • the tissue appears as tempered martensite + dispersed carbide. 6-25mm thick steel plate yield strength > 700MPa, elongation A 5 Q > 18%, -60 °C A KV > 150J, excellent cold bending performance, meeting the high strength and high strength of industries such as automobiles, construction machinery and ship hull structure Higher requirements for ductile steel.
  • Fig. 1 is a photograph showing a typical metallographic structure of a 6 mm thick high strength steel sheet according to Example 1 of the present invention.
  • Fig. 2 is a photograph showing a typical metallographic structure of a 25 mm thick high strength steel sheet according to Example 5 of the present invention.
  • Carbon A key element in ensuring the strength of the steel. Carbon is the most important element for obtaining a steel sheet whose structure is mostly martensite, which can significantly improve the hardenability of the steel sheet. An increase in the carbon content causes an increase in strength and hardness and a decrease in plasticity. Therefore, if the steel plate needs to obtain both high strength and high toughness, the carbon content must be considered comprehensively. In order to ensure excellent weldability and good low temperature toughness, the carbon content in the steel is reduced to less than 0.06%. For the 700 MPa strength level of the yield strength of the present invention, in order to obtain a high low temperature impact toughness, it is suitable to use a lower carbon content of 0.03 - 0.06%.
  • Silicon Adding silicon to steel improves steel purity and deoxidation. Silicon acts as a solid solution strengthening in steel. However, if the silicon content is too high, the viscosity of the scale when the steel sheet is heated is large, and the descaling after the furnace is difficult, resulting in serious red scale on the surface of the steel sheet after rolling, and the surface quality is poor. And high silicon is not conducive to soldering performance. Considering the influence of various aspects of silicon, the silicon content of the present invention is 0.30% or less.
  • Manganese stabilizes the austenitic structure. Its ability is second only to the alloying element nickel. It is an inexpensive stable austenite and strengthening alloying element. At the same time, manganese increases the hardenability of steel and reduces the critical cooling rate of martensite formation. However, manganese has a high tendency to segregation, so its content should not be too high. Generally, the manganese content of low carbon microalloyed steel does not exceed 2.0%. The amount of manganese added depends mainly on the strength level of the steel. The manganese content of the present invention should be controlled at 1.0 to 1.5%. Manganese also acts as a deoxidizer together with aluminum in steel.
  • Sulfur and phosphorus Sulfur is combined with manganese in steel to form plastic inclusions, manganese sulfide, especially for the transverse plasticity and toughness of steel, so the sulfur content should be as low as possible. Phosphorus is also a harmful element in steel, which seriously damages the plasticity and toughness of the steel sheet. For the purposes of the present invention, both sulfur and phosphorus are unavoidable impurity elements and should be as low as possible. The present invention requires P 0.020%, S 0.010%, taking into account the actual steelmaking level of the steel mill.
  • Aluminum Strong deoxidation. In order to ensure that the oxygen content in the steel is as low as possible, the aluminum content is controlled at
  • the excess aluminum in the deoxidized aluminum and the nitrogen in the steel can form A1N precipitates, increase the strength and refine the elemental austenite grain size of the steel during heat treatment.
  • Titanium is a strong carbide forming element.
  • the addition of a small amount of Ti in the steel is beneficial to the fixation of N in the steel.
  • the TiN formed can make the austenite grains not excessively increase when the billet is heated, and refine the original austenite grains. degree.
  • Titanium can also be combined with carbon and sulfurized in steel to form TiC, TiS, Ti 4 C 2 S 2 , etc., which are present in the form of inclusions and second phase particles. These carbonitride precipitates of titanium also prevent grain growth in the heat-affected zone during welding and improve weldability.
  • the titanium content of the present invention is controlled to be from 0.005 to 0.025%.
  • Chromium increases the hardenability of steel and increases the tempering stability of steel. Chromium has a high solubility in austenite, stabilizes austenite, and is solid-solved in martensite after quenching. In the subsequent tempering process, carbides such as Cr 23 C 7 and Cr 7 C 3 are precipitated. The strength and hardness of steel. In order to maintain the strength level of steel, chromium can partially replace manganese, which weakens the segregation tendency of high manganese. In combination with the fine carbide precipitation of the in-line rapid induction heating tempering technique, the alloy content can be correspondingly reduced, so that the present invention can add not more than 0.75% of chromium, preferably 0.3-0.75%.
  • Nickel Stabilizing austenite elements has no significant effect on strength.
  • the present invention can add not more than 0.40% of nickel element, preferably 0.10-0.40. %, more preferably 0.13-0.36%.
  • Molybdenum significantly refines grains and improves strength and toughness. Molybdenum can reduce the temper brittleness of steel, and at the same time, it can precipitate very fine carbides during tempering, which significantly strengthens the steel matrix. Since molybdenum is a very expensive strategic alloying element, only molybdenum of not more than 0.30% is added in the present invention, preferably 0.10 to 0.30%. More preferably, it is 0.13-0.26%.
  • Calcium in steel mainly changes the form of sulfide, improving the thickness, transverse properties and cold bending properties of steel. Steels with very low sulfur content may also be treated without calcium.
  • the invention can treat calcium according to the level of sulfur, and the calcium content is 0.005%.
  • Converter blowing and vacuum treatment The purpose is to ensure the basic composition requirements of the molten steel, remove harmful gases such as oxygen and hydrogen in the steel, and add necessary alloying elements such as manganese and titanium to adjust the alloying elements.
  • Heating and rolling The continuous casting billet or billet is heated at a temperature of 1100-1250 °C to obtain a homogenous austenitic structure on the one hand and partially dissolve the compound of an alloying element such as titanium, chromium or molybdenum on the other hand. Rolling into steel sheets in one or more passes in the austenite recrystallization temperature range, the total reduction rate is not less than 70%, and the finishing temperature is not lower than 860 ° C;
  • Rapid cooling After rolling, the steel plate is rapidly cooled to 15-50 °C / s to 200-300 °C air-cooling 5-60s; during rapid cooling, most of the alloying elements are solid-dissolved into martensite.
  • the cooled steel plate enters the in-line heating furnace and is rapidly heated at 1-10 °C/s to 450-550 °C for tempering for 15-45 seconds, and then air-cooled. Tempering helps to eliminate internal stresses generated during quenching and to eliminate microcracks in or between martensite laths, to diffuse part of the carbide strengthening, and to improve the strong molding, toughness and cold bending properties.
  • the invention realizes fine grain strengthening, phase transformation strengthening and precipitation strengthening by suitable component design, heating, controlled rolling, rapid cooling after rolling and self-tempering, thereby improving the strength and hardness of the steel plate and having high low temperature. Toughness, the structure appears as tempered martensite + dispersed carbide.
  • the yield strength of 6-25mm thick steel plate is >700MPa, and the elongation is A 5 . >18%, -60°C A kv > 150J, excellent cold bending performance, meeting the high requirements of high strength and high toughness steel plates in industries such as automobiles, construction machinery and ship hull structures.
  • the molten steel smelted according to the ratio of Table 1 is subjected to vacuum degassing treatment, and then continuous casting or die casting, the thickness of the slab is 80 mm, and the obtained billet is heated at 1200 ° C, and then subjected to multi-pass rolling in the austenite recrystallization temperature range. , rolled into a steel plate with a thickness of 6mm, the total reduction rate is 94%, the final rolling temperature is 880 °C, then water cooled to 220 °C at 50 °C / s and then rapidly heated to 450 °C on the line to temper, then Air cooled to room temperature;
  • Fig. 1 The metallographic structure of part of the steel plate of this embodiment is shown in Fig. 1.
  • Figure 1 is a metallographic structure diagram of a 6 mm thick steel plate according to Embodiment 1 of the present invention.
  • Fig. 2 is a view showing the metallographic structure of a 25 mm thick steel plate according to Example 5 of the present invention.
  • the structure of the steel sheet is tempered martensite and dispersed carbide.
  • is processed by the above-mentioned components and process parameters, and the yield strength of the 6-25 mm thick finished steel sheet is > 700 MPa, and the elongation is A 5 . > 18%, -60 °C A kv > 150J, excellent cold bending performance, the structure appears as tempered martensite + dispersed carbide.
  • the steel plate meets the high requirements of high-strength and high-toughness steel plates in related industries. The products are suitable for the production of ship hull structure, automobile and engineering machinery, etc., with wide application value and market prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种高强度高韧性钢板,其化学成分的重量百分比为:C:0.03-0.06%、Si≤0.30%、Mn:1.0-1.5%、P≤0.020%、S≤0.010%、Al:0.02-0.05%、Ti:0.005-0.025%、N≤0.006%、Ca≤0.005%,以及Cr≤0.75%、Ni≤0.40%、Mo≤0.30%中的1种以上,余量为铁和不可避免杂质。其制造方法包括:钢水经真空脱气处理后进行连铸或模铸,模铸后需经初轧成钢坯;连铸坯或钢坯于1100-1250℃加热后在奥氏体再结晶区进行一道次或多道次轧制,总压下率≥70%;终轧温度≥860℃;轧后钢板以15-50℃/s快速水冷至200-300℃,空冷5-60s;冷却的钢板进入在线加热炉以-10℃/s快速加热至450-550℃回火15-45s,然后出炉空冷。得到的6-25mm厚钢板屈服强度≥700MPa,延伸率A50≥18%,-60℃的Akv≥150J,适合用于汽车、工程机械及舰艇船体结构等行业。

Description

一种屈服强度 700MPa级高强度高韧性钢板及其制造方法 发明领域
本发明涉及一种高强度高韧性钢板,具体地涉及一种屈服强度大于等 于 700MPa的高强度高韧性钢板及其制造方法。本发明钢板具有较好的低 温韧性, 适合用于汽车、 工程机械及舰艇船体结构等行业的高强度高韧性 耐冲击的结构钢板。 背景技术
低合金高强度钢作为一种重要的钢铁材料,被广泛应用于军工、汽车、 矿山机械、 工程机械、 农业机械及铁路运输等部门。 随着我国工业的飞速 发展, 各类军用及民用设备的复杂化、 大型化及轻量化对该类钢提出了更 高的要求,即用于制造这些设备的低合金高强度钢板不但要求具有更高的 硬度、 强度, 而且还要求良好的韧性及成型性能。 近几十年来, 高强度钢 板的开发与应用发展很快。这类钢是在低合金高强度可焊接钢的基础上发 展起来的, 使用寿命可达传统结构钢板的数倍; 生产工艺较简单, 一般釆 用轧后直接冷却或淬火, 或者离线淬火加回火工艺, 或通过控轧控冷工艺 进行强化。
传统工艺在生产汽车、工程机械及舰艇船体结构用低合金高强度钢板 时, 多添加较多的 Cu、 Ni、 Cr和 Mo等贵重合金元素, 成本较高, 目前 高强度钢开始向低成本经济型和高成本高性能方向发展。国内钢厂生产高 强度钢所加的合金元素多为 V、 Ti、 Cr、 Si、 Mn、 B、 RE等我国资源丰 富的元素, 且添加量一般为 3%。 对于强度级别更高的舰艇船体结构、 汽车、 矿山机械、 工程机械等行业用高强度钢, 如屈服强度 700MPa级高 强度钢板, 还需要补充一定量的 Cu、 Ni、 Cr、 Mo等元素提高性能。 这种 钢的屈服强度可达 700MPa, 但低温韧性不足, 不能用于 -60 °C甚至 -80 °C 低温冲击有要求的军用舰艇船体结构和民用装备。目前,屈服强度 700MPa 以上强度级别高强度钢仍主要依赖进口。
美国执行军用标准 MILS-24645A-SH 中的 HSLA-80/100 涉及 C 0.06% , Si < 0.04% , Mn: 0.75-1.05% , P < 0.020% , S < 0.006% , Cu: 1.45-1.75%, Ni: 3.35-3.65%, Cr: 0.45-0.75%, Mo: 0.55-0.65%, Nb: 0.02-0.06%, 最小 Ceq=0.67 , 板厚 102mm, 其釆用了低碳甚至是超低碳 的合金设计 (C 0.06% ) , 确保钢的优良焊接性和低温韧性, 钢中添加 了较高的铜和镍, 依靠铜的时效硬化作用, 在对韧塑性没有明显损害的条 件下, 获得了高强度。 其屈服强度 690-860MPa, 延伸率 18%, -18°C横向 Akv=108J, -84 °C横向 Akv=81J。 由于其中加入了较多的贵重合金元素, 成 本昂贵。
目前已经公开的有关屈服强度在 700MPa左右及以上的高强度高韧性 钢板的专利文献, 如 WO 200039352A公开了一种低温用钢, 用较低含碳 量(0.03-0.12% ) 和高镍含量 (不小于 1.0%)的方法生产低温韧性好的高强 度钢, 其釆用较低的冷却速率 (10 °C/s ) , 其抗拉强度能达到 930MPa以 上。
WO 9905335A, 其成分中碳含量较低为 0.05-0.10%,但釆用较高含量 的 Mn、 Ni、 Mo和 Nb合金化, 在热轧后只淬火不回火, 钢板的抗拉强度 能达到 830 MPa以上, 其 -40°C夏氏冲击功最小 175J。
目前仍需要提供相对经济的高强度高韧性中厚钢板, 以广泛用于汽 车、 工程机械及舰艇船体结构等行业的高强度高韧性耐冲击的结构钢板。 发明概述
本发明的目的在于提供一种屈服强度在 700MPa以上的高强度高韧性 钢板, 特别是 6-25mm的中厚钢板。
为实现上述目的, 本发明的屈服强度在 700MPa以上的高强度高韧性 中厚钢板, 其化学成分的重量百分比为: C: 0.03-0.06%、 Si < 0.30%, Mn: 1.0-1.5%、 P < 0.020%, S < 0.010%, Al: 0.02-0.05%、 Ti: 0.005-0.025%、 N < 0.006%, Ca < 0.005%, 以及 Cr 0.75%、 Ni 0.40%、 Mo 0.30%中 的 1种以上, 余量为铁和不可避免杂质。
优选地, C: 0.031-0.059%。
优选地, Si: 0.03-0.30%。
优选地, Mn: 1.02-1.5%。
优选地, P 0.015%。
优选地, S 0.005%。 优选地, Al: 0.02-0.046%。
优选地, Ni: 0.10-0.40 , 更优选 0.13-0.36%。
优选地, Cr: 0.3-0.75%, 更优选 0.32-0.75%。
优选地, Mo: 0.10-0.30%, 更优选 0.13-0.26%。
优选地, Ti: 0.01-0.025%。
优选地, N 0.005%。
本发明中, 除非另有指明, 含量均指重量百分比含量。
所述钢板的组织为回火马氏体 +弥散碳化物。 本发明的另一目的在于提供上述高强度高韧性中厚钢板的制造方法, 该方法包括:
钢水经真空脱气处理后进行连铸或模铸, 模铸后需经初轧成钢坯; 连铸坯或钢坯于 1100- 1250 °C加热后在奥氏体再结晶区进行一道次或 多道次轧制, 总压下率> 70%; 终轧温度> 860 °( ;
轧后钢板以 15-50 °C /s快速水冷至 200-300 °C , 空冷 5-60s;
冷却的钢板进入在线加热炉以 1-10 °C /s 快速加热至 450-550 °C回火 15-45s , 然后出炉空冷。
优选地, 终轧温度为 860-900 °C。
优选地, 冷却的钢板进入在线加热炉以 l-10 °C /s快速加热至 450-500 °C回火 15-45s , 然后出炉空冷。
优选地, 在线加热炉为感应加热炉。
根据本发明, 所述钢板的轧后冷却速度不能低于 15 °C/s。 目的是保证 冷却后获得马氏体类组织, 避开贝氏体组织形成区间。 冷速上限受轧后冷 却装备冷却能力以及终冷温度的限制, 不易太快。 故本发明釆用 15-50 °C /s的冷速范围。
本发明通过合适的成分设计、加热、控制轧制、轧后快速冷却和回火, 使钢板实现细晶强化、 相变强化、 析出强化, 提高了钢板的强度、 硬度, 具有很高的低温韧性, 组织呈现为回火马氏体 +弥散碳化物。 6-25mm 厚 钢板屈服强度 > 700MPa, 延伸率 A5Q > 18%, -60 °C的 AKV > 150J, 冷弯 性能优良, 满足了汽车、 工程机械和舰艇船体结构等行业对高强度高韧性 钢板的较高要求。 适合用于舰艇船体结构、 汽车、 工程机械等行业需要的 高强度高韧性构件, 由于钢板具备较高的强度、 很高的低温韧性, 优良的 冷弯性能, 用户加工成型方便。 附图说明
图 1是本发明实施例 1的 6mm厚高强度钢板的典型金相组织照片。 图 2是本发明实施例 5的 25mm厚高强度钢板的典型金相组织照片。 发明的详细说明
以下结合实施例对本发明的特点和性质进行较为详细的说明。
为实现本发明的目的, 主要化学成分控制如下:
碳: 确保钢板强度的关键元素。 对于要获得组织为大部分马氏体的钢 板而言, 碳是最重要的元素, 其可以显著提高钢板的淬透性。 碳含量的提 高能使强度和硬度上升, 塑性下降。 所以如果钢板既要获得高强度, 又要 具备较高的韧性, 那么碳含量必须综合考虑。 为了保证优良的焊接性和良 好的低温韧性, 钢中碳含量降至 0.06%以下。 对于本发明的屈服强度 700MPa强度级别而言, 为了获得较高的低温冲击韧性, 釆用较低的碳含 量 0.03-0.06%是合适的。
硅: 钢中加硅能提高钢质纯净度和脱氧。 硅在钢中起固溶强化作用。 但硅含量过高会使钢板加热时的氧化皮粘度较大, 出炉后除鳞困难, 导致 轧后钢板表面红色氧化皮严重, 表面质量较差。 且高硅不利于焊接性能。 综合考虑硅各方面的影响, 本发明硅含量为小于等于 0.30%。
锰: 锰稳定奥氏体组织, 其能力仅次于合金元素镍, 是廉价的稳定奥 氏体与强化合金元素, 同时锰增加钢的淬透性, 降低马氏体形成的临界冷 速。 但锰具有较高的偏析倾向, 所以其含量不能太高, 一般低碳微合金钢 中锰含量不超过 2.0%。 锰的加入量主要取决于钢的强度级别。 本发明锰 的含量应控制在 1.0-1.5%。 锰在钢中还和铝一起共同起到脱氧的作用。
硫和磷: 硫在钢中与锰等化合形成塑性夹杂物硫化锰, 尤其对钢的横 向塑性和韧性不利,因此硫的含量应尽可能地低。磷也是钢中的有害元素, 严重损害钢板的塑性和韧性。 对于本发明而言, 硫和磷均是不可避免的杂 质元素, 应该越低越好, 考虑到钢厂实际的炼钢水平, 本发明要求 P 0.020%、 S 0.010%。 铝: 强脱氧元素。 为了保证钢中的氧含量尽量地低, 铝的含量控制在
0.02-0.04%。 脱氧后多余的铝和钢中的氮元素能形成 A1N析出物, 提高强 度并且在热处理加热时能细化钢的元素奥氏体晶粒度。
钛: 钛是强碳化物形成元素, 钢中加入微量的 Ti有利于固定钢中的 N, 形成的 TiN能使钢坯加热时奥氏体晶粒不过分涨大, 细化原始奥氏体 晶粒度。 钛在钢中还可分别与碳和硫化合生成 TiC、 TiS、 Ti4C2S2等, 它 们以夹杂物和第二相粒子的形式存在。钛的这些碳氮化物析出物在焊接时 还可阻止热影响区晶粒长大, 改善焊接性能。 本发明钛含量控制在 0.005-0.025%。
铬: 铬提高钢的淬透性, 增加钢的回火稳定性。 铬在奥氏体中溶解度 很大, 稳定奥氏体, 淬火后在马氏体中大量固溶, 并在随后的回火过程中 会析出 Cr23C7、 Cr7C3等碳化物, 提高钢的强度和硬度。 为了保持钢的强 度级别, 铬可以部分代替锰, 减弱高锰的偏析倾向。 配合在线快速感应加 热回火技术的细小碳化物析出, 可相应降低合金含量, 故本发明可添加不 大于 0.75%的铬, 优选为 0.3-0.75%。
镍: 稳定奥氏体的元素, 对提高强度没有明显的作用。 钢中加镍尤其 是在调质钢中加镍能大幅提高钢的韧性尤其是低温韧性,同时由于镍属于 贵重合金元素, 所以本发明可添加不超过 0.40%的镍元素, 优选为 0.10-0.40%, 更优选为 0.13-0.36%。
钼:钼能显著地细化晶粒,提高强度和韧性。钼能减少钢的回火脆性, 同时回火时还能析出非常细小的碳化物, 显著强化钢的基体。 由于钼是非 常昂贵的战略合金元素, 所以本发明中仅添加不超过 0.30%的钼, 优选为 0.10-0.30%。 更优选为 0.13-0.26%。
钙: 钢中加钙主要是改变硫化物形态, 改善钢的厚向、 横向性能和冷 弯性能。 对于硫含量很低的钢亦可不钙处理。 本发明视硫含量的高低可钙 处理, 钙含量 0.005%。
制造工艺过程对本发明产品的影响:
转炉吹炼和真空处理: 目的是确保钢液的基本成分要求, 去除钢中的 氧、 氢等有害气体, 并加入锰、 钛等必要的合金元素, 进行合金元素的调 整。
连铸或模铸: 保证铸坯内部成分均勾和表面质量良好, 模铸的钢锭需 轧制成钢坯。
加热和轧制: 连铸坯或钢坯在 1100-1250 °C的温度下加热, 一方面获 得均勾的奥氏体化组织, 另一方面使钛、 铬、 钼等合金元素的化合物部分 溶解。 在奥氏体再结晶温度范围内经一道次或多道次轧制成钢板, 总压下 率不低于 70%, 终轧温度不低于 860°C;
快速冷却:轧后钢板以 15-50 °C/s快速水冷至 200-300 °C温度区间空冷 5-60s; 在快速冷却过程中, 大部分的合金元素被固溶到马氏体中。
在线回火: 冷却的钢板进入在线加热炉以 1-10 °C/s 快速加热至 450-550°C回火 15-45s, 然后出炉空冷。 回火有助于消除淬火时产生的内 应力以及消除马氏体板条内或之间的微裂紋, 弥散析出部分碳化物强化, 提高强塑型、 韧性和冷弯性能。
本发明通过合适的成分设计、 加热、 控制轧制、 轧后快速冷却和自回 火, 使钢板实现细晶强化、 相变强化、 析出强化, 提高了钢板的强度、 硬 度, 具有很高的低温韧性, 组织呈现为回火马氏体 +弥散碳化物。 6-25mm 厚钢板屈服强度>700MPa, 延伸率 A5。>18%, -60°C的 Akv > 150J, 冷弯 性能优良, 满足了汽车、 工程机械和舰艇船体结构等行业对高强度高韧性 钢板的较高要求。 实施例
实施例 1
将按表 1配比冶炼完成的钢水经真空脱气处理后进行连铸或模铸,板 坯厚度 80mm, 所得坯料于 1200°C加热后, 在奥氏体再结晶温度范围内经 多道次轧制, 轧制成厚度为 6mm的钢板, 总压下率 94%, 终轧温度为 880 °C, 然后以 50°C/s水冷至 220°C再在线快速加热至 450°C回火, 然后空冷 至室温;
本实施例的部分钢板金相组织如图 1所示。
实施例 2-5的详细成分见表 1, 工艺参数见表 2, 所有实施例所得钢 板性能见表 3。 表 1本发明实施例 1-5的化学成分、 Ceq (wt%) 实施
C Si Mn P S Al Ni Cr Mo Ti Ca N Ceq* 例
1 0.031 0.30 1.50 0.009 0.003 0.020 0.31 0.35 0.18 0.015 0.0008 0.0040 0.41
2 0.044 0.25 1.45 0.009 0.003 0.025 0.20 0.45 0.20 0.02 0.0010 0.0036 0.43
3 0.050 0.19 1.21 0.008 0.003 0.033 0.21 0.62 0.24 0.014 0.0008 0.0035 0.44
4 0.055 0.10 1.20 0.010 0.003 0.035 0.15 0.65 0.15 0.025 0.0012 0.0041 0.43
5 0.060 0.03 1.05 0.010 0.004 0.045 0.35 0.75 0.25 0.010 0.0010 0.0031 0.46
* Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/14 表 2 本发明实施例 1-5的相关工艺参数及钢板厚度
Figure imgf000009_0001
试验例 1 : 力学性能
按照 GB/T228-2002金属材料室温拉伸试验方法、 GB 2106-1980金属 比 V型缺口冲击试验方法, 其结果见表 3。 本发明钢板的力学性能和组织
实施 屈服强 抗拉强度 延伸率 -60 °C Akv 横向冷弯
组织 例 度 /MPa /MPa A50/% 冲击值 /J d=2a, 180°
161 (半尺
回火马氏体 +弥
1 830 933 22 寸试样折 合格
算) 散析出碳化物
回火马氏体 +弥
2 815 895 24 185 合格
散析出碳化物 回火马氏体 +弥
3 750 925 24 231 合格
散析出碳化物 回火马氏体 +弥
4 740 920 23 222 合格
散析出碳化物 回火马氏体 +弥
5 765 955 25 212 合格
散析出碳化物 试验例 2: 弯曲性能
按照 GB/T 232-2010金属材料弯曲试验方法, 对本发明实施例 1-5钢 板进行横向冷弯 d=2a,180° 试验, 其结果见表 3 , 全部实施例钢板完好, 均无表面裂紋。 试马全例 3 : 金相组织
图 1是本发明实施例 1的 6mm厚钢板的金相组织图。
图 2是本发明实施例 5的 25mm厚钢板的金相组织图。
从图中可见, 钢板的组织为回火马氏体和弥散析出碳化物。
其他实施例也能得到同样的金相组织。 从以上实施例可以看出, 釆用上述的成分和工艺参数进行加工, 6-25mm 厚成品钢板的屈服强度 > 700MPa, 延伸率 A5。 > 18% , -60 °C的 Akv > 150J, 冷弯性能优良, 组织呈现为回火马氏体 +弥散碳化物。 钢板满 足了相关行业对高强度高韧性钢板的较高要求。产品适用于制作舰艇船体 结构、 汽车及工程机械等行业, 具有广泛的应用价值和市场前景。
本发明釆用了较少的合金元素, 通过新型的在线淬火和在线回火工 艺, 实现了比 HSLA-100性能(屈服强度 690-860 MPa, 延伸率 18%, -18 °C横向 Akv= 108 J , -84 °C横向 Akv=81 J )更优越的性能, 即本发明实物钢板 性能纵向屈服强度 700-860MPa, 延伸率 20%, -60 °C纵向的 Akv=200J, -84 °C横向 Akv=151J, 而且本发明钢板的碳当量 Ceq远低于美国 HSLA-100 钢 (其最小 Ceq=0.67 ) , 说明本发明钢板的焊接性更好, 因此, 本发明 钢板与美国 HSLA-100相比具备明显的成本和技术优势。

Claims

权 利 要 求 书
1 . 一种高强度高韧性钢板, 其化学成分的重量百分比为: C : 0.03-0.06%、 Si < 0.30%, Mn: 1.0-1.5%、 P < 0.020%, S < 0.010%, Al: 0.02-0.05%、 Ti: 0.005-0.025%, N < 0.006%, Ca < 0.005%,以及 Cr 0.75%、 Ni 0.40%、 Mo 0.30%中的 l种以上, 余量为铁和不可避免杂质。
2. 如权利要求 1 所述的高强度高韧性钢板, 其特征在于, C : 0.031-0.059%。
3. 如权利要求 1或 2所述的高强度高韧性钢板, 其特征在于, Si: 0.03-0.30%。
4. 如权利要求 1-3任一所述的高强度高韧性钢板, 其特征在于, Mn: 1.02-1.5%。
5. 如权利要求 1-4任一所述的高强度高韧性钢板, 其特征在于, P 0.015%。
6. 如权利要求 1-5任一所述的高强度高韧性钢板, 其特征在于, S
0.005%。
7. 如权利要求 1-6任一所述的高强度高韧性钢板, 其特征在于, A1: 0.02-0.046%。
8. 如权利要求 1-7任一所述的高强度高韧性钢板, 其特征在于, Ni: 0.10-0.40 , 更优选 0.13-0.36%。
9. 如权利要求 1-8任一所述的高强度高韧性钢板, 其特征在于, Cr: 0.3-0.75%, 更优选 0.32-0.75%。
10. 如权利要求 1-9 任一所述的高强度高韧性钢板, 其特征在于, Mo: 0.10-0.30%, 更优选 0.13-0.26%。
11. 如权利要求 1-10任一所述的高强度高韧性钢板, 其特征在于,
Ti: 0.01-0.025%。
12. 如权利要求 1-11任一所述的高强度高韧性钢板, 其特征在于, N 0.005%。
13. 如权利要求 1-12任一所述的高强度高韧性钢板, 其组织为回火 马氏体和弥散析出碳化物。
14. 如权利要求 1-13任一所述的高强度高韧性钢板, 其 6-25mm厚钢 板屈服强度 > 700MPa, 延伸率 A5。 > 18%, -60 °C的 Akv > 150J。
15. 如权利要求 1-14任一所述的高强度高韧性钢板的制造方法, 包 括:
钢水经真空脱气处理后进行连铸或模铸, 模铸后需经初轧成钢坯; 连铸坯或钢坯于 1100-1250 °C加热后在奥氏体再结晶区进行一道次或 多道次轧制, 总压下率> 70%; 终轧温度> 860 °( ;
轧后钢板以 15-50 °C /s快速水冷至 200-300 °C , 空冷 5-60s;
冷却的钢板进入在线加热炉以 1-10 °C /s 快速加热至 450-550 °C回火 15-45s , 然后出炉空冷。
16. 如权利要求 15 所述的方法, 其特征在于, 终轧温度为 860-900
°C。
17. 如权利要求 15或 16所述的方法, 其特征在于, 冷却的钢板进入 在线加热炉以 1-10 °C/s快速加热至 450-500 °C回火 15-45s ,然后出炉空冷。
18. 如权利要求 15或 17所述的方法, 其特征在于, 在线加热炉为感 应力 p热炉。
PCT/CN2012/076052 2011-09-26 2012-05-25 一种屈服强度700MPa级高强度高韧性钢板及其制造方法 WO2013044641A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020147000186A KR20140026600A (ko) 2011-09-26 2012-05-25 700MPa의 항복 강도를 갖는 고-강도 및 고-인성 강판 및 이의 제조방법
JP2014517406A JP5750547B2 (ja) 2011-09-26 2012-05-25 降伏強さが700MPa級の高強度高靭性鋼板及びその製造方法
EP12836495.7A EP2762594B1 (en) 2011-09-26 2012-05-25 High-strength and high-toughness steel plate with yield strength being 700 mpa and manufacturing method thereof
BR112013032424-4A BR112013032424B1 (pt) 2011-09-26 2012-05-25 PLACA DE AÇO COM ALTA RESISTÊNCIA E ALTA TENACIDADE COM LIMITE DE ESCOAMENTO DE 700Mpa, E MÉTODO PARA SUA PRODUÇÃO
US14/129,103 US9771639B2 (en) 2011-09-26 2012-05-25 High-strength and high-toughness steel plate with yield strength of 700 MPa and method of manufacturing the same
RU2014110117/02A RU2593567C2 (ru) 2011-09-26 2012-05-25 Высокопрочная стальная полоса с высокой ударной вязкостью и пределом текучести 700 мпа и способ ее производства
ES12836495.7T ES2610246T3 (es) 2011-09-26 2012-05-25 Plancha de acero de alta resistencia y alta tenacidad siendo el límite elástico de 700 MPa y método de fabricación de la misma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110288952.4 2011-09-26
CN201110288952.4A CN103014539B (zh) 2011-09-26 2011-09-26 一种屈服强度700MPa级高强度高韧性钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2013044641A1 true WO2013044641A1 (zh) 2013-04-04

Family

ID=47963649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076052 WO2013044641A1 (zh) 2011-09-26 2012-05-25 一种屈服强度700MPa级高强度高韧性钢板及其制造方法

Country Status (9)

Country Link
US (1) US9771639B2 (zh)
EP (1) EP2762594B1 (zh)
JP (1) JP5750547B2 (zh)
KR (1) KR20140026600A (zh)
CN (1) CN103014539B (zh)
BR (1) BR112013032424B1 (zh)
ES (1) ES2610246T3 (zh)
RU (1) RU2593567C2 (zh)
WO (1) WO2013044641A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103639198A (zh) * 2013-11-28 2014-03-19 莱芜钢铁集团有限公司 一种小压缩比条件下使用连铸坯生产管线钢板的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499890B1 (en) 2012-04-10 2016-11-22 The United States Of America As Represented By The Secretary Of The Navy High-strength, high-toughness steel articles for ballistic and cryogenic applications, and method of making thereof
CN103614624B (zh) * 2013-11-27 2018-09-04 内蒙古包钢钢联股份有限公司 一种含高密度析出相低合金高强度钢板带及轧制工艺
CN105506494B (zh) * 2014-09-26 2017-08-25 宝山钢铁股份有限公司 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
CN104532157A (zh) * 2014-12-19 2015-04-22 宝山钢铁股份有限公司 一种屈服强度900~1000MPa级调质高强钢及其生产方法
CN105714199A (zh) * 2016-05-04 2016-06-29 芜湖市爱德运输机械有限公司 一种斗式提升机
KR102065276B1 (ko) * 2018-10-26 2020-02-17 주식회사 포스코 극저온 인성 및 연성이 우수한 압력용기용 강판 및 그 제조 방법
CN109594012A (zh) * 2018-11-05 2019-04-09 包头钢铁(集团)有限责任公司 一种700MPa级稀土耐腐蚀车用钢带及其制备方法
CN111041162B (zh) * 2019-11-25 2021-10-15 苏州普热斯勒先进成型技术有限公司 一种用于提高产品最大弯曲角度的方法
CN114182174B (zh) * 2021-11-26 2022-06-28 湖南华菱湘潭钢铁有限公司 一种高强韧桥梁结构钢板的生产方法
CN114592156B (zh) * 2022-03-09 2023-08-18 广东一诺重工钢构有限公司 一种高强度钢梁及其加工工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1840724A (zh) * 2005-03-30 2006-10-04 宝山钢铁股份有限公司 屈服强度960MPa以上超高强度钢板及其制造方法
CN1840723A (zh) * 2005-03-30 2006-10-04 宝山钢铁股份有限公司 屈服强度1100MPa以上超高强度钢板及其制造方法
CN101649420A (zh) * 2008-08-15 2010-02-17 宝山钢铁股份有限公司 一种高强度高韧性低屈强比钢、钢板及其制造方法
WO2010137317A1 (ja) * 2009-05-27 2010-12-02 新日本製鐵株式会社 疲労特性と伸び及び衝突特性に優れた高強度鋼板、溶融めっき鋼板、合金化溶融めっき鋼板およびそれらの製造方法
JP2011052293A (ja) * 2009-09-03 2011-03-17 Nippon Steel Corp 成形性及び疲労特性に優れた複合組織鋼板並びにその製造方法
JP2011140672A (ja) * 2010-01-05 2011-07-21 Jfe Steel Corp 高強度熱延鋼板およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134514A (en) * 1981-02-12 1982-08-19 Kawasaki Steel Corp Production of high-tensile steel of superior low- temperature toughness and weldability
JP2913426B2 (ja) 1991-03-13 1999-06-28 新日本製鐵株式会社 低温靱性の優れた厚肉高張力鋼板の製造法
CA2295582C (en) * 1997-07-28 2007-11-20 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
JPH1180832A (ja) 1997-09-09 1999-03-26 Nippon Steel Corp 溶接性および低温靭性の優れた低降伏比高張力鋼の製造方法
TNSN99233A1 (fr) 1998-12-19 2001-12-31 Exxon Production Research Co Aciers de haute resistance avec excellente tenacite de temperature cryogenique
AUPR047900A0 (en) * 2000-09-29 2000-10-26 Bhp Steel (Jla) Pty Limited A method of producing steel
JP4025263B2 (ja) 2003-07-17 2007-12-19 株式会社神戸製鋼所 耐ガス切断割れ性および大入熱溶接継手靭性に優れ且つ音響異方性の小さい低降伏比高張力鋼板
JP5089224B2 (ja) * 2007-03-30 2012-12-05 株式会社神戸製鋼所 オンライン冷却型高張力鋼板の製造方法
US8435363B2 (en) 2007-10-10 2013-05-07 Nucor Corporation Complex metallographic structured high strength steel and manufacturing same
JP5146051B2 (ja) * 2008-03-27 2013-02-20 Jfeスチール株式会社 靭性および変形能に優れた板厚:25mm以上の高強度鋼管用鋼材およびその製造方法
KR101091306B1 (ko) 2008-12-26 2011-12-07 주식회사 포스코 원자로 격납 용기용 고강도 강판 및 그 제조방법
JP5487682B2 (ja) * 2009-03-31 2014-05-07 Jfeスチール株式会社 強度−伸びバランスに優れた高靭性高張力鋼板およびその製造方法
CN102471843A (zh) * 2009-09-02 2012-05-23 新日本制铁株式会社 低温韧性优良的高强度管线管用钢板及高强度管线管用钢管
CN102021494B (zh) 2009-09-23 2012-11-14 宝山钢铁股份有限公司 一种耐候厚钢板及其制造方法
JP5532800B2 (ja) * 2009-09-30 2014-06-25 Jfeスチール株式会社 耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板及びその製造方法
CN101985725B (zh) 2010-11-27 2012-07-18 东北大学 一种780MPa级低屈强比建筑用钢板及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1840724A (zh) * 2005-03-30 2006-10-04 宝山钢铁股份有限公司 屈服强度960MPa以上超高强度钢板及其制造方法
CN1840723A (zh) * 2005-03-30 2006-10-04 宝山钢铁股份有限公司 屈服强度1100MPa以上超高强度钢板及其制造方法
CN101649420A (zh) * 2008-08-15 2010-02-17 宝山钢铁股份有限公司 一种高强度高韧性低屈强比钢、钢板及其制造方法
WO2010137317A1 (ja) * 2009-05-27 2010-12-02 新日本製鐵株式会社 疲労特性と伸び及び衝突特性に優れた高強度鋼板、溶融めっき鋼板、合金化溶融めっき鋼板およびそれらの製造方法
JP2011052293A (ja) * 2009-09-03 2011-03-17 Nippon Steel Corp 成形性及び疲労特性に優れた複合組織鋼板並びにその製造方法
JP2011140672A (ja) * 2010-01-05 2011-07-21 Jfe Steel Corp 高強度熱延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2762594A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103639198A (zh) * 2013-11-28 2014-03-19 莱芜钢铁集团有限公司 一种小压缩比条件下使用连铸坯生产管线钢板的方法

Also Published As

Publication number Publication date
US9771639B2 (en) 2017-09-26
CN103014539A (zh) 2013-04-03
BR112013032424B1 (pt) 2019-06-25
JP5750547B2 (ja) 2015-07-22
KR20140026600A (ko) 2014-03-05
EP2762594A1 (en) 2014-08-06
JP2014523487A (ja) 2014-09-11
US20140116578A1 (en) 2014-05-01
EP2762594B1 (en) 2016-11-23
CN103014539B (zh) 2015-10-28
ES2610246T3 (es) 2017-04-26
RU2014110117A (ru) 2015-09-20
EP2762594A4 (en) 2015-08-12
RU2593567C2 (ru) 2016-08-10
BR112013032424A2 (pt) 2017-01-17

Similar Documents

Publication Publication Date Title
JP5750546B2 (ja) 低降伏比高靭性鋼板及びその製造方法
WO2013044641A1 (zh) 一种屈服强度700MPa级高强度高韧性钢板及其制造方法
CN114686777B (zh) 具有良好耐老化性的扁钢产品及其制造方法
WO2016045266A1 (zh) 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
CN101649420B (zh) 一种高强度高韧性低屈强比钢、钢板及其制造方法
WO2013075473A1 (zh) 一种超高强度耐磨钢板及其制造方法
CN111455269A (zh) 屈服强度960MPa级甚高强度海工钢板及其制造方法
CN102691018A (zh) 一种低压缩比超高强度海洋工程用钢板及其生产方法
CN113430458B (zh) 一种屈服强度1040MPa以上级超高强钢板及其制造方法
CN108660389A (zh) 一种具有优异止裂性的高强厚钢板及其制造方法
CN102400043A (zh) 一种大厚度海洋工程用钢板及其生产方法
CN113549827B (zh) 一种低温韧性优异的fh690级海工钢及其制造方法
KR20240099374A (ko) 내후성이 우수한 고강도 스틸 및 이의 제조방법
CN104073731B (zh) 一种采用直接淬火工艺的超高强船板的生产方法
CN108728728B (zh) 一种具有极低屈强比的高锰钢及其制造方法
CN114134388B (zh) 一种抗拉强度1300MPa级薄规格超高强钢板及其制造方法
CN113802060A (zh) 一种低成本工程结构用钢板及其制造方法
CN115466905B (zh) 一种具有良好耐蚀性10.9级大规格风电螺栓用非调质钢及其生产方法
CN110791713A (zh) 一种低压缩比690MPa级特厚钢板及其制造方法
CN114134387B (zh) 一种抗拉强度1300MPa级厚规格超高强钢板及其制造方法
CN103320690B (zh) 一种低碳贝氏体高强度高韧性钢板及其制造方法
CN111321340A (zh) 一种屈服强度450MPa级热轧钢板及其制造方法
CN110952040A (zh) EH460级150-200mm特厚钢板的生产方法
CN117363981B (zh) 一种560MPa级海洋工程用高强耐蚀钢板及其生产方法
CN117385278B (zh) 一种700MPa级海洋工程用高强耐蚀钢板及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836495

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14129103

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014517406

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012836495

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012836495

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147000186

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013032424

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014110117

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112013032424

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131217