WO2017183644A1 - ターボ圧縮機、これを備えたターボ冷凍装置 - Google Patents

ターボ圧縮機、これを備えたターボ冷凍装置 Download PDF

Info

Publication number
WO2017183644A1
WO2017183644A1 PCT/JP2017/015636 JP2017015636W WO2017183644A1 WO 2017183644 A1 WO2017183644 A1 WO 2017183644A1 JP 2017015636 W JP2017015636 W JP 2017015636W WO 2017183644 A1 WO2017183644 A1 WO 2017183644A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
bearing
bearings
turbo compressor
rotor shaft
Prior art date
Application number
PCT/JP2017/015636
Other languages
English (en)
French (fr)
Inventor
長谷川 泰士
真太郎 大村
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to US16/095,112 priority Critical patent/US20190211834A1/en
Priority to CN201780038888.XA priority patent/CN109416049A/zh
Publication of WO2017183644A1 publication Critical patent/WO2017183644A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/063Lubrication specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid

Definitions

  • the present invention relates to a turbo compressor and a turbo refrigeration apparatus including the same.
  • a turbo refrigeration system used for a heat source for district heating and cooling includes a centrifugal turbine type turbo compressor driven by an electric motor.
  • a turbo compressor as disclosed in Patent Document 1, by using a non-contact bearing such as a magnetic bearing or a gas bearing (air bearing) as the bearing of the rotor shaft, the rotational resistance in the bearing is eliminated. At the same time, some bearings need no lubrication. Since the non-contact bearing supports the rotor shaft while floating with respect to the bearing, the rotational resistance can be made extremely small.
  • an auxiliary bearing touch-down bearing that supports the rotor shaft is provided instead of the non-contact bearing when the power supply is cut off due to a power failure or the like and the function of the non-contact bearing stops.
  • a rolling bearing is used as this auxiliary bearing. Since the radial clearance of the auxiliary bearing is set to be smaller than that of the non-contact bearing, the rotor shaft is supported (touched down) by the auxiliary bearing before touching the non-contact bearing when the power is shut off. Is prevented from being damaged.
  • Rolling bearings are generally used as auxiliary bearings, but since non-contact bearings do not require lubrication or cooling, a lubricating oil system is not provided, and auxiliary bearings that are rolling bearings are either grease lubricated or non-lubricated. There are many. For this reason, there existed a subject that the bearing life of an auxiliary bearing will become short or the number of times of touchdown will be limited. In order to prevent this, it is necessary to use special steel as the material of the auxiliary bearing, or to apply a special surface treatment to the inner and outer rings and the rolling member, which makes the bearing system expensive.
  • An object of the present invention is to provide a turbo compressor that can be used, and a turbo refrigeration apparatus including the turbo compressor.
  • the turbo compressor according to the first aspect of the present invention includes a rotor shaft, an electric motor that is coaxially provided at an intermediate portion of the rotor shaft, and that rotates the rotor shaft, and is fixed to one end of the rotor shaft.
  • a non-contact bearing that supports the other end of the rotor shaft between the electric motor and the impeller, and a non-contact bearing adjacent to the non-contact bearing, the function of the non-contact bearing
  • An auxiliary bearing that pivotally supports the rotor shaft in place of the non-contact bearing when stopped, and a lubricating refrigerant supply unit that supplies the refrigerant as a lubricant into the auxiliary bearing when the function of the non-contact bearing stops It is a thing.
  • the auxiliary bearing supports the rotor shaft instead of the non-contact bearing, and at the same time, the lubricating refrigerant supply unit As a result, the refrigerant is supplied into the auxiliary bearing as a lubricant. For this reason, the lubrication state of the auxiliary bearing can be improved, a conventional bearing can be used without using a special and expensive bearing, and the cost and life of the auxiliary bearing can be reduced.
  • the lubricating refrigerant supply section includes a liquid refrigerant storage section in which the liquid phase refrigerant is stored, a liquid refrigerant supply passage connecting the auxiliary bearing and the liquid refrigerant storage section, and the liquid It is good also as a structure provided with the solenoid valve which is connected to a refrigerant
  • the solenoid valve that is closed when energized opens. For this reason, the liquid refrigerant stored in the liquid refrigerant storage part is supplied to the auxiliary bearing through the liquid refrigerant supply passage. According to this configuration, it is possible to supply the refrigerant to the auxiliary bearing by opening the electromagnetic valve when the power is shut off without providing a control unit, and the cost of the bearing system can be reduced.
  • the liquid refrigerant reservoir may be a bottom of a condenser in which the refrigerant compressed by the refrigerant compressor is condensed. Since the compressed and condensed liquid refrigerant is stored at the bottom of the condenser, and the pressure of the liquid refrigerant is higher than the peripheral pressure of the auxiliary bearing, the pressure difference at the same time as the solenoid valve opens. Thus, the refrigerant is quickly supplied to the auxiliary bearing. For this reason, when the power is shut off, the coolant can be quickly supplied to the auxiliary bearing and lubricated to extend the life of the auxiliary bearing.
  • the liquid refrigerant reservoir may be a liquid refrigerant jacket for cooling the electric motor provided in a casing that houses the electric motor.
  • the liquid refrigerant jacket is positioned in the vicinity of the auxiliary bearing, and a liquid phase refrigerant compressed and condensed is circulated therein.
  • the solenoid valve can be opened when the power is shut off, and at the same time, the refrigerant in the liquid refrigerant jacket can be easily supplied to the auxiliary bearing by a pressure difference or gravity.
  • the bearing system since it is not necessary to connect the turbo compressor and peripheral devices with the liquid refrigerant supply passage, the bearing system can be simplified.
  • the liquid refrigerant storage unit may be a pressure applying container that stores the liquid phase refrigerant while applying a pressure higher than the peripheral pressure of the auxiliary bearing.
  • the solenoid valve is opened when the power is shut off, and at the same time, the refrigerant in the pressure applying container is supplied to the auxiliary bearing due to the pressure difference.
  • the bearing system since it is not necessary to provide a system for extracting the refrigerant compressed by the turbo compressor, the bearing system can be simplified.
  • the lubricant supply pressure for lubrication can be maintained at a required specified value or more, and the lubricant for lubrication can be reliably supplied.
  • the auxiliary bearing may be a rolling bearing, and a ceramic material may be employed as a material of at least one of the outer ring, the inner ring, and the rolling element. Since the ceramic material has a small amount of thermal expansion and can reduce the amount of change in the bearing gap when the temperature of the auxiliary bearing changes, the auxiliary bearing can be well lubricated even with a low viscosity fluid such as a refrigerant.
  • the auxiliary bearing may be a rolling bearing, and as the material of at least one of the outer ring, the inner ring, and the rolling element, a material that forms a lubricating film even with lubrication with a low viscosity fluid may be employed.
  • the auxiliary bearing can be well lubricated even with a low-viscosity fluid such as a refrigerant.
  • the auxiliary bearing may be a rolling bearing, and at least one of the outer ring, the inner ring, and the rolling element may be coated with diamond-like carbon. Since diamond-like carbon forms a lubricating film even when lubricated with a low-viscosity fluid, the auxiliary bearing can be well lubricated with a low-viscosity fluid such as a refrigerant.
  • a turbo refrigeration apparatus includes a turbo compressor according to any one of the above, a condenser that condenses the refrigerant compressed by the turbo compressor, and evaporation that evaporates the condensed refrigerant.
  • a turbo compressor according to any one of the above
  • a condenser that condenses the refrigerant compressed by the turbo compressor
  • evaporation that evaporates the condensed refrigerant.
  • the auxiliary bearing for touchdown provided adjacent to the non-contact bearing that supports the rotor shaft of the turbo compressor is provided. Both cost reduction and longer life can be achieved.
  • FIG. 1 is an overall view of a turbo refrigeration apparatus showing a first embodiment of the present invention.
  • FIG. 2 is an enlarged longitudinal sectional view of the turbo compressor shown in FIG. 1. It is an expansion longitudinal cross-sectional view of the turbo compressor which shows 2nd Embodiment of this invention. It is a general view of the turbo refrigeration apparatus which shows 3rd Embodiment of this invention.
  • FIG. 1 is an overall view of a turbo refrigeration apparatus showing a first embodiment of the present invention.
  • the turbo refrigeration apparatus 1 includes a turbo compressor 2 that compresses refrigerant, a condenser 3, an expansion valve 4, and an evaporator 5.
  • the refrigerant compressor 7 of the turbo compressor 2 and the condenser 3 are connected by a discharge pipe 8, and the condenser 3 and the evaporator 5 are connected by a refrigerant pipe 9, and the evaporator 5 and the turbo compressor 2 are connected.
  • the suction pipe 10 is connected to the refrigerant compression section 7.
  • the expansion valve 4 is connected to the refrigerant pipe 9.
  • the refrigerant compressed by the turbo compressor 2 (refrigerant compression unit 7) is supplied to the condenser 3 through the discharge pipe 8, where heat of condensation is obtained by heat exchange with cooling water. It is cooled and condensed.
  • the cooling water heated by the condenser 3 is used for heating air conditioning and the like.
  • the refrigerant condensed in the condenser 3 is adiabatically expanded by passing through the expansion valve 4 provided in the refrigerant pipe 9 and fed to the evaporator 5.
  • the low-temperature refrigerant adiabatically expanded in the expansion valve 4 exchanges heat with water, and the cooled cold water is used as cooling air-conditioning, industrial cooling water, or the like.
  • the refrigerant vaporized by heat exchange with the cooling water is again sucked into the turbo compressor 2 (refrigerant compression unit 7) through the suction pipe 10 and compressed, and this cycle is repeated thereafter.
  • the turbo compressor 2 includes a casing 13 that forms an outer shell thereof, an electric motor 14, a rotor shaft 15, an impeller 16 that constitutes the refrigerant compressor 7, and a pair of main bearings 18 a, 18b, a pair of auxiliary bearings 19a and 19b provided adjacent to these main bearings 18a and 18b, and thrust bearings 20a and 20b.
  • the inside of the casing 13 is partitioned into a motor chamber 13A and a compression chamber 13B by a partition wall 13a, the motor 14 is accommodated in the motor chamber 13A, and the refrigerant compression portion 7 (impeller 16) is accommodated in the compression chamber 13B.
  • the electric motor 14 includes a stator 14a fixed to the casing 13 side and a rotor 14b fixed to the rotor shaft 15 and rotating inside the stator 14a.
  • One end of the rotor shaft 15 penetrates the partition wall 13a and enters the compression chamber 13B.
  • the impeller 16 is provided so as to rotate integrally therewith, and the refrigerant compression section 7 is configured.
  • One of the pair of main bearings 18a and 18b (18a) pivotally supports between the electric motor 14 and the impeller 16, and the other (18b) shafts the other end of the rotor shaft 15 (the end on the side opposite to the impeller 16). I support.
  • known non-contact bearings such as magnetic bearings and gas bearings (air bearings) are used, thereby reducing rotational resistance and non-lubrication.
  • a pair of auxiliary bearings 19a and 19b provided adjacent to the main bearings 18a and 18b are rolling bearings.
  • the main bearings 18a and 18b is a so-called touch-down bearing that pivotally supports the rotor shaft 15.
  • the bearing gaps of the auxiliary bearings 19a and 19b are designed to be sufficiently narrow, for example, about half of the bearing gaps of the main bearings 18a and 18b.
  • the thrust bearings 20a and 20b are provided with a disc-shaped thrust plate 15a provided at the tip of the other end of the rotor shaft 15 therebetween, and restrict the movement of the rotor shaft 15 in the axial direction.
  • the thrust bearings 20a and 20b are non-contact bearings like the main bearings 18a and 18b.
  • the turbo compressor 2 is provided with a lubricating refrigerant supply unit 25.
  • the lubricating refrigerant supply unit 25 supports the rotor shaft 15 in place of the main bearings 18a and 18b as described above when the power supply is shut off due to a power failure or the like and the functions of the main bearings 18a and 18b which are non-contact bearings are stopped.
  • a coolant is supplied as a lubricant into auxiliary bearings 19a and 19b, which are rolling bearings.
  • the lubricating refrigerant supply unit 25 includes a liquid refrigerant storage unit 26 in which the liquid-phase refrigerant R is stored, a liquid refrigerant supply passage 27 that connects the liquid refrigerant storage unit 26 and the auxiliary bearings 19a and 19b, And an electromagnetic valve 28 connected to the refrigerant supply passage 27.
  • the bottom of the condenser 3 is used as the liquid refrigerant reservoir 26.
  • the compressed and condensed liquid phase refrigerant R is always stored at the bottom of the condenser 3, and one end of the liquid refrigerant supply passage 27 is connected to a position lower than the liquid level of the liquid phase refrigerant R. ing.
  • the other end of the liquid refrigerant supply passage 27 is branched into two branch passages 27a and 27b.
  • One branch passage 27a is connected to one auxiliary bearing 19a, and the other branch passage 27b is connected to the other auxiliary bearing 19b. It is connected.
  • the solenoid valve 28 is connected to a section of the liquid refrigerant supply passage 27 before branching.
  • the electromagnetic valve 28 is closed when energized, that is, a normally open type.
  • turbo refrigeration apparatus 1 and the turbo compressor 2 configured as described above, when the power is cut off due to a power failure or the like, the functions of the main bearings 18a and 18b which are non-contact bearings are stopped. For this reason, auxiliary bearings 19a and 19b support the rotor shaft 15 in place of the main bearings 18a and 18b. At the same time, the solenoid valve 28 that is closed when energized is opened when the power supply is cut off.
  • the electromagnetic valve 28 Since the pressure of the liquid-phase refrigerant R stored in the liquid refrigerant storage section 26 at the bottom of the condenser 3 is higher than the pressure around the auxiliary bearings 19a and 19b (internal pressure of the casing 13), the electromagnetic valve 28 At the same time, the pressure difference causes the liquid refrigerant supply passage 27 (branch passages 27a and 27b) to be supplied to the auxiliary bearings 19a and 19b. For this reason, the liquid-phase refrigerant R is supplied as a lubricant into the auxiliary bearings 19a and 19b, and the auxiliary bearings 19a and 19b are lubricated and cooled.
  • the liquid-phase refrigerant R is provided inside the auxiliary bearings 19a and 19b that support the rotor shaft 15 instead.
  • the lubrication state of the auxiliary bearings 19a and 19b at the time of power-off can be improved, a conventional bearing can be used without using a special and expensive bearing, and the cost of the auxiliary bearings 19a and 19b can be reduced. It is possible to achieve both long life.
  • a normally open solenoid valve that is closed when energized is used, so that the solenoid valve 28 is opened when the power is shut off without providing a dedicated control unit.
  • the refrigerant R can be supplied to the auxiliary bearings 19a and 19b. For this reason, cost reduction as a bearing system can be achieved.
  • the liquid refrigerant reservoir 26 serving as a supply source of the liquid phase refrigerant R supplied as a lubricant into the auxiliary bearings 19 a and 19 b is the bottom of the condenser 3.
  • a compressed and condensed liquid phase refrigerant R is stored at the bottom of the condenser 3, and the pressure of the liquid phase refrigerant R is higher than the peripheral pressure of the auxiliary bearings 19a and 19b.
  • the refrigerant R is rapidly supplied to the auxiliary bearings 19a and 19b by the pressure difference. For this reason, the refrigerant R can be quickly supplied to the auxiliary bearings 19a and 19b and lubricated when the power is shut off, thereby extending the life of the auxiliary bearings 19a and 19b.
  • a ceramic material may be employed as a material of at least one of the outer ring, the inner ring, and the rolling element of the auxiliary bearings 19a and 19b that are rolling bearings. Since the ceramic material has a small amount of thermal expansion and can reduce the amount of change in the bearing gap when the temperature of the auxiliary bearings 19a and 19b changes, the auxiliary bearings 19a and 19a, even with a low-viscosity fluid such as the liquid-phase refrigerant R, can be obtained. 19b can be well lubricated.
  • a material of at least one of the outer ring, the inner ring, and the rolling element of the auxiliary bearings 19a and 19b a material in which a lubricating film is easily formed even by lubrication with a low-viscosity fluid is adopted, or a material such as diamond-like carbon is used as the outer ring, The inner ring and rolling element may be coated.
  • the auxiliary bearings 19a and 19b can be well lubricated even with a low-viscosity fluid such as the liquid-phase refrigerant R.
  • FIG. 3 is an enlarged longitudinal sectional view of a turbo compressor 2A showing a second embodiment of the present invention.
  • the turbo compressor 2A is different from the turbo compressor 2 of the first embodiment in that a liquid refrigerant jacket 31 extending in the circumferential direction is formed in an intermediate portion in the axial direction of the casing 13.
  • the liquid refrigerant jacket 31 is originally intended to cool the electric motor 14 (stator 14a), and a low-temperature liquid phase refrigerant R cooled by being compressed and condensed is circulated therein. Since the other configuration is the same as that of the turbo compressor 2 of the first embodiment, the same reference numerals are given to the respective parts and the description thereof will be omitted.
  • turbo compressor 2A when the power supply is shut off due to a power failure or the like and the functions of the main bearings 18a and 18b which are non-contact bearings are stopped, the auxiliary bearings 19a and 19b are replaced with the rotors instead of the main bearings 18a and 18b.
  • the shaft 15 is supported.
  • a lubricating refrigerant supply unit 32 that supplies a refrigerant as a lubricant is provided inside the auxiliary bearings 19a and 19b.
  • the liquid refrigerant jacket 31 is used as the liquid refrigerant storage unit 33 in which the liquid phase refrigerant R is stored.
  • the lubricating refrigerant supply unit 32 is connected to each of the pair of liquid refrigerant supply passages 34a and 34b connecting the liquid refrigerant jacket 31 and the auxiliary bearings 19a and 19b, and the liquid refrigerant supply passages 34a and 34b. And electromagnetic valves 35a and 35b.
  • the solenoid valves 35a and 35b are normally open types that are closed when the solenoid valve 28 in the first embodiment is also energized.
  • the turbo compressor 2A configured as described above, when the power is cut off due to a power failure or the like, the functions of the main bearings 18a and 18b which are non-contact bearings are stopped, and the auxiliary bearings 19a and 19b are substituted for this. Supports the rotor shaft 15. At the same time, the solenoid valves 35a and 35b that are closed when energized are opened when the power supply is shut off. Therefore, the liquid-phase refrigerant R stored in the liquid refrigerant jacket 31 is supplied to the auxiliary bearings 19a and 19b via the liquid refrigerant supply passages 34a and 34b due to a pressure difference or gravity. For this reason, the liquid-phase refrigerant R is supplied as a lubricant into the auxiliary bearings 19a and 19b, and the auxiliary bearings 19a and 19b are lubricated and cooled.
  • a liquid refrigerant jacket 31 is used as the liquid refrigerant storage part 33 of the lubricating refrigerant supply part 32, and the liquid refrigerant jacket 31 is located in the vicinity of the auxiliary bearings 19a and 19b and the interior thereof.
  • the liquid-phase refrigerant R compressed and condensed is circulated.
  • the electromagnetic valves 35a and 35b are opened when the power is shut off, and at the same time, the refrigerant R in the liquid refrigerant jacket 31 can be easily supplied to the auxiliary bearings 19a and 19b. According to this configuration, it is not necessary to connect the turbo compressor 2A and peripheral devices with the refrigerant supply passage, so that the bearing system can be simplified.
  • FIG. 4 is an overall view of a turbo refrigeration apparatus showing a third embodiment of the present invention.
  • the configuration of the turbo compressor 2 itself is the same as that shown in the first embodiment (see FIGS. 1 and 2), and therefore, the same reference numerals are given to the respective parts and the description thereof is omitted.
  • the turbo refrigeration system 1A is also provided with a lubricating refrigerant supply unit 40 that supplies the refrigerant R as a lubricant into auxiliary bearings 19a and 19b that support the rotor shaft 15 instead of the main bearings 18a and 18b when the power is shut off.
  • the lubricating refrigerant supply unit 40 includes a liquid refrigerant storage unit 41 in which a liquid-phase refrigerant R is stored, a liquid refrigerant supply passage 27 that connects the liquid refrigerant storage unit 41 and the auxiliary bearings 19a and 19b, And an electromagnetic valve 28 connected to the liquid refrigerant supply passage 27.
  • the liquid refrigerant supply passage 27 is branched into branch passages 27a and 27b and connected to the auxiliary bearings 19a and 19b as in the first embodiment, but the upstream end of the liquid refrigerant supply passage 27 is connected to the condenser 3. It is different in that it is connected to the liquid refrigerant reservoir 41.
  • the solenoid valve 28 is a normally open type that closes when energized, as in the first embodiment.
  • a pressure applying container 43 that stores the liquid phase refrigerant R while applying a pressure higher than the peripheral pressure of the auxiliary bearings 19a and 19b is used.
  • the pressure applying container 43 includes, for example, a cylindrical container main body 44, a piston 45 that is slidable in the axial direction therein, and the piston 45 connected to the liquid refrigerant supply passage 27 in the container main body 44. And a spring 46 biased toward the end face (here, the lower end face).
  • the liquid-phase refrigerant R stored inside the pressure applying container 43 (container body 44) is pressed against the spring 46 via the piston 45, whereby the peripheral pressure of the auxiliary bearings 19a and 19b (inside the casing 13). Pressure) higher than the pressure).
  • turbo refrigeration apparatus 1A and the turbo compressor 2 configured as described above, when the power is shut off due to a power failure or the like, the functions of the main bearings 18a and 18b which are non-contact bearings are stopped, and instead.
  • the auxiliary bearings 19 a and 19 b support the rotor shaft 15.
  • the solenoid valve 28 that is closed when energized is opened when the power supply is cut off.
  • the liquid refrigerant R stored in the pressure application container 43 constituting the liquid refrigerant storage unit 41 and applied with a pressure higher than the peripheral pressure of the auxiliary bearings 19a and 19b by the urging force of the spring 46 is obtained.
  • the pressure difference causes the liquid refrigerant supply passage 27 (branch passages 27a and 27b) to be supplied to the auxiliary bearings 19a and 19b.
  • the liquid-phase refrigerant R is supplied as a lubricant into the auxiliary bearings 19a and 19b, and the auxiliary bearings 19a and 19b are lubricated and cooled.
  • the bearing system since it is not necessary to provide a system for extracting the refrigerant compressed by the turbo compressor 2, the bearing system can be simplified. Further, regardless of the operating state of the turbo refrigeration apparatus 1A, the supply pressure of the lubricant for lubrication can be maintained above the required specified value, and the lubricant for lubrication can be reliably supplied.
  • the structure of the pressure applying container 43 is not necessarily the above-described configuration.
  • the weight of the weight may be applied to the piston 45 instead of the urging force of the spring 46.
  • the inside of the pressure applying container 43 is divided into two in the axial direction by a rubber film, nitrogen gas or the like is sealed in one of the closed rooms, and the refrigerant R is put in the other room to which the refrigerant supply passage 27 is connected. It may be changed to a so-called accumulator structure that is stored.
  • the non-contact that supports the rotor shaft 15 of the turbo compressors 2 and 2A When the functions of the main bearings 18a and 18b, which are bearings, are stopped, liquid coolant can be supplied as a lubricant to the auxiliary bearings 19a and 19b for touchdown provided adjacent to the main bearings 18a and 18b, and the auxiliary bearings 19a and 19b. The cost can be reduced and the service life can be extended.
  • the present invention is not limited to the configuration of each of the embodiments described above, and modifications and improvements can be added as appropriate. Embodiments with such modifications and improvements are also included in the scope of the rights of the present invention. Shall be.
  • the overall configuration and usage of the turbo refrigeration apparatuses 1 and 1A described in the above embodiment, the configuration of the turbo compressors 2 and 2A, and the like are merely examples, and changes can be made to each part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

ターボ圧縮機のロータ軸を支持する非接触軸受に隣接して設けられる、タッチダウン用の補助軸受の低コスト化および長寿命化を図る。 ターボ圧縮機(2)は、ロータ軸(15)と、このロータ軸(15)の中間部に同軸的に設けられて該ロータ軸(15)を回転駆動する電動機(14)と、ロータ軸(15)の一端に固定されて冷媒を圧縮する冷媒圧縮部(7)を構成するインペラ(16)と、電動機(14)とインペラ(16)との間、およびロータ軸(15)の他端を軸支する非接触軸受である主軸受(18a,18b)と、この主軸受(18a,18b)に隣接し、主軸受(18a,18b)の機能停止時に主軸受(18a,18b)に代わってロータ軸(15)を軸支する補助軸受(19a,19b)と、主軸受(18a,18b)の機能停止時に、補助軸受(19a,19b)の内部に冷媒を潤滑剤として供給する潤滑冷媒供給部(25)とを備えている。

Description

ターボ圧縮機、これを備えたターボ冷凍装置
  本発明は、ターボ圧縮機、これを備えたターボ冷凍装置に関するものである。
  地域冷暖房の熱源用等に使用されているターボ冷凍装置は、周知のように、電動機で駆動される遠心タービン型のターボ圧縮機を備えている。このようなターボ圧縮機において、特許文献1に開示されているように、ロータ軸の軸受として磁気軸受や気体軸受(エア軸受)等の非接触軸受を使用することにより、軸受における回転抵抗を無くすと同時に、軸受の潤滑を不要にしたものがある。非接触軸受は、軸受に対してロータ軸を浮上させながら支持するため、回転抵抗を非常に小さくすることができる。
  この場合、停電等により電源が遮断されて非接触軸受の機能が停止した時に、非接触軸受に代わってロータ軸を支持する補助軸受(タッチダウン軸受)が設けられる。この補助軸受としては転がり軸受が用いられる。補助軸受のラジアル方向の隙間は非接触軸受よりも小さく設定されているため、電源遮断時においてロータ軸は非接触軸受に接触するよりも先に補助軸受によって支持(タッチダウン)され、非接触軸受の破損が防止される。
特開2002-218708号公報
 補助軸受としては、一般に転がり軸受が採用されるが、非接触軸受が潤滑や冷却を必要としないため、潤滑油系統は付設されず、転がり軸受である補助軸受はグリス潤滑もしくは無潤滑となるケースが多い。
 このため、補助軸受の軸受寿命が短くなる、あるいはタッチダウン回数が限定されてしまうという課題があった。これを防止するためには補助軸受の材質として特殊鋼を採用したり、内外輪や転動部材に特殊な表面処理を施したりする必要があり、軸受システムとして高価格となってしまう。
 本発明は、このような事情に鑑みてなされたものであり、ロータ軸を支持する非接触軸受に隣接して設けられる、タッチダウン用の補助軸受の低コスト化および長寿命化を図ることができるターボ圧縮機、これを備えたターボ冷凍装置を提供することを目的とする。
 上記課題を解決するために、本発明は、以下の手段を採用する。
 本発明の第1態様に係るターボ圧縮機は、ロータ軸と、前記ロータ軸の中間部に同軸的に設けられて前記ロータ軸を回転駆動する電動機と、前記ロータ軸の一端に固定されて冷媒を圧縮する冷媒圧縮部を構成するインペラと、前記電動機と前記インペラとの間、および前記ロータ軸の他端を軸支する非接触軸受と、前記非接触軸受に隣接し、該非接触軸受の機能停止時に該非接触軸受に代わって前記ロータ軸を軸支する補助軸受と、前記非接触軸受の機能停止時に、前記補助軸受の内部に前記冷媒を潤滑剤として供給する潤滑冷媒供給部と、を備えたものである。
 上記構成のターボ圧縮機によれば、停電等により電源が遮断されて非接触軸受の機能が停止した時には、非接触軸受に代わって補助軸受がロータ軸を支持し、これと同時に潤滑冷媒供給部によって補助軸受の内部に冷媒が潤滑剤として供給される。このため、補助軸受の潤滑状態を向上させることができ、特殊で高価な軸受を用いることなく在来の軸受を使用可能とし、補助軸受の低コスト化および長寿命化を図ることができる。
 前記構成において、前記潤滑冷媒供給部は、液相状の前記冷媒が貯留された液冷媒貯留部と、前記補助軸受と前記液冷媒貯留部との間を接続する液冷媒供給通路と、前記液冷媒供給通路に接続され、通電された状態で閉となる電磁弁と、を備えた構成としてもよい。
 上記構成とすれば、電源遮断時において、通電された状態で閉となる電磁弁が開く。このため、液冷媒貯留部に貯留されている液相状の冷媒が、液冷媒供給通路を経て補助軸受に供給される。本構成によれば、制御部を設けることなく電源遮断時に電磁弁を開いて冷媒を補助軸受に供給することができ、軸受システムを低コスト化することができる。
 前記構成において、前記液冷媒貯留部は、前記冷媒圧縮部により圧縮された前記冷媒が凝縮される凝縮器の底部としてもよい。凝縮器の底部には、圧縮および凝縮された液相状の冷媒が貯留されており、この液相状の冷媒の圧力は補助軸受の周辺圧力よりも高いため、電磁弁が開くと同時に圧力差によって冷媒が補助軸受に迅速に供給される。このため、電源遮断時に素早く冷媒を補助軸受に供給して潤滑し、補助軸受の長寿命化を図ることができる。
 前記構成において、前記液冷媒貯留部は、前記電動機を収容するケーシングに設けられた、前記電動機冷却用の液冷媒ジャケットとしてもよい。この液冷媒ジャケットは、補助軸受の近傍に位置するとともに、その内部に圧縮および凝縮された液相状の冷媒が循環している。このため、電源遮断時に電磁弁が開くと同時に、圧力差、または重力によって液冷媒ジャケットの冷媒を補助軸受に容易に供給することができる。本構成によれば、ターボ圧縮機と周辺の機器類との間を液冷媒供給通路で接続する必要がないため、軸受システムを簡素化することができる。
 前記構成において、前記液冷媒貯留部は、液相状の前記冷媒を、前記補助軸受の周辺圧力よりも高い圧力を付与しながら貯留する圧力付与容器としてもよい。こうすれば、電源遮断時に電磁弁が開くと同時に、圧力差によって圧力付与容器の冷媒が補助軸受に供給される。本構成によれば、ターボ圧縮機により圧縮された冷媒を抽出する系統を設ける必要がないため、軸受システムを簡素化することができる。また、冷凍装置の運転状態によらず、潤滑用冷媒供給圧力を必要規定値以上に保持することができ、潤滑用冷媒を確実に供給することができる。
 前記構成において、補助軸受を転がり軸受とし、その外輪、内輪、および転動体の少なくともいずれかの材質としてセラミック材を採用してもよい。セラミック材は熱膨張量が小さく、補助軸受の温度変化時における軸受隙間の変化量を小さくすることができるため、冷媒のように低粘度の流体でも補助軸受を良好に潤滑することができる。
 前記構成において、補助軸受を転がり軸受とし、その外輪、内輪、および転動体の少なくともいずれかの材質として、低粘度流体による潤滑でも潤滑膜が形成される材質を採用してもよい。これにより、冷媒のように低粘度の流体でも補助軸受を良好に潤滑することができる。
 前記構成において、補助軸受を転がり軸受とし、その外輪、内輪、および転動体の少なくともいずれかにダイヤモンドライクカーボンをコーティングしてもよい。ダイヤモンドライクカーボンは、低粘度流体による潤滑でも潤滑膜が形成されるため、冷媒のように低粘度の流体でも補助軸受を良好に潤滑することができる。
 本発明の第2態様に係るターボ冷凍装置は、上記のいずれかに記載のターボ圧縮機と、前記ターボ圧縮機によって圧縮された前記冷媒を凝縮させる凝縮器と、凝縮した前記冷媒を蒸発させる蒸発器と、を具備してなるものであり、これによって上記の各作用および効果が奏される。
 以上のように、本発明に係るターボ圧縮機、これを備えたターボ冷凍装置によれば、ターボ圧縮機のロータ軸を支持する非接触軸受に隣接して設けられる、タッチダウン用の補助軸受の低コスト化と長寿命化とを両立させることができる。
本発明の第1実施形態を示すターボ冷凍装置の全体図である。 図1に示すターボ圧縮機の拡大縦断面図である。 本発明の第2実施形態を示すターボ圧縮機の拡大縦断面図である。 本発明の第3実施形態を示すターボ冷凍装置の全体図である。
 以下に、本発明の複数の実施形態について図面を参照しながら説明する。
[第1実施形態]
 図1は、本発明の第1実施形態を示すターボ冷凍装置の全体図である。このターボ冷凍装置1は、冷媒を圧縮するターボ圧縮機2と、凝縮器3と、膨張弁4と、蒸発器5とを備えて構成されている。ターボ圧縮機2の冷媒圧縮部7と凝縮器3との間が吐出管8で接続され、凝縮器3と蒸発器5との間が冷媒管9で接続され、蒸発器5とターボ圧縮機2(冷媒圧縮部7)との間が吸入管10で接続されている。膨張弁4は冷媒管9に接続されている。
 このターボ冷凍装置1において、ターボ圧縮機2(冷媒圧縮部7)により圧縮された冷媒は吐出管8を経て凝縮器3に送給され、ここで冷却水と熱交換されることにより凝縮熱を冷却されて凝縮される。凝縮器3で加熱された冷却水は暖房空調等に利用される。
 凝縮器3にて凝縮された冷媒は、冷媒管9に設けられた膨張弁4を通過することにより断熱膨張して蒸発器5に給送される。蒸発器5の内部では、膨張弁4において断熱膨張した低温の冷媒が水と熱交換され、ここで冷却された冷水は冷房空調や工業用冷却水等として利用される。そして、冷却水との熱交換により気化した冷媒は吸入管10を経て再びターボ圧縮機2(冷媒圧縮部7)に吸入されて圧縮され、以下、このサイクルが繰り返される。
 図2にも示すように、ターボ圧縮機2は、その外殻を形成するケーシング13と、電動機14と、ロータ軸15と、冷媒圧縮部7を構成するインペラ16と、一対の主軸受18a,18bと、これらの主軸受18a,18bに隣接して設けられた一対の補助軸受19a,19bと、スラスト軸受20a,20bとを具備して構成されている。ケーシング13の内部は隔壁13aによって電動機室13Aと圧縮室13Bとに区画されており、電動機室13Aに電動機14が収容され、圧縮室13Bに冷媒圧縮部7(インペラ16)が収容されている。
 電動機14は、ケーシング13側に固定されたステータ14aと、ロータ軸15に固定されてステータ14aの内部で回転するロータ14bとを備えて構成されている。ロータ軸15の一端は隔壁13aを貫通して圧縮室13Bに突入しており、ここにインペラ16が一体回転するように設けられて冷媒圧縮部7が構成されている。
 一対の主軸受18a,18bは、その一方(18a)が電動機14とインペラ16との間を軸支し、他方(18b)がロータ軸15の他端(反インペラ16側の端部)を軸支している。これらの主軸受18a,18bとしては、磁気軸受や気体軸受(エア軸受)等、公知の非接触軸受が用いられており、これによって回転抵抗の低減と無潤滑化が図られている。
 主軸受18a,18bに隣接して設けられている一対の補助軸受19a,19bは転がり軸受であり、停電時等の電源遮断時における主軸受18a,18bの機能停止時に、主軸受18a,18bに代わってロータ軸15を軸支する、いわゆるタッチダウン軸受である。この補助軸受19a,19bの軸受隙間は、主軸受18a,18bの軸受隙間に対し、例えば半分程度と、十分に狭く設計されている。このため、主軸受18a,18bの機能が停止して補助軸受19a,19bがロータ軸15を支持する時でも主軸受18a,18bの軸受隙間が残され、主軸受18a,18bの破損が回避される。
 スラスト軸受20a,20bは、ロータ軸15の他端側先端に設けられた円板状のスラストプレート15aを挟んで設けられており、ロータ軸15の軸方向への動きを規制している。このスラスト軸受20a,20bは、主軸受18a,18bと同じく非接触軸受とされている。
 図1、図2に示すように、ターボ圧縮機2には潤滑冷媒供給部25が備えられている。この潤滑冷媒供給部25は、停電等により電源が遮断されて非接触軸受である主軸受18a,18bの機能が停止した時に、上述のように主軸受18a,18bに代わってロータ軸15を支持する転がり軸受である補助軸受19a,19bの内部に冷媒を潤滑剤として供給するものである。潤滑冷媒供給部25は、液相状の冷媒Rが貯留された液冷媒貯留部26と、この液冷媒貯留部26と補助軸受19a,19bとの間を接続する液冷媒供給通路27と、液冷媒供給通路27に接続された電磁弁28とを備えている。
 本実施形態において、液冷媒貯留部26として凝縮器3の底部が利用されている。凝縮器3の底部には圧縮および凝縮された液相状の冷媒Rが常に貯留されており、この液相状の冷媒Rの液面よりも低い位置に液冷媒供給通路27の一端が接続されている。液冷媒供給通路27の他端は2本の分岐通路27a,27bに分岐しており、一方の分岐通路27aが一方の補助軸受19aに接続され、他方の分岐通路27bが他方の補助軸受19bに接続されている。電磁弁28は、液冷媒供給通路27の分岐前の区間に接続されている。この電磁弁28は、通電された状態で閉となる、即ちノーマルオープン形式である。
 以上のように構成されたターボ冷凍装置1およびターボ圧縮機2において、停電等により電源が遮断された場合には、非接触軸受である主軸受18a,18bの機能が停止する。このため、主軸受18a,18bに代わって補助軸受19a,19bがロータ軸15を支持する。これと同時に、通電された状態で閉となる電磁弁28が、電源が遮断されたことによって開かれる。
 凝縮器3の底部にある液冷媒貯留部26に貯留された液相状の冷媒Rは、その圧力が補助軸受19a,19bの周辺圧力(ケーシング13の内部圧力)よりも高いため、電磁弁28が開くと同時に圧力差により液冷媒供給通路27(分岐通路27a,27b)を経て補助軸受19a,19bに供給される。このため、補助軸受19a,19bの内部に液相状の冷媒Rが潤滑剤として供給され、補助軸受19a,19bが潤滑、冷却される。
 上記の通り、このターボ圧縮機2は、非接触軸受である主軸受18a,18bの機能停止時に、これに代わってロータ軸15を支持する補助軸受19a,19bの内部に液相状の冷媒Rを潤滑剤として供給する潤滑冷媒供給部25を備えている。これにより、電源遮断時における補助軸受19a,19bの潤滑状態を向上させることができ、特殊で高価な軸受を用いることなく在来の軸受を使用可能とし、補助軸受19a,19bの低コスト化と長寿命化とを両立させることができる。
 電源遮断時に液冷媒供給通路27を開く電磁弁28として、通電された状態で閉となるノーマルオープンの電磁弁を採用したことにより、専用の制御部を設けることなく電源遮断時に電磁弁28を開かせて冷媒Rを補助軸受19a,19bに供給することができる。このため、軸受システムとしての低コスト化を図ることができる。
 補助軸受19a,19bの内部に潤滑剤として供給される液相状の冷媒Rの供給源である液冷媒貯留部26は凝縮器3の底部となっている。凝縮器3の底部には、圧縮および凝縮された液相状の冷媒Rが貯留されており、この液相状の冷媒Rの圧力は補助軸受19a,19bの周辺圧力よりも高いため、電磁弁28が開くと同時に圧力差によって冷媒Rが補助軸受19a,19bに迅速に供給される。このため、電源遮断時に素早く冷媒Rを補助軸受19a,19bに供給して潤滑し、補助軸受19a,19bの長寿命化を図ることができる。
 ところで、転がり軸受である補助軸受19a,19bの外輪、内輪、および転動体の少なくともいずれかの材質としてセラミック材を採用してもよい。セラミック材は熱膨張量が小さく、補助軸受19a,19bの温度変化時における軸受隙間の変化量を小さくすることができるため、液相状の冷媒Rのように低粘度の流体でも補助軸受19a,19bを良好に潤滑することができる。
 また、補助軸受19a,19bの外輪、内輪、および転動体の少なくともいずれかの材質として、低粘度流体による潤滑でも潤滑膜が形成されやすい材質を採用したり、ダイヤモンドライクカーボン等の材質を外輪、内輪、転動体にコーティングしてもよい。これにより、液相状の冷媒Rのように低粘度の流体でも補助軸受19a,19bを良好に潤滑することができる。
[第2実施形態]
 図3は、本発明の第2実施形態を示すターボ圧縮機2Aの拡大縦断面図である。このターボ圧縮機2Aは、そのケーシング13の軸方向中間部分に、周方向に沿う液冷媒ジャケット31が形成されている点において第1実施形態のターボ圧縮機2と相違する。この液冷媒ジャケット31は、本来は電動機14(ステータ14a)を冷却するためのものであり、ここには圧縮および凝縮されて冷却された低温な液相状の冷媒Rが循環している。それ以外の構成は第1実施形態のターボ圧縮機2と同一であるため、各部に同一符号を付して説明は省略する。
 このターボ圧縮機2Aにおいても、停電等により電源が遮断されて非接触軸受である主軸受18a,18bの機能が停止した場合には、主軸受18a,18bに代わって補助軸受19a,19bがロータ軸15を支持する。そして、この補助軸受19a,19bの内部に冷媒を潤滑剤として供給する潤滑冷媒供給部32が設けられている。この潤滑冷媒供給部32においては、液相状の冷媒Rが貯留される液冷媒貯留部33として液冷媒ジャケット31が利用されている。
 さらに、この潤滑冷媒供給部32は、液冷媒ジャケット31と補助軸受19a,19bとの間を接続する一対の液冷媒供給通路34a,34bと、この液冷媒供給通路34a,34bの各々に接続された電磁弁35a,35bとを備えている。電磁弁35a,35bは、第1実施形態における電磁弁28を同じく通電された状態で閉となるノーマルオープン形式である。
 以上のように構成されたターボ圧縮機2Aにおいて、停電等により電源が遮断された場合には、非接触軸受である主軸受18a,18bの機能が停止し、これに代わって補助軸受19a,19bがロータ軸15を支持する。それと同時に、通電された状態で閉となる電磁弁35a,35bが、電源が遮断されたことによって開かれる。したがって、液冷媒ジャケット31に貯留されている液相状の冷媒Rが、圧力差、または重力により、液冷媒供給通路34a,34bを経て補助軸受19a,19bに供給される。このため、補助軸受19a,19bの内部に液相状の冷媒Rが潤滑剤として供給され、補助軸受19a,19bが潤滑、冷却される。
 このターボ圧縮機2Aでは、潤滑冷媒供給部32の液冷媒貯留部33として液冷媒ジャケット31が利用されており、この液冷媒ジャケット31は、補助軸受19a,19bの近傍に位置するとともに、その内部に圧縮および凝縮された液相状の冷媒Rが循環している。このため、電源遮断時に電磁弁35a,35bが開かれると同時に、液冷媒ジャケット31の冷媒Rを補助軸受19a,19bに容易に供給することができる。本構成によれば、ターボ圧縮機2Aと周辺の機器類との間を冷媒供給通路で接続する必要がないため、軸受システムを簡素化することができる。
[第3実施形態]
 図4は、本発明の第3実施形態を示すターボ冷凍装置の全体図である。このターボ冷凍装置1Aにおいて、ターボ圧縮機2自体の構成は第1実施形態(図1、図2参照)に示すものと同一であるため、各部に同一符号を付して説明は省略する。
 このターボ冷凍装置1Aにも、電源遮断時に主軸受18a,18bに代わってロータ軸15を支持する補助軸受19a,19bの内部に冷媒Rを潤滑剤として供給する潤滑冷媒供給部40が備えられている。この潤滑冷媒供給部40は、液相状の冷媒Rが貯留された液冷媒貯留部41と、この液冷媒貯留部41と補助軸受19a,19bとの間を接続する液冷媒供給通路27と、液冷媒供給通路27に接続された電磁弁28とを備えている。液冷媒供給通路27は第1実施形態のものと同様に分岐通路27a,27bに分岐して補助軸受19a,19bに繋がっているが、液冷媒供給通路27の上流側端部が凝縮器3ではなく液冷媒貯留部41に接続されている点が異なっている。電磁弁28は、第1実施形態のものと同じく通電された状態で閉となるノーマルオープン形式である。
 液冷媒貯留部41としては、液相状の冷媒Rを、補助軸受19a,19bの周辺圧力よりも高い圧力を付与しながら貯留する圧力付与容器43が用いられている。この圧力付与容器43は、例えばシリンダ状の容器本体44と、その中を軸方向に摺動自在に設けられたピストン45と、このピストン45を容器本体44における液冷媒供給通路27の接続された端面(ここでは下側の端面)の方に付勢するスプリング46とを備えている。圧力付与容器43(容器本体44)の内部に貯留された液相状の冷媒Rは、ピストン45を介してスプリング46に押圧されることにより、補助軸受19a,19bの周辺圧力(ケーシング13の内部圧力)よりも高い圧力を付与されている。
 以上のように構成されたターボ冷凍装置1Aおよびターボ圧縮機2において、停電等により電源が遮断された場合には、非接触軸受である主軸受18a,18bの機能が停止し、これに代わって補助軸受19a,19bがロータ軸15を支持する。これと同時に、通電された状態で閉となる電磁弁28が、電源が遮断されたことによって開かれる。
 このため、液冷媒貯留部41を構成する圧力付与容器43の内部に貯留されてスプリング46の付勢力によって補助軸受19a,19bの周辺圧力よりも高い圧力を付与された液相状の冷媒Rが、電磁弁28の開弁と同時に圧力差によって液冷媒供給通路27(分岐通路27a,27b)を経て補助軸受19a,19bに供給される。このため、補助軸受19a,19bの内部に液相状の冷媒Rが潤滑剤として供給され、補助軸受19a,19bが潤滑、冷却される。
 本構成によれば、ターボ圧縮機2により圧縮された冷媒を抽出する系統を設ける必要がないため、軸受システムを簡素化することができる。また、ターボ冷凍装置1Aの運転状態によらず、潤滑用冷媒の供給圧力を必要規定値以上に保持することができ、潤滑用冷媒を確実に供給することができる。なお、圧力付与容器43の構造は、必ずしも上記の構成でなくてもよく、例えばスプリング46の付勢力に代えて錘の重量をピストン45に加えるようにしてもよい。あるいは、圧力付与容器43の内部をゴム膜で軸方向に2分割し、閉塞されている一方の部屋に窒素ガス等を封入し、冷媒供給通路27が接続されている他方の部屋に冷媒Rを貯留するようにした、いわゆるアキュムレータ構造に変更してもよい。
 以上に説明したように、上記の各実施形態に係るターボ圧縮機2,2Aおよびこれを備えたターボ冷凍装置1,1Aによれば、ターボ圧縮機2,2Aのロータ軸15を支持する非接触軸受である主軸受18a,18bの機能停止時に、この主軸受18a,18bに隣接して設けられるタッチダウン用の補助軸受19a,19bに液冷媒を潤滑剤として供給可能にし、補助軸受19a,19bの低コスト化および長寿命化を図ることができる。
 なお、本発明は上記の各実施形態の構成のみに限定されるものではなく、適宜変更や改良を加えることができ、このように変更や改良を加えた実施形態も本発明の権利範囲に含まれるものとする。例えば、上記実施形態に記載したターボ冷凍装置1,1Aの全体構成や用途、あるいはターボ圧縮機2,2Aの構成等は、あくまでも一例であり、各部に変更を加えることもできる。
1,1A ターボ冷凍装置
2,2A ターボ圧縮機
3 凝縮器
4 蒸発器
7 冷媒圧縮部
13 ケーシング
14 電動機
15 ロータ軸
16 インペラ
18a,18b 主軸受(非接触軸受)
19a,19b 補助軸受
25,32,40 潤滑冷媒供給部
26,33,41 液冷媒貯留部
27,34a,34b 液冷媒供給通路
28,35a,35b 電磁弁
31 液冷媒ジャケット
43 圧力付与容器
R 冷媒

Claims (9)

  1.  ロータ軸と、
     前記ロータ軸の中間部に同軸的に設けられて前記ロータ軸を回転駆動する電動機と、
     前記ロータ軸の一端に固定されて冷媒を圧縮する冷媒圧縮部を構成するインペラと、
     前記電動機と前記インペラとの間、および前記ロータ軸の他端を軸支する非接触軸受と、
     前記非接触軸受に隣接し、該非接触軸受の機能停止時に該非接触軸受に代わって前記ロータ軸を軸支する補助軸受と、
     前記非接触軸受の機能停止時に、前記補助軸受の内部に前記冷媒を潤滑剤として供給する潤滑冷媒供給部と、
    を備えたターボ圧縮機。
  2.  前記潤滑冷媒供給部は、
     液相状の前記冷媒が貯留された液冷媒貯留部と、
     前記補助軸受と前記液冷媒貯留部との間を接続する液冷媒供給通路と、
     前記液冷媒供給通路に接続され、通電された状態で閉となる電磁弁と、
    を備えて構成されている請求項1に記載のターボ圧縮機。
  3.  前記液冷媒貯留部は、前記冷媒圧縮部により圧縮された前記冷媒が凝縮される凝縮器の底部である請求項2に記載のターボ圧縮機。
  4.  前記液冷媒貯留部は、前記電動機を収容するケーシングに設けられた、前記電動機冷却用の液冷媒ジャケットである請求項2に記載のターボ圧縮機。
  5.  前記液冷媒貯留部は、液相状の前記冷媒を、前記補助軸受の周辺圧力よりも高い圧力を付与しながら貯留する圧力付与容器である請求項2に記載のターボ圧縮機。
  6.  前記補助軸受は転がり軸受であり、その外輪、内輪、および転動体の少なくともいずれかの材質としてセラミック材を採用した請求項1から5のいずれかに記載のターボ圧縮機。
  7.  前記補助軸受は転がり軸受であり、その外輪、内輪、および転動体の少なくともいずれかに、低粘度流体による潤滑でも潤滑膜が形成される材質をコーティングした請求項1から5のいずれかに記載のターボ圧縮機。
  8.  前記補助軸受は転がり軸受であり、その外輪、内輪、および転動体の少なくともいずれかにダイヤモンドライクカーボンをコーティングした請求項1から5のいずれかに記載のターボ圧縮機。
  9.  請求項1から8のいずれかに記載のターボ圧縮機と、
     前記ターボ圧縮機によって圧縮された前記冷媒を凝縮させる凝縮器と、
     凝縮した前記冷媒を蒸発させる蒸発器と、
    を具備してなるターボ冷凍装置。
     
PCT/JP2017/015636 2016-04-22 2017-04-18 ターボ圧縮機、これを備えたターボ冷凍装置 WO2017183644A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/095,112 US20190211834A1 (en) 2016-04-22 2017-04-18 Turbo compressor and turbo refrigerator provided with same
CN201780038888.XA CN109416049A (zh) 2016-04-22 2017-04-18 涡轮压缩机以及具备该涡轮压缩机的涡轮制冷装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016086202A JP6672056B2 (ja) 2016-04-22 2016-04-22 ターボ圧縮機、これを備えたターボ冷凍装置
JP2016-086202 2016-04-22

Publications (1)

Publication Number Publication Date
WO2017183644A1 true WO2017183644A1 (ja) 2017-10-26

Family

ID=60116801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015636 WO2017183644A1 (ja) 2016-04-22 2017-04-18 ターボ圧縮機、これを備えたターボ冷凍装置

Country Status (4)

Country Link
US (1) US20190211834A1 (ja)
JP (1) JP6672056B2 (ja)
CN (1) CN109416049A (ja)
WO (1) WO2017183644A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3742080A1 (en) * 2019-05-21 2020-11-25 Carrier Corporation Refrigeration apparatus
WO2021065363A1 (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 ターボ圧縮機

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11274705B2 (en) * 2016-02-19 2022-03-15 Johnson Controls Technology Company Vapor compression system and method of extending service life of same
US10876539B2 (en) * 2016-09-07 2020-12-29 Hamilton Sunstrand Corporation Ventilation fan having a hybrid bearing system
EP3579390A4 (en) * 2017-05-09 2020-12-02 Daikin Industries, Ltd. TURBOCHARGER
WO2019171740A1 (ja) * 2018-03-05 2019-09-12 パナソニック株式会社 速度型圧縮機及び冷凍サイクル装置
JP7187292B2 (ja) * 2018-03-05 2022-12-12 パナソニックホールディングス株式会社 速度型圧縮機及び冷凍サイクル装置
CN111828336A (zh) * 2019-04-15 2020-10-27 孟想 一种超静音零泄漏核主泵/风机压缩机一体化设计方案
EP3742069B1 (en) * 2019-05-21 2024-03-20 Carrier Corporation Refrigeration apparatus and use thereof
US11566663B2 (en) * 2019-06-26 2023-01-31 Trane International Inc. Bearing for supporting a rotating compressor shaft
CN114450540A (zh) * 2019-09-30 2022-05-06 特灵国际有限公司 压缩机轴的气体轴承的冷却
GB2588146A (en) * 2019-10-09 2021-04-21 Edwards Ltd Vacuum pump
JP6927343B1 (ja) * 2020-02-17 2021-08-25 ダイキン工業株式会社 圧縮機
DE102020203204A1 (de) 2020-03-12 2021-09-16 Robert Bosch Gesellschaft mit beschränkter Haftung Lageranordnung für eine Welle eines Turbokompressors
US11846296B2 (en) * 2020-03-13 2023-12-19 Carrier Corporation Flushing of a touchdown bearing
CN114198922B (zh) * 2021-11-22 2023-08-15 青岛海尔空调电子有限公司 压缩机的供液系统
CN114483605B (zh) * 2022-03-01 2023-11-21 江苏海拓宾未来工业科技集团有限公司 一种两级叶轮高速空气悬浮离心鼓风机涡轮装置
US20240077239A1 (en) * 2022-09-01 2024-03-07 Trane International Inc. Refrigerant circuit compressor gas bearing feed
JP2024057758A (ja) * 2022-10-13 2024-04-25 三菱重工業株式会社 冷熱発電装置、及び冷熱発電システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319498U (ja) * 1989-07-07 1991-02-26
JP2001123997A (ja) * 1999-10-21 2001-05-08 Hitachi Ltd 磁気軸受搭載遠心圧縮機
JP2013500471A (ja) * 2009-07-22 2013-01-07 ジョンソン コントロールズ テクノロジー カンパニー 電磁軸受を利用するターボ機械の予備機械軸受のクリアランスを決定する装置および方法
JP2014119083A (ja) * 2012-12-19 2014-06-30 Daikin Ind Ltd 磁気軸受装置および圧縮機
JP2016033348A (ja) * 2014-07-31 2016-03-10 三菱重工業株式会社 ターボ冷凍機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10131889A (ja) * 1996-10-25 1998-05-19 Mitsubishi Heavy Ind Ltd 冷凍機用圧縮機
US6176092B1 (en) * 1998-10-09 2001-01-23 American Standard Inc. Oil-free liquid chiller
JP3866925B2 (ja) * 2000-02-18 2007-01-10 株式会社日立産機システム スクロール圧縮機
US20060064197A1 (en) * 2005-01-26 2006-03-23 Denso Corporation Method and apparatus for designing rolling bearing to address brittle flaking
EP1963762B1 (en) * 2005-12-06 2021-01-27 Carrier Corporation Lubrication system for touchdown bearings of a magnetic bearing compressor
DE102008031994B4 (de) * 2008-04-29 2011-07-07 Siemens Aktiengesellschaft, 80333 Fluidenergiemaschine
WO2011044430A2 (en) * 2009-10-09 2011-04-14 Dresser-Rand Company Auxiliary bearing system with oil reservoir for magnetically supported rotor system
EP2677177B1 (en) * 2012-06-22 2020-10-14 Skf Magnetic Mechatronics Electric centrifugal compressor for vehicles
CN202711089U (zh) * 2012-06-28 2013-01-30 河南中烟工业有限责任公司 混丝加香机加香管路稳压装置
DE102014212749A1 (de) * 2013-08-09 2015-02-12 Magna Powertrain Bad Homburg GmbH Verfahren zum Betreiben einer Kraft-Wärme-Vorrichtung, Kraft Wärme-Vorrichtung und Verwendung eines Schmiermittels
CN205025807U (zh) * 2015-10-14 2016-02-10 重庆美的通用制冷设备有限公司 离心式压缩机用轴承组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319498U (ja) * 1989-07-07 1991-02-26
JP2001123997A (ja) * 1999-10-21 2001-05-08 Hitachi Ltd 磁気軸受搭載遠心圧縮機
JP2013500471A (ja) * 2009-07-22 2013-01-07 ジョンソン コントロールズ テクノロジー カンパニー 電磁軸受を利用するターボ機械の予備機械軸受のクリアランスを決定する装置および方法
JP2014119083A (ja) * 2012-12-19 2014-06-30 Daikin Ind Ltd 磁気軸受装置および圧縮機
JP2016033348A (ja) * 2014-07-31 2016-03-10 三菱重工業株式会社 ターボ冷凍機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3742080A1 (en) * 2019-05-21 2020-11-25 Carrier Corporation Refrigeration apparatus
US11300335B2 (en) 2019-05-21 2022-04-12 Carrier Corporation Refrigeration apparatus including lubrication of compressor with refrigerant
WO2021065363A1 (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 ターボ圧縮機

Also Published As

Publication number Publication date
CN109416049A (zh) 2019-03-01
JP2017194042A (ja) 2017-10-26
JP6672056B2 (ja) 2020-03-25
US20190211834A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2017183644A1 (ja) ターボ圧縮機、これを備えたターボ冷凍装置
US10570908B2 (en) Centrifugal compressor assembly and method of operation with an airconditioner
CN109477487B (zh) 离心压缩机和用于离心压缩机的磁轴承备用系统
US9234522B2 (en) Hybrid bearing turbomachine
EP3112691B1 (en) Compressor and refrigerating cycle apparatus
KR19980033157A (ko) 냉동기용 압축기
US20090133431A1 (en) Air cycle refrigeration and cooling system, and turbine unit for the air cycle refrigeration and cooling
US11892031B2 (en) Bearing for supporting a rotating compressor shaft
WO2021199819A1 (ja) スラスト気体軸受、それを備える遠心型圧縮機、およびそれを備える冷凍装置
WO2017122719A1 (ja) ターボ圧縮機、これを備えたターボ冷凍装置
JP2004044954A (ja) ガス軸受付き圧縮機を備えたターボ冷凍機及びその運転方法
JP2014190616A (ja) ターボ冷凍機の圧縮機用電動機
JP2008082216A (ja) 圧縮膨張タービンシステム
JP5042479B2 (ja) 空気サイクル冷凍冷却システム
JPH10148408A (ja) 冷凍装置
WO2023190259A1 (ja) 圧縮機、および冷凍装置
US11988250B2 (en) Vapor compression system and method of extending service life of same
EP3929453B1 (en) Foil bearing lubrication
JPH05231372A (ja) 流体機械及び流体機械の軸受方法
JP2022045372A (ja) 圧縮機、および該圧縮機を備えた冷凍機
KR100483713B1 (ko) 냉매증기터빈을 이용한 ghp의 회전체 시스템
KR20080054525A (ko) 냉장고의 송풍모터 구조

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785982

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785982

Country of ref document: EP

Kind code of ref document: A1