WO2017183123A1 - 無線通信装置 - Google Patents
無線通信装置 Download PDFInfo
- Publication number
- WO2017183123A1 WO2017183123A1 PCT/JP2016/062455 JP2016062455W WO2017183123A1 WO 2017183123 A1 WO2017183123 A1 WO 2017183123A1 JP 2016062455 W JP2016062455 W JP 2016062455W WO 2017183123 A1 WO2017183123 A1 WO 2017183123A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- linear conductor
- antenna element
- wireless communication
- circuit
- baseband processing
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
Definitions
- the present invention relates to a wireless communication device.
- HEMS home energy management system
- wireless communication is used to collect information on each home appliance, and each home appliance has a built-in wireless module.
- wireless modules are often built into various devices. In the following, the technical background will be described by taking an example of mounting a wireless module on a home appliance.
- a wireless module substrate is composed of an antenna element, a baseband processing circuit, and a high frequency circuit, and the substrate alone is used to reduce power reflection between the input / output port of the high frequency power and the antenna. Adjustment is made (impedance matching).
- the wireless module board is not used alone, but is mounted on a control board for controlling home appliances. That is, when the wireless module board is mounted on the control board of the home appliance, the wireless module board and the control board are electrically connected or approached. In such a case, the impedance matching of the wireless module board is lost due to the influence of the control board, and power loss due to power reflection between the input / output port and the antenna increases. Conventionally, wireless modules have been used with this power loss allowed.
- Patent Document 1 discloses that an antenna device capable of adjusting input impedance can be obtained by arranging a linear conductor loaded with frequency variable means around an antenna element. Further, in Patent Document 2, an antenna device capable of adjusting input impedance by loading a reactance element between a ground portion of a high-frequency circuit connected to an antenna element and a second ground portion different from the ground portion. Is disclosed.
- the antenna device described in the above-mentioned patent document is applied to module mounting on a control board, the following problems can be cited.
- the shape and dimensions of the control board are different for each type. For this reason, how to change the input impedance of the antenna also differs depending on the type of the control board.
- a linear conductor or a reactance element is loaded on the same substrate as the substrate on which the antenna element is mounted, that is, on the wireless module substrate.
- a commercially available product is often used for the wireless module substrate, and it is often difficult to change the structure of the wireless module substrate. Therefore, it is difficult to use the antenna device as a solution.
- the present invention has been made to solve the above-described problems, and it is an object of the present invention to obtain a wireless communication apparatus that can adjust the input impedance of an antenna element without changing the structure of the wireless module substrate.
- a wireless communication device includes an antenna element, a high-frequency circuit connected to the antenna element, a baseband processing circuit connected to the high-frequency circuit, a first ground unit connected to the high-frequency circuit and the baseband processing circuit, A control module, a control circuit, a second ground portion connected to the control circuit, and a linear conductor electrically connected to the second ground portion in proximity to the antenna element And a conductor connecting the baseband processing circuit and the control circuit.
- the antenna element and the linear conductor are electromagnetically coupled, and the input length is adjusted by adjusting the electrical length and shape of the linear conductor and the loading position. Can be adjusted.
- impedance mismatch caused by mounting the wireless module substrate on the control substrate is alleviated, and a reduction in power loss is expected. That is, by appropriately adjusting the linear conductor for each control board, even when a common wireless module board is mounted on a variety of control boards, efficient power supply to the antenna can be maintained.
- a common wireless module board can be mounted on a wide variety of control boards. Also, the same effect as described above can be obtained by inserting a reactance element between the ground on the control board and the linear conductor and adjusting the reactance element value.
- FIG. 1 is an example of a configuration diagram of a wireless communication apparatus 110 according to Embodiment 1.
- FIG. 3 is a configuration diagram of radio communication apparatus 110 according to Embodiment 1 as seen from the x-axis direction.
- FIG. It is an example of the block diagram of the radio
- FIG. 3 is a diagram illustrating frequency characteristics of a voltage standing wave ratio (VSWR) in the wireless communication device 100 and the wireless communication device 110.
- VSWR voltage standing wave ratio
- FIG. 3 is an example of a configuration diagram of a wireless communication apparatus 110 according to Embodiment 2.
- FIG. 6 is an example of a configuration diagram of a wireless communication apparatus 110 according to Embodiment 3.
- FIG. 6 is an example of a configuration diagram of a wireless communication apparatus 110 according to Embodiment 4.
- FIG. 10 is an example of a configuration diagram of a wireless communication apparatus 110 according to a fifth embodiment.
- FIG. 10 is an example of a configuration diagram of a wireless communication apparatus 110 according to a sixth embodiment.
- FIG. 10 is an example of a configuration diagram of a wireless communication apparatus 110 according to a seventh embodiment.
- FIG. 10 is an example of a configuration diagram of a wireless communication apparatus 110 according to an eighth embodiment.
- FIG. 1 shows an exemplary configuration of radio communication apparatus 110 according to the present embodiment.
- 2 shows the wireless communication apparatus 110 viewed from the x-axis direction.
- the wireless communication device 110 includes a wireless module substrate 120, a control substrate 130, and a conductor 150.
- the wireless module substrate 120 includes an antenna element 121, a high-frequency circuit 122 connected to the antenna element 121, a baseband processing circuit 123 connected to the high-frequency circuit 122, and a second circuit connected to the high-frequency circuit 122 and the baseband processing circuit 123. 1 ground portion 124.
- the control board 130 includes a control circuit 131, a second ground part 132 connected to the control circuit 131, and a linear conductor 140 connected to the second ground part 132.
- the linear conductor 140 is disposed in parallel with the antenna element 121 in proximity to the wavelength of the frequency to be used.
- the conductor 150 electrically connects the baseband processing circuit 123 of the wireless module substrate 120 and the control circuit 131 of the control substrate 130.
- FIG. 2 shows a configuration diagram when the wireless module substrate 120 is viewed from the x-axis direction.
- FIG. 3 is a diagram illustrating a configuration of the wireless communication device 100 when the linear conductor 140 is not present.
- the wireless communication device 100 is a device in which a wireless module substrate 120 is mounted on a control substrate 130 that is not provided with a linear conductor 140.
- the electrical lengths of the linear antenna elements 121 of the wireless communication device 100 and the wireless communication device 110 are set to approximately 1 ⁇ 4 wavelength, and are arranged in parallel with the y-axis.
- the linear conductor 140 of the wireless communication apparatus 110 shown in FIG. 1 has an electrical length that is 1/20 wavelength longer than the antenna element 121 and is close to the 1/10 wavelength of the frequency to be used and parallel to the antenna element 121. And it is arrange
- the antenna element 121 and the first ground portion 124 are electrically connected via the high-frequency circuit 122. For this reason, when the high frequency current which contributes to radiation flows through the antenna element 121 and the first ground part 124, the antenna element 121 and the first ground part 124 operate as an antenna.
- a wireless module substrate is adjusted in input impedance so that reflection between the input / output port of the high frequency power and the antenna is reduced by the module substrate alone.
- the wireless module substrate 120 is mounted on the control substrate 130 as in the wireless communication device 100 illustrated in FIG. 3 .
- the baseband processing circuit 123 is electrically connected to the control circuit 131 via the conductor 150
- the first ground part 124 is electrically connected to the second ground part 132.
- the ground size as seen from is increased.
- impedance matching between the antenna element 121 and the high frequency circuit 122 cannot be achieved.
- power loss due to power reflection between the input / output port of the wireless communication device 100 and the antenna increases.
- the linear conductors 140 are connected in parallel to the antenna element 121 and connected to the second ground portion 132 as in the wireless communication device 110. Since the linear conductor 140 is close to the antenna element 121 with respect to the wavelength of the frequency to be used, the linear conductor 140 and the antenna element 121 are electromagnetically coupled. For example, under the conditions of the wireless communication device 110 shown in FIG. 1, the impedance matching between the antenna element 121 and the high-frequency circuit 122 can be achieved by making the electrical length of the linear conductor 140 longer than the antenna element 121 by 1/20 wavelength. Power loss due to power reflection between the input / output port of the wireless communication device 110 and the antenna is reduced.
- FIG. 4 shows measurement results of input impedance in the wireless communication device 100 and the wireless communication device 110.
- the operating frequency band is 2.45 GHz.
- the input impedance of the high frequency power supply is 50 ohms. 4 and 5, the wireless communication device 100 is referred to as a wireless communication device A, and the wireless communication device 110 is referred to as a wireless communication device B. From the measurement result of FIG. 4, it can be confirmed that the wireless communication device 110 has an input impedance in the operating frequency band that is closer to 50 ohms than the wireless communication device 100. That is, it can be understood that the wireless communication device 110 is more impedance-matched than the wireless communication device 100 and has a smaller mismatch loss.
- FIG. 5 shows frequency characteristics of the voltage standing wave ratio (VSWR) in the wireless communication device 100 and the wireless communication device 110.
- VSWR voltage standing wave ratio
- the wireless communication apparatus 100 VSWR is 3.4 in the operating frequency band. This is -1.5 dB in terms of mismatch loss, indicating that power loss due to power reflection is large.
- the wireless communication apparatus 110 to which the present invention is applied the VSWR is 1.6. When converted to mismatch loss, it is -0.2 dB, indicating that the power loss is small. From the above results, it can be seen that by applying the present invention to the wireless module substrate mounting, power loss due to power reflection between the input / output port of the wireless communication device 110 and the antenna is reduced.
- the wireless module board 120 is modified. Therefore, impedance matching can be achieved. That is, by loading an appropriate linear conductor for each control board, efficient power supply to the antenna can be maintained even when a common wireless module board is mounted on various control boards. As a result, if the present invention is applied, it is possible to mount a common wireless module substrate on various control substrates with low loss.
- the linear conductor 140 in order to explain the effect of the present invention, an example of the electrical length, shape, and loading position of the linear conductor 140 has been described. Is not limited to this.
- the distance between the antenna element 121 and the linear conductor 140 may be such that a part of both elements is close to 1/10 wavelength. If the polarization of the antenna element 121 and the linear conductor 140 are not orthogonal, the loading position of the antenna element 121 and the linear conductor 140 is not limited to FIG.
- the linear antenna element 121 is disposed substantially parallel to the y axis and has a polarization component parallel to the y axis.
- the linear conductor 140 may have an angle with respect to the y-axis except when it is substantially parallel to the x-axis or the z-axis.
- FIG. 6 is another implementation configuration diagram in the present embodiment. Since the same or equivalent parts as in FIG. 1 are denoted by the same reference numerals, only differences from FIG. 1 will be described.
- a radio module substrate 120 including a high-frequency circuit 122 and a first ground portion 124 connected to the high-frequency circuit 122; a baseband processing circuit 210 electrically connected to the high-frequency circuit 122 via a conductor 150;
- the control board includes a control circuit 131 connected to the baseband processing circuit 210, and a second ground portion 132 connected to the baseband processing circuit 210 and the control circuit 131. Since the linear conductor 140 and the antenna element 121 are electromagnetically coupled, even when the wireless module substrate 120 is configured by only the antenna element 121 and the high-frequency circuit 122, the same effect as in FIG.
- the electrical length and loading position of the antenna element 121 and the linear conductor 140 are not limited to this.
- the distance between the antenna element 121 and the linear conductor 140 may be such that a part of both elements is close to 1/10 wavelength. If the polarization of the antenna element 121 and the linear conductor 140 are not orthogonal, the loading position of the antenna element 121 and the linear conductor 140 is not limited to FIG.
- FIG. 7 is a configuration diagram showing the present embodiment. The same or corresponding parts as those in FIG. 1 described in the first embodiment are denoted by the same reference numerals.
- the conductor 150 that electrically connected the baseband processing circuit 123 and the control circuit 131 in Embodiment 1 is removed, and the baseband processing circuit 123 and the control circuit 131 are insulated.
- a wireless communication device 310 is connected to the baseband processing circuit 123, and a wireless communication device 320 is connected to the control circuit 131.
- a wireless communication device 310 is connected to the baseband processing circuit 123, and a wireless communication device 320 is connected to the control circuit 131.
- the electrical length and loading position of the antenna element 121 and the linear conductor 140 of the present embodiment are not limited to this.
- the distance between the antenna element 121 and the linear conductor 140 may be such that a part of both elements is close to 1/10 wavelength.
- the loading position of the antenna element 121 and the linear conductor 140 is not limited to FIG.
- the baseband processing circuit 123 may be mounted on the control board 130 instead of on the wireless module board 120.
- FIG. 8 is a configuration diagram illustrating an example of the present embodiment. The same or corresponding parts as those in FIG. 1 used in the first embodiment are denoted by the same reference numerals, and only differences from the first embodiment will be described. In FIG. 8, the dimension in the y direction of the control board 130 is shorter than that in the first embodiment. Further, the present embodiment is characterized in that the linear conductor 140 is connected to the second ground part 132 through the reactance element 410.
- FIG. 8 shows an example of the present embodiment, and the electrical length and loading position of the antenna element 121 and the linear conductor 140 are not limited to this.
- the distance between the antenna element 121 and the linear conductor 140 may be such that a part of both elements is close to 1/10 wavelength. If the polarization of the antenna element 121 and the linear conductor 140 are not orthogonal, the loading position of the antenna element 121 and the linear conductor 140 is not limited to FIG.
- the baseband processing circuit 123 may be mounted on the control board 130 instead of on the wireless module board 120.
- the conductor 150 that electrically connects the baseband processing circuit 123 and the control circuit 131 may or may not be provided.
- the operation principle of this embodiment will be described.
- the electrical length of the linear conductor 140 changes. Since the linear conductor 140 and the antenna element 121 are electromagnetically coupled, the same effect as in the first embodiment can be obtained by adjusting the element value of the reactance element 410. That is, even when the electric length and shape of the linear conductor 140 and the loading position are limited and the power loss cannot be improved only by adjusting the linear conductor 140, the line value can be adjusted by adjusting the element value of the reactance element 410.
- the electrical length of the conductor 140 can be adjusted.
- FIG. 9 is a block diagram showing the implementation of the present invention. Since the same reference numerals are given to the same or corresponding parts as those in FIG. 8 used in the third embodiment, only differences from the third embodiment will be described. In FIG. 9, the dimension in the y direction of the control board 130 is smaller than that in the third embodiment.
- Reference numeral 510 denotes an antenna element obtained by bending a linear conductor into an inverted L shape
- reference numeral 520 denotes a linear conductor obtained by bending the linear conductor into an inverted L shape.
- FIG. 9 shows an example of the present embodiment. If the polarization of the antenna element 510 and the linear conductor 520 are not orthogonal, the shapes and loading positions of the antenna element 510 and the linear conductor 520 are shown in FIG. It is not limited to 9.
- the antenna element 510 has a polarization component parallel to the x axis and a polarization component parallel to the y axis.
- the linear conductor 520 has a shape and a loading position that are not substantially parallel to the z-axis, the same effect as that described in the first embodiment can be obtained. That is, only one of the antenna element and the linear conductor may be bent in an inverted L shape.
- the baseband processing circuit 123 may be mounted on the control board 130 instead of on the wireless module board 120.
- the conductor 150 that electrically connects the baseband processing circuit 123 and the control circuit 131 may or may not be provided.
- the reactance element 410 may or may not be inserted.
- the operation principle of this embodiment is the same as that of Embodiment 3, but the antenna can be reduced in height by bending the antenna element 510 and the linear conductor 520 into an inverted L shape.
- the fourth embodiment has been described by taking the case where the dimension in the y direction of the control board 130 is smaller than that of the third embodiment as an example, but the application destination of the fourth embodiment is not limited to this.
- both the antenna element 510 and the linear conductor 520 are bent in an inverted L shape, but only one of the antenna element and the linear conductor may be bent in an inverted L shape.
- FIG. 10 is a configuration diagram showing the present embodiment. Since the same reference numerals are given to the same or corresponding parts as those in FIG. 8 used in the third embodiment, only differences from the third embodiment will be described.
- the dimension of the control board 130 in the x direction is smaller than that in the third embodiment.
- Reference numeral 610 denotes an antenna element obtained by bending a linear conductor into a meander shape
- reference numeral 620 denotes a linear conductor obtained by bending the linear conductor into a meander shape.
- FIG. 10 shows an example of this embodiment. If the polarization of the antenna element 610 and the linear conductor 620 are not orthogonal, the shapes and loading positions of the antenna element 610 and the linear conductor 620 are shown in FIG. It is not limited to 10. Only one of the antenna element and the linear conductor may be bent in a meander shape. The other antenna element or linear conductor may be bent in an inverted L shape.
- the baseband processing circuit 123 may be mounted on the control board 130 instead of on the wireless module board 120.
- the conductor 150 that electrically connects the baseband processing circuit 123 and the control circuit 131 may or may not be provided.
- the reactance element 410 may or may not be inserted.
- the operating principle of this embodiment is the same as that of Embodiment 3, but the physical length of the antenna is shortened by bending at least one of the antenna element or the linear conductor into a meander shape. It becomes possible.
- FIG. 10 the case where the dimension in the x direction of the control board 130 is smaller than that in the third embodiment has been described as an example, but the application destination of the present embodiment is not limited to this.
- FIG. 11 is a configuration diagram showing the present embodiment. Since the same reference numerals are given to the same or corresponding parts as those in FIG. 8 used in the third embodiment, only differences from the third embodiment will be described. In FIG. 11, the dimensions of the radio module substrate 120 and the control substrate 130 in the x and y directions are smaller than those in the third embodiment.
- Reference numeral 710 denotes an antenna element obtained by bending a linear conductor into an inverted F shape.
- Reference numeral 720 denotes an antenna element in which a linear conductor is bent in an inverted F shape, and is connected to the second ground part 132 via a first reactance element 730 and a second reactance element 731.
- FIG. 11 shows an example of this embodiment. If the polarization of the antenna element 710 and the linear conductor 720 are not orthogonal, the shapes and loading positions of the antenna element 710 and the linear conductor 720 are shown in FIG. It is not limited to 11. Only one of the antenna element and the linear conductor may be bent in an inverted F shape. Further, the other antenna element or the linear conductor may be bent in an inverted L shape or a meander shape.
- the baseband processing circuit 123 may be mounted on the control board 130 instead of on the wireless module board 120.
- the conductor 150 that electrically connects the baseband processing circuit 123 and the control circuit 131 may or may not be provided.
- the first reactance element 730 and the second reactance element 731 may or may not be inserted.
- the operating principle of the present embodiment is the same as that of the third embodiment. However, by bending the antenna element in the reverse F, it is possible to reduce the height of the antenna element and shorten the physical length.
- FIG. 11 although the case where the dimension of the x direction of the radio
- Embodiment 7 an effect when the antenna element on the wireless module substrate is a dipole antenna will be described. It is known that a balanced feeding antenna such as a dipole antenna is less likely to cause a current to flow to the ground than an unbalanced feeding antenna such as a monopole antenna. Therefore, by using this embodiment, the influence of the first ground portion 124 on the wireless module substrate on the reflection characteristics of the antenna can be reduced.
- FIG. 12 is a configuration diagram showing the present embodiment. Since the same reference numerals are given to the same or equivalent parts as in FIG. 9 used in the fourth embodiment, only differences from the fourth embodiment will be described. In the present embodiment, the antenna element 510 of the fourth embodiment is replaced with a dipole antenna 810.
- FIG. 12 shows an example of this embodiment. If the polarization of the dipole antenna 810 and the linear conductor 520 are not orthogonal, the shapes and loading positions of the dipole antenna 810 and the linear conductor 520 are shown in FIG. It is not limited to 12.
- the linear conductor 520 may be bent in a meander shape or an inverted F shape.
- the baseband processing circuit 123 may be mounted on the control board 130 instead of on the wireless module board 120.
- the conductor 150 that electrically connects the baseband processing circuit 123 and the control circuit 131 may or may not be provided.
- the reactance element 410 may or may not be inserted.
- a monopole antenna on an infinite ground plane is equivalent to a dipole antenna having twice the electrical length of a monopole antenna. That is, as long as the antenna element has an electrical length that resonates with the operating frequency, the dipole antenna and the monopole antenna on the infinite ground plane can be regarded as equivalent. Therefore, antenna element 510 of Embodiment 4 may be replaced with dipole antenna 810.
- a balanced feeding antenna such as a dipole antenna is less likely to cause a current to flow to the ground than a monopole antenna on a finite ground plane. Therefore, by using this embodiment, it is possible to reduce the influence of the first ground portion on the wireless module substrate on the reflection characteristics of the antenna. For example, when a conductor, such as a cable, whose shape is likely to change is connected to the first ground portion 124, the shape of the first ground portion 124 changes. In the fourth embodiment, the antenna is reflected. The characteristics may be greatly degraded.
- Embodiment 8 FIG.
- the linear conductor on the control board is a linear conductor in which the first linear conductor and the second linear conductor are connected via a reactance element.
- the linear conductor and the second ground portion on the control board are insulated, and the current flowing through the linear conductor does not flow to the second ground portion. For this reason, the influence of the second ground portion 132 on the control board 130 on the reflection characteristics of the antenna can be reduced.
- FIG. 13 is a configuration diagram showing the present embodiment. Since the same reference numerals are given to the same or equivalent parts as in FIG. 9 used in the fourth embodiment, only differences from the fourth embodiment will be described.
- the linear conductor 520 of the fourth embodiment is replaced with a linear conductor 930.
- the linear conductor 930 is configured by connecting a first linear conductor 910 and a second linear conductor 911 via a reactance element 920. Note that the first linear conductor 910, the second linear conductor 911, and the reactance element 920 are all insulated from the second ground portion 132.
- FIG. 13 shows an example of this embodiment. If the polarization of the antenna element 510 and the linear conductor 930 are not orthogonal, the shapes and loading positions of the antenna element 510 and the linear conductor 930 are shown in FIG. It is not limited to 13.
- the antenna element 510 may be bent in a meander shape or an inverted F shape.
- the baseband processing circuit 123 may be mounted on the control board 130 instead of on the wireless module board 120.
- the conductor 150 that electrically connects the baseband processing circuit 123 and the control circuit 131 may or may not be provided.
- the reactance element 920 may or may not be inserted.
- the operation principle of this embodiment is the same as that of the seventh embodiment.
- the linear conductor 930 and the second ground portion 132 on the control board 130 are insulated, and the current flowing through the linear conductor 930 does not flow through the second ground portion 132. Therefore, the influence of the second ground portion 132 on the control board 130 on the reflection characteristics of the antenna 510 can be reduced.
- the shape of the second ground portion 132 changes, and in the fourth embodiment, the antenna reflection characteristics are large. There is a possibility of deterioration.
- the effects of the present invention have been described by taking home appliances as an example of a device incorporating a wireless module substrate, but the application destination of the wireless communication device is not limited thereto.
- the transmitter that radiates radio waves from the wireless communication apparatus of the present invention has been described as an example. However, it is obvious that the same effect can be obtained for the receiver due to the reciprocity of the wireless communication apparatus.
Landscapes
- Support Of Aerials (AREA)
- Details Of Aerials (AREA)
Abstract
アンテナ素子121、アンテナ素子121に接続する高周波回路122、高周波回路122に接続するベースバンド処理回路123、高周波回路122とベースバンド処理回路123に接続する第1のグラウンド部124、を備えた無線モジュール基板120と、制御回路131、制御回路131に接続する第2のグラウンド部132、アンテナ素子121に近接して第2のグラウンド部132と電気的に接続された線状導体140、を備えた制御基板130と、ベースバンド処理回路123と制御回路131を接続する導体150とを有することを特徴とする無線通信装置100。
Description
本発明は、無線通信装置に関するものである。
携帯電話機に代表される無線通信機器の普及とともに、無線通信の応用範囲は拡大している。その一例として、家庭の各家電製品の電力使用状況を管理するシステム、ホームエネルギーマネジメントシステム(HEMS)が挙げられる。
HEMSでは、各家電機器の情報収集に無線通信が利用されており、各家電機器には無線モジュールが内蔵されている。このように、無線通信の利用範囲の拡大に伴い、無線モジュールを多種多様な機器へ内蔵することが多くなっている。以降家電機器への無線モジュール実装を例にとり技術背景を説明する。
HEMSでは、各家電機器の情報収集に無線通信が利用されており、各家電機器には無線モジュールが内蔵されている。このように、無線通信の利用範囲の拡大に伴い、無線モジュールを多種多様な機器へ内蔵することが多くなっている。以降家電機器への無線モジュール実装を例にとり技術背景を説明する。
一般的に、無線モジュール基板は、アンテナ素子と、ベースバンド処理回路と、高周波回路で構成されており、高周波電力の入出力ポートとアンテナ間の電力反射が低減されるようその基板単体でアンテナの調整がなされている(インピーダンス整合)。
しかしながら、無線モジュール基板は、それ単体で使われることはなく、家電機器の制御を担う制御基板に実装して利用される。つまり、家電機器の制御基板に無線モジュール基板を実装する際、その無線モジュール基板と制御基板を電気的に接続または接近させることとなる。
そうした場合、その制御基板の影響で無線モジュール基板のインピーダンス整合が崩れ、入出力ポートとアンテナ間の電力反射による電力損失が増加する。従来は、この電力損失を許容して無線モジュールが使用されてきた。
しかしながら、無線モジュール基板は、それ単体で使われることはなく、家電機器の制御を担う制御基板に実装して利用される。つまり、家電機器の制御基板に無線モジュール基板を実装する際、その無線モジュール基板と制御基板を電気的に接続または接近させることとなる。
そうした場合、その制御基板の影響で無線モジュール基板のインピーダンス整合が崩れ、入出力ポートとアンテナ間の電力反射による電力損失が増加する。従来は、この電力損失を許容して無線モジュールが使用されてきた。
この問題に対する解決策として、簡易にアンテナの入力インピーダンスを調整できるアンテナ装置が検討されている。
例えば、特許文献1では、アンテナ素子の周囲に周波数可変手段が装荷された線状導体を配設することで、入力インピーダンスの調整を可能とするアンテナ装置が得られることが開示されている。
また、特許文献2では、アンテナ素子に接続された高周波回路のグラウンド部と、上記グラウンド部とは異なる第2のグラウンド部の間にリアクタンス素子を装荷することで、入力インピーダンスの調整可能なアンテナ装置が得られることが開示されている。
例えば、特許文献1では、アンテナ素子の周囲に周波数可変手段が装荷された線状導体を配設することで、入力インピーダンスの調整を可能とするアンテナ装置が得られることが開示されている。
また、特許文献2では、アンテナ素子に接続された高周波回路のグラウンド部と、上記グラウンド部とは異なる第2のグラウンド部の間にリアクタンス素子を装荷することで、入力インピーダンスの調整可能なアンテナ装置が得られることが開示されている。
上記特許文献に記載のアンテナ装置を制御基板へのモジュール実装に適用する際、以下に記載する課題が挙げられる。家電機器には多くの機種が存在し、その機種ごとに、制御基板の形状や寸法が異なる。このため、制御基板の種類によって、アンテナの入力インピーダンスの変化の仕方も異なる。上記アンテナ装置はいずれも、アンテナ素子が実装されている基板と同一の基板上、つまり、無線モジュール基板上に、線状導体またはリアクタンス素子を装荷するものである。しかし、一般的な無線通信機器の設計では、無線モジュール基板は市販の製品を使用することが多く、無線モジュール基板の構造変更が困難である場合が多い。そのため、上記アンテナ装置を解決策として用いることは困難である。
この発明は上記のような課題を解決するためになされたもので、無線モジュール基板の構造を変更せずにアンテナ素子の入力インピーダンスを調整可能とする無線通信装置を得ることである。
この発明に係る無線通信装置は、アンテナ素子、前記アンテナ素子に接続する高周波回路、前記高周波回路に接続するベースバンド処理回路、前記高周波回路と前記ベースバンド処理回路に接続する第1のグラウンド部、を有する無線モジュール基板と、制御回路、前記制御回路に接続する第2のグラウンド部、前記アンテナ素子に近接して前記第2のグラウンド部と電気的に接続された線状導体、を有する制御基板と、前記ベースバンド処理回路と前記制御回路を接続する導体とを備えたことを特徴とする。
この発明によれば、前記制御基板上に前記線状導体を装荷したことにより、アンテナ素子と線状導体が電磁結合し、線状導体の電気長および形状、装荷位置を調整することにより入力インピーダンスの調整が可能となる。これにより、無線モジュール基板を制御基板に実装することによるインピーダンス不整合が緩和され、電力損失の低減が期待される。すなわち、制御基板ごとに線状導体を適当に調整することにより、共通の無線モジュール基板を多種多様な制御基板へ実装しても、アンテナへの効率的な電力供給が維持できる。本発明を無線モジュール基板実装に適用することで、共通の無線モジュール基板を多種多様な制御基板へ実装することが可能となる。また、前記制御基板上のグラウンドと線状導体間にリアクタンス素子を挿入し、上記リアクタンス素子値を調整することによっても上記効果と同様の効果が得られる。
実施の形態1.
本発明を適用した送信無線通信装置を例にとり発明の効果を説明する。同様の効果は、無線通信装置の可逆性(reciprocity)により受信無線通信装置でも得られる。図1に本実施の形態に係る無線通信装置110の構成の一例を示す。なお、図2はx軸方向から見た無線通信装置110である。
図1において、無線通信装置110は、無線モジュール基板120、制御基板130、導体150で構成される。
無線モジュール基板120は、アンテナ素子121と、アンテナ素子121に接続する高周波回路122と、高周波回路122に接続されたベースバンド処理回路123と、高周波回路122とベースバンド処理回路123に接続された第1のグラウンド部124とを備える。
制御基板130は、制御回路131と、制御回路131に接続された第2のグラウンド部132と、第2のグラウンド部132に接続された線状導体140を備える。線状導体140は、使用する周波数の波長に対して近接してアンテナ素子121と並行に配設されている。
導体150は、無線モジュール基板120のベースバンド処理回路123と制御基板130の制御回路131との間を電気的に接続する。
無線モジュール基板120をx軸方向から見た場合の構成図を図2に示す。
本発明を適用した送信無線通信装置を例にとり発明の効果を説明する。同様の効果は、無線通信装置の可逆性(reciprocity)により受信無線通信装置でも得られる。図1に本実施の形態に係る無線通信装置110の構成の一例を示す。なお、図2はx軸方向から見た無線通信装置110である。
図1において、無線通信装置110は、無線モジュール基板120、制御基板130、導体150で構成される。
無線モジュール基板120は、アンテナ素子121と、アンテナ素子121に接続する高周波回路122と、高周波回路122に接続されたベースバンド処理回路123と、高周波回路122とベースバンド処理回路123に接続された第1のグラウンド部124とを備える。
制御基板130は、制御回路131と、制御回路131に接続された第2のグラウンド部132と、第2のグラウンド部132に接続された線状導体140を備える。線状導体140は、使用する周波数の波長に対して近接してアンテナ素子121と並行に配設されている。
導体150は、無線モジュール基板120のベースバンド処理回路123と制御基板130の制御回路131との間を電気的に接続する。
無線モジュール基板120をx軸方向から見た場合の構成図を図2に示す。
本実施の形態における無線通信装置110の効果について説明する。
図3は、線状導体140が無かった場合の無線通信装置100の構成を示す図である。
図3において、図1と同じ符号は同一または相当する構成部品を指しているので説明を省略する。無線通信装置100は、線状導体140が備えられていない制御基板130に無線モジュール基板120を実装した装置である。
本実施の形態では、無線通信装置100および無線通信装置110の線状アンテナ素子121の電気長を略1/4波長とし、y軸と並行に配設している。尚、図1に示す無線通信装置110の線状導体140は、電気長がアンテナ素子121より1/20波長だけ長く、使用する周波数の1/10波長に対して近接してアンテナ素子121と並行かつ、y軸と並行に配設されている。
図3は、線状導体140が無かった場合の無線通信装置100の構成を示す図である。
図3において、図1と同じ符号は同一または相当する構成部品を指しているので説明を省略する。無線通信装置100は、線状導体140が備えられていない制御基板130に無線モジュール基板120を実装した装置である。
本実施の形態では、無線通信装置100および無線通信装置110の線状アンテナ素子121の電気長を略1/4波長とし、y軸と並行に配設している。尚、図1に示す無線通信装置110の線状導体140は、電気長がアンテナ素子121より1/20波長だけ長く、使用する周波数の1/10波長に対して近接してアンテナ素子121と並行かつ、y軸と並行に配設されている。
無線モジュール基板120において、アンテナ素子121と第1のグラウンド部124は高周波回路122を介して電気的に接続されている。このため、放射に寄与する高周波電流がアンテナ素子121と第1のグラウンド部124に流れることにより、これらアンテナ素子121と第1のグラウンド部124はアンテナとして動作する。既に述べたように、一般的に無線モジュール基板は、そのモジュール基板単体で高周波電力の入出力ポートとアンテナ間の反射が低減されるよう入力インピーダンスの調整がなされている。
ここで、図3に示す無線通信装置100のように、制御基板130に無線モジュール基板120が実装された場合について考える。ベースバンド処理回路123が制御回路131に導体150を介して電気的に接続されることにより、第1のグラウンド部124は、第2のグラウンド部132と電気的に接続されるため、高周波回路122から見たグラウンド寸法が大きくなる。
その結果、アンテナ素子121と高周波回路122のインピーダンス整合がとれなくなる。これにより、無線通信装置100の入出力ポートとアンテナ間の電力反射による電力損失が増加する。
その結果、アンテナ素子121と高周波回路122のインピーダンス整合がとれなくなる。これにより、無線通信装置100の入出力ポートとアンテナ間の電力反射による電力損失が増加する。
次に無線通信装置110のように、第2のグラウンド部132に接続され、アンテナ素子121に近接して線状導体140が並行に配設された場合について考える。
線状導体140は、使用する周波数の波長に対してアンテナ素子121に近接しているため、線状導体140とアンテナ素子121は電磁結合する。例えば、図1に示す無線通信装置110の条件下では、線状導体140の電気長をアンテナ素子121より1/20波長だけ長くすることで、アンテナ素子121と高周波回路122のインピーダンス整合がとれ、無線通信装置110の入出力ポートとアンテナ間の電力反射による電力損失が低減される。
線状導体140は、使用する周波数の波長に対してアンテナ素子121に近接しているため、線状導体140とアンテナ素子121は電磁結合する。例えば、図1に示す無線通信装置110の条件下では、線状導体140の電気長をアンテナ素子121より1/20波長だけ長くすることで、アンテナ素子121と高周波回路122のインピーダンス整合がとれ、無線通信装置110の入出力ポートとアンテナ間の電力反射による電力損失が低減される。
図4は無線通信装置100と無線通信装置110における入力インピーダンスの測定結果である。動作周波数帯は2.45 GHzとしている。また、高周波電源の入力インピーダンスを50オームとしている。なお、図4および図5では、無線通信装置100のことを無線通信装置A、無線通信装置110のことを無線通信装置Bと称している。
図4の測定結果から、無線通信装置110は無線通信装置100よりも、動作周波数帯の入力インピーダンスが50オームに近づいていることが確認できる。つまり、無線通信装置110は無線通信装置100よりもインピーダンス整合がとれており、不整合損が小さいことがわかる。
図4の測定結果から、無線通信装置110は無線通信装置100よりも、動作周波数帯の入力インピーダンスが50オームに近づいていることが確認できる。つまり、無線通信装置110は無線通信装置100よりもインピーダンス整合がとれており、不整合損が小さいことがわかる。
無線通信装置100と無線通信装置110における電圧定在波比(VSWR)の周波数特性を図5に示す。無線通信装置100では、動作周波数帯でVSWRが3.4である。これは、不整合損に換算すると-1.5 dBであり、電力反射による電力損失が大きいことを示している。
一方、本発明を適用した無線通信装置110ではVSWRが1.6である。不整合損に換算すると-0.2 dBであり、電力損失が小さいことがわかる。
以上の結果より、本発明を無線モジュール基板実装に適用することで、無線通信装置110の入出力ポートとアンテナ間の電力反射による電力損失が低減されることがわかる。
一方、本発明を適用した無線通信装置110ではVSWRが1.6である。不整合損に換算すると-0.2 dBであり、電力損失が小さいことがわかる。
以上の結果より、本発明を無線モジュール基板実装に適用することで、無線通信装置110の入出力ポートとアンテナ間の電力反射による電力損失が低減されることがわかる。
本実施の形態では、制御基板130上に装荷した線状導体140の電気長および形状、装荷位置の調整のみで無線通信装置110の入力インピーダンスを調整するため、無線モジュール基板120には手を加えずインピーダンス整合をとることが可能となる。
つまり、制御基板ごとに適当な線状導体を装荷することにより、共通の無線モジュール基板を多種多様な制御基板へ実装しても、アンテナへの効率的な電力供給が維持できる。
この結果、本発明を適用すれば、共通の無線モジュール基板を多種多様な制御基板へ低損失に実装することが可能となる。
つまり、制御基板ごとに適当な線状導体を装荷することにより、共通の無線モジュール基板を多種多様な制御基板へ実装しても、アンテナへの効率的な電力供給が維持できる。
この結果、本発明を適用すれば、共通の無線モジュール基板を多種多様な制御基板へ低損失に実装することが可能となる。
尚、本実施の形態では、本発明の効果について説明するため、線状導体140の電気長および形状、装荷位置について一例を説明したが、アンテナ素子121と線状導体140の電気長および装荷位置はこれに限らない。
アンテナ素子121と線状導体140間の距離は、両素子の一部分が1/10波長に対して近接していれば良い。
また、アンテナ素子121の偏波と線状導体140が直交していなければ、アンテナ素子121と線状導体140の装荷位置は図1に限らない。例えば、図1において、線状アンテナ素子121はy軸と略並行に配設されており、y軸と並行な偏波成分を有している。この場合、線状導体140はx軸やz軸と略並行である場合を除き、y軸に対して角度を有していてもよい。
アンテナ素子121と線状導体140間の距離は、両素子の一部分が1/10波長に対して近接していれば良い。
また、アンテナ素子121の偏波と線状導体140が直交していなければ、アンテナ素子121と線状導体140の装荷位置は図1に限らない。例えば、図1において、線状アンテナ素子121はy軸と略並行に配設されており、y軸と並行な偏波成分を有している。この場合、線状導体140はx軸やz軸と略並行である場合を除き、y軸に対して角度を有していてもよい。
本実施の形態における他の構成例について説明する。図1の無線通信装置110では、無線モジュール基板120がアンテナ素子121と、高周波回路122と、ベースバンド処理回路123で構成されている場合について説明した。これに対し、無線モジュール基板120がアンテナ素子121と、高周波回路122のみで構成される場合について図6を用いて説明する。
図6は、本実施の形態における他の実施構成図である。図1と同一又は相当部品には同一符号を付してあるので、図1と相違する点のみ説明する。
高周波回路122と、高周波回路122に接続された第1のグラウンド部124とを備えた無線モジュール基板120と、高周波回路122に導体150を介して電気的に接続されたベースバンド処理回路210と、ベースバンド処理回路210に接続された制御回路131と、ベースバンド処理回路210と制御回路131に接続された第2のグラウンド部132とを備えた制御基板130を有することを特徴とする。
線状導体140とアンテナ素子121は電磁結合しているため、無線モジュール基板120がアンテナ素子121と高周波回路122のみで構成される場合においても、図1と同様の効果が得られる。
図6は、本実施の形態における他の実施構成図である。図1と同一又は相当部品には同一符号を付してあるので、図1と相違する点のみ説明する。
高周波回路122と、高周波回路122に接続された第1のグラウンド部124とを備えた無線モジュール基板120と、高周波回路122に導体150を介して電気的に接続されたベースバンド処理回路210と、ベースバンド処理回路210に接続された制御回路131と、ベースバンド処理回路210と制御回路131に接続された第2のグラウンド部132とを備えた制御基板130を有することを特徴とする。
線状導体140とアンテナ素子121は電磁結合しているため、無線モジュール基板120がアンテナ素子121と高周波回路122のみで構成される場合においても、図1と同様の効果が得られる。
また、既に述べたように、アンテナ素子121と線状導体140の電気長および装荷位置はこれに限らない。アンテナ素子121と線状導体140間の距離は、両素子の一部分が1/10波長に対して近接していれば良い。なお、アンテナ素子121の偏波と線状導体140が直交していなければ、アンテナ素子121と線状導体140の装荷位置は図6に限らない。
実施の形態2.
実施の形態1では、ベースバンド処理回路123と制御回路131間の信号伝達が、導体150による電気的な接続を介して行われる場合について説明した。本実施の形態では、ベースバンド処理回路123と制御回路131間の信号伝達に導体150の電気接続を用いず、無線通信を介して行う場合について説明する。
図7は、本実施の形態を示す構成図である。実施の形態1で説明した図1と同一又は相当部品には同一符号を付してある。本実施の形態では、実施の形態1にてベースバンド処理回路123と制御回路131を電気的に接続していた導体150を取り除き、ベースバンド処理回路123と制御回路131が絶縁されていることを特徴とする。
また、ベースバンド処理回路123に無線通信装置310が接続され、制御回路131に無線通信装置320が接続されている。
なお、実施の形態1で述べたように、線状導体140とアンテナ素子121は電磁結合しているため、ベースバンド処理回路123と制御回路131が絶縁されていても実施の形態1と同様の効果が得られる。
実施の形態1では、ベースバンド処理回路123と制御回路131間の信号伝達が、導体150による電気的な接続を介して行われる場合について説明した。本実施の形態では、ベースバンド処理回路123と制御回路131間の信号伝達に導体150の電気接続を用いず、無線通信を介して行う場合について説明する。
図7は、本実施の形態を示す構成図である。実施の形態1で説明した図1と同一又は相当部品には同一符号を付してある。本実施の形態では、実施の形態1にてベースバンド処理回路123と制御回路131を電気的に接続していた導体150を取り除き、ベースバンド処理回路123と制御回路131が絶縁されていることを特徴とする。
また、ベースバンド処理回路123に無線通信装置310が接続され、制御回路131に無線通信装置320が接続されている。
なお、実施の形態1で述べたように、線状導体140とアンテナ素子121は電磁結合しているため、ベースバンド処理回路123と制御回路131が絶縁されていても実施の形態1と同様の効果が得られる。
また、本実施の形態のアンテナ素子121と線状導体140の電気長および装荷位置はこれに限らない。アンテナ素子121と線状導体140間の距離は、両素子の一部分が1/10波長に対して近接していれば良い。また、アンテナ素子121の偏波と線状導体140が直交していなければ、アンテナ素子121と線状導体140の装荷位置は図7に限らない。また、ベースバンド処理回路123は無線モジュール基板120上ではなく制御基板130上に実装されていてもよい。
実施の形態3.
実施の形態1では、線状導体140の実装エリアが広く、線状導体140の電気長および形状、装荷位置に制限がない場合について説明した。本実施の形態では、線状導体140の実装エリアに制限がある場合について説明する。
図8は、本実施の形態の一例を示す構成図である。実施の形態1で用いた図1と同一又は相当部品には同一符号を付してあるので、実施の形態1と相違する点のみ説明する。
図8では、制御基板130のy方向の寸法が実施の形態1と比べて短くなっている。また、本実施の形態では、線状導体140がリアクタンス素子410を介して第2のグラウンド部132に接続されていることを特徴とする。
実施の形態1では、線状導体140の実装エリアが広く、線状導体140の電気長および形状、装荷位置に制限がない場合について説明した。本実施の形態では、線状導体140の実装エリアに制限がある場合について説明する。
図8は、本実施の形態の一例を示す構成図である。実施の形態1で用いた図1と同一又は相当部品には同一符号を付してあるので、実施の形態1と相違する点のみ説明する。
図8では、制御基板130のy方向の寸法が実施の形態1と比べて短くなっている。また、本実施の形態では、線状導体140がリアクタンス素子410を介して第2のグラウンド部132に接続されていることを特徴とする。
図8は、本実施の形態の一例を示したものであり、アンテナ素子121と線状導体140の電気長および装荷位置はこれに限らない。アンテナ素子121と線状導体140間の距離は、両素子の一部分が1/10波長に対して近接していれば良い。また、アンテナ素子121の偏波と線状導体140が直交していなければ、アンテナ素子121と線状導体140の装荷位置は図8に限らない。また、ベースバンド処理回路123は、無線モジュール基板120上ではなく制御基板130上に実装されていてもよい。また、ベースバンド処理回路123と制御回路131を電気的に接続している導体150はあってもなくてもよい。
本実施の形態の動作原理を説明する。線状導体140と第2のグラウンド部132の間にリアクタンス素子410を挿入することにより、線状導体140の電気長が変化する。
線状導体140とアンテナ素子121は電磁結合しているため、リアクタンス素子410の素子値を調整することにより、実施の形態1と同様の効果が得られる。つまり、線状導体140の電気長および形状、装荷位置に制限が設けられ、線状導体140の調整のみでは電力損失が改善できない場合においても、リアクタンス素子410の素子値を調整することによって、線状導体140の電気長が調整可能となる。
図8では、制御基板130のy方向の寸法が実施の形態1と比べて小さくなっている場合を例に説明したが、本実施の形態の適用先はこれに限らない。
線状導体140とアンテナ素子121は電磁結合しているため、リアクタンス素子410の素子値を調整することにより、実施の形態1と同様の効果が得られる。つまり、線状導体140の電気長および形状、装荷位置に制限が設けられ、線状導体140の調整のみでは電力損失が改善できない場合においても、リアクタンス素子410の素子値を調整することによって、線状導体140の電気長が調整可能となる。
図8では、制御基板130のy方向の寸法が実施の形態1と比べて小さくなっている場合を例に説明したが、本実施の形態の適用先はこれに限らない。
実施の形態4.
実施の形態3では、線状導体140の実装エリアに制限がある場合について説明した。
本実施の形態では、線状導体140の実装エリアだけではなく、アンテナ素子の実装エリアにも制限があり、アンテナ素子及び線状導体の低背化が必要である場合について説明する。
図9は、本発明の実施を示す構成図である。実施の形態3で用いた図8と同一又は相当部品には同一符号を付してあるので、実施の形態3と相違する点のみ説明する。
図9では、制御基板130のy方向の寸法が実施の形態3と比べて小さくなっている。510は線状導体を逆L状に折り曲げたアンテナ素子であり、520は線状導体を逆L状に折り曲げた線状導体である。
実施の形態3では、線状導体140の実装エリアに制限がある場合について説明した。
本実施の形態では、線状導体140の実装エリアだけではなく、アンテナ素子の実装エリアにも制限があり、アンテナ素子及び線状導体の低背化が必要である場合について説明する。
図9は、本発明の実施を示す構成図である。実施の形態3で用いた図8と同一又は相当部品には同一符号を付してあるので、実施の形態3と相違する点のみ説明する。
図9では、制御基板130のy方向の寸法が実施の形態3と比べて小さくなっている。510は線状導体を逆L状に折り曲げたアンテナ素子であり、520は線状導体を逆L状に折り曲げた線状導体である。
図9は、本実施の形態の一例を示したものであり、アンテナ素子510の偏波と線状導体520が直交していなければ、アンテナ素子510と線状導体520の形状や装荷位置は図9に限らない。例えば、アンテナ素子510はx軸と並行な偏波成分と、y軸と並行な偏波成分を有している。この場合、線状導体520はz軸と略並行とならないような形状、装荷位置であれば、実施の形態1に記載した効果と同等の効果が得られる。つまり、前記アンテナ素子または前記線状導体どちらか一方のみを逆L状に折り曲げてもよい。
また、ベースバンド処理回路123は無線モジュール基板120上ではなく制御基板130上に実装されていてもよい。また、ベースバンド処理回路123と制御回路131を電気的に接続している導体150はあってもなくてもよい。また、リアクタンス素子410は挿入してもしなくてもよい。
本実施の形態の動作原理は、実施の形態3と同様であるが、アンテナ素子510及び線状導体520を逆L状に折り曲げたことにより、アンテナの低背化が可能となる。
図9では、制御基板130のy方向の寸法が実施の形態3と比べて小さくなっている場合を例にとり実施の形態4を説明したが、実施の形態4の適用先はこれに限らない。
また、本実施の形態では、アンテナ素子510と線状導体520の双方を逆L状に折り曲げたが、アンテナ素子と線状導体のいずれか一方のみ逆L状に折り曲げた状態としても良い。
図9では、制御基板130のy方向の寸法が実施の形態3と比べて小さくなっている場合を例にとり実施の形態4を説明したが、実施の形態4の適用先はこれに限らない。
また、本実施の形態では、アンテナ素子510と線状導体520の双方を逆L状に折り曲げたが、アンテナ素子と線状導体のいずれか一方のみ逆L状に折り曲げた状態としても良い。
実施の形態5.
本実施の形態では、アンテナ素子または線状導体の実装エリアが実施の形態3より小さくなり、アンテナ素子または線状導体の物理長短縮が必要である場合について説明する。
図10は、本実施の形態を示す構成図である。実施の形態3で用いた図8と同一又は相当部品には同一符号を付してあるので、実施の形態3と相違する点のみ説明する。
図10では、制御基板130のx方向の寸法が実施の形態3と比べて小さくなっている。610は線状導体をメアンダ状に折り曲げたアンテナ素子であり、620は線状導体をメアンダ状に折り曲げた線状導体である。
本実施の形態では、アンテナ素子または線状導体の実装エリアが実施の形態3より小さくなり、アンテナ素子または線状導体の物理長短縮が必要である場合について説明する。
図10は、本実施の形態を示す構成図である。実施の形態3で用いた図8と同一又は相当部品には同一符号を付してあるので、実施の形態3と相違する点のみ説明する。
図10では、制御基板130のx方向の寸法が実施の形態3と比べて小さくなっている。610は線状導体をメアンダ状に折り曲げたアンテナ素子であり、620は線状導体をメアンダ状に折り曲げた線状導体である。
図10は、本実施の形態の一例を示したものであり、アンテナ素子610の偏波と線状導体620が直交していなければ、アンテナ素子610と線状導体620の形状や装荷位置は図10に限らない。
前記アンテナ素子または前記線状導体どちらか一方のみをメアンダ状に折り曲げてもよい。また、もう一方のアンテナ素子または線状導体は逆L状に折り曲げてもよい。
前記アンテナ素子または前記線状導体どちらか一方のみをメアンダ状に折り曲げてもよい。また、もう一方のアンテナ素子または線状導体は逆L状に折り曲げてもよい。
また、ベースバンド処理回路123は無線モジュール基板120上ではなく制御基板130上に実装されていてもよい。また、ベースバンド処理回路123と制御回路131を電気的に接続している導体150はあってもなくてもよい。また、リアクタンス素子410は挿入してもしなくてもよい。
本実施の形態の動作原理は、実施の形態3と同様であるが、前記アンテナ素子または前記線状導体の少なくとも一方の線状導体をメアンダ状に折り曲げたことにより、アンテナの物理長を短縮することが可能となる。
図10では、制御基板130のx方向の寸法が実施の形態3と比べて小さくなっている場合を例に説明したが、本実施の形態の適用先はこれに限らない。
図10では、制御基板130のx方向の寸法が実施の形態3と比べて小さくなっている場合を例に説明したが、本実施の形態の適用先はこれに限らない。
実施の形態6.
本実施の形態では、アンテナ素子や線状導体の実装エリアが実施の形態3より小さくなり、アンテナ素子や線状導体の低背化、物理長短縮が必要である場合について説明する。 図11は、本実施の形態を示す構成図である。実施の形態3で用いた図8と同一又は相当部品には同一符号を付してあるので、実施の形態3と相違する点のみ説明する。
図11では、無線モジュール基板120と制御基板130のx方向、y方向の寸法が実施の形態3と比べて小さくなっている。710は線状導体を逆F状に折り曲げたアンテナ素子である。720は線状導体を逆F状に折り曲げたアンテナ素子であり、第1のリアクタンス素子730と、第2のリアクタンス素子731を介して第2のグラウンド部132に接続されている。
本実施の形態では、アンテナ素子や線状導体の実装エリアが実施の形態3より小さくなり、アンテナ素子や線状導体の低背化、物理長短縮が必要である場合について説明する。 図11は、本実施の形態を示す構成図である。実施の形態3で用いた図8と同一又は相当部品には同一符号を付してあるので、実施の形態3と相違する点のみ説明する。
図11では、無線モジュール基板120と制御基板130のx方向、y方向の寸法が実施の形態3と比べて小さくなっている。710は線状導体を逆F状に折り曲げたアンテナ素子である。720は線状導体を逆F状に折り曲げたアンテナ素子であり、第1のリアクタンス素子730と、第2のリアクタンス素子731を介して第2のグラウンド部132に接続されている。
図11は、本実施の形態の一例を示したものであり、アンテナ素子710の偏波と線状導体720が直交していなければ、アンテナ素子710と線状導体720の形状や装荷位置は図11に限らない。前記アンテナ素子または前記線状導体どちらか一方のみを逆F状に折り曲げてもよい。また、もう一方のアンテナ素子または線状導体は逆L状またはメアンダ状に折り曲げてもよい。
また、ベースバンド処理回路123は無線モジュール基板120上ではなく制御基板130上に実装されていてもよい。また、ベースバンド処理回路123と制御回路131を電気的に接続している導体150はあってもなくてもよい。また、第1のリアクタンス素子730や第2のリアクタンス素子731は挿入してもしなくてもよい。
本実施の形態の動作原理は実施の形態3と同様であるが、前記アンテナ素子を逆Fに折り曲げたことにより、アンテナ素子の低背化、物理長の短縮が可能となる。
図11では、無線モジュール基板120と制御基板130のx方向、y方向の寸法が実施の形態3と比べて小さくなっている場合を例に説明したが、本実施の形態の適用先はこれに限らない。
図11では、無線モジュール基板120と制御基板130のx方向、y方向の寸法が実施の形態3と比べて小さくなっている場合を例に説明したが、本実施の形態の適用先はこれに限らない。
実施の形態7.
本実施の形態では、無線モジュール基板上のアンテナ素子をダイポールアンテナとしたときの効果について説明する。ダイポールアンテナなどの平衡給電アンテナは、モノポールアンテナなどの不平衡給電アンテナと比較して、グラウンドに電流が流れにくいことが知られている。そのため、本実施の形態を用いることにより、無線モジュール基板上の第1のグラウンド部124がアンテナの反射特性に与える影響を軽減することができる。
図12は、本実施の形態を示す構成図である。実施の形態4で用いた図9と同一又は相当部品には同一符号を付してあるので、実施の形態4と相違する点のみ説明する。本実施の形態では、実施の形態4のアンテナ素子510を、ダイポールアンテナ810に置き換えている。
本実施の形態では、無線モジュール基板上のアンテナ素子をダイポールアンテナとしたときの効果について説明する。ダイポールアンテナなどの平衡給電アンテナは、モノポールアンテナなどの不平衡給電アンテナと比較して、グラウンドに電流が流れにくいことが知られている。そのため、本実施の形態を用いることにより、無線モジュール基板上の第1のグラウンド部124がアンテナの反射特性に与える影響を軽減することができる。
図12は、本実施の形態を示す構成図である。実施の形態4で用いた図9と同一又は相当部品には同一符号を付してあるので、実施の形態4と相違する点のみ説明する。本実施の形態では、実施の形態4のアンテナ素子510を、ダイポールアンテナ810に置き換えている。
図12は、本実施の形態の一例を示したものであり、ダイポールアンテナ810の偏波と線状導体520が直交していなければ、ダイポールアンテナ810と線状導体520の形状や装荷位置は図12に限らない。また、線状導体520はメアンダ状または逆F状に折り曲げてもよい。
また、ベースバンド処理回路123は、無線モジュール基板120上ではなく制御基板130上に実装されていてもよい。また、ベースバンド処理回路123と制御回路131を電気的に接続している導体150はあってもなくてもよい。また、リアクタンス素子410は挿入してもしなくてもよい。
本実施の形態の動作原理を説明する。鏡像の原理より、無限地板上のモノポールアンテナは、モノポールアンテナの2倍の電気長を有するダイポールアンテナと等価である。つまり、使用周波数と共振する電気長を有するアンテナ素子であれば、ダイポールアンテナと無限地板上のモノポールアンテナは等価とみなすことができる。そのため、実施の形態4のアンテナ素子510を、ダイポールアンテナ810に置き換えてもよい。
また、ダイポールアンテナなどの平衡給電アンテナは、有限地板上のモノポールアンテナと比較して、グラウンドに電流が流れにくいことが知られている。そのため、本実施の形態を用いることにより、無線モジュール基板上の第1のグラウンド部がアンテナの反射特性に与える影響を軽減することが可能となる。
例えば、第1のグラウンド部124に、ケーブルなどの、形状が変化する可能性のある導体が接続された場合、第1のグラウンド部124の形状が変化し、実施の形態4においてはアンテナの反射特性が大きく劣化する可能性がある。しかし、本実施の形態においては、第1のグラウンド部124がアンテナに及ぼす影響を低減できるため、第1のグラウンド部124の形状変化に起因するアンテナの反射特性の劣化を低減することが可能となる。
本実施の形態では、第1のグラウンド部124にケーブルなどの導体が接続された場合を例に説明したが、本実施の形態の適用先はこれに限らない。
例えば、第1のグラウンド部124に、ケーブルなどの、形状が変化する可能性のある導体が接続された場合、第1のグラウンド部124の形状が変化し、実施の形態4においてはアンテナの反射特性が大きく劣化する可能性がある。しかし、本実施の形態においては、第1のグラウンド部124がアンテナに及ぼす影響を低減できるため、第1のグラウンド部124の形状変化に起因するアンテナの反射特性の劣化を低減することが可能となる。
本実施の形態では、第1のグラウンド部124にケーブルなどの導体が接続された場合を例に説明したが、本実施の形態の適用先はこれに限らない。
実施の形態8.
本実施の形態では、制御基板上の線状導体が、第1の線状導体と第2の線状導体がリアクタンス素子を介して接続された線状導体としたときの効果について説明する。
本実施の形態では、線状導体と制御基板上の第2のグラウンド部は絶縁されており、線状導体に流れる電流は第2のグラウンド部に流れない。そのため、制御基板130上の第2のグラウンド部132がアンテナの反射特性に与える影響を軽減することができる。
図13は、本実施の形態を示す構成図である。実施の形態4で用いた図9と同一又は相当部品には同一符号を付してあるので、実施の形態4と相違する点のみ説明する。本実施の形態では、実施の形態4の線状導体520を、線状導体930に置き換えている。
線状導体930は、第1の線状導体910と第2の線状導体911が、リアクタンス素子920を介して接続されて構成されている。尚、第1の線状導体910や第2の線状導体911、リアクタンス素子920はいずれも第2のグラウンド部132と絶縁されている。
本実施の形態では、制御基板上の線状導体が、第1の線状導体と第2の線状導体がリアクタンス素子を介して接続された線状導体としたときの効果について説明する。
本実施の形態では、線状導体と制御基板上の第2のグラウンド部は絶縁されており、線状導体に流れる電流は第2のグラウンド部に流れない。そのため、制御基板130上の第2のグラウンド部132がアンテナの反射特性に与える影響を軽減することができる。
図13は、本実施の形態を示す構成図である。実施の形態4で用いた図9と同一又は相当部品には同一符号を付してあるので、実施の形態4と相違する点のみ説明する。本実施の形態では、実施の形態4の線状導体520を、線状導体930に置き換えている。
線状導体930は、第1の線状導体910と第2の線状導体911が、リアクタンス素子920を介して接続されて構成されている。尚、第1の線状導体910や第2の線状導体911、リアクタンス素子920はいずれも第2のグラウンド部132と絶縁されている。
図13は、本実施の形態の一例を示したものであり、アンテナ素子510の偏波と線状導体930が直交していなければ、アンテナ素子510と線状導体930の形状や装荷位置は図13に限らない。アンテナ素子510はメアンダ状または逆F状に折り曲げてもよい。
また、ベースバンド処理回路123は無線モジュール基板120上ではなく制御基板130上に実装されていてもよい。また、ベースバンド処理回路123と制御回路131を電気的に接続している導体150はあってもなくてもよい。また、リアクタンス素子920は挿入してもしなくてもよい。
本実施の形態の動作原理は、実施の形態7と同様である。本実施の形態では、線状導体930と制御基板130上の第2のグラウンド部132は絶縁されており、線状導体930に流れる電流は第2のグラウンド部132に流れない。そのため、制御基板130上の第2のグラウンド部132がアンテナ510の反射特性に与える影響を軽減することができる。
例えば、第2のグラウンド部132に、ケーブルなどの、導体150とは異なる導体が接続された場合、第2のグラウンド部132の形状が変化し、実施の形態4においてはアンテナの反射特性が大きく劣化する可能性がある。しかし、本実施の形態においては、第2のグラウンド部132がアンテナに及ぼす影響を低減できるため、第2のグラウンド部132の形状変化に起因するアンテナの反射特性の劣化を低減することが可能となる。
本実施の形態では、第2のグラウンド部132にケーブルなどの導体が接続された場合を例に説明したが、本実施の形態の適用先はこれに限らない。
例えば、第2のグラウンド部132に、ケーブルなどの、導体150とは異なる導体が接続された場合、第2のグラウンド部132の形状が変化し、実施の形態4においてはアンテナの反射特性が大きく劣化する可能性がある。しかし、本実施の形態においては、第2のグラウンド部132がアンテナに及ぼす影響を低減できるため、第2のグラウンド部132の形状変化に起因するアンテナの反射特性の劣化を低減することが可能となる。
本実施の形態では、第2のグラウンド部132にケーブルなどの導体が接続された場合を例に説明したが、本実施の形態の適用先はこれに限らない。
本発明の観点は、ここで説明した様々な実施例を組み合わせること、本質的な観点から逸脱することなしに、本発明を適用するため変更させることも可能である。それゆえ、発明は開示した実施例に限定されず、発明は付加した請求項の観点内に落とし込むためのすべての実施例を含むものであることが意図されている。
以上では、無線モジュール基板を内蔵する機器として家電機器を例にとり本発明の効果を説明したが、無線通信装置の適用先はこれに限らない。また上記では本発明の無線通信装置から電波を放射する送信機を例にとり説明したが、無線通信装置の可逆性(reciprocity)により、受信機についても同様の効果が得られることは明らかである。
100 無線通信装置、110 無線通信装置、120 無線モジュール基板、121 アンテナ素子、122 高周波回路、123 ベースバンド処理回路、124 第1のグラウンド部、130 制御基板、131 制御回路、132 第2のグラウンド部、140 線状導体、150 導体、210 ベースバンド処理回路、310 無線通信装置、320 無線通信装置、410 リアクタンス素子、510 アンテナ素子、520 線状導体、610 アンテナ素子、620 線状導体、710 アンテナ素子、720 線状導体、730 第1のリアクタンス素子、731 第2のリアクタンス素子、810 ダイポールアンテナ、910 第1の線状導体、911 第2の線状導体、920 リアクタンス素子、930 線状導体。
Claims (7)
- アンテナ素子、前記アンテナ素子に接続する高周波回路、前記高周波回路に接続するベースバンド処理回路、前記高周波回路と前記ベースバンド処理回路に接続する第1のグラウンド部、を有する無線モジュール基板と、
制御回路、前記制御回路に接続する第2のグラウンド部、前記アンテナ素子に近接して前記第2のグラウンド部と電気的に接続された線状導体、を有する制御基板と、
前記ベースバンド処理回路と前記制御回路を接続する導体と
を備えたことを特徴とする無線通信装置。 - アンテナ素子、前記アンテナ素子に接続する高周波回路、前記高周波回路に接続する第1のグラウンド部、を有する無線モジュール基板と、
制御回路、前記制御回路に接続するベースバンド処理回路、前記制御回路と前記ベースバンド処理回路に接続する第2のグラウンド部、前記アンテナ素子に近接して前記第2のグラウンド部と電気的に接続された線状導体、を有する制御基板と、
前記高周波回路と前記ベースバンド処理回路を接続する導体と
を備えたことを特徴とする無線通信装置。 - 前記第2のグラウンド部と前記線状導体は、リアクタンス素子を介して接続されることを特徴とする請求項1または2に記載の無線通信装置。
- 前記線状導体が逆F形状であることを特徴とする請求項1から3のいずれか一項に記載の無線通信装置。
- 前記線状導体が逆L形状であることを特徴とする請求項1から3のいずれか一項に記載の無線通信装置。
- 前記線状導体がメアンダ状の形状であることを特徴とする請求項1から請求項3のいずれか一項に記載の無線通信装置。
- アンテナ素子、前記アンテナ素子に接続する高周波回路、前記高周波回路に接続するベースバンド処理回路、前記高周波回路と前記ベースバンド処理回路に接続する第1のグラウンド部、を有する無線モジュール基板と、
制御回路、前記制御回路に接続する第2のグラウンド部、前記アンテナ素子に近接して配置され前記第2のグラウンド部と電気的に接続しない第1の線状導体、前記第1の線状導体と電気的に接続するリアクタンス素子、前記リアクタンス素子と電気的に接続する第2の線状導体、を有する制御基板と、
前記ベースバンド処理回路と前記制御回路を接続する導体と
を備えたことを特徴とする無線通信装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/062455 WO2017183123A1 (ja) | 2016-04-20 | 2016-04-20 | 無線通信装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/062455 WO2017183123A1 (ja) | 2016-04-20 | 2016-04-20 | 無線通信装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017183123A1 true WO2017183123A1 (ja) | 2017-10-26 |
Family
ID=60116663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062455 WO2017183123A1 (ja) | 2016-04-20 | 2016-04-20 | 無線通信装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017183123A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005198245A (ja) * | 2003-12-10 | 2005-07-21 | Matsushita Electric Ind Co Ltd | アンテナ |
JP2005340887A (ja) * | 2004-05-24 | 2005-12-08 | Matsushita Electric Ind Co Ltd | 折り畳み式携帯無線機 |
WO2006001432A1 (ja) * | 2004-06-29 | 2006-01-05 | Matsushita Electric Industrial Co., Ltd. | 折畳式携帯無線機 |
JP2006180463A (ja) * | 2004-11-29 | 2006-07-06 | Matsushita Electric Ind Co Ltd | アンテナ装置 |
JP2016010110A (ja) * | 2014-06-26 | 2016-01-18 | Necプラットフォームズ株式会社 | アンテナ装置、無線通信装置および帯域調整方法 |
-
2016
- 2016-04-20 WO PCT/JP2016/062455 patent/WO2017183123A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005198245A (ja) * | 2003-12-10 | 2005-07-21 | Matsushita Electric Ind Co Ltd | アンテナ |
JP2005340887A (ja) * | 2004-05-24 | 2005-12-08 | Matsushita Electric Ind Co Ltd | 折り畳み式携帯無線機 |
WO2006001432A1 (ja) * | 2004-06-29 | 2006-01-05 | Matsushita Electric Industrial Co., Ltd. | 折畳式携帯無線機 |
JP2006180463A (ja) * | 2004-11-29 | 2006-07-06 | Matsushita Electric Ind Co Ltd | アンテナ装置 |
JP2016010110A (ja) * | 2014-06-26 | 2016-01-18 | Necプラットフォームズ株式会社 | アンテナ装置、無線通信装置および帯域調整方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI630753B (zh) | 天線結構及具有該天線結構之無線通訊裝置 | |
KR100956223B1 (ko) | 안테나 장치 | |
JP2020510365A (ja) | モバイル端末のアンテナおよびモバイル端末 | |
TWI662741B (zh) | 天線結構及具有該天線結構的無線通訊裝置 | |
JP5482171B2 (ja) | アンテナ装置、及び無線端末装置 | |
TWI536665B (zh) | 調頻天線 | |
US20140306858A1 (en) | Broadband antenna and an antenna assembly | |
JP2016504796A (ja) | 無線端末 | |
JP5969821B2 (ja) | アンテナ装置 | |
CN103378420A (zh) | 天线系统 | |
KR102443048B1 (ko) | 위상 시프터를 포함하는 안테나 장치 | |
JP6382382B2 (ja) | アンテナ装置 | |
US20120068901A1 (en) | Multiband and broadband antenna using metamaterials, and communication apparatus comprising the same | |
US9306274B2 (en) | Antenna device and antenna mounting method | |
JP2017514403A (ja) | アンテナ装置及び端末 | |
CN105811088B (zh) | 天线装置及移动终端 | |
JP2011160405A (ja) | 双極アンテナ | |
CN105576352B (zh) | 一种天线及终端 | |
CN109923733B (zh) | 无线通信装置 | |
TW201417399A (zh) | 寬頻天線及具有該寬頻天線的可攜帶型電子裝置 | |
WO2017183123A1 (ja) | 無線通信装置 | |
JP5885011B1 (ja) | アンテナ装置及び通信機器 | |
JP5727248B2 (ja) | 高周波信号合成分配器 | |
US10234493B2 (en) | Wireless module, electronic module, and measuring method | |
KR20150021679A (ko) | 안테나 모듈 및 이를 이용하는 휴대형 단말 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16899396 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16899396 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |