WO2017181874A1 - 数据传输的方法、设备和系统 - Google Patents

数据传输的方法、设备和系统 Download PDF

Info

Publication number
WO2017181874A1
WO2017181874A1 PCT/CN2017/080109 CN2017080109W WO2017181874A1 WO 2017181874 A1 WO2017181874 A1 WO 2017181874A1 CN 2017080109 W CN2017080109 W CN 2017080109W WO 2017181874 A1 WO2017181874 A1 WO 2017181874A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
uplink
subframe
reference signal
channel
Prior art date
Application number
PCT/CN2017/080109
Other languages
English (en)
French (fr)
Inventor
万蕾
马莎
李超君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17785359.5A priority Critical patent/EP3435716A4/en
Publication of WO2017181874A1 publication Critical patent/WO2017181874A1/zh
Priority to US16/164,523 priority patent/US10826674B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a method, device and system for data transmission.
  • the frame structures corresponding to the FDD duplex mode and the TDD duplex mode are different from each other, and are all predefined, and cannot be flexibly changed according to communication requirements.
  • the rigid design of the frame structure of the subframe results in complication of communication in the LTE system and reduces communication efficiency.
  • the existing LTE system cannot make the system design of the hybrid automatic repeat request (HARQ) timing, channel measurement, or estimation mode in the two duplex modes consistent; before the communication, the terminal needs to pass the detection synchronization.
  • the signal determines the duplex mode of LTE communication and the like.
  • the invention provides a data transmission method, device and system, so as to achieve the purpose of reducing communication complexity and improving communication efficiency.
  • the network device determines that the subframe n is used to transmit at least one of a downlink data channel, an uplink data channel, a downlink control channel, an uplink control channel, a downlink reference signal, and an uplink reference signal.
  • the terminal device may acquire the foregoing information of the subframe n determined by the network device in a predefined manner, or receive related configuration information, etc., according to which, data transmission of the terminal device and the network device on the subframe n may be implemented.
  • the embodiment of the present application provides a data transmission method, including: acquiring, by a terminal device, configuration information, where the configuration information indicates that the subframe n is used for transmitting a downlink data channel, an uplink data channel, a downlink control channel, an uplink control channel, At least one of a downlink reference signal and an uplink reference signal; the terminal device performs data transmission with the network device on the subframe n according to the configuration information.
  • an embodiment of the present application provides a data transmission method, including: determining, by a network device, a subframe n for transmitting a downlink data channel, an uplink data channel, a downlink control channel, an uplink control channel, a downlink reference signal, and an uplink reference signal. At least one of the network devices: performing data transmission with the terminal device on the subframe n.
  • the network device determines a channel and/or a signal existing on the subframe n, and the terminal device obtains a channel and/or a signal existing on the subframe n between the subframe n and the network device. Data transfer.
  • the channel and/or signal present on the subframe n enables the same duplex mode to be used on the FDD band and the TDD band, so that the design of the communication system is unified.
  • the terminal device does not need to distinguish different duplex modes and communicate according to different duplex modes, thereby simplifying the design of the communication system and improving the communication efficiency.
  • the terminal device reads the predefined configuration information by reading
  • the terminal device receives the configuration information that is sent by the network device by using high layer signaling, physical layer signaling, or scheduling signaling carried on a downlink control channel.
  • the channels and/or signals present on the subframe n can be configured and notified in real time according to the communication conditions, making the communication more flexible and efficient.
  • the network device may send the physical layer signaling to the terminal device according to the time period T, and the terminal device may be based on the time.
  • the period T receives the physical layer signaling sent by the network device.
  • the network device can also send signaling indicating the time period T to the terminal device. After the time period T is configured, the terminal device does not need to receive the physical layer signaling frequently.
  • the subframe n is used to transmit at least an uplink reference signal.
  • the terminal device performs data transmission with the network device on the subframe n, the method includes: the terminal device sends an uplink reference signal to the network device on the subframe n, where the uplink reference signal is used for downlink channel measurement; The device receives the uplink reference signal, and performs downlink channel measurement according to the uplink reference signal; the network device sends downlink scheduling information to the terminal device according to the downlink channel measurement result, where the downlink scheduling information is used to indicate the The network device sends downlink data to the terminal device on a subframe (n+k); the terminal device receives the downlink scheduling information; the network device sends the downlink device to the terminal device in the subframe (n+k) Downlink data; the terminal device receives downlink data sent by the network device in a subframe (n+k) according to the downlink scheduling information; where k is a positive integer, the subframe n and the subframe (n+k) are both located in the
  • an uplink reference signal such as a sounding RS (SRS)
  • SRS sounding RS
  • the network device only receives downlink channel state information (CSI) sent by the terminal device. In order to know the status of the downlink channel.
  • CSI downlink channel state information
  • the FDD uplink frequency band is no longer limited to the uplink signal or the uplink channel transmission (for example, there is a downlink data channel in the subframe (n+k))
  • the FDD downlink frequency band is no longer limited to the downlink signal or
  • the downlink channel is transmitted (for example, there is an uplink reference signal on the subframe n), that is, the terminal device can transmit the uplink reference signal on the FDD downlink frequency band, or the terminal device can transmit the downlink data on the FDD uplink frequency band.
  • the network device can utilize the channel reciprocity, and the network device can measure the downlink channel on the FDD band by using the uplink reference signal sent by the terminal device, and estimate the downlink channel state.
  • MIMO multiple input multiple output
  • the subframe n is used at least for transmitting an uplink control channel.
  • the terminal device performs data transmission with the network device on the subframe n, where the terminal device sends the bearer to the uplink control to the network device on the subframe n.
  • the hybrid automatic repeat request of the channel is the HARQ response information
  • the HARQ response information is used to indicate the receiving status of the downlink data received by the terminal device on the subframe (nk)
  • the network device receives the HARQ response information.
  • k is a positive integer and the values of k for the FDD uplink band, the FDD downlink band, and the TDD band are the same. That is, the HARQ timing of the FDD band and the TDD band is the same. This makes the design of the communication system tend to be unified, reducing the complexity of the communication system.
  • the subframe n and the subframe (nk) may be located in the same type of frequency band, for example, the subframe n and the subframe (nk) are both located in the TDD frequency band, or both are located in the FDD uplink frequency band, or both are located in the FDD downlink. frequency band. It should be noted that even if the subframe n and the subframe (nk) are located in the same type of frequency band, the unused carriers may be occupied, that is, the downlink data and the HARQ response information are located on different carriers; the subframe n and the subframe (nk) are located. Different types of frequency bands.
  • the subframe n is located in the FDD uplink frequency band, and the subframe (nk) is located in the FDD downlink frequency band; for example, the subframe n is located in the FDD downlink frequency band, and the subframe (nk) is located in the FDD uplink frequency band; for example, the subframe n is located in the TDD frequency band.
  • the subframe (nk) is located in the FDD uplink frequency band, or the subframe (nk) is located in the FDD downlink frequency band; for example, the subframe n is located in the FDD uplink frequency band, or the subframe n is located in the FDD downlink frequency band, and the subframe (nk) is located in the TDD frequency band.
  • the HARQ feedback speed is the fastest, and the communication delay can be reduced.
  • the k is equal to 1, the subframe (nk) is a subframe (n-1), the downlink data channel is a first downlink data channel, and the uplink data channel is a first The uplink data channel, the downlink control channel is a first uplink data channel, the uplink control channel is a first uplink control channel, the downlink reference signal is a first downlink reference signal, and the uplink reference signal is a first uplink a reference signal; the subframe n is used to transmit the first uplink reference channel, the first uplink control channel, and the first uplink data channel from front to back in the time domain; subframe (n-1) And a second downlink reference channel, a second downlink control channel, and a second downlink data channel are sequentially used in the time domain from front to back; wherein the subframe (n-1) is located on the first carrier, the sub The frame n is located on the second carrier, and the timing on the second carrier lags behind the timing on the first carrier, so that the terminal device has sufficient processing
  • the terminal device performs data transmission with the network device on the subframe n, where the terminal device sends the CSI carried on the uplink control channel or the uplink data channel to the network device on the subframe n.
  • the CSI reporting period parameters are the same.
  • any one of the FDD frequency band and the TDD frequency band can be configured to transmit at least an uplink control channel, and thus the CSI reporting period can be implemented for the FDD uplink frequency band, the FDD downlink frequency band, and the TDD frequency band.
  • the parameters are the same.
  • the reporting period of the CSI may be the length of one subframe, so that the network device can know the latest channel state in time through the CSI sent by the terminal device.
  • Information to configure accurate downstream scheduling information may be the length of one subframe, so that the network device can know the latest channel state in time through the CSI sent by the terminal device.
  • subframe n is used at least for transmitting uplink data channels.
  • the terminal device performs data transmission with the network device on the subframe n, and the terminal device sends uplink data carried by the uplink data channel to the network device on the subframe n; the uplink data. It is sent according to uplink scheduling information sent by the network device received by the terminal device on the subframe (nk).
  • the network device receives, by the network device, the uplink data that is sent by the terminal device and being carried by the uplink data channel, where the k is an integer of ⁇ 0 and for an FDD uplink frequency band, an FDD downlink frequency band, and a TDD
  • the values of k in the frequency band are the same.
  • Subframe n and subframe (n-k) may be located in the same type of frequency band.
  • the uplink data scheduling delay of the FDD frequency band and the TDD frequency band is the same. This makes the design of the communication system tend to be unified, reducing the complexity of the communication system.
  • the shortest uplink data scheduling delay can be implemented.
  • a specific design may be made for the structure of the subframe n on different carriers, and the corresponding technical solution may be:
  • the terminal device acquires first configuration information, where the first configuration information indicates that the subframe n on the first carrier is used to transmit the first uplink data channel, the uplink reference signal, the uplink control channel, and the second uplink data channel;
  • the subframe n on the carrier is used to transmit the first uplink data channel, the uplink reference signal, the uplink control channel, and the second uplink data channel in the time domain from the front to the back;
  • the terminal device further acquires the second configuration information, where
  • the second configuration information indicates that the subframe (n+1) on the second carrier is used to transmit at least the third uplink data channel;
  • the subframe (n+1) on the second carrier transmits the third in the time domain first An uplink data channel;
  • the terminal device transmits uplink data carried by the second uplink data channel to the network device on the subframe n;
  • the terminal device is on the subframe (n+1)
  • the network device sends the uplink data that is carried by the third uplink data channel, and the uplink data of the second
  • the uplink scheduling information is located in a third carrier, and is associated with the subframe n
  • the subframes (n+1) are located in different frequency bands.
  • the first carrier and the second carrier are the same carrier. In this way, by using an uplink scheduling information, it is possible to schedule data channels in different subframes, thereby improving communication efficiency.
  • subframe n is used at least for transmitting downlink data channels.
  • the performing, by the terminal device, the data transmission between the network device and the network device on the subframe n includes: receiving, by the terminal device, the downlink data that is sent by the network device and is carried by the downlink data channel.
  • the subframe is further configured to transmit a downlink control channel
  • the data transmission between the network device and the network device by the terminal device on the subframe n further includes: the terminal device is on the downlink control channel of the subframe n Receiving downlink scheduling information sent by the network device, where the downlink scheduling information is used to schedule downlink data in the downlink data channel on the subframe n; at this time, the terminal device is in the downlink of the subframe n according to the downlink scheduling information.
  • the downlink data sent by the network device is received on the data channel.
  • the channel and/or signal used by the network device to determine the subframe n for transmission, the channel and/or the signal of the subframe n obtained by the terminal device may be: the subframe n is in the time domain. And the downlink control channel, the uplink reference channel, the uplink control channel, and the uplink data channel, where the guard interval GP is configured on the downlink control channel and Between the uplink reference signals; or, the subframe n is used to transmit the downlink reference signal from the front to the back in the time domain, the downlink control channel, the uplink reference signal, and the uplink control channel, And the downlink data channel, where the GP is configured between the downlink control channel and the uplink reference signal; or the subframe n is used to transmit the downlink reference signal in order from the front to the back in the time domain.
  • the downlink control channel, the uplink reference signal, and the uplink data channel where the GP is configured between the downlink control channel and the uplink reference signal; or
  • the subframe n is used to transmit the downlink reference signal from the front to the back in the time domain, the downlink control channel, and the uplink a reference signal, and the downlink data channel, wherein the GP is configured between the downlink control channel and the uplink reference signal; or, the configuration information indicates that the subframe n is in order from the front to the back in the time domain And for transmitting the downlink reference signal, the downlink control channel, the downlink data channel, and the uplink reference signal, where the GP configuration is between the downlink data channel and the uplink reference signal.
  • the network device may further determine the sequence of time between the above channels and/or channels in the time domain of the subframe n; the terminal side may pass through the time domain between the respective channels and/or channels that are known in advance.
  • the sequence in the time domain between the respective channels and/or channels existing on the subframe n is obtained in sequence, or through configuration information.
  • the time domain resource location of the synchronization signal sent by the network device is the same for the FDD uplink frequency band, the FDD downlink frequency band, and the TTD frequency band.
  • the frequency division duplex FDD uplink frequency band, the FDD downlink frequency band, and the time division duplex TDD frequency band all use a transparent duplex duplex mode.
  • the transparent duplex finger does not need to distinguish between the duplex mode of FDD and TDD.
  • the network device determines that the subframe n is used to transmit at least a downlink reference signal, and the downlink reference signal may be located in the first M symbols of the subframe n, where M is a positive integer, for example, M is 1. In this way, the terminal device can perform channel estimation based on the received downlink reference channel as soon as possible. If the network device determines that the subframe n is also used to transmit the downlink control channel, as an implementation manner, the downlink control channel may be located on the N symbols following the downlink reference channel in the time domain, where N is a positive integer. In another implementation manner, the downlink reference signal and the downlink control channel are located on at least one of the same symbols in the time domain, and the downlink reference signal is located on the non-contiguous subcarriers in the frequency domain.
  • the uplink reference signal when the network device determines that the subframe n is used to transmit at least the uplink reference signal, the uplink reference signal may be located in the kth symbol (the k is a positive integer) or the pre-P of the subframe n in the subframe n.
  • the symbol, P is a positive integer, for example, P takes a value of 1.
  • the network device can perform channel estimation based on the received uplink reference channel as soon as possible.
  • the uplink reference signal is on at least two symbols, the at least two symbols may be continuous or non-contiguous.
  • the uplink reference signal may be located in a non-contiguous subcarrier in the frequency domain. If the network device determines that the subframe n is also used to transmit the uplink control channel, as an implementation manner, the uplink control channel is located on the O symbols after the uplink reference channel in the time domain, and O is a positive integer.
  • the subframe n in the embodiment of the present invention may be located in an FDD uplink frequency band, an FDD downlink frequency band, or a TDD frequency band.
  • an embodiment of the present invention provides a network device, which has a function of implementing network device behavior in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the structure of the network device includes a processor and a transmitter configured to support the network device to perform the corresponding functions in the above methods.
  • the transmitter is configured to support communication between the network device and the terminal device, and send information or instructions involved in the foregoing method to the terminal device.
  • the network device can also include a memory for coupling with the processor that holds program instructions and data necessary for the network device.
  • an embodiment of the present invention provides a terminal device, which has a function of implementing behavior of a terminal device in the design of the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the module can be software and/or hardware
  • the structure of the terminal device includes a receiver and a processor configured to support the terminal device to perform a corresponding function in the above method.
  • the transmitter is configured to support communication between the terminal device and the network device, and receive information or instructions involved in the foregoing method sent by the network device.
  • the terminal device can also include a memory for coupling with the processor that holds program instructions and data necessary for the network device.
  • an embodiment of the present invention provides a communication system, where the system includes the network device and the terminal device in the foregoing aspect.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the network device, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the terminal device, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a chip system, including: at least one processor, a memory, an input/output portion, and a bus; and the at least one processor acquires an instruction in the memory through the bus to use The implementation function of the network device involved in implementing the above method.
  • an embodiment of the present invention provides a chip system, including: at least one processor, a memory, an input/output portion, and a bus; and the at least one processor acquires an instruction in the memory through the bus to use The design function of the terminal device involved in implementing the above method is implemented.
  • the network device determines a channel and/or a signal that exists on the subframe n, and the terminal device implements the network and the signal on the subframe n by acquiring the channel and/or the signal existing on the subframe n.
  • the channel and/or signal present on the subframe n enables the same duplex mode to be used on the FDD band and the TDD band, so that the design of the communication system is unified.
  • the terminal device does not need to distinguish different duplex modes and communicate according to different duplex modes, thereby simplifying the design of the communication system and improving the communication efficiency.
  • FIG. 1 is an application scenario according to an embodiment of the present invention
  • FIG. 2(a) is a structural diagram of an FDD frame according to an embodiment of the present invention.
  • FIG. 2(b) is a structural diagram of a TDD frame configured to be switched in 5 ms uplink and downlink according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a subframe according to an embodiment of the present disclosure.
  • FIG. 5 is another seed frame structure according to an embodiment of the present invention.
  • FIG. 6 is a frame structure of another seed frame according to an embodiment of the present invention.
  • FIG. 7 is a frame structure of another seed frame according to an embodiment of the present invention.
  • FIG. 8 is a frame structure of another seed frame according to an embodiment of the present invention.
  • FIG. 9 is a frame structure of another seed frame according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a frame structure of another seed frame according to an embodiment of the present invention.
  • FIG. 11 is a frame structure of another seed frame according to an embodiment of the present invention.
  • FIG. 12 is a frame structure of another seed frame according to an embodiment of the present invention.
  • FIG. 13 is a frame structure of still another seed frame according to an embodiment of the present invention.
  • FIG. 14 is a frame structure design of a subframe according to an embodiment of the present invention.
  • FIG. 15 is a frame structure design of another seed frame according to an embodiment of the present invention.
  • FIG. 16 is a flowchart of another data transmission method according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 20 is another schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 1 is an application scenario of an embodiment of the present invention.
  • a terminal device accesses an external network through a radio access network (RAN) and a core network (CN) (external network) ).
  • RAN radio access network
  • CN core network
  • the techniques described in this disclosure may be applicable to LTE systems, or other wireless communication systems employing various radio access technologies, such as using code division multiple access, frequency division multiple access, time division multiple access, orthogonal frequency division multiple access, single carrier.
  • a system of access technologies such as frequency division multiple access, and a subsequent evolution system, such as a fifth generation 5G system.
  • the data transmission here includes uplink and/or downlink data transmission.
  • the data may include channels and/or signals, the uplink data transmission being the uplink channel and/or the uplink signal transmission, and the downlink data transmission being the downlink channel and/or the downlink signal transmission.
  • the terminal device involved in the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to a wireless modem. And various forms of user equipment (UE), mobile station (MS), and the like. For convenience of description, in the present application, the above-mentioned devices are collectively referred to as terminal devices.
  • the network device involved in the present application may be deployed in the RAN.
  • the network device may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the specific name of the network device may be different, for example, in an LTE system, referred to as an evolved Node B (eNB).
  • eNB evolved Node B
  • the existing LTE system is divided into an FDD frequency band and a TDD frequency band, wherein the FDD frequency band is further divided into an FDD uplink frequency band and an FDD downlink frequency band.
  • the FDD frequency band uses an FDD frame structure, corresponding to the FDD duplex mode
  • the TDD frequency band uses a TDD frame structure, corresponding to the TDD duplex mode.
  • FIG. 2 shows a frame structure of an existing LTE communication system
  • FIG. 2(a) shows an FDD frame structure
  • a 10 ms radio frame is divided into 10 sub-frames of length 1 ms, and each sub-frame is composed of two slots of length 0.5 ms.
  • the uplink transmission and the downlink transmission are located in different frequency bands.
  • On the FDD uplink frequency band all subframes are uplink subframes; on the FDD downlink frequency band, all subframes are downlink subframes.
  • the existing TDD supports seven kinds of uplink and downlink ratios, as shown in Table 1, where U is an uplink subframe, D is a downlink subframe, and S is a special subframe.
  • the special subframe includes a Downlink Pilot Time Slot (DwPTS), a guard period (GP), and an Uplink Pilot Time Slot (UpPTS).
  • DwPTS Downlink Pilot Time Slot
  • GP guard period
  • UpPTS Uplink Pilot Time Slot
  • 2(b) shows an example of a TDD frame structure configured for 5ms uplink-downlink switching.
  • a 10ms radio frame is divided into two half-frames of length 5ms, each of which is composed of Five sub-frames of length 1 ms are composed, including one special sub-frame and four normal sub-frames.
  • a normal subframe consists of two 0.5 ms slots
  • a special subframe consists of three special slots (UpPTS, GP, DwPTS).
  • the uplink transmission and the downlink transmission are located in the same frequency band, including an uplink subframe, a downlink subframe, and a special subframe.
  • the uplink subframe and the downlink subframe are the aforementioned normal subframes).
  • the length of a subframe may be shortened, for example, to a length of 0.2 ms or 0.25 ms or less per subframe.
  • n in the subframe n is a subframe number.
  • the subframe n-a is the a-th subframe before the subframe n, that is, the subframe n-a is the a-th subframe from the subframe n.
  • the subframe n+a is the a-th subframe after the subframe n, that is, the subframe n+a is the a-th subframe from the subframe n.
  • the present invention does not limit the length of time of a subframe and the length of time of one symbol.
  • one subframe includes N symbols (N is a positive integer), that is, one uplink subframe includes N uplink symbols, or one downlink subframe includes N downlink symbols. Both the upstream symbol and the downstream symbol are simply referred to as symbols.
  • the uplink symbol is called a single carrier-frequency division multiple access (SC-FDMA) symbol
  • the downlink symbol is called an orthogonal frequency division multiplexing (OFDM) symbol.
  • SC-FDMA single carrier-frequency division multiple access
  • OFDM orthogonal frequency division multiplexing
  • the LTE system has designed different communication schemes to support the above two duplex modes, which inevitably adds complexity to the communication, resulting in a decrease in communication efficiency. Therefore, a solution is needed to unify the system design and reduce the complexity of communication.
  • FIG. 3 is a flowchart of a data transmission method according to an embodiment of the present invention. The method can be applied to the application scenario shown in Figure 1, the method includes:
  • the network device determines that the subframe n is used to transmit at least one of a downlink data channel, an uplink data channel, a downlink control channel, an uplink control channel, a downlink reference signal, and an uplink reference signal.
  • the network device determines that at least one of the downlink data channel, the uplink data channel, the downlink control channel, the uplink control channel, the downlink reference signal, and the uplink reference signal is located in the subframe n.
  • the channels and/or signals carried on subframe n may be determined by the network device.
  • the network device determines that the channel and/or signal carried on the subframe n may be determined in real time according to requirements, or is pre-determined to be stored in the memory of the network device side.
  • the channel includes: a downlink data channel, an uplink data channel, a downlink control channel, and an uplink control channel.
  • the downlink data channel is used to carry downlink shared channel (DL-SCH) data and/or paging channel (PCH) data. It can also be said that the downlink data channel is used to carry downlink service data or higher layer signaling.
  • the uplink data channel is used to carry uplink shared channel (UL-SCH) data.
  • the downlink control channel is used to carry downlink physical layer signaling, for example, downlink control information (DCI), hybrid automatic repeat request (HARQ) response, and the like.
  • DCI downlink control information
  • HARQ hybrid automatic repeat request
  • the uplink control channel is used to carry uplink control information (UCI), for example, channel quality indicator (CQI), precoding matrix indicator (PMI), hybrid automatic repeat request (hybrid automatic) Repeat request, HARQ) response, rank indication (RI), and the like.
  • UCI uplink control information
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • HARQ hybrid automatic repeat request
  • RI rank indication
  • the signal includes: a downlink reference signal and an uplink reference signal.
  • the downlink reference signal is mainly used for downlink Channel measurement or channel estimation, for example, the downlink reference signal may be a cell-specific reference signal (CRS), a UE-specific reference signal (URS), a group-specific reference signal (group-specific) Reference signal (GRS), positioning reference signal (PRS), multicast/broadcast over single frequency network (MBSFN) reference signal (MBSFN reference signal), channel state information reference signal (CSI) Reference signal), synchronization signal (SS), discovery signal, etc.
  • the uplink reference signal is mainly used for uplink channel measurement or channel estimation.
  • the uplink reference signal may be a demodulation reference signal (DMRS), a sounding RS (SRS), or the like.
  • subframe n is used to transmit at least one of a downlink data channel, an uplink data channel, a downlink control channel, an uplink control channel, a downlink reference signal, and an uplink reference signal” in 301, in subframe n.
  • the following is an example for transmitting a downlink data channel: it refers to a subframe n used for transmitting information carried on a downlink data channel.
  • 3Gpp 3rd generation partnership project
  • the technical standard (TS) 36.211 can be understood by those skilled in the art.
  • the network device determines, in 301, that the subframe n is used to transmit at least one of a downlink data channel, an uplink data channel, a downlink control channel, an uplink control channel, a downlink reference signal, and an uplink reference signal, and may include :
  • the network device determines that the subframe n is used for transmitting an uplink data channel, a downlink control channel, an uplink control channel, a downlink reference signal, and an uplink reference signal. As an implementation, the network device also determines the order of the above channels and signals in the time domain. As shown in FIG. 4, the subframe n is used to transmit a downlink reference signal, a downlink control channel, an uplink reference signal, an uplink control channel, and an uplink data channel in order from the front to the back in the time domain.
  • the GP can be configured between the downlink control channel and the uplink reference signal; or
  • the network device determines that the subframe is used to transmit a downlink data channel, a downlink control channel, an uplink control channel, a downlink reference signal, and an uplink reference signal. As an implementation, the network device also determines the order of the above channels and signals in the time domain. As shown in FIG. 5, the subframe n is used to transmit a downlink reference signal, a downlink control channel, an uplink reference signal, an uplink control channel, and a downlink data channel in order from the front to the back in the time domain.
  • the GP can be configured between the downlink control channel and the uplink reference signal; or
  • the network device determines that the subframe n is used for transmitting a downlink reference signal, a downlink control channel, and a downlink data channel. As an implementation, the network device also determines the order of the above channels and signals in the time domain. As shown in FIG. 6, the subframe n is used to transmit a downlink reference signal, a downlink control channel, and a downlink data channel in order from the front to the back in the time domain; or
  • the network device determines that the subframe n is used to transmit an uplink reference channel, an uplink control channel, and an uplink data channel. As an implementation, the network device also determines the order of the above channels and signals in the time domain. As shown in FIG. 7, the subframe n is used to transmit an uplink reference signal, an uplink control channel, and an uplink data channel in order from the front to the back in the time domain; or
  • the network device determines that the subframe n is used for transmitting the downlink reference signal and the downlink data channel. As an implementation manner, the network device further determines the order of the channel and the signal in the time domain. As shown in Figure 8, the The subframe n is used to transmit the downlink reference signal and the downlink data channel in order from the front to the back in the time domain; or
  • the network device determines that the subframe n is used to transmit an uplink reference signal and an uplink data channel. As an implementation manner, the network device also determines the order of the channels and signals in the time domain. As shown in FIG. 9, the subframe n is used to transmit an uplink reference signal and an uplink data channel in order from the front to the back in the time domain; or
  • the network device determines that the subframe n is used to transmit an uplink data channel
  • the network device determines that the subframe n is used to transmit a downlink data channel
  • the network device determines that the subframe n is used for transmitting a downlink reference signal, a downlink control channel, an uplink reference signal, and an uplink data channel. As an implementation, the network device also determines the order of the above channels and signals in the time domain. As shown in FIG. 10, the subframe n is used to transmit a downlink reference signal, a downlink control channel, an uplink reference signal, and an uplink data channel in order from the front to the back in the time domain.
  • the GP can be configured between the downlink control channel and the uplink reference signal; or
  • the network device determines that the subframe n is used for transmitting a downlink reference signal, a downlink control channel, an uplink reference signal, and a downlink data channel. As an implementation, the network device also determines the order of the above channels and signals in the time domain. As shown in FIG. 11, the subframe n is used to transmit a downlink reference signal, a downlink control channel, an uplink reference signal, and a downlink data channel in order from the front to the back in the time domain.
  • the GP can be configured between the downlink control channel and the uplink reference signal. As shown in FIG. 12, the subframe n can also be used to transmit downlink reference signals, downlink control channels, and downlink data in the time domain from front to back. Channel and upstream reference signals. Wherein, the GP can be configured between the downlink data channel and the uplink reference signal; or
  • the network device determines that the subframe n is used to transmit a downlink reference signal, an uplink reference signal, and a downlink data channel. As an implementation, the network device also determines the order of the above channels and signals in the time domain. As shown in FIG. 13, the subframe n is used to transmit a downlink reference signal, a downlink data channel, and an uplink reference signal in order from the front to the back in the time domain.
  • the GP can be configured between the downlink data channel and the uplink reference signal.
  • the configuration information is used to indicate to the terminal device, for example, indicating the length of time of the GP, so that the terminal device is informed, or, as another implementation manner,
  • the terminal device is known by a prior definition (for example, when there is a downlink channel or a downlink signal going up the channel or an uplink signal transition situation).
  • the network device can arbitrarily configure the structure of the subframe n according to current needs, which improves the scheduling flexibility of the network device.
  • the network device determines that the subframe n is used to transmit at least the downlink reference signal, and the downlink reference signal may be located in the first M symbols of the subframe n, where M is a positive integer.
  • M is a positive integer.
  • the terminal device can perform channel estimation based on the received downlink reference channel as soon as possible.
  • the network device determines that the subframe n is also used to transmit the downlink control channel, as an implementation manner, the downlink control channel may be located on the N symbols following the downlink reference channel in the time domain, where N is a positive integer. Referring to FIG. 4, FIG. 5 or FIG. 6, the downlink reference signal and the downlink control channel are arranged in the time domain.
  • the downlink reference signal and the downlink control channel are located on at least one of the same symbols in the time domain, and the downlink reference signal is located on the non-contiguous subcarriers in the frequency domain.
  • the downlink reference signal occupies one symbol, under The row control channel occupies multiple symbols, then in the time domain, the downlink reference signal is located in the first symbol of the plurality of symbols occupied by the downlink control channel, and the non-contiguous subcarrier located in the first symbol in the frequency domain on.
  • the uplink reference signal may be located in the kth symbol in the subframe n (k is a positive integer) or the first P symbols in the subframe n, P Is a positive integer, for example, P takes a value of 1.
  • P takes a value of 1.
  • the network device can perform channel estimation based on the received uplink reference channel as soon as possible.
  • Reference may be made to the arrangement of the uplink reference signals in the time domain in FIG. For example, the uplink reference signal is located in the kth symbol (k is a positive integer greater than 2) within subframe n, as shown in Figures 4, 5, 10, 11, and 12.
  • the at least two symbols may be continuous or non-contiguous.
  • the uplink reference signal may be located in a non-contiguous subcarrier in the frequency domain. If the network device determines that the subframe n is also used to transmit the uplink control channel, as an implementation manner, the uplink control channel is located on the O symbols after the uplink reference channel in the time domain, and O is a positive integer. Reference may be made to the arrangement of the uplink reference signal and the uplink control channel in the time domain in FIG. As another implementation manner, the uplink reference signal and the uplink control channel are located on at least one of the same symbols in the time domain, and the uplink reference signal is located on the non-contiguous subcarriers in the frequency domain.
  • the uplink reference signal occupies one symbol and the uplink control channel occupies multiple symbols, then in the time domain, the uplink reference signal is located in the first symbol of the plurality of symbols occupied by the uplink control channel, and is located in the frequency domain. On the non-contiguous subcarrier of the first symbol.
  • subframe n in the embodiment of the present invention may be located in an FDD uplink frequency band, an FDD downlink frequency band, or a TDD frequency band.
  • the network device sends, according to the determining, configuration information to the terminal device, where the configuration information indicates that the subframe n is used to transmit a downlink data channel, an uplink data channel, a downlink control channel, an uplink control channel, a downlink reference signal, and an uplink. At least one of the reference signals.
  • the terminal device receives the configuration information.
  • the configuration information is included in high layer signaling. That is, the network device sends high layer signaling to the terminal device, and the terminal device receives high layer signaling sent by the network device, where the high layer signaling includes configuration information.
  • the configuration information is included in physical layer signaling. That is, the network device sends physical layer signaling to the terminal device, and the terminal device receives physical layer signaling sent by the network device, where the physical layer signaling includes configuration information.
  • the network device may send the physical layer signaling to the terminal device based on the time period T, and the terminal device may receive the physical layer signaling sent by the network device based on the time period T.
  • the network device can also send signaling indicating the time period T to the terminal device. After the time period T is configured, the terminal device does not need to receive the physical layer signaling frequently.
  • the configuration information is included in scheduling signaling carried on a downlink control channel. That is, the network device sends the scheduling signaling carried on the downlink control channel to the terminal device, and the terminal device receives the scheduling signaling that is sent by the network device and is carried on the downlink control channel, where the scheduling signaling includes configuration information.
  • the scheduling signaling may be uplink grant (UL Grant) signaling or downlink allocation (DL assignment) signaling.
  • Tune The degree signaling includes uplink scheduling information and/or downlink scheduling information.
  • the network device sends UL Grant signaling to the terminal device, where the UL Grant signaling is used to indicate that the terminal device sends uplink data on the subframe n through the uplink data channel. That is to say, the terminal device can learn that the subframe n is used for transmitting the uplink data channel by using the UL Grant signaling.
  • Data transmission includes uplink and/or downlink data transmission, uplink data transmission is uplink channel and/or uplink signal transmission, and downlink data transmission is downlink channel and/or downlink signal transmission.
  • the network device performs data transmission with the terminal device on the subframe n. For example, the network device receives the uplink data sent by the terminal device on the subframe n, or the network device sends the downlink data to the terminal device on the subframe n, or the network device receives the uplink data sent by the terminal device on the subframe n and Send downlink data to the terminal device.
  • the terminal device performs data transmission with the network device on the subframe n according to the configuration information.
  • the terminal device can obtain the frame structure of the subframe n by reading the content in the configuration information, so that the terminal device and the network device perform data transmission on the subframe n.
  • the terminal device receives the downlink data sent by the network device on the subframe n, or the terminal device sends the uplink data to the network device on the subframe n, or the terminal device receives the downlink data sent by the network device on the subframe n and Send uplink data to the network device.
  • Subframe n is used to transmit at least an uplink reference signal.
  • the performing, by the terminal device, the data transmission between the network device and the network device includes: transmitting, by the terminal device, the uplink reference signal to the network device, where the uplink reference signal is used for downlink channel measurement.
  • the subframe n is located in the FDD uplink frequency band or the FDD downlink frequency band.
  • the method may further include:
  • the network device performs downlink channel measurement according to the uplink reference signal received from the terminal device.
  • the network device configures downlink scheduling information according to the result of the downlink channel measurement, where the downlink scheduling information is used to instruct the network device to send downlink data to the terminal device in a subframe (n+k) (k is a positive integer).
  • the network device sends the downlink scheduling information to the terminal device before or simultaneously transmitting the downlink data on the subframe (n+k) to the terminal device. Then, the terminal device receives the downlink data in the subframe (n+k) according to the downlink scheduling information.
  • the subframe n and the subframe (n+k) are both located in the FDD uplink frequency band, or both are located in the FDD downlink frequency band.
  • the uplink reference signal for example, the SRS can only be used for the uplink channel measurement, and the network device can only know the downlink channel state after receiving the downlink CSI sent by the terminal device.
  • the FDD uplink frequency band is no longer limited to the uplink signal or the uplink channel transmission (for example, there is a downlink data channel in the subframe (n+k))
  • the FDD downlink frequency band is no longer limited to the downlink signal or The transmission of the downlink channel (for example, there is an uplink reference signal on the subframe n), that is, the terminal device can transmit the uplink reference signal on the FDD downlink frequency band, or the terminal device can be on the FDD uplink frequency band. Send downlink data.
  • the network device can utilize the channel reciprocity, and the network device can measure the downlink channel on the FDD band by using the uplink reference signal sent by the terminal device, and estimate the downlink channel state.
  • This approach facilitates large-scale multiple input multiple output (MIMO) layouts.
  • Subframe n is used to transmit at least an uplink control channel.
  • the data transmission between the terminal device and the network device on the subframe n specifically includes:
  • the terminal device sends, to the network device, the HARQ response information carried on the uplink control channel, where the HARQ response information is used to indicate the receiving of the downlink data received by the terminal device on the subframe (nk). State, where k is a positive integer.
  • the HARQ response information includes an acknowledgment (ACK), a non-acknowledgement (NACK), and a discontinuous transmission (DTX).
  • ACK indicates that the downlink data is received correctly
  • the NACK indicates that the downlink data is received incorrectly
  • the DTX indicates that the downlink data is not received.
  • the subframe n and the subframe (n-k) may be located in the same type of frequency band.
  • the subframe n and the subframe (n-k) are both located in the TDD frequency band, or both are located in the FDD uplink frequency band, or both are located in the FDD downlink frequency band.
  • the unused carrier may be occupied, that is, the downlink data and the HARQ response information are located on different carriers.
  • subframe n and subframe (n-k) are located in different types of frequency bands.
  • the subframe n is located in the FDD uplink frequency band
  • the subframe (nk) is located in the FDD downlink frequency band
  • the subframe (nk) is located in the FDD uplink frequency band
  • the subframe (nk) is located in the TDD frequency band.
  • the subframe (nk) is located in the FDD uplink frequency band, or the subframe (nk) is located in the FDD downlink frequency band; for example, the subframe n is located in the FDD uplink frequency band, or the subframe n is located in the FDD downlink frequency band, and the subframe (nk) is located in the TDD frequency band. .
  • the above k is a positive integer, and the values of k for the FDD uplink band, the FDD downlink band, and the TDD band are the same. That is, the HARQ timing of the FDD band and the TDD band is the same. This makes the design of the communication system tend to be unified, reducing the complexity of the communication system.
  • the HARQ feedback speed is the fastest, which can reduce the communication delay.
  • a frame structure design as shown in FIG. 14 can be adopted:
  • the subframe (n-1) is used for transmitting the downlink reference signal, the downlink control channel, the uplink reference signal, the uplink control channel, and the downlink data channel in the time domain from the front to the back, and the GP is configured on the downlink control channel.
  • the subframe n is used for transmitting the downlink reference signal, the downlink control channel, the uplink reference signal, the uplink control channel, and the uplink data channel in the time domain from the front to the back, and the GP is configured on the downlink control channel and the uplink. Between the reference signals.
  • the scheduling timing and the HARQ timing under the frame structure 1 include at least one of the following timings: the downlink control channel on the subframe (n-1) can be used to schedule the downlink data channel on the subframe (n-1); the subframe The uplink control channel on the n may be used to carry the HARQ response information, where the HARQ response information is used to indicate the receiving state of the downlink data received by the terminal device on the subframe (n-1); the downlink control channel on the subframe n It can be used to schedule an upstream data channel on subframe n. It should be noted that although the subframe (n-1) and the subframe n in FIG. 14 are located on the same carrier, The subframe (n-1) and the subframe n may also be located on different carriers, which is not limited in this embodiment.
  • Frame structures 2 and 3 can be used together. Among them, a subframe having a frame structure of 2 and a subframe having a frame structure of 3 are located on different carriers.
  • subframe n and subframe (n-1) are used to transmit a downlink reference channel, a downlink control channel, and a downlink data channel in order from the front to the back in the time domain.
  • subframe n and subframe subframe (n-1) are used to transmit an uplink reference channel, an uplink control channel, and an uplink data channel in order from the front to the back in the time domain.
  • the scheduling timing and HARQ timing under frame structures 2 and 3 include at least one of the following timings: a downlink control channel on a subframe (n-1) on the first carrier may be used to schedule a subframe on the first carrier ( The downlink data channel on the n-1); the uplink control channel of the subframe n on the second carrier may be used to carry the HARQ response information, where the HARQ response information is used to indicate the subframe (n-1) on the first carrier The received state of the received downlink data; the downlink control channel on the subframe n on the first carrier can be used to schedule the uplink data channel on the subframe n on the second carrier.
  • the first carrier and the second carrier are located at different carrier frequencies.
  • the first carrier and the second carrier may be located in the same frequency band or in different frequency bands.
  • the timing on the second carrier lags behind the timing on the first carrier, that is, the start time of the subframe n on the second carrier is later than the start time of the subframe n on the first carrier, and the difference between the two A time offset T.
  • the terminal device has sufficient processing time to decode the downlink data and generate HARQ response information.
  • the time offset T is equal to the downlink reference signal in the frame structure 1, the total time occupied by the downlink control channel and the GP.
  • the design of the frame structure 4 can also be adopted for the subframe on the second carrier.
  • the subframe (n-1), the subframe n, and the subframe (n+1) on the second carrier are used to transmit the first uplink data channel, the uplink reference signal, and the uplink reference signal in the time domain from the front to the back.
  • the uplink control channel and the second uplink data channel are also divided into two parts, a first uplink data channel and a second uplink data channel, which are distributed on both sides of the uplink reference signal and the uplink control channel.
  • the uplink control channel of the subframe n in the frame structure 1 and the uplink control channel of the subframe n in the frame structure 4 are completely aligned in the time domain.
  • the downlink control channel on the subframe n on the first carrier may be used to schedule the second uplink data channel on the subframe n on the second carrier and the first uplink data channel on the subframe (n+1).
  • Other specific implementations are the same as the embodiment of FIG.
  • the above frame structure 1 is applied to the TDD frequency band; the frame structure 2 is applied to the FDD downlink frequency band, that is, the first carrier is located in the FDD downlink frequency band; the frame structure 3 and/or 4 is applied to the FDD uplink frequency band, that is, the second carrier is located in the FDD Upstream frequency band.
  • the terminal device can use the same HARQ timing or scheduling timing regardless of whether it is in the TDD band or the FDD band.
  • the data transmission between the terminal device and the network device on the subframe n specifically includes:
  • the terminal device transmits the CSI carried on the uplink control channel or the uplink data channel to the network device on the subframe n.
  • the CSI reporting period parameters are the same.
  • the reporting period of the CSI is separately configured according to different frequency bands (FDD band or TDD band), and is different from each other.
  • any one of the FDD frequency band and the TDD frequency band can be configured to transmit at least an uplink control channel, and thus the CSI uplink frequency band, the FDD downlink frequency band, and the TDD frequency band can be implemented.
  • the cycle parameters are the same.
  • the reporting period of the CSI may be the length of one subframe, so that the network device can obtain the latest information through the CSI sent by the terminal device.
  • Channel status information to configure accurate downlink scheduling information.
  • Subframe n is used for at least transmitting an uplink data channel.
  • the terminal device performs data transmission with the network device on the subframe n, including: the terminal device sends an uplink data channel to the network device on the subframe n (that is, sends uplink data carried on the uplink data channel).
  • the uplink data is sent according to the uplink scheduling information received by the terminal device on the subframe (nk).
  • the method may further include:
  • the network device sends uplink scheduling information on the subframe (n-k), where the uplink scheduling information is used to instruct the terminal device to send uplink data on the subframe n.
  • the subframe n and the subframe (n-k) may be located in the same type of frequency band or in different types of frequency bands, as described in detail above.
  • k is an integer ⁇ 0, and the values of k are the same for the FDD uplink band, the FDD downlink band, and the TDD band. That is to say, the uplink data scheduling delay of the FDD band and the TDD band is the same. This makes the design of the communication system tend to be unified, reducing the complexity of the communication system.
  • the shortest uplink data scheduling delay can be implemented.
  • the downlink control channel on the subframe n on the first carrier can be used to schedule the second uplink data channel and the subframe on the subframe n on the second carrier ( The first uplink data channel on n+1). That is, the terminal device may send the second uplink data channel on the subframe n and the first uplink data channel on the subframe (n+1) to the network device according to the uplink scheduling information.
  • Subframe n is used to transmit at least a downlink data channel.
  • the data transmission between the terminal device and the network device on the subframe n specifically includes:
  • the terminal device receives the downlink data channel (that is, the downlink data carried on the downlink data channel) sent by the network device on the subframe n.
  • the downlink data channel that is, the downlink data carried on the downlink data channel
  • the subframe is further configured to transmit a downlink control channel
  • the data transmission between the network device and the network device by the terminal device on the subframe n further includes:
  • the terminal device receives, on the downlink control channel of the subframe n, downlink scheduling information that is sent by the network device, where the downlink scheduling information is used to schedule downlink data in the downlink data channel on the subframe n;
  • the downlink scheduling information is used to receive downlink data sent by the network device on the downlink data channel of the subframe n.
  • the network device determines a channel and/or a signal existing on the subframe n, and the terminal device implements the channel and/or the signal existing on the subframe n to implement the sum on the subframe n.
  • the channel and/or signal present on the subframe n enables the same duplex mode to be used on the FDD band and the TDD band, so that the design of the communication system is unified.
  • the terminal device does not need to distinguish different duplex modes and communicate according to different duplex modes, thereby simplifying the design of the communication system and improving the communication efficiency.
  • FIG. 16 is a flowchart of a data transmission method according to an embodiment of the present invention. The method can be applied to the application scenario shown in Figure 1, the method includes:
  • the network device determines that the subframe n is used to transmit at least one of a downlink data channel, an uplink data channel, a downlink control channel, an uplink control channel, a downlink reference signal, and an uplink reference signal.
  • the terminal reads the predefined configuration information, where the configuration information indicates that the subframe n is used to transmit at least one of a downlink data channel, an uplink data channel, a downlink control channel, an uplink control channel, a downlink reference signal, and an uplink reference signal. .
  • the terminal device performs data transmission with the network device on the subframe n according to the configuration information.
  • the manner in which the terminal obtains the configuration information is different from that in the embodiment of FIG. 3, and is obtained in a predefined manner.
  • the configuration information determined in advance may be stored in the memory of the terminal, and the terminal is configured by the terminal. Get it when you need it.
  • the same subframes on the same carrier of the same frequency band are consistent on the network device side and the terminal device side, that is, the frame structures of the same subframe on the same carrier in the same frequency band are the same.
  • Other implementations of the embodiments of the present invention are the same as those of the embodiment of FIG. 3, and may be referred to, and details are not described herein again.
  • the communication system applied by the technical solutions provided by the embodiments of the present invention adopts transparent duplexing, and the transparent duplex finger does not need to distinguish the duplex mode of FDD and TDD.
  • the transparent duplex finger does not need to distinguish between the duplex mode of FDD and TDD.
  • the transparent duplex is applicable to the FDD uplink frequency band, the FDD downlink frequency band, and the TDD frequency band, that is, the FDD uplink frequency band, the FDD downlink frequency band, and the TDD frequency band all use a transparent duplex duplex mode.
  • the terminal device detects whether the current duplex mode is TDD or FDD by detecting the synchronization signal. After the transparent duplex is used, it is no longer necessary to distinguish the synchronization signals on the TDD band and the FDD downlink band. That is, the structure of the sync signal is not used to identify FDD and TDD. Therefore, the time domain resource location of the synchronization signal detected by the terminal device may be the same for the FDD uplink frequency band, the FDD downlink frequency band, and the TDD frequency band, that is, the resource position of the synchronization signal is not needed to distinguish the duplex mode used by the system.
  • each network element such as a terminal device, a network device, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • Fig. 17 is a simplified schematic diagram showing a possible design structure of the terminal device involved in the above embodiment.
  • the terminal includes a transmitter 1701, a receiver 1702, a controller/processor 1703, a memory 1704, and a modem processor 1705.
  • Transmitter 1701 conditions (e.g., analog transforms, filters, amplifies, and upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the network device described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the access network device in the above embodiment.
  • Receiver 1702 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • encoder 1706 receives the traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
  • Modulator 1707 further processes (e.g., symbol maps and modulates) the encoded service data and signaling messages and provides output samples.
  • Demodulator 1709 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 1708 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the terminal.
  • Encoder 1706, modulator 1707, demodulator 1709, and decoder 1708 may be implemented by a composite modem processor 1705. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the controller/processor 1703 performs control management on the actions of the terminal device for performing the processing performed by the terminal device in the above embodiment, and controls the transmitter 1701 and the receiver 1702 to perform the execution performed by the terminal device in FIGS. 3 and 16. action.
  • the memory 1704 is for storing program codes and data for the terminal device.
  • FIG. 18 is a schematic diagram showing a possible structure of a network device involved in the above embodiment.
  • the network device includes a transmitter/receiver 1801, a controller/processor 1802, a memory 1803, and a communication unit 1804.
  • the transmitter/receiver 1801 is configured to support transmission and reception of information between the network device and the terminal device in the foregoing embodiment, and to support radio communication between the terminal device and other terminal devices.
  • the controller/processor 1802 performs various functions for communicating with the terminal.
  • On the uplink the uplink signal from the terminal device is received via the antenna, coordinated by the receiver 1801, and further processed by the controller/processor 1802 to recover the service data and signaling information transmitted by the terminal.
  • traffic data and signaling messages are processed by controller/processor 1802 and coordinated by transmitter 1801 to generate downlink signals for transmission to the terminal device via the antenna.
  • the controller/processor 1802 also performs the processes involved in the network devices of Figures 3 and 16 and/or other processes for the techniques described herein.
  • the memory 1803 is used to store program codes and data of the network device.
  • the communication unit 1804 is configured to support the network device to communicate with other network devices.
  • Figure 18 only shows a simplified design of the network device.
  • the network device may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all access network devices that can implement the present invention are within the scope of the present invention. .
  • FIG. 19 is a network device 1900 according to an embodiment of the present invention.
  • the network device 1900 may include a processing unit 1910 and a transceiver unit 1920.
  • the processing unit 1910 can implement the functions of the controller/processor 1802 of the network device in FIG. 18; the transceiver unit 1920 can implement the functions of the transmitter/receiver 1801 of the network device in FIG.
  • FIG. 20 is a terminal device 2000 according to an embodiment of the present invention.
  • the terminal device 2000 may include a processing unit 2010 and a transceiver unit 2020.
  • the processing unit 2010 can implement the functions of the controller/processor 1703 of the terminal device in FIG. 17; the transceiver unit 2020 can implement the functions of the transmitter 1701 and the receiver 1702 of the terminal in FIG.
  • the various illustrative logic blocks, modules and circuits described in the embodiments of the invention may be implemented by a general purpose processing unit, a digital signal processing unit, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic. Devices, discrete gate or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the functions described.
  • the general purpose processing unit may be a micro processing unit.
  • the general purpose processing unit may be any conventional processing unit, controller, microcontroller or state machine.
  • the processing unit may also be implemented by a combination of computing devices, such as a digital signal processing unit and a microprocessing unit, a plurality of microprocessing units, one or more microprocessing units in conjunction with a digital signal processing unit core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present invention may be directly embedded in hardware, a software module executed by a processing unit, or a combination of the two.
  • the software modules can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processing unit such that the processing unit can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processing unit.
  • the processing unit and the storage medium may be configured in an ASIC, and the ASIC may be configured in the user terminal. Alternatively, the processing unit and the storage medium may also be configured in different components in the user terminal.
  • the above-described functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions may be stored on a computer readable medium or transmitted as one or more instructions or code to a computer readable medium.
  • Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another.
  • the storage medium can be any available media that any general purpose or special computer can access.
  • Such computer-readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general or special processing unit.
  • any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server or other remote source through a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or with, for example, infrared, wireless, and microwave Wireless transmissions are also included in the defined computer readable medium.
  • DSL digital subscriber line
  • the disks and discs include compact disks, laser disks, optical disks, DVDs, floppy disks, and Blu-ray disks. Disks typically replicate data magnetically, while disks typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种数据传输方法,包括:终端设备获取配置信息,所述配置信息指示子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种;所述终端设备根据所述配置信息,在所述子帧n上进行与网络设备之间的数据传输。通过上述方法,使得通信系统设计能够在不同平带上获得统一有效降低了通信复杂度,提高了通信的效率。

Description

数据传输的方法、设备和系统 技术领域
本发明涉及无线通信技术,尤其涉及一种数据传输的方法、设备和系统。
背景技术
LTE系统中,FDD双工方式和TDD双工方式对应的帧结构互不相同,并且都是预先定义好的,不能够根据通信需求做出灵活改变。现有技术中,对子帧的帧结构的僵硬设计导致了LTE系统通信的复杂化,降低了通信效率。例如,现有LTE系统无法使两种双工方式下混合自动重传请求(hybrid automatic repeat request,HARQ)定时、信道测量或者估计方式等系统设计保持一致;在通信前,终端还需要通过检测同步信号确定LTE通信的双工方式等等。
发明内容
本发明提供了一种数据传输的方法、设备和系统,以达到降低通信复杂度,提高通信效率的目的。
本申请的实施例中,网络设备确定子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种。通过预先定义的方式,或者接收相关配置信息等方式,终端设备可以获取网络设备确定的子帧n的上述信息;据此,可以实现终端设备和网络设备在子帧n上的数据传输。
一方面,本申请实施例提供了一种数据传输方法,包括:终端设备获取配置信息,所述配置信息指示子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种;所述终端设备根据所述配置信息,在所述子帧n上进行与网络设备之间的数据传输。
另一方面,本申请实施例提供了一种数据传输方法,包括:网络设备确定子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种;所述网络设备在所述子帧n上进行与终端设备之间的数据传输。
通过以上提供的技术方案,网络设备确定子帧n上存在的信道和/或信号,终端设备通过获取该子帧n上存在的信道和/或信号,在子帧n上实现和网络设备之间的数据传输。其中,该子帧n上存在的信道和/或信号使得FDD频带和TDD频带上能够使用同一种双工方式,使得通信系统的设计统一化。相对于现有技术,终端设备无需区分不同双工方式并根据不同的双工方式进行通信,从而简化了通信系统的设计,提高了通信效率。
基于上述方面本申请还提供了以下设计方案:
在一种可能的设计中,终端设备通过读取预定义的所述配置信息
在一种可能的设计中,终端设备接收所述网络设备通过高层信令、物理层信令或者承载在下行控制信道的调度信令发送的所述配置信息。采用该方式,子帧n上存在的信道和/或信号可以根据通信的情况被实时配置和通知,使得通信更加灵活和高效。
作为一种实现方式,当终端设备接收所述网络设备通过物理层信令发送的所述配置信息时,网络设备可以基于时间周期T向终端设备发送该物理层信令,终端设备可以基于该时间周期T接收网络设备发送的该物理层信令。另外,网络设备还可以向终端设备发送指示该时间周期T的信令。配置时间周期T后,终端设备不需要频繁接收该物理层信令。
在一种可能的设计中,所述子帧n至少用于传输上行参考信号。终端设备在子帧n上进行与网络设备之间的数据传输,包括:终端设备在所述子帧n上向所述网络设备发送上行参考信号,所述上行参考信号用于下行信道测量;网络设备接收所述上行参考信号,根据所述上行参考信号进行下行信道测量;所述网络设备根据所述下行信道测量结果向所述终端设备发送下行调度信息,所述下行调度信息用于指示所述网络设备在子帧(n+k)上向所述终端设备发送下行数据;终端设备接收所述下行调度信息;所述网络设备在所述子帧(n+k)上向所述终端设备发送下行数据;所述终端设备根据所述下行调度信息,在子帧(n+k)上接收所述网络设备发送的下行数据;其中,k为正整数,所述子帧n和所述子帧(n+k)均位于FDD上行频带或者FDD下行频带。现有FDD系统中,上行参考信号,如,探测参考信号(sounding RS,SRS)只能用于上行信道测量,另外网络设备只有接收终端设备发送的下行信道状态信息(channel state information,CSI)后,才能获知下行信道状态。而本发明实施例中,由于FDD上行频带不再局限于上行信号或者上行信道的传输(例如,在子帧(n+k)上存在下行数据信道)、FDD下行频带不再局限于下行信号或者下行信道的传输(例如,在子帧n上存在上行参考信号),也就是终端设备可以在FDD下行频带上发送上行参考信号,或者,终端设备可以在FDD上行频带上发送下行数据。这样,网络设备可以利用信道互异性,通过终端设备发送的上行参考信号,网络设备可以对FDD频带上的下行信道进行测量,估计出下行信道状态。这种方式有利于大规模的多输入多输出(multiple input multiple output,MIMO)布局。
在一种可能的设计中,所述子帧n至少用于传输上行控制信道。
可选的,所述终端设备在所述子帧n上进行与网络设备之间的数据传输,包括:所述终端设备在所述子帧n上向所述网络设备发送承载于所述上行控制信道的混合自动重传请求HARQ应答信息,所述HARQ应答信息用于指示所述终端设备在子帧(n-k)上接收的下行数据的接收状态;网络设备接收所述HARQ应答信息。
其中,所述k为正整数且对于FDD上行频带、FDD下行频带和TDD频带所述k的取值相同。也就是说,FDD频带和TDD频带的HARQ定时是相同的。 这使得通信系统的设计趋于统一,降低了通信系统的复杂度。
作为一种实现方式,子帧n和子帧(n-k)可以位于相同类型的频带,例如,子帧n和子帧(n-k)均位于TDD频带,或者,均位于FDD上行频带,或者,均位于FDD下行频带。需要说明的是,即使子帧n和子帧(n-k)位于同种类型的频带,也可以是占用不用的载波,即下行数据和HARQ应答信息位于不同的载波;子帧n和子帧(n-k)位于不同类型的频带。例如,子帧n位于FDD上行频带,子帧(n-k)位于FDD下行频带;又如,子帧n位于FDD下行频带,子帧(n-k)位于FDD上行频带;又如,子帧n位于TDD频带,子帧(n-k)位于FDD上行频带,或者子帧(n-k)位于FDD下行频带;又如,子帧n位于FDD上行频带,或者子帧n位于FDD下行频带,子帧(n-k)位于TDD频带。
作为另一种实现方式,当k=1时,HARQ反馈速度最快,可以降低通信的时延。
作为另一种实现方式,所述k等于1,所述子帧(n-k)为子帧(n-1);所述下行数据信道为第一下行数据信道、所述上行数据信道为第一上行数据信道、所述下行控制信道为第一上行数据信道、所述上行控制信道为第一上行控制信道、所述下行参考信号为第一下行参考信号,所述上行参考信号为第一上行参考信号;所述子帧n在时域上从前到后依次用于传输所述第一上行参考信道、所述第一上行控制信道、以及所述第一上行数据信道;子帧(n-1)在时域上从前到后依次用于传输第二下行参考信道、第二下行控制信道、以及第二下行数据信道;其中,所述子帧(n-1)位于第一载波,所述子帧n位于第二载波,所述第二载波上的定时滞后于所述第一载波上的定时,这样,终端设备就有足够的处理时间对下行数据进行译码并生成HARQ应答信息。第一载波和第二载波可以位于相同的频带,也可以位于不同的频带。
可选的,终端设备在子帧n上进行与网络设备之间的数据传输,包括:终端设备在子帧n上向网络设备发送承载于上行控制信道或上行数据信道的CSI。对于FDD上行频带、FDD下行频带和TDD频带,所述CSI上报周期参数均相同。本发明实施例中,FDD频带和TDD频带上的任一子帧都可以按需配置至少用于传输上行控制信道,因此能够实现对于FDD上行频带、FDD下行频带和TDD频带,所述CSI上报周期参数均相同。
作为一种实现方式,当每个子帧都至少用于传输上行下控制信道时,CSI的上报周期可以是一个子帧的长度,这样,网络设备可以通过终端设备发送的CSI及时获知最新的信道状态信息,以便配置准确的下行调度信息。
在一种可能的设计中,子帧n至少用于传输上行数据信道。终端设备在所述子帧n上进行与网络设备之间的数据传输,包括:终端设备在所述子帧n上向所述网络设备发送承载于所述上行数据信道的上行数据;该上行数据是根据所述终端设备在子帧(n-k)上接收的网络设备发送的上行调度信息发送的。所述网络设备在所述子帧n上接收所述终端设备发送的承载于所述上行数据信道的上行数据;其中,所述k为≥0的整数且对于FDD上行频带、FDD下行频带和TDD 频带所述k的取值相同。子帧n和子帧(n-k)可以位于相同类型的频带。本发明实施例提供的技术方案,FDD频带和TDD频带的上行数据调度时延是相同的。这使得通信系统的设计趋于统一,降低了通信系统的复杂度。作为一种实现方式,k=0时,可以实现最短的上行数据调度时延。此时,针对不同载波上的子帧n的结构还可以做出特定的设计,对应的技术方案可以是:
终端设备获取第一配置信息,所述第一配置信息指示第一载波上的子帧n用于传输第一上行数据信道,上行参考信号,上行控制信道以及所述第二上行数据信道;第一载波上的子帧n在时域上从前到后依次用于传输所述第一上行数据信道,上行参考信号,上行控制信道以及第二上行数据信道;终端设备还获取第二配置信息,所述第二配置信息指示第二载波上的子帧(n+1)至少用于传输第三上行数据信道;第二载波上的子帧(n+1)在时域上最先传输所述第三上行数据信道;所述终端设备在所述子帧n上向所述网络设备发送承载于所述第二上行数据信道的上行数据;所述终端设备在所述子帧(n+1)上向所述网络设备发送承载于所述第三上行数据信道的上行数据,所述第二上行数据信道的上行数据和第三上行数据信道的上行数据是根据所述网络设备发送的上行调度信息发送的;其中,所述第一载波的子帧n和所述第二载波的子帧(n+1)位于同一频带;所述上行调度信息位于第三载波,并且与所述子帧n和所述子帧(n+1)位于不同的频带。作为一种实现方式,所述第一载波和所述第二载波为相同的载波。这样,使用一个上行调度信息,就可以达到调度不同子帧中数据信道,提高了通信效率。
在一种可能的设计中,子帧n至少用于传输下行数据信道。终端设备在子帧n上进行与网络设备之间的数据传输具体包括:终端设备在所述子帧n上接收网络设备发送的承载于下行数据信道的下行数据。作为一种实现方式,所述子帧还用于传输下行控制信道,终端设备在子帧n上进行与网络设备之间的数据传输还包括:终端设备在所述子帧n的下行控制信道上接收网络设备发送的下行调度信息,该下行调度信息用于调度子帧n上所述下行数据信道中的下行数据;此时,终端设备根据所述下行调度信息,在所述子帧n的下行数据信道上接收网络设备发送的下行数据。这种实现方式实现了下行数据的最快调度。
在一种可能的设计中,网络设备确定的子帧n用于传输的信道和/或信号、终端设备获得的子帧n的信道和/或信号可以是:所述子帧n在时域上从前到后依次用于传输所述下行参考信号,所述下行控制信道,所述上行参考信号,所述上行控制信道,以及所述上行数据信道,其中保护间隔GP配置于所述下行控制信道和所述上行参考信号之间;或者,所述子帧n在时域上从前到后依次用于传输所述下行参考信号,所述下行控制信道,所述上行参考信号,所述上行控制信道,以及所述下行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,所述子帧n在时域上从前到后依次用于传输所述下行参考信号,所述下行控制信道,所述上行参考信号,以及所述上行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,所述子帧n在时域上从前到后依次用于传输所述下行参考信号,所述下行控制信道,所述上行 参考信号,以及所述下行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,所述配置信息指示所述子帧n在时域上从前到后依次用于传输所述下行参考信号,所述下行控制信道,所述下行数据信道,以及所述上行参考信号,其中,所述GP配置与所述下行数据信道和所述上行参考信号之间。需要说明的是,网络设备可以进一步确定以上各个信道和/或信道之间在子帧n上时域上的先后顺序;终端侧可以通过预先获知的各个信道和/或信道之间时域上的先后顺序,或者通过配置信息进一步获得子帧n上存在的各个信道和/或信道之间时域上的先后顺序。
在一种可能的设计中,网络设备发送的同步信号的时域资源位置对于FDD上行频带、FDD下行频带和TTD频带均相同。
在一种可能的设计中,本发明实施例所提供的技术方案应用的通信系统中,频分双工FDD上行频带、FDD下行频带和时分双工TDD频带均使用透明双工的双工方式,所述透明双工指无需区分FDD和TDD的双工方式。
在一种可能的设计中,网络设备确定子帧n至少用于传输下行参考信号,下行参考信号可以位于子帧n的前M个符号,M为正整数,例如,M取值为1。这样,终端设备能够尽快根据接收到的下行参考信道进行信道估计。若网络设备确定子帧n还用于传输下行控制信道时,作为一种实现方式,下行控制信道在时域上可以位于下行参考信道之后的N个符号上,N为正整数。作为另外一种实现方式,下行参考信号和下行控制信道在时域上位于至少一个相同的符号上,此时下行参考信号在频域上位于非连续的子载波上。
在一种可能的设计中,网络设备确定子帧n至少用于传输上行参考信号时,上行参考信号可以位于子帧n内的第k个符号(k为正整数)或子帧n的前P个符号,P为正整数,例如,P取值为1。这样,网络设备能够尽快根据接收到的上行参考信道进行信道估计。当上行参考信号位于至少两个符号上时,所述至少两个符号之间可以是连续的或者非连续的。上行参考信号在频域上可以位于非连续的子载波。若网络设备确定子帧n还用于传输上行控制信道时,作为一种实现方式,上行控制信道在时域上位于上行参考信道之后的O个符号上,O为正整数。
在一种可能的设计中,本发明实施例中的子帧n可以位于FDD上行频带,FDD下行频带,或者TDD频带。
另一方面,本发明实施例提供了一种网络设备,该网络设备具有实现上述方法设计中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,网络设备的结构中包括处理器和发射器,所述处理器被配置为支持网络设备执行上述方法中相应的功能。所述发射器用于支持网络设备与终端设备之间的通信,向终端设备发送上述方法中所涉及的信息或者指令。所述网络设备还可以包括存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和数据。
又一方面,本发明实施例提供了一种终端设备,该终端设备具有实现上述方法设计中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。所述模块可以是软件和/或硬件
在一个可能的设计中,终端设备的结构中包括接收器和处理器,所述处理器被配置为支持终端设备执行上述方法中相应的功能。所述发射器用于支持终端设备与网络设备之间的通信,接收网络设备发送的上述方法中所涉及的信息或者指令。所述终端设备还可以包括存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和数据。
又一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的网络设备和终端设备。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述终端设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种芯片系统,包括:至少一个处理器,存储器,输入输出部分和总线;所述至少一个处理器通过所述总线获取所述存储器中的指令,以用于实现上述方法涉及中网络设备的设计功能。
再一方面,本发明实施例提供了一种芯片系统,包括:至少一个处理器,存储器,输入输出部分和总线;所述至少一个处理器通过所述总线获取所述存储器中的指令,以用于实现上述方法涉及中终端设备的设计功能。
本发明实施例所提供的技术方案,网络设备确定子帧n上存在的信道和/或信号,终端设备通过获取该子帧n上存在的信道和/或信号,在子帧n上实现和网络设备之间的数据传输。其中,该子帧n上存在的信道和/或信号使得FDD频带和TDD频带上能够使用同一种双工方式,使得通信系统的设计统一化。相对于现有技术,终端设备无需区分不同双工方式并根据不同的双工方式进行通信,从而简化了通信系统的设计,提高了通信效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种应用场景;
图2(a)为本发明实施例提供的FDD帧结构图;
图2(b)为本发明实施例提供的配置成5ms上下行切换的一种TDD帧结构图;
图3为本发明实施例提供的一种数据传输方法的流程图;
图4为本发明实施例提供的一种子帧结构;
图5为本发明实施例提供的另一种子帧结构;
图6为本发明本发明实施例提供的另一种子帧的帧结构;
图7为本发明实施例提供的另一种子帧的帧结构;
图8为本发明实施例提供的另一种子帧的帧结构;
图9为本发明实施例提供的另一种子帧的帧结构;
图10为本发明实施例提供的另一种子帧的帧结构;
图11为本发明实施例提供的另一种子帧的帧结构;
图12为本发明实施例提供的另一种子帧的帧结构;
图13为本发明实施例提供的又一种子帧的帧结构;
图14为本发明实施例提供的一种子帧的帧结构设计;
图15为本发明实施例提供的另一种子帧的帧结构设计;
图16为本发明实施例提供的另一种数据传输方法的流程图;
图17为本发明实施例提供的终端设备的一种结构示意图;
图18为本发明实施例提供的网络设备的一种结构示意图;
图19为本发明实施例提供的终端设备的另一种结构示意图;
图20为本发明实施例提供的网络设备的另一种结构示意图。
具体实施方式
图1为本发明实施例提供的一种应用场景,如图1所示,终端设备通过无线接入网(radio access network,RAN)以及核心网(core network,CN)接入外部网络(external network)。本发明描述的技术可以适用于LTE系统,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统,后续的演进系统,如第五代5G系统等。
下面对本申请中涉及到的常用名词做些说明。
本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义;名词“数据传输”包括以下三种情况:
数据的发送,数据的接收,或者数据的发送和数据的接收。或者说,这里的数据传输包括上行和/或下行数据传输。数据可以包括信道和/或信号,上行数据传输即上行信道和/或上行信号传输,下行数据传输即下行信道和/或下行信号传输。
本申请所涉及到的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS)等等。为方便描述,本申请中,上面提到的设备统称为终端设备。本申请所涉及到的网络设备可以是一种部署在RAN中用 以为终端设备提供无线通信功能的装置。所述网络设备可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,网络设备的具体名称可能会有所不同,例如在LTE系统中,称为演进的节点B(evolved nodeB,eNB)。本申请对终端设备和网络设备的类型不作限定。
现有的LTE系统当中划分有FDD频带和TDD频带,其中,FDD频带又分为FDD上行频带和FDD下行频带。FDD频带使用FDD帧结构,对应FDD双工方式,TDD频带使用TDD帧结构,对应TDD双工方式。
图2示出了现有LTE通信系统的帧结构,图2(a)为FDD帧结构。如图2所示,10ms的无线帧(radio frame)被分为10个长度为1ms的子帧(subframe),每个子帧由两个长度为0.5ms的时隙(slot)组成。对于FDD,上行传输和下行传输位于不同频带,在FDD上行频带上,所有子帧为上行子帧;在FDD下行频带上所有子帧为下行子帧。现有TDD支持7种上下行配比,如表1所示,其中,U表示为上行子帧,D表示下行子帧,S表示特殊子帧(special subframe)。特殊子帧中包括下行导频时隙(Downlink Pilot Time Slot,DwPTS),保护时隙(guard period,GP)和上行导频时隙(Uplink Pilot Time Slot,UpPTS)。图2(b)为配置成5ms上下行切换的一种TDD帧结构示例,如图2(b)所示,10ms的无线帧被分为两个长度为5ms的半帧,每个半帧由5个长度为1ms的子帧组成,其中包括一个特殊子帧和四个普通子帧。普通子帧由两个0.5ms的时隙组成,而特殊子帧由3个特殊时隙(UpPTS、GP、DwPTS)组成。对于TDD,上行传输和下行传输位于相同的频带,包括上行子帧,下行子帧和特殊子帧。(其中,上行子帧和下行子帧即为前述的普通子帧)。
Figure PCTCN2017080109-appb-000001
表1
在未来演进的LTE系统中,为了降低时延(latency),可以将子帧的长度缩短,例如缩短到每个子帧的长度为0.2ms或0.25ms或者更短。
本发明中,子帧n中的n为子帧号。子帧n-a为子帧n之前的第a个子帧,即子帧n-a为从子帧n开始往前数的第a个子帧。子帧n+a为子帧n之后的第a个子帧,即子帧n+a为从子帧n开始往后数的第a个子帧。例如,按照现有LTE 系统帧结构,若n=4,a=2,则子帧n-a是子帧n所在无线帧中的子帧2;若n=0,a=2,则子帧n-a是子帧n所在无线帧的上一无线帧中的子帧8;若n=4,a=3,则子帧n+a是子帧n所在无线帧中的子帧7;若n=8,a=2,则子帧n+a是子帧n所在无线帧的下一无线帧中的子帧0。
本发明对子帧的时间长度以及一个符号的时间长度不做限制不做限制。不失一般性,一个子帧包括N个符号(N为正整数),即一个上行子帧包括N个上行符号,或者,一个下行子帧包括N个下行符号。上行符号和下行符号都简称为符号。其中,上行符号称为单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)符号,下行符号称为正交频分多址(orthogonal frequency division multiplexing,OFDM)符号。需要说明的是,若后续技术引入新的上行多址方式或下行多址方式,仍然可以称为符号。本发明对于上行多址方式和下行多址方式不做限制。
LTE系统设计了不同的通信方案来支持以上两种双工方式,不可避免地给通信增加了复杂度,导致了通信效率的下降。因此,亟需一种方案使得系统设计统一化,降低通信的复杂度。
图3为本发明实施例提供的一种数据传输方法的流程图。该方法可以应用于图1所示的应用场景中,该方法包括:
301、网络设备确定子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种。
换句话说,301、网络设备确定下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种位于子帧n。
为了降低通信的复杂度,需要对现有的帧结构重新设计,以使得对于FDD频带和TDD频带,通信系统能够采用一致的通信方案或者双工方式。可以由网络设备来确定子帧n上承载的信道和/或信号。
作为一种实现方式,网络设备确定子帧n上所承载的信道和/或信号可以是根据需求实时确定的,或者是预先确定好存储在网络设备侧的存储器中的。
其中,所述信道包括:下行数据信道,上行数据信道,下行控制信道,上行控制信道。下行数据信道用于承载下行共享信道(downlink shared channel,DL-SCH)数据和/或寻呼信道(paging channel,PCH)数据。也可以说,下行数据信道用于承载下行业务数据或者高层信令。上行数据信道用于承载上行共享信道(UL-SCH,uplink shared channel)数据。下行控制信道用于承载下行物理层信令,例如,下行控制信息(downlink control information,DCI),混合自动重传请求(hybrid automatic repeat request,HARQ)应答等。上行控制信道用于承载上行控制信息(uplink control information,UCI),例如,信道质量指示(channel quality indicator,CQI),预编码矩阵指示(precoding matrix indicator,PMI),混合自动重传请求(hybrid automatic repeat request,HARQ)应答,秩指示(rank indication,RI)等。
所述信号包括:下行参考信号,上行参考信号。下行参考信号主要用于下行 信道测量或信道估计,例如,下行参考信号可以是小区特定参考信号(cell-specific reference signal,CRS)、终端设备特定参考信号(UE-specific reference signal,URS),组特定参考信号(group-specific reference signal,GRS),定位参考信号(positioning reference signal,PRS),单频网多播/广播(multicast/broadcast over single frequency network,MBSFN)参考信号(MBSFN reference signal),信道状态信息参考信号(CSI reference signal),同步信号(synchronization signal,SS),发现信号(discovery signal)等。上行参考信号主要用于上行信道测量或信道估计,例如,上行参考信号可以是解调参考信号(demodulation reference signal,DMRS),探测信号(Sounding RS,SRS)等。
需要说明的是,301中出现术语“子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种”,以子帧n用于传输下行数据信道为例进行阐述说明:指的是子帧n用于传输承载在下行数据信道上的信息,相关描述可以参见协议第三代合作伙伴项目(the 3rd generation partnership project,3Gpp)技术标准(technical standard,TS)36.211,本领域技术人员可以理解其中含义。
为了达到本发明的技术效果,301中网络设备确定子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种,可以包括:
网络设备确定所述子帧n用于传输上行数据信道、下行控制信道、上行控制信道、下行参考信号,上行参考信号。作为一种实现方式,网络设备还确定上述信道和信号在时域上的顺序。如图4所示,所述子帧n在时域上从前到后依次用于传输下行参考信号,下行控制信道,上行参考信号,上行控制信道,以及上行数据信道。其中,GP可以配置于下行控制信道和上行参考信号之间;或者,
网络设备确定所述子帧用于传输下行数据信道、下行控制信道、上行控制信道、下行参考信号,上行参考信号。作为一种实现方式,网络设备还确定上述信道和信号在时域上的顺序。如图5所示,所述子帧n在时域上从前到后依次用于传输下行参考信号,下行控制信道,上行参考信号,上行控制信道,以及下行数据信道。其中,GP可以配置于下行控制信道和上行参考信号之间;或者,
网络设备确定所述子帧n用于传输下行参考信号,下行控制信道和下行数据信道。作为一种实现方式,网络设备还确定上述信道和信号在时域上的顺序。如图6所示,所述子帧n在时域上从前到后依次用于传输下行参考信号,下行控制信道和下行数据信道;或者,
网络设备确定所述子帧n用于传输上行参考信道,上行控制信道和上行数据信道。作为一种实现方式,网络设备还确定上述信道和信号在时域上的顺序。如图7所示,所述子帧n在时域上从前到后依次用于传输上行参考信号,上行控制信道和上行数据信道;或者,
网络设备确定所述子帧n用于传输下行参考信号和下行数据信道,作为一种实现方式,网络设备还确定上述信道和信号在时域上的顺序。如图8所示,所述 子帧n在时域上从前到后依次用于传输下行参考信号,下行数据信道;或者,
网络设备确定所述子帧n用于传输上行参考信号和上行数据信道,作为一种实现方式,网络设备还确定上述信道和信号在时域上的顺序。如图9所示,所述子帧n在时域上从前到后依次用于传输上行参考信号,上行数据信道;或者,
网络设备确定所述子帧n用于传输上行数据信道;或者,
网络设备确定所述子帧n用于传输下行数据信道;或者,
网络设备确定所述子帧n用于传输下行参考信号、下行控制信道、上行参考信号和上行数据信道。作为一种实现方式,网络设备还确定上述信道和信号在时域上的顺序。如图10所示,所述子帧n在时域上从前到后依次用于传输下行参考信号,下行控制信道,上行参考信号和上行数据信道。其中,GP可以配置于下行控制信道和上行参考信号之间;或者,
网络设备确定所述子帧n用于传输下行参考信号、下行控制信道、上行参考信号和下行数据信道。作为一种实现方式,网络设备还确定上述信道和信号在时域上的顺序。如图11所示,所述子帧n在时域上从前到后依次用于传输下行参考信号,下行控制信道,上行参考信号和下行数据信道。其中,GP可以配置于下行控制信道和上行参考信号之间;如图12所示,所述子帧n也可以在时域上从前到后依次用于传输下行参考信号,下行控制信道,下行数据信道和上行参考信号。其中,GP可以配置于下行数据信道和上行参考信号之间;或者,
网络设备确定所述子帧n用于传输下行参考信号、上行参考信号和下行数据信道。作为一种实现方式网络设备还确定上述信道和信号在时域上的顺序。如图13所示,所述子帧n在时域上从前到后依次用于传输下行参考信号,下行数据信道和上行参考信号。其中,GP可以配置于下行数据信道和上行参考信号之间。
关于GP的配置,作为一种实现方式,网络设备配置好后,通过配置信息向终端设备进行指示,(例如,指示GP的时间长度),使得终端设备获知,或者,作为另一种实现方式,终端设备通过预先的定义(例如,当存在下行信道或者下行信号向上行信道或者上行信号转换情况时)获知。
网络设备可以根据当前需要任意配置子帧n的结构,这样提高了网络设备的调度灵活性。
以上是从子帧n构成的角度,对本发明实施例进行阐述,可以知道的是,以上只是部分的举例说明。下面从信道和/或信号的角度对本实施例进行阐述:
可选的,网络设备确定子帧n至少用于传输下行参考信号,下行参考信号可以位于子帧n的前M个符号,M为正整数,例如,M取值为1。这样,终端设备能够尽快根据接收到的下行参考信道进行信道估计。若网络设备确定子帧n还用于传输下行控制信道时,作为一种实现方式,下行控制信道在时域上可以位于下行参考信道之后的N个符号上,N为正整数。可以参照图4、图5或者图6中下行参考信号和下行控制信道在时域上的排列方式。作为另外一种实现方式,下行参考信号和下行控制信道在时域上位于至少一个相同的符号上,此时下行参考信号在频域上位于非连续的子载波上。例如,下行参考信号占用一个符号,下 行控制信道占用多个符号,那么在时域上,下行参考信号位于下行控制信道所占用的多个符号中的第一个符号,且在频域上位于该第一符号的非连续的子载波上。
可选的,网络设备确定子帧n至少用于传输上行参考信号时,上行参考信号可以位于子帧n内的第k个符号(k为正整数)或子帧n的前P个符号,P为正整数,例如,P取值为1。这样,网络设备能够尽快根据接收到的上行参考信道进行信道估计。可以参照图9中上行参考信号的在时域上的排列方式。例如,上行参考信号位于子帧n内的第k个符号(k为大于2的正整数),如图4,5,10,11和12所示。当上行参考信号位于至少两个符号上时,所述至少两个符号之间可以是连续的或者非连续的。上行参考信号在频域上可以位于非连续的子载波。若网络设备确定子帧n还用于传输上行控制信道时,作为一种实现方式,上行控制信道在时域上位于上行参考信道之后的O个符号上,O为正整数。可以参照图7中上行参考信号和上行控制信道在时域上的排列方式。作为另一种实现方式,上行参考信号和上行控制信道在时域上位于至少一个相同的符号上,此时上行参考信号在频域上位于非连续的子载波上。例如,上行参考信号占用一个符号,上行控制信道占用多个符号,那么在时域上,上行参考信号位于上行控制信道所占用的多个符号中的第一个符号,且在频域上位于该第一符号的非连续的子载波上。
需要说明的是,本发明实施例中的子帧n可以位于FDD上行频带,FDD下行频带,或者TDD频带。
302、网络设备根据所述确定,向终端设备发送配置信息,所述配置信息指示所述子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种。
另外,终端设备接收该配置信息。
可选的,所述配置信息包含于高层信令。也就是说,网络设备向终端设备发送高层信令,终端设备接收网络设备发送的高层信令,所述高层信令包含配置信息。
可选的,所述配置信息包含于物理层信令。也就是说,网络设备向终端设备发送物理层信令,终端设备接收网络设备发送的物理层信令,所述物理层信令包含配置信息。作为一种实现方式,网络设备可以基于时间周期T向终端设备发送该物理层信令,终端设备可以基于该时间周期T接收网络设备发送的该物理层信令。另外,网络设备还可以向终端设备发送指示该时间周期T的信令。配置时间周期T后,终端设备不需要频繁接收该物理层信令。
可选的,所述配置信息包含于承载在下行控制信道的调度信令。也就是说,网络设备向终端设备发送承载在下行控制信道的调度信令,终端设备接收网络设备发送的承载在下行控制信道的调度信令,所述调度信令包含配置信息。调度信令可以是上行授权(UL Grant)信令,或者下行分配(DL assignment)信令。调 度信令包含上行调度信息和/或下行调度信息。例如,网络设备向终端设备发送UL Grant信令,该UL Grant信令用于指示该终端设备在子帧n上通过上行数据信道发送上行数据。也就是说,终端设备可以通过该UL Grant信令获知子帧n用于传输上行数据信道。
303、在子帧n上,终端设备与网络设备之间进行数据传输。
如前所述,数据可以为信道和/或信号。数据传输包括上行和/或下行数据传输,上行数据传输即上行信道和/或上行信号传输,下行数据传输即下行信道和/或下行信号传输。
从网络设备的角度来看,网络设备在子帧n上进行与终端设备之间的数据传输。例如,网络设备在子帧n上接收终端设备发送的上行数据,或者,网络设备在子帧n上向终端设备发送下行数据,或者,网络设备在子帧n上接收终端设备发送的上行数据和向终端设备发送下行数据。
从终端设备的角度来看,终端设备根据该配置信息,在子帧n上进行与网络设备之间的数据传输。终端设备接收配置信息之后,就可以通过读取配置信息中的内容获取子帧n的帧结构,从而实现终端设备与网络设备在子帧n上进行数据传输。例如,终端设备在子帧n上接收网络设备发送的下行数据,或者,终端设备在子帧n上向网络设备发送上行数据,或者,终端设备在子帧n上接收网络设备发送的下行数据和向网络设备发送上行数据。
下面通过几种实现方式来阐述该步骤:
1、子帧n至少用于传输上行参考信号
终端设备在子帧n上进行与网络设备之间的数据传输具体包括:终端设备在所述子帧n上向所述网络设备发送上行参考信号,所述上行参考信号用于下行信道测量。其中,子帧n位于FDD上行频带或者FDD下行频带。
在303之后,所述方法还可以包括:
网络设备根据从终端设备接收到的上行参考信号,进行下行信道测量。网络设备根据下行信道测量的结果,配置下行调度信息,该下行调度信息用于指示所述网络设备在子帧(n+k)(k为正整数)上向所述终端设备发送下行数据。网络设备在向终端设备发送子帧(n+k)上的下行数据之前或同时将该下行调度信息发送给终端设备。随后,终端设备根据该下行调度信息在子帧(n+k)上接收网络设备发送下行数据。
其中,子帧n和子帧(n+k)均位于FDD上行频带,或者均位于FDD下行频带。
现有FDD系统中,上行参考信号,如,SRS只能用于上行信道测量,另外网络设备只有接收终端设备发送的下行CSI后,才能获知下行信道状态。而本发明实施例中,由于FDD上行频带不再局限于上行信号或者上行信道的传输(例如,在子帧(n+k)上存在下行数据信道)、FDD下行频带不再局限于下行信号或者下行信道的传输(例如,在子帧n上存在上行参考信号),也就是终端设备可以在FDD下行频带上发送上行参考信号,或者,终端设备可以在FDD上行频带上 发送下行数据。这样,网络设备可以利用信道互异性,通过终端设备发送的上行参考信号,网络设备可以对FDD频带上的下行信道进行测量,估计出下行信道状态。这种方式有利于大规模的多输入多输出(multiple input multiple output,MIMO)布局。
2、子帧n至少用于传输上行控制信道
1)终端设备在子帧n上进行与网络设备之间的数据传输具体包括:
终端设备在所述子帧n上向所述网络设备发送承载于上行控制信道的HARQ应答信息,所述HARQ应答信息用于指示所述终端设备在子帧(n-k)上接收的下行数据的接收状态,其中,k为正整数。HARQ应答信息包括正确应答(acknowledgement,ACK),错误应答(non-acknowledgement,NACK),不连续传输(discontinuous transmission,DTX)。其中,ACK表示下行数据接收正确,NACK表示下行数据接收错误,DTX表示没有接收到下行数据。
可选的,子帧n和子帧(n-k)可以位于相同类型的频带,例如,子帧n和子帧(n-k)均位于TDD频带,或者,均位于FDD上行频带,或者,均位于FDD下行频带。需要说明的是,即使子帧n和子帧(n-k)位于同种类型的频带,也可以是占用不用的载波,即下行数据和HARQ应答信息位于不同的载波。
可选的,子帧n和子帧(n-k)位于不同类型的频带。例如,子帧n位于FDD上行频带,子帧(n-k)位于FDD下行频带;又如,子帧n位于FDD下行频带,子帧(n-k)位于FDD上行频带;又如,子帧n位于TDD频带,子帧(n-k)位于FDD上行频带,或者子帧(n-k)位于FDD下行频带;又如,子帧n位于FDD上行频带,或者子帧n位于FDD下行频带,子帧(n-k)位于TDD频带。
以上k为正整数,并且对于FDD上行频带、FDD下行频带和TDD频带所述k的取值相同。也就是说,FDD频带和TDD频带的HARQ定时是相同的。这使得通信系统的设计趋于统一,降低了通信系统的复杂度。
可选的,当k=1时,HARQ反馈速度最快,可以降低通信的时延。
通过具体举例进一步阐述:
为了达到不同帧结构下的HARQ定时和调度定时相同,可以采用如图14的帧结构设计:
对于帧结构1,子帧(n-1)在时域上从前到后依次用于传输下行参考信号、下行控制信道、上行参考信号、上行控制信道、以及下行数据信道,GP配置于下行控制信道和上行参考信号之间;子帧n在时域上从前到后依次用于传输下行参考信号、下行控制信道、上行参考信号、上行控制信道、以及上行数据信道,GP配置于下行控制信道和上行参考信号之间。帧结构1下的调度定时和HARQ定时包括以下定时中的至少一种:子帧(n-1)上的下行控制信道可以用于调度子帧(n-1)上的下行数据信道;子帧n上的上行控制信道可以用于承载HARQ应答信息,该HARQ应答信息用于指示所述终端设备在子帧(n-1)上接收的下行数据的接收状态;子帧n上的下行控制信道可以用于调度子帧n上的上行数据信道。需要说明的是,虽然图14中的子帧(n-1)和子帧n位于同一载波,但是 子帧(n-1)和子帧n也可以位于不同载波,本实施例不做限制。
帧结构2和3可以搭配使用。其中,帧结构为2的子帧和帧结构为3的子帧位于不同的载波。对于帧结构2,子帧n和子帧(n-1)在时域上从前到后依次用于传输下行参考信道、下行控制信道、以及下行数据信道。对于帧结构3,子帧n和子帧子帧(n-1)在时域上从前到后依次用于传输上行参考信道、上行控制信道、以及上行数据信道。帧结构2和3下的调度定时和HARQ定时包括以下定时中的至少一种:第一载波上的子帧(n-1)上的下行控制信道可以用于调度第一载波上的子帧(n-1)上的下行数据信道;第二载波上的子帧n的上行控制信道可以用于承载HARQ应答信息,该HARQ应答信息用于指示第一载波上的子帧(n-1)上接收的下行数据的接收状态;第一载波上的子帧n上的下行控制信道可以用于调度第二载波上的子帧n上的上行数据信道。第一载波和第二载波位于不同的载波频率。第一载波和第二载波可以位于相同的频带,也可以位于不同的频带。
进一步的,第二载波上的定时滞后于第一载波上的定时,也就是第二载波上的子帧n的起始时刻晚于第一载波上的子帧n的起始时刻,两者相差一个时间偏移量T。这样,终端设备就有足够的处理时间对下行数据进行译码并生成HARQ应答信息。作为一种实现方式,该时间偏移量T等于帧结构1中的下行参考信号,下行控制信道和GP占用的总时间。通过定时的滞后,不同帧结构下的HARQ时序可以实现完全的一致。如图14所示,可以看到通过定时的滞后,实现了帧结构1中的子帧n的上行控制信道和帧结构3中的子帧n的上行控制信道在时域是完全对齐的,使得通信系统的设计完全统一。
当然,为了实现这种完全的统一,除了改变第二载波上子帧的定时之外,还可以对第二载波上的子帧采用帧结构4的设计。如图15所示,第二载波上的子帧(n-1),子帧n和子帧(n+1)在时域上从前到后依次用于传输第一上行数据信道、上行参考信号、上行控制信道、以及第二上行数据信道,也即将上行数据信道分为第一上行数据信道和第二上行数据信道两部分,分布在上行参考信号和上行控制信道两侧。这样,实现了帧结构1中的子帧n的上行控制信道和帧结构4中的子帧n的上行控制信道在时域上完全的对齐。另外,第一载波上子帧n上的下行控制信道可以用于调度第二载波上子帧n上的第二上行数据信道和子帧(n+1)上的第一上行数据信道。其它的具体实现方式同图14实施例。
可选的,以上帧结构1应用于TDD频带;帧结构2应用于FDD下行频带,即第一载波位于FDD下行频带;帧结构3和/或4应用于FDD上行频带,即第二载波位于FDD上行频带。这样,终端设备不管是在TDD频带,还是FDD频带,都可以使用相同的HARQ定时或调度定时。
2)终端设备在子帧n上进行与网络设备之间的数据传输具体包括:
终端设备在子帧n上向网络设备发送承载于上行控制信道或上行数据信道的CSI。对于FDD上行频带、FDD下行频带和TDD频带,所述CSI上报周期参数均相同。
现有技术中,由于FDD频带和TDD频带使用不同的帧结构,因此CSI的上报周期是根据不同的频带(FDD频带或者TDD频带)分别配置的,彼此并不相同。而本发明实施例中,FDD频带和TDD频带上的任一子帧都可以按需配置至少用于传输上行控制信道,因此能够实现对于FDD上行频带、FDD下行频带和TDD频带,所述CSI上报周期参数均相同。
作为一种实现方式,当时域上,每个子帧都至少用于传输上行控制信道时,CSI的上报周期可以是一个子帧的长度,这样,网络设备可以通过终端设备发送的CSI及时获知最新的信道状态信息,以便配置准确的下行调度信息。
3、子帧n至少用于传输上行数据信道。
终端设备在所述子帧n上进行与网络设备之间的数据传输,包括:终端设备在所述子帧n上向所述网络设备发送上行数据信道(即发送承载于上行数据信道的上行数据),该上行数据是根据所述终端设备在子帧(n-k)上接收的上行调度信息发送的。
在303之前,该方法还可以包括:
网络设备在子帧(n-k)上发送上行调度信息,所述上行调度信息用于指示所述终端设备在所述子帧n上发送上行数据。
子帧n和子帧(n-k)可以位于相同类型的频带,或者位于不同类型的频带,具体参见上文中相关描述。k为≥0的整数,并且对于FDD上行频带、FDD下行频带和TDD频带所述k的取值相同。也就是说,FDD频带和TDD频带的上行数据调度时延是相同的。这使得通信系统的设计趋于统一,降低了通信系统的复杂度。
可选的,当k=0时,可以实现最短的上行数据调度时延。此时,若采用图15中的帧结构2和4,那么,第一载波上子帧n上的下行控制信道可以用于调度第二载波上子帧n上的第二上行数据信道和子帧(n+1)上的第一上行数据信道。也就是说,终端设备可以根据该上行调度信息向网络设备发送子帧n上的第二上行数据信道和子帧(n+1)上的第一上行数据信道。
4、子帧n至少用于传输下行数据信道
终端设备在子帧n上进行与网络设备之间的数据传输具体包括:
终端设备在所述子帧n上接收网络设备发送的的下行数据信道(即承载于下行数据信道的下行数据)。
作为一种实现方式,所述子帧还用于传输下行控制信道,终端设备在子帧n上进行与网络设备之间的数据传输还包括:
终端设备在所述子帧n的下行控制信道上接收网络设备发送的下行调度信息,该下行调度信息用于调度子帧n上所述下行数据信道中的下行数据;此时,终端设备根据所述下行调度信息,在所述子帧n的下行数据信道上接收网络设备发送的下行数据。这种实现方式实现了下行数据的最快调度。
本发明实施例所提供的技术方案,网络设备确定子帧n上存在的信道和/或信号,终端设备通过获取该子帧n上存在的信道和/或信号,在子帧n上实现和 网络设备之间的数据传输。其中,该子帧n上存在的信道和/或信号使得FDD频带和TDD频带上能够使用同一种双工方式,使得通信系统的设计统一化。相对于现有技术,终端设备无需区分不同双工方式并根据不同的双工方式进行通信,从而简化了通信系统的设计,提高了通信效率。
图16为本发明实施例提供的一种数据传输方法的流程图。该方法可以应用于图1所示的应用场景中,该方法包括:
1601、网络设备确定子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种。
1602、终端读取预定义的配置信息,所述配置信息指示子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种。
1603、终端设备根据所述配置信息,在子帧n上进行与网络设备之间的数据传输。
本发明实施例中,终端获取配置信息的方式和图3发明实施例有所不同,是通过预定义的方式获取的,例如,可以将事先确定好的配置信息存储在终端的存储器中,由终端在需要的时刻获取。当然,需要保证网络设备侧和终端设备侧在同一频带的同一载波上的同一子帧对应一致,也即,同一频带的同一载波上的同一子帧的帧结构是相同的。本发明实施例的其它实现方式和图3实施例相同,可以参照,此处不再赘述。
本发明各个实施例提供的技术方案所应用的通信系统采用透明双工,所述透明双工指无需区分FDD和TDD的双工方式。所述透明双工指无需区分FDD和TDD的双工方式。所述透明双工对于FDD上行频带,FDD下行频带和TDD频带均适用,也就是FDD上行频带、FDD下行频带和TDD频带均使用透明双工的双工方式。
现有技术中,终端设备通过检测同步信号,获知当前的双工方式是TDD还是FDD。采用透明双工后,不用再区分TDD频带和FDD下行频带上的同步信号。也就是,同步信号的结构不用于标识FDD和TDD。因此,终端设备所检测的同步信号的时域资源位置对于FDD上行频带、FDD下行频带和TDD频带可以相同,也即不需要通过同步信号的资源位置来区分系统所使用的双工方式。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端设备,网络设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图17示出了上述实施例中所涉及的终端设备的一种可能的设计结构的简化示意图。所述终端包括发射器1701,接收器1702,控制器/处理器1703,存储器1704和调制解调处理器1705。
发射器1701调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的网络设备。在下行链路上,天线接收上述实施例中接入网设备发射的下行链路信号。接收器1702调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器1705中,编码器1706接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1707进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器1709处理(例如,解调)该输入采样并提供符号估计。解码器1708处理(例如,解交织和解码)该符号估计并提供发送给终端的已解码的数据和信令消息。编码器1706、调制器1707、解调器1709和解码器1708可以由合成的调制解调处理器1705来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
控制器/处理器1703对终端设备的动作进行控制管理,用于执行上述实施例中由终端设备进行的处理,并控制发射器1701以及接收器1702完成图3和图16中终端设备所执行的动作。存储器1704用于存储用于终端设备的程序代码和数据。
图18示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。
网络设备包括发射器/接收器1801,控制器/处理器1802,存储器1803以及通信单元1804。所述发射器/接收器1801用于支持网络设备与上述实施例中的所述的终端设备之间收发信息,以及支持所述终端设备与其他终端设备之间进行无线电通信。所述控制器/处理器1802执行各种用于与终端通信的功能。在上行链路,来自所述终端设备的上行链路信号经由天线接收,由接收器1801进行调解,并进一步由控制器/处理器1802进行处理来恢复终端所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器1802进行处理,并由发射器1801进行调解来产生下行链路信号,并经由天线发射给终端设备。控制器/处理器1802还执行图3和图16中涉及网络设备的处理过程和/或用于本申请所描述的技术的其他过程。存储器1803用于存储网络设备的程序代码和数据。通信单元1804用于支持网络设备与其他网络设备进行通信。
可以理解的是,图18仅仅示出了网络设备的简化设计。在实际应用中,网络设备可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明的接入网设备都在本发明的保护范围之内。
图19为本发明实施例提供的网络设备1900,网络设备1900可以包括处理单元1910和收发单元1920。其中,处理单元1910能够实现图18中网络设备的控制器/处理器1802的功能;收发单元1920能够实现图18中网络设备的发射器/接收器1801的功能。
图20为本发明实施例提供的终端设备2000,终端设备2000可以包括处理单元2010和收发单元2020。其中,处理单元2010能够实现图17中终端设备的控制器/处理器1703的功能;收发单元2020能够实现图17中终端的发射器1701以及接收器1702的功能。
本领域技术人员还可以了解到本发明实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。为清楚展示硬件和软件的可替换性(interchangeability),上述的各种说明性部件(illustrative components)和步骤已经通用地描述了它们的功能。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本发明实施例保护的范围。
本发明实施例中所描述的各种说明性的逻辑块,模块和电路可以通过通用处理单元,数字信号处理单元,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理单元可以为微处理单元,可选地,该通用处理单元也可以为任何传统的处理单元、控制器、微控制器或状态机。处理单元也可以通过计算装置的组合来实现,例如数字信号处理单元和微处理单元,多个微处理单元,一个或多个微处理单元联合一个数字信号处理单元核,或任何其它类似的配置来实现。
本发明实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理单元执行的软件模块、或者这两者的结合。软件模块可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理单元连接,以使得处理单元可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理单元中。处理单元和存储媒介可以配置于ASIC中,ASIC可以配置于用户终端中。可选地,处理单元和存储媒介也可以配置于用户终端中的不同的部件中。
在一个或多个示例性的设计中,本发明实施例所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理单元读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等 无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、DVD、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本发明说明书的上述描述可以使得本领域技术任何可以利用或实现本发明的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本发明所描述的基本原则可以应用到其它变形中而不偏离本发明的发明本质和范围。因此,本发明所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本发明原则和所公开的新特征一致的最大范围。

Claims (36)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    终端设备获取配置信息,所述配置信息指示子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种;
    所述终端设备根据所述配置信息,在所述子帧n上进行与网络设备之间的数据传输。
  2. 如权利要求1所述的方法,其特征在于,所述终端设备获取配置信息,包括:
    所述终端设备读取预定义的所述配置信息;或者,
    所述终端接收所述网络设备通过高层信令或者物理层信令发送的所述配置信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述子帧n至少用于传输所述上行参考信号;
    所述终端设备在所述子帧n上进行与网络设备之间的数据传输,包括:
    所述终端设备在所述子帧n上向所述网络设备发送所述上行参考信号,所述上行参考信号用于下行信道测量;
    所述方法还包括:
    所述终端设备接收所述网络设备根据下行信道测量的结果配置的下行调度信息,所述下行调度信息用于指示所述终端设备在子帧(n+k)上接收所述网络设备发送的下行数据;
    所述终端设备根据所述下行调度信息,在子帧(n+k)上接收所述网络设备发送的下行数据;
    其中,k为正整数,所述子帧n和所述子帧(n+k)均位于FDD上行频带或者FDD下行频带。
  4. 如权利要求1或者2所述的方法,其特征在于,所述子帧n至少用于传输所述上行控制信道;
    所述终端设备在所述子帧n上进行与网络设备之间的数据传输,包括:
    所述终端设备在所述子帧n上向所述网络设备发送承载于所述上行控制信道的混合自动重传请求HARQ应答信息,所述HARQ应答信息用于指示所述终端设备在子帧(n-k)上接收的下行数据的接收状态;
    其中,所述k为正整数且对于FDD上行频带、FDD下行频带和TDD频带所述k的取值相同。
  5. 如权利要求4所述的方法,其特征在于,所述配置信息为第一配置信息,所述下行数据信道为第一下行数据信道、所述上行数据信道为第一上行数据信道、所述下行控制信道为第一上行数据信道、所述上行控制信道为第一上行控制信道、所述下行参考信号为第一下行参考信号、所述上行参考信号为第一上行参考信号;所述第一配置信息指示所述子帧n用于传输所述第一上行参考信道、所 述第一上行控制信道、以及所述第一上行数据信道;
    所述子帧n在时域上依次用于传输所述第一上行参考信道、所述第一上行控制信道、以及所述第一上行数据信道;
    所述k等于1,所述子帧(n-k)为子帧(n-1);所述方法还包括:
    所述终端设备获取第二配置信息,所述第二配置信息指示子帧(n-1)用于传输所述第二下行参考信道、所述第二下行控制信道、以及所述第二下行数据信道;
    所述子帧(n-1)在时域上从前到后依次用于传输所述第二下行参考信道,所述第二下行控制信道,以及所述第二下行数据信道;
    其中,所述子帧(n-1)位于第一载波,所述子帧n位于第二载波,所述第二载波上的定时滞后于所述第一载波上的定时。
  6. 如权利要求1或者2所述的方法,其特征在于,所述子帧n至少用于传输所述上行数据信道;
    所述终端设备在所述子帧n上进行与网络设备之间的数据传输,包括:
    所述终端设备根据在子帧(n-k)上接收的上行调度信息,在所述子帧n上向所述网络设备发送承载于上行数据信道的上行数据;
    其中,所述k为≥0的整数且对于FDD上行频带、FDD下行频带和TDD频带所述k的取值相同。
  7. 如权利要求1或者2所述的方法,其特征在于,
    所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、所述上行控制信道、以及所述上行数据信道,其中保护间隔GP配置于所述下行控制信道和所述上行参考信号之间;或者,
    所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、所述上行控制信道、以及所述下行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,
    所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、以及所述上行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,
    所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、以及所述下行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,
    所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述下行数据信道、以及所述上行参考信号,其中保护间隔GP配置于所述下行数据信道和所述上行参考信号之间。
  8. 如权利要求1-7任一所述的方法,其特征在于,所述终端设备所检测的同步信号的时域资源位置对于FDD上行频带、FDD下行频带和TDD频带均相同。
  9. 如权利要求1-8任一所述的方法,其特征在于,所述方法所应用的通信 系统使用透明双工的双工方式,所述透明双工指无需区分FDD和TDD的双工方式。
  10. 一种数据传输的方法,其特征在于,所述方法包括:
    网络设备确定子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种;
    所述网络设备在所述子帧n上进行与终端设备之间的数据传输。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述确定,通过高层信令或者物理层信令向所述终端设备发送配置信息,所述配置信息指示所述子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种。
  12. 如权利要求10或者11所述的方法,其特征在于,所述子帧n至少用于传输所述上行参考信号;
    所述网络设备在所述子帧n上进行与终端设备之间的数据传输,包括:
    所述网络设备在所述子帧n上接收所述终端设备发送的所述上行参考信号;
    所述方法还包括:
    所述网络设备根据所述上行参考信号进行下行信道测量;
    所述网络设备根据所述下行信道测量结果向所述终端设备发送下行调度信息,所述下行调度信息用于指示所述网络设备在子帧(n+k)上向所述终端设备发送下行数据;
    所述网络设备在所述子帧(n+k)上向所述终端设备发送下行数据;
    其中,k为正整数,所述子帧n和所述子帧(n+k)均位于FDD上行频带或者FDD下行频带。
  13. 如权利要求10或者11所述的方法,其特征在于,所述子帧n至少用于传输所述上行控制信道;
    所述网络设备在所述子帧n上进行与终端设备之间的数据传输,包括:
    所述网络设备在所述子帧n上接收承载于所述上行控制信道上的混合自动重传请求HARQ应答信息,所述HARQ应答信息用于指示所述网络设备在所述子帧(n-k)上发送的下行数据的接收状态;
    其中,所述k为正整数且对于FDD上行频带、FDD下行频带和TDD频带所述k的取值相同。
  14. 如权利要求13所述的方法,其特征在于,
    所述下行数据信道为第一下行数据信道、所述上行数据信道为第一上行数据信道、所述下行控制信道为第一上行数据信道、所述上行控制信道为第一上行控制信道、所述下行参考信号为第一下行参考信号,所述上行参考信号为第一上行参考信号;所述网络设备确定所述子帧n在时域上从前到后依次用于传输所述第一上行参考信道、所述第一上行控制信道、以及所述第一上行数据信道;
    所述k等于1,所述子帧(n-k)为子帧(n-1);所述方法还包括:
    所述网络设备确定子帧(n-1)在时域上从前到后依次用于传输第二下行参考信道、第二下行控制信道、以及第二下行数据信道;
    其中,所述子帧(n-1)位于第一载波,所述子帧n位于第二载波,所述第二载波上的定时滞后于所述第一载波上的定时。
  15. 如权利要求10或者11所述的方法,其特征在于,所述子帧n至少用于传输所述上行数据信道;
    所述方法还包括:
    所述网络设备在子帧(n-k)上发送上行调度信息,所述上行调度信息用于指示所述终端设备在所述子帧n上发送上行数据;
    所述网络设备在所述子帧n上进行与终端设备之间的数据传输,包括:
    所述网络设备在所述子帧n上接收所述终端设备发送的承载于所述上行数据信道的上行数据;
    其中,所述k为≥0的整数且对于FDD上行频带、FDD下行频带和TDD频带所述k的取值相同。
  16. 如权利要求10或者11所述的方法,其特征在于,
    所述网络设备进一步确定所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、所述上行控制信道、以及所述上行数据信道;保护间隔GP位于所述下行控制信道和所述上行参考信号之间;或者,
    所述网络设备进一步确定所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、所述上行控制信道、以及所述下行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,
    所述网络设备进一步确定所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、以及所述上行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,
    所述网络设备进一步确定所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、以及所述下行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,
    所述网络设备进一步确定所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述下行数据信道、以及所述上行参考信号,其中保护间隔GP配置于所述下行数据信道和所述上行参考信号之间。
  17. 如权利要求10-16任一所述的方法,其特征在于,所述网络设备发送的同步信号的时域资源位置对于FDD上行频带、FDD下行频带和TTD频带均相同。
  18. 如权利要求10-17任一所述的方法,其特征在于,所述方法所应用的通信系统使用透明双工的双工方式,所述透明双工指无需区分FDD和TDD的双工方式。
  19. 一种终端设备,其特征在于,包括:
    处理单元,用于获取配置信息,所述配置信息指示子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种;
    收发单元,用于根据所述配置信息,在所述子帧n上进行与网络设备之间的数据传输。
  20. 如权利要求19所述的终端设备,所述处理单元用于获取配置信息,包括:
    读取预定义的所述配置信息;或者,
    读取所述网络设备通过高层信令或者物理层信令发送的所述配置信息。
  21. 如权利要求19或者20所述的终端设备,其特征在于,所述子帧n至少用于传输所述上行参考信号;
    所述收发单元用于根据所述配置信息,在所述子帧n上进行与网络设备之间的数据传输,包括:在所述子帧n上向所述网络设备发送所述上行参考信号,所述上行参考信号用于下行信道测量;
    所述收发单元还用于,接收所述网络设备根据下行信道测量的结果配置的下行调度信息,所述下行调度信息用于指示所述终端设备在子帧(n+k)上接收所述网络设备发送的下行数据;根据所述下行调度信息,在子帧(n+k)上接收所述网络设备发送的下行数据;
    其中,k为正整数,所述子帧n和所述子帧(n+k)均位于FDD上行频带或者FDD下行频带。
  22. 如权利要求19或者20所述的终端设备,其特征在于,所述子帧n至少用于传输所述上行控制信道;
    所述收发单元用于根据所述配置信息,在所述子帧n上进行与网络设备之间的数据传输,包括:在所述子帧n上向所述网络设备发送承载于所述上行控制信道的混合自动重传请求HARQ应答信息,所述HARQ应答信息用于指示所述终端设备在子帧(n-k)上接收的下行数据的接收状态;
    其中,所述k为正整数且对于FDD上行频带、FDD下行频带和TDD频带所述k的取值相同。
  23. 如权利要求22所述的终端设备,其特征在于,所述配置信息为第一配置信息,所述下行数据信道为第一下行数据信道、所述上行数据信道为第一上行数据信道、所述下行控制信道为第一上行数据信道、所述上行控制信道为第一上行控制信道、所述下行参考信号为第一下行参考信号、所述上行参考信号为第一上行参考信号;所述第一配置信息指示所述子帧n用于传输所述第一上行参考信道,所述第一上行控制信道,以及所述第一上行数据信道;
    所述子帧n在时域上依次用于传输所述第一上行参考信道、所述第一上行控制信道、以及所述第一上行数据信道;
    所述k等于1,所述子帧(n-k)为子帧(n-1);所述处理单元还用于,获取 第二配置信息,所述第二配置信息指示子帧(n-1)用于传输所述第二下行参考信道、所述第二下行控制信道、以及所述第二下行数据信道;
    所述子帧(n-1)在时域上从前到后依次用于传输所述第二下行参考信道、所述第二下行控制信道、以及所述第二下行数据信道;
    其中,所述子帧(n-1)位于第一载波,所述子帧n位于第二载波,所述第二载波上的定时滞后于所述第一载波上的定时。
  24. 如权利要求19或者20所述的终端设备,其特征在于,所述子帧n至少用于传输所述上行数据信道;
    所述收发单元用于在所述子帧n上进行与网络设备之间的数据传输,包括:根据在子帧(n-k)上接收的上行调度信息,在所述子帧n上向所述网络设备发送承载于上行数据信道的上行数据;
    其中,所述k为≥0的整数且对于FDD上行频带、FDD下行频带和TDD频带所述k的取值相同。
  25. 如权利要求19或者20所述的终端设备,其特征在于,
    所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、所述上行控制信道、以及所述上行数据信道,其中保护间隔GP配置于所述下行控制信道和所述上行参考信号之间;或者,
    所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、所述上行控制信道、以及所述下行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,
    所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、以及所述上行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,
    所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、以及所述下行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,
    所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述下行数据信道、以及所述上行参考信号,其中保护间隔GP配置于所述下行数据信道和所述上行参考信号之间。
  26. 如权利要求19-25任一所述的终端设备,其特征在于,所述终端设备所检测的同步信号的时域资源位置对于FDD上行频带、FDD下行频带和TDD频带均相同。
  27. 如权利要求19-26任一所述的终端设备,其特征在于,所述终端设备所应用的通信系统使用透明双工的双工方式,所述透明双工指无需区分FDD和TDD的双工方式。
  28. 一种网络设备,其特征在于,包括:
    处理单元,用于确定子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种;
    收发单元,用于在所述子帧n上进行与终端设备之间的数据传输。
  29. 如权利要求28所述的网络设备,其特征在于,所述收发单元还用于,根据所述处理单元的所述确定,通过高层信令或者物理层信令向所述终端设备发送配置信息,所述配置信息指示所述子帧n用于传输下行数据信道、上行数据信道、下行控制信道、上行控制信道、下行参考信号和上行参考信号中的至少一种。
  30. 如权利要求28或者29所述的网络设备,其特征在于,所述子帧n至少用于传输所述上行参考信号;
    所述收发单元用于在所述子帧n上进行与终端设备之间的数据传输,包括:在所述子帧n上接收所述终端设备发送的所述上行参考信号;
    所述处理单元还用于,根据所述上行参考信号进行下行信道测量;
    所述收发单元还用于,根据所述下行信道测量结果向所述终端设备发送下行调度信息,所述下行调度信息用于指示所述网络设备在子帧(n+k)上向所述终端设备发送下行数据;在所述子帧(n+k)上向所述终端设备发送下行数据;
    其中,k为正整数,所述子帧n和所述子帧(n+k)均位于FDD上行频带或者FDD下行频带。
  31. 如权利要求28或者29所述的网络设备,其特征在于,所述子帧n至少用于传输所述上行控制信道;
    所述收发单元用于在所述子帧n上进行与终端设备之间的数据传输,包括:在所述子帧n上接收承载于所述上行控制信道上的混合自动重传请求HARQ应答信息,所述HARQ应答信息用于指示所述网络设备在所述子帧(n-k)上发送的下行数据的接收状态;
    其中,所述k为正整数且对于FDD上行频带、FDD下行频带和TDD频带所述k的取值相同。
  32. 如权利要求31所述的网络设备,其特征在于,所述下行数据信道为第一下行数据信道、所述上行数据信道为第一上行数据信道、所述下行控制信道为第一上行数据信道、所述上行控制信道为第一上行控制信道、所述下行参考信号为第一下行参考信号,所述上行参考信号为第一上行参考信号;所述处理单元确定子帧n在时域上从前到后依次用于传输所述第一上行参考信道、所述第一上行控制信道、以及所述第一上行数据信道;
    所述k等于1,所述子帧(n-k)为子帧(n-1);所述处理单元还用于,确定子帧(n-1)在时域上从前到后依次用于传输第二下行参考信道、第二下行控制信道、以及第二下行数据信道;
    其中,所述子帧(n-1)位于第一载波,所述子帧n位于第二载波,所述第二载波上的定时滞后于所述第一载波上的定时。
  33. 如权利要求28或者29所述的网络设备,其特征在于,所述子帧n至少用于传输所述上行数据信道;
    所述收发单元还用于在子帧(n-k)上发送上行调度信息,所述上行调度信息用于指示所述终端设备在所述子帧n上发送上行数据;
    所述收发单元用于所述子帧n上进行与终端设备之间的数据传输,包括:在所述子帧n上接收所述终端设备发送的承载于所述上行数据信道的上行数据;
    其中,所述k为≥0的整数且对于FDD上行频带、FDD下行频带和TDD频带所述k的取值相同。
  34. 如权利要求28或者29所述的网络设备,其特征在于,
    所述处理单元还用于进一步确定所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、所述上行控制信道、以及所述上行数据信道;保护间隔GP位于所述下行控制信道和所述上行参考信号之间;或者,
    所述处理单元还用于进一步确定所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、所述上行控制信道、以及所述下行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,
    所述处理单元还用于进一步确定所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、以及所述上行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,
    所述处理单元还用于进一步确定所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述上行参考信号、以及所述下行数据信道,其中所述GP配置于所述下行控制信道和所述上行参考信号之间;或者,
    所述处理单元还用于进一步确定所述子帧n在时域上从前到后依次用于传输所述下行参考信号、所述下行控制信道、所述下行数据信道、以及所述上行参考信号,其中保护间隔GP配置于所述下行数据信道和所述上行参考信号之间。
  35. 如权利要求28-34任一所述的网络设备,其特征在于,所述收发单元还用于发送同步信号,其中,所述同步信号的时域资源位置对于FDD上行频带、FDD下行频带和TTD频带均相同。
  36. 如权利要求28-35任一所述的网络设备,其特征在于,所述网络设备所应用的通信系统使用透明双工的双工方式,所述透明双工指无需区分FDD和TDD的双工方式。
PCT/CN2017/080109 2016-04-19 2017-04-11 数据传输的方法、设备和系统 WO2017181874A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17785359.5A EP3435716A4 (en) 2016-04-19 2017-04-11 DATA TRANSMISSION PROCESS, DEVICE AND SYSTEM
US16/164,523 US10826674B2 (en) 2016-04-19 2018-10-18 Data transmission method, device, and system for transmitting uplink data in a wireless communication network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610244505.1 2016-04-19
CN201610244505.1A CN107306171A (zh) 2016-04-19 2016-04-19 数据传输的方法、设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/164,523 Continuation US10826674B2 (en) 2016-04-19 2018-10-18 Data transmission method, device, and system for transmitting uplink data in a wireless communication network

Publications (1)

Publication Number Publication Date
WO2017181874A1 true WO2017181874A1 (zh) 2017-10-26

Family

ID=60116570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080109 WO2017181874A1 (zh) 2016-04-19 2017-04-11 数据传输的方法、设备和系统

Country Status (4)

Country Link
US (1) US10826674B2 (zh)
EP (1) EP3435716A4 (zh)
CN (1) CN107306171A (zh)
WO (1) WO2017181874A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678118B (zh) * 2018-02-08 2019-11-21 大陸商電信科學技術研究院有限公司 資料傳輸方法、終端及基地台
TWI691220B (zh) * 2018-02-08 2020-04-11 大陸商電信科學技術研究院有限公司 一種資料傳輸方法、終端及基地台
CN113170456A (zh) * 2019-01-08 2021-07-23 华为技术有限公司 一种频分双工系统通信方法、相关设备以及系统
WO2022067851A1 (en) * 2020-10-02 2022-04-07 Apple Inc. Performing physical uplink shared channel transmissions with improved reliability
US11483823B2 (en) 2017-01-06 2022-10-25 Datang Mobile Communications Equipment Co., Ltd. Data transmission method, terminal and base station

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519031B (zh) * 2017-11-17 2020-12-25 华为技术有限公司 信息传输方法及设备
CN109951264B (zh) * 2017-12-20 2022-06-24 上海诺基亚贝尔股份有限公司 用于通信的方法、设备以及计算机可读介质
CN110034841B (zh) 2018-01-11 2021-01-12 华为技术有限公司 一种信息传输方法、装置以及计算机可读存储介质
CN110768772B (zh) * 2018-07-27 2021-08-31 华为技术有限公司 通信方法及装置
CN112514489A (zh) * 2018-07-27 2021-03-16 Oppo广东移动通信有限公司 一种传输资源确定方法及装置、终端设备
EP3925346A1 (en) * 2019-02-14 2021-12-22 Sony Group Corporation Telecommunications apparatus and methods
WO2023206089A1 (en) * 2022-04-26 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for ul reference signal transmission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104348602A (zh) * 2013-08-09 2015-02-11 北京三星通信技术研究有限公司 一种混合双工通信方法、基站及终端
WO2015119846A1 (en) * 2014-02-10 2015-08-13 Qualcomm Incorporated Handling fdd and tdd timing offset in fdd and tdd ca in lte

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877881B (zh) * 2009-04-30 2014-04-02 电信科学技术研究院 无线通信方法、系统及其装置
CN101931961A (zh) * 2009-06-23 2010-12-29 华为技术有限公司 实现中继系统回程链路控制信道传输的方法、系统和设备
CN104254989B (zh) * 2012-02-29 2017-11-10 三星电子株式会社 用于在移动通信系统中收发与支持半双工传输的终端相关的信道的方法和装置
US9357537B2 (en) * 2012-06-19 2016-05-31 Lg Electronics Inc. Method and apparatus for transmitting uplink data
CN103716841A (zh) 2012-09-29 2014-04-09 中兴通讯股份有限公司 信息传输方法及装置
WO2014161174A1 (en) * 2013-04-03 2014-10-09 Nokia Siemens Networks Oy Dynamic uplink-downlink configuration
US9510361B2 (en) * 2013-08-23 2016-11-29 Telefonaktiebolaget Lm Ericsson (Publ) Node and method for downlink scheduling and hybrid automatic repeat request timing
KR20150026736A (ko) * 2013-09-02 2015-03-11 주식회사 케이티 무선통신 시스템에서 하향 링크 제어 채널 송수신 방법 및 장치
CN105099633B (zh) * 2014-04-25 2019-08-09 北京三星通信技术研究有限公司 物理下行共享信道的传输方法及装置
WO2016037317A1 (en) * 2014-09-09 2016-03-17 Nec Corporation Method and apparatus for mitigating interference and associated computer-readable storage medium and computer program product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104348602A (zh) * 2013-08-09 2015-02-11 北京三星通信技术研究有限公司 一种混合双工通信方法、基站及终端
WO2015119846A1 (en) * 2014-02-10 2015-08-13 Qualcomm Incorporated Handling fdd and tdd timing offset in fdd and tdd ca in lte

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"LTE TDD-FDD Joint Operation-Core Part", 3GPP TSG RAN MEETIN , #61 RP-130998, 6 September 2013 (2013-09-06), XP009510052 *
See also references of EP3435716A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11483823B2 (en) 2017-01-06 2022-10-25 Datang Mobile Communications Equipment Co., Ltd. Data transmission method, terminal and base station
TWI678118B (zh) * 2018-02-08 2019-11-21 大陸商電信科學技術研究院有限公司 資料傳輸方法、終端及基地台
TWI691220B (zh) * 2018-02-08 2020-04-11 大陸商電信科學技術研究院有限公司 一種資料傳輸方法、終端及基地台
CN113170456A (zh) * 2019-01-08 2021-07-23 华为技术有限公司 一种频分双工系统通信方法、相关设备以及系统
CN113170456B (zh) * 2019-01-08 2022-12-27 华为技术有限公司 一种频分双工系统通信方法、相关设备以及系统
WO2022067851A1 (en) * 2020-10-02 2022-04-07 Apple Inc. Performing physical uplink shared channel transmissions with improved reliability
US11909677B2 (en) 2020-10-02 2024-02-20 Apple Inc. Performing physical uplink shared channel transmissions with improved reliability

Also Published As

Publication number Publication date
US10826674B2 (en) 2020-11-03
CN107306171A (zh) 2017-10-31
EP3435716A1 (en) 2019-01-30
US20190052447A1 (en) 2019-02-14
EP3435716A4 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
WO2017181874A1 (zh) 数据传输的方法、设备和系统
US10516460B2 (en) Method and apparatus for transmitting and receiving wireless signal in wireless communication system
KR101789460B1 (ko) Fdd 반이중 통신에서 pdcch 모니터링 방법 및 그 단말
JP6728214B2 (ja) 低レイテンシ通信のための動的送信時間間隔スケジューリングの管理
CN111245561B (zh) 一种处理灵活子帧的上下行传输的方法和设备
JP6360202B2 (ja) 無線リソースの用途変更を支援する無線通信システムにおける信号の有効性判断方法及びそのための装置
TWI690233B (zh) 傳送和接收參考信號的方法及裝置
JP2019097214A (ja) 通信装置、通信方法、基地局およびプログラム
WO2017134954A1 (ja) 端末装置、基地局装置および通信方法
US20130136109A1 (en) Storage and Assignment of Control Timing Configurations in a Multiple Cell Communications Network
CN112491527B (zh) 无线通信系统中发送信号的方法和装置
TW201412166A (zh) 方法及設備
JP6439883B2 (ja) 端末装置、基地局装置および通信方法
JP7170799B2 (ja) 無線通信システムにおいて下りリンク信号を受信する方法及びそのための装置
CN101931862A (zh) 定位信息发送方法及其装置
WO2017130500A1 (ja) 端末装置、基地局装置および通信方法
CN104995979A (zh) 终端装置、基站装置、通信方法以及集成电路
WO2019126983A1 (zh) 一种数据传输方法及装置、计算机存储介质
CN111096037B (zh) 发送和接收下行链路数据的方法及其设备
WO2017128296A1 (zh) 一种参考信号的传输方法、装置和系统
CN106937383B (zh) 确定缩短子帧调度的方法及设备
WO2017036328A1 (zh) 发送、接收低时延业务的配置信息的方法和装置
WO2017005131A1 (zh) 一种物理信道传输方法及设备
JP2018529263A (ja) ダウンリンク情報処理方法、ユーザ機器、基地局、及び通信システム
EP2651068A1 (en) Method of handling HARQ feedback and related communication device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017785359

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017785359

Country of ref document: EP

Effective date: 20181022

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785359

Country of ref document: EP

Kind code of ref document: A1