WO2017005131A1 - 一种物理信道传输方法及设备 - Google Patents

一种物理信道传输方法及设备 Download PDF

Info

Publication number
WO2017005131A1
WO2017005131A1 PCT/CN2016/087836 CN2016087836W WO2017005131A1 WO 2017005131 A1 WO2017005131 A1 WO 2017005131A1 CN 2016087836 W CN2016087836 W CN 2016087836W WO 2017005131 A1 WO2017005131 A1 WO 2017005131A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
uplink subframe
uplink
pucch
terminal device
Prior art date
Application number
PCT/CN2016/087836
Other languages
English (en)
French (fr)
Inventor
林亚男
潘学明
司倩倩
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2017005131A1 publication Critical patent/WO2017005131A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a physical channel transmission method and device.
  • the frame structure type 1 is used in the LTE (Long Term Evolution) FDD (Frequency Division Dual) system, and the frame structure is as shown in FIG. 1.
  • LTE Long Term Evolution
  • FDD Frequency Division Dual
  • the uplink and downlink transmissions use different carrier frequencies, but both the uplink and downlink transmissions use the same frame structure.
  • each 10 millisecond (ms) radio frame contains 10 1 ms subframes, each subframe being divided into two slots, each slot being 0.5 ms.
  • the TTI (Transmission Time Interval) for uplink and downlink data transmission is 1 ms.
  • the frame structure type 2 is used in the LTE TDD (Time Division Duplex) system, and the frame structure is as shown in FIG. 2.
  • LTE TDD Time Division Duplex
  • uplink and downlink transmissions use different subframes or different time slots on the same frequency, and each 10 ms radio frame consists of two 5 ms half frames, each of which contains five subframes of 1 ms length.
  • a radio frame includes three types of sub-frames: a downlink sub-frame, an uplink sub-frame, and a special sub-frame, and each special sub-frame consists of a downlink part DwPTS (Downlink Pilot Time Slot) and an idle part GP ( The Guard Period (protection interval) and the uplink part UpPTS (Uplink Pilot Time Slot), wherein the DwPTS can transmit downlink pilot, downlink service data, and downlink control signaling; the GP does not transmit any signal; UpPTS Only the random access signal and the uplink pilot signal are transmitted, and the uplink service data or the uplink control signaling cannot be transmitted.
  • Each field includes at least one downlink subframe and at least one uplink subframe, and includes at most one special subframe.
  • the user plane delay (referred to as U-plane delay) of the LTE system is processed by the base station (eNB), the frame alignment time, the TTI time, and the terminal equipment UE (User Equipment, user).
  • the processing time of the device is composed of four parts, wherein the frame alignment time refers to a waiting time between when the service arrives and when the service can obtain the transmission opportunity of the air interface subframe.
  • the frame alignment time is 0.5 ms on average, and the base station processing time is 1 ms in the downlink and 1.5 ms in the uplink; the processing time of the terminal device is It is 1ms in the uplink and 1.5ms in the downlink.
  • the LTE FDD downlink U-plane delay base station processing time 1 ms + frame alignment time 0.5 ms + TTI time 1 ms + terminal without considering HARQ (Hybrid Automatic Repeat Request) retransmission
  • the processing time of the device is 1.5ms, a total of 4ms.
  • the uplink U-plane delay is also 4 ms.
  • the U-plane delay of the LTE TDD system is also composed of the base station processing time, frame alignment time, TTI time, and terminal device processing time, as shown in Figure 4.
  • the base station processing time is 1 ms in the downlink and 1.5 in the uplink. Ms; terminal device processing time is 1 ms in the uplink and 1.5 ms in the downlink.
  • the TTI time is 1 ms the same as the FDD, and the frame alignment time t FA is related to the time when the service arrives and the UL (Uplink)-DL (Downlink) configuration used by the system.
  • the UL-DL configuration #5 of the frame structure type 2 of the TDD system shown in FIG. 5 is an example.
  • the base station finishes the processing at the transmitting end in subframe #1, it can be transmitted at the earliest subframe #3, and then transmitted to the air interface.
  • the frame alignment time of the frame is 1.5 ms, and the frame alignment time of the remaining subframes is 0.5 ms on average, and the average value of the frame alignment time of the downlink data is 0.6 ms.
  • the downlink U-plane delay of UL-DL configuration #5 is 4.1 ms.
  • one of the main methods for shortening the user plane delay performance is to reduce the length of the TTI, for example, shortening the TTI to 0.5 ms.
  • the uplink control channel corresponds to different length TTIs, and the uplink control channel is used. There is no solution for how to transfer.
  • the embodiments of the present invention provide a physical channel transmission method and device, which are used to provide a solution for how an uplink control channel is transmitted when an uplink traffic channel corresponds to a different length TTI.
  • a physical channel transmission method including:
  • the base station receives the PUSCH by using a part of the time domain resource of the uplink subframe, and receives the PUCCH by using the uplink subframe, where each PUCCH is transmitted by using all time domain resources of the uplink subframe, or each The PUCCH passes the resource transmission that is not used to transmit the sounding signal SRS in all time domain resources of the uplink subframe.
  • the TTI of the PUSCH occupies one or more consecutive single carrier frequency division multiple access SC-FDMA symbols in the uplink subframe.
  • the uplink subframe belongs to a subframe set ⁇ 2, 7 ⁇ or ⁇ 2 ⁇ , wherein one radio frame is composed of 10 subframes, respectively, is subframe 0.
  • subframe 9 To subframe 9;
  • the uplink subframe belongs to a subframe set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ or ⁇ 2, 3, 4 , 7, 8, 9 ⁇ or ⁇ 2, 3, 7, 8 ⁇ or ⁇ 2, 7 ⁇ or ⁇ 2, 3, 4 ⁇ or ⁇ 2, 3 ⁇ or ⁇ 2 ⁇ or ⁇ 2, 3, 4, 7 , 8 ⁇ , wherein one radio frame is composed of 10 subframes, which are subframe 0 to subframe 9, respectively.
  • the method further includes:
  • the base station determines the subframe set and notifies the terminal set to the terminal device.
  • the base station receives the same transmit power of the PUCCH on different time domain resources of the uplink subframe.
  • a physical channel transmission method including:
  • the terminal device determines that the transmission time interval TTI of the PUSCH transmitted by the uplink subframe is less than or equal to one. Half the length of a sub-frame;
  • the TTI of the PUSCH occupies one or more consecutive single carrier frequency division multiple access SC-FDMA symbols of the uplink subframe.
  • the method before the sending, by the terminal device, the PUCCH signal by using the uplink subframe, the method includes:
  • the terminal device selects one subframe from the subframe set as the uplink subframe
  • the subframe set is ⁇ 2, 7 ⁇ or ⁇ 2 ⁇
  • the radio frame is composed of 10 subframes, which are subframe 0 to subframe 9, respectively. ;
  • the subframe set is ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ or ⁇ 2, 3, 4, 7, 8,9 ⁇ or ⁇ 2,3,7,8 ⁇ or ⁇ 2,7 ⁇ or ⁇ 2,3,4 ⁇ or ⁇ 2,3 ⁇ or ⁇ 2 ⁇ or ⁇ 2,3,4,7,8 ⁇
  • one radio frame is composed of 10 subframes, which are subframe 0 to subframe 9, respectively.
  • the method further includes:
  • the terminal device Before the uplink communication, the terminal device acquires the subframe set notified by the base station.
  • the terminal device sends the PUCCH by using the uplink subframe, and further includes:
  • the terminal device determines that the transmit power of the PUCCH is the same on different time domain resources of the uplink subframe.
  • a base station including:
  • a determining module configured to determine that a transmission time interval TTI of the terminal device transmitting the PUSCH is less than or equal to half of a time length of one subframe
  • a receiving module configured to receive the PUSCH by using a partial time domain resource of an uplink subframe, and receive a PUCCH by using the uplink subframe, where each PUCCH is transmitted by using all time domain resources of the uplink subframe, or The PUCCH is transmitted through a resource that is not used to transmit the sounding signal SRS in all time domain resources of the uplink subframe.
  • the TTI of the PUSCH occupies one or more consecutive orders in the uplink subframe.
  • the uplink subframe belongs to a subframe set ⁇ 2, 7 ⁇ or ⁇ 2 ⁇ , wherein one radio frame is composed of 10 subframes, respectively, is subframe 0.
  • subframe 9 To subframe 9;
  • the uplink subframe belongs to a subframe set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ or ⁇ 2, 3, 4 , 7, 8, 9 ⁇ or ⁇ 2, 3, 7, 8 ⁇ or ⁇ 2, 7 ⁇ or ⁇ 2, 3, 4 ⁇ or ⁇ 2, 3 ⁇ or ⁇ 2 ⁇ or ⁇ 2, 3, 4, 7 , 8 ⁇ , wherein one radio frame is composed of 10 subframes, which are subframe 0 to subframe 9, respectively.
  • the determining module is further configured to:
  • a sending module configured to notify the terminal device of the set of subframes determined by the determining module.
  • the receiving module receives the same transmit power of the PUCCH on different time domain resources of the uplink subframe.
  • a terminal device including:
  • a determining module configured to determine that a transmission time interval TTI of the PUSCH sent by the uplink subframe is less than or equal to half of a time length of one subframe
  • a sending module configured to send, by using the uplink subframe, a PUCCH, where each of the PUCCHs is transmitted by using all time domain resources of the uplink subframe, or each PUCCH passes all time domain resources of the uplink subframe
  • the resource transmission is not used to transmit the sounding signal SRS.
  • the TTI of the PUSCH occupies one or more consecutive single carrier frequency division multiple access SC-FDMA symbols of the uplink subframe.
  • the determining module is further configured to:
  • the sending module Before the sending module sends the signal of the PUCCH, selecting one subframe from the subframe set as the uplink subframe;
  • the subframe set is ⁇ 2, 7 ⁇ or ⁇ 2 ⁇
  • the radio frame is composed of 10 subframes, which are subframe 0 to subframe 9, respectively. ;
  • the subframe set is ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ or ⁇ 2, 3, 4, 7, 8,9 ⁇ or ⁇ 2,3,7,8 ⁇ or ⁇ 2,7 ⁇ or ⁇ 2,3,4 ⁇ or ⁇ 2,3 ⁇ or ⁇ 2 ⁇ or ⁇ 2,3,4,7,8 ⁇
  • one radio frame is composed of 10 subframes, which are subframe 0 to subframe 9, respectively.
  • an acquisition module is also included for:
  • the set of subframes notified by the base station is acquired before uplink communication.
  • the sending module is further configured to:
  • the PUCCH when a part of the time domain resource of the uplink subframe receives a PUSCH whose TTI is less than or equal to half of the time length of one subframe, the PUCCH is received through the uplink subframe, and each The PUCCH is transmitted through all the time domain resources of the uplink subframe, or each PUCCH transmits the resource that is not used for transmitting the sounding signal SRS in all the time domain resources of the uplink subframe, so that the PUCCH can reuse the existing channel structure and basic
  • the transmission mechanism, and the resource region for transmitting the PUCCH and the resource region for transmitting the PUCCH by the legacy UE may be shared.
  • FIG. 1 is a schematic diagram of a frame structure of an LTE FDD frame structure type 1;
  • FIG. 2 is a schematic diagram of a frame structure of an LTE TDD frame structure type 2;
  • FIG. 3 is a schematic diagram of a U-plane delay composition of an LTE FDD
  • FIG. 4 is a schematic diagram of a U-plane delay composition of an LTE TDD system
  • FIG. 5 is a schematic diagram of a UL-DL configuration #5 of a frame structure type 2 of a TDD system
  • FIG. 6 is a schematic flowchart of a method for a base station to perform physical channel transmission according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart of a method for performing physical channel transmission by a terminal device according to an embodiment of the present invention.
  • FIG. 8a is a schematic diagram of a frame structure of a PUCCH using non-hopping transmission and no SRS according to an embodiment of the present invention.
  • FIG. 8b is a schematic structural diagram of a frame in which a PUCCH adopts frequency hopping transmission and no SRS according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a frame structure of a PUCCH using non-hopping transmission and having an SRS according to an embodiment of the present invention.
  • 9b is a schematic structural diagram of a frame in which a PUCCH adopts frequency hopping transmission and has an SRS according to an embodiment of the present invention
  • 10a is a schematic structural diagram of a radio frame of an FDD system according to an embodiment of the present invention.
  • 10b is a schematic structural diagram of a radio frame of another FDD system according to an embodiment of the present invention.
  • 10c is a schematic structural diagram of a radio frame of a TDD system according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of another terminal device according to an embodiment of the present invention.
  • the base station and the terminal device provided in the following embodiments may be separately deployed as separate devices, and the base station and the terminal device provided by the following embodiments are not required to be used in combination, but the base station and the terminal provided by the following embodiments are not excluded. The way the device is bound.
  • the detailed method for the base station to perform physical channel transmission is as follows:
  • Step 601 The base station determines that the TTI of the PUSCH (Physical Uplink Shared Channel) is less than or equal to half of the length of one subframe.
  • PUSCH Physical Uplink Shared Channel
  • the TTI is less than or equal to half of the time length of one subframe.
  • the PUSCH is called a short PUSCH.
  • the length of one subframe is 1 ms.
  • the base station may determine, according to the requirement of the terminal device, the TTI that the terminal device sends the PUSCH. For example, the base station determines that the TTI of the PUSCH transmitted by the terminal device is less than or equal to 0.5 ms according to the service requirement of the terminal device, so as to meet the short delay requirement of the service.
  • Step 602 The base station receives the PUSCH by using a part of the time domain resource of the uplink subframe, and receives a PUCCH (Physical Uplink Control Channel) through the uplink subframe, where each PUCCH passes all the time domains of the uplink subframe.
  • PUCCH Physical Uplink Control Channel
  • each PUCCH is not used for resource transmission of a sounding reference signal (SRS) in all time domain resources of the uplink subframe.
  • SRS sounding reference signal
  • the TTI of the short PUSCH occupies one or more SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbols in the uplink subframe, and the multiple SC-FDMA symbols are consecutive.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the uplink subframes for transmitting the short PUSCH and the PUCCH belong to the subframe set ⁇ 2, 7 ⁇ or ⁇ 2 ⁇ , wherein one radio frame is composed of 10 subframes, which are subframes 0 to Frame 9; if it is an LTE FDD system, the uplink subframe belongs to the subframe set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ or ⁇ 2, 3, 4, 7, 8, 9 ⁇ or ⁇ 2,3,7,8 ⁇ or ⁇ 2,7 ⁇ or ⁇ 2,3,4 ⁇ or ⁇ 2,3 ⁇ or ⁇ 2 ⁇ or ⁇ 2,3,4,7,8 ⁇ , where A radio frame is composed of 10 subframes, which are subframe 0 to subframe 9, respectively.
  • the subframe set for transmitting the short PUSCH and the PUCCH is determined by the base station UE.
  • the base station combines the two performance indicators of the transmission overhead and the feedback delay to determine the subframe set. If the transmission overhead is required to be small, the subframe set including fewer subframes is selected. If the feedback delay is required, the selection includes A collection of subframes with more subframes.
  • the subframe set is determined to be ⁇ 2 ⁇ in the case where the transmission overhead is required to be minimized, and the subframe set is determined to be ⁇ 2, 7 ⁇ in the case where the feedback delay is required to be reduced as soon as possible.
  • the subframe set is ⁇ 2, 3, 4, 7, 8 ⁇ or 2, 3, 7, 8 ⁇ . This is only an example. In practical applications, the method of determining the subframe set is not limited.
  • the base station may further consider the frame structure when determining the subframe set. If the TDD frame structure supports a TTI of 0.5 ms, the subframe set is determined to be ⁇ 2, 7 ⁇ ; if the FDD frame structure supports 1 ms. The TTI determines that the subframe set is ⁇ 2 ⁇ .
  • the base station determines the subframe set of the uplink subframe in which the short PUSCH and the PUCCH are transmitted, and then notifies the terminal device of the subframe set.
  • the transmit power of the PUCCH received by the base station in different time domain resources of the uplink subframe is the same, so as to ensure correct reception of the PUCCH, and avoiding different transmission powers of the PUCCH received on different time domain resources, which may not be correct. demodulation.
  • the base station and the terminal device provided by the embodiments of the present invention need not be bound, that is, the terminal device may separately send the short PUSCH and the PUCCH in different uplink subframes, or may send the short in the same uplink subframe.
  • the base station side only needs to receive the short PUSCH and the PUCCH in the same uplink subframe, so that the PUCCH can reuse the existing channel structure and the basic transmission mechanism, and the resource region of the PUCCH is transmitted and the legacy UE ( Legacy UE)
  • the resource area in which the PUCCH is transmitted can be shared.
  • the detailed method for the terminal device to perform physical channel transmission is as follows:
  • Step 701 The terminal device determines that the transmission time interval TTI of the PUSCH transmitted by the uplink subframe is less than or equal to half of the time length of one subframe.
  • a PUSCH whose TTI is less than or equal to half of the time length of one subframe is referred to as a short PUSCH.
  • the length of one subframe is 1 ms.
  • the TTI of the short PUSCH occupies one or more consecutive SC-FDMA symbols in the first uplink subframe.
  • Step 702 The terminal device sends a PUCCH by using the uplink subframe, and each PUCCH is transmitted by using all time domain resources of the uplink subframe, or each PUCCH is not used for SRS in all time domain resources of the uplink subframe. Resource transfer.
  • the terminal device before the uplink transmission, the terminal device selects one subframe from the saved subframe set. For the uplink subframe.
  • the subframe set is ⁇ 2, 7 ⁇ or ⁇ 2 ⁇ , wherein one radio frame is composed of 10 subframes, respectively subframe 0 to subframe 9; if it is an LTE FDD system
  • the set of subframes is ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ or ⁇ 2, 3, 4, 7, 8, 9 ⁇ or ⁇ 2, 3, 7, 8 ⁇ or ⁇ 2,7 ⁇ or ⁇ 2,3,4 ⁇ or ⁇ 2,3 ⁇ or ⁇ 2 ⁇ or ⁇ 2,3,4,7,8 ⁇ , where a radio frame consists of 10 sub-frames, It is subframe 0 to subframe 9, respectively.
  • the set of subframes saved by the terminal device may be obtained by the terminal device from the notification message of the base station before the uplink communication.
  • the terminal device sends the same transmit power of the PUCCH on different time domain resources of the uplink subframe.
  • the physical channel transmission method provided by the embodiment of the present invention is exemplified by two specific embodiments.
  • the first embodiment is as shown in FIG. 8a and FIG. 8b, wherein the PUCCH in FIG. 8a adopts non-frequency hopping transmission, and the PUCCH in FIG. 8b adopts frequency hopping transmission, and the system has a PUSCH with a TTI of 0.5 ms, which is called The short PUSCH, that is, the PUSCH occupies half of the duration of one uplink subframe, that is, one slot, such as PUSCH1, PUSCH2, PUSCH a, and PUSCH b.
  • the PUCCH occupies all the time domain resources of one uplink subframe for transmission, such as PUCCH 1, and the system can support a PUSCH with a TTI of 1 ms, which is called a legacy PUSCH, and a UE whose service channel is a legacy PUSCH is called a legacy UE.
  • Legacy UE a PUSCH with a TTI of 1 ms, which is called a legacy PUSCH, and a UE whose service channel is a legacy PUSCH is called a legacy UE.
  • Legacy UE may
  • the PUCCH of FIG. 9a adopts non-frequency hopping transmission
  • the PUCCH of FIG. 9b adopts frequency hopping transmission.
  • the system has a PUSCH with a TTI of 0.5 ms, which is called a short PUSCH, that is, the PUSCH occupies an uplink.
  • the half-length of the subframe is transmitted, that is, one slot is occupied, such as PUSCH1, PUSCH2, PUSCH a, and PUSCH b.
  • the last SC-FDMA symbol within a subframe is used to transmit the SRS, and the PUCCH occupies all symbol transmissions except the most one SC-FDMA symbol, such as PUCCH1.
  • the PUCCH can reuse the existing channel structure and basic transmission mechanism of the LTE Rel-8 to Rel-13, and use the TTI of the PUSCH less than or equal to 0.5 ms to transmit the terminal of the PUSCH.
  • the resource area for transmitting the PUCCH and the resource area for transmitting the PUCCH by the legacy UE may be shared.
  • a PUSCH with a TTI of 0.5 ms is present in the system, which is called a short PUSCH.
  • all subframes of one radio frame that is, subframe 0 to subframe 9
  • PUCCH occupies all time domain resources of the subframe.
  • the PUCCH is transmitted only in subframe 2 and subframe 7, and the PUCCH occupies all time domain resources of the subframe.
  • the PUCCH is transmitted only in the subframe 2 and the subframe 7, and each of the subframe 1, the subframe 3, the subframe 4, the subframe 6, the subframe 8, and the subframe 9 is divided into In the upper and lower parts, the TTI of each part is 0.5ms, and a certain uplink and downlink switching time needs to be scheduled between the upper and lower parts.
  • the PUCCH may reuse the existing channel structure and the basic transmission mechanism of the LTE Rel-8 to Rel-13, and transmit the PUCCH resource area by using a terminal device that transmits the PUSCH with a TTI less than or equal to 0.5 ms.
  • the resource area in which the legacy UE transmits the PUCCH can be shared.
  • the base station mainly includes:
  • the determining module 1101 is configured to determine that the transmission time interval TTI of the terminal device transmitting the PUSCH is less than or equal to half of the time length of one subframe;
  • the receiving module 1102 is configured to receive the PUSCH by using a part of the time domain resource of the uplink subframe, and receive the PUCCH by using the uplink subframe, where each PUCCH is transmitted by using all time domain resources of the uplink subframe, or Each of the PUCCHs is transmitted through a resource that is not used to transmit the sounding signal SRS in all time domain resources of the uplink subframe.
  • the TTI of the PUSCH occupies one or more consecutive single carrier frequency division multiple access SC-FDMA symbols in the uplink subframe.
  • the uplink subframe belongs to a subframe set ⁇ 2, 7 ⁇ or ⁇ 2 ⁇ , wherein one radio frame is composed of 10 subframes, respectively, is subframe 0.
  • subframe 9 To subframe 9;
  • the uplink subframe belongs to a subframe set. ⁇ 0,1,2,3,4,5,6,7,8,9 ⁇ or ⁇ 2,3,4,7,8,9 ⁇ or ⁇ 2,3,7,8 ⁇ or ⁇ 2,7 ⁇ or ⁇ 2,3,4 ⁇ or ⁇ 2,3 ⁇ or ⁇ 2 ⁇ or ⁇ 2,3,4,7,8 ⁇ , where a radio frame consists of 10 sub-frames, respectively sub-frame 0 to sub- Frame 9.
  • the determining module 1101 is further configured to determine the subframe set before uplink communication
  • the sending module 1103 is further configured to notify the terminal device of the subframe set determined by the determining module 1101.
  • the receiving module 1102 receives the same transmit power of the PUCCH on different time domain resources of the uplink subframe.
  • the base station mainly includes a processor. 1201, a memory 1202, and a transceiver 1203, wherein the transceiver is configured to receive and transmit data under the control of the processor, the memory 1202 stores a preset program, and the processor 1201 reads the program saved in the memory 1202, according to the The program performs the following process:
  • the TTI of the PUSCH occupies one or more consecutive single carrier frequency division multiple access SC-FDMA symbols in the uplink subframe.
  • the uplink subframe belongs to a subframe set ⁇ 2, 7 ⁇ or ⁇ 2 ⁇ , wherein one radio frame is composed of 10 subframes, respectively, is subframe 0.
  • subframe 9 To subframe 9;
  • the uplink subframe belongs to a subframe set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ or ⁇ 2, 3, 4 , 7, 8, 9 ⁇ or ⁇ 2, 3, 7, 8 ⁇ or ⁇ 2, 7 ⁇ or ⁇ 2, 3, 4 ⁇ or ⁇ 2, 3 ⁇ or ⁇ 2 ⁇ or ⁇ 2, 3, 4, 7 , 8 ⁇ , wherein one radio frame is composed of 10 subframes, respectively, a subframe 0 to subframe 9.
  • the processor determines the set of subframes before uplink transmission, and notifies the determined set of subframes to the terminal device by using a transceiver.
  • the transmit power of the PUCCH received by the transceiver on different time domain resources of the uplink subframe is the same.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the processor and various circuits of memory represented by the memory.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • an embodiment of the present invention provides a terminal device.
  • the terminal device mainly includes :
  • the determining module 1301 is configured to determine that a transmission time interval TTI of the PUSCH transmitted by the uplink subframe is less than or equal to half of a time length of one subframe;
  • the sending module 1302 is configured to send, by using the uplink subframe, a PUCCH, where each PUCCH is transmitted by using all time domain resources of the uplink subframe, or each PUCCH passes all time domains of the uplink subframe.
  • the resource transmission in the resource is not used to transmit the sounding signal SRS.
  • the TTI of the PUSCH occupies one or more consecutive single carrier frequency division multiple access SC-FDMA symbols of the uplink subframe.
  • the determining module is further configured to:
  • the sending module Before the sending module sends the signal of the PUCCH, selecting one subframe from the subframe set as the uplink subframe;
  • the subframe set is ⁇ 2, 7 ⁇ or ⁇ 2 ⁇
  • the radio frame is composed of 10 subframes, which are subframe 0 to subframe 9, respectively. ;
  • the subframe set is ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ or ⁇ 2, 3, 4, 7, 8,9 ⁇ or ⁇ 2,3,7,8 ⁇ or ⁇ 2,7 ⁇ or ⁇ 2,3,4 ⁇ or ⁇ 2,3 ⁇ or ⁇ 2 ⁇ or ⁇ 2,3,4,7,8 ⁇
  • one radio frame is composed of 10 subframes, which are subframe 0 to subframe 9, respectively.
  • the implementation further includes an obtaining module 1303, configured to acquire the subframe set notified by the base station before the determining module selects one subframe from the subframe set.
  • the sending module is further configured to determine that the transmit power of the PUCCH is the same on different time domain resources of the uplink subframe.
  • an embodiment of the present invention provides another terminal device.
  • the terminal device is mainly The processor 1401, the memory 1402, and the transceiver 1403 are included, wherein the transceiver is configured to receive and transmit data under the control of the processor, the memory 1402 stores a preset program, and the processor 1401 reads the program saved in the memory 1402.
  • the TTI of the PUSCH occupies one or more consecutive single carrier frequency division multiple access SC-FDMA symbols of the uplink subframe.
  • the processor selects one subframe from the subframe set as the uplink subframe before instructing the transceiver to send the PUCCH signal;
  • the subframe set is ⁇ 2, 7 ⁇ or ⁇ 2 ⁇
  • the radio frame is composed of 10 subframes, which are subframe 0 to subframe 9, respectively. ;
  • the subframe set is ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ or ⁇ 2, 3, 4, 7, 8,9 ⁇ or ⁇ 2,3,7,8 ⁇ or ⁇ 2,7 ⁇ or ⁇ 2,3,4 ⁇ or ⁇ 2,3 ⁇ Or ⁇ 2 ⁇ or ⁇ 2, 3, 4, 7, 8 ⁇ , wherein one radio frame is composed of 10 subframes, which are subframe 0 to subframe 9, respectively.
  • the processor acquires the subframe set notified by the base station before selecting one subframe from the subframe set.
  • the processor determines that the transceiver transmits the same transmit power of the PUCCH on different time domain resources of the uplink subframe.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the processor and various circuits of memory represented by the memory.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • the PUCCH when a part of the time domain resource of the uplink subframe receives a PUSCH whose TTI is less than or equal to half of the time length of one subframe, the PUCCH is received through the uplink subframe, and each The PUCCH is transmitted through all the time domain resources of the uplink subframe, or each PUCCH transmits the resource that is not used for transmitting the sounding signal SRS in all the time domain resources of the uplink subframe, so that the PUCCH can reuse the existing channel structure and basic
  • the transmission mechanism, and the resource area for transmitting the PUCCH and the resource area for transmitting the PUCCH by the legacy UE may be shared.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the present invention has been described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (system), and computer program products according to embodiments of the invention. It should be understood that the flow chart can be implemented by computer program instructions And/or a combination of the processes and/or blocks in the block diagrams, and the flowcharts and/or blocks in the flowcharts. These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device. Means for implementing the functions specified in one or more of the flow or in a block or blocks of the flow chart.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种物理信道传输方法及设备,用以为在上行业务信道对应不同长度TTI时,上行控制信道如何传输提供解决方案。该方法为:基站确定终端设备发送物理上行共享信道PUSCH的传输时间间隔TTI小于或等于一个子帧的时间长度一半;所述基站通过上行子帧的部分时域资源接收所述PUSCH,以及通过所述上行子帧接收物理上行控制信道PUCCH,每个所述PUCCH通过所述上行子帧的全部时域资源传输,或者,每个所述PUCCH通过所述上行子帧的全部时域资源中不用于传输探测信号SRS的资源传输。

Description

一种物理信道传输方法及设备
本申请要求在2015年7月8日提交中国专利局、申请号为201510398536.8、发明名称为“一种物理信道传输方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种物理信道传输方法及设备。
背景技术
LTE(Long Term Evolution,长期演进)FDD(Frequency Division Dual,频分双工)系统中使用帧结构类型1,帧结构如图1所示。在FDD系统中,上行和下行传输使用不同的载波频率,但是上行和下行传输均使用相同的帧结构。在每个载波上,每个10毫秒(ms)无线帧包含10个1ms子帧,每个子帧分为两个时隙,每个时隙为0.5ms。上行和下行数据发送的TTI(Transmission Time Interval,传输时间间隔)为1ms。
LTE TDD(Time Division Duplex,时分双工)系统中使用帧结构类型2,帧结构如图2所示。在TDD系统中,上行和下行传输使用相同频率上的不同子帧或不同时隙,每个10ms无线帧由两个5ms半帧组成,每个半帧包含5个1ms长度的子帧。一个无线帧中包括三类子帧,分别为:下行子帧、上行子帧和特殊子帧,每个特殊子帧由下行部分DwPTS(Downlink Pilot Time Slot,下行传输时隙)、空闲部分GP(Guard Period,保护间隔)和上行部分UpPTS(Uplink Pilot Time Slot,上行传输时隙)三部分组成,其中,DwPTS可以传输下行导频、下行业务数据和下行控制信令;GP不传输任何信号;UpPTS仅传输随机接入信号和上行导频信号,不能传输上行业务数据或上行控制信令。每个半帧包含至少一个下行子帧和至少一个上行子帧,以及包括最多一个特殊子帧。
根据3GPP TR36.912附录B.2章节的定义,LTE系统的用户面时延(简称U平面时延)由基站(eNB)处理时间、帧对齐时间、TTI时间和终端设备UE(User Equipment,用户设备)处理时间四个部分组成,其中,帧对齐时间是指从业务到达至业务能够获得空口子帧传输机会之间的等待时间。
以LTE FDD下行传输为例,由于FDD系统的每个子帧均有下行传输机会,帧对齐时间平均为0.5ms,基站处理时间在下行时为1ms,在上行时为1.5ms;终端设备处理时间在上行时为1ms,在下行时为1.5ms。如图3所示,在不考虑HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)重传的情况下,LTE FDD下行U平面时延=基站处理时间1ms+帧对齐时间0.5ms+TTI时间1ms+终端设备处理时间1.5ms,共4ms。相似地,LTE FDD系统不考虑HARQ重传的情况下,上行U平面时延也为4ms。
LTE TDD系统的U平面时延同样由基站处理时间、帧对齐时间、TTI时间和终端设备处理时间四部分组成,如图4所示,其中基站处理时间在下行时为1ms,在上行时为1.5ms;终端设备处理时间在上行时为1ms,在下行时为1.5ms。TTI时间与FDD相同为1ms,帧对齐时间tFA与业务到达的时间以及系统所使用的UL(Uplink,上行)-DL(Downlink,下行)配置有关。如图5所示的TDD系统的帧结构类型2的UL-DL配置#5为例,其中基站若在子帧#1完成发送端处理,最早在子帧#3才能发送,则发射到空口子帧的帧对齐时间为1.5ms,其余子帧的帧对齐时间平均为0.5ms,则下行数据的帧对齐时间的平均值为0.6ms。则UL-DL配置#5的下行U平面时延为4.1ms。
随着移动通信业务需求的发展,未来移动通信系统需要定义更高用户面延时性能。由以上分析可知,缩短用户面延时性能的主要方法之一即为降低TTI的长度,例如将TTI缩短为0.5ms。而这就会出现时延长度不同的终端设备,现有技术的不足就在于,在同时兼容LTE Rel-8~Rel-13终端设备的系统中,上行业务信道对应不同长度TTI时,上行控制信道如何传输尚没有解决方案。
发明内容
本发明实施例提供一种物理信道传输方法及设备,用以为在上行业务信道对应不同长度TTI时,上行控制信道如何传输提供解决方案。
本发明实施例提供的具体技术方案如下:
第一方面,提供了一种物理信道传输方法,包括:
基站确定终端设备发送PUSCH的传输时间间隔TTI小于或等于一个子帧的时间长度一半;
所述基站通过上行子帧的部分时域资源接收所述PUSCH,以及通过所述上行子帧接收PUCCH,每个所述PUCCH通过所述上行子帧的全部时域资源传输,或者,每个所述PUCCH通过所述上行子帧的全部时域资源中不用于传输探测信号SRS的资源传输。
实施中,所述PUSCH的TTI占用所述上行子帧中的一个或多个连续的单载波频分多址SC-FDMA符号。
实施中,若为长期演进LTE的时分双工TDD系统,所述上行子帧属于子帧集合{2,7}或者{2},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9;
若为长期演进LTE的频分双工FDD系统,所述上行子帧属于子帧集合{0,1,2,3,4,5,6,7,8,9}或者{2,3,4,7,8,9}或者{2,3,7,8}或者{2,7}或者{2,3,4}或者{2,3}或者{2}或者{2,3,4,7,8},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9。
实施中,所述方法还包括:
在上行通信之前,所述基站确定所述子帧集合,并将所述子帧集合通知给所述终端设备。
实施中,所述基站在所述上行子帧的不同时域资源上接收到的所述PUCCH的发射功率相同。
第二方面,提供了一种物理信道传输方法,包括:
终端设备确定上行子帧发送的PUSCH的传输时间间隔TTI小于或等于一 个子帧的时间长度的一半;
所述终端设备通过所述上行子帧发送PUCCH,每个所述PUCCH通过所述上行子帧的全部时域资源传输,或者,每个所述PUCCH通过所述上行子帧的全部时域资源中不用于传输探测信号SRS的资源传输。
实施中,所述PUSCH的TTI占用所述上行子帧的一个或多个连续的单载波频分多址SC-FDMA符号。
实施中,所述终端设备通过所述上行子帧发送PUCCH的信号之前,包括:
所述终端设备从子帧集合中选择一个子帧作为所述上行子帧;
其中,若为长期演进LTE的时分双工TDD系统,所述子帧集合为{2,7}或者{2},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9;
若为长期演进LTE的频分双工FDD系统,所述子帧集合为{0,1,2,3,4,5,6,7,8,9}或者{2,3,4,7,8,9}或者{2,3,7,8}或者{2,7}或者{2,3,4}或者{2,3}或者{2}或者{2,3,4,7,8},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9。
实施中,所述方法还包括:
在上行通信之前,所述终端设备获取基站通知的所述子帧集合。
实施中,所述终端设备通过所述上行子帧发送PUCCH,还包括:
所述终端设备确定在所述上行子帧的不同时域资源上发送所述PUCCH的发射功率相同。
第三方面,提供了一种基站,包括:
确定模块,用于确定终端设备发送PUSCH的传输时间间隔TTI小于或等于一个子帧的时间长度一半;
接收模块,用于通过上行子帧的部分时域资源接收所述PUSCH,以及通过所述上行子帧接收PUCCH,每个所述PUCCH通过所述上行子帧的全部时域资源传输,或者,每个所述PUCCH通过所述上行子帧的全部时域资源中不用于传输探测信号SRS的资源传输。
实施中,所述PUSCH的TTI占用所述上行子帧中的一个或多个连续的单 载波频分多址SC-FDMA符号。
实施中,若为长期演进LTE的时分双工TDD系统,所述上行子帧属于子帧集合{2,7}或者{2},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9;
若为长期演进LTE的频分双工FDD系统,所述上行子帧属于子帧集合{0,1,2,3,4,5,6,7,8,9}或者{2,3,4,7,8,9}或者{2,3,7,8}或者{2,7}或者{2,3,4}或者{2,3}或者{2}或者{2,3,4,7,8},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9。
实施中,所述确定模块还用于:
在上行通信之前,确定所述子帧集合;
还包括发送模块,用于将所述确定模块确定的所述子帧集合通知给所述终端设备。
实施中,所述接收模块在所述上行子帧的不同时域资源上接收到的所述PUCCH的发射功率相同。
第四方面,提供了一种终端设备,包括:
确定模块,用于确定上行子帧发送的PUSCH的传输时间间隔TTI小于或等于一个子帧的时间长度的一半;
发送模块,用于通过所述上行子帧发送PUCCH,每个所述PUCCH通过所述上行子帧的全部时域资源传输,或者,每个所述PUCCH通过所述上行子帧的全部时域资源中不用于传输探测信号SRS的资源传输。
实施中,所述PUSCH的TTI占用所述上行子帧的一个或多个连续的单载波频分多址SC-FDMA符号。
实施中,所述确定模块还用于:
在所述发送模块发送PUCCH的信号之前,从子帧集合中选择一个子帧作为所述上行子帧;
其中,若为长期演进LTE的时分双工TDD系统,所述子帧集合为{2,7}或者{2},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9;
若为长期演进LTE的频分双工FDD系统,所述子帧集合为{0,1,2,3,4,5,6,7,8,9}或者{2,3,4,7,8,9}或者{2,3,7,8}或者{2,7}或者{2,3,4}或者{2,3}或者{2}或者{2,3,4,7,8},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9。
实施中,还包括获取模块,用于:
在上行通信之前,获取基站通知的所述子帧集合。
实施中,所述发送模块还用于:
确定在所述上行子帧的不同时域资源上发送所述PUCCH的发射功率相同。
基于上述技术方案,本发明实施例中,在通过上行子帧的部分时域资源接收TTI小于或等于一个子帧的时间长度的一半的PUSCH的情况下,通过该上行子帧接收PUCCH,每个PUCCH通过该上行子帧的全部时域资源传输,或者,每个PUCCH通过该上行子帧的全部时域资源中不用于传输探测信号SRS的资源传输,使得PUCCH可以重用已有的信道结构及基本的传输机制,且使得传输PUCCH的资源区域与传统UE传输PUCCH的资源区域可以共享。
附图说明
图1为LTE FDD帧结构类型1的帧结构示意图;
图2为LTE TDD帧结构类型2的帧结构示意图;
图3为LTE FDD的U平面时延组成示意图;
图4为LTE TDD系统的U平面时延组成示意图;
图5为TDD系统的帧结构类型2的UL-DL配置#5的示意图;
图6为本发明实施例中基站进行物理信道传输的方法流程示意图;
图7为本发明实施例中终端设备进行物理信道传输的方法流程示意图;
图8a为本发明实施例中PUCCH采用非跳频传输且无SRS的帧结构示意图;
图8b为本发明实施例中PUCCH采用跳频传输且无SRS的帧结构示意图;
图9a为本发明实施例中PUCCH采用非跳频传输且有SRS的帧结构示意图;
图9b为本发明实施例中PUCCH采用跳频传输且有SRS的帧结构示意图;
图10a为本发明实施例中FDD系统无线帧结构示意图;
图10b为本发明实施例中另一FDD系统无线帧结构示意图;
图10c为本发明实施例中TDD系统无线帧结构示意图;
图11为本发明实施例中基站的结构示意图;
图12为本发明实施例中另一基站的结构示意图;
图13为本发明实施例中终端设备的结构示意图;
图14为本发明实施例中另一终端设备的结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
以下各实施例中所提供的基站和终端设备作为独立的设备可以单独部署,无需将以下各实施例所提供的基站和终端设备绑定使用,但是不排除将以下实施例所提供的基站和终端设备绑定使用的方式。
本发明实施例中,如图6所示,基站进行物理信道传输的详细方法流程如下:
步骤601:基站确定终端设备发送PUSCH(Physical Uplink Shared Channel,物理上行共享信道)的TTI小于或等于一个子帧的时间长度的一半。
本发明实施例中,将TTI小于或等于一个子帧的时间长度的一半的 PUSCH称为短PUSCH。
实施中,一个子帧的时间长度为1ms。
具体实施中,基站可以根据终端设备的需求确定终端设备发送PUSCH的TTI。例如,基站根据终端设备的业务需求,确定终端设备发送PUSCH的TTI小于或等于0.5ms,才能够满足业务的短时延要求。
步骤602:基站通过上行子帧的部分时域资源接收所述PUSCH,以及通过该上行子帧接收PUCCH(Physical Uplink Control Channel,物理上行控制信道),每个PUCCH通过该上行子帧的全部时域资源传输,或者,每个PUCCH通过该上行子帧的全部时域资源中不用于传输探测信号SRS(Sounding Reference Signal,信道探测参考信号)的资源传输。
其中,短PUSCH的TTI占用上行子帧中的一个或多个SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址)符号,该多个SC-FDMA符号连续。
实施中,若为LTE TDD系统,传输短PUSCH和PUCCH的上行子帧属于子帧集合{2,7}或者{2},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9;若为LTE FDD系统,上行子帧属于子帧集合{0,1,2,3,4,5,6,7,8,9}或者{2,3,4,7,8,9}或者{2,3,7,8}或者{2,7}或者{2,3,4}或者{2,3}或者{2}或者{2,3,4,7,8},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9。
具体地,传输短PUSCH和PUCCH的子帧集合由基站UE确定。实施中,基站结合传输开销和反馈时延两个性能指标综合确定子帧集合,如果要求传输开销小,则选择包含较少的子帧的子帧集合,如果要求降低反馈时延,则选择包含较多的子帧的子帧集合。
例如,对于LTE TDD系统,在要求尽量降低传输开销的情况下,确定子帧集合为{2},在要求尽快减小反馈时延的情况下,确定子帧集合为{2,7}。例如,对于LTE FDD系统,如果需要均衡传输开销和反馈时延两个性能指标,则确定子帧集合为{2,3,4,7,8}或2,3,7,8}。此处仅为举例说明,实际应用中,确定子帧集合的方式并不此为限制。
具体地,对于LTE TDD系统,基站在确定子帧集合时还可以综合考虑帧结构,如果TDD帧结构支持0.5ms的TTI,则确定子帧集合为{2,7};如果FDD帧结构支持1ms的TTI,则确定子帧集合为{2}。
实施中,在上行通信之前,基站确定传输短PUSCH和PUCCH的上行子帧的子帧集合后,将该子帧集合通知给终端设备。
实施中,基站在所述上行子帧的不同时域资源上接收到的PUCCH的发射功率相同,以保证PUCCH的正确接收,避免在不同时域资源上接收到的PUCCH的发送功率不同导致无法正确解调。
需要说明的是,本发明实施例所提供的基站和终端设备无需绑定使用,即终端设备可以在不同的上行子帧中分别发送短PUSCH和PUCCH,也可以在同一个上行子帧中发送短PUSCH和PUCCH,仅需要满足基站侧在同一个上行子帧中接收短PUSCH和PUCCH,即可使得PUCCH可以重用已有的信道结构及基本的传输机制,且使得传输PUCCH的资源区域与传统UE(legacy UE)传输PUCCH的资源区域可以共享。
本发明实施例中,如图7所示,终端设备进行物理信道传输的详细方法流程如下:
步骤701:终端设备确定上行子帧发送的PUSCH的传输时间间隔TTI小于或等于一个子帧的时间长度的一半。
本发明实施例中,将TTI小于或等于一个子帧的时间长度的一半的PUSCH称为短PUSCH。
其中,一个子帧的时间长度为1ms。
其中,短PUSCH的TTI占用第一上行子帧中的一个或多个连续的SC-FDMA符号。
步骤702:终端设备通过所述上行子帧发送PUCCH,每个PUCCH通过所述上行子帧的全部时域资源传输,或者,每个PUCCH通过所述上行子帧的全部时域资源中不用于SRS的资源传输。
实施中,上行传输之前,终端设备从保存的子帧集合中选择一个子帧作 为所述上行子帧。
其中,若为LTE TDD系统,所述子帧集合为{2,7}或者{2},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9;若为LTE FDD系统,所述子帧集合为{0,1,2,3,4,5,6,7,8,9}或者{2,3,4,7,8,9}或者{2,3,7,8}或者{2,7}或者{2,3,4}或者{2,3}或者{2}或者{2,3,4,7,8},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9。
实施中,终端设备保存的子帧集合可以是在上行通信之前,终端设备从基站的通知消息中获得。
具体实施中,终端设备在所述上行子帧的不同时域资源上发送PUCCH的发射功率相同。
以下通过两个具体实施例对本发明实施例所提供的物理信道传输方法进行举例说明。
第一具体实施例,如图8a所示和图8b所示,其中,图8a中PUCCH采用非跳频传输,图8b中PUCCH采用跳频传输,系统中存在TTI为0.5ms的PUSCH,称为短PUSCH,即PUSCH占用一个上行子帧的一半时长进行传输,即占用一个时隙,如PUSCH1、PUSCH2、PUSCH a和PUSCH b。PUCCH占用一个上行子帧的全部时域资源进行传输,如PUCCH 1,同时系统中可以支持TTI为1ms的PUSCH,称为传统PUSCH(legacy PUSCH),业务信道为传统PUSCH的UE称为传统UE(legacy UE)。
如图9a和图9b所示,其中,图9a中PUCCH采用非跳频传输,图9b中PUCCH采用跳频传输,系统中存在TTI为0.5ms的PUSCH,称为短PUSCH,即PUSCH占用一个上行子帧的一半时长进行传输,即占用一个时隙,如PUSCH1、PUSCH2、PUSCH a和PUSCH b。一个子帧内的最后一个SC-FDMA符号用于传输SRS,PUCCH占用除最有一个SC-FDMA符号外的所有符号传输,如PUCCH1。
第一具体实施例中,PUCCH可以重用LTE Rel-8~Rel-13已有的信道结构及基本的传输机制,且使用小于或等于0.5ms的TTI传输PUSCH的终端设 备,传输PUCCH的资源区域与legacy UE传输PUCCH的资源区域可以共享。
第二具体实施例,系统中存在TTI为0.5ms的PUSCH,称为短PUSCH。
图10a所示的FDD系统中,一个无线帧的所有子帧,即子帧0至子帧9,都支持短PUSCH和PUCCH的传输,PUCCH占用子帧的全部时域资源。
图10b所示的FDD系统中,PUCCH仅在子帧2和子帧7中传输,且PUCCH占用子帧的全部时域资源。
图10c所示的TDD系统中,PUCCH仅在子帧2和子帧7中传输,子帧1、子帧3、子帧4、子帧6、子帧8和子帧9中的每个子帧分为上下行两部分,每部分的TTI为0.5ms,上下行两部分之间需要预定一定的上下行切换时间。
第二具体实施例中,PUCCH可以重用LTE Rel-8~Rel-13已有的信道结构及基本的传输机制,且使用小于或等于0.5ms的TTI传输PUSCH的终端设备,传输PUCCH的资源区域与legacy UE传输PUCCH的资源区域可以共享。
基于同一发明构思,本发明实施例中提供了一种基站,该基站的具体实施可参见上述方法部分的描述,重复之处不再赘述,如图11所示,该基站主要包括:
确定模块1101,用于确定终端设备发送PUSCH的传输时间间隔TTI小于或等于一个子帧的时间长度一半;
接收模块1102,用于通过上行子帧的部分时域资源接收所述PUSCH,以及通过所述上行子帧接收PUCCH,每个所述PUCCH通过所述上行子帧的全部时域资源传输,或者,每个所述PUCCH通过所述上行子帧的全部时域资源中不用于传输探测信号SRS的资源传输。
实施中,所述PUSCH的TTI占用所述上行子帧中的一个或多个连续的单载波频分多址SC-FDMA符号。
实施中,若为长期演进LTE的时分双工TDD系统,所述上行子帧属于子帧集合{2,7}或者{2},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9;
若为长期演进LTE的频分双工FDD系统,所述上行子帧属于子帧集合 {0,1,2,3,4,5,6,7,8,9}或者{2,3,4,7,8,9}或者{2,3,7,8}或者{2,7}或者{2,3,4}或者{2,3}或者{2}或者{2,3,4,7,8},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9。
其中,所述确定模块1101还用于在上行通信之前,确定所述子帧集合;
还包括发送模块1103,用于将所述确定模块1101确定的所述子帧集合通知给所述终端设备。
实施中,所述接收模块1102在所述上行子帧的不同时域资源上接收到的所述PUCCH的发射功率相同。
基于同一发明构思,本发明实施例中提供了一种基站,该基站的具体实施可参见上述方法实施例部分的描述,重复之处不再赘述,如图12所示,该基站主要包括处理器1201、存储器1202和收发机1203,其中,收发机用于在处理器的控制下接收和发送数据,存储器1202中保存有预设的程序,处理器1201读取存储器1202中保存的程序,按照该程序执行以下过程:
确定终端设备发送PUSCH的传输时间间隔TTI小于或等于一个子帧的时间长度一半;
指示收发机通过上行子帧的部分时域资源接收所述PUSCH,以及指示收发机通过所述上行子帧接收PUCCH,每个所述PUCCH通过所述上行子帧的全部时域资源传输,或者,每个所述PUCCH通过所述上行子帧的全部时域资源中不用于传输探测信号SRS的资源传输。
实施中,所述PUSCH的TTI占用所述上行子帧中的一个或多个连续的单载波频分多址SC-FDMA符号。
实施中,若为长期演进LTE的时分双工TDD系统,所述上行子帧属于子帧集合{2,7}或者{2},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9;
若为长期演进LTE的频分双工FDD系统,所述上行子帧属于子帧集合{0,1,2,3,4,5,6,7,8,9}或者{2,3,4,7,8,9}或者{2,3,7,8}或者{2,7}或者{2,3,4}或者{2,3}或者{2}或者{2,3,4,7,8},其中,一个无线帧由10个子帧组成,分别为子帧 0至子帧9。
其中,处理器在上行传输之前确定所述子帧集合,并将确定的所述子帧集合通过收发机通知给所述终端设备。
实施中,收发机在所述上行子帧的不同时域资源上接收到的所述PUCCH的发射功率相同。
其中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
基于同一发明构思,本发明实施例提供了一种终端设备,该终端设备的具体实施可参见上述方法实施例部分的描述,重复之处不再赘述,如图13所示,该终端设备主要包括:
确定模块1301,用于确定上行子帧发送的PUSCH的传输时间间隔TTI小于或等于一个子帧的时间长度的一半;
发送模块1302,用于通过所述上行子帧发送PUCCH,每个所述PUCCH通过所述上行子帧的全部时域资源传输,或者,每个所述PUCCH通过所述上行子帧的全部时域资源中不用于传输探测信号SRS的资源传输。
实施中,所述PUSCH的TTI占用所述上行子帧的一个或多个连续的单载波频分多址SC-FDMA符号。
实施中,所述确定模块还用于:
在所述发送模块发送PUCCH的信号之前,从子帧集合中选择一个子帧作为所述上行子帧;
其中,若为长期演进LTE的时分双工TDD系统,所述子帧集合为{2,7}或者{2},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9;
若为长期演进LTE的频分双工FDD系统,所述子帧集合为{0,1,2,3,4,5,6,7,8,9}或者{2,3,4,7,8,9}或者{2,3,7,8}或者{2,7}或者{2,3,4}或者{2,3}或者{2}或者{2,3,4,7,8},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9。
实施中,还包括获取模块1303,用于在确定模块从子帧集合中选择一个子帧之前,获取基站通知的所述子帧集合。
实施中,所述发送模块还用于确定在所述上行子帧的不同时域资源上发送所述PUCCH的发射功率相同。
基于同一发明构思,本发明实施例提供了另一种终端设备,该终端设备的具体实施可参见上述方法实施例部分的描述,重复之处不再赘述,如图14所示,该终端设备主要包括处理器1401、存储器1402和收发机1403,其中,收发机用于在处理器的控制下接收和发送数据,存储器1402中保存有预设的程序,处理器1401读取存储器1402中保存的程序,按照该程序执行以下过程:
确定上行子帧发送的PUSCH的传输时间间隔TTI小于或等于一个子帧的时间长度的一半;
指示收发机通过所述上行子帧发送PUCCH,每个所述PUCCH通过所述上行子帧的全部时域资源传输,或者,每个所述PUCCH通过所述上行子帧的全部时域资源中不用于传输探测信号SRS的资源传输。
实施中,所述PUSCH的TTI占用所述上行子帧的一个或多个连续的单载波频分多址SC-FDMA符号。
实施中,处理器在指示收发机发送PUCCH的信号之前,从子帧集合中选择一个子帧作为所述上行子帧;
其中,若为长期演进LTE的时分双工TDD系统,所述子帧集合为{2,7}或者{2},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9;
若为长期演进LTE的频分双工FDD系统,所述子帧集合为{0,1,2,3,4,5,6,7,8,9}或者{2,3,4,7,8,9}或者{2,3,7,8}或者{2,7}或者{2,3,4}或者{2,3} 或者{2}或者{2,3,4,7,8},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9。
其中,处理器在从子帧集合中选择一个子帧之前,获取基站通知的所述子帧集合。
实施中,处理器确定收发机在所述上行子帧的不同时域资源上发送所述PUCCH的发射功率相同。
其中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
基于上述技术方案,本发明实施例中,在通过上行子帧的部分时域资源接收TTI小于或等于一个子帧的时间长度的一半的PUSCH的情况下,通过该上行子帧接收PUCCH,每个PUCCH通过该上行子帧的全部时域资源传输,或者,每个PUCCH通过该上行子帧的全部时域资源中不用于传输探测信号SRS的资源传输,使得PUCCH可以重用已有的信道结构及基本的传输机制,且使得传输PUCCH的资源区域与legacy UE传输PUCCH的资源区域可以共享。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图 和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (20)

  1. 一种物理信道传输方法,其特征在于,包括:
    基站确定终端设备发送物理上行共享信道PUSCH的传输时间间隔TTI小于或等于一个子帧的时间长度一半;
    所述基站通过上行子帧的部分时域资源接收所述PUSCH,以及通过所述上行子帧接收物理上行控制信道PUCCH,每个所述PUCCH通过所述上行子帧的全部时域资源传输,或者,每个所述PUCCH通过所述上行子帧的全部时域资源中不用于传输探测信号SRS的资源传输。
  2. 如权利要求1所述的方法,其特征在于,所述PUSCH的TTI占用所述上行子帧中的一个或多个连续的单载波频分多址SC-FDMA符号。
  3. 如权利要求1所述的方法,其特征在于,若为长期演进LTE的时分双工TDD系统,所述上行子帧属于子帧集合{2,7}或者{2},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9;
    若为长期演进LTE的频分双工FDD系统,所述上行子帧属于子帧集合{0,1,2,3,4,5,6,7,8,9}或者{2,3,4,7,8,9}或者{2,3,7,8}或者{2,7}或者{2,3,4}或者{2,3}或者{2}或者{2,3,4,7,8},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    所述基站确定所述子帧集合,并将所述子帧集合通知给所述终端设备。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述基站在所述上行子帧的不同时域资源上接收到的所述PUCCH的发射功率相同。
  6. 一种物理信道传输方法,其特征在于,包括:
    终端设备确定上行子帧发送的PUSCH的传输时间间隔TTI小于或等于一个子帧的时间长度的一半;
    所述终端设备通过所述上行子帧发送PUCCH,每个所述PUCCH通过所述上行子帧的全部时域资源传输,或者,每个所述PUCCH通过所述上行子帧 的全部时域资源中不用于传输探测信号SRS的资源传输。
  7. 如权利要求6所述的方法,其特征在于,所述PUSCH的TTI占用所述上行子帧的一个或多个连续的单载波频分多址SC-FDMA符号。
  8. 如权利要求6所述的方法,其特征在于,所述终端设备通过所述上行子帧发送PUCCH的信号之前,包括:
    所述终端设备从子帧集合中选择一个子帧作为所述上行子帧;
    其中,若为长期演进LTE的时分双工TDD系统,所述子帧集合为{2,7}或者{2},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9;
    若为长期演进LTE的频分双工FDD系统,所述子帧集合为{0,1,2,3,4,5,6,7,8,9}或者{2,3,4,7,8,9}或者{2,3,7,8}或者{2,7}或者{2,3,4}或者{2,3}或者{2}或者{2,3,4,7,8},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    所述终端设备获取基站通知的所述子帧集合。
  10. 如权利要求6-9任一项所述的方法,其特征在于,所述终端设备通过所述上行子帧发送PUCCH,还包括:
    所述终端设备确定在所述上行子帧的不同时域资源上发送所述PUCCH的发射功率相同。
  11. 一种基站,其特征在于,包括:
    确定模块,用于确定终端设备发送PUSCH的传输时间间隔TTI小于或等于一个子帧的时间长度一半;
    接收模块,用于通过上行子帧的部分时域资源接收所述PUSCH,以及通过所述上行子帧接收PUCCH,每个所述PUCCH通过所述上行子帧的全部时域资源传输,或者,每个所述PUCCH通过所述上行子帧的全部时域资源中不用于传输探测信号SRS的资源传输。
  12. 如权利要求11所述的基站,其特征在于,所述PUSCH的TTI占用所述上行子帧中的一个或多个连续的单载波频分多址SC-FDMA符号。
  13. 如权利要求11所述的基站,其特征在于,若为长期演进LTE的时分双工TDD系统,所述上行子帧属于子帧集合{2,7}或者{2},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9;
    若为长期演进LTE的频分双工FDD系统,所述上行子帧属于子帧集合{0,1,2,3,4,5,6,7,8,9}或者{2,3,4,7,8,9}或者{2,3,7,8}或者{2,7}或者{2,3,4}或者{2,3}或者{2}或者{2,3,4,7,8},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9。
  14. 如权利要求13所述的基站,其特征在于,所述确定模块还用于:
    确定所述子帧集合;
    还包括发送模块,用于将所述确定模块确定的所述子帧集合通知给所述终端设备。
  15. 如权利要求11-14任一项所述的基站,其特征在于,所述接收模块在所述上行子帧的不同时域资源上接收到的所述PUCCH的发射功率相同。
  16. 一种终端设备,其特征在于,包括:
    确定模块,用于确定上行子帧发送的PUSCH的传输时间间隔TTI小于或等于一个子帧的时间长度的一半;
    发送模块,用于通过所述上行子帧发送PUCCH,每个所述PUCCH通过所述上行子帧的全部时域资源传输,或者,每个所述PUCCH通过所述上行子帧的全部时域资源中不用于传输探测信号SRS的资源传输。
  17. 如权利要求16所述的终端设备,其特征在于,所述PUSCH的TTI占用所述上行子帧的一个或多个连续的单载波频分多址SC-FDMA符号。
  18. 如权利要求16所述的终端设备,其特征在于,所述确定模块还用于:
    在所述发送模块发送PUCCH的信号之前,从子帧集合中选择一个子帧作为所述上行子帧;
    其中,若为长期演进LTE的时分双工TDD系统,所述子帧集合为{2,7}或者{2},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9;
    若为长期演进LTE的频分双工FDD系统,所述子帧集合为{0, 1,2,3,4,5,6,7,8,9}或者{2,3,4,7,8,9}或者{2,3,7,8}或者{2,7}或者{2,3,4}或者{2,3}或者{2}或者{2,3,4,7,8},其中,一个无线帧由10个子帧组成,分别为子帧0至子帧9。
  19. 如权利要求18所述的终端设备,其特征在于,还包括获取模块,用于:
    获取基站通知的所述子帧集合。
  20. 如权利要求16-19任一项所述的终端设备,其特征在于,所述发送模块还用于:
    确定在所述上行子帧的不同时域资源上发送所述PUCCH的发射功率相同。
PCT/CN2016/087836 2015-07-08 2016-06-30 一种物理信道传输方法及设备 WO2017005131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510398536.8 2015-07-08
CN201510398536.8A CN106341890B (zh) 2015-07-08 2015-07-08 一种物理信道传输方法及设备

Publications (1)

Publication Number Publication Date
WO2017005131A1 true WO2017005131A1 (zh) 2017-01-12

Family

ID=57684857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087836 WO2017005131A1 (zh) 2015-07-08 2016-06-30 一种物理信道传输方法及设备

Country Status (2)

Country Link
CN (1) CN106341890B (zh)
WO (1) WO2017005131A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405305B2 (en) * 2017-03-24 2019-09-03 Qualcomm Incorporated Single slot short PUCCH with support for intra slot frequency hopping
CN108809557A (zh) * 2017-04-28 2018-11-13 华为技术有限公司 传输信息的方法和装置
CN108811135B (zh) * 2017-05-05 2020-02-07 电信科学技术研究院 一种数据传输方法及装置
CN109688623B (zh) * 2017-10-18 2023-03-31 中国电信股份有限公司 无线帧结构及其配置方法和配置装置及物理信道结构
CN111713152B (zh) * 2018-02-13 2023-10-20 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101480098A (zh) * 2006-05-01 2009-07-08 株式会社Ntt都科摩 基于可变传输时间间隔长度控制的无线通信方法及无线基站装置
CN102017693A (zh) * 2008-02-29 2011-04-13 株式会社Ntt都科摩 移动通信系统、基站装置、用户装置以及方法
WO2014060010A1 (en) * 2012-10-15 2014-04-24 Nokia Solutions And Networks Oy Flexible frame structure
US20140369242A1 (en) * 2013-06-18 2014-12-18 Samsung Electronics Co., Ltd. Methods of ul tdm for inter-enodeb carrier aggregation
CN104620629A (zh) * 2012-09-12 2015-05-13 华为技术有限公司 用于自适应发送时间间隔(tti)结构的系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120048A2 (en) * 2008-03-28 2009-10-01 Lg Electronics Inc. Method for avoiding inter-cell interference in a multi-cell environment
WO2013067430A1 (en) * 2011-11-04 2013-05-10 Interdigital Patent Holdings Inc. Method and apparatus for power control for wireless transmissions on multiple component carriers associated with multiple timing advances
US9705654B2 (en) * 2011-11-08 2017-07-11 Apple Inc. Methods and apparatus for an extensible and scalable control channel for wireless networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101480098A (zh) * 2006-05-01 2009-07-08 株式会社Ntt都科摩 基于可变传输时间间隔长度控制的无线通信方法及无线基站装置
CN102017693A (zh) * 2008-02-29 2011-04-13 株式会社Ntt都科摩 移动通信系统、基站装置、用户装置以及方法
CN104620629A (zh) * 2012-09-12 2015-05-13 华为技术有限公司 用于自适应发送时间间隔(tti)结构的系统和方法
WO2014060010A1 (en) * 2012-10-15 2014-04-24 Nokia Solutions And Networks Oy Flexible frame structure
US20140369242A1 (en) * 2013-06-18 2014-12-18 Samsung Electronics Co., Ltd. Methods of ul tdm for inter-enodeb carrier aggregation

Also Published As

Publication number Publication date
CN106341890B (zh) 2019-09-17
CN106341890A (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6940914B2 (ja) Fdd‐tddジョイントキャリアアグリゲーションのためのアップリンク制御シグナリング
RU2611436C2 (ru) Способ передачи информации, оборудование пользователя и базовая станция
KR101555006B1 (ko) 캐리어 집성 시스템에서의 데이터 전송 방법 및 장비
JP2018509098A5 (zh)
US8989079B2 (en) Apparatus for transmitting and receiving uplink backhaul signal in wireless communication system and method thereof
RU2625319C1 (ru) Способ отправки восходящей управляющей информации, пользовательское оборудование и базовая станция
EP3500007B1 (en) Uplink transmission method, network side device and terminal
US10932246B2 (en) Methods and devices for dynamically determining transmission locations of UL DMRS
WO2017005131A1 (zh) 一种物理信道传输方法及设备
JP2015534371A (ja) ハイブリッドキャリアアグリゲーションをサポートするための方法および装置
JP2016519483A (ja) 通信システムにおけるharqタイミングの決定方法及び装置
WO2014121687A1 (zh) 一种通信处理方法及装置
JP6460430B2 (ja) 応答情報を送信するための方法、装置及びデバイス
CN105207757B (zh) 通信系统的载波聚合方法及装置
CN107306171A (zh) 数据传输的方法、设备和系统
CN104982000A (zh) 在载波聚合系统中用于通信的方法和装置
KR102187669B1 (ko) 업 링크 제어 정보(uci)의 전송 방법 및 장치
CN103037517A (zh) 一种无线通信方法、系统和基站
WO2015101046A1 (zh) 应答信息传输方法及装置、终端、基站、存储介质
KR101774183B1 (ko) 스펙트럼 통합의 데이터 발송 방법 및 장치
CN108293245B (zh) 一种数据通信的方法、终端设备及网络设备
CN103369695A (zh) 一种上行调度方法及装置
WO2017206740A1 (zh) 一种子帧类型通知、确定方法及装置
WO2017193714A1 (zh) 一种信道传输方法及装置
US10219251B2 (en) Method and device for communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16820782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16820782

Country of ref document: EP

Kind code of ref document: A1