WO2017179301A1 - 参照電圧安定化回路およびこれを備えた集積回路 - Google Patents

参照電圧安定化回路およびこれを備えた集積回路 Download PDF

Info

Publication number
WO2017179301A1
WO2017179301A1 PCT/JP2017/006354 JP2017006354W WO2017179301A1 WO 2017179301 A1 WO2017179301 A1 WO 2017179301A1 JP 2017006354 W JP2017006354 W JP 2017006354W WO 2017179301 A1 WO2017179301 A1 WO 2017179301A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference voltage
circuit
transistor
resistor
wiring
Prior art date
Application number
PCT/JP2017/006354
Other languages
English (en)
French (fr)
Inventor
野間崎 大輔
森江 隆史
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Priority to CN201780022615.6A priority Critical patent/CN109075773A/zh
Priority to JP2018511910A priority patent/JPWO2017179301A1/ja
Publication of WO2017179301A1 publication Critical patent/WO2017179301A1/ja
Priority to US16/157,741 priority patent/US20190068213A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/613Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in parallel with the load as final control devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • H03M1/0845Continuously compensating for, or preventing, undesired influence of physical parameters of noise of power supply variations, e.g. ripple
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters

Definitions

  • the present disclosure relates to a circuit for stabilizing a reference voltage, and more particularly, to a reference voltage stabilizing circuit suitable for an AD converter.
  • AD converters are widely used in various signal processing fields, and their conversion accuracy is an important performance index.
  • an AD converter performs AD conversion by comparing an input signal with a reference voltage. For this reason, in order to maintain high conversion accuracy, it is extremely important to keep the reference voltage constant with high accuracy.
  • noise in the mV order is often superimposed on the reference voltage, leading to degradation of AD conversion accuracy. Therefore, it is important to stabilize the reference voltage so that the reference voltage does not fluctuate due to disturbance noise, self-noise generated by the AD converter itself, or the like.
  • a reference voltage stabilization circuit As a reference voltage stabilization circuit, a configuration is known in which a transistor is provided between wirings for supplying a reference voltage, a constant bias voltage is applied to the gate of the transistor, and the gate is capacitively coupled to one of the wirings. (For example, FIG. 1 of Patent Document 1).
  • a constant current hereinafter, referred to as “operating current” as appropriate
  • the gate voltage of the transistor also drops accordingly. For this reason, the operating current decreases and the current supplied to the load circuit increases. As a result, the reference voltage recovers rapidly.
  • the operating current in the reference voltage stabilizing circuit may vary due to PVT variation (variation due to manufacturing process, power supply voltage, temperature). For this reason, variation occurs in the amount of voltage drop in the reference voltage stabilization circuit, resulting in variation in the value of the reference voltage.
  • FIG. 8 of Patent Document 1 discloses a reference voltage stabilization circuit that can stably maintain a reference voltage against disturbance noise and the like and can cope with variations in PVT. .
  • the reference voltage output from the reference voltage stabilization circuit is fed back to the regulator, and when the reference voltage decreases, the regulator increases the current supplied to the reference voltage stabilization circuit.
  • the operating current in the reference voltage stabilizing circuit is stable regardless of PVT variation.
  • This disclosure aims to make it possible to suppress variations in operating current while suppressing variations in reference voltage in a reference voltage stabilization circuit.
  • the reference voltage stabilization circuit is connected to the first and second output nodes that output a reference voltage, and the first and second output nodes, respectively.
  • the first transistor is connected between the first and second wirings connected to the first and second output nodes that output the reference voltage, respectively.
  • the gate of the first transistor is capacitively coupled to the first wiring.
  • a replica circuit having a resistor and a second transistor connected in series is provided between the first and second wirings.
  • the gates of the first and second transistors are connected to each other.
  • the differential amplifier receives the voltage of the first node between the resistor in the replica circuit and the second transistor and the reference voltage, and provides an output to the gate of the second transistor. For example, when the operating current of the first transistor increases due to PVT variation, the voltage at the first node decreases according to the decrease in the reference voltage, and the differential amplifier decreases the output, that is, the gate voltage of the second transistor.
  • the gate voltage of the first transistor also decreases, and its operating current decreases.
  • the operating current of the first transistor decreases, the voltage at the first node increases in accordance with the increase in the reference voltage, and the differential amplifier increases the output, that is, the gate voltage of the second transistor.
  • the gate voltage of the first transistor also rises and its operating current increases. Such an operation suppresses variations in the operating current of the first transistor. Therefore, an increase in power consumption can be suppressed, and a decrease in reference voltage stabilization capability can be suppressed.
  • the reference voltage stabilizing circuit in the reference voltage stabilizing circuit, it is possible to suppress the variation in the operating current while suppressing the variation in the reference voltage. Therefore, it is possible to suppress the increase in power consumption of the integrated circuit and reduce the reduced reference voltage. It becomes possible to recover reliably.
  • FIG. 1 is a configuration diagram of a reference voltage stabilization circuit according to a first embodiment.
  • (A), (b) is a configuration example of a resistor Configuration example of voltage generation circuit Timing chart showing basic operation of reference voltage stabilization circuit Example configuration with multiple back-end circuits (A), (b) is another configuration example of the preceding circuit.
  • Another configuration example of the reference voltage stabilization circuit in the first embodiment Configuration of Reference Voltage Stabilization Circuit According to Second Embodiment
  • the block diagram of the reference voltage stabilization circuit which concerns on 3rd Embodiment
  • FIG. 1 shows a configuration of a reference voltage stabilization circuit according to the first embodiment.
  • the reference voltage stabilization circuit 10 outputs the reference voltage VREF_OUT from the output node OT1.
  • the reference voltage VREF_OUT is supplied to the AD converter 100 that is an example of a load circuit.
  • the AD converter 100 is, for example, a successive approximation AD converter.
  • Both the reference voltage stabilizing circuit 10 and the AD converter 100 are mounted on the integrated circuit 300.
  • the reference voltage stabilization circuit 10 uses the voltages LREF and VSS supplied from the input side, for example, from the external power supply 200 via the I / O pins P1 and P2 as source voltages that are the sources of the reference voltage VREF_OUT. Receive at L2.
  • the wirings L1 and L2 are connected to the output nodes OT1 and OT2, respectively.
  • the reference voltage stabilization circuit 10 is configured to output a reference voltage VREF_OUT that is stable against load fluctuations in the AD converter 100 from the output nodes OT1 and OT2.
  • the I / O pins P1 and P2 are provided with an external bypass capacitor 202 for removing noise superimposed on the voltages VREF and VSS supplied from the external power source 200.
  • Reference numeral 204 denotes a parasitic inductance of the package of the integrated circuit 300.
  • the reference voltage stabilization circuit 10 is preferably arranged close to the I / O in the integrated circuit 300, that is, near the I / O pins P1 and P2, so that the stable reference voltage VREF_OUT can be supplied.
  • the reference voltage stabilization circuit 10 may be supplied with the voltages VREF and VSS from a regulator circuit built in the integrated circuit 300 instead of the external power supply 200.
  • the reference voltage stabilization circuit 10 includes a front circuit 1 and a rear circuit 2.
  • the pre-stage circuit 1 includes a capacitive element 111 connected between the wirings L1 and L2.
  • the pre-stage circuit 1 has a function of removing noise superimposed on the reference voltage VREF_OUT.
  • the post-stage circuit 2 includes a transistor M1 connected between the wiring L1 and the wiring L2, and a capacitor 21 connected between the wiring L1 and the gate of the transistor M1.
  • the transistor M1 is an N-type MOS transistor. Since the gate of the transistor M1 is capacitively coupled to the wiring L1, the gate voltage Vbn of the transistor M1 changes according to the change of the reference voltage VREF_OUT.
  • the post-stage circuit 2 includes a replica circuit 20, a differential amplifier 23, and a voltage generation circuit 24 provided between the wiring L1 and the wiring L2.
  • the replica circuit 20 includes a resistor 22 and a transistor M2 connected in series, and the gate of the transistor M2 is connected to the gate of the transistor M1.
  • the transistor M2 is an N-type MOS transistor.
  • the gate of the transistor M2 is connected to the gate of the transistor M1 through the resistor 25. This is to prevent the gate voltage Vbn0 of the transistor M2 from being affected by an abrupt AC change in the gate voltage Vbn of the transistor M1.
  • the gate voltage Vbn0 of the transistor M2 is equal to the gate voltage Vbn of the transistor M1 in terms of DC.
  • the inverting input receives the reference voltage V_ID generated by the voltage generation circuit 24, and the non-inverting input is connected to the node N1 between the resistor 22 and the transistor M2. The output of the differential amplifier 23 is given to the gate of the transistor M2.
  • the post-stage circuit 2 further includes an isolation resistor 26 provided between the replica circuit 20 and the transistor M1 in the wiring L1.
  • the voltage drop at the isolation resistor 26 is Vdrop1
  • the voltage drop at the resistor 22 of the replica circuit 20 is Vdrop2.
  • the device parameter is adjusted so that the resistance ratio between the resistor 22 and the transistor M2 is equal to the resistance ratio between the separation resistor 26 and the transistor M1.
  • the voltage V_RP of the node N1 becomes equal to the reference voltage VREF_OUT.
  • FIG. 2 shows a configuration example of the resistor 22 in the replica circuit 20.
  • the resistor 22 may be realized by a so-called passive element resistor 221. Alternatively, it may be realized by a wiring resistance composed of a sufficiently long wiring. Further, as shown in FIG. 2B, it may be realized by a transistor 222 in which a bias voltage VF is applied to the gate.
  • the resistor 25 and the separation resistor 26 may be configured similarly.
  • FIG. 3 is a configuration example of the voltage generation circuit 24.
  • the configuration in FIG. 3 includes a resistance ladder 241 provided between the voltages VREF and VSS.
  • the reference voltage V_ID is generated from one of the connection nodes of the resistors that constitute the resistance ladder 241.
  • the voltage generation circuit 24 may be realized by a bandgap reference circuit, for example.
  • FIG. 4 is a timing chart showing the basic operation of the reference voltage stabilization circuit 10.
  • the AD converter 100 performs a discrete operation with the operating frequency F, and abruptly draws the current Iout intermittently at a period of 1 / F.
  • the reference voltage VREF_OUT suddenly decreases due to current drawing of the AD converter 100, the current Igm flowing through the transistor M1 decreases due to the decrease in the gate voltage Vbn.
  • the current Iout supplied to the AD converter 100 increases, and the reference voltage VREF_OUT is rapidly recovered. With this operation, the reference voltage VREF_OUT can be stabilized.
  • the differential amplifier 23 is The output, that is, the gate voltage Vbn0 of the transistor M2 is lowered. Along with this, the gate voltage Vbn of the transistor M1 also decreases, and the current Igm0 decreases.
  • the voltage V_RP of the node N1 increases according to the increase of the reference voltage VREF_OUT, and the differential amplifier 23 increases the output, that is, the gate voltage Vbn0 of the transistor M2.
  • the gate voltage Vbn0 of the transistor M1 also rises and its current Igm0 increases. Such an operation suppresses variations in the current Igm0 of the transistor M1. Therefore, an increase in power consumption can be suppressed, and a decrease in reference voltage stabilization capability can be suppressed.
  • FIG. 5 shows a configuration of a reference voltage stabilization circuit 10A according to a modification.
  • four post-stage circuits 2 ⁇ / b> A are commonly connected to one pre-stage circuit 1.
  • one voltage generation circuit 24 is connected to four subsequent-stage circuits 2A, and the reference voltage V_ID generated by the voltage generation circuit 24 is commonly applied to each subsequent-stage circuit 2A.
  • Each post-stage circuit 2A supplies a stable reference voltage VREF_OUT to the corresponding AD converter 100.
  • the plurality of AD converters 100 include, for example, an AD converter that performs an interleave operation, a parallel AD converter that AD converts a common input signal using a common operation clock, and an independent AD that only shares a reference voltage. Any of the converters may be used.
  • FIG. 6 shows another configuration example of the pre-stage circuit 1.
  • a resistive element 112 may be connected in series with the capacitive element 111 as shown in FIG.
  • resistance elements 113 and 114 may be inserted in front of the capacitor element 111 in the wirings L ⁇ b> 1 and L ⁇ b> 2.
  • ⁇ Other configuration example 1> In the configuration of FIG. 1, it is assumed that the device parameters are adjusted so that the resistance ratio of the resistor 22 and the transistor M2 included in the replica circuit 20 is equal to the resistance ratio of the isolation resistor 26 and the transistor M1.
  • the present embodiment is not limited to this.
  • FIG. 7 is a diagram showing another configuration example of the reference voltage stabilization circuit.
  • the separation resistor 26 is omitted from the wiring L1 in the subsequent circuit 2B of the reference voltage stabilization circuit 10B.
  • the variation in the current Igm0 of the transistor M1 can be suppressed using the voltage V_RP of the node N1. That is, when the current Igm0 increases due to PVT variation, the reference voltage VREF_OUT decreases and the voltage V_RP of the node N1 also decreases.
  • the gate voltage Vbn0 of the transistor M2 decreases, the gate voltage Vbn of the transistor M1 also decreases, and the current Igm0 decreases.
  • the reference voltage VREF_OUT increases and the voltage V_RP of the node N1 also increases. Due to the operation of the differential amplifier 23, the gate voltage Vbn0 of the transistor M2 increases, and accordingly, the gate voltage Vbn of the transistor M1 also increases, and the current Igm0 increases.
  • the resistance ratio between the resistor 22 and the transistor M2 may not necessarily be equal to the resistance ratio between the separation resistor 26 and the transistor M1.
  • the resistor 22 is on the wiring L1 side and the transistor M2 is on the wiring L2 side, but they may be connected in the reverse order.
  • the replica circuit in the reference voltage stabilization circuit is realized by a transistor and two resistors. Note that description of components common to the first embodiment may be omitted as appropriate.
  • FIG. 8 shows the configuration of the reference voltage stabilization circuit according to the second embodiment.
  • the reference voltage stabilization circuit 10C outputs reference voltages VREFH_OUT and VREFL_OUT from the output nodes OT1 and OT2.
  • the reference voltages VREFH_OUT and VREFL_OUT are supplied to the AD converter 100 which is an example of a load circuit.
  • the AD converter 100 is, for example, a successive approximation AD converter.
  • Both the reference voltage stabilization circuit 10 ⁇ / b> C and the AD converter 100 are mounted on the integrated circuit 300.
  • the reference voltage stabilization circuit 10C receives voltages VREFH and VREFL from the input side, for example, from the external power supply 200 via the I / O pins P1 and P2 to the wirings L1 and L2.
  • the wirings L1 and L2 are connected to the output nodes OT1 and OT2, respectively.
  • the reference voltage stabilization circuit 10C is configured to output reference voltages VREFH_OUT and VREFL_OUT that are stable against load fluctuations in the AD converter 100 from the output nodes OT1 and OT2.
  • the post-stage circuit 2C includes a transistor M1 connected between the wiring L1 and the wiring L2, and a capacitor 21 connected between the wiring L1 and the gate of the transistor M1.
  • the transistor M1 is an N-type MOS transistor. Since the gate of the transistor M1 is capacitively coupled to the wiring L1, the gate voltage Vbn of the transistor M1 changes according to the change in the voltage of the reference voltage VREFH_OUT.
  • the post-stage circuit 2C includes a replica circuit 20A provided between the wiring L1 and the wiring L2, a differential amplifier 23, and a voltage generation circuit 24.
  • the replica circuit 20A includes a resistor 22, a transistor M2, and a resistor 31 connected in series, and the gate of the transistor M2 is connected to the gate of the transistor M1 via the resistor 25.
  • the transistor M2 is an N-type MOS transistor.
  • the gate voltage Vbn0 of the transistor M2 is equal to the gate voltage Vbn of the transistor M1 in terms of DC.
  • the inverting input receives the reference voltage V_ID generated by the voltage generation circuit 24, and the non-inverting input is connected to the node N1 between the resistor 22 and the transistor M2.
  • the output of the differential amplifier 23 is given to the gate of the transistor M2.
  • the post-stage circuit 2C further includes an isolation resistor 26 provided between the replica circuit 20A and the transistor M1 in the wiring L1, and is provided between the replica circuit 20A and the transistor M1 in the wiring L2.
  • a separation resistor 32 is provided.
  • the voltage drop in the isolation resistor 26 is Vdrop1
  • the voltage drop in the resistor 22 of the replica circuit 20A is Vdrop2.
  • the voltage drop in the isolation resistor 32 is Vdrop3
  • the voltage drop in the resistor 31 included in the replica circuit 20A is Vdrop4.
  • the device parameter is adjusted so that the resistance ratio of the resistor 22, the transistor M2, and the resistor 31 is equal to the resistance ratio of the separation resistor 26, the transistor M1, and the separation resistor 32.
  • variation in the current (operating current) Igm0 flowing through the transistor M1 in a steady state where the AD converter 100 does not draw current is suppressed using the voltage V_RP of the node N1.
  • the differential amplifier 23 lowers the output, that is, the gate voltage Vbn0 of the transistor M2, in response to a decrease in the voltage V_RP that is a non-inverting input.
  • the gate voltage Vbn of the transistor M1 also decreases, and the current Igm0 decreases.
  • the difference voltage between the reference voltages VREFH_OUT and VREFL_OUT increases, and the voltage V_RP at the node N1 also increases according to the increase in the difference voltage.
  • the differential amplifier 23 increases the output, that is, the gate voltage Vbn0 of the transistor M2 in response to the increase of the voltage V_RP that is a non-inverting input.
  • the gate voltage Vbn of the transistor M1 also rises and the current Igm0 increases. Such an operation suppresses variations in the current Igm0.
  • the device parameters are adjusted so that the resistance ratio of the resistor 22, the transistor M2, and the resistor 31 is equal to the resistance ratio of the separation resistor 26, the transistor M1, and the separation resistor 32.
  • the present embodiment is not limited to this.
  • one or both of the separation resistors 26 and 32 may be omitted.
  • the resistance ratio of the resistor 22, the transistor M2, and the resistor 31 may not necessarily be equal to the resistance ratio of the separation resistor 26, the transistor M1, and the separation resistor 32.
  • FIG. 9 shows the configuration of the reference voltage stabilization circuit according to the third embodiment.
  • the post-stage circuit 2D is provided with an assist circuit 40 for recovering the reference voltage VREF_OUT more quickly.
  • Other configurations are the same as those of the post-stage circuit 2 in FIG.
  • the assist circuit 40 includes a resistor 41 and a capacitor 42 connected in series between the wiring L1 and the wiring L2.
  • the assist circuit 40 is provided on the output side of the transistor M1.
  • the impedance of the resistor 41 is set sufficiently large so that the impedance of the capacitor 42 at the operating frequency F of the AD converter 100 can be ignored. That is, when the resistance value of the resistor 41 is R0 and the capacitance value of the capacitor 42 is C0, the relationship of the following formula (1) is satisfied.
  • the resistance value R0 is preferably 10 times or more the impedance of the capacitor 42 at the operating frequency F. R0 >> 1 / (2 ⁇ ⁇ F ⁇ C0) (1)
  • the assist circuit 40 supplies the charge accumulated in the capacitor 42 to the AD converter 100 as a current.
  • the amount of current to be supplied is determined by the resistance value R0 of the resistor 41 and the voltage value of the reference voltage VREF_OUT. For this reason, the assist circuit 40 continues to supply a large current until the reference voltage VREF_OUT is recovered.
  • the resistance-side terminal of the capacitor 42 maintains a voltage higher than the reference voltage VREF_OUT, no current is supplied from the wiring L1 to the capacitor 42.
  • the assist circuit 40 can promote the recovery of the lowered reference voltage VREF_OUT. Further, in a steady state in which the AD converter 100 does not draw current, the direct current is cut off by the capacitor 42, so that no unnecessary through current is generated.
  • an assist circuit may be provided in the regulator circuit.
  • FIG. 10 shows a configuration example in which an assist circuit is provided in the regulator circuit.
  • the pre-stage circuit 1 is not shown in the reference voltage stabilization circuit 10.
  • the regulator circuit 210 is connected between the operational amplifier 56 that receives the voltage generated by the voltage generation circuit 55 at the positive side input, and the power supply VDD and the output terminal VO, and an output transistor that receives the output of the operational amplifier 56 at the gate ( Source follower structure) M3 and a load resistor 57 connected between the output transistor M3 and the ground VSS.
  • the output terminal VO is feedback-connected to the negative side input of the operational amplifier 56.
  • the regulator circuit 210 further includes an assist circuit 50 similar to the configuration described above.
  • the assist circuit 50 includes a resistor 51 and a capacitor 52 connected in series between the output node VO and the ground VSS.
  • the impedance of the resistor 51 is set sufficiently large so that the impedance of the capacitor 52 at the operating frequency F of the AD converter 100 can be ignored.
  • the assist circuit 50 can promote the recovery of the lowered reference voltage VREF_OUT. Further, when the AD converter 100 does not draw current, the direct current is cut off by the capacitor 52, so that no unnecessary through current is generated.
  • an assist circuit may be provided in the configuration other than the configuration in FIG. 1 as shown in the present embodiment.
  • the AD converter 100 is a successive approximation AD converter.
  • the AD converter 100 may be another type of AD converter that operates discretely with a clock signal, such as a pipelined AD converter, a flash AD converter, and a delta-sigma AD converter.
  • the load circuit that receives the reference voltage is not limited to the AD converter 100, and any circuit that operates by referring to the reference voltage may be used.
  • the reference voltage stabilization circuit it is possible to suppress variations in operating current while suppressing variations in reference voltage. For example, it is possible to suppress an increase in power consumption of an integrated circuit and improve the performance of an AD converter. Useful for.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Analogue/Digital Conversion (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Nonlinear Science (AREA)

Abstract

参照電圧(VREF_OUT)を出力する出力ノード(OT1,OT2)とそれぞれ接続された配線(L1,L2)の間に、ゲートが配線(L1)と容量結合されたトランジスタ(M1)が接続されている。配線(L1,L2)の間に、直列に接続された抵抗(22)とトランジスタ(M2)を有するレプリカ回路(20)が設けられ、トランジスタ(M1,M2)はゲート同士が接続されている。差動増幅器(23)は、抵抗(22)とトランジスタ(M1)の間のノード(N1)の電圧(V_RP)と基準電圧(V_ID)とを受け、出力をトランジスタ(M2)のゲートに与える。

Description

参照電圧安定化回路およびこれを備えた集積回路
 本開示は、参照電圧を安定化する回路に関し、特に、AD変換器に好適な参照電圧安定化回路に関する。
 AD変換器は各種信号処理分野で広く利用されており、その変換精度は重要な性能指標である。一般に、AD変換器は入力信号を参照電圧と比較することによってAD変換を行う。このため、高い変換精度を保つためには、参照電圧を精度よく一定に保つことが極めて重要である。アプリケーションにもよるが、mVオーダーのノイズが参照電圧に重畳されることでAD変換精度の劣化につながることが多い。したがって、外乱ノイズやAD変換器自身が出す自己ノイズ等によって参照電圧が揺れないように、参照電圧を安定化することが重要である。
 参照電圧安定化回路として、参照電圧を供給する配線間にトランジスタを設けて、このトランジスタのゲートに一定のバイアス電圧を与え、かつ、このゲートを配線の一方と容量結合させた構成が知られている(例えば、特許文献1の図1)。この回路構成では、参照電圧が安定している定常状態では、トランジスタには一定の電流(以下、適宜、「動作電流」という。)が流れている。AD変換器等の負荷回路から急激に電流が引かれ、参照電圧が急に低下したとき、これに伴いトランジスタのゲート電圧も低下する。このため、動作電流は減り、負荷回路に供給される電流が増加する。これにより、参照電圧は急速に回復する。
 ただし、参照電圧安定化回路内の動作電流には、PVTばらつき(製造プロセス、電源電圧、温度によるばらつき)に起因したばらつきが生じる可能性がある。このため、参照電圧安定化回路内での電圧降下量にばらつきが生じるため、参照電圧の値にばらつきが生じてしまう。
 この問題に対処するため、特許文献1の図8には、外乱ノイズ等に対して参照電圧を安定的に保つことができ、かつ、PVTばらつきに対応した参照電圧安定化回路が開示されている。この構成では、参照電圧安定化回路から出力される参照電圧をレギュレータにフィードバックし、参照電圧が低下したときは、レギュレータが、参照電圧安定化回路に供給する電流を増加させる。
国際公開第2012/157155号
 ところが、特許文献1の図8の構成では、参照電圧安定化回路から出力される参照電圧を安定させることができるものの、参照電圧安定化回路内の動作電流のばらつきを抑制することができない。例えば、PVTばらつきに起因して動作電流が大きくなったとき、参照電圧安定化回路内での電圧降下量が増え、参照電圧が低下する。このとき、参照電圧がフィードバックされるレギュレータの動作によって、参照電圧安定化回路に供給される電流が増加し、これにより参照電圧が上昇する。ところがこの場合、動作電流は大きいままであり、抑制されない。
 ここで、動作電流が大きいと、回路の消費電力が増加するという問題が生じる。一方、動作電流が小さくなると、参照電圧が低下した際に負荷回路に供給できる電流量が減るため、参照電圧の回復が遅くなり、参照電圧の安定化能力が低下してしまう。すなわち、参照電圧安定化回路内の動作電流は、PVTばらつきに依らず、安定していることが好ましい。
 本開示は、参照電圧安定化回路において、参照電圧のばらつきを抑制しつつ、動作電流のばらつきも抑制可能にすることを目的とする。
 本開示の一態様では、参照電圧安定化回路は、参照電圧を出力する第1および第2出力ノードと、前記第1および第2出力ノードとそれぞれ接続されており、入力側から前記参照電圧の元になる元電圧が与えられる第1および第2配線と、前記第1配線と前記第2配線との間に接続された第1トランジスタと、前記第1配線と前記第1トランジスタのゲートとの間に接続された容量と、前記第1配線と前記第2配線との間に設けられ、直列に接続された抵抗および第2トランジスタを有しており、前記第2トランジスタのゲートが前記第1トランジスタのゲートと接続されている、レプリカ回路と、第1入力が前記抵抗と前記第2トランジスタとの間の第1ノードに接続され、第2入力が基準電圧を受け、出力が前記第2トランジスタのゲートに接続された差動増幅器とを備える。
 この態様によると、参照電圧を出力する第1および第2出力ノードとそれぞれ接続された第1および第2配線の間に、第1トランジスタが接続されている。第1トランジスタのゲートは第1配線と容量結合されている。第1および第2配線の間に、直列に接続された抵抗および第2トランジスタを有するレプリカ回路が設けられている。第1および第2トランジスタはゲート同士が接続されている。差動増幅器は、レプリカ回路における抵抗と第2トランジスタの間の第1ノードの電圧と基準電圧とを受け、出力を第2トランジスタのゲートに与える。例えばPVTばらつきに起因して第1トランジスタの動作電流が増加したとき、参照電圧の低下に応じて第1ノードの電圧が低下し、差動増幅器は、出力すなわち第2トランジスタのゲート電圧を下げる。これに伴い、第1トランジスタのゲート電圧も低下し、その動作電流が減少する。一方、第1トランジスタの動作電流が減少したとき、参照電圧の上昇に応じて第1ノードの電圧が上昇し、差動増幅器は、出力すなわち第2トランジスタのゲート電圧を上げる。これに伴い、第1トランジスタのゲート電圧も上昇し、その動作電流が増加する。このような動作によって、第1トランジスタの動作電流のばらつきが抑制される。したがって、消費電力の増加を抑制できるとともに、参照電圧の安定化能力の低下を抑えることができる。
 本開示によると、参照電圧安定化回路において、参照電圧のばらつきを抑制しつつ、動作電流のばらつきも抑制できるので、集積回路の消費電力の増加を抑えることができ、かつ、低下した参照電圧を確実に回復させることが可能になる。
第1実施形態に係る参照電圧安定化回路の構成図 (a),(b)は抵抗の構成例 電圧生成回路の構成例 参照電圧安定化回路の基本的な動作を示すタイミングチャート 後段回路を複数設けた構成例 (a),(b)は前段回路の他の構成例 第1実施形態における参照電圧安定化回路の他の構成例 第2実施形態に係る参照電圧安定化回路の構成図 第3実施形態に係る参照電圧安定化回路の構成図 第3実施形態における参照電圧安定化回路の他の構成例
 以下、実施の形態について、図面を参照して説明する。
 (第1実施形態)
 図1は第1実施形態に係る参照電圧安定化回路の構成を示す。参照電圧安定化回路10は、出力ノードOT1から参照電圧VREF_OUTを出力する。参照電圧VREF_OUTは、負荷回路の一例であるAD変換器100に供給される。AD変換器100は、例えば逐次比較型AD変換器である。参照電圧安定化回路10およびAD変換器100は、いずれも集積回路300に実装されている。参照電圧安定化回路10は、入力側から、例えば外部電源200からI/OピンP1,P2を介して供給された電圧VREF,VSSを、参照電圧VREF_OUTの元になる元電圧として、配線L1,L2に受ける。配線L1,L2はそれぞれ出力ノードOT1,OT2に接続されている。参照電圧安定化回路10は、出力ノードOT1,OT2から、AD変換器100における負荷変動に対して安定した参照電圧VREF_OUTを出力するように構成されている。
 I/OピンP1,P2には、外部電源200から供給される電圧VREF,VSSに重畳されるノイズを除去するための外付けバイパスコンデンサ202が設けられている。204は集積回路300のパッケージの寄生インダクタンスである。なお、参照電圧安定化回路10は、安定した参照電圧VREF_OUTを供給できるように、集積回路300においてI/O寄り、すなわち、I/OピンP1,P2の近くに配置することが好ましい。また、参照電圧安定化回路10には、外部電源200の代わりに、集積回路300に内蔵されたレギュレータ回路から電圧VREF,VSSを与えるようにしてもかまわない。
 参照電圧安定化回路10は、前段回路1および後段回路2を備えている。前段回路1は、配線L1,L2の間に接続された容量素子111を備えている。前段回路1は、参照電圧VREF_OUTに重畳されるノイズを除去する機能を有する。
 後段回路2は、配線L1と配線L2との間に接続されたトランジスタM1と、配線L1とトランジスタM1のゲートとの間に接続された容量21とを備えている。トランジスタM1は、ここではN型MOSトランジスタである。トランジスタM1のゲートは配線L1と容量結合されているので、トランジスタM1のゲート電圧Vbnは参照電圧VREF_OUTの変化に応じて変化する。また、後段回路2は、配線L1と配線L2との間に設けられたレプリカ回路20と、差動増幅器23と、電圧生成回路24とを備えている。レプリカ回路20は、直列に接続された抵抗22およびトランジスタM2を有しており、トランジスタM2のゲートは、トランジスタM1のゲートと接続されている。トランジスタM2は、ここではN型MOSトランジスタである。なおここでは、トランジスタM2のゲートは、抵抗25を介してトランジスタM1のゲートと接続されている。これは、トランジスタM2のゲート電圧Vbn0が、トランジスタM1のゲート電圧Vbnの急激なAC的変化の影響を受けないようにするためである。トランジスタM2のゲート電圧Vbn0は、DC的には、トランジスタM1のゲート電圧Vbnと等しくなる。差動増幅器23は、反転入力が電圧生成回路24によって生成された基準電圧V_IDを受け、非反転入力が抵抗22とトランジスタM2との間のノードN1に接続されている。差動増幅器23の出力は、トランジスタM2のゲートに与えられる。
 後段回路2はさらに、配線L1において、レプリカ回路20とトランジスタM1との間に設けられた、分離抵抗26を備えている。
 分離抵抗26における電圧降下をVdrop1とし、レプリカ回路20が有する抵抗22における電圧降下をVdrop2とする。ここでは、Vdrop1=Vdrop2となるように、抵抗22およびトランジスタM2のデバイスパラメタが調整されている。具体的には例えば、抵抗22とトランジスタM2の抵抗比が、分離抵抗26とトランジスタM1の抵抗比と等しくなるように、デバイスパラメタが調整されている。これにより、ノードN1の電圧V_RPは、参照電圧VREF_OUTと等しくなる。
 図2はレプリカ回路20における抵抗22の構成例である。図2(a)に示すように、抵抗22はいわゆる受動素子の抵抗素子221によって実現してもよい。あるいは、十分長くした配線からなる配線抵抗によって実現してもよい。また、図2(b)に示すように、ゲートにバイアス電圧VFを印加したトランジスタ222によって実現してもよい。抵抗25および分離抵抗26についても同様に構成すればよい。
 図3は電圧生成回路24の構成例である。図3の構成は、電圧VREF,VSSの間に設けられた抵抗ラダー241を備えている。図3に示すように、抵抗ラダー241を構成する抵抗同士の接続ノードのいずれかから、基準電圧V_IDが生成される。なお、電圧生成回路24は、その他にも例えばバンドギャップリファレンス回路によって実現してもよい。
 参照電圧安定化回路10の動作について説明する。図4は参照電圧安定化回路10の基本的な動作を示すタイミングチャートである。AD変換器100は動作周波数Fでもって離散的な動作を行い、周期1/Fで間欠的に電流Ioutを急激に引き込む。AD変換器100の電流引き込みによって参照電圧VREF_OUTが急に低下したとき、ゲート電圧Vbnの低下により、トランジスタM1を流れる電流Igmが減少する。これにより、AD変換器100に供給される電流Ioutが増加するため、参照電圧VREF_OUTは急速に回復する。このような動作によって、参照電圧VREF_OUTを安定させることができる。
 ここで、AD変換器100が電流引き込みを行わない定常時においてトランジスタM1を流れる電流(動作電流)Igm0には、いわゆるPVTばらつきに起因したばらつきが生じる可能性がある。本実施形態の構成では、この電流Igm0のばらつきを抑制することができる。
 いま、PVTばらつきに起因して電流Igm0が増加したとする。すると、分離抵抗26における電圧降下Vdrop1が増大し、これにより、参照電圧VREF_OUTが低下する。上述したレプリカ回路20により、VREF_OUT=V_RPなので、参照電圧VREF_OUTの低下に応じて電圧V_RPも低下する。差動増幅器23は、非反転入力である電圧V_RPの低下に応じて、出力すなわちトランジスタM2のゲート電圧Vbn0を下げる。これに伴い、トランジスタM1のゲート電圧Vbnも低下し、これにより、電流Igm0が減少する。
 また、PVTばらつきに起因して電流Igm0が減少したとする。すると、分離抵抗26における電圧降下Vdrop1が減少し、これにより、参照電圧VREF_OUTが上昇する。上述したレプリカ回路20により、VREF_OUT=V_RPなので、参照電圧VREF_OUTの上昇に応じて電圧V_RPも上昇する。差動増幅器23は、非反転入力である電圧V_RPの上昇に応じて、出力すなわちトランジスタM2のゲート電圧Vbn0を上げる。これに伴い、トランジスタM1のゲート電圧Vbnも上昇し、これにより、電流Igm0が増加する。
 このような動作によって、電流Igm0のばらつきが抑制される。
 以上のように本実施形態によると、例えばPVTばらつきに起因してトランジスタM1の電流Igm0が増加したとき、参照電圧VREF_OUTの低下に応じてノードN1の電圧V_RPが低下し、差動増幅器23は、出力すなわちトランジスタM2のゲート電圧Vbn0を下げる。これに伴い、トランジスタM1のゲート電圧Vbnも低下し、その電流Igm0が減少する。一方、トランジスタM1の電流Igm0が減少したとき、参照電圧VREF_OUTの上昇に応じてノードN1の電圧V_RPが上昇し、差動増幅器23は、出力すなわちトランジスタM2のゲート電圧Vbn0を上げる。これに伴い、トランジスタM1のゲート電圧Vbn0も上昇し、その電流Igm0が増加する。このような動作によって、トランジスタM1の電流Igm0のばらつきが抑制される。したがって、消費電力の増加を抑制できるとともに、参照電圧の安定化能力の低下を抑えることができる。
 また、1個の前段回路に複数の後段回路が接続されるように、参照電圧安定化回路を変形してもよい。図5は変形例に係る参照電圧安定化回路10Aの構成を示す。この変形例では、1個の前段回路1に4個の後段回路2Aが共通に接続されている。また、1個の電圧生成回路24が4個の後段回路2Aに接続されており、電圧生成回路24によって生成された基準電圧V_IDは各後段回路2Aに共通に与えられる。各後段回路2Aは、それぞれ対応するAD変換器100に安定した参照電圧VREF_OUTを供給する。なお、複数のAD変換器100は、例えば、インターリーブ動作するAD変換器、共通の動作クロックで共通の入力信号をAD変換する並列方式のAD変換器、参照電圧を共有するのみの互いに独立したAD変換器のいずれであってもよい。
 また、図6は前段回路1の他の構成例である。容量素子111と寄生インダクタンス204との間の共振現象を抑制するために、図6(a)に示すように、容量素子111と直列に抵抗素子112を接続してもよい。あるいは、図6(b)に示すように、配線L1,L2において、容量素子111の前に抵抗素子113,114を挿入してもよい。
 <他の構成例1>
 図1の構成では、レプリカ回路20が有する抵抗22とトランジスタM2の抵抗比が、分離抵抗26とトランジスタM1の抵抗比と等しくなるように、デバイスパラメタが調整されているものとした。ただし、本実施形態はこれに限られるものではない。
 図7は参照電圧安定化回路の他の構成例を示す図である。図7の構成では、参照電圧安定化回路10Bの後段回路2Bにおいて、配線L1から分離抵抗26が省かれている。図7の構成でも、図1の構成と同様に、トランジスタM1の電流Igm0のばらつきを、ノードN1の電圧V_RPを利用して抑えることができる。すなわち、PVTばらつきに起因して電流Igm0が増加すると、参照電圧VREF_OUTが低下し、ノードN1の電圧V_RPも低下する。差動増幅器23の動作によってトランジスタM2のゲート電圧Vbn0が下がり、トランジスタM1のゲート電圧Vbnも低下し、電流Igm0が減少する。一方、PVTばらつきに起因して電流Igm0が減少すると、参照電圧VREF_OUTが上昇し、ノードN1の電圧V_RPも上昇する。差動増幅器23の動作によってトランジスタM2のゲート電圧Vbn0が上がり、これに伴い、トランジスタM1のゲート電圧Vbnも上昇し、電流Igm0が増加する。
 また、分離抵抗26が存在する構成において、抵抗22とトランジスタM2の抵抗比が、分離抵抗26とトランジスタM1の抵抗比と必ずしも等しくなくてもよい。ただし、図1の構成のように、抵抗22とトランジスタM2の抵抗比が、分離抵抗26とトランジスタM1の抵抗比と等しくなるように、デバイスパラメタを調整する方が、PVTばらつきに対して強い回路を実現できる。
 なお、図7の構成では、レプリカ回路20において、抵抗22が配線L1側にあり、トランジスタM2が配線L2側にあるものとしたが、この逆の順に接続されていてもよい。
 (第2実施形態)
 第2実施形態では、参照電圧安定化回路におけるレプリカ回路を、トランジスタと2個の抵抗によって実現する。なお、第1実施形態と共通の構成要素については、適宜説明を省略する場合がある。
 図8は第2実施形態に係る参照電圧安定化回路の構成を示す。参照電圧安定化回路10Cは、出力ノードOT1,OT2から参照電圧VREFH_OUT,VREFL_OUTを出力する。参照電圧VREFH_OUT,VREFL_OUTは、負荷回路の一例であるAD変換器100に供給される。AD変換器100は、例えば逐次比較型AD変換器である。参照電圧安定化回路10CおよびAD変換器100は、いずれも集積回路300に実装されている。参照電圧安定化回路10Cは、入力側から、例えば外部電源200からI/OピンP1,P2を介して供給された電圧VREFH,VREFLを、配線L1,L2に受ける。配線L1,L2はそれぞれ出力ノードOT1,OT2に接続されている。参照電圧安定化回路10Cは、出力ノードOT1,OT2から、AD変換器100における負荷変動に対して安定した参照電圧VREFH_OUT,VREFL_OUTを出力するように構成されている。
 後段回路2Cは、配線L1と配線L2との間に接続されたトランジスタM1と、配線L1とトランジスタM1のゲートとの間に接続された容量21とを備えている。トランジスタM1は、ここではN型MOSトランジスタである。トランジスタM1のゲートは配線L1と容量結合されているので、トランジスタM1のゲート電圧Vbnは、参照電圧VREFH_OUTの電圧の変化に応じて変化する。また、後段回路2Cは、配線L1と配線L2との間に設けられたレプリカ回路20Aと、差動増幅器23と、電圧生成回路24とを備えている。レプリカ回路20Aは、直列に接続された抵抗22、トランジスタM2および抵抗31を有しており、トランジスタM2のゲートは、トランジスタM1のゲートと抵抗25を介して接続されている。トランジスタM2は、ここではN型MOSトランジスタである。トランジスタM2のゲート電圧Vbn0は、DC的には、トランジスタM1のゲート電圧Vbnと等しくなる。差動増幅器23は、反転入力が電圧生成回路24によって生成された基準電圧V_IDを受け、非反転入力が抵抗22とトランジスタM2との間のノードN1に接続されている。差動増幅器23の出力は、トランジスタM2のゲートに与えられる。
 後段回路2Cはさらに、配線L1において、レプリカ回路20AとトランジスタM1との間に設けられた、分離抵抗26を備え、また、配線L2において、レプリカ回路20AとトランジスタM1との間に設けられた、分離抵抗32を備えている。
 分離抵抗26における電圧降下をVdrop1とし、レプリカ回路20Aが有する抵抗22における電圧降下をVdrop2とする。また、分離抵抗32における電圧降下をVdrop3とし、レプリカ回路20Aが有する抵抗31における電圧降下をVdrop4とする。ここでは、Vdrop1=Vdrop2,Vdrop3=Vdrop4となるように、抵抗22、トランジスタM2、および抵抗31のデバイスパラメタが調整されている。具体的には例えば、抵抗22、トランジスタM2、抵抗31の抵抗比が、分離抵抗26、トランジスタM1、分離抵抗32の抵抗比と等しくなるように、デバイスパラメタが調整されている。
 本実施形態でも、第1実施形態と同様に、AD変換器100が電流引き込みを行わない定常時においてトランジスタM1を流れる電流(動作電流)Igm0のばらつきを、ノードN1の電圧V_RPを利用して抑えることができる。すなわち、PVTばらつきに起因して電流Igm0が増加すると、参照電圧VREFH_OUT,VREFL_OUTの差電圧が低下し、この差電圧の低下に応じてノードN1の電圧V_RPも低下する。差動増幅器23は、非反転入力である電圧V_RPの低下に応じて、出力すなわちトランジスタM2のゲート電圧Vbn0を下げる。これに伴い、トランジスタM1のゲート電圧Vbnも低下し、電流Igm0が減少する。一方、PVTばらつきに起因して電流Igm0が減少すると、参照電圧VREFH_OUT,VREFL_OUTの差電圧が上昇し、この差電圧の上昇に応じてノードN1の電圧V_RPも上昇する。差動増幅器23は、非反転入力である電圧V_RPの上昇に応じて、出力すなわちトランジスタM2のゲート電圧Vbn0を上げる。これに伴い、トランジスタM1のゲート電圧Vbnも上昇し、電流Igm0が増加する。このような動作によって、電流Igm0のばらつきが抑制される。
 なお、図8の構成において、抵抗22、トランジスタM2、抵抗31の抵抗比が、分離抵抗26、トランジスタM1、分離抵抗32の抵抗比と等しくなるように、デバイスパラメタが調整されているものとした。ただし、本実施形態はこれに限られるものではない。たとえば、分離抵抗26,32の一方または両方を省いてもかまわない。あるいは、分離抵抗26,32が存在する構成において、抵抗22、トランジスタM2、抵抗31の抵抗比が、分離抵抗26、トランジスタM1、分離抵抗32の抵抗比と必ずしも等しくなくてもよい。
 (第3実施形態)
 第3実施形態では、参照電圧をより速やかに回復させるためのアシスト回路を設ける。なお、第1実施形態と共通の構成要素については、適宜説明を省略する場合がある。
 図9は第3実施形態に係る参照電圧安定化回路の構成を示す。参照電圧安定化回路10Dにおいて、後段回路2Dは、参照電圧VREF_OUTをより速やかに回復させるためのアシスト回路40が設けられている。その他の構成は図1の後段回路2と同様である。
 アシスト回路40は、配線L1と配線L2との間に直列に接続された、抵抗41および容量42を備えている。アシスト回路40はトランジスタM1よりも出力側に設けられている。抵抗41のインピーダンスは、AD変換器100の動作周波数Fにおける容量42のインピーダンスが無視できる程度に十分大きく設定されている。すなわち、抵抗41の抵抗値をR0、容量42の容量値をC0としたとき、次の式(1)の関係を満たす。なお、抵抗値R0は、動作周波数Fにおける容量42のインピーダンスの10倍以上であることが好ましい。
 R0≫1/(2π×F×C0) …(1)
 ここで、参照電圧VREF_OUTが急に低下したとき、アシスト回路40は、容量42に蓄積されていた電荷を電流としてAD変換器100に供給する。このとき、アシスト回路40は、抵抗性のインピーダンスが支配的であるため、供給する電流量は、抵抗41の抵抗値R0と参照電圧VREF_OUTの電圧値によって決まる。このため、アシスト回路40は、参照電圧VREF_OUTが回復するまで大きな電流を供給し続ける。また、このとき、容量42の抵抗側の端子は、参照電圧VREF_OUTよりも高い電圧を維持しているため、配線L1から容量42に電流が供給されることはない。
 このような動作によって、アシスト回路40は、低下した参照電圧VREF_OUTの回復を促進させることができる。また、AD変換器100が電流引き込みを行わない定常時では、容量42によって直流電流が遮断されるので、不要な貫通電流は生じない。
 また、集積回路300に内蔵されたレギュレータ回路から参照電圧安定化回路10に電圧VREF,VSSを与える構成の場合には、アシスト回路をレギュレータ回路に設けてもかまわない。
 図10はレギュレータ回路にアシスト回路を設けた構成例を示す。なお、図10では、参照電圧安定化回路10において前段回路1の図示を省略している。レギュレータ回路210は、電圧生成回路55によって生成された電圧を正側入力に受けるオペアンプ56と、電源VDDと出力端子VOとの間に接続されており、オペアンプ56の出力をゲートに受ける出力トランジスタ(ソースフォロア構造)M3と、出力トランジスタM3とグランドVSSとの間に接続された負荷抵抗57とを備える。出力端子VOは、オペアンプ56の負側入力にフィードバック接続される。レギュレータ回路210は、さらに、上述した構成と同様のアシスト回路50を備えている。アシスト回路50は、出力ノードVOとグランドVSSとの間に直列に接続された、抵抗51および容量52を備えている。抵抗51のインピーダンスは、AD変換器100の動作周波数Fにおける容量52のインピーダンスが無視できる程度に十分大きく設定されている。
 この構成においても、アシスト回路50は、低下した参照電圧VREF_OUTの回復を促進させることができる。また、AD変換器100が電流引き込みを行わない定常時では、容量52によって直流電流が遮断されるので、不要な貫通電流も生じない。
 なお、図1の構成以外の構成にも、本実施形態で示したようにアシスト回路を設けてもよい。
 上述した説明では、便宜上、AD変換器100は逐次比較型AD変換器であるとしたが、これに限定されない。AD変換器100は、パイプライン型AD変換器、フラッシュ型AD変換器、デルタシグマAD変換器など、クロック信号で離散的に動作する別タイプのAD変換器であってもよい。また、参照電圧を受ける負荷回路はAD変換器100に限られず、参照電圧を参照して動作する回路であればどのようなものであってもよい。
 本開示によると、参照電圧安定化回路において、参照電圧のばらつきを抑制しつつ、動作電流のばらつきも抑制できるので、例えば、集積回路の消費電力の増加を抑え、AD変換器の性能を高めるのに有用である。
1 前段回路
2,2A,2B,2C,2D 後段回路
10,10A,10B,10C,10D 参照電圧安定化回路
20,20A レプリカ回路
21 容量
22 抵抗
23 差動増幅器
24 電圧生成回路
25 第2抵抗
26 分離抵抗
31 第2抵抗
32 第2分離抵抗
40 アシスト回路
41 第2抵抗
42 第2容量
50 アシスト回路
51 第2抵抗
52 第2抵抗
210 レギュレータ回路
300 集積回路
111 第2容量
L1 第1配線
L2 第2配線
M1 第1トランジスタ
M2 第2トランジスタ
N1 第1ノード
OT1,OT2 出力ノード

Claims (14)

  1.  参照電圧を出力する第1および第2出力ノードと、
     前記第1および第2出力ノードとそれぞれ接続されており、入力側から、前記参照電圧の元になる元電圧が与えられる第1および第2配線と、
     前記第1配線と前記第2配線との間に接続された第1トランジスタと、
     前記第1配線と前記第1トランジスタのゲートとの間に接続された容量と、
     前記第1配線と前記第2配線との間に設けられ、直列に接続された抵抗および第2トランジスタを有しており、前記第2トランジスタのゲートが前記第1トランジスタのゲートと接続されている、レプリカ回路と、
     第1入力が前記抵抗と前記第2トランジスタとの間の第1ノードに接続され、第2入力が基準電圧を受け、出力が前記第2トランジスタのゲートに接続された差動増幅器とを備えた
    ことを特徴とする参照電圧安定化回路。
  2.  請求項1記載の参照電圧安定化回路において、
     前記第1配線において、前記レプリカ回路と前記第1トランジスタとの間に設けられた、分離抵抗を備えた
    ことを特徴とする参照電圧安定化回路。
  3.  請求項2記載の参照電圧安定化回路において、
     前記レプリカ回路が有する前記抵抗と前記第2トランジスタの抵抗比が、前記分離抵抗と前記第1トランジスタの抵抗比と一致するように、構成されている
    ことを特徴とする参照電圧安定化回路。
  4.  請求項2記載の参照電圧安定化回路において、
     前記第2配線において、前記レプリカ回路と前記第1トランジスタとの間に設けられた、第2分離抵抗を備えた
    ことを特徴とする参照電圧安定化回路。
  5.  請求項1記載の参照電圧安定化回路において、
     前記レプリカ回路において、前記抵抗および前記第2トランジスタは、前記抵抗が前記第1配線側にあり、前記第2トランジスタが前記第2配線側にあるように、設けられている
    ことを特徴とする参照電圧安定化回路。
  6.  請求項1記載の参照電圧安定化回路において、
     前記レプリカ回路は、前記第2トランジスタと直列に、前記抵抗の反対側に接続された第2抵抗を備える
    ことを特徴とする参照電圧安定化回路。
  7.  請求項1記載の参照電圧安定化回路において、
     前記第2トランジスタのゲートは、前記第1トランジスタのゲートと、第2抵抗を介して接続されている
    ことを特徴とする参照電圧安定化回路。
  8.  請求項1記載の参照電圧安定化回路において、
     前記基準電圧を生成する電圧生成回路を備えた
    ことを特徴とする参照電圧安定化回路。
  9.  請求項1記載の参照電圧安定化回路において、
     前記第1配線と前記第2配線との間に接続された第2容量を有する、前段回路を備えた
    ことを特徴とする参照電圧安定化回路。
  10.  請求項9記載の参照電圧安定化回路において
     前記第1トランジスタ、前記容量、前記レプリカ回路、および、前記差動増幅器を含む後段回路が、複数、設けられており、
     前記複数の後段回路は、前記前段回路に、共通に接続されている
    ことを特徴とする参照電圧安定化回路。
  11.  請求項10記載の参照電圧安定化回路において、
     前記基準電圧を生成する電圧生成回路を備え、
     前記電圧生成回路によって生成された基準電圧は、前記複数の後段回路に共通に与えられる
    ことを特徴とする参照電圧安定化回路。
  12.  請求項1記載の参照電圧安定化回路において、
     前記第1トランジスタよりも出力側において、前記第1配線と前記第2配線との間に設けられ、直列に接続された第2抵抗および第2容量を有する、アシスト回路を備えた
    ことを特徴とする参照電圧安定化回路。
  13.  請求項1記載の参照電圧安定化回路において、
     前記元電圧を生成するレギュレータ回路を備え、
     前記レギュレータ回路は
     前記元電圧を供給する配線間に設けられ、直列に接続された第2抵抗および第2容量を有する、アシスト回路を備えた
    ことを特徴とする参照電圧安定化回路。
  14.  請求項1記載の参照電圧安定化回路と、
     前記参照電圧安定化回路から出力された参照電圧を受けて動作するA/D変換回路とを備えた
    集積回路。
PCT/JP2017/006354 2016-04-13 2017-02-21 参照電圧安定化回路およびこれを備えた集積回路 WO2017179301A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780022615.6A CN109075773A (zh) 2016-04-13 2017-02-21 参考电压稳定化电路及包括该参考电压稳定化电路的集成电路
JP2018511910A JPWO2017179301A1 (ja) 2016-04-13 2017-02-21 参照電圧安定化回路およびこれを備えた集積回路
US16/157,741 US20190068213A1 (en) 2016-04-13 2018-10-11 Reference voltage stabilizing circuit and integrated circuit provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-080597 2016-04-13
JP2016080597 2016-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/157,741 Continuation US20190068213A1 (en) 2016-04-13 2018-10-11 Reference voltage stabilizing circuit and integrated circuit provided with same

Publications (1)

Publication Number Publication Date
WO2017179301A1 true WO2017179301A1 (ja) 2017-10-19

Family

ID=60041668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006354 WO2017179301A1 (ja) 2016-04-13 2017-02-21 参照電圧安定化回路およびこれを備えた集積回路

Country Status (4)

Country Link
US (1) US20190068213A1 (ja)
JP (1) JPWO2017179301A1 (ja)
CN (1) CN109075773A (ja)
WO (1) WO2017179301A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173859A (ja) * 1974-12-24 1976-06-26 Fujitsu Ltd Ondohoshokairo
JPH04212512A (ja) * 1990-01-25 1992-08-04 Philips Gloeilampenfab:Nv 集積回路内の高周波供給電圧の変動を抑止する能動的バイパス
JPH05175840A (ja) * 1991-12-24 1993-07-13 Oki Electric Ind Co Ltd A/dコンバータの基準電圧供給回路
JPH07115367A (ja) * 1993-10-15 1995-05-02 Hitachi Ltd アナログ・ディジタル変換器
JP2001327161A (ja) * 2000-05-17 2001-11-22 Nichicon Corp スイッチング電源
WO2012157155A1 (ja) * 2011-05-16 2012-11-22 パナソニック株式会社 参照電圧安定化回路およびそれを備えた集積回路
JP2014057135A (ja) * 2012-09-11 2014-03-27 Renesas Electronics Corp 半導体装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3473400B2 (ja) * 1998-05-19 2003-12-02 松下電器産業株式会社 発振器
US6753801B2 (en) * 2002-08-23 2004-06-22 Micron Technology, Inc. Fully differential reference driver for pipeline analog to digital converter
EP1561153A4 (en) * 2002-09-16 2007-08-01 Atmel Corp TEMPERATURE COMPENSATED POWER REFERENCE CIRCUIT
US7042280B1 (en) * 2003-12-15 2006-05-09 National Semiconductor Corporation Over-current protection circuit
JP2006109349A (ja) * 2004-10-08 2006-04-20 Ricoh Co Ltd 定電流回路及びその定電流回路を使用したシステム電源装置
US7279960B1 (en) * 2005-08-30 2007-10-09 National Semiconductor Corporation Reference voltage generation using compensation current method
EP1806639A1 (en) * 2006-01-10 2007-07-11 AMI Semiconductor Belgium BVBA A DC current regulator insensitive to conducted EMI
US7706112B2 (en) * 2006-12-19 2010-04-27 Akros Silicon Inc. Active clamp protection device
US7764059B2 (en) * 2006-12-20 2010-07-27 Semiconductor Components Industries L.L.C. Voltage reference circuit and method therefor
US8427115B2 (en) * 2008-07-08 2013-04-23 Toshiba Tec Kabushiki Kaisha Driving device for capacitance type actuator and driving device for ink jet head
IT1394636B1 (it) * 2009-06-23 2012-07-05 St Microelectronics Rousset Circuito di generazione di un segnale di riferimento per un convertitore a/d di un trasduttore acustico microelettromeccanico e relativo metodo
US8022758B2 (en) * 2010-01-06 2011-09-20 Ralink Technology Corp. Impedance matching circuit and method thereof
US8878510B2 (en) * 2012-05-15 2014-11-04 Cadence Ams Design India Private Limited Reducing power consumption in a voltage regulator
US20140006275A1 (en) * 2012-06-28 2014-01-02 Bank Of America Corporation Electronic identification and notification of banking record discrepancies
US9935643B1 (en) * 2016-03-08 2018-04-03 Marvell International Ltd. Adaptive charging systems and methods for a successive-approximation analog-to-digital converter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173859A (ja) * 1974-12-24 1976-06-26 Fujitsu Ltd Ondohoshokairo
JPH04212512A (ja) * 1990-01-25 1992-08-04 Philips Gloeilampenfab:Nv 集積回路内の高周波供給電圧の変動を抑止する能動的バイパス
JPH05175840A (ja) * 1991-12-24 1993-07-13 Oki Electric Ind Co Ltd A/dコンバータの基準電圧供給回路
JPH07115367A (ja) * 1993-10-15 1995-05-02 Hitachi Ltd アナログ・ディジタル変換器
JP2001327161A (ja) * 2000-05-17 2001-11-22 Nichicon Corp スイッチング電源
WO2012157155A1 (ja) * 2011-05-16 2012-11-22 パナソニック株式会社 参照電圧安定化回路およびそれを備えた集積回路
JP2014057135A (ja) * 2012-09-11 2014-03-27 Renesas Electronics Corp 半導体装置

Also Published As

Publication number Publication date
US20190068213A1 (en) 2019-02-28
JPWO2017179301A1 (ja) 2019-02-21
CN109075773A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
US7221190B2 (en) Differential comparator with extended common mode voltage range
US8289009B1 (en) Low dropout (LDO) regulator with ultra-low quiescent current
US7746047B2 (en) Low dropout voltage regulator with improved voltage controlled current source
US8536844B1 (en) Self-calibrating, stable LDO regulator
US9553548B2 (en) Low drop out voltage regulator and method therefor
US9710002B2 (en) Dynamic biasing circuits for low drop out (LDO) regulators
US20080284395A1 (en) Low Dropout Voltage regulator
JP4289361B2 (ja) 電流検出回路
US20090072873A1 (en) Circuit Arrangement and Method for the Provision of a Clock Signal with an Adjustable Duty Cycle
CN109088537B (zh) 电荷泵
US9407221B2 (en) Differential amplifier circuit
US20080290955A1 (en) Low cost and low variation oscillator
JP6457887B2 (ja) ボルテージレギュレータ
US8248112B2 (en) Transconductance amplifier
US7605654B2 (en) Telescopic operational amplifier and reference buffer utilizing the same
US8742845B2 (en) Amplifier circuits with reduced power consumption
WO2020105182A1 (ja) 電圧制御発振器およびそれを用いたpll回路
US9831892B1 (en) Noise reduction circuit and associated delta-sigma modulator
US8198877B2 (en) Low voltage drop out regulator
WO2017179301A1 (ja) 参照電圧安定化回路およびこれを備えた集積回路
US20210036896A1 (en) Digital capacitive isolator
JP2008205561A (ja) ソースフォロア回路及び半導体装置
JP2004304632A (ja) パワーオンディテクタ、及びこのパワーオンディテクタを用いたパワーオンリセット回路
JP7292117B2 (ja) 基準電圧発生回路
JP5876807B2 (ja) 低ドロップアウト電圧レギュレータ回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018511910

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782119

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782119

Country of ref document: EP

Kind code of ref document: A1