WO2017179030A1 - Manta de fibra sintética contínua 100% pet reciclado - Google Patents

Manta de fibra sintética contínua 100% pet reciclado Download PDF

Info

Publication number
WO2017179030A1
WO2017179030A1 PCT/IB2017/052813 IB2017052813W WO2017179030A1 WO 2017179030 A1 WO2017179030 A1 WO 2017179030A1 IB 2017052813 W IB2017052813 W IB 2017052813W WO 2017179030 A1 WO2017179030 A1 WO 2017179030A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous
pet
recycled
head
temperature
Prior art date
Application number
PCT/IB2017/052813
Other languages
English (en)
French (fr)
Inventor
Miguel Luis Pereira NUNES
Original Assignee
Nunes Miguel Luis Pereira
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nunes Miguel Luis Pereira filed Critical Nunes Miguel Luis Pereira
Publication of WO2017179030A1 publication Critical patent/WO2017179030A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B21/08Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • D02G3/28Doubled, plied, or cabled threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a continuous synthetic fiber blanket having as its raw material 100% of used PET packaging flakes, commonly known in the industry as flakes, extruded from specific parameters, having
  • the main innovation differential is the fact that it allows the transformation of any PET packaging already used in continuous fiber fiber blanket to be applied in various types of industry, such as automotive and construction, among others.
  • synthetic fiber blankets glass wool, rock wool, polypropylene known as PP, expanded polyurethane known as expanded PU and PET wool are known in the art.
  • these synthetic fiber blankets are used as thermal and acoustic insulators inside plaster or wood walls, on ceilings and under laminate floors.
  • Some of these products, such as expanded PU, are highly flammable, released cyanide when burned, a substance that is lethal to humans.
  • PET Polyethylene terephthalate
  • PET wool Polyethylene terephthalate
  • the blanket known as PET wool is 100% polyester, which is a category of polymers containing the ester functional group in its main chain, including PET.
  • This blanket is made from virgin raw material and results in a staple fiber blanket, commonly called wool or carded yarn, with an average density of 7kg / m 3 .
  • an extruder makes large amount of very thin stretched strands, which are bathed in hot water, rolled and chopped. They then pass a soot with nails that open the fiber, making it fluffy, with strands separated and untidy with each other.
  • the threads now embarrassingly arranged, are carded and pass through a needle to secure the various layers together. It results, therefore, in a blanket consisting of numerous discontinuous threads, intertwined with each other, and the needle gives the set a series of points of greater intertwining between the discontinuous threads, giving the possibility of handling the fiber like a blanket.
  • the already used non virgin PET here called recycled PET
  • recycled PET has its own characteristics so that recycling can occur, which makes its reuse in fiber blankets difficult.
  • extrusion of recycled PET flakes resulting in grains is known in the art.
  • PET packaging is pressed, crushed and washed, resulting in flakes, which are extruded, forming the grains, which can be made into polyester yarn or other types of plastic products, such as new packaging.
  • the recycling of PET packaging currently focuses mainly on the production of polyester fibers and yarns for the textile industry and on the manufacture of broom and brush ropes and bristles.
  • PET packaging is known for the manufacture of paints and resins, but with little expression.
  • This 100% Recycled PET Continuous Synthetic Fiber Blanket is based on the inventive concept of presenting a new way of recycling solid waste, in this case any PET packaging, by manufacturing continuous synthetic fiber blankets in 100%. % Recycled PET.
  • continuous synthetic fiber blanket is inside walls of wood or plaster, and on the floor as acoustic insulation, under ceramic finishes and wood laminates, which ensures, in this case. 100% PET recycled fiber, the waste does not return to trash or nature, which occurs in reuse.
  • the proposed continuous fiber batt is made up of 100% recycled, continuous-yarn PET extruded at a continuous temperature between 220 Q C and 250 Q C and a density of 16 Kg / m 3 for application to interior walls. plaster or wood.
  • the drop pipe for the extrusion head has been heated to between 220 Q C and 250 Q C through external spiral or collared tubular electrical resistances to prevent rapid heat loss from the extruder head.
  • flux material in the passage through said tube the flux material being already preheated by the screw conveyor cylinder. PET will invariably occur as it abruptly cools.
  • the circular head included the production of said hot air, its own heating through internal spiral resistors and flat resistance on the lower outer base. so that the fluxing material does not lose heat by rotational movement, keeping the temperature between 220 Q C and 250 Q C.
  • the electrical connection is made by charcoal in the head shaft, which allows the use of resistors. that rotate with this one, improving your heating.
  • PET packaging which can be the flakes of any type of pet bottle used, whether in food or industrial products;
  • the proposed blanket can be used in numerous applications where thermal or acoustic insulation is required, such as refrigeration equipment and vehicles;
  • the blanket can be used in filters in general and can be applied, including activated carbon, for application in vehicles, refrigeration or industrial equipment, as well as physical and chemical filters;
  • the proposed fiber blanket made of 100% recycled PET, 50mm thick, applied to plaster walls, has a density of 16Kg / m 3 , which is higher compared to virgin PET wool blankets, which have density of 7 kg / m 3 . This higher density, obtained shortly after extrusion, results in a higher quality of sound insulation. While 50mm-thick virgin PET wool blankets have a R w dB to 38 weighted sound reduction index, the 50mm thick 100% recycled PET continuous fiber blanket has a R w dB to 43 weighted sound reduction index. User comfort, this acoustic difference, although small in absolute decibels, is very important, resulting in much smaller audible sound in practice;
  • the blanket may contain polyurethane plastic film, making it possible to apply it in this way;
  • the blanket may contain aluminized finishing film
  • the proposed blanket does not spread flames, ie its application in construction, whether on walls, floors or ceilings is extremely beneficial as it is not flammable and does not release any toxic gas when in contact with fire;
  • Said temperature control provides efficient conformation of the strand fibers in the passage through the head, which is provided with spiral tubular side electrical resistors and flat resistance at the bottom base, so as to keep the temperature uniform and within the 220 Q range. C and 250 Q C required for extrusion of flux material;
  • perforated rings can be coupled side by side horizontally, forming a larger or smaller whirlpool, which provides the production of larger or smaller fibers thickness, always continuous, allowing the number of rings to be easily adjusted to the need;
  • FIG.01 - presents the lateral scheme of the equipment
  • FIG. 02 - presents the section showing the head, perforated rings, descent tube and hot air injector
  • FIG.03 - presents the section showing the head
  • FIG. 4 shows detail A
  • FIG.05 - presents the bottom view of the head
  • FIG. 6 shows the section of the perforated ring in detail
  • FIG. 7 shows the bottom view of the perforated ring
  • FIG.08 - presents a lower perspective of the head.
  • 100% Recycled PET Continuous Synthetic Fiber Blanket is made of continuous (1) interwoven yarns between them, derived from 100% recycled PET flakes, extruded to a continuous temperature between 220 and 250 C Q C Q, forming a blanket.
  • the recycled PET flakes form the flux material, which passes through the 0.7 to 2mm holes in the head and is drawn by the swirling chilled air clockwise from the perforated rings to form a thread. continuous.
  • the mat formed by the interlacing of said continuous yarns is ready for use shortly after the printhead exit.
  • the extruder (2) is supplied by the filler funnel (3) which gravitatively discharges the recycled PET flakes into the heated roller with internal conveyor screw (4), It is equipped with a series of external electrical resistors to heat the flakes during transport inside, at temperatures between 220 Q and 250 Q C, producing the flux material.
  • the perforated ring (7) contains inferiorly aligned holes (8) along its entire perimeter, and these holes provided slope X 45 Q, to form a cool air swirl clockwise and promote the stretching of the fibers that are extruded in the head (9).
  • the head (9) internally has the spiral tubular resistors (10), which have spaces between them to allow the existence of numerous circular holes (11), evenly distributed in such spaces, as a screen, being the diameter of circular holes (11) from 0.7mm to 2mm.
  • the head has the circular flat resistor (12), which together with the spiral resistors (10) maintains the temperature inside the head.
  • the central axis (13), in addition to promoting the rotation of the head through the drive motor, is tubular, allowing the passage through the wires that make the connection with the charcoal contacts (14), which, In turn, they make contact with the copper rings (15), which is a rotating electrical connection. Said wires passing inside the central axis (13) provide the electrical supply of the spiral resistors (10) and the circular flat resistor (12).

Abstract

Manta de fibra sintética contínua de 100% PET reciclado refere-se a uma manta de fibra sintética contínua tendo como matéria prima 100% de flocos de embalagens em PET usadas, chamado, comumente, na indústria, de flakes, extrusada a partir de parâmetros específicos, apresentando como principal diferencial de inovação o fato de permitir a transformação de quaisquer embalagens PET já utilizadas em manta de fibra de fio contínuo a ser aplicada em diversos tipos de indústria, como automotivo e construção civil, entre outras.

Description

"MANTA DE FIBRA SINTÉTICA CONTÍNUA DE 100% PET
RECICLADO"
Assunto:
[001] A presente Patente de Invenção refere-se a uma manta de fibra sintética contínua tendo como matéria prima 100% de flocos de embalagens em PET usadas, chamado, comumente, na indústria, de flakes, extrusada a partir de parâmetros específicos, apresentando como principal diferencial de inovação o fato de permitir a transformação de quaisquer embalagens PET já utilizadas em manta de fibra de fio contínuo a ser aplicada em diversos tipos de indústria, como automotivo e construção civil, entre outras.
Estado da Técnica:
[002] No que tange à mantas de fibra sintética, são conhecidas da técnica mantas em lã de vidro, lã de rocha, polipropileno, conhecido por PP, poliuretano expandido, conhecido por PU expandido e lã de PET. Em geral essas mantas de fibra sintéticas são utilizadas como isolantes térmicos e acústicos no interior de paredes de gesso ou madeira, sobre forros e sob pisos laminados. Alguns destes produtos, como o PU expandido são altamente inflamáveis, liberado cianeto quando queimados, substância esta letal aos seres humanos.
[003] O politereftalato de etileno, mais conhecido como PET, é um polímero termoplástico utilizado na fabricação de garrafas e outros produtos, incluindo a lã de PET.
[004] A manta conhecida por lã de PET é constituída por 100% de poliéster, sendo esta uma categoria de polímeros que contém o grupo funcional éster na sua cadeia principal, entre os quais se inclui o PET. Essa manta é fabricada a partir de matéria prima virgem e resulta em manta de fibra descontínua, chamada comumente de lã ou fio cardado, com densidade média de 7kg/m3.
[005] Para fabricação de dita lã de PET, são necessários vários passos, os quais resumem-se: uma extrusora faz grande quantidade de fios muito finos esticados, os quais são banhados em água quente, enrolados e picados. Passam então por um fulão com pregos que abrem a fibra, tornando-a fofa, com fios separados e desordenados entre si. Os fios, agora dispostos de forma embaraçada, são cardados e passam por uma agulhadeira para fixar as diversas camadas entre si. Resulta, portanto, em uma manta constituída por inúmeros fios descontínuos, entrelaçados entre si, sendo que a agulhadeira confere ao conjunto uma série de pontos de maior entrelaçamento entre os fios descontínuos, dando a possibilidade de manuseio da fibra como uma manta.
[006] O PET já usado, não virgem, chamado aqui de PET reciclado, possui características próprias para que possa ocorrer a reciclagem, o que dificulta sua reutilização em mantas de fibra. Além da reciclagem pelo artesanato e reutilizações diversas, conhece-se na técnica a extrusão de flocos de PET reciclado resultando em grãos. Neste caso, as embalagens PET são prensadas, trituradas e lavadas, resultando em flocos ou flakes, os quais são extrusados, formando os grãos, que podem ser transformados em fios de poliéster ou em outros tipos de produtos plásticos, como novas embalagens. Desta forma, atualmente a reciclagem de embalagens PET se concentra principalmente na produção de fibras e fios de poliéster para a indústria têxtil e na fabricação de cordas e cerdas de vassouras e escovas, sendo também conhecida a utilização de embalagens PET na fabricação de tintas e resinas, porém com pouca expressão.
[007] Com relação à fabricação de fibras contínuas, são conhecidos da técnica vários processos e equipamentos adequados à extrusão de polipropileno, chamado comumente de PP, sendo este uma resina termoplástica com diversas propriedades que permitem a extrusão nos mais variados formatos.
[008] No entanto, estes processos e equipamentos são adequados para extrusão de matéria prima virgem, e não para extrusão de material reciclado, já na segunda ou terceira utilização. Isso porque o material reciclado, em especial os flocos PET, possui propriedades físico-químicas diferentes do produto virgem que exigem adequações no processo e no equipamento para que possa ser extrusada a fibra contínua.
[009] Em geral, podem-se citar várias questões técnicas que impedem a extrusão de flocos de PET reciclado através dos processos e equipamentos utilizados com PP ou similares, sendo que a principal delas está no fato da temperatura de extrusão dos flocos de PET reciclado ser maior que a do PP, sendo que o material fundente de PET reciclado perde calor muito rápido e empedra muito rapidamente. Soma-se a isso o fato dos flocos serem higroscópicos, ou seja, absorverem rapidamente a umidade do ar Estes fatores causam o emperramento frequente do tubo de descida do material fundente por este empedramento, resultando em danos ao equipamento, além da parada da produção. Isso não ocorre com o PP. Enquanto o PP é extrusado em temperatura entre 180QC e 220QC, os flocos de PET reciclado são extrusados se a temperatura for mantida contínua entre 220QC e 250QC. [010] Deve-se citar ainda que os processos e equipamentos conhecidos possuem cabeçotes aquecidos de tal forma que não permitem a produção de fibra contínua de PET reciclado por não manterem contínua a temperatura necessária. Com aquecimento desigual por resistências elétricas ou pontual por queimadores a gás no cabeçote, junto às diversas formas de resfriamento das fibras por ar forçado, pelas propriedades do material fundente de PET reciclado, tem-se como resultado, enquanto o material fundente não empedra no tubo de descida, a produção de uma fibra desigual e inadequada às qualquer aplicação.
[011] Portanto, não é conhecida da técnica uma manta de fio contínuo fabricada por extrusão de 100% de PET reciclado. Tendo em vista o comportamento térmico do PET reciclado, é necessário que processo produtivo garanta a temperatura contínua entre 220QC e 250QC no tubo de descida e no cabeçote, e que o mecanismo de estiramento das fibras, após passar no cabeçote, seja próprio para que ocorra de fato o estiramento antes do esfriamento das fibras, sob pena de estas não se formarem.
Conceito Inventivo:
[012] A presente Manta de Fibra Sintética Contínua de 100% PET Reciclado baseia-se no conceito inventivo de apresentar uma nova forma de reciclagem de resíduos sólidos, no caso, quaisquer embalagens PET, através da fabricação de mantas de fibra sintética contínua em 100% PET reciclado.
[013] Tendo em vista a crescente necessidade de gerenciamento de resíduos sólidos, através de mecanismos e técnicas de reciclagem, a presente manta possibilita uma nova forma de reciclagem de embalagens PET, sendo este um dos principais componentes do lixo seco urbano. Portanto, propõe- se a fabricação de um produto inédito, que poderá ser muito utilizado em diversos setores, como construção civil, automotivo, mobiliário e outros.
[014] Destaca-se que uma das principais utilizações de manta de fibra sintética contínua se dá no interior de paredes de madeira ou gesso, e no piso como isolamento acústico, sob acabamentos cerâmicos e laminados de madeira, o que garante, nesse caso de fibra 100% PET reciclada, o resíduo não retorne ao lixo ou à natureza, o que ocorre na reutilização.
[015] A manta de fibra contínua proposta é composta de 100% de PET reciclado, com fio contínuo, extrusado a uma temperatura contínua entre 220QC e 250QC, e densidade de 16Kg/m3 para aplicação no interior de paredes de gesso ou madeira.
[016] Possui propriedades de isolamento térmico e acústico, além de ser atóxico e não propagar chamas, possuir fácil e rápida instalação, e proporcionar a reciclagem de resíduos sólidos em grande quantidade.
[017] Para tanto, para a possibilidade de extrusão dos flocos de PET reciclado, chamados comumente de flakes, foi necessário o desenvolvimento de um novo processo produtivo tendo em vista o estado da técnica, dado o intervalo de temperatura de extrusão e forma de resfriamento para estiramento da fibra de fio contínuo.
[018] O tubo de descida para o cabeçote de extrusão passou a ser aquecido entre 220QC e 250QC através de resistências elétricas tubulares em espiral ou na forma de colar, externas, de sorte a evitar a rápida perda de calor do material fundente na passagem por dito tubo, sendo o material fundente já previamente aquecido pelo cilindro com rosca transportadora. Invariavelmente ocorrerá o empedramento do PET, ao resfriar-se abruptamente.
[019] O cabeçote circular passou a conter, além do sistema de ar quente composto por um queimador industrial e um trocador de calor, para produção do referido ar quente, aquecimento próprio através de resistências elétricas em espiral internas e resistência chata na base externa inferior do cabeçote, fazendo com que o material fundente não perca calor pela movimentação de rotação, mantendo-se na temperatura entre 220QC e 250QC. A conexão elétrica se dá por carvão no eixo do cabeçote, o que permite o uso de resistências que giram com este, melhorando o seu aquecimento.
[020] O tubo perfurado conhecido na técnica, que envolve o cabeçote de forma a promover o resfriamento das fibras, foi substituído por um conjunto de anéis com furação inferior, inclinada a 45Q, de modo a formar de um redemoinho de ar refrigerado no sentido horário em maior volume, estirando as fibras rapidamente antes do resfriamento. Podem ser alinhados horizontalmente, lado a lado, até 5 anéis, de forma a promover ventilação em redemoinho maior ou menor, causando estiramentos de variadas formas, dependendo da manta final pretendida. A formação do redemoinho de ar refrigerado faz com que o estiramento ocorra instantaneamente e de modo uniforme, resultando uma fibra de fio contínuo e uniforme.
Campo de Aplicação: [021] A presente Manta de Fibra Sintética Contínua de 100% PET Reciclado se dá na utilização deste como uma manta isolante térmica e acústica.
Vantagens:
[022] A Manta de Fibra Sintética Contínua de 100% PET Reciclado apresenta como vantagens:
• Manta de fibra sintética de fio contínuo 100% de PET reciclado, até então inexistente, sendo esta uma vantagem importante do ponto de vista de gerenciamento de resíduos sólidos, conferindo importante impacto ambiental;
• Possibilita obter-se mais um meio de reciclagem de embalagens PET, podendo serem os flocos de qualquer tipo de garrafa pet usada, seja em alimentos ou produtos industriais;
• A manta proposta pode ser utilizada em inúmeras aplicações onde seja necessário o isolamento térmico ou acústico, como em equipamentos de refrigeração e veículos;
• Pelas suas características, a manta pode ser utilizada em filtros em geral, podendo ser aplicado, inclusive, carvão ativado, para aplicação em veículos, equipamentos de refrigeração ou industriais, além de filtros físico-químicos;
• Pode ser aplicada em equipamentos industriais em geral;
• É possível também a aplicação para absorção de hidrocarbonetos em solo, não flutuante, com índice de absorção de 70%;
• Pode ser utilizada para estruturação de argamassa para construção civil, conferindo melhor resultado acústico; • Pode ser utilizada em substituição do plástico-bolha para condicionamento e transporte de carga em geral;
• Destaca-se a aplicação da manta no interior de paredes de gesso ou madeira como isolante acústico, onde a manta com 50mm de espessura e gramatura de 800g/m2, conferiu ao conjunto índice de redução sonora ponderado RwdBa 43, conforme testes em laboratório. Note-se que paredes de gesso ou madeira sem aplicação da manta possui índice de redução sonora ponderado RwdBa 38;
• A manta de fibra proposta, feita de 100% PET reciclado, com 50mm de espessura, aplicada em paredes de gesso, possui densidade de 16Kg/m3, o que é maior comparado com as mantas de lã de PET virgem, as quais tem densidade de 7Kg/m3. Esta densidade maior, obtida logo após a extrusão, resulta em maior qualidade de isolamento acústico. Enquanto a mantas de lã de PET virgem de 50mm de espessura possui índice de redução sonora ponderado RwdBa 38, a manta de fibra contínua 100% PET reciclado de 50mm de espessura possui índice de redução sonora ponderado RwdBa 43. Para o conforto do usuário, esta diferença acústica, embora pequena em numero absoluto de decibéis, é muito importante, resultando em som audível muito menor na prática;
• A aplicação da manta de 10mm de espessura tipicamente instalada sob piso, no caso, porcelanato, também como isolante acústico, conferiu ao conjunto nível de pressão sonora de impacto-padrão ponderado L'nT.w(dB) 54, considerado nível superior, o que é bem abaixo do mesmo índice medido sem a aplicação da manta, qual seja L'nT.w(dB) 77; • Com relação ao isolamento térmico, a manta com 50mm de espessura e gramatura de 800g/m2, possui condutividade térmica (W/mK) de 0,0414 e Resistência Térmica (m2K/W) de 1,20, e a manta com 10mm de espessura, possui condutividade térmica (W/mK) de 0,0324 e Resistência Térmica (m2K/W) de 0,308;
• Para utilização da manta sob piso, colocado abaixo de laminados em geral, nos chamados pisos flutuantes, a manta pode conter película plástica de poliuretano, possibilitando a aplicação desta forma;
• Para aplicação como manta termo acústica sob cobertura, em construção civil, a manta pode conter película aluminizada de acabamento;
• A manta proposta não é tóxica, permitindo seu manuseio sem necessidade de equipamentos de proteção individual;
• A manta proposta não propaga chamas, ou seja, sua aplicação em construção civil, seja em paredes, pisos ou forros é extremamente benéfica por não ser inflamável e não liberar nenhum gás tóxico quando em contato com fogo;
• Proporciona alto rendimento de instalação, pois a manta é oferecida em rolos contínuos, de fácil manuseio e fixação;
• Atende à norma ABNT NBR 15575-3:2013, que estabelece níveis de desempenho acústico no que se refere a ruído de impacto-padrão ponderado, e níveis de desempenho acústico para componentes de edificação, atingindo o nível de desempenho superior; • Permite a utilização de flocos de 100% PET reciclado já comumente existente no mercado de reciclagem para produção de manta de fibra contínua;
• O controle da temperatura do material fundente entre 220QC e 250QC na sua passagem pelo tubo de descida e no interior do cabeçote onde ocorre a extrusão, ambos contendo resistências elétricas, permite a fabricação de manta de fibra contínua de 100% PET reciclado;
• Dito controle de temperatura proporciona eficiente conformação das fibras de fio contínuo na passagem pelo cabeçote, o qual é provido de resistências elétricas laterais tubulares em espiral e resistência chata na base inferior, de modo a manter a temperatura uniforme e dentro do intervalo de 220QC e 250QC necessário para extrusão do material fundente;
• A conexão por carvão no eixo do cabeçote permite o uso de resistências que giram com o cabeçote, melhorando o aquecimento do mesmo.
• Pelo fato dos anéis perfurados conterem orifícios inferiores inclinados a 45Q, tem-se a formação de um redemoinho de ar refrigerado inferior no sentido horário, que possui a função de estirar as fibras recém-extrusadas e ainda em alta temperatura, e esfriá-las de imediato, para que assumam um formato alongado, fino e contínuo. A formação desse redemoinho em sentido horário faz com que a manta seja formada uniformemente e com fio contínuo, no mesmo sentido do ar;
• Podem ser acoplados, lado-a-lado, horizontalmente, até 5 anéis perfurados, formando maior ou menor redemoinho, o que proporciona a produção de fibras de maior ou menor espessura, sempre contínuas, possibilitando que a quantidade de anéis seja facilmente adequada à necessidade;
• Complementarmente, a formação de dito redemoinho usando ar refrigerado proporciona o estiramento imediato das fibras após a saída do cabeçote, resultando em fibras em formato uniforme e a formação da manta contínua com baixa temperatura, permitindo seu manuseio imediato;
• Do ponto de vista industrial, o processo produtivo é simplificado, não sendo necessária a grande quantidade de etapas e equipamentos exigidos para a fabricação de lã de PET virgem ou poliéster.
Ilustrações:
[023] No intuito de facilitar a pesquisa e proporcionar entendimento da presente patente, conforme preconizado no relatório, segundo uma forma básica e preferencial de realização elaborada pelo requerente, faz-se referência às ilustrações anexas, que integram e subsidiam o presente relatório descritivo onde, a:
FIG.01 - apresenta o esquema lateral do equipamento;
FIG. 02 - apresenta o corte mostrando o cabeçote, anéis perfurados, tubo de descida e injetor de ar quente;
FIG.03 - apresenta o corte mostrando o cabeçote;
FIG.04 - apresenta o detalhe A;
FIG.05 - apresenta a vista inferior do cabeçote;
FIG.06 - apresenta o corte do anel perfurado em detalhe;
FIG.07 - apresenta a vista inferior do anel perfurado;
FIG.08 - apresenta uma perspectiva inferior do cabeçote.
Descrição:
[024] O Manta de Fibra Sintética Contínua de 100% PET Reciclado é composta por fios contínuos (1) entrelaçados entre si, obtidos a partir de 100% de flocos de PET reciclado, extrusados a uma temperatura contínua entre 220QC e 250QC, formando uma manta. Nesta faixa de temperatura contínua, os flocos de PET reciclado formam o material fundente, o qual passa pelos orifícios de 0,7 a 2mm do cabeçote e são estirados pelo redemoinho de ar refrigerado, em sentido horário, vindo dos anéis perfurados, formando um fio contínuo. A manta formada pelo entrelaçamento de ditos fios contínuos está pronta para uso logo após a saída do cabeçote.
[025] Para extrusão dos fios contínuos de 100% PET reciclado, a extrusora (2) é abastecida pelo funil de abastecimento (3) que despeja por gravidade os flocos de PET reciclado no interior do cilindro aquecido com rosca transportadora interna (4), dotado de uma série de resistências elétricas externas com finalidade de aquecimento dos flocos durante o transporte em seu interior, em temperatura entre 220QC e 250QC, produzindo então o material fundente.
[026] Ao final do cilindro aquecido com rosca transportadora interna (4), tem-se o tubo de descida (5) que é envolvido em toda a sua extensão por resistências elétricas em espiral (6), ou em forma de colar, que possuem a função de manter a temperatura do material fundente entre 220QC e 250QC.
[027] O anel perfurado (7) contém inferiormente os orifícios alinhados (8), ao longo de todo o seu perímetro, sendo esses orifícios dotados de inclinação X de 45Q, de modo a formar um redemoinho de ar refrigerado no sentido horário e promover o estiramento das fibras que são extrusadas no cabeçote (9). Podem ser alinhados lado a lado, horizontalmente, até 5 anéis perfurados (7), sendo todos alimentados pelo dispositivo de refrigeração próprio.
[028] O cabeçote (9) possui internamente as resistências tubulares em espiral (10), que possuem espaços entre si de modo a permitir a existência de inúmeros orifícios circulares (11), uniformemente distribuídos em tais espaços, como uma tela, sendo o diâmetro dos orifícios circulares (11) de 0,7mm a 2mm. Inferiormente, o cabeçote possui a resistência chata circular (12), que, em conjunto com as resistências em espiral (10) mantém a temperatura no interior do cabeçote. O eixo central (13), além de promover a rotação do cabeçote através do motor com transmissão, é tubular, de modo a permitir a passagem, em seu interior, dos fios que fazem a conexão com os contatos a carvão (14) que, por sua vez, fazem contato com os anéis de cobre (15), sendo esta uma conexão elétrica giratória. Ditos fios que passam no interior do eixo central (13) fazem a alimentação elétrica das resistências em espiral (10) e da resistência chata circular (12).
[029] Dita rotação do cabeçote (9) proporcionada pelo eixo central (13), junto à manutenção da temperatura do interior do mesmo, faz com que o material fundente despejado através do tubo de descida (5) passe pelos orifícios (11) e seja estirado pela ação do redemoinho no sentido horário proveniente dos anéis perfurados (7), formando abaixo do cabeçote (9) uma manta de fio contínuo.
Conclusão:
[030] Desse modo, a Manta de Fibra Sintética Contínua de 100% PET Reciclado é subsidiado por características técnicas e funcionais inéditas, merecendo, portanto, a proteção legal pleiteada.

Claims

REIVINDICAÇÕES
1. MANTA DE FIBRA SINTÉTICA CONTÍNUA 100% PET RECICLADO é obtida pela extrusora (2) abastecida pelo funil de abastecimento (3) que despeja por gravidade os flocos de PET reciclado no interior do cilindro aquecido com rosca transportadora interna (4), caracterizada pela manta de fibra sintética ser composta por fios contínuos (1) entrelaçados entre si, obtidos a partir de 100% de flocos de PET reciclado, extrusados a uma temperatura contínua entre 220QC e 250QC;
2. MANTA DE FIBRA SINTÉTICA CONTÍNUA 100% PET RECICLADO tal como reivindicado em 1 é caracterizada por passar como material fundente pelo tubo de descida (5) a temperatura deste entre 220QC e 250QC, o qual é envolvido em toda a sua extensão por resistências elétricas em espiral (6), que mantém a temperatura do material fundente entre 220QC e 250QC, permitindo a sua extrusão pelo cabeçote (9).
3. MANTA DE FIBRA SINTÉTICA CONTÍNUA 100% PET RECICLADO tal como reivindicado em 1 é caracterizada por chegar como material fundente a temperatura entre 220QC e 250QC no cabeçote (9), que possui internamente as resistências tubulares em espiral (10), as quais possuem espaços entre si para inúmeros orifícios circulares (11), uniformemente distribuídos e com diâmetro de 0,7mm a 2mm; a resistência chata circular (12) inferiormente ao cabeçote (9) em conjunto com as resistências em espiral (10) mantém a temperatura no interior do cabeçote entre 220QC e 250QC; o eixo central (13) é tubular e possui rotação através de motor com transmissão, passando em seu interior os fios que fazem a conexão com os contatos a carvão (14), que fazem contato com os anéis de cobre (15), sendo esta uma conexão elétrica giratória.
4. MANTA DE FIBRA SINTÉTICA CONTÍNUA 100% PET RECICLADO tal como reivindicado em 1 é caracterizada por, após os fios contínuos (1) serem extrusados no cabeçote (9), estes serem estirados pelo redemoinho de ar refrigerado no sentido horário formado pelo anel perfurado (7), dotado inferiormente os orifícios alinhados (8), ao longo de todo o seu perímetro, sendo esses dotados de inclinação X de 45Q, formando a manta com fios contínuos (1) entrelaçados entre si.
5. EQUIPAMENTO PARA FABRICAÇÃO DE FIBRA SINTÉTICA CONTÍNUA tal como reivindicado em 1 é caracterizado por serem, opcionalmente, alinhados lado a lado, horizontalmente, até 5 anéis perfurados (7), sendo todos alimentados pelo dispositivo de refrigeração próprio.
PCT/IB2017/052813 2016-04-12 2017-05-12 Manta de fibra sintética contínua 100% pet reciclado WO2017179030A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102016008121-1 2016-04-12
BR102016008121A BR102016008121A2 (pt) 2016-04-12 2016-04-12 manta de fibra sintética contínua de 100% pet reciclado

Publications (1)

Publication Number Publication Date
WO2017179030A1 true WO2017179030A1 (pt) 2017-10-19

Family

ID=58544569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/052813 WO2017179030A1 (pt) 2016-04-12 2017-05-12 Manta de fibra sintética contínua 100% pet reciclado

Country Status (2)

Country Link
BR (1) BR102016008121A2 (pt)
WO (1) WO2017179030A1 (pt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020154489A1 (en) * 2019-01-24 2020-07-30 Purlin, Llc Nonwoven recyclable fabric and associated methods
US11248323B2 (en) 2017-03-24 2022-02-15 Purlin, Llc Method for forming a non-woven recyclable fabric

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280288A (ja) * 1999-03-31 2000-10-10 Kobe Steel Ltd 多層樹脂成形体の製造方法とその製造装置、及び、再生ペットボトルとその製造方法
JP2002011779A (ja) * 2000-06-28 2002-01-15 Mamoru Kamo 合成樹脂製容器のリサイクル方法
US6376563B2 (en) * 1997-02-03 2002-04-23 Illinois Tool Works Inc. Inline solid state polymerization of PET flakes for manufacturing plastic strap by removing non-crystalline materials from recycled PET
BRPI0402330A (pt) * 2004-06-14 2006-02-14 Fundacao De Amparo A Pesquisa processo de descontaminação de poliéster reciclado e uso do mesmo
US7001554B2 (en) * 2000-08-25 2006-02-21 American Excelsior Company Synthetic fiber filled erosion control blanket
JP2010208190A (ja) * 2009-03-11 2010-09-24 Uchida Plastic:Kk ペットボトルリサイクル箸の製造方法
US7973092B2 (en) * 2003-10-13 2011-07-05 Krones Ag PET bottle recycling
EP2450480A1 (fr) * 2010-11-08 2012-05-09 Promodefi SA Procédé de fabrication de textile à partir de PET recyclé et recyclable
CN104213360A (zh) * 2014-08-22 2014-12-17 无锡吉兴汽车声学部件科技有限公司 汽车织物挡泥板及其制备方法
US20150076725A1 (en) * 2012-05-31 2015-03-19 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
CN105273368A (zh) * 2014-05-28 2016-01-27 华东理工大学 一种可发泡pet树脂及其制备方法和用途
CN105463652A (zh) * 2016-01-26 2016-04-06 江苏优越纺织科技有限公司 再生涤纶雪尼尔纱线、制造方法及再生涤纶雪尼尔纱线毯的制造方法
WO2016081508A1 (en) * 2014-11-18 2016-05-26 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
WO2017006217A1 (en) * 2015-07-06 2017-01-12 DI GIACINTO, Palmino Process for the production of glycol-modified polyethylene therephthalate from recycled raw materials

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376563B2 (en) * 1997-02-03 2002-04-23 Illinois Tool Works Inc. Inline solid state polymerization of PET flakes for manufacturing plastic strap by removing non-crystalline materials from recycled PET
JP2000280288A (ja) * 1999-03-31 2000-10-10 Kobe Steel Ltd 多層樹脂成形体の製造方法とその製造装置、及び、再生ペットボトルとその製造方法
JP2002011779A (ja) * 2000-06-28 2002-01-15 Mamoru Kamo 合成樹脂製容器のリサイクル方法
US7001554B2 (en) * 2000-08-25 2006-02-21 American Excelsior Company Synthetic fiber filled erosion control blanket
US7973092B2 (en) * 2003-10-13 2011-07-05 Krones Ag PET bottle recycling
BRPI0402330A (pt) * 2004-06-14 2006-02-14 Fundacao De Amparo A Pesquisa processo de descontaminação de poliéster reciclado e uso do mesmo
JP2010208190A (ja) * 2009-03-11 2010-09-24 Uchida Plastic:Kk ペットボトルリサイクル箸の製造方法
EP2450480A1 (fr) * 2010-11-08 2012-05-09 Promodefi SA Procédé de fabrication de textile à partir de PET recyclé et recyclable
US20150076725A1 (en) * 2012-05-31 2015-03-19 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
US9630354B2 (en) * 2012-05-31 2017-04-25 Mohawk Industries, Inc. Method of manufacturing bulked continuous filament
CN105273368A (zh) * 2014-05-28 2016-01-27 华东理工大学 一种可发泡pet树脂及其制备方法和用途
CN104213360A (zh) * 2014-08-22 2014-12-17 无锡吉兴汽车声学部件科技有限公司 汽车织物挡泥板及其制备方法
WO2016081508A1 (en) * 2014-11-18 2016-05-26 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
WO2017006217A1 (en) * 2015-07-06 2017-01-12 DI GIACINTO, Palmino Process for the production of glycol-modified polyethylene therephthalate from recycled raw materials
CN105463652A (zh) * 2016-01-26 2016-04-06 江苏优越纺织科技有限公司 再生涤纶雪尼尔纱线、制造方法及再生涤纶雪尼尔纱线毯的制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11248323B2 (en) 2017-03-24 2022-02-15 Purlin, Llc Method for forming a non-woven recyclable fabric
WO2020154489A1 (en) * 2019-01-24 2020-07-30 Purlin, Llc Nonwoven recyclable fabric and associated methods

Also Published As

Publication number Publication date
BR102016008121A2 (pt) 2017-04-11

Similar Documents

Publication Publication Date Title
KR100402915B1 (ko) 내구적용융결합성,열가소성및인성을가진마크로데니어의비인장된다성분필라멘트
CA2604809C (en) Faced fibrous insulation
CA1052966A (en) Radial extrusion and stretching of foam to form fibrous networks
WO2017179030A1 (pt) Manta de fibra sintética contínua 100% pet reciclado
US20110230111A1 (en) Fibers containing additives for use in fibrous insulation
US7427575B2 (en) Faced fibrous insulation
EA019254B1 (ru) Композиционный материал и способ его получения
CN102802900A (zh) 借助混合的玻璃纤维制造的热塑性管
US10479057B2 (en) Polymeric substrates with an improved thermal expansion coefficient and a method for producing the same
EP3034659A1 (en) Improved polypropylene fibers, methods for producing the same and uses thereof for the production of fiber cement products
JP5931124B2 (ja) 立体網状構造体、立体網状構造体製造方法及び立体網状構造体製造装置
JPH04214407A (ja) 発泡繊維の製法
AU2016204391B2 (en) Apparatus and method of making a nonwoven ceiling tile and wall panel
US7662252B2 (en) Method for producing a reinforced polyester non-woven material
JP2002088631A (ja) 立体網目状構造体の製造方法及び立体網目状構造体の製造装置
KR101413884B1 (ko) 건축재 투습방수 소재용 장섬유 스펀본드 부직포 및 그 제조방법
KR101784236B1 (ko) 건축용 유리섬유매트 및 그 제조방법과 제조장치
JP5378618B2 (ja) 立体網状構造体、立体網状構造体製造方法及び立体網状構造体製造装置
KR101784232B1 (ko) 건축용 유리섬유매트 및 그 제조방법과 제조장치
JP5380559B2 (ja) 立体網状構造体、立体網状構造体製造方法及び立体網状構造体製造装置
JP5419850B2 (ja) 立体網状構造体、立体網状構造体製造方法及び立体網状構造体製造装置
BR202016008123U2 (pt) Constructive provision in head and pipe assembly for synthetic fiber extrusion
JP2015155590A (ja) 立体網状構造体製造方法及び立体網状構造体製造装置
JP5525645B2 (ja) 立体網状構造体製造方法及び立体網状構造体製造装置
BR102016008120A2 (pt) Equipment for manufacture of continuous synthetic fiber

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782040

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782040

Country of ref document: EP

Kind code of ref document: A1