WO2017177963A1 - 腈纶生产中废水处理和资源回收的方法 - Google Patents

腈纶生产中废水处理和资源回收的方法 Download PDF

Info

Publication number
WO2017177963A1
WO2017177963A1 PCT/CN2017/080564 CN2017080564W WO2017177963A1 WO 2017177963 A1 WO2017177963 A1 WO 2017177963A1 CN 2017080564 W CN2017080564 W CN 2017080564W WO 2017177963 A1 WO2017177963 A1 WO 2017177963A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
treatment
water
coagulant
filter
Prior art date
Application number
PCT/CN2017/080564
Other languages
English (en)
French (fr)
Inventor
周岳溪
蒋进元
宋玉栋
Original Assignee
中国环境科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国环境科学研究院 filed Critical 中国环境科学研究院
Priority to US16/092,033 priority Critical patent/US10647603B2/en
Priority to DE112017002003.4T priority patent/DE112017002003B4/de
Publication of WO2017177963A1 publication Critical patent/WO2017177963A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/38Polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to a method for recycling waste water resources, process reduction and deep removal of an acrylic fiber production device, in particular to a method for wastewater treatment and resource recovery in acrylic fiber production.
  • Acrylic fiber is an important synthetic fiber material and a basic raw material for the textile industry.
  • China is a large producer of acrylic fibers in the world and has a number of large-scale acrylic fiber producers.
  • Acrylic fiber production wastewater is a typical biodegradable toxic organic industrial wastewater.
  • the wastewater contains toxic substances such as acrylonitrile, DMAC, DMF, etc., and contains high concentrations of difficult biodegradable organic matter.
  • the traditional treatment process is difficult to reach the standard, so it has been industrial wastewater. Handling difficulties in the field.
  • China's "Integrated Wastewater Discharge Standard" (GB8978-1996) has revised the COD standard value for special petrochemical plants including acrylonitrile-acrylic fiber devices.
  • the biodegradable organic matter in the acrylic fiber wastewater in addition to the difficult biodegradable organic additives added during the production process, includes high molecular weight polymers (above 10 kDa) and low molecular weight polymers (below 10 kDa) which are produced during the polymerization and enter the wastewater. .
  • High molecular weight polymers are products that are lost to waste water during the production of acrylic fibers and have a recycling value.
  • Low molecular weight polymers are difficult to remove using conventional processes.
  • the prior art is mostly an end treatment unit technology for strengthening the removal of difficult biodegradable pollutants, and lacks a whole process reduction technique that enhances the reduction of pollutants through the optimization of production processes and the functions of various units in the wastewater treatment process.
  • the technical problem to be solved by the present invention is to provide a whole process reduction method for recovering resources from waste water, reducing pollutant concentration in the production process of acrylic fiber, and comprehensively utilizing the pollutant removal capability of each wastewater treatment unit to gradually reduce pollutants.
  • a traditional acrylic fiber production process is shown in Figure 1.
  • the method of the present application is an improvement to the conventional acrylic fiber production process, which reduces pollutant emissions in the wastewater while recovering available resources in the wastewater.
  • the present application provides a method of wastewater treatment and resource recovery in the production of acrylic fibers, comprising the steps of:
  • step (B) using the coagulated air flotation to remove the unretained high molecular weight polymer in the wastewater from the wastewater treated in step (A);
  • step (C) the effluent treated in step (B) is processed into a biological treatment unit, and a multivalent metal ion adsorption promoter is added to improve the removal effect of the biodegradable organic matter in the biological treatment unit;
  • the high molecular weight polymer contained in the wastewater of the acrylic water washing filter unit is subjected to precipitation filtration and interception recovery, and the filter used is a surface filter with a membrane material as a core or a fiber filament.
  • the bundle and the fiber cotton are deep filters of the filter medium.
  • the filtered wastewater is subjected to subsequent treatment, and the filtered cut-off high molecular weight polymer is dispersed in the backwash water by periodic backwashing. Precipitation treatment is carried out before the wastewater is filtered, and the hydraulic retention time of the precipitator is 2 to 5 hours.
  • Filtration speed of fiber tow and fiber ash is 10 ⁇ 30m 3 /(m 2 .h), the height of the filter layer is 1-2m, the backwashing period is 1-3d, and the precipitator and filter are made of acid-proof and anti-corrosion materials.
  • the polymer recovery rate is 40% to 70%.
  • the backwashing of the filter of the present invention may be combined with air washing and water washing to increase the concentration of high molecular weight polymer in the backwash water.
  • the backwash water with the high molecular weight polymer dispersed in the present invention is returned to the precipitator for precipitation treatment, and the concentrated polymer slurry at the bottom of the precipitator is periodically returned to the acrylic fiber production process, and finally enters the acrylic fiber product.
  • the concentrated polymer slurry at the bottom of the precipitator is periodically returned to the acrylic fiber production process, and finally enters the acrylic fiber product.
  • the coagulation air flotation of the present invention further removes the unfiltered high molecular weight polymer in the wastewater, which is characterized in that the pH of the wastewater is adjusted to 6-9 before coagulation, and the coagulation process is The coagulant and the coagulant are successively added to the waste water, and after entering the reaction, the air flotation unit is introduced.
  • the coagulant is polyaluminium chloride or polyaluminum ferric chloride.
  • the dosage is 50-200mg/L
  • the coagulant is polyacrylamide
  • the dosage is 2-10mg/L
  • the reflux ratio of dissolved gas is 30. % to 60%
  • COD removal rate is 10% to 20%.
  • the air floating unit in the coagulated air flotation of the present invention may be a parallel flow air floating pool or a high efficiency shallow air floating pool.
  • the polymer is trapped to form scum and the effluent is subsequently treated.
  • the coagulated air flotation treatment effluent of the present invention enters a biological treatment unit for treatment, and increases the removal effect of the biodegradable polymer in the biological treatment unit by adding a polyvalent metal ion adsorption promoter.
  • the multivalent metal ion adsorption promoter to be added includes, but is not limited to, calcium ions, magnesium ions, aluminum ions, and a mixture thereof (ie, a soluble salt to which these ions are added), and the dosage is 5 to 100 mg/L (for example, Calcium ion 30mg/L or aluminum ion 100mg/L); add to the coagulated air flotation effluent, then mix well with the return sludge, or directly add to the mixed sludge and the influent mixture, or expose The gas pool muddy water mixture is added to the secondary sedimentation tank; the biological treatment unit adopts an activated sludge method or an activated sludge method of adding a biological carrier, and the activated sludge is aged 15 to 30 days.
  • Continuous treatment of biological treatment tanks by setting macroscopic hypoxia Zone, aerobic zone, or by adding biological carriers, forming an anoxic zone inside the carrier to achieve biological removal of nitrogen and biodegradable organic matter; intermittent treatment of biological pools by setting hypoxia and aerobic periods to achieve nitrogen and biomass Biodegradation of degraded organic matter; after biological treatment, the effluent ammonia nitrogen drops below 10 mg/L.
  • the concentration of suspended solids in the mixed liquor is 3000-6000 mg/L, and the reflux ratio of the sludge is 100%-200%.
  • the COD of the biological treatment unit is reduced by 30-120 mg/L.
  • the deep treatment of the present invention removes the biodegradable organic matter such as the residual low molecular weight polymer in the biological treatment effluent, and the oxidizing agent, the coagulant or the oxidative coagulation compound agent is added to the biological treatment effluent. / or coagulant, through the combination of oxidation, coagulation, precipitation or air floatation to achieve the removal of difficult biodegradable organic matter.
  • the oxidizing agent of the present invention is a water-soluble oxidizing agent such as hydrogen peroxide, chloric acid or the like, and the dosage is 50-400 mg/L;
  • the coagulant includes but is not limited to a polyvalent metal salt and Multivalent polymer, dosage is 200-2000mg/L;
  • coagulant includes but not limited to diatomaceous earth, polyacrylamide, etc., dosage is 2-15mg/L; reaction pH is 6-8; effluent COD Drop below 150mg/L.
  • the oxidation, coagulation process of the present invention can be carried out in a reactor with mechanical or hydraulic agitation or in a static mixer.
  • Acrylic polymer is the main hard-to-biodegrade organic matter in the production of acrylic fiber.
  • the high-molecular-weight polymer is the product that is lost to the waste water in the production process of acrylic fiber and has the recovery value. Therefore, the high molecular weight polymer is recovered by filtration, and the resources are recovered on the one hand, thereby improving the product yield, and on the other hand, reducing the amount of refractory organic matter in the wastewater, and reducing the difficulty and cost of wastewater treatment.
  • the waste water of the water-washing filter unit of the acrylic fiber production device is recovered by the polymer, and the wastewater still contains polymers of different molecular weights.
  • the wastewater treatment process of the present invention can realize the stepwise removal of different types of polymers, thereby ensuring the treatment effect of the wastewater. Reduce the cost of wastewater treatment in the case.
  • the coagulation air-floating unit removes the high-molecular-weight polymer that is not filtered and retained in the wastewater; and increases the removal of the biodegradable polymer by the biological treatment unit by adding a multivalent metal ion adsorption promoter; It is difficult to biodegrade organic matter such as low molecular weight polymers remaining in water. Compared with the traditional treatment process, the refractory organic matter removal is concentrated in the deep processing stage, the investment and operating costs are more economical, and the effluent water quality is more stable.
  • the invention relies on the existing traditional acrylic fiber production process and is suitable for the transformation of existing production equipment. Invest in smaller costs Significant resource recovery and pollutant reduction can be achieved.
  • Figure 1 shows the process route of a conventional acrylic fiber production unit.
  • Fig. 2 is a diagram showing an improved process route and a wastewater treatment process for an acrylic fiber production apparatus by the method of the present invention.
  • Calcium chloride is added as an adsorption promoter in the effluent after coagulation and air flotation treatment, and the calcium ion dosage is 10 mg/L, and then treated by anoxic-aerobic activated sludge method, which can be used but not Limited to municipal sewage treatment plant activated sludge for inoculation, sludge age control at 15d, biological treatment effluent (secondary sedimentation tank effluent) is less than the adsorption promoter COD (301mg / L) decreased by 76mg / L, effluent COD225mg / L, ammonia nitrogen 5 m / L.
  • the above-mentioned biologically treated effluent is subjected to advanced treatment, using H 2 O 2 as an oxidant, the dosage is 100 mg/L, ferrous sulfate is used as a catalyst and a coagulant, and the dosage is 500 mg/L, PAM is a coagulant with a dosage of 3 mg/L.
  • the reaction is carried out in a static mixer and separated by high-efficiency shallow air flotation. The COD reaches 125 mg/L.
  • washing the filter unit wastewater Increase the pore size of the 1 micron filter cloth filter for high molecular weight polymer retention and recovery, and recover 80g of polymer per ton of wastewater, correspondingly reduce the COD of the wastewater by 200mg/L.
  • the trapped high molecular weight polymer is backwashed and returned to the water washing filter unit to finally enter the product.
  • a portion of the filtrate was filtered as a low brine aqueous polymer with water.
  • the filtered effluent is subjected to coagulation air flotation treatment, and the aluminum chloride iron is used as a coagulant.
  • the dosage is 75 mg/L, and polyacrylamide is used as a coagulant.
  • the dosage is 4 mg/L. , COD removal of 60mg / L.
  • the coagulated air flotation water is treated by anoxic-aerobic activated sludge method, and the sludge age is controlled at 20d.
  • Magnesium chloride is added as an adsorption promoter to the mixed sludge and influent water, and magnesium ion is added.
  • the amount of 75mg/L, biological treatment effluent (secondary sedimentation tank effluent) is 50mg / L lower than the adsorption promoter COD (280mg / L), effluent COD 230mg / L, ammonia nitrogen 7mg / L.
  • magnesium chloride is not added to the mixed sludge and the influent water, only the magnesium chloride with a magnesium ion concentration of 75 mg/L is directly added to the effluent from the secondary sedimentation tank for coagulation and sedimentation treatment.
  • the effluent COD decreases from 280 mg/L to 269 mg/ L, the effect of pollutant removal is not significant.
  • the above biological treatment water is subjected to advanced treatment, and an oxidizing coagulant containing ferric chloride and chloric acid is used, the dosage is 1700 mg/L, and PAM is used as a coagulant, and the dosage is 10 mg/L.
  • the reaction was carried out in a mechanically stirred reactor, and separated by a flat flow air flotation, and the COD reached 135 mg/L.
  • the traditional acrylic fiber production unit and process (see Figure 1), the total drainage COD of the unit is 850mg/L.
  • the filtered effluent is subjected to coagulation air flotation treatment, and the polyaluminum chloride is used as a coagulant, the dosage is 200 mg/L, and the polyacrylamide is used as a coagulant, and the dosage is 5 mg/L.
  • the COD was reduced by 63 mg/L.
  • the coagulated air flotation water is treated by the anoxic-aerobic activated sludge method with biological carrier, the sludge age is controlled at 17d, and the aluminum ion is added as the aeration tank mud water mixture before entering the secondary sedimentation tank.
  • the adsorption promoter was added in an amount of 5 mg/L.
  • the biological treatment effluent decreased COD (340 mg/L) by 120 mg/L, effluent COD 220 mg/L, and ammonia nitrogen 8 mg/L.
  • the aeration tank mud-water mixture does not add aluminum ions before entering the secondary sedimentation tank, only 5mg/L aluminum ions are directly added to the secondary sedimentation tank effluent for coagulation sedimentation treatment, and the wastewater COD decreases from 340mg/L to 330mg/ L, the effect of pollutant removal is not significant.
  • the traditional acrylic fiber production unit and process (see Figure 1), the total drainage COD of the unit is 822mg/L.
  • the filtered effluent is subjected to coagulation and air flotation treatment, with PAC as coagulant, the dosage is 100 mg/L, polyacrylamide is used as a coagulant, the dosage is 5 mg/L, and the COD is reduced by 53 mg. /L.
  • the coagulation gas floatation water is treated by SBR (Sequence Batch Bioreactor), the sludge age is controlled at 17d, and calcium ions and aluminum ions are added as adsorption promoter before the reactor enters the sedimentation stage. It is 100 mg/L (50 mg/L each of calcium ion and aluminum ion).
  • the biological treatment effluent decreased 110 mg/L COD (320 mg/L), 210 mg/L effluent COD, and 8 mg/L ammonia nitrogen in the case of no adsorption promoter.
  • the aerated mud-water mixture does not add calcium ions and aluminum ions before entering the secondary sedimentation tank, only the calcium ions and aluminum ions are directly added to the secondary sedimentation tank effluent to add 50 mg/L for coagulation and sedimentation treatment.
  • the COD decreased from 340 mg/L to 320 mg/L, and the pollutant removal effect was not significant.
  • the above biological treatment effluent is subjected to advanced treatment, using H 2 O 2 as an oxidant, the dosage is 320 mg/L, ferrous sulfate is used as a catalyst and a coagulant, and the dosage is 800 mg/L, with PAM as The coagulant was dosed at 5 mg/L.
  • the reaction was carried out in a static mixer and separated by a sloping plate sedimentation tank. The COD reached 49 mg/L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

一种腈纶生产废水处理和资源回收的方法,包括以下步骤:(1)对腈纶水洗过滤单元废水中含有的高分子量聚合物进行过滤截留回收,回收聚合物返回腈纶生产过程,最后进入产品,部分过滤后废水作为低盐水回用于水洗过滤单元;(2)废水采用混凝气浮去除废水中未被截留的高分子量聚合物;(3)出水进入生物处理单元进行处理并投加多价金属离子吸附促进剂,提高难生物降解聚合物在生物处理单元的去除效果;(4)深度处理去除生物处理出水中残余的有机物。

Description

腈纶生产中废水处理和资源回收的方法 技术领域
本发明涉及腈纶生产装置废水污染物资源回收、过程削减和深度去除的方法,具体地涉及一种腈纶生产中废水处理和资源回收的方法。
背景技术
腈纶是重要的合成纤维材料,是纺织行业的基础原料。我国是世界腈纶生产大国,拥有多家大型腈纶生产企业。腈纶生产废水是典型的难生物降解有毒有机工业废水,废水中含有丙烯腈、DMAC、DMF等多种有毒有机物,同时含有高浓度的难生物降解有机物,传统处理工艺难于达标,因此一直是工业废水处理领域的难点。我国《污水综合排放标准》(GB8978-1996)专门对包括丙烯腈-腈纶装置在内的特殊石化装置修改了COD标准值。我国新颁布的《石油化学工业污染物排放标准》(GB 31571-2015)中,对丙烯腈-腈纶装置在内的特殊石化装置的COD排放限值也高于其他化工生产装置40mg/L。
腈纶废水中的难生物降解有机物,除生产过程中投加的难生物降解有机助剂外还包括聚合过程中产生并进入废水的高分子量聚合物(10kDa以上)和低分子量聚合物(10kDa以下)。高分子量聚合物是腈纶生产过程中流失到废水中的产品,具有回收价值。低分子量聚合物采用传统工艺难于去除。现有技术多为强化难生物降解污染物去除的末端处理单元技术,而缺少通过生产工艺优化和废水处理流程中各单元功能强化削减污染物的全过程削减技术。
发明内容
本发明要解决的技术问题是提供一种在腈纶生产过程中从废水中回收资源、降低污染物浓度,并综合利用各废水处理单元的污染物去除能力逐级削减污染物的全过程削减方法。一种传统的腈纶生产工艺流程见图1。本申请的方法是对传统腈纶生产工艺的一种改进,其减少了废水中的污染物排放,同时再回收废水中的可利用资源。
根据一个方面,本申请提供了一种腈纶生产中废水处理和资源回收的方法,包括以下步骤:
(A)对腈纶水洗过滤单元废水中含有的高分子量聚合物(分子量10kDa以上)进行沉淀过滤截留回收,回收的聚合物返回腈纶生产过程,部分过滤后废水任选地作为低盐水再利用于水洗过滤单元;
(B)将步骤(A)处理后的废水采用混凝气浮去除废水中未被截留的高分子量聚合物;
(C)将步骤(B)处理后的出水进入生物处理单元处理,并投加多价金属离子吸附促进剂,提高难生物降解有机物在生物处理单元的去除效果;和
(D)深度处理去除步骤(C)生物处理出水中残余的难生物降解有机物(例如低分子量聚合物),所述深度处理是指通过氧化、混凝、沉淀或气浮的组合的处理步骤。
根据本申请的一些实施方式,步骤(A)中,对腈纶水洗过滤单元废水中含有的高分子量聚合物进行沉淀过滤截留回收,所用过滤器为以膜材料为核心的表面过滤器或以纤维丝束、纤维棉为过滤介质的深层过滤器。过滤后废水进行后续处理,过滤截留高分子量聚合物通过定期反冲洗而分散在反冲洗水中。废水过滤前先进行沉淀处理,沉淀器水力停留时间为2~5h。纤维丝束、纤维绵过滤的滤速为10~30m3/(m2.h),滤层高度为1~2m,反冲洗周期为1~3d,沉淀器及过滤器均采用耐酸防腐材料,高分子聚合物回收率40%~70%。
根据本申请的一些实施方式,本发明所述过滤器的反冲洗可采用气洗和水洗相结合的方式,以提高反冲洗水中的高分子量聚合物浓度。
根据本申请的一些实施方式,本发明所述分散有高分子量聚合物的反冲洗水,返回沉淀器进行沉淀处理,沉淀器底部浓缩的聚合物淤浆定期返回腈纶生产工艺,并最终进入腈纶产品,实现回收聚合物的资源化。
根据本申请的一些实施方式,本发明所述采用混凝气浮进一步去除废水中未被过滤截留的高分子量聚合物,其特征在于混凝前调节废水pH为6~9,混凝过程中向废水中先后加入混凝剂和助凝剂,经反应后进入气浮单元。混凝剂为聚合氯化铝或聚合氯化铝铁,投加量为50~200mg/L,助凝剂为聚丙烯酰胺,投加量为2~10mg/L,溶气水回流比为30%~60%,COD去除率10%~20%。
根据本申请的一些实施方式,本发明所述混凝气浮中的气浮单元可以为平流气浮池,也可为高效浅层气浮池。高聚物被截留形成浮渣,出水进行后续处理。
根据本申请的一些实施方式,本发明所述混凝气浮处理出水进入生物处理单元进行处理,并通过投加多价金属离子吸附促进剂,提高难生物降解聚合物在生物处理单元的去除效果,所投加的多价金属离子吸附促进剂包括但不限于钙离子、镁离子、铝离子及其混合物(即添加这些离子的溶解性盐),投加量为5~100mg/L(例如,钙离子30mg/L或投加铝离子100mg/L);向混凝气浮出水中投加,然后与回流污泥充分混合,或直接向回流污泥与进水混合处投加,或向曝气池泥水混合液进入二次沉淀池时投加;所述生物处理单元采用活性污泥法或投加生物载体的活性污泥法,活性污泥龄为15~30d。连续处理生物处理池内通过设置宏观的缺氧 区、好氧区,或通过投加生物载体,在载体内部形成缺氧区,实现氮和可生物降解有机物的生物去除;间歇处理生物池内通过设置缺氧和好氧时段,实现氮和可生物降解有机物的生物去除;生物处理后,出水氨氮降至10mg/L以下。混合液悬浮固体浓度为3000~6000mg/L,污泥回流比为100%~200%,与不投加吸附促进剂相比,生物处理单元出水COD降低30~120mg/L。
根据本申请的一些实施方式,本发明所述深度处理去除生物处理出水中残余低分子量聚合物等难生物降解有机物,是指向生物处理出水中先后加入氧化剂、混凝剂或氧化混凝复合药剂和/或助凝剂,通过氧化、混凝、沉淀或气浮的组合作用实现难生物降解有机物去除。
根据本申请的一些实施方式,本发明所述氧化剂为可溶于水的氧化剂,如双氧水、氯酸等,投加量为50~400mg/L;混凝剂包括但不限于多价金属盐及多价聚合物,投加量为200~2000mg/L;助凝剂包括但不限于硅藻土、聚丙烯酰胺等,投加量为2~15mg/L;反应pH为6~8;出水COD降至150mg/L以下。
根据本申请的一些实施方式,本发明所述氧化、混凝过程可在带机械或水力搅拌的反应器内进行,或在静态混合器中进行。
本发明的用于腈纶生产中废水处理和资源回收的方法具有至少一种以下的优点:
(1)通过增加资源回收单元,实现污染物的资源回收,并降低废水处理难度和成本。腈纶聚合物是腈纶生产废水中的主要的难生物降解的有机物,其中高分子量聚合物是腈纶生产过程中流失到废水中的产品,具有回收价值。因此通过过滤截留回收高分子量聚合物,一方面回收了资源,提高了产品收率,另一方面减少了废水中难降解有机物量,降低了废水处理难度与成本。
(2)充分发挥废水处理工艺各单元的污染物削减效果,降低废水处理成本。腈纶生产装置水洗过滤单元废水经高聚物截留回收后,废水中仍含有不同分子量的聚合物,本发明中的废水处理工艺可实现不同类型聚合物的逐级去除,从而在保证废水处理效果的情况下降低废水处理成本。混凝气浮单元去除废水中未被过滤截留的高分子量聚合物;通过投加多价金属离子吸附促进剂,提高生物处理单元对难生物降解聚合物的去除作用;通过深度处理去除生物处理出水中残余的低分子量聚合物等难生物降解有机物。与传统处理工艺将难降解有机物去除集中在深度处理阶段相别,投资和运行费用更省,出水水质更加稳定。
(3)本发明依托现有传统腈纶生产工艺,适合现有生产装置的改造。投入较小的成本 即可获得显著的资源回收和污染物减排效果。
下面结合附图对本发明的方法作进一步说明。
附图说明
图1为传统的腈纶生产装置工艺路线。
图2为采用本发明方法时腈纶生产装置改进工艺路线及废水处理工艺。
具体实施方式
实施例1:
传统的腈纶生产装置和工艺(见图1),装置总排水COD达710mg/L。
采用本发明的方法对传统装置和工艺进行如下改造:
(1)水洗过滤单元废水增加孔径0.5微米陶瓷膜过滤器进行高分子量聚合物截留回收,每吨废水截留回收100g聚合物,相应地废水COD下降230mg/L。截留的高分子量聚合物经反冲洗和沉淀浓缩后返回水洗过滤单元,最终进入产品。部分滤液作为低盐水用于聚合物水洗过滤。
(2)将水洗过滤后的出水进行混凝气浮处理,以聚合氯化铝(PAC)为混凝剂,投加量50mg/L,以聚丙烯酰胺(PAM)为助凝剂,投加量2mg/L,COD降低100mg/L。
(3)混凝气浮处理后的出水中投加氯化钙作为吸附促进剂,钙离子投加量为10mg/L,然后采用缺氧-好氧活性污泥法进行处理,可采用但不限于市政污水处理厂活性污泥进行接种,污泥龄控制在15d,生物处理出水(二次沉淀池出水)较不投加吸附促进剂COD(301mg/L)下降了76mg/L,出水COD225mg/L,氨氮5m/L。若混凝气浮处理出水中不投加氯化钙,只在二次沉淀池出水中直接投加钙离子浓度为10mg/L的氯化钙进行混凝沉淀处理,出水COD仅由301mg/L下降到294mg/L,污染物去除效果不显著。
(4)将上述生物处理后的出水进行深度处理,以H2O2为氧化剂,投加量为100mg/L,以硫酸亚铁为催化剂和混凝剂,投加量为500mg/L,以PAM为助凝剂,投加量为3mg/L,在静态混合器内进行反应,采用高效浅层气浮进行分离,COD达到125mg/L。
实施例2:
传统的腈纶生产装置和工艺(见图1),装置总排水COD达753mg/L。
采用本发明的方法对传统装置和工艺进行如下改造:
(1)水洗过滤单元废水增加孔径1微米滤布过滤器进行高分子量聚合物截留回收,每吨废水截留回收80g聚合物,相应地废水COD下降200mg/L。截留的高分子量聚合物经反冲洗沉淀后返回水洗过滤单元,最终进入产品。部分滤液作为低盐水用水聚合物水洗过滤。
(2)将过滤后的出水进行混凝气浮处理,以聚合氯化铝铁为混凝剂,投加量为75mg/L,以聚丙烯酰胺为助凝剂,投加量为4mg/L,COD去除60mg/L。
(3)混凝气浮出水采用缺氧-好氧活性污泥法进行处理,污泥龄控制在20d,向回流污泥与进水混合处投加氯化镁作为吸附促进剂,镁离子投加量75mg/L,生物处理出水(二次沉淀池出水)较不投加吸附促进剂COD(280mg/L)下降50mg/L,出水COD 230mg/L,氨氮7mg/L。若回流污泥与进水混合处不投加氯化镁,只在二次沉淀池出水直接投加镁离子浓度为75mg/L的氯化镁进行混凝沉淀处理,出水COD仅由280mg/L下降到269mg/L,污染物去除效果不显著。
(4)将上述生物处理出水进行深度处理,采用含氯化铁和氯酸的氧化混凝剂,投加量为1700mg/L,以PAM为助凝剂,投加量为10mg/L,在机械搅拌反应器内进行反应,采用平流气浮进行分离,COD达到135mg/L。
实施例3:
传统的腈纶生产装置和工艺(见图1),装置总排水COD达850mg/L。
采用本发明的方法对传统装置和工艺进行如下改造:
(1)水洗过滤单元废水增加腈纶纤维束过滤器进行高分子量聚合物截留回收,每吨废水截留回收120g聚合物,相应地废水COD下降260mg/L。截留的高分子量聚合物经反冲洗沉淀后返回水洗过滤单元,最终进入产品。
(2)将过滤后的出水进行混凝气浮处理,以聚合氯化铝为混凝剂,投加量为200mg/L,以聚丙烯酰胺为助凝剂,投加量为5mg/L,COD降低63mg/L。
(3)混凝气浮出水采用投加生物载体的缺氧-好氧活性污泥法进行处理,污泥龄控制在17d,曝气池泥水混合物进入二次沉淀池前投加铝离子作为吸附促进剂,投加量为5mg/L。生物处理出水(二次沉淀池出水)较不投加吸附促进剂情况下COD(340mg/L)下降120mg/L,出水COD 220mg/L,氨氮8mg/L。若曝气池泥水混合物进入二次沉淀池前不投加铝离子,只在二次沉淀池出水中直接投加5mg/L铝离子进行混凝沉淀处理,废水COD由340mg/L下降到330mg/L,污染物去除效果不显著。
(4)将上述生物处理出水进行深度处理,以聚合氯化铝铁为混凝剂、聚丙烯为助凝剂进行混凝气浮处理,聚合氯化铝铁投加2000mg/L、聚丙烯酰胺投加10mg/L,出水COD达到147mg/L。
实施例4:
传统的腈纶生产装置和工艺(见图1),装置总排水COD达822mg/L。
采用本发明的方法对传统装置和工艺进行如下改造:
(1)水洗过滤单元废水增加中空纤维过滤器(孔径0.45微米)进行高分子量聚合物截留回收,每吨废水截留回收80mg/L聚合物,相应地废水COD下降170mg/L。截留的高分子量聚合物经反冲洗沉淀后返回水洗过滤单元,最终进入产品。
(2)将过滤后的出水进行混凝气浮处理,以PAC为混凝剂,投加量为100mg/L,以聚丙烯酰胺为助凝剂,投加量为5mg/L,COD降低53mg/L。
(3)混凝气浮出水采用SBR(序批式生物反应器)进行处理,污泥龄控制在17d,反应器进入沉淀阶段前投加钙离子和铝离子作为吸附促进剂,投加量为100mg/L(钙离子和铝离子各投加50mg/L)。生物处理出水(二次沉淀池出水)较不投加吸附促进剂情况下COD(320mg/L)下降110mg/L,出水COD 210mg/L,氨氮8mg/L。若曝气池泥水混合物进入二次沉淀池前不投加钙离子和铝离子,只在二次沉淀池出水中直接投加钙离子和铝离子各投加50mg/L进行混凝沉淀处理,废水COD由340mg/L下降到320mg/L,污染物去除效果不显著。
(4)将上述生物处理出水进行深度处理,以H2O2为氧化剂,投加量为320mg/L,以硫酸亚铁为催化剂和混凝剂,投加量为800mg/L,以PAM为助凝剂,投加量为5mg/L,在静态混合器内进行反应,采用斜板沉淀池进行分离,COD达到49mg/L。
以上所述实施例仅是对本发明优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

  1. 一种腈纶生产废水处理和资源回收的方法,其特征在于,包括以下步骤:
    (A)对腈纶水洗过滤单元废水中含有的高分子量聚合物进行过滤截留回收,回收的聚合物返回腈纶生产过程,最后进入产品,部分过滤后废水任选地作为低盐水再利用于水洗过滤单元;
    (B)将步骤(A)处理后的废水采用混凝气浮去除废水中未被截留的高分子量聚合物;
    (C)使步骤(B)处理后的出水进入生物处理单元进行处理并投加多价金属离子吸附促进剂,提高难生物降解有机物在生物处理单元的去除效果;和
    (D)深度处理去除步骤(C)生物处理出水中残余的有机物,所述深度处理是指通过氧化、混凝、沉淀或气浮的组合的处理步骤。
  2. 如权利要求1所述的方法,其中,步骤(A)中使用的过滤器为以膜材料为核心的表面过滤器或以纤维丝束或纤维棉为过滤介质的深层式过滤器;当采用深层式过滤器时,过滤器中的纤维丝束或纤维绵过滤的滤速为10~30m3/(m2.h),滤层高度为1~2m。
  3. 如权利要求2所述的方法,其中,步骤(A)中,废水在过滤前先在沉淀器中进行沉淀处理,沉淀时间为2~5h。
  4. 如权利要求3所述的方法,其中,所述过滤截留的高分子量聚合物通过反冲洗而分散在反冲洗水中,分散有高分子量聚合物的反冲洗水返回沉淀器进行沉淀处理,沉淀器底部浓缩的聚合物返回腈纶生产工艺,最后进入产品。
  5. 如权利要求1至4中任一项所述的方法,其中,步骤(B)中采用混凝气浮进一步去除废水中未被过滤截留的高分子量聚合物,在混凝前调节废水pH为6~9,混凝过程中向废水中加入混凝剂和助凝剂,经反应后进入气浮单元。
  6. 如权利要求5所述的方法,其中,所述混凝剂为聚合氯化铝或聚合氯化铝铁,投加量为50~200mg/L;助凝剂为聚丙烯酰胺,投加量为2~10mg/L,溶气水回流比为30%~60%,COD去除率10%~20%。
  7. 如权利要求1至6中任一项所述的方法,其中,步骤(C)中的混凝气浮处理出水进入生物处理单元进行处理,并投加多价金属离子吸附促进剂,所投加的多价金属离子吸附促进剂选自钙离子、镁离子、铝离子及其混合物,投加量为5~100mg/L。
  8. 如权利要求7所述的方法,其中,在步骤(C)中,向混凝气浮出水中投加所述多价金属离子吸附促进剂,然后与回流污泥充分混合,或直接向回流污泥与进水混合处投加所述 多价金属离子吸附促进剂,或向曝气池泥水混合液进入二次沉淀池时投加所述多价金属离子吸附促进剂;所述生物处理单元采用活性污泥法,或投加生物载体的活性污泥法,活性污泥龄为15~30d。
  9. 如权利要求1至8中任一项所述的方法,其中,步骤(D)中,向生物处理出水中先后加入氧化剂、混凝剂或氧化混凝复合药剂、助凝剂,通过氧化、混凝、沉淀或气浮的组合作用实现难生物降解有机物的去除。
  10. 如权利要求9所述的方法,其中所述氧化剂为可溶于水的氧化剂,如双氧水、氯酸等,投加量为50~400mg/L;混凝剂选自多价金属盐及多价聚合物,投加量为200~2000mg/L;助凝剂选自硅藻土、聚丙烯酰胺等,投加量为2~15mg/L;反应pH为6~8;出水COD降至150mg/L以下。
PCT/CN2017/080564 2016-04-15 2017-04-14 腈纶生产中废水处理和资源回收的方法 WO2017177963A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/092,033 US10647603B2 (en) 2016-04-15 2017-04-14 Method for treating waste water and recovering resources in acrylic fiber production
DE112017002003.4T DE112017002003B4 (de) 2016-04-15 2017-04-14 Verfahren zur Behandlung von Abwasser und zur Rückgewinnung von Ressourcen bei der Acrylfaserproduktion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610237475.1 2016-04-15
CN201610237475.1A CN105712585A (zh) 2016-04-15 2016-04-15 腈纶生产中废水处理和资源回收的方法

Publications (1)

Publication Number Publication Date
WO2017177963A1 true WO2017177963A1 (zh) 2017-10-19

Family

ID=56161156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080564 WO2017177963A1 (zh) 2016-04-15 2017-04-14 腈纶生产中废水处理和资源回收的方法

Country Status (4)

Country Link
US (1) US10647603B2 (zh)
CN (1) CN105712585A (zh)
DE (1) DE112017002003B4 (zh)
WO (1) WO2017177963A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712585A (zh) * 2016-04-15 2016-06-29 中国环境科学研究院 腈纶生产中废水处理和资源回收的方法
CN110902802B (zh) * 2018-09-17 2022-11-15 保定加合精细化工有限公司 二乙氨基乙硫醇生产废水的预处理方法
CN110510828A (zh) * 2019-09-12 2019-11-29 江苏蓝必盛化工环保股份有限公司 一种环氧树脂生产废水的资源化处理工艺
CN110563281A (zh) * 2019-10-09 2019-12-13 江苏沃尔特环保有限公司 一种玻璃纤维布生产用有机废水处理系统
CN111001199B (zh) * 2019-12-16 2021-08-13 河北国惠环保科技有限公司 一种多工位循环作业调理脱水装置
CN115233326A (zh) * 2020-12-25 2022-10-25 内蒙古双欣环保材料股份有限公司 一种丝束洗涤方法及装置
CN113087297A (zh) * 2021-04-07 2021-07-09 山东大学 一种强化污水中溶解态碳源回收的装置、方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188743A (zh) * 1997-07-04 1998-07-29 化学工业部第三设计院 湿法纺丝腈纶工业综合废水处理工艺
JP2008110280A (ja) * 2006-10-30 2008-05-15 Tech Corporation:Kk 染色排水処理方法
CN101423312A (zh) * 2007-10-31 2009-05-06 中国石油化工股份有限公司 一种腈纶生产废水处理方法
CN101525202A (zh) * 2009-04-14 2009-09-09 东华大学 一种印染废水深度处理与中水回用系统及方法
CN102145965A (zh) * 2011-04-18 2011-08-10 李斌 纺织染整废水深度处理回用工艺
CN105712585A (zh) * 2016-04-15 2016-06-29 中国环境科学研究院 腈纶生产中废水处理和资源回收的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102050555B (zh) 2010-12-24 2012-07-25 波鹰(厦门)科技有限公司 一种印染废水处理循环利用装置及其方法
CN102276107B (zh) * 2011-05-30 2013-08-21 北京环利科环境工程技术有限公司 Phaob法处理腈纶污水技术
CN104971544A (zh) * 2014-04-04 2015-10-14 吉林省环境科学研究院 化纤行业聚合车间排水回收关键技术

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188743A (zh) * 1997-07-04 1998-07-29 化学工业部第三设计院 湿法纺丝腈纶工业综合废水处理工艺
JP2008110280A (ja) * 2006-10-30 2008-05-15 Tech Corporation:Kk 染色排水処理方法
CN101423312A (zh) * 2007-10-31 2009-05-06 中国石油化工股份有限公司 一种腈纶生产废水处理方法
CN101525202A (zh) * 2009-04-14 2009-09-09 东华大学 一种印染废水深度处理与中水回用系统及方法
CN102145965A (zh) * 2011-04-18 2011-08-10 李斌 纺织染整废水深度处理回用工艺
CN105712585A (zh) * 2016-04-15 2016-06-29 中国环境科学研究院 腈纶生产中废水处理和资源回收的方法

Also Published As

Publication number Publication date
DE112017002003B4 (de) 2024-03-14
DE112017002003T5 (de) 2019-01-10
US10647603B2 (en) 2020-05-12
US20190127254A1 (en) 2019-05-02
CN105712585A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2017177963A1 (zh) 腈纶生产中废水处理和资源回收的方法
AU598041B2 (en) Sewage treatment
CN103771650B (zh) 一种煤气化废水的处理方法
US20110127220A1 (en) Method for Treating Water by Advanced Oxidation and Ballasted Flocculation, and Corresponding Treatment Plant
CN105384316B (zh) 一种电子工业含氟含氨氮废水的处理方法
CN104628185A (zh) 一种油气田压裂返排液的处理工艺
JP2013506550A (ja) 生物学的水処理性を向上させるための方法
US3756946A (en) Sewage treatment process
CN106946407A (zh) 一种碎煤加压气化废水生化出水的回用处理方法
CN105906164A (zh) 一种去除污水中氨氮的方法
CN108264186A (zh) 一种对含氮污水进行回收利用的方法
CN102936077B (zh) 一种聚丙烯腈纤维生产污水的处理方法
CN113480089A (zh) 一种石油化工废水的深度处理方法
JPH09192675A (ja) 廃水の処理方法
CN106966554A (zh) 污水处理装置
CN110342740A (zh) 含盐有机废水的净化方法和净化系统
JP3794736B2 (ja) 高濃度のリン及びアンモニア性窒素含有排水の処理方法
CN110759548B (zh) 一种用于垃圾渗滤液膜分离系统的联合净化处理方法
KR101299586B1 (ko) 오폐수 처리 장치 및 처리 방법
CN111807597A (zh) 一种采用超磁分离技术净化水体的工艺
KR20110058929A (ko) 음식물배출수, 가축폐수 및 분뇨의 통합 정화처리방법
CN106277575B (zh) 一种造纸污水的处理回用工艺
JP2004249245A (ja) リン含有有機性汚水処理装置
CN106946417A (zh) 污水处理装置
JPH0576897A (ja) 浄水処理方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781939

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17781939

Country of ref document: EP

Kind code of ref document: A1