WO2017177951A1 - 差分全球定位系统及其定位方法 - Google Patents

差分全球定位系统及其定位方法 Download PDF

Info

Publication number
WO2017177951A1
WO2017177951A1 PCT/CN2017/080473 CN2017080473W WO2017177951A1 WO 2017177951 A1 WO2017177951 A1 WO 2017177951A1 CN 2017080473 W CN2017080473 W CN 2017080473W WO 2017177951 A1 WO2017177951 A1 WO 2017177951A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
smart device
positioning system
data
differential
Prior art date
Application number
PCT/CN2017/080473
Other languages
English (en)
French (fr)
Inventor
何明明
谭一云
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to EP21166901.5A priority Critical patent/EP3862793B1/en
Priority to EP17781927.3A priority patent/EP3444636B1/en
Publication of WO2017177951A1 publication Critical patent/WO2017177951A1/zh
Priority to US16/158,984 priority patent/US20190049593A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/009Transmission of differential positioning data to mobile
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS

Definitions

  • the present invention relates to the field of precise positioning, and in particular to a differential global positioning system in a certain area, and a positioning method of the differential global positioning system.
  • DGPS Differential Global Positioning System
  • DGPS Differential Global Positioning System
  • DGPS Differential Global Positioning System
  • One is a self-built base station, which transmits differential correction data through a base station to correct measurement errors and achieve high-precision positioning.
  • a machine needs to establish a base station, the cost is too high, and the space required for each base station is also large.
  • Another way is to achieve high-precision positioning of the machine through data transmission with the CORS base station by using the Continuously Operating Reference Stations (CORS).
  • CORS Continuously Operating Reference Stations
  • the use of the CORS signal of the CORS base station requires an additional fee and is expensive to use.
  • a differential global positioning system includes a base station configured to set its own first positioning data when set at a fixed location, and at least one smart device, the base station including a first signal receiver, the first signal receiving Receiving a satellite positioning signal sent by the satellite system to obtain second positioning data of the base station, where the base station determines a measurement error between the first positioning data and the second positioning data The difference results in differential correction data, and the base station can be in communication connection with at least two smart devices to transmit corresponding differential correction data to at least two smart devices.
  • the at least one smart device includes an encoding module, where the encoding module is configured to encode the corresponding smart device, and the base station determines whether the encoding matches the data information preset by the base station. Whether the differential correction data is transmitted to the corresponding smart device.
  • the base station includes a sending module, configured to send the differential correction data to the smart device, and a control module, configured to store the encoding of the smart device, and control the sending according to the encoding provided by the smart device. Whether the module transmits the differential correction data to the smart device.
  • the differential global positioning system includes at least two transmission paths for transmitting respective differential correction data to respective smart devices, when the base station receives corresponding intelligence When the device issues a request for the request for the differential correction data, the base station may instruct the corresponding smart device to acquire the corresponding differential correction data through the corresponding transmission path.
  • each smart device includes a housing and a mobile station coupled to the housing, the base station being in communication with the smart device via the mobile station.
  • each smart device includes a second signal receiver and a third signal receiver that are separately disposed, and the second signal receiver receives a satellite positioning signal sent by the satellite positioning system to obtain a corresponding smart device current Positioning data of the location, the third signal receiver is configured to receive differential correction data sent by the base station, and the second signal receiver and the third signal receiver are both integrated on a mobile station of each smart device.
  • the smart device is a self-mobile device or an intelligent robot.
  • the smart device includes an inertial navigation system.
  • the distance between the smart device and the satellite positioning system is equal to the distance between the base station and the satellite positioning system.
  • the angle between the connection between the base station and the satellite positioning system and the connection between the smart device and the satellite positioning system is less than or equal to 0.3 degrees.
  • the differential global positioning system can accurately locate the smart device, and the base station can establish communication with multiple smart devices, so that the differential global positioning system is expandable, and can access or join multiple smarts according to actual conditions.
  • Equipment which is equivalent to being able to form a regional difference
  • By dividing the global positioning network it is not necessary to establish a base station for each smart device, which greatly saves cost, and can increase or decrease the number of smart devices or adjust the coverage of the base station according to requirements, so that differential positioning is more flexible and convenient.
  • a differential global positioning system includes a base station configured to set its own first positioning data when set at a fixed location, the base station includes a first signal receiver, and the first signal receiver receives a satellite positioning system Sending a satellite positioning signal to obtain second positioning data of the base station, the base station obtaining differential correction data according to a measurement error between the first positioning data and the second positioning data, where the base station can be at least Two smart devices are communicatively coupled to transmit corresponding differential correction data to at least two smart devices.
  • At least one of the at least two smart devices includes an encoding module, the encoding module is configured to encode a corresponding smart device, and the base station determines whether the encoding is preset with the base station according to the data. The information is matched to determine whether to transmit the differential correction data to the corresponding smart device.
  • the differential global positioning system includes at least two transmission paths for transmitting respective differential correction data to respective smart devices, when the base station receives corresponding intelligence When the device issues a request for the request for the differential correction data, the base station may instruct the at least two smart devices to acquire the corresponding differential correction data through different transmission paths.
  • each smart device includes a housing and a mobile station coupled to the housing, the base station being in communication with the smart device via the mobile station.
  • the smart device is a self-mobile device or an intelligent robot.
  • a positioning method of a differential global positioning system comprising a base station configured to set its own first positioning data when set at a fixed location, and the base station can communicate with at least one smart device
  • the base station further includes an analysis module, and each smart device includes a processing module, and the positioning method includes at least the following steps:
  • Step 1 collecting data: obtaining second positioning data of the base station according to a satellite positioning signal sent by the satellite positioning system, and transmitting the first positioning data and the second positioning data to an analysis module of the base station;
  • Step 2 Analyze data: the analysis module of the base station receives the first positioning data of step 1 and the second Positioning data, analyzing the difference correction data of the base station, and transmitting the obtained differential correction data to a processing module of at least one smart device.
  • the positioning method further includes: step 3: processing data: the processing module of the smart device receives the differential correction data, and receives a satellite positioning signal from the corresponding smart device according to the differential correction data. The positioning data of the current location of the corresponding smart device is corrected.
  • the smart device further includes an instruction module
  • the positioning method further comprising the step of: issuing an instruction: feeding back the positioning data corrected by the smart device to the instruction module, the instruction module controlling the traveling of the smart device Trace and issue an execution command.
  • the smart device further includes an execution module, the positioning method further comprising the step of: executing an instruction: the execution module receives an instruction issued by the instruction module, and triggers the smart device to obtain a trajectory according to the obtained trajectory Go on.
  • the at least one smart device includes an encoding module
  • the encoding module is configured to encode the corresponding smart device
  • the step 2 further includes: when the analyzing module of the base station analyzes the base station When the data is differentially corrected, the base station may determine whether to transmit the differential correction data to the corresponding smart device according to whether the encoding matches the data information preset by the base station.
  • the base station includes a sending module, configured to send the differential correction data to the smart device, and a control module, configured to store the encoding of the smart device, and control the sending according to the encoding provided by the smart device. Whether the module transmits the differential correction data to the smart device.
  • the differential global positioning system includes at least two transmission paths for transmitting the differential correction data to a corresponding smart device, and the step 2 and the step 3 further include a corresponding
  • the smart device sends an instruction to the base station to request the differential correction data, and the base station receives the instruction and instructs the corresponding smart device to acquire corresponding differential correction data through a corresponding transmission path.
  • the number of transmission paths is less than or equal to the number of smart devices.
  • the smart devices each include a housing and a mobile station coupled to the housing, the base station being in communication with the smart device via the mobile station.
  • the processing module, the instruction module, and the execution module of the smart device are integrated. On the mobile station of each smart device.
  • the second positioning data varies with the time of the satellite positioning signal transmitted by the satellite positioning system.
  • the positioning data obtained by the smart device by receiving the satellite positioning signal transmitted by the satellite positioning system changes according to the time when the satellite positioning system transmits the positioning signal.
  • one base station can implement positioning of multiple smart devices, thereby greatly reducing the cost of positioning the smart device.
  • FIG. 1 is a schematic structural diagram of a differential global positioning system according to an embodiment
  • FIG. 2 is a schematic structural diagram of an intelligent device equipped with a differential global positioning system according to an embodiment
  • FIG. 3 is a schematic diagram of the operation of the differential global positioning system of the embodiment shown in FIG. 2.
  • the differential global positioning system 100 includes a base station 110.
  • the differential global positioning system further includes at least one smart device.
  • the base station 110 can be in communication with at least one smart device.
  • the smart device is a self-mobile device 200.
  • the self-mobile device can also be an intelligent robot or the like.
  • Both the mobile device 200 and the base station 110 can receive satellite positioning signals from the satellite positioning system to achieve positioning.
  • the satellite positioning system is a GPS satellite 300, and the base station 110 and the self-mobile device 200 receive a GPS positioning signal sent by the satellite positioning system to implement GPS positioning.
  • the satellite positioning system can also be a Galileo satellite navigation system, or a Beidou satellite navigation system, or GLONASS.
  • the base station 110 can transmit differential correction information from the mobile device 200 to implement differential satellite positioning.
  • the base station 110 is configured to have a fixed self-precision position when it is set at a fixed location, and the location is defined as the first positioning data of the base station 110.
  • the coordinates of the first positioning data are used.
  • the value is expressed as (x1, y1).
  • the base station 110 includes a first signal receiver (not shown), and the first signal receiver receives the satellite positioning signal sent by the satellite positioning system to obtain the second positioning data of the base station 110.
  • the second positioning data is used.
  • the coordinate value is expressed as (x2, y2).
  • the first signal receiver is a GPS signal receiver.
  • the differential correction data e can be derived from a measurement error between the first positioning data (x1, y1) and the second positioning data (x2, y2).
  • the base station 110 can be in communication connection with at least two self-mobile devices 200 to transmit corresponding differential correction data e to at least two self-mobile devices 200.
  • the second positioning data obtained by the GPS positioning signal sent by the satellite positioning system received by the base station 110 is a variable, which may change according to the time of the GPS positioning signal sent by the satellite positioning system.
  • the base station continuously sends the differential correction data e to the mobile device 200, so that the mobile device obtains the GPS positioning signal from the satellite positioning system received by the mobile device according to the obtained differential correction data. The data is corrected in a timely manner.
  • Each of the mobile devices 200 includes a second signal receiver (not shown) and a third signal receiver (not shown) that are separately disposed, and the second signal receiver is configured to receive a GPS positioning signal from the satellite positioning system to obtain a corresponding From the positioning data of the mobile device 200, the third signal receiver is configured to receive the differential correction data sent by the base station 110.
  • the mobile device 200 also includes a housing (not labeled) and a mobile station 120 coupled to the housing through which the base station 110 establishes a communication connection with the mobile device 200. Both the second signal transmitter and the third signal transmitter are integrated on the mobile station 120 of the respective mobile device 200.
  • the mobile station 120 is detachably connected to the self-mobile device 200.
  • the mobile station 120 is housed in the housing.
  • the positioning data from the current location of the mobile device 200 can be output according to the received GPS positioning signal.
  • the mobile station 120 can also be located outside of the housing of the mobile device 200, and the user can move the corresponding mobile station 120 to a specific location to obtain location data for a particular location.
  • Such a differential global positioning system 100 only needs to establish a base station 110 and communicate with one of the base stations 110 and at least two from the mobile device 200 to achieve precise positioning of the mobile device 200. Since one base station 110 can establish communication with a plurality of self-mobile devices 200, the differential global positioning system 100 is expandable, and can access or join a plurality of self-mobile devices 200 according to actual conditions, thereby being equivalent to being able to form an area. Differential global positioning network, which in turn eliminates the need for each self-mobile device 200 A base station 120 must be established, which greatly saves cost, and can increase or decrease the number of mobile devices 200 or adjust the coverage of the base station 120 as needed, so that differential positioning is more flexible and convenient.
  • the transmission of the differential correction data information between the base station 110 and the self-mobile device 200 does not require any additional operational procedures, as long as the base station 110 is present, the mobile device 200 is disposed within the range that the base station 110 can cover.
  • the positioning from the mobile station 120 on the mobile device 200 may be received from time to time or within a preset time period and based on the corresponding differential correction data for the corresponding GPS positioning signal received from the mobile device 200.
  • the data is corrected to ensure that the current position of the corresponding self-mobile device is accurately located from time to time or within a preset time period.
  • the corresponding differential correction data obtained by the base station 110 can be understood as an outbound transmission from time to time in the form of a station transmission or broadcast.
  • the mobile device 200 can The differential correction data sent by the receiving base station 110 with no intermediate program or for a preset period of time is performed, and the positioning data from the current position of the mobile device 200 is corrected based on the received differential correction data.
  • the communication connection of at least one of the at least two mobile devices 200 to the base station 110 requires a key procedure.
  • at least one self-mobile device 200 includes an encoding module 111, which is used to encode a corresponding self-mobile device 200, and the base station 110 determines whether the encoding and the base station 110 preset data information according to the encoding. The matching is performed to determine whether to transmit the differential correction data of the base station 110 to the self-mobile device 200.
  • the base station 110 includes a sending module 113 and a control module 114, and the sending module 113 is configured to send differential correction data to the mobile device 200, where the control module 114 is configured to store the code from the mobile device, and according to the self-mobile device.
  • the encoding provided by 200 controls whether the transmitting module transmits the differential correction data to the mobile device 200.
  • the encoding module from the mobile device 200 is disposed on the mobile station 120.
  • the encoding module can also be disposed on the self-mobile device 200 independently of the mobile station 120. This embodiment is exemplified below. For example, when there are two self-mobile devices 200, two mobile devices 200 are provided with one mobile station.
  • one mobile device is provided with a mobile station 120a, and the other is a mobile device.
  • a mobile station 120b is provided.
  • the base station 110 can decide whether to establish communication with the mobile stations 120a and 120b according to whether the coding of the mobile station 120 is correct.
  • the base station 110 receives the code of the mobile station 120a, the code is correct. That is, the differential correction data is transmitted to the mobile station 120a; otherwise, the mobile station 120a does not obtain the corresponding differential correction data or obtain erroneous garbled characters.
  • the base station 110 receives the correct encoding of the mobile station 120b, that is, transmits the differential correction data to the mobile station 120b; otherwise, the mobile station 120b does not obtain the corresponding differential correction data or obtain erroneous garbled characters.
  • the codes are uniquely identified to ensure the security and reliability of the communication establishment.
  • the differential global positioning system 100 includes at least two transmission paths for transmitting respective differential correction data to the respective self-mobile device 200.
  • the number of transmission paths is less than or equal to the number of mobile devices 200.
  • the base station 110 instructs the mobile device 200 to acquire corresponding differential correction data through the corresponding transmission path.
  • the base station 110 receives the request for differential correction from the mobile device 200.
  • the base station 110 may instruct the at least two self-mobile devices 200 to obtain the corresponding differential correction data through any one of the transmission paths; when at least two of the self-mobile devices 200 need to acquire the differential correction data, and at least two
  • the base station 110 may respectively indicate that at least two self-mobile devices acquire corresponding differential correction data through different transmission paths.
  • the base station 110 further includes a discriminating module. When the mobile device 200 sends a request for requesting the differential correction data to the base station 110, the base station 110 can identify whether the self-mobile device satisfies the condition for receiving the differential correction data.
  • the The condition may be whether the self-mobile device 200 has reached a differential data transmission license agreement with the base station 110. If the discriminating module determines that the mobile device 200 and the base station 110 reach a differential data transmission permission, the base station 110 can smoothly transmit the corresponding differential correction data to the self-mobile device 200; if the discriminating module determines that the mobile device 200 has not reached the base station 110 The differential data transmission permission, the base station 110 cannot smoothly transmit the corresponding differential correction data to the self-mobile device 200, that is, the transmission path is automatically cut off.
  • the following is a schematic illustration of the embodiment.
  • the corresponding differential correction data obtained by the base station 110 can be understood as being sent out in the form of a station transmission or broadcast.
  • the at least two transmission paths can be understood as different frequency bands when multiple
  • the base station 110 receives the request and informs the phase. It should be taken from the transmission path of which frequency band the mobile device 200 can acquire.
  • the base station can define different receiving formats for different self-mobile devices 200, and can cut off the transmission path of the unlicensed self-mobile device 200 in time, and at the same time other licensed self-mobile devices. 200 can receive differential correction data information normally. Therefore, the embodiment can meet the requirements of different models and different specifications of the self-mobile device to receive the correct differential correction data.
  • the base station 110 can ensure the security of data transmission between the base station 110 and the self-mobile device 200 by setting up multiple transmission paths, and does not interfere with other transmission paths even if the transmission of a certain path is cut off, realizing the base station. 110 more secure management.
  • the self-mobile device 200 is a smart lawn mower.
  • Each smart mower is provided with a mobile station 120.
  • Each intelligent mower has an independent work area.
  • a base station 110 is established in a cell, and each household has a self-mobile device.
  • the self-mobile devices are intelligent robots or intelligent power devices, such as intelligent lawn mowers and intelligent lawn mowers.
  • each user's self-mobile device in the cell can establish communication with the base station 110 to implement differential global positioning. This can effectively achieve the positioning of the mobile device in the area and greatly reduce the cost.
  • the base station 110 may further include a receiving antenna 112 for receiving a GPS positioning signal, a transmitting module 113 for transmitting differential correction data to the mobile station 120, and a control module 114,
  • the control module 114 is configured to calculate differential correction data and store the codes of the plurality of mobile stations 120, and then transmit the differential correction data to the different mobile stations 120 according to the encoding control transmitting module 113.
  • the coverage of the base station is within a radius of 50 kilometers to ensure accurate positioning of each smart device.
  • the number of smart devices 120 set in the coverage of the base station 110 is not more than 1000, so as to avoid excessive smart devices in the coverage of the base station 110, causing communication congestion, thereby ensuring The operational stability of the base station 110 and the positioning accuracy of each self-mobile device 100 are ensured.
  • a mobile station 120 is disposed on the mobile device 200.
  • the mobile device 200 further includes a receiving antenna 210 for receiving a GPS positioning signal, which is a global satellite positioning signal, such as GPS, Beidou or Galileo. Mainly used to obtain global positioning information.
  • the mobile station 120 further includes a communication module 122 and a processing module 121, and the communication module 122 is configured to establish communication with the base station 110 to receive differential correction data.
  • the processing module 121 is connected to the receiving antenna 210 and the communication module 122 for processing the received GPS positioning signal and the differential correction data to achieve high-precision positioning. Since in such a differential global positioning system, one base station 110 can achieve positioning of a plurality of self-mobile devices, thereby greatly reducing the cost of positioning the mobile device.
  • the self-mobile device 200 may further include an inertial navigation system for outputting accurate positioning data for navigation when there is occlusion and satellite signals are not good.
  • the inertial navigation system integrates the acceleration and angular velocity of the inertial reference frame from the mobile device 200, integrates it into time, and transforms it into a navigation coordinate system to obtain velocity, yaw angle, and Location and other information. Therefore, in a mountainous area, or a non-empty area such as a forest area, the communication signal is weak, and in the case of poor conditions, the self-mobile device 200 can be accurately positioned by the inertial navigation system, thereby making the differential global positioning system more applicable. , the accuracy is better.
  • the self-mobile device 200 can be a smart lawn mower, a smart lawn mower, a smart lawn mower or the like. However, it is not limited to the above-listed machines.
  • base station 110 and self-mobile device 200 receive GPS positioning signals of GPS satellites 300, respectively, to determine their GPS location.
  • the base station 110 calculates the differential correction data e based on the measurement error between its own precise position and the GPS positioning position, and transmits the differential correction data e to the mobile device 200.
  • the mobile device 200 calculates its precise positioning position based on the GPS satellite signal it receives and the received differential correction data e. Since the angle ⁇ between the base station 110 and the self-mobile device 200 and the GPS satellite does not normally exceed 0.3 degrees, the self-mobile device 200 performs processing according to the differential correction data e transmitted by the base station 110, and the error is small. Acceptable range. Further, the distance between the base station and the GPS satellite is equal to the distance between the mobile device and the GPS satellite, and the corrected positioning data from the mobile device is the most accurate.
  • the base station 110 can communicate with multiple mobile devices 200 at the same time, so that when multiple mobile devices 200 are working at the same time, accurate positioning of multiple self-mobile devices 200 can be realized at the same time, thereby greatly Reduce the cost of precise positioning.
  • the ball positioning system includes a base station 110 configured to set its own first positioning data and an analysis module when the fixed location is set.
  • the base station 110 can be in communication connection with at least one smart device, and the respective mobile device includes a processing module, the difference
  • the positioning method of the global positioning system includes at least the following steps:
  • Step 1 collecting data: obtaining second positioning data of the base station according to the GPS positioning signal sent by the satellite positioning system, and transmitting the first positioning data and the second positioning data to the analysis module of the base station;
  • Step 2 Analyze data: The analysis module of the base station receives the first positioning data and the second positioning data of step 1, analyzes the difference correction data of the base station, and transmits the obtained differential correction data to the processing module of the smart device.
  • the positioning method includes the following steps: processing data: the processing module of the smart device receives the differential correction data, and obtains the current location of the corresponding smart device according to the positioning signal sent by the satellite positioning system received by the corresponding smart device according to the differential correction data. The positioning data is corrected.
  • the at least one smart device includes an encoding module, and the encoding module is configured to encode the corresponding smart device, and the step 2 further includes: when the analyzing module of the base station analyzes and obtains the differential correction data of the base station, the base station according to whether the encoding is The data information preset by the base station is matched to determine whether to transmit the differential correction data to the corresponding smart device.
  • the base station includes a sending module, configured to send the differential correction data to the smart device, and a control module, configured to store the code of the smart device, and control, according to the code provided by the smart device, whether the sending module sends the differential correction data to the smart device.
  • the smart device includes a control module
  • the positioning method further includes the step of: issuing an instruction: feeding back the corrected positioning data of the smart device to the command module, and the command module controls the travel track of the smart device and issues an execution command.
  • the smart device includes an execution module
  • the positioning method further includes the step 5: executing the instruction: the execution module receives the instruction issued by the instruction module, and triggers the smart device to travel according to the obtained travel trajectory.
  • the differential global positioning system includes at least two transmission paths for transmitting differential correction data to the corresponding smart device, and the corresponding smart device between the foregoing step 2 and the foregoing step 3 sends a corresponding difference to the base station.
  • the instruction for correcting the data the base station receives the instruction and instructs the corresponding smart device to obtain the correct differential correction data through the corresponding transmission path according to different self-mobile devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

一种差分全球定位系统(100)及其定位方法,其中一种差分全球定位系统(100)包括基站(110)和至少一个智能设备(200),基站(110)配置为在固定地点设置时设定自身的第一定位数据(x1,y1),基站(110)包括第一信号接收器,第一信号接收器接收卫星系统发出的卫星定位信号以得到基站的第二定位数据(x2,y2),基站根据第一定位数据与第二定位数据之间的测量误差得出差分校正数据e,基站(110)可与至少两个智能设备(200)进行通讯连接,以将相应的差分校正数据e传输给至少两个智能设备(200)。

Description

差分全球定位系统及其定位方法 技术领域
本发明涉及精确定位领域,特别是涉及一定区域内的差分全球定位系统,以及该差分全球定位系统的定位方法。
背景技术
随着全球定位系统(GPS、北斗等)的技术的日趋发展,为了寻求更为精确的定位,人们越来越多的开始应用差分全球定位系统(DGPS)来实现对移动物体的精确定位。
差分全球定位系统(DGPS)是将一台GPS接收机安置在基准站上进行观测。根据基准站已知精密坐标,计算出基准站到卫星的偏差修正数,并由基准站实时将这一数据发送出去。用户接收机在进行GPS观测的同时,也接收到基准站发出的改正数,并对其定位结果进行改正,从而提高定位精度。
目前在机器上应用差分全球定位系统(DGPS)一般有两种方式。一种是自建基站,通过基站传输差分校正数据来校正测量误差实现高精度定位。但是这种方式,对于个体用户而言,一个机器就要建立一个基站,成本太高,且每个基站所需空间也较大。另一种方式,是通过使用连续运行卫星定位服务综合系统(Continuously Operating Reference Stations,缩写为CORS),使得机器通过与CORS基站间的数据传输实现高精度定位。但是对于个体用户而言,使用CORS基站的CORS信号需额外付费,使用成本较高。
发明内容
基于此,有必要针对上述使用差分全球定位成本较高的问题,提供一种差分全球定位系统以及一种差分全球定位系统的定位方法。
一种差分全球定位系统,包括基站和至少一个智能设备,所述基站配置为在固定地点设置时设定自身的第一定位数据,所述基站包括第一信号接收器,所述第一信号接收器接收卫星系统发出的卫星定位信号以得到所述基站的第二定位数据,所述基站根据所述第一定位数据与所述第二定位数据之间的测量误 差得出差分校正数据,所述基站可与至少两个智能设备进行通讯连接,以将相应的差分校正数据传输给至少两个智能设备。
在其中一个实施例中,至少一个智能设备包括编码模块,所述编码模块用于对相应的智能设备进行编码,所述基站根据所述编码是否与所述基站预设的数据信息相匹配来判断是否将所述差分校正数据传输给相应的智能设备。
在其中一个实施例中,所述基站包括发送模块,用于将所述差分校正数据发送给智能设备;以及控制模块,用于存储智能设备的编码,并根据智能设备提供的编码控制所述发送模块是否将所述差分校正数据发送给所述智能设备。
在其中一个实施例中,所述差分全球定位系统包括至少两路传输路径,所述各路传输路径用于将相应的差分校正数据传输给相应的智能设备,当所述基站接收到相应的智能设备发出索取差分校正数据的请求指令时,所述基站可指示相应的智能设备通过相应的传输路径获取相应的差分校正数据。
在其中一个实施例中,各智能设备均包括壳体和连接于壳体的移动站,所述基站与智能设备通过所述移动站进行通讯连接。
在其中一个实施例中,各智能设备均包括分开设置的第二信号接收器和第三信号接收器,所述第二信号接收器接收卫星定位系统发出的卫星定位信号以得到相应的智能设备当前位置的定位数据,所述第三信号接收器用于接收所述基站发出的差分校正数据,所述第二信号接收器与所述第三信号接收器均集成于各智能设备的移动站上。
在其中一个实施例中,所述智能设备为自移动设备或智能机器人。
在其中一个实施例中,所述智能设备包括惯性导航系统。
在其中一个实施例中,所述智能设备与所述卫星定位系统之间的距离等于所述基站与所述卫星定位系统之间的距离。
在其中一个实施例中,所述基站与所述卫星定位系统之间的连线和所述智能设备与所述卫星定位系统之间的连线形成的夹角小于等于0.3度。
上述差分全球定位系统,能够实现对智能设备的精确定位,并且由于基站能够和多个智能设备建立通讯,从而使得该差分全球定位系统具有可拓展性,能够根据实际情况接入或加入多个智能设备,从而相当于能够组建一个区域差 分全球定位网络,进而无需每个智能设备都必须建立一个基站,大大节省了成本,并且可以根据需要,添加或减少智能设备的数量,或者调整基站的覆盖范围,使得差分定位更为灵活方便。
一种差分全球定位系统,包括基站,所述基站配置为在固定地点设置时设定自身的第一定位数据,所述基站包括第一信号接收器,所述第一信号接收器接收卫星定位系统发出的卫星定位信号以得到所述基站的第二定位数据,所述基站根据所述第一定位数据与所述第二定位数据之间的测量误差得出差分校正数据,所述基站可与至少两个智能设备进行通讯连接,以将相应的差分校正数据传输给至少两个智能设备。
在其中一个实施例中,至少两个智能设备中的至少一个包括编码模块,所述编码模块用于对相应的智能设备进行编码,所述基站根据所述编码是否与所述基站预设的数据信息相匹配来判断是否将所述差分校正数据传输给相应的智能设备。
在其中一个实施例中,所述差分全球定位系统包括至少两路传输路径,所述各路传输路径用于将相应的差分校正数据传输给相应的智能设备,当所述基站接收到相应的智能设备发出索取差分校正数据的请求指令时,所述基站可指示至少两个智能设备通过不同的传输路径获取相应的差分校正数据。
在其中一个实施例中,各智能设备均包括壳体和连接于壳体的移动站,所述基站与智能设备通过所述移动站进行通讯连接。
在其中一个实施例中,所述智能设备为自移动设备或智能机器人。
一种差分全球定位系统的定位方法,所述差分全球定位系统包括基站,所述基站配置为在固定地点设置时设定自身的第一定位数据,所述基站可与至少一个智能设备进行通讯连接,所述基站还包括分析模块,各智能设备包括处理模块,所述定位方法至少包括如下步骤:
步骤1:采集数据:根据卫星定位系统发出的卫星定位信号得到所述基站的第二定位数据,将所述第一定位数据与所述第二定位数据传输给所述基站的分析模块;
步骤2:分析数据:所述基站的分析模块接收步骤1的第一定位数据与第二 定位数据,分析得出所述基站的差分校正数据,并可将获得的差分校正数据传输给至少一个智能设备的处理模块。
在其中一个实施例中,所述定位方法还包括步骤3:处理数据:智能设备的处理模块接收所述差分校正数据,并根据该差分校正数据对相应的智能设备接收卫星定位信号,而得到的相应的智能设备当前位置的定位数据进行修正。
在其中一个实施例中,智能设备还包括指令模块,所述定位方法还包括步骤4:发出指令:将智能设备修正后的定位数据反馈给所述指令模块,所述指令模块控制智能设备的行进轨迹并发出执行指令。
在其中一个实施例中,所述智能设备还包括执行模块,所述定位方法进一步包括步骤5:执行指令:所述执行模块接收到所述指令模块发出的指令,触发智能设备根据得到的行进轨迹行进。
在其中一个实施例中,至少一个智能设备包括编码模块,所述编码模块用于对相应的智能设备进行编码,所述步骤2进一步包括:当所述基站的分析模块分析得出所述基站的差分校正数据时,所述基站可根据所述编码是否与所述基站预设的数据信息相匹配来判断是否将所述差分校正数据传输给相应的智能设备。
在其中一个实施例中,所述基站包括发送模块,用于将所述差分校正数据发送给智能设备;以及控制模块,用于存储智能设备的编码,并根据智能设备提供的编码控制所述发送模块是否将所述差分校正数据发送给所述智能设备。
在其中一个实施例中,所述差分全球定位系统包括用于将所述差分校正数据传输给相应的智能设备的至少两路传输路径,所述步骤2和所述步骤3之间还包括相应的智能设备向所述基站发出索取所述差分校正数据的指令,所述基站接收该指令并指示相应的智能设备通过相应的传输路径获取相应的差分校正数据。
在其中一个实施例中,所述传输路径的数量小于等于所述智能设备的数量。
在其中一个实施例中,智能设备均包括壳体和连接于壳体的移动站,所述基站与智能设备通过所述移动站进行通讯连接。
在其中一个实施例中,智能设备的处理模块、指令模块和执行模块均集成 于各智能设备的移动站上。
在其中一个实施例中,所述第二定位数据随着所述卫星定位系统发送的卫星定位信号的时间的不同而产生变化。
在其中一个实施例中,智能设备通过接收卫星定位系统发送的卫星定位信号得到的定位数据随着卫星定位系统发送定位信号的时间的不同而产生变化。
由于在上述的差分全球定位系统的定位方法中,一个基站可以实现对多个智能设备的定位,从而大大降低了对智能设备进行定位的成本。
附图说明
图1为一实施例的差分全球定位系统的结构示意图;
图2为一实施例的配备有差分全球定位系统的智能设备结构示意图;
图3为图2所示实施例的差分全球定位系统的工作示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
请参见图1,为本发明一实施例的差分全球定位系统的结构示意图。如图所示,该差分全球定位系统100包括基站110。当然在本实施例中,该差分全球定位系统还包括至少一个智能设备。该基站110可与至少一个智能设备进行通讯连接。具体的,该智能设备为自移动设备200。当然在其他实施方式中,该自移动设备还可以为智能机器人等。自移动设备200和基站110均可接收卫星定位系统发出的卫星定位信号,实现定位。在本实施方式中,卫星定位系统为GPS卫星300,基站110和自移动设备200接收卫星定位系统发出的GPS定位信号,实现GPS定位。当然,卫星定位系统也可以为伽利略卫星导航系统、或北斗卫星导航系统、或GLONASS等。
基站110可向自移动设备200发送差分校正信息,实现差分卫星定位。具体的,基站110配置为在固定地点设置时,其具有固定的自身精确位置,将该位置定义为基站110的第一定位数据,在本实施方式中,第一定位数据用坐标 值来表示,具体为(x1,y1)。基站110包括第一信号接收器(未图示),该第一信号接收器接收卫星定位系统发出的卫星定位信号以得到基站110的第二定位数据,在本实施方式中,第二定位数据用坐标值来表示,具体为(x2,y2)。其中该第一信号接收器为GPS信号接收器。并可根据第一定位数据(x1,y1)与第二定位数据(x2,y2)之间的测量误差得出差分校正数据e。该基站110可与至少两个自移动设备200进行通讯连接,以将相应的差分校正数据e传输给至少两个自移动设备200。需要说明的是,通常情况下,基站110接收到的卫星定位系统发出的GPS定位信号得到的第二定位数据是个变量,其可随着卫星定位系统发送GPS定位信号时间的不同而产生变化,以实自移动设备在工作过程中,基站不断地将差分校正数据e发送给自移动设备200,从而自移动设备根据获得的差分校正数据,对其接收的卫星定位系统发出的GPS定位信号得到的定位数据进行及时修正。
各自移动设备200均包括分开设置的第二信号接收器(未图示)和第三信号接收器(未图示),第二信号接收器用于接收卫星定位系统发出的GPS定位信号以得到相应的自移动设备200的定位数据,第三信号接收器用于接收基站110发出的差分校正数据。自移动设备200还包括壳体(未标号)及连接于壳体的移动站120,基站110与自移动设备200通过该移动站120建立通讯连接。上述第二信号发射器与第三信号发射器均集成于各自移动设备200的移动站120上。在本实施方式中,移动站120与自移动设备200为可拆卸的连接。移动站120收容于壳体内,当移动站120安装于自移动设备200的壳体内时,可根据接收到的GPS定位信号输出自移动设备200当前位置的定位数据。当然在其他实施方式中,移动站120也可位于自移动设备200的壳体外,可以由用户移动相应的移动站120,移动至特定位置以获得特定位置的位置数据。
这样的差分全球定位系统100,仅需建立一个基站110,并通过一个基站110和至少两个自移动设备200进行通讯,来实现对自移动设备200的精确定位。由于一个基站110能够和多个自移动设备200建立通讯,从而使得该差分全球定位系统100具有可拓展性,能够根据实际情况接入或加入多个自移动设备200,从而相当于能够组建一个区域差分全球定位网络,进而无需每个自移动设备200 都必须建立一个基站120,大大节省了成本,并且可以根据需要,添加或减少自移动设备200的数量,或者调整基站120的覆盖范围,使得差分定位更为灵活方便。
在其中一个实施例中,基站110与自移动设备200之间的差分校正数据信息的传输不需要任何额外的操作程序实现,只要基站110存在,自移动设备200设置在基站110可覆盖的范围内,自移动设备200上的移动站120即可时时的或者在预设时间段内接收到差分校正数据并根据相应的差分校正数据对相应的自移动设备200接收到的GPS定位信号得出的定位数据进行修正,以确保时时的或者在预设时间段内对相应的自移动设备当前的位置进行精确定位。下面针对此实施例进行举例示意说明,基站110得出的相应的差分校正数据可理解为通过电台发文或广播的形式进行时时的向外发射,在基站110覆盖范围内的,自移动设备200可进行时时的或在预设的时间段内无中间程序的接收基站110发出的差分校正数据,并根据接收到的差分校正数据对自移动设备200当前位置的定位数据进行修正。
在其中一个实施例中,至少两个移动设备200中的至少一个与基站110的通讯连接需要密钥程序。具体的,如图1所示,至少一个自移动设备200包括编码模块111,该编码模块111用于对相应的自移动设备200进行编码,基站110根据该编码是否与基站110预设的数据信息相匹配来判断是否将基站110的差分校正数据传输给该自移动设备200。进一步的,基站110包括发送模块113及控制模块114,该发送模块113用于将差分校正数据发送给自移动设备200,该控制模块114用于将存储自移动设备的编码,并根据自移动设备200提供的编码控制发送模块是否将差分校正数据传输给自移动设备200。在本实施例中,自移动设备200的编码模块设置在移动站120上。当然在其他实施方式中,编码模块也可以与移动站120彼此独立的设置在自移动设备200上。下面针对此实施例进行举例说明,比如当有两个自移动设备200,两个自移动设备200均设有一个移动站,具体的,一个自移动设备设有移动站120a,另一个自移动设备设有移动站120b。基站110可以根据移动站120的编码是否正确来决定是否与移动站120a和120b建立通讯,当基站110接收到移动站120a的编码是正确的, 即将差分校正数据传输给移动站120a;反之,则移动站120a就不会获得相应的差分校正数据或者获得错误的乱码。同理,当基站110接收到移动站120b的编码是正确的,即将差分校正数据传输给移动站120b;反之,移动站120b就不会获得相应的差分校正数据或者获得错误的乱码。
在其中一个实施例中,对于同一个基站110覆盖范围内的移动站120,其编码都是唯一识别的,以确保通讯建立的安全性和可靠性。
在其中一个实施例中,该差分全球定位系统100包括至少两路传输路径,各传输路径用于将相应的差分校正数据传输给相应的自移动设备200。其中传输路径的数量小于等于自移动设备200的数量。当基站110接收到自移动设备200发出的索取差分校正数据请求指令时,基站110指令自移动设备200通过相应的传输路径获取相应的差分校正数据。进一步的,当至少两个自移动设备200均需要获取差分校正数据时,且至少两个自移动设备200获取的差分校正数据的格式相同时,基站110接收到自移动设备200发出的索取差分校正数据的请求指令,基站110可指令至少两个自移动设备200均可通过任意一路传输路径来获取相应差分校正数据;当至少两个自移动设备200均需要获取差分校正数据时,且有至少两个自移动设备获取差分校正数据的格式不相同时,该基站110可分别指示至少两个自移动设备通过不同的传输路径获取相应的差分校正数据。进一步的,基站110还包括辨别模块,当自移动设备200将索取差分校正数据的请求指令发送给基站110时,基站110可辨别该自移动设备是否满足接收差分校正数据的条件,具体的,该条件可以为该自移动设备200是否已经与基站110达成差分数据传输许可协议。若辨别模块判定自移动设备200与基站110达成差分数据传输许可,则基站110可顺利的将相应的差分校正数据发送给该自移动设备200;若辨别模块判定自移动设备200未与基站110达成差分数据传输许可,则基站110不能顺利的将相应的差分校正数据发送给该自移动设备200,即该路传输路径会被自动切断。下面针对此实施例进行举例示意说明,基站110得出的相应的差分校正数据可理解为通过电台发文或广播的形式向外发送,上述至少两路传输路径可以理解为不同的频段,当多个自移动设备200向基站110发出索取相应的差分校正数据的请求时,基站110接收请求并告知相 应的自移动设备200其可以在哪一个频段的传输路径上去获取。
这样设计的差分全球定位系统100,基站可以对不同的自移动设备200定义不同的接收格式,可及时对未获得许可的自移动设备200的传输路径进行切断,且同时其它获得许可的自移动设备200的可以正常接收差分校正数据信息。因此,该实施例可以满足不同型号、不同规格的自移动设备都能顺利接收到正确的差分校正数据。另一方面,可实现基站110通过设立多个传输路径,保证基站110与自移动设备200数据传输的安全性,且即使某一路径的传输被切断也不会对其它传输路径造成干扰,实现基站110更安全的管理。
在其中一个实施例中,自移动设备200为智能割草机。每个智能割草机设有一个移动站120。每个智能割草机均具有独立的工作区域。比如在一个小区里建立一个基站110,每户人家均有一台自移动设备,优选地,这些自移动设备为智能机器人或智能动力设备,比如智能除草机、智能割草机等。这样这个小区里每户人家的自移动设备均可和该基站110建立通讯,从而实现差分全球定位。这样可以有效实现区域内的自移动设备的定位,并且极大的降低了成本。
在其中一个实施例中,如图2所示,基站110还可以包括接收天线112,用于接收GPS定位信号;发送模块113,用于将差分校正数据发送给移动站120;以及控制模块114,该控制模块114用于计算差分校正数据,并储存多个移动站120的编码,然后根据编码控制发送模块113将差分校正数据发送给不同的移动站120。优选地,该基站的覆盖范围在半径50公里内,以确保对每个智能设备的精确定位。
在其中一个实施例中,在基站110的覆盖范围内设置的智能设备120的数量不多于1000台,以避免在基站110的覆盖范围内有过多的智能设备,造成通讯阻塞,从而可以保证基站110的工作稳定性,以及确保每个自移动设备100的定位准确性。
请参见图2,为本发明一实施例的配备有差分全球定位系统的自移动设备的结构示意图。自移动设备200上设置有移动站120,自移动设备200还包括接收天线210,该接收天线210用于接收GPS定位信号,该GPS定位信号为全球卫星定位信号,比如GPS、北斗或伽利略等,主要用于获取全球定位信息。此外, 移动站120还包括通讯模块122和处理模块121,通讯模块122用于和基站110建立通讯,接收差分校正数据。处理模块121连接接收天线210和通讯模块122,用于处理接收到的GPS定位信号和差分校正数据实现高精度定位。由于在这样的差分全球定位系统中,一个基站110可以实现对多个自移动设备的定位,从而大大减小了对自移动设备进行定位的成本。
在其中一个实施例中,自移动设备200还可以包括惯性导航系统,用于在有遮挡、卫星信号不佳时输出准确定位数据实现导航。该惯性导航系统通过测量自移动设备200在惯性参考系的加速度和角速度,将它对时间进行积分,且把它变换到导航坐标系中,从而得到在导航坐标系中的速度、偏航角和位置等信息。从而在山区,或者林区等非空旷地区,通讯信号较弱,条件较差的情况下,可以通过惯性导航系统对自移动设备200进行精确定位,从而使得该差分全球定位系统的适用范围更广,精确度更好。
可以理解的是,进一步地,该自移动设备200可以是智能割草机、智能打草机、智能除草机等。但不限于上述列举的机器。
请参见图3,为差分全球定位系统的工作示意图。如图所示,基站110和自移动设备200分别接收GPS卫星300的GPS定位信号,确定其GPS定位位置。基站110根据其自身精确位置和GPS定位位置之间的测量误差计算出差分校正数据e,并将该差分校正数据e传输给自移动设备200。自移动设备200根据其接收到的GPS卫星信号以及接收到的差分校正数据e计算出其精确的定位位置。由于通常情况下基站110和自移动设备200和GPS卫星之间的夹角α不超过0.3度,因此自移动设备200根据由基站110发送的差分校正数据e进行处理,其误差很小,是在可接受范围内的。进一步的,基站与GPS卫星之间的距离等于自移动设备与GPS卫星之间的距离,此时自移动设备修正后的定位数据是最精确的。
进一步地,该基站110可以同时和多个自移动设备200进行通讯,这样,当有多个自移动设备200在同时工作时,可以实现同时对多个自移动设备200的精确定位,从而极大减少了精确定位成本。
进一步的,下面进行介绍本发明差分全球定位系统的定位方法,该差分全 球定位系统包括基站110,该基站配置为在固定地点设置时设定自身的第一定位数据及分析模块,该基站110可与至少一个智能设备进行通讯连接,各自移动设备包括处理模块,该差分全球定位系统的定位方法至少包括如下步骤:
步骤1:采集数据:根据卫星定位系统发出的GPS定位信号得到基站的第二定位数据,将第一定位数据与第二定位数据传输给基站的分析模块;
步骤2:分析数据:基站的分析模块接收步骤1的第一定位数据与第二定位数据,分析得出基站的差分校正数据,并将获得的差分校正数据传输给智能设备的处理模块。
进一步的,该定位方法包括步骤3:处理数据:智能设备的处理模块接收差分校正数据,并根据该差分校正数据对相应的智能设备接收的卫星定位系统发出的定位信号得到相应的智能设备当前位置的定位数据进行修正。
进一步的,至少一个智能设备包括编码模块,编码模块用于对相应的智能设备进行编码,步骤2进一步包括:当基站的分析模块分析得出所述基站的差分校正数据时,基站根据编码是否与基站预设的数据信息相匹配来判断是否将差分校正数据传输给相应的智能设备。
进一步的,基站包括发送模块,用于将差分校正数据发送给智能设备;以及控制模块,用于存储智能设备的编码,并根据智能设备提供的编码控制所述发送模块是否将差分校正数据发送给智能设备。
进一步的,智能设备包括控制模块,上述定位方法还包括步骤4:发出指令:将智能设备修正后的定位数据反馈给指令模块,指令模块控制智能设备的行进轨迹并发出执行指令。
进一步的,智能设备包括执行模块,上述定位方法还包括步骤5:执行指令:执行模块接收到指令模块发出的指令,触发智能设备根据得到的行进轨迹行进。
进一步的,该差分全球定位系统包括用于将差分校正数据传输给相应的智能设备的至少两路传输路径,上述步骤2和上述步骤3之间还包括相应的智能设备向基站发出索取相应的差分校正数据的指令,基站接收到指令并根据不同的自移动设备指示相应的智能设备通过相应的传输路径获取正确的差分校正数据。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (27)

  1. 一种差分全球定位系统,其特征在于,包括基站和至少一个智能设备,所述基站配置为在固定地点设置时设定自身的第一定位数据,所述基站包括第一信号接收器,所述第一信号接收器接收卫星系统发出的卫星定位信号以得到所述基站的第二定位数据,所述基站根据所述第一定位数据与所述第二定位数据之间的测量误差得出差分校正数据,所述基站可与至少两个智能设备进行通讯连接,以将相应的差分校正数据传输给至少两个智能设备。
  2. 根据权利要求1所述的差分全球定位系统,其特征在于,至少一个智能设备包括编码模块,所述编码模块用于对相应的智能设备进行编码,所述基站根据所述编码是否与所述基站预设的数据信息相匹配来判断是否将所述差分校正数据传输给相应的智能设备。
  3. 根据权利要求2所述的差分全球定位系统,其特征在于,所述基站包括发送模块,用于将所述差分校正数据发送给智能设备;以及控制模块,用于存储智能设备的编码,并根据智能设备提供的编码控制所述发送模块是否将所述差分校正数据发送给所述智能设备。
  4. 根据权利要求1所述的差分全球定位系统,其特征在于,所述差分全球定位系统包括至少两路传输路径,所述各路传输路径用于将相应的差分校正数据传输给相应的智能设备,当所述基站接收到相应的智能设备发出索取差分校正数据的请求指令时,所述基站可指示相应的智能设备通过相应的传输路径获取相应的差分校正数据。
  5. 根据权利要求1所述的差分全球定位系统,其特征在于,各智能设备均包括壳体和连接于壳体的移动站,所述基站与智能设备通过所述移动站进行通讯连接。
  6. 根据权利要求5所述的差分全球定位系统,其特征在于,各智能设备均包括分开设置的第二信号接收器和第三信号接收器,所述第二信号接收器接收卫星定位系统发出的卫星定位信号以得到相应的智能设备当前位置的定位数据,所述第三信号接收器用于接收所述基站发出的差分校正数据,所述第二信号接收器与所述第三信号接收器均集成于各智能设备的移动站上。
  7. 根据权利要求1所述的差分全球定位系统,其特征在于,所述智能设备 为自移动设备或智能机器人。
  8. 根据权利要求1所述的差分全球定位系统,其特征在于,所述智能设备包括惯性导航系统。
  9. 根据权利要求1所述的差分全球定位系统,其特征在于,所述智能设备与所述卫星定位系统之间的距离等于所述基站与所述卫星定位系统之间的距离。
  10. 根据权利要求1所述差分全球定位系统,其特征在于,所述基站与所述卫星定位系统之间的连线和所述智能设备与所述卫星定位系统之间的连线形成的夹角小于等于0.3度。
  11. 一种差分全球定位系统,其特征在于,包括基站,所述基站配置为在固定地点设置时设定自身的第一定位数据,所述基站包括第一信号接收器,所述第一信号接收器接收卫星定位系统发出的卫星定位信号以得到所述基站的第二定位数据,所述基站根据所述第一定位数据与所述第二定位数据之间的测量误差得出差分校正数据,所述基站可与至少两个智能设备进行通讯连接,以将相应的差分校正数据传输给至少两个智能设备。
  12. 根据权利要求11所述差分全球定位系统,其特征在于,至少两个智能设备中的至少一个包括编码模块,所述编码模块用于对相应的智能设备进行编码,所述基站根据所述编码是否与所述基站预设的数据信息相匹配来判断是否将所述差分校正数据传输给相应的智能设备。
  13. 根据权利要求11所述差分全球定位系统,其特征在于,所述差分全球定位系统包括至少两路传输路径,所述各路传输路径用于将相应的差分校正数据传输给相应的智能设备,当所述基站接收到相应的智能设备发出索取差分校正数据的请求指令时,所述基站可指示至少两个智能设备通过不同的传输路径获取相应的差分校正数据。
  14. 根据权利要求11所述的差分全球定位系统,其特征在于,各智能设备均包括壳体和连接于壳体的移动站,所述基站与智能设备通过所述移动站进行通讯连接。
  15. 根据权利要求11所述的差分全球定位系统,其特征在于,所述智能设 备为自移动设备或智能机器人。
  16. 一种差分全球定位系统的定位方法,所述差分全球定位系统包括基站,所述基站配置为在固定地点设置时设定自身的第一定位数据,所述基站可与至少一个智能设备进行通讯连接,所述基站还包括分析模块,各智能设备包括处理模块,其特征在于,所述定位方法至少包括如下步骤:
    步骤1:采集数据:根据卫星定位系统发出的卫星定位信号得到所述基站的第二定位数据,将所述第一定位数据与所述第二定位数据传输给所述基站的分析模块;
    步骤2:分析数据:所述基站的分析模块接收步骤1的第一定位数据与第二定位数据,分析得出所述基站的差分校正数据,并可将获得的差分校正数据传输给至少一个智能设备的处理模块。
  17. 根据权利要求16所述的差分全球定位系统的定位方法,其特征在于,所述定位方法还包括步骤3:处理数据:智能设备的处理模块接收所述差分校正数据,并根据该差分校正数据对相应的智能设备接收卫星定位信号,而得到的相应的智能设备当前位置的定位数据进行修正。
  18. 根据权利要求17所述的差分全球定位系统的定位方法,其特征在于,智能设备还包括指令模块,所述定位方法还包括步骤4:发出指令:将智能设备修正后的定位数据反馈给所述指令模块,所述指令模块控制智能设备的行进轨迹并发出执行指令。
  19. 根据权利要求18所述的差分全球定位系统的定位方法,其特征在于,所述智能设备还包括执行模块,所述定位方法进一步包括步骤5:执行指令:所述执行模块接收到所述指令模块发出的指令,触发智能设备根据得到的行进轨迹行进。
  20. 根据权利要求16所述的差分全球定位系统的定位方法,其特征在于,至少一个智能设备包括编码模块,所述编码模块用于对相应的智能设备进行编码,所述步骤2进一步包括:当所述基站的分析模块分析得出所述基站的差分校正数据时,所述基站可根据所述编码是否与所述基站预设的数据信息相匹配来判断是否将所述差分校正数据传输给相应的智能设备。
  21. 根据权利要求20所述的差分全球定位系统,其特征在于,所述基站包括发送模块,用于将所述差分校正数据发送给智能设备;以及控制模块,用于存储智能设备的编码,并根据智能设备提供的编码控制所述发送模块是否将所述差分校正数据发送给所述智能设备。
  22. 根据权利要求17所述的差分全球定位系统的定位方法,其特征在于,所述差分全球定位系统包括用于将所述差分校正数据传输给相应的智能设备的至少两路传输路径,所述步骤2和所述步骤3之间还包括相应的智能设备向所述基站发出索取所述差分校正数据的指令,所述基站接收该指令并指示相应的智能设备通过相应的传输路径获取相应的差分校正数据。
  23. 根据权利要求22所述的差分全球定位系统的定位方法,其特征在于,所述传输路径的数量小于等于所述智能设备的数量。
  24. 根据权利要求16所述的差分全球定位系统的定位方法,其特征在于,智能设备均包括壳体和连接于壳体的移动站,所述基站与智能设备通过所述移动站进行通讯连接。
  25. 根据权利要求19所述的差分全球定位系统的定位方法,其特征在于,智能设备的处理模块、指令模块和执行模块均集成于各智能设备的移动站上。
  26. 根据权利要求16所述的差分全球定位系统的定位方法,其特征在于,所述第二定位数据随着所述卫星定位系统发送的卫星定位信号的时间的不同而产生变化。
  27. 根据权利要求17所述的差分全球定位系统的定位方法,其特征在于,智能设备通过接收卫星定位系统发送的卫星定位信号得到的定位数据随着卫星定位系统发送定位信号的时间的不同而产生变化。
PCT/CN2017/080473 2016-04-13 2017-04-13 差分全球定位系统及其定位方法 WO2017177951A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21166901.5A EP3862793B1 (en) 2016-04-13 2017-04-13 Intelligent device and differential global positioning system
EP17781927.3A EP3444636B1 (en) 2016-04-13 2017-04-13 Differential global positioning system and a positioning method therefor
US16/158,984 US20190049593A1 (en) 2016-04-13 2018-10-12 Differential Global Positioning System and Positioning Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610227219.4 2016-04-13
CN201610227219 2016-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/158,984 Continuation US20190049593A1 (en) 2016-04-13 2018-10-12 Differential Global Positioning System and Positioning Method Thereof

Publications (1)

Publication Number Publication Date
WO2017177951A1 true WO2017177951A1 (zh) 2017-10-19

Family

ID=60042849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080473 WO2017177951A1 (zh) 2016-04-13 2017-04-13 差分全球定位系统及其定位方法

Country Status (4)

Country Link
US (1) US20190049593A1 (zh)
EP (2) EP3444636B1 (zh)
CN (2) CN113156471A (zh)
WO (1) WO2017177951A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107809744A (zh) * 2017-11-29 2018-03-16 北京世纪晨数据技术有限责任公司 一种车辆转运装置、定位装置及方法
CN108490464A (zh) * 2018-03-21 2018-09-04 千寻位置网络有限公司 一种适用于消费类终端的网络rtk播发方法
RU2781379C1 (ru) * 2021-10-28 2022-10-11 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Военный Учебно-Научный Центр Сухопутных Войск "Общевойсковая Ордена Жукова Академия Вооруженных Сил Российской Федерации" Способ привязки минно-взрывных заграждений с применением навигационной аппаратуры потребителя индивидуального пользования спутниковых навигационных систем относительным методом определения координат

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3557355B1 (en) * 2016-12-15 2023-07-12 Positec Power Tools (Suzhou) Co., Ltd State detection method for an automatic working system and mobile station
CN108020854B (zh) * 2017-10-26 2022-05-17 广州中南民航空管技术装备工程有限公司 一种场面目标态势显示方法及系统
CN108401195B (zh) * 2018-02-07 2020-12-01 临沂文衡信息技术有限公司 一种具有电池清洗和除草功能的通信基站
CN109541655B (zh) * 2018-11-20 2020-09-11 腾讯科技(深圳)有限公司 一种差分定位系统、方法
CN112230256B (zh) * 2019-07-15 2024-04-09 苏州宝时得电动工具有限公司 自主机器人及其定位校准方法、装置和存储介质
EP3828658B1 (de) 2019-11-27 2022-07-13 Andreas Stihl AG & Co. KG Verfahren zum bestimmen einer roboter-position eines autonomen mobilen grünflächenbearbeitungsroboters auf einer zu bearbeitenden fläche, verfahren zum betreiben eines autonomen mobilen grünflächenbearbeitungsroboters auf einer zu bearbeitenden fläche und grünflächenbearbeitungssystem
WO2021135714A1 (zh) * 2020-01-02 2021-07-08 苏州宝时得电动工具有限公司 自主机器人的基准站共享方法、系统及存储介质
CN113709657A (zh) * 2020-05-20 2021-11-26 苏州宝时得电动工具有限公司 数据处理方法、装置、设备及存储介质
IT202100010655A1 (it) * 2021-04-27 2022-10-27 Pixies S R L Sistema per raccogliere rifiuti in un’area urbana, procedimento di funzionamento e prodotto informatico corrispondenti
CN116089506B (zh) * 2022-08-02 2023-09-22 国网江苏省电力有限公司无锡供电分公司 一种基于数据中台的北斗定位数据格式转换方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102452617A (zh) * 2010-11-02 2012-05-16 三一电气有限责任公司 一种起重机支腿定位方法及装置
CN103076591A (zh) * 2013-01-11 2013-05-01 广州飞锐网络科技有限公司 基于超声波技术的工业机器人运动定位方法及系统
CN103235595A (zh) * 2013-04-27 2013-08-07 湖南科技大学 一种室外微小型地面群机器人控制系统及控制方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY110677A (en) * 1992-12-02 1999-01-30 Voxson Pty Ltd Improvements in positioning systems
JP3467136B2 (ja) * 1995-11-07 2003-11-17 富士重工業株式会社 自律走行車の走行制御装置
US5706014A (en) * 1996-06-18 1998-01-06 At & T Corp GPS downloadable interface locator
CA2327719A1 (en) * 2000-12-06 2002-06-06 Lucent Technologies Inc. Wireless position location system and method using differential global system information and general packet radio switching technology
CN2562886Y (zh) * 2002-08-19 2003-07-30 北京农业信息技术研究中心 变量农药喷洒机
US7432853B2 (en) * 2003-10-28 2008-10-07 Trimble Navigation Limited Ambiguity estimation of GNSS signals for three or more carriers
US8630768B2 (en) * 2006-05-22 2014-01-14 Inthinc Technology Solutions, Inc. System and method for monitoring vehicle parameters and driver behavior
US20080122687A1 (en) * 2006-09-21 2008-05-29 Nelson Fredrick W System and method for providing authorization to use corrections provided by an RTK base station
CN101008671B (zh) * 2006-12-29 2011-09-28 深圳市赛格导航科技股份有限公司 一种对移动站进行精确导航的方法、系统及设备
US8768558B2 (en) * 2007-01-05 2014-07-01 Agjunction Llc Optical tracking vehicle control system and method
US8570216B2 (en) * 2008-05-30 2013-10-29 The Boeing Company Differential correction system enhancement leverages roving receivers enabled for a non-GPS, secondary PN and T signal to characterize local errors
US8838132B2 (en) * 2009-08-12 2014-09-16 Qualcomm Incorporated Enhanced positioning assistance data for reduced signaling
US8686899B2 (en) * 2010-08-26 2014-04-01 Hemisphere GNSS, Inc. GNSS smart antenna and receiver system with weatherproof enclosure
KR101326889B1 (ko) * 2011-11-07 2013-11-11 현대자동차주식회사 이동 기준국을 이용한 차량간 상대 위치 제어 방법 및 그 시스템
CN102819028B (zh) * 2012-08-31 2013-11-06 北京航天计量测试技术研究所 一种差分gps定向方位引入方法
CN103906228B (zh) * 2012-12-28 2018-04-10 中国电信股份有限公司 移动终端的基站差分定位方法、定位装置和系统
JP6119838B2 (ja) * 2013-02-26 2017-04-26 日本電気株式会社 状態検出方法、補正値処理装置、測位システム、および状態検出プログラム
CN203224630U (zh) * 2013-04-16 2013-10-02 成都天宇创新科技有限公司 无接触式导航的电力巡检机器人
US9064352B2 (en) * 2013-04-24 2015-06-23 Caterpillar Inc. Position identification system with multiple cross-checks
CN203275971U (zh) * 2013-04-27 2013-11-06 湖南科技大学 一种室外地面群机器人控制系统
CN104223507A (zh) * 2013-06-14 2014-12-24 江南大学 一种基于gps定位的儿童防走失服装配饰
CN104429373A (zh) * 2013-09-24 2015-03-25 陕西山泽农业科技有限公司 一种新型手推式旋转割草机
CN103592667A (zh) * 2013-11-27 2014-02-19 深圳瑞信视讯技术有限公司 基于北斗定位系统的车载监控系统及监控方法
CN203689760U (zh) * 2013-12-14 2014-07-02 山东科大微机应用研究所有限公司 农机驾驶人考试桩考检测设备
CN104035107B (zh) * 2014-06-11 2017-05-24 泰斗微电子科技有限公司 一种卫星导航接收机差分信息传输方法及相应的接收机
CN104310224B (zh) * 2014-09-05 2016-10-05 徐州重型机械有限公司 工程机械作业目标定位方法和系统
CN105387872A (zh) * 2014-09-09 2016-03-09 中国科学院沈阳自动化研究所 一种自主移动机器人导航与定位性能测试装置及测试方法
JP2018025924A (ja) * 2016-08-09 2018-02-15 ヤンマー株式会社 自律走行システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102452617A (zh) * 2010-11-02 2012-05-16 三一电气有限责任公司 一种起重机支腿定位方法及装置
CN103076591A (zh) * 2013-01-11 2013-05-01 广州飞锐网络科技有限公司 基于超声波技术的工业机器人运动定位方法及系统
CN103235595A (zh) * 2013-04-27 2013-08-07 湖南科技大学 一种室外微小型地面群机器人控制系统及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3444636A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107809744A (zh) * 2017-11-29 2018-03-16 北京世纪晨数据技术有限责任公司 一种车辆转运装置、定位装置及方法
CN107809744B (zh) * 2017-11-29 2023-09-15 北京世纪晨数据技术有限责任公司 一种车辆转运装置、定位装置及方法
CN108490464A (zh) * 2018-03-21 2018-09-04 千寻位置网络有限公司 一种适用于消费类终端的网络rtk播发方法
RU2781379C1 (ru) * 2021-10-28 2022-10-11 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Военный Учебно-Научный Центр Сухопутных Войск "Общевойсковая Ордена Жукова Академия Вооруженных Сил Российской Федерации" Способ привязки минно-взрывных заграждений с применением навигационной аппаратуры потребителя индивидуального пользования спутниковых навигационных систем относительным методом определения координат

Also Published As

Publication number Publication date
US20190049593A1 (en) 2019-02-14
EP3444636A1 (en) 2019-02-20
EP3444636B1 (en) 2021-06-09
EP3862793A1 (en) 2021-08-11
CN107290764B (zh) 2021-01-05
EP3862793B1 (en) 2023-12-27
EP3444636A4 (en) 2019-12-25
CN107290764A (zh) 2017-10-24
CN113156471A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2017177951A1 (zh) 差分全球定位系统及其定位方法
CN104297721B (zh) 车辆位置识别装置及方法
CN103823228B (zh) 定位系统、终端和定位方法
KR101326889B1 (ko) 이동 기준국을 이용한 차량간 상대 위치 제어 방법 및 그 시스템
US20170131406A1 (en) Differential Positioning Method Based on Intelligent Vehicle Infrastructure Cooperative System and Intelligent Vehicle Infrastructure Cooperative System
US7456786B2 (en) Method and system for variable data rate transmission in RTK GPS survey system
CN106443733B (zh) 一种无人机的定位系统和方法
KR102263185B1 (ko) 차량의 위치 결정 방법
CN105425208A (zh) 一种用于无人机精确导航的定位系统及定位方法
CN106772233B (zh) 定位方法、相关设备及系统
CN108303720A (zh) 一种车辆定位方法、装置及终端设备
CN104483970A (zh) 一种基于卫星定位系统或移动通信网络的控制无人驾驶系统航行的方法
CN110244769B (zh) 离线作业方法和装置
US20170199281A1 (en) Positioning and navigation receiver with a confidence index
CN105738930A (zh) 一种提高导航卫星定位精度的方法及系统
CN112894816A (zh) 一种基于gnss和rfid的变电站巡检机器人导航定位方法
CN111654814B (zh) 一种定位方法、无人机及计算机可读存储介质
CN113064191A (zh) 自主机器人的基准站共享方法、系统及存储介质
JP2002311124A (ja) 衛星測位システム
KR102545275B1 (ko) 가상 기준국의 최적화 정보를 이용하여 위성 위치 좌표의 보정 정보를 생성하는 장치 및 방법
AU2022453597A1 (en) Positioning method, apparatus, electronic device and storage medium
CN112859128A (zh) 确定机器人位置的方法、运行机器人的方法和绿地处理系统
KR20150012754A (ko) 항공기 위치정보 획득 시스템
US11994595B2 (en) Systems and methods for determining orientation of an electronically steerable antenna
KR102209861B1 (ko) LPWAN(Low Power Wide Area Network) 환경에서 디바이스의 위치 정보를 관리하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017781927

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017781927

Country of ref document: EP

Effective date: 20181113