WO2017177858A1 - 液体阻尼式制动系统 - Google Patents

液体阻尼式制动系统 Download PDF

Info

Publication number
WO2017177858A1
WO2017177858A1 PCT/CN2017/079673 CN2017079673W WO2017177858A1 WO 2017177858 A1 WO2017177858 A1 WO 2017177858A1 CN 2017079673 W CN2017079673 W CN 2017079673W WO 2017177858 A1 WO2017177858 A1 WO 2017177858A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
hydraulic
valve
braking
liquid
Prior art date
Application number
PCT/CN2017/079673
Other languages
English (en)
French (fr)
Inventor
曾义波
Original Assignee
曾义波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610227237.2A external-priority patent/CN105715704B/zh
Priority claimed from CN201620304886.3U external-priority patent/CN205780449U/zh
Application filed by 曾义波 filed Critical 曾义波
Priority to KR1020187032242A priority Critical patent/KR102169602B1/ko
Priority to JP2018552238A priority patent/JP2019513953A/ja
Priority to EP17781834.1A priority patent/EP3444496A4/en
Publication of WO2017177858A1 publication Critical patent/WO2017177858A1/zh
Priority to US16/159,741 priority patent/US10794438B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T10/00Control or regulation for continuous braking making use of fluid or powdered medium, e.g. for use when descending a long slope
    • B60T10/04Control or regulation for continuous braking making use of fluid or powdered medium, e.g. for use when descending a long slope with hydrostatic brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D57/00Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders
    • F16D57/005Details of blades, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/08Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels using fluid or powdered medium
    • B60T1/093Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels using fluid or powdered medium in hydrostatic, i.e. positive displacement, retarders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D57/00Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D57/00Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders
    • F16D57/002Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders comprising a medium with electrically or magnetically controlled internal friction, e.g. electrorheological fluid, magnetic powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D57/00Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders
    • F16D57/06Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders comprising a pump circulating fluid, braking being effected by throttling of the circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers
    • F16F9/537Magnetorheological [MR] fluid dampers specially adapted valves therefor

Definitions

  • the invention relates to the field of braking technology, in particular to a liquid damping brake system.
  • Braking systems are very common in our production and life. In everyday vehicles and motion machinery, the braking system has always affected our production and life safety.
  • the most widely used conventional friction brake system is mainly composed of a brake frame, a friction element and a loose brake.
  • the existing friction brake system usually has a complicated structure of friction elements and a fast friction material. The friction and heat of the consumption and friction braking method inevitably damage the performance of the friction material, resulting in insufficient braking resistance caused by friction braking, which causes great loss to our lives and property.
  • the object of the present invention is to provide a liquid damping brake system with simple structure, no material wear, good braking effect and low braking cost, and solve the problem of the existing brake system.
  • the present invention adopts the following technical solutions:
  • the liquid damper brake system of the present invention includes a damper portion and a brake control portion, the damper portion including a sealed gearbox fixedly coupled to the apparatus body, and disposed in the gearbox to match at least the inner cavity of the gearbox a pair of oppositely engaged gears, the drive axle of the drive gear is a brake shaft extending from the gearbox and connected to an external drive shaft or an external drive shaft, and the gearboxes on both sides of the oppositely engaged gear are respectively provided with a circulation pipe, two
  • the flow conduit has an outlet on the gear housing connected to the two interfaces of the brake fluid reservoir to form a brake fluid sealing circulation passage;
  • the brake control portion includes at least one brake disposed on the circulation passage
  • the on-off valve, the control end of the brake switch valve is connected to the brake control mechanism, and the brake control mechanism controls the opening and closing state of the brake switch valve to achieve the purpose of deceleration braking.
  • the brake switch valves are respectively a first hydraulic on-off valve and a second hydraulic on-off valve disposed in two flow conduits, and the two hydraulic on-off valves are respectively placed on the passages of the two flow conduits, respectively controlling the two flow conduits Opening and closing;
  • the two hydraulic on-off valves have the same structure, including a cylindrical casing, and the two side walls of the cylindrical casing respectively have an opening, which communicates the blocked circulation pipe, and a switch sliding plug is arranged in the cylindrical casing, and two hydraulic switches
  • the switch plug of the valve has a radial through hole, respectively Corresponding to the two circulation pipes, a return spring is arranged between the switch sliding plug and the bottom of the cylinder, and the outer end of the cylindrical casing is provided with a driving liquid inlet and a driving liquid outlet, and the driving liquid inlet and the driving liquid outlet of the two hydraulic switching valves are both Connected to the brake control mechanism.
  • the brake control mechanism is a hydraulic drive device, comprising a storage tank, an oil pump and a piston cylinder connected in sequence.
  • the control end of the piston cylinder is connected to the brake operating mechanism, and the output end of the piston cylinder is connected to the first hydraulic on-off valve through the inlet pipe.
  • the oil inlet of the second hydraulic on-off valve, the oil outlet of the first hydraulic on-off valve and the second hydraulic on-off valve is connected to the oil storage tank through the liquid outlet pipe, and the liquid inlet electromagnetic valve is respectively arranged on the liquid inlet pipe and the liquid outlet pipe And discharge solenoid valve.
  • a liquid damping brake system for an automobile includes a damper portion and a brake control portion, the damper portion including a sealed gear box, the outer casing of the gear box being fixedly coupled with a brake mounting base provided by the vehicle body itself And at least one pair of oppositely engaged gears disposed in the gearbox to match the inner cavity of the gearbox, the drive axle of the drive gear being coupled to the outer drive shaft by the brake shaft extending out of the gearbox.
  • the gear boxes on both sides of the oppositely engaged gears are respectively provided with a circulation pipe, and the two flow pipes have two pipe ports on the gear box body, and two through the two connection pipes and the brake fluid storage tank respectively.
  • the interfaces are connected to form a brake fluid seal circulation passage;
  • the brake control portion includes at least one brake switch valve disposed on the circulation passage, and the control end of the brake switch valve is connected to the brake control mechanism, and the brake control mechanism is provided
  • the opening and closing state of the brake switch valve is controlled to achieve the purpose of deceleration braking.
  • the brake switch valves are respectively a first hydraulic on-off valve and a second hydraulic on-off valve disposed in two flow conduits, and the two hydraulic on-off valves are respectively placed on the passages of the two flow conduits, respectively controlling the two flow conduits Open and close;
  • the two hydraulic on-off valves have the same structure, including a cylindrical casing, and the two side walls of the cylindrical casing respectively have an opening, which communicates the blocked circulation pipe, and a switch sliding plug is arranged in the cylindrical casing, and two hydraulic switches
  • the switch sliding plug of the valve has a radial through hole corresponding to the two circulating pipes, and a return spring is arranged between the switch sliding plug and the bottom of the cylinder, and the outer end of the cylindrical casing is provided with a driving liquid inlet and a driving liquid outlet.
  • the driving liquid inlet and the driving liquid outlet of the two hydraulic switching valves are connected to the brake control mechanism.
  • the brake control mechanism is a hydraulic drive device, comprising a storage tank, an oil pump and a piston cylinder connected in sequence.
  • the brake operating mechanism of the piston cylinder is a brake pedal, and the output end of the piston cylinder is connected through the inlet pipe.
  • the oil inlet of the hydraulic on-off valve and the second hydraulic on-off valve, the oil outlet of the first hydraulic on-off valve and the second hydraulic on-off valve are connected to the oil storage tank through the liquid outlet pipe; respectively, the inlet pipe and the outlet pipe are respectively arranged
  • the liquid solenoid valve and the liquid discharge solenoid valve act as an electronically controlled switch.
  • a fluid damping brake system for a train of the present invention includes a damper portion and a brake control portion, the damper portion including a sealed gear box corresponding to each train wheel, the gear box being disposed on an axle of the train wheel, a sliding seal connection with the axle, the outer casing of which is fixedly coupled with the car frame bogie, at least one pair of relatively meshing gears matching the inner cavity of the gearbox in the gearbox, wherein the driving axle of the driving gear is a brake shaft and a brake shaft Coaxial with the axle of the train wheel,
  • the gearboxes on both sides of the oppositely engaged gears are respectively provided with a flow conduit, and the two outlet conduits of the two flow conduits on the gearbox body are connected to the brake fluid storage tank through two connecting pipes, and the brake fluid storage
  • the liquid tank is disposed on the bogie
  • the brake control portion comprises a brake switch valve disposed on the two flow pipes or the two connecting pipes, and the control end of the brake switch valve is connected to the train brake control mechanism, and is
  • the train uses a liquid damping brake system, and the front and rear gear boxes are respectively arranged on two sides of the same bogie of the train, and the same side gear box shares a brake fluid storage tank.
  • the brake switch valves are respectively a first hydraulic on-off valve and a second hydraulic on-off valve disposed in two flow conduits, and the two hydraulic on-off valves are respectively placed on the passages of the two flow conduits, respectively controlling the two flow conduits Open and close;
  • the two hydraulic on-off valves have the same structure, including a cylindrical casing, and the two side walls of the cylindrical casing respectively have an opening, which communicates the blocked circulation pipe, and a switch sliding plug is arranged in the cylindrical casing, and two hydraulic switches
  • the switch sliding plug of the valve has a radial through hole corresponding to the two circulating pipes, and a return spring is arranged between the switch sliding plug and the bottom of the cylinder, and the outer end of the cylindrical casing is provided with a driving liquid inlet and a driving liquid outlet.
  • the driving liquid inlet and the driving liquid outlet of the two hydraulic switching valves are both connected to the hydraulic driving device.
  • the hydraulic driving device comprises an oil storage tank, an electric oil pump and a piston cylinder connected in sequence.
  • the brake operating mechanism of the piston cylinder is a train control system, and the output end of the piston cylinder is connected to the first hydraulic on-off valve and the second hydraulic pressure through the inlet pipe.
  • the oil inlet of the switch valve, the oil outlet of the first hydraulic switch valve and the second hydraulic switch valve are connected to the oil storage tank through the liquid outlet pipe; the liquid inlet electromagnetic valve and the liquid discharge electromagnetic force are respectively arranged on the liquid inlet pipe and the liquid outlet pipe Valve as an electronically controlled switch.
  • the invention has the beneficial effects that the invention is applied to the braking field by modifying the gear box structure, and solves the problems of large material wear, poor braking effect and high braking cost of the conventional friction braking, and effectively avoids the traditional friction.
  • the brake damper system caused by the heat is braked.
  • the liquid damper type brake system of the present invention does not have the failure of the brake failure when the strength of the transmission shaft, the gear and the gearbox housing is sufficient, thereby effectively protecting the people's Life and property safety; the liquid damping brake system of the invention has the advantages of simple structure, low manufacturing cost, convenient use and maintenance, simple and easy operation control, safe and reliable braking, and can form any braking characteristic curve required by the device, satisfying nessecery.
  • FIG. 1 is a schematic structural view of an externally engaged liquid damped brake system of the present invention
  • FIG. 2 is a schematic structural view of a hydraulic on-off valve and a gear box of the externally engaged liquid damping brake system of the present invention
  • FIG. 3 is a schematic structural view of a damping portion of the externally engaged liquid damping brake system of the present invention.
  • FIG. 4 is a schematic structural view of a hydraulic on-off valve and a gear box of a liquid-damped brake system with internal engagement according to the present invention
  • FIG. 5 is a schematic structural view of an embodiment of a liquid damping brake system for an automobile according to the present invention.
  • FIG. 6 is a schematic structural view of an embodiment of a liquid damping brake system for a train according to the present invention.
  • FIG. 7 is a schematic structural view of a hydraulic on-off valve and a gear box of an externally engaged liquid damping brake system for a train according to the present invention
  • an external meshing liquid damping brake system of the present invention includes a damping portion and a brake control portion, wherein the damping portion includes a sealed gear box 1 fixedly coupled to the apparatus body, and is provided. At least one pair of relatively externally engaged gears in the gearbox 1 that are mated with the inner cavity of the gearbox, wherein the driven gear 2 is mounted in the gearbox 1 via the driven axle 3, and the drive axle 5 of the drive gear 4 is The brake shaft extends out of the gear box and is connected to the external drive shaft or is an external drive shaft.
  • the gear boxes on both sides of the opposite externally engaged gear are respectively provided with flow conduits 6, 7 and two flow conduits 6, 7 in the gearbox
  • the outlets 6.1, 7.1 are connected to the two interfaces 8.1, 8.2 of the brake fluid reservoir 8 to form a brake fluid sealing circulation passage;
  • the brake control portion includes at least one system disposed on the circulation passage
  • the control valve of the brake switch valve 9 is connected to the brake control mechanism 12, and the brake control mechanism 12 controls the opening and closing state of the brake switch valve 9 to achieve the purpose of deceleration braking.
  • FIGS. 2 and 3 An embodiment of the hydraulic on-off valve and gearbox structure and the damper portion of the externally engaged liquid damped brake system of the present invention is shown in FIGS. 2 and 3.
  • the brake switch valve 9 adopts a hydraulic switch, and includes a first hydraulic on-off valve 9a and a second hydraulic on-off valve 9b respectively disposed in the two flow conduits 6, 7, and the two hydraulic on-off valves 9a, 9b are respectively disposed on two The passages of the flow conduits 6, 7 respectively control the opening and closing of the flow conduits 6, 7; the two hydraulic on-off valves 9a, 9b have the same structure, including a cylindrical casing 9.1, and the cylindrical casing 9.1 has two sides respectively An opening that connects the blocked flow conduit to the cylindrical casing 9.1
  • the switch slide 9.2 is provided, and the switch plugs 9.2 of the two hydraulic switch valves 9a, 9b are respectively provided with radial through holes 9.6, 9.7, corresponding to the two flow conduits 6, 7 and between the switch slide 9.2 and the bottom of the cylinder
  • the return spring 9.3 is provided, and the outer end of the cylindrical casing 9.1 is provided with a driving liquid inlet 9.4 and a driving liquid outlet 9.5, and the driving
  • FIG. 4 is a schematic view showing the structure of a hydraulic switch valve and a gear box of the internal meshing liquid damping brake system of the present invention, which is similar to the structure of the externally engaged liquid damping brake system, and the difference is that the gear box 1 is inside.
  • the meshing driven gear 2 is an inner ring gear nested in the gear box
  • the driving axle 5 of the driving wheel 4 is a brake shaft extending from the gear box and connected to an external driving shaft or an external driving shaft
  • the internal meshing liquid damping type Other structures such as the hydraulic on-off valve of the brake system are similar to the externally engaged liquid damper brake system.
  • Figure 5 is a system diagram of an embodiment of a liquid damper type braking system for an automobile:
  • the embodiment includes a damper portion and a brake control portion, the damper portion including a sealed gearbox 1 having a housing fixedly coupled to the brake mounting base and at least one external engagement disposed within the gearbox 1 to match the interior of the gearbox Gears, when the relatively meshing gears in the gearbox are externally engaged, the driven axle 3 of the driven gear 2 is mounted in the gearbox 1, and the drive axle 5 of the drive gear 4 is a brake axle and a train wheel 16 When the oppositely engaged gears in the gearbox are internally engaged, the driven gear 2 is an internal ring gear nested in the gearbox, and the driving axle 5 of the driving wheel 4 is a brake shaft extending out of the gearbox Connected to an external drive shaft or to an external drive shaft.
  • the damper portion including a sealed gearbox 1 having a housing fixedly coupled to the brake mounting base and at least one external engagement disposed within the gearbox 1 to match the interior of the gearbox Gears, when the relatively meshing gears in the gearbox are externally engaged, the driven axle 3
  • the gearboxes on both sides of the oppositely engaged gears are respectively provided with flow conduits 6, 7 respectively.
  • the two flow conduits 6, 7 have two conduit ports 6.1, 7.1 on the gearbox body through the two connecting pipes 10, 11 Separately connected with the two interfaces 8.1, 8.2 of the brake fluid reservoir 8 to form a brake fluid sealing circulation passage; using the hydraulic on-off valve and gearbox structure and the damping portion as shown in Figs. 2 and 3, the brake
  • the on-off valve 9 is a first hydraulic on-off valve 9a and a second hydraulic on-off valve 9b which are respectively disposed in the two flow conduits 6, 7, and the two hydraulic on-off valves 9a, 9b are respectively disposed on the passages of the two flow conduits 6, 7.
  • the two hydraulic on-off valves 9a, 9b have the same structure, including a cylindrical casing 9.1, and each of the two sides of the cylindrical casing 9.1 has an opening for communicating the blocked circulation pipe.
  • a switch plug 9.2 is disposed in the cylindrical casing 9.1, and the switch plugs 9.2 of the two hydraulic switch valves 9a, 9b respectively have a radial through hole 9.6, 9.7 corresponding to the two flow pipes 6, 7 and the switch slide plug 9.2
  • the liquid inlet 9.4 and the driving liquid outlet 9.5, the driving liquid inlet 9.4 and the driving liquid outlet 9.5 of the two hydraulic switching valves 9a, 9b are both connected to the brake control mechanism 12, and the brake switching valve 9a, 9b is controlled by the brake control mechanism 12.
  • the opening and closing state reaches the purpose of deceleration braking.
  • the brake control mechanism 12 is a hydraulic drive device, including a storage tank 12.1, an oil pump 12.2, a piston cylinder 12.3, which are sequentially connected, a brake operating mechanism 13 of the piston cylinder 12.3 is a brake pedal, and an output end of the piston cylinder 12.3 passes.
  • the inlet pipe 12.4 connects the oil inlets of the first hydraulic switching valve 9a and the second hydraulic switching valve 9b, and the oil outlets of the first hydraulic switching valve 9a and the second hydraulic switching valve 9b are connected to the oil storage tank 12.1 through the liquid outlet pipe 12.5.
  • the liquid inlet solenoid valve 12.6 and the liquid outlet solenoid valve 12.7 are respectively disposed on the inlet pipe 12.4 and the outlet pipe 12.5 as an electric control switch.
  • Figure 6 shows an embodiment of a liquid damper brake system for trains:
  • the train fluid damping brake system includes a damper portion including a sealed gearbox 1 corresponding to each train wheel, and a brake control portion disposed on the axle of the train wheel 16, with the axle
  • the sliding sealing connection is fixedly coupled to the car frame bogie.
  • the driven wheel shaft 3 of the driven gear 2 is mounted in the gear box 1 and the driving gear 4 is actively activated.
  • the axle 5 is a brake shaft coaxial with the axle of the train wheel 16; when the relatively meshing gears in the gearbox are internally engaged, the driven gear 2 is an internal ring gear nested in the gearbox, and the driving wheel 4 is active.
  • the axle 5 is a brake shaft that extends out of the gearbox and is connected to an external drive shaft or to an external drive shaft.
  • the gearboxes on both sides of the oppositely engaged gears are respectively provided with flow conduits 6, 7 respectively, and the two outlet conduits 6.1, 7.1 of the two flow conduits 6, 7 on the gearbox body pass through the two connecting pipes 10, 11
  • the brake fluid reservoir 8 is connected, and the brake fluid reservoir 8 is disposed on the bogie 17, and the brake control portion includes a system disposed on the two flow conduits 6, 7 or the two connecting tubes 10, 11.
  • the switch valve 9 and the control end of the brake switch valve 9 are connected to the train brake control mechanism 12, and the train brake control mechanism 12 controls the opening and closing state of the brake switch valve 9 to achieve the purpose of deceleration braking.
  • the train has a front and rear gear box on both sides of the same bogie 17, and the same side gear box shares a brake fluid storage tank.
  • Figure 7 is a schematic diagram of the structure of the externally engaged hydraulic on-off valve and gearbox for the train:
  • the brake switch valve 9 employs a hydraulic switch including a first hydraulic on-off valve 9a and a second hydraulic on-off valve 9b disposed in the two flow conduits 6, 7, and the two hydraulic on-off valves 9a, 9b are respectively placed in two flow conduits 6 On the passage of 7, 7 respectively, the opening and closing of the two flow conduits 6, 7 are controlled; the two hydraulic on-off valves 9a, 9b are identical in structure, and the drive liquid inlet 9.4 and the drive liquid outlet 9.5 of the two hydraulic on-off valves 9a, 9b are both The hydraulic drive unit 12 is connected; the initial state of the two hydraulic on-off valves 9a, 9b for the train is opposite to that of the hydraulic on-off valve for the vehicle, and the initial state is closed.
  • the brake control mechanism 12 is a hydraulic drive device, including an oil storage tank 12.1, an electric oil pump 12.2, a piston cylinder 12.3, which are sequentially connected, and the piston cylinder 12.3 is controlled by a brake operating mechanism 13, the piston Cylinder 12.3
  • the output end connects the oil inlets of the first hydraulic on-off valve 9a and the second hydraulic on-off valve 9b through the inlet pipe 12.4, and the oil outlets of the first hydraulic on-off valve 9a and the second hydraulic on-off valve 9b are connected and connected through the outlet pipe 12.5.
  • the oil tank 12.1; an inflow solenoid valve 12.6 and an outlet solenoid valve 12.7 are respectively disposed on the inlet pipe 12.4 and the outlet pipe 12.5 as an electric control switch.
  • the deceleration braking process of the liquid damping brake system for an automobile of the present invention is as follows:
  • the first hydraulic on-off valve 9a and the second hydraulic on-off valve 9b are in an open state, and when the vehicle is in an emergency and needs to be braked, the brake operating mechanism 13 is manually depressed, that is, the brake pedal, driving The computer (ECU) outputs the emergency brake signal to the inlet solenoid valve 12.6 and the outlet solenoid valve 12.7, the inlet solenoid valve 12.6 is opened, the outlet solenoid valve 12.7 is closed, and the driving fluid is introduced into the first hydraulic on-off valve 9a, A hydraulic on-off valve 9a is gradually reduced in opening until it is closed.
  • the first hydraulic on-off valve 9a Since the first hydraulic on-off valve 9a is closed, the circulating flow of the brake fluid is blocked, the pressure of the brake fluid sealing circulation passage in the discharge gearbox is gradually increased, and the reaction force of the gear page when the gear meshes and rotates is gradually increased, the gear is gradually increased. The speed gradually slows down and the car axle 15 speed decreases until it stops.
  • the second hydraulic on-off valve 9b When the vehicle is reversed, the second hydraulic on-off valve 9b is closed, and the principle is the same as above.
  • the corresponding brake fluid enters the connecting pipe of the gearbox and is provided with a solenoid valve, which is controlled by the driving computer (ECU).
  • ECU driving computer
  • the solenoid valve When the car is normally moving forward, the solenoid valve is closed, thereby controlling the brake fluid to proceed normally in the car. In the case, it does not enter the circulation in the gear box, and finally achieves the influence of avoiding the long-term rotation of the brake fluid; when it is necessary to brake in an emergency, the solenoid valve is controlled by the driving computer (ECU), and the solenoid valve is opened.
  • the brake fluid enters the gearbox, and the brake shaft is prevented from rotating by the resistance of the circulating fluid of the brake fluid in the gearbox, thereby achieving the purpose of braking.
  • the liquid damper brake system for an automobile of the present invention is also realized by respectively providing an intake solenoid valve 12.6 and an outlet solenoid valve 12.7 on the inlet pipe 12.4 and the outlet pipe 12.5.
  • An electric pump 12.2 is arranged between the piston cylinder 12.3 and the liquid storage tank 12.1.
  • the driving computer ECU
  • the liquid discharge solenoid valve 12.7 discharges the driving liquid in the chambers of the first hydraulic switching valve 9a and the second hydraulic switching valve 9b to the driving liquid storage tank 12.1; meanwhile, the first hydraulic switching valve 9a and the second hydraulic switching valve 9b The brakes are opened by the return spring and the brakes disappear.
  • deceleration braking is similar to the principle of deceleration braking.
  • the difference between the liquid damper type brake system for trains and the liquid damper type brake system for automobiles is as follows: (1) The setting of the hydraulic on/off valve is opposite to that of the automobile, and the train uses two hydraulic on-off valves 9a, The initial state of 9b is shut down.
  • the first hydraulic on-off valve 9a and the second hydraulic on-off valve 9b are controlled to be in an open state by the brake control mechanism 12; when deceleration braking is required, the brake operating mechanism (13) is a train control system Start the operation: close the liquid inlet solenoid valve 12.6, cut off the driving liquid, and open the driving liquid outlet solenoid valve 12.7 to discharge the driving liquid in the first hydraulic switching valve 9a and the second hydraulic switching valve 9b.
  • the liquid storage tank 12.1 is simultaneously driven; at the same time, the first hydraulic on-off valve 9a and the second hydraulic on-off valve 9b are respectively reset by the action of the return spring, and the first hydraulic on-off valve 9a and the second hydraulic on-off valve 9b are closed to achieve braking.
  • a train fluid damper type brake system shares a brake fluid reservoir 8 for each train on the same side of the same bogie.
  • the brake hand brake 18 can be operated to achieve the braking purpose.
  • the liquid damper type brake system of the present invention can control the process of the first hydraulic on-off valve 9a and the second hydraulic on-off valve 9b from being fully open to being closed by the piston cylinder 12.3, as the case may be, thereby controlling the brake shaft.
  • the braking speed can form any braking characteristic curve required by the equipment to meet the actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Braking Arrangements (AREA)
  • Transmission Of Braking Force In Braking Systems (AREA)
  • Multiple-Way Valves (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

一种液体阻尼式制动系统,包括设置在密封齿轮箱(1)内的至少一对相对啮合的齿轮(2、4)、一个穿出齿轮箱(1)与外部驱动轴连接的齿轮轮轴(5)、齿轮(2、4)两侧分别设置的流通管道(6、7)及其穿出齿轮箱(1)与制动液储液箱(8)相连形成的制动液循环通道和至少一个设置在循环通道上的制动开关阀(9),通过控制制动开关阀(9)的开闭状态达到减速制动的目的。所述液体阻尼式制动系统通过将齿轮箱(1)结构改装后应用于制动领域,解决了传统摩擦制动的材料磨损大、制动效果欠佳、制动成本高等问题,有效避免了传统摩擦制动因发热导致的制动失效的现象;所述液体阻尼式制动系统结构简单、制造成本低、使用维护方便、操作制动简单易控,制动安全可靠,且能形成设备所需的任意制动特性曲线,能满足实际需要。

Description

液体阻尼式制动系统 技术领域
本发明涉及制动技术领域,具体地指一种液体阻尼式制动系统。
背景技术
制动系统在我们的生产生活中非常常见,在日常的交通工具和运动机械装置中,制动系统一直影响着我们的生产生活安全。总体来说,应用最为广泛的传统的摩擦式制动系统主要由制动架、摩擦元件和松闸器组成,然而,现有的摩擦式制动系统通常由于摩擦元件结构复杂、摩擦材料的快速消耗、摩擦式制动方式的摩擦发热的固疾不可避免的损坏摩擦材料的性能,导致摩擦制动的阻力不足发生的制动失灵,给我们的生命和财产带来巨大损失。
发明内容
本发明的目的在于提供一种结构简单、无材料磨损、制动效果好、制动成本低的液体阻尼式制动系统,解决现有制动系统的问题。
为实现上述目的,本发明采用如下技术方案:
本发明的液体阻尼式制动系统包括阻尼部分和制动控制部分,所述阻尼部分包括一个与设备本体固定联接的密封的齿轮箱,设置在所述齿轮箱内与齿轮箱内腔匹配的至少一对相对啮合的齿轮,主动齿轮的主动轮轴为制动轴伸出齿轮箱与外部驱动轴连接或者就是外部驱动轴,所述相对啮合的齿轮两侧的齿轮箱上分别设有流通管道,两条流通管道在齿轮箱体上有引出口与制动液储液箱的两个接口相连,形成一个制动液密封循环通道;所述制动控制部分包括至少一个设置在循环通道上的制动开关阀,制动开关阀的控制端连接制动控制机构,由制动控制机构控制制动开关阀的开闭状态达到减速制动的目的。
所述制动开关阀分别是设置在两条流通管道的第一液压开关阀和第二液压开关阀,两个液压开关阀分别置于两条流通管道的通路上,分别控制两条流通管道的开闭;两个液压开关阀的结构相同,包括筒状壳体,筒状壳体两侧壁分别有一个开口,连通被隔断的流通管道,筒状壳体内设置开关滑塞,两个液压开关阀的开关滑塞上有一个径向通孔,分别与 两条流通管道对应,开关滑塞与筒底之间设复位弹簧,筒状壳体的外端上开有驱动液体进口和驱动液出口,两个液压开关阀的驱动液体进口和驱动液出口都与制动控制机构连接。
所述制动控制机构为液压驱动装置,包括依次连接的储油罐、油泵、活塞缸,活塞缸的控制端连接制动操作机构,活塞缸的输出端通过进液管连接第一液压开关阀和第二液压开关阀的进油口,第一液压开关阀和第二液压开关阀的出油口通过出液管连接储油罐,在进液管和出液管上分别设置进液电磁阀和出液电磁阀。
本发明的一种汽车用液体阻尼式制动系统,包括阻尼部分和制动控制部分,阻尼部分包括一个密封的齿轮箱,所述齿轮箱的外壳与车体本身所设的制动器安装底座固定联接,设置在所述齿轮箱内与齿轮箱内腔匹配的至少一对相对啮合的齿轮,主动齿轮的主动轮轴为制动轴伸出齿轮箱与外部驱动轴连接。所述相对啮合的齿轮两侧的齿轮箱上分别设有流通管道,两条流通管道在齿轮箱体上有引出两个管道口、通过两根连接管分别与制动液储液箱的两个接口相连,形成一个制动液密封循环通道;所述制动控制部分包括至少一个设置在循环通道上的制动开关阀,制动开关阀的控制端连接制动控制机构,由制动控制机构控制制动开关阀的开闭状态达到减速制动的目的。
所述制动开关阀分别是设置在两条流通管道的第一液压开关阀和第二液压开关阀,两个液压开关阀分别置于两条流通管道的通路上,分别控制两条流通管道的开闭;两个液压开关阀结构相同,包括筒状壳体,筒状壳体的两侧壁分别有一个开口,连通被隔断的流通管道,筒状壳体内设置开关滑塞,两个液压开关阀的开关滑塞上有一个径向通孔,分别与两条流通管道对应,开关滑塞与筒底之间设复位弹簧,筒状壳体的外端上开有驱动液体进口和驱动液出口,两个液压开关阀的驱动液体进口和驱动液出口与都与制动控制机构连接。
所述的制动控制机构为液压驱动装置,包括依次连接的储油罐、油泵、活塞缸,活塞缸的制动操作机构是制动脚踏,活塞缸的输出端通过进液管连接第一液压开关阀和第二液压开关阀的进油口,第一液压开关阀和第二液压开关阀的出油口通过出液管连接储油罐;在进液管和出液管上分别设置进液电磁阀和出液电磁阀,作为电控开关。
本发明的一种火车用液体阻尼式制动系统,包括阻尼部分和制动控制部分,所述阻尼部分包括对应于每个火车车轮的密封的齿轮箱,齿轮箱设置在火车车轮的轮轴上,与轮轴滑动密封连接,其外壳与车箱转向架固定联接,在所述齿轮箱内与齿轮箱内腔匹配的至少一对相对啮合的齿轮,其中主动齿轮的主动轮轴为制动轴,制动轴与火车车轮的轮轴共轴, 所述相对啮合的齿轮两侧的齿轮箱上分别设有流通管道,两条流通管道在齿轮箱体上的两个引出管道口通过两根连接管连接制动液储液箱,制动液储液箱设置在转向架上,所述制动控制部分包括设置在两条流通管道或两根连接管上的制动开关阀,制动开关阀的控制端连接火车制动控制机构,由火车制动控制机构控制制动开关阀的开闭状态达到减速制动的目的。
所述的火车用液体阻尼式制动系统,火车同一转向架两侧分别设前后齿轮箱,同侧的齿轮箱共用一个制动液储液箱。
所述制动开关阀分别是设置在两条流通管道的第一液压开关阀和第二液压开关阀,两个液压开关阀分别置于两条流通管道的通路上,分别控制两条流通管道的开闭;两个液压开关阀结构相同,包括筒状壳体,筒状壳体的两侧壁分别有一个开口,连通被隔断的流通管道,筒状壳体内设置开关滑塞,两个液压开关阀的开关滑塞上有一个径向通孔,分别与两条流通管道对应,开关滑塞与筒底之间设复位弹簧,筒状壳体的外端上开有驱动液体进口和驱动液出口,两个液压开关阀的驱动液体进口和驱动液出口与都与液压驱动装置连接。
所述液压驱动装置包括依次连接的储油罐、电动油泵、活塞缸,活塞缸的制动操作机构是火车控制系统,活塞缸的输出端通过进液管连接第一液压开关阀和第二液压开关阀的进油口,第一液压开关阀和第二液压开关阀的出油口通过出液管连接储油罐;在进液管和出液管上分别设置进液电磁阀和出液电磁阀,作为电控开关。
本发明的有益效果:本发明通过将齿轮箱结构改装后应用于制动领域,解决了传统摩擦制动的材料磨损大、制动效果欠佳、制动成本高等问题,同时有效避免了传统摩擦制动因发热导致的制动失效的现象,本发明的液体阻尼式制动系统在传动轴、齿轮付和齿轮箱外壳强度足够的情况下不会出现制动失效的故障,有效保障了人民的生命财产安全;本发明的液体阻尼式制动系统结构简单、制造成本低、使用维护方便、操作制动简单易控,制动安全可靠,且能形成设备所需的任意制动特性曲线,满足实际需要。
附图说明
图1为本发明外啮合的液体阻尼式制动系统的结构示意图;
图2为本发明外啮合的液体阻尼式制动系统的液压开关阀与齿轮箱结构示意图;
图3为本发明外啮合的液体阻尼式制动系统的阻尼部分结构示意图;
图4为本发明内啮合的液体阻尼式制动系统的液压开关阀与齿轮箱结构示意图;
图5为本发明汽车用液体阻尼式制动系统的一种实施例的结构示意图;
图6为本发明火车用液体阻尼式制动系统的一种实施例的结构示意图;
图7为本发明火车用外啮合的液体阻尼式制动系统的液压开关阀与齿轮箱结构示意图;
图中:1-齿轮箱,2-从动齿轮,3-从动轮轴,4-主动齿轮,5-主动轮轴,6、7-流通管道(6.1、7.1-引出口),8-制动液储液箱(8.1、8.2-接口),9-制动开关阀9(9a-第一液压开关阀,9b-第二液压开关阀,9.1-筒状壳体,9.2-开关滑塞,9.3-复位弹簧,9.4-驱动液体进口,9.5-驱动液出口,9.6、9.7-径向通孔),10、11-连接管,12-制动控制机构(12.1-储油罐,12.2-油泵,12.3-活塞缸,12.4-进液管,12.5-出液管,12.6-进液电磁阀,12.7-出液电磁阀),13-制动操作机构,14-汽车车轮,15-外部驱动轴,16-火车车轮,17-转向架,18-制动手刹。
具体实施方式
如图1所示,本发明一种外啮合液体阻尼式制动系统包括阻尼部分和制动控制部分,其特征在于:所述阻尼部分包括一个与设备本体固定联接的密封的齿轮箱1,设置在所述齿轮箱1内与齿轮箱内腔匹配的至少一对相对外啮合的齿轮,其中从动齿轮2通过从动轮轴3安装在所述齿轮箱1内,主动齿轮4的主动轮轴5为制动轴伸出齿轮箱与外部驱动轴连接或者就是外部驱动轴,所述相对外啮合的齿轮两侧的齿轮箱上分别设有流通管道6、7,两条流通管道6、7在齿轮箱体上有引出口6.1、7.1与制动液储液箱8的两个接口8.1、8.2相连,形成一个制动液密封循环通道;所述制动控制部分包括至少一个设置在循环通道上的制动开关阀9,制动开关阀9的控制端连接制动控制机构12,由制动控制机构12控制制动开关阀9的开闭状态达到减速制动的目的。
如图2和图3给出本发明外啮合的液体阻尼式制动系统的液压开关阀与齿轮箱结构及阻尼部分的一种实施例:
所述制动开关阀9采用液压开关,包括分别设置在两条流通管道6、7中的第一液压开关阀9a和第二液压开关阀9b,两个液压开关阀9a、9b分别设置于两条流通管道6、7的通路上,分别控制流通管道6、7的开闭;两个液压开关阀9a、9b的结构相同,包括筒状壳体9.1,筒状壳体9.1的两侧分别有一个开口,连通被隔断的流通管道,筒状壳体9.1内 设置开关滑塞9.2,两个液压开关阀9a、9b的开关滑塞9.2上分别设有径向通孔9.6、9.7,与两条流通管道6、7对应,开关滑塞9.2与筒底之间设复位弹簧9.3,筒状壳体9.1的外端上开有驱动液体进口9.4和驱动液出口9.5,两个液压开关阀9a、9b的驱动液体进口9.4和驱动液出口9.5都与制动控制机构12连接。
如图4为本发明内啮合的液体阻尼式制动系统的液压开关阀与齿轮箱结构示意图,与外啮合的液体阻尼式制动系统的结构类似,其不同之处在于,齿轮箱1里内啮合的从动齿轮2为嵌套在齿轮箱内的内齿圈,主动轮4的主动轮轴5为制动轴伸出齿轮箱与外部驱动轴连接或者就是外部驱动轴,内啮合的液体阻尼式制动系统的液压开关阀等其他结构与外啮合的液体阻尼式制动系统的类似。
图5为汽车用液体阻尼式制动系统的一种实施例系统示意图:
本实施例包括阻尼部分和制动控制部分,阻尼部分包括一个密封的齿轮箱1,其外壳与制动器安装底座固定联接,设置在所述齿轮箱1内与齿轮箱内腔匹配的至少一对外啮合的齿轮,当齿轮箱内的相对啮合的齿轮为外啮合时,从动齿轮2的从动轮轴3安装在所述齿轮箱1内,主动齿轮4的主动轮轴5为制动轴与火车车轮16的轮轴共轴;当齿轮箱内的相对啮合的齿轮为内啮合时,从动齿轮2为嵌套在齿轮箱内的内齿圈,主动轮4的主动轮轴5为制动轴伸出齿轮箱与外部驱动轴连接或者就是外部驱动轴。
所述相对啮合的齿轮两侧的齿轮箱上分别设有流通管道6、7,两条流通管道6、7在齿轮箱体上有引出两个管道口6.1、7.1通过两根连接管10、11分别与制动液储液箱8的两个接口8.1、8.2相连,形成一个制动液密封循环通道;采用如图2、图3的液压开关阀与齿轮箱结构及阻尼部分,所述制动开关阀9是分别设置在两条流通管道6、7的第一液压开关阀9a和第二液压开关阀9b,两个液压开关阀9a、9b分别设置于两条流通管道6、7的通路上,分别控制流通管道6、7的开闭;两个液压开关阀9a、9b结构相同,包括筒状壳体9.1,筒状壳体9.1的两侧分别有一个开口,连通被隔断的流通管道,筒状壳体9.1内设置开关滑塞9.2,两个液压开关阀9a、9b的开关滑塞9.2上分别有一个径向通孔9.6、9.7,与两条流通管道6、7对应,开关滑塞9.2与筒底之间设复位弹簧9.3,筒状壳体9.1的外端上开有驱动液体进口9.4和驱动液出口9.5,两个液压开关阀9a、9b的驱动液体进口9.4和驱动液出口9.5都与制动控制机构12连接,由制动控制机构12控制制动开关阀9a、9b的开闭状态达到减速制动的目的。
所述制动控制机构12为液压驱动装置,包括依次连接的储油罐12.1、油泵12.2、活塞缸12.3,活塞缸12.3的制动操作机构13为制动脚踏,活塞缸12.3的输出端通过进液管12.4连接第一液压开关阀9a和第二液压开关阀9b的进油口,第一液压开关阀9a和第二液压开关阀9b的出油口通过出液管12.5连接储油罐12.1;在进液管12.4和出液管12.5上分别设置进液电磁阀12.6和出液电磁阀12.7,作为电控开关。
图6给出一种火车用液体阻尼式制动系统的实施例:
本火车用液体阻尼式制动系统包括阻尼部分和制动控制部分,所述阻尼部分包括对应于每个火车车轮的密封的齿轮箱1,齿轮箱1设置在火车车轮16的轮轴上,与轮轴滑动密封连接,其外壳与车箱转向架固定联接,当齿轮箱内的相对啮合的齿轮为外啮合时,从动齿轮2的从动轮轴3安装在所述齿轮箱1内,主动齿轮4的主动轮轴5为制动轴与火车车轮16的轮轴共轴;当齿轮箱内的相对啮合的齿轮为内啮合时,从动齿轮2为嵌套在齿轮箱内的内齿圈,主动轮4的主动轮轴5为制动轴伸出齿轮箱与外部驱动轴连接或者就是外部驱动轴。
所述相对啮合的齿轮两侧的齿轮箱上分别设有流通管道6、7,两条流通管道6、7在齿轮箱体上的两个引出管道口6.1、7.1通过两根连接管10、11连接制动液储液箱8,制动液储液箱8设置在转向架17上,所述制动控制部分包括设置在两条流通管道6、7或两根连接管10、11上的制动开关阀9,制动开关阀9的控制端连接火车制动控制机构12,由火车制动控制机构12控制制动开关阀9的开闭状态达到减速制动的目的。
所述火车同一转向架17两侧分别设前后齿轮箱,同侧的齿轮箱共用一个制动液储液箱。
图7是火车用外啮合液压开关阀与齿轮箱结构示意图:
制动开关阀9采用液压开关,包括设置在两条流通管道6、7的第一液压开关阀9a和第二液压开关阀9b,两个液压开关阀9a、9b分别置于两条流通管道6、7的通路上,分别控制两条流通管道6、7的开闭;两个液压开关阀9a、9b结构相同,两个液压开关阀9a、9b的驱动液体进口9.4和驱动液出口9.5都与液压驱动装置12连接;火车用两个液压开关阀9a、9b的初始状态与汽车用的液压开关阀相反,初始状态为关闭。
如图5和图6所示,所述制动控制机构12为液压驱动装置,包括依次连接的储油罐12.1、电动油泵12.2、活塞缸12.3,活塞缸12.3受制动操作机构13控制,活塞缸12.3的 输出端通过进液管12.4连接第一液压开关阀9a和第二液压开关阀9b的进油口,第一液压开关阀9a和第二液压开关阀9b的出油口通过出液管12.5连接储油罐12.1;在进液管12.4和出液管12.5上分别设置进液电磁阀12.6和出液电磁阀12.7,作为电控开关。
本发明汽车用液体阻尼式制动系统的减速制动过程如下:
正常运行时,第一液压开关阀9a和第二液压开关阀9b处于打开状态,当汽车前行遇到紧急情况需要制动时,人工踩下制动操作机构13,即制动脚踏,行车电脑(ECU)将紧急制动信号输出给进液电磁阀12.6和出液电磁阀12.7,进液电磁阀12.6打开,出液电磁阀12.7关闭,驱动液进液进入第一液压开关阀9a,第一液压开关阀9a开度逐渐减小直到关闭。由于第一液压开关阀9a关闭,制动液的循环流动受阻,排出齿轮箱内的制动液密封循环通道的压力逐渐升高,齿轮啮合旋转时的齿轮页面受到的反作用力逐步增大,齿轮转速逐渐变慢,汽车车轴15转速降低,直至停止。倒车时制动,第二液压开关阀9b的关闭起作用,其原理同上。
在实际应用过程中,由于汽车正常前行所持续的时间较长,考虑到制动液在制动液循环通道中长时间循环会导致制动液温度上升等因素,可在汽车正常前行时所对应的制动液进入齿轮箱的连接管上设置电磁阀,该电磁阀受行车电脑(ECU)控制,当汽车正常前行时,该电磁阀关闭,从而控制制动液在汽车正常前行情况下不进入齿轮箱中循环,最终达到避免制动液长时间轮换流动所带来的影响;当遇到紧急情况需要制动时,该电磁阀受行车电脑(ECU)控制,该电磁阀打开,制动液进入齿轮箱,通过将齿轮箱内的制动液的循环流动的阻力来阻止制动轴转动,进而达到制动的目的。
防抱死刹车系统(ABS)的实现:本发明汽车用液体阻尼式制动系统也通过在进液管12.4和出液管12.5上分别设置进液电磁阀12.6和出液电磁阀12.7实现,在活塞缸12.3与储液罐12.1之间设置有电动泵12.2,当汽车速度降到设定值时,行车电脑(ECU)发出指令,关闭进液电磁阀12.6,切断驱动液的进入,同时打开驱动液出液电磁阀12.7,将第一液压开关阀9a、第二液压开关阀9b腔内的驱动液排至驱动液储液罐12.1;同时,第一液压开关阀9a和第二液压开关阀9b分别在复位弹簧的作用下打开,制动随即消失。
火车减速制动与汽车减速制动原理类似。
本发明的火车用液体阻尼式制动系统与汽车用液体阻尼式制动系统的区别在于以下几点:(1)液压开关阀的设置上,与汽车相反,火车用两个液压开关阀9a、9b的初始状态为 关闭。当火车正常运行时,由制动控制机构12控制第一液压开关阀9a和第二液压开关阀9b处于打开状态;当需要减速制动时,制动操作机构(13)即火车控制系统发出制动指令,开始操作:关闭进液电磁阀12.6,切断驱动液的进入,同时打开驱动液出液电磁阀12.7,将第一液压开关阀9a、第二液压开关阀9b腔内的驱动液排至驱动液储液罐12.1;同时,第一液压开关阀9a和第二液压开关阀9b分别在复位弹簧的作用下复位,第一液压开关阀9a和第二液压开关阀9b关闭,实现制动。(2)在制动液储液箱8的设置上,火车用液体阻尼式制动系统中每列火车同一转向架同侧的齿轮箱共用一个制动液储液箱8。(3)当列车车箱需单独长时间停放时,可操作制动手刹18实现制动目的。
本发明的液体阻尼式制动系统可根据具体情况,由活塞缸12.3控制第一液压开关阀9a和第二液压开关阀9b的由全开逐步减小直到关闭的过程,从而控制制动轴的制动速度,可形成设备所需的任意制动特性曲线,满足实际需要。
以上实施例描述了本发明的基本原理和主要特征及本发明的优点。本行业的技术人员应该了解,本发明是将齿轮泵结构改进后应用于制动领域,是基于齿轮泵在泵类中结构简单,制造成本低,制动效果好,应用前景广阔,具有很强的市场竞争力,但是本发明的保护范围不受上述实施例的限制,如其他结构类似的泵类基于本发明的原理和方法所做的简单改造、制动开关阀的结构和位置、制动控制机构的具体方式都可以任意选用,只要采用本发明的原理,利用流体循环受阻,将阻力转变成制动力达到制动的效果,在不脱离本发明总的精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都属于要求保护的本发明范围内。

Claims (10)

  1. 一种液体阻尼式制动系统,包括阻尼部分和制动控制部分,其特征在于:所述阻尼部分包括一个与设备本体固定联接的密封的齿轮箱(1),设置在所述齿轮箱(1)内与齿轮箱内腔匹配的至少一对相对啮合的齿轮,主动齿轮(4)的主动轮轴(5)为制动轴伸出齿轮箱与外部驱动轴连接或者就是外部驱动轴,所述相对啮合的齿轮两侧的齿轮箱上分别设有流通管道(6)、(7),两条流通管道(6)、(7)在齿轮箱体上有引出口(6.1)、(7.1)与制动液储液箱(8)的两个接口(8.1)、(8.2)相连,形成一个制动液密封循环通道;所述制动控制部分包括至少一个设置在循环通道上的制动开关阀(9),制动开关阀(9)的控制端连接制动控制机构(12),由制动控制机构(12)控制制动开关阀(9)的开闭状态达到减速制动的目的。
  2. 根据权利要求1所述的液体阻尼式制动系统,其特征在于:所述制动开关阀(9)分别是设置在两条流通管道(6)、(7)的第一液压开关阀(9a)和第二液压开关阀(9b),两个液压开关阀(9a)、(9b)分别置于两条流通管道(6)、(7)的通路上,分别控制两条流通管道(6)、(7)的开闭;两个液压开关阀(9a)、(9b)结构相同,液压开关阀包括筒状壳体(9.1),筒状壳体(9.1)两侧壁分别有一个开口,连通被隔断的流通管道,筒状壳体(9.1)内设置开关滑塞(9.2),两个液压开关阀的开关滑塞(9.2)上有一个径向通孔(9.6)、(9.7),分别与两条流通管道(6)、(7)对应,开关滑塞(9.2)与筒底之间设复位弹簧(9.3),筒状壳体(9.1)的外端上开有驱动液体进口(9.4)和驱动液出口(9.5),两个液压开关阀(9a)、(9b)的驱动液体进口(9.4)和驱动液出口(9.5)都与制动控制机构(12)连接。
  3. 根据权利要求1或2所述的液体阻尼式制动系统,其特征在于:所述制动控制机构(12)为液压驱动装置,包括依次连接的储油罐(12.1)、油泵(12.2)、活塞缸(12.3),活塞缸(12.3)的控制端连接制动操作机构(13),活塞缸(12.3)的输出端通过进液管(12.4)连接第一液压开关阀(9a)和第二液压开关阀(9b)的进油口,第一液压开关阀(9a)和第二液压开关阀(9b)的出油口通过出液管(12.5)连接储油罐(12.1),在进液管(12.4)和出液管(12.5)上分别设置进液电磁阀(12.6)和出液电磁阀(12.7)。
  4. 一种汽车用液体阻尼式制动系统,包括阻尼部分和制动控制部分,其特征在于:阻尼部分包括一个密封的齿轮箱(1),所述齿轮箱的外壳与车体本身所设的制动器安装底座 固定联接,设置在所述齿轮箱(1)内与齿轮箱内腔匹配的至少一对相对啮合的齿轮,主动齿轮(4)的主动轮轴(5)为制动轴伸出齿轮箱与外部驱动轴(15)连接,(14)是汽车轮。所述相对啮合的齿轮两侧的齿轮箱上分别设有流通管道(6)、(7),两条流通管道(6)、(7)在齿轮箱体上有引出两个管道口(6.1)、(7.1),通过两根连接管(10)、(11)分别与制动液储液箱(8)的两个接口(8.1)、(8.2)相连,形成一个制动液密封循环通道;所述制动控制部分包括至少一个设置在循环通道上的制动开关阀(9),制动开关阀(9)的控制端连接制动控制机构(12),由制动控制机构(12)控制制动开关阀(9)的开闭状态达到减速制动的目的。
  5. 根据权利要求4所述的汽车用液体阻尼式制动系统,其特征在于:所述制动开关阀(9)分别是设置在两条流通管道(6)、(7)的第一液压开关阀(9a)和第二液压开关阀(9b),两个液压开关阀(9a)、(9b)分别置于两条流通管道(6)、(7)的通路上,分别控制两条流通管道(6)、(7)的开闭;两个液压开关阀(9a)、(9b)结构相同,包括筒状壳体(9.1),筒状壳体(9.1)的两侧壁分别有一个开口,连通被隔断的流通管道,筒状壳体(9.1)内设置开关滑塞(9.2),两个液压开关阀(9a)、(9b)的开关滑塞(9.2)上有一个径向通孔(9.6)、(9.7),分别与两条流通管道(6)、(7)对应,开关滑塞(9.2)与筒底之间设复位弹簧(9.3),筒状壳体(9.1)的外端上开有驱动液体进口(9.4)和驱动液出口(9.5),两个液压开关阀(9a)、(9b)的驱动液体进口(9.4)和驱动液出口(9.5)与都与制动控制机构(12)连接。
  6. 根据权利要求5所述的汽车用液体阻尼式制动系统,其特征在于:所述的制动控制机构(12)为液压驱动装置,包括依次连接的储油罐(12.1)、油泵(12.2)、活塞缸(12.3),活塞缸(12.3)的制动操作机构(13)是制动脚踏,活塞缸(12.3)的输出端通过进液管(12.4)连接第一液压开关阀(9a)和第二液压开关阀(9b)的进油口,第一液压开关阀(9a)和第二液压开关阀(9b)的出油口通过出液管(12.5)连接储油罐(12.1);在进液管(12.4)和出液管(12.5)上分别设置进液电磁阀(12.6)和出液电磁阀(12.7),作为电控开关。
  7. 一种火车用液体阻尼式制动系统,包括阻尼部分和制动控制部分,其特征在于:所述阻尼部分包括对应于每个火车车轮的密封的齿轮箱(1),齿轮箱(1)设置在火车车轮(16)的轮轴上,与轮轴滑动密封连接,其外壳与车箱转向架固定联接,在所述齿轮箱(1)内与齿轮箱内腔匹配的至少一对相对啮合的齿轮,其中主动齿轮(4)的主动轮轴(5)为制动 轴,制动轴与火车车轮的轮轴共轴,所述相对啮合的齿轮两侧的齿轮箱上分别设有流通管道(6)、(7),两条流通管道(6)、(7)在齿轮箱体上的两个引出管道口通过两根连接管(10)、(11)连接制动液储液箱(8),制动液储液箱(8)设置在转向架(17)上,所述制动控制部分包括设置在两条流通管道(6)、(7)或两根连接管(10)、(11)上的制动开关阀(9),制动开关阀(9)的控制端连接火车制动控制机构(12),由火车制动控制机构(12)控制制动开关阀(9)的开闭状态达到减速制动的目的。
  8. 根据权利要求7所述的火车用液体阻尼式制动系统,其特征在于:所述火车同一转向架(17)两侧分别设前后齿轮箱,同侧的齿轮箱共用一个制动液储液箱(8)。
  9. 根据权利要求7或8所述的火车用液体阻尼式制动系统,其特征在于:所述制动开关阀(9)分别是设置在两条流通管道(6)、(7)的第一液压开关阀(9a)和第二液压开关阀(9b),两个液压开关阀(9a)、(9b)分别置于两条流通管道(6)、(7)的通路上,分别控制两条流通管道(6)、(7)的开闭;两个液压开关阀(9a)、(9b)结构相同,包括筒状壳体(9.1),筒状壳体(9.1)的两侧壁分别有一个开口,连通被隔断的流通管道,筒状壳体(9.1)内设置开关滑塞(9.2),两个液压开关阀的开关滑塞(9.2)上有一个径向通孔(9.6)、(9.7),分别与两条流通管道(6)、(7)对应,开关滑塞(9.2)与筒底之间设复位弹簧(9.3),筒状壳体(9.1)的外端上开有驱动液体进口(9.4)和驱动液出口(9.5),两个液压开关阀(9a)、(9b)的驱动液体进口(9.4)和驱动液出口(9.5)与都与液压驱动装置(12)连接。
  10. 根据权利要求9所述的火车用液体阻尼式制动系统,其特征在于:所述液压驱动装置(12)包括依次连接的储油罐(12.1)、电动油泵(12.2)、活塞缸(12.3),活塞缸(12.3)的制动操作机构(13)是火车控制系统,活塞缸(12.3)的输出端通过进液管(12.4)连接第一液压开关阀(9a)和第二液压开关阀(9b)的进油口,第一液压开关阀(9a)和第二液压开关阀(9b)的出油口通过出液管(12.5)连接储油罐(12.1);在进液管(12.4)和出液管(12.5)上分别设置进液电磁阀(12.6)和出液电磁阀(12.7),作为电控开关。
PCT/CN2017/079673 2016-04-13 2017-04-07 液体阻尼式制动系统 WO2017177858A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187032242A KR102169602B1 (ko) 2016-04-13 2017-04-07 액체 댐핑 타입 브레이크 시스템
JP2018552238A JP2019513953A (ja) 2016-04-13 2017-04-07 液体制動式ブレーキシステム
EP17781834.1A EP3444496A4 (en) 2016-04-13 2017-04-07 LIQUID DAMPING BRAKE SYSTEM
US16/159,741 US10794438B2 (en) 2016-04-13 2018-10-15 Liquid-resistance braking system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201620304886.3 2016-04-13
CN201610227237.2A CN105715704B (zh) 2016-04-13 2016-04-13 液体阻尼式制动系统
CN201620304886.3U CN205780449U (zh) 2016-04-13 2016-04-13 液体阻尼式制动系统
CN201610227237.2 2016-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/159,741 Continuation-In-Part US10794438B2 (en) 2016-04-13 2018-10-15 Liquid-resistance braking system

Publications (1)

Publication Number Publication Date
WO2017177858A1 true WO2017177858A1 (zh) 2017-10-19

Family

ID=60042712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079673 WO2017177858A1 (zh) 2016-04-13 2017-04-07 液体阻尼式制动系统

Country Status (5)

Country Link
US (1) US10794438B2 (zh)
EP (1) EP3444496A4 (zh)
JP (1) JP2019513953A (zh)
KR (1) KR102169602B1 (zh)
WO (1) WO2017177858A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6135909A (en) * 1998-08-07 2000-10-24 Keiser; Fred Infinitely variable ratio transmission
JP2001191911A (ja) * 2000-01-05 2001-07-17 Toyota Motor Corp ブレーキ液圧制御装置
CN103994161A (zh) * 2013-06-28 2014-08-20 林谊忠 一种缓速器
CN104787020A (zh) * 2015-03-20 2015-07-22 同济大学 一种具有新型解耦方式的电子液压制动系统
CN105715704A (zh) * 2016-04-13 2016-06-29 曾义波 液体阻尼式制动系统
CN205780449U (zh) * 2016-04-13 2016-12-07 曾义波 液体阻尼式制动系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US564246A (en) * 1896-07-21 gould
GB732043A (en) * 1949-01-22 1955-06-15 Daimler Benz Ag Improvements relating to hydraulic brakes for vehicles
CH316063A (fr) * 1954-05-24 1956-09-15 Gallay Robert Dispositif de freinage hydraulique d'un véhicule
GB1251536A (zh) * 1967-12-28 1971-10-27
FR2258563A1 (en) * 1974-01-18 1975-08-18 Tebec Pierre Integral fluid brake for rotating spindle or shaft - has variable restriction in closed line of shaft driven pum
US5566795A (en) * 1994-08-24 1996-10-22 Barefoot; Richard Braking system for a rail car
JP3875360B2 (ja) * 1997-07-14 2007-01-31 本田技研工業株式会社 車両用制動力及びヨーモーメント制御装置
DE19934497A1 (de) * 1999-07-22 2001-01-25 Linde Ag Hydrostatisches Antriebssystem
EP1544494A1 (en) * 2003-12-15 2005-06-22 Clemar Eleuterio Bucci A circulating fluid regulated braking device for air and land vehicles
KR100974758B1 (ko) * 2008-06-05 2010-08-06 현대자동차주식회사 차량의 주차 브레이크 장치
US8292049B2 (en) * 2010-03-18 2012-10-23 Avshalom Eden Sharaphi Vehicular brake and method therfor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6135909A (en) * 1998-08-07 2000-10-24 Keiser; Fred Infinitely variable ratio transmission
JP2001191911A (ja) * 2000-01-05 2001-07-17 Toyota Motor Corp ブレーキ液圧制御装置
CN103994161A (zh) * 2013-06-28 2014-08-20 林谊忠 一种缓速器
CN104787020A (zh) * 2015-03-20 2015-07-22 同济大学 一种具有新型解耦方式的电子液压制动系统
CN105715704A (zh) * 2016-04-13 2016-06-29 曾义波 液体阻尼式制动系统
CN205780449U (zh) * 2016-04-13 2016-12-07 曾义波 液体阻尼式制动系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3444496A4 *

Also Published As

Publication number Publication date
KR20180129915A (ko) 2018-12-05
US20190048948A1 (en) 2019-02-14
JP2019513953A (ja) 2019-05-30
EP3444496A4 (en) 2020-01-08
EP3444496A1 (en) 2019-02-20
KR102169602B1 (ko) 2020-10-23
US10794438B2 (en) 2020-10-06

Similar Documents

Publication Publication Date Title
CN107757591B (zh) 一种电控制动助力系统及车辆制动系统
US10001184B2 (en) Hydraulic anti-lock brake wheel cylinder and axle braking system
CN102211571A (zh) 车辆用制动装置及车辆用制动装置的控制方法
CN208831697U (zh) 液压驱动驻车机构
CN203686046U (zh) 用于车辆的限滑差速器总成和车辆传动系
CN101922524A (zh) 全封闭多盘湿式制动装置
CN105437964A (zh) 无轨胶轮指挥车静液压四驱系统
KR20160117495A (ko) 차량용 유압 시스템
CN103359096A (zh) 适用于制动能量回收的液压制动控制装置
CN105715704B (zh) 液体阻尼式制动系统
WO2017177858A1 (zh) 液体阻尼式制动系统
CN205780449U (zh) 液体阻尼式制动系统
CN103453051B (zh) 锁止离合器阀控制系统
CN201802789U (zh) 全封闭多盘湿式制动装置
CN103661340B (zh) 车辆制动系统及车辆
CN203381616U (zh) 适用于制动能量回收的液压制动控制装置
CN206537272U (zh) 适用于再生制动的一体化解耦式电动助力制动系统
CN106184146B (zh) 辅助制动系统
CN103195840B (zh) 自动离合器系统
IT202000015367A1 (it) Unità di frenatura anti-bloccaggio per un sistema frenante idraulico, in particolare per biciclette
FI57558C (fi) Styrventil foer skengaoende fordons trycklufts-bromsanlaeggningar
KR101464518B1 (ko) 굴삭기 주행모터의 파킹브레이크 해제장치
US9062767B1 (en) Multi-wheel drive system and method of control
US3026974A (en) Vehicle brakes
JP5125148B2 (ja) モータ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018552238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187032242

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017781834

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017781834

Country of ref document: EP

Effective date: 20181113

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781834

Country of ref document: EP

Kind code of ref document: A1