WO2017177554A1 - 晶体硅及其制备方法 - Google Patents

晶体硅及其制备方法 Download PDF

Info

Publication number
WO2017177554A1
WO2017177554A1 PCT/CN2016/087567 CN2016087567W WO2017177554A1 WO 2017177554 A1 WO2017177554 A1 WO 2017177554A1 CN 2016087567 W CN2016087567 W CN 2016087567W WO 2017177554 A1 WO2017177554 A1 WO 2017177554A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystalline silicon
rare earth
earth element
cerium
lanthanum
Prior art date
Application number
PCT/CN2016/087567
Other languages
English (en)
French (fr)
Inventor
邓浩
付楠楠
王向东
Original Assignee
西安隆基硅材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安隆基硅材料股份有限公司 filed Critical 西安隆基硅材料股份有限公司
Publication of WO2017177554A1 publication Critical patent/WO2017177554A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the technical field of single crystal silicon manufacturing, and relates to a doped crystalline silicon and a preparation method thereof.
  • the obtained crystalline silicon material has a wide resistivity distribution and a large proportion of the resistivity non-conforming product.
  • the existing crystalline silicon solar cells have low utilization of light, and there is still room for improvement.
  • the object of the present invention is to provide and improve the crystal silicon material of the conversion efficiency of the battery, and to provide a method for preparing the crystalline silicon material which can improve the yield and quality of the crystalline silicon.
  • the crystalline silicon includes silicon, boron, gallium, and a lanthanide rare earth element X having a concentration of 10 10 to 10 17 atoms per cubic centimeter.
  • the above-mentioned lanthanide rare earth element X is a combination of any one or more of cerium, lanthanum and cerium, or an oxide of cerium, lanthanum, cerium, lanthanum, lanthanum or cerium oxide.
  • the concentration of the above gallium is 1 ⁇ 10 15 to 5 ⁇ 10 17 atoms per cubic centimeter, and the concentration of the boron is 1 ⁇ 10 14 to 1 ⁇ 10 16 atoms per cubic centimeter.
  • the method for preparing the above crystalline silicon includes the steps of:
  • the single crystal silicon or polycrystalline silicon prepared in the step 1 is annealed at 700 ° C to 1000 ° C.
  • the crystalline silicon material of the present invention is doped with gallium to reduce light decay, and the boron element is used to adjust the resistivity distribution to improve the yield and quality.
  • the doped lanthanide rare earth element X can effectively improve the utilization ratio of the silicon material to the ultraviolet band by down-conversion. Therefore, the use of the doping combination to fabricate a crystal, while easily obtaining a more desirable resistivity distribution than the simple doping of gallium, the solar cell produced by using the crystal can obtain a significant conversion efficiency improvement, and the conversion efficiency is greater than 20%.
  • Solar cells made from crystalline silicon have a photoinduced attenuation of less than 1%.
  • the first embodiment of the present technical solution provides a crystalline silicon comprising silicon, gallium, boron and a lanthanide rare earth element X, wherein the concentration of the element X is from 10 10 to 10 17 atoms per cubic centimeter.
  • the crystalline silicon material is single crystal silicon.
  • the concentration of gallium is 5 ⁇ 10 14 to 1 ⁇ 10 17 atoms per cubic centimeter
  • the concentration of boron is 1 ⁇ 10 14 to 1 ⁇ 10 16 atoms per cubic centimeter.
  • the lanthanide rare earth element X is preferably lanthanum (La), cerium (Ce), cerium (Nd) or a combination thereof, for example, LaO 3 , lanthanum aluminum, CeO 2 , Nd 2 O 3 , Nd(OH) 3 .
  • LaO 3 lanthanum aluminum
  • CeO 2 CeO 2
  • Nd 2 O 3 CeO 2
  • Nd(OH) 3 lanthanum
  • lanthanum (La), cerium (Ce), and cerium (Nd) may also be compounds such as oxides thereof.
  • the lanthanide rare earth element X is selected from the group consisting of lanthanum, cerium and lanthanum, and the combined concentration of the lanthanide rare earth element X is 1.0 ⁇ 10 14 atoms per cubic centimeter.
  • the crystalline silicon material of the present invention is doped with gallium to reduce light decay, and the boron element is used to adjust the resistivity distribution to improve the yield and quality.
  • the doped lanthanide rare earth element X can effectively improve the utilization of the ultraviolet light in the ultraviolet band by the down-conversion function, and the solar cell obtained by using the crystal significantly improves the conversion efficiency.
  • a second embodiment of the present technical solution provides a crystalline silicon solar cell.
  • the solar cell is fabricated using a conventional four-master battery process, HIT process, or PERC process.
  • the crystalline silicon material of the first embodiment is used, and is produced by a PERC process.
  • the solar cell conversion efficiency is greater than 20%, and the 6-hour photoinduced attenuation is less than 5%.
  • a third embodiment of the present technical solution provides a method for preparing crystalline silicon, which includes the following steps:
  • a solar-grade polycrystalline silicon raw material is provided, and a certain amount of gallium and a lanthanide rare earth element X having a concentration of 10 10 to 10 17 are added to the solar-grade polycrystalline silicon raw material to obtain single crystal silicon or polycrystalline silicon, and the single crystal silicon or polycrystalline silicon is obtained.
  • the concentration of the rare earth element is 10 10 to 10 17 atoms per cubic centimeter.
  • the lanthanide rare earth element X is preferably lanthanum (La), cerium (Ce), cerium (Nd) or a combination thereof.
  • the lanthanum (La), cerium (Ce), and cerium (Nd) may also be their oxides or compounds, respectively.
  • the lanthanide rare earth element X is selected from the group consisting of lanthanum, cerium and lanthanum, and the combined concentration of the lanthanide rare earth element X is 1.0 ⁇ 10 14 atoms per cubic centimeter.
  • the growth process is adjusted so that the crystal rotation is greater than or equal to 15 revolutions per minute, and the pulling speed is 1.5 mm or more per minute.
  • the tail of the crystalline silicon is heat treated after the completion of the pulling finish. Specifically, after the end of the finishing, the tail of the crystalline silicon is kept within the heating range of the heater, and the control heater is kept at the crystal finishing temperature for 0.5-2 hours, and the furnace cooling time is more than 5 hours.
  • the single crystal silicon or polycrystalline silicon is annealed at 700 ° C to 1000 ° C.
  • the obtained single crystal silicon or polycrystalline silicon is sliced, and the obtained silicon wafer is annealed at 650 ° C to 1000 ° C for 1 to 60 minutes under the protection of an inert gas.
  • the method for preparing crystalline silicon of the present embodiment can produce crystalline silicon with low photo-induced attenuation and high conversion efficiency in high yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明的晶体硅材料包括硅、镓及镧系稀土元素X,所述镧系稀土元素X的浓度为1010~1016原子每立方厘米。利用如上所述的晶体硅制造的太阳能电池,对电学性能有帮助。本发明还提供如上所述的晶体硅的制备方法。本发明的晶体硅材料掺杂镓以减少光衰、并利用硼元素调节电阻率分布,提高产率及品质。并且,掺杂的镧系稀土元素X通过下转换作用,能够有效的提高硅材料对紫外波段光的利用率,利用该晶体制得的太阳能电池显著提高了转换效率。

Description

晶体硅及其制备方法 技术领域
本发明属于单晶硅制造技术领域,涉及一种掺杂晶体硅及其制备方法。
背景技术
随着全球各国经济发展对能源需求的日益增加,许多发达国家越来越重视对可再生能源、环保能源以及新型能源的开发与研究。作为一种清洁、高效和永不衰竭的新能源,在新世纪中,各国政府都将太阳能的利用作为国家可持续发展战略的重要内容。晶体硅作为一种常用的太阳能电池基础材料,其品质直接关系到太阳能电池的转换效率及使用寿命。为解决常用硼掺杂P型晶体硅电池存在衰减较大的问题,出现以镓代替硅的技术。然而,受镓元素分凝系数的影响,制得的晶体硅材料电阻率分布宽,电阻率不合格品所占比例较大。另外,现有的晶体硅太阳能电池对光的利用率低,仍存在较大的改进空间。
发明内容
本发明的目的是提供并提高电池转换效率的晶体硅材料,并提供一种能提升晶体硅产率及品质的、该晶体硅材料的制备方法。
本发明的具体技术解决方案如下:
该晶体硅包括硅、硼、镓及浓度为1010~1017原子每立方厘米的镧系稀土元素X。
上述镧系稀土元素X为镧、铈、钕任意一种或多种的组合,或为镧、镧的氧化物、铈、铈的氧化物、钕、钕的氧化物任意一种或多种的组合,或为镧、镧的化合物、铈、铈的化合物、钕、钕的化合物任意一种或多种的组合。
上述镓的浓度为1×1015~5×1017原子每立方厘米,所述硼的浓度为1×1014~1×1016原子每立方厘米。
制备上述晶体硅的方法包括步骤:
1】取太阳能级多晶硅原料,在所述太阳能级多晶硅原料中加入一定量的镓、一定量的硼以及浓度为1010~1017的镧系稀土元素X,制得单晶硅或多晶硅,所述单晶硅或多晶硅中稀土元素的浓度为1010~1017
2】将经步骤1制备的单晶硅或多晶硅在700℃~1000℃进行退火处理。
本发明的优点:
本发明的晶体硅材料掺杂镓以减少光衰、并利用硼元素调节电阻率分布,提高产率及品质。并且,掺杂的镧系稀土元素X通过下转换作用,能够有效的提高硅材料对紫外波段光的利用率。因此,采用该掺杂组合制造晶体,在易于获得较单纯掺镓更为理想的电阻率分布的同时,利用该晶体制得的太阳电池能够获得显著的转换效率提升,转换效率大于20%。晶体硅制造的太阳能电池的光致衰减小于1%。
具体实施方式
以下将提供多个具体实施方式对本发明进行详细说明。
本技术方案第一实施例提供一种晶体硅,包括硅、镓、硼及镧系稀土元素X,其中元素X的浓度为1010~1017原子每立方厘米。本实施例中,晶体硅材料为单晶硅。镓的浓度为5×1014~1×1017原子每立方厘米,硼的浓度为1×1014~1×1016原子每立方厘米。镧系稀土元素X优选为镧(La)、铈(Ce)、钕(Nd)或其组合,例如:LaO3、铈铝、CeO2、Nd2O3、Nd(OH)3。当然,其中的镧(La)、铈(Ce)、钕(Nd)还可以分别为其氧化物等化合物。
本实施例中,镧系稀土元素X选取镧、铈及钕的组合,镧系稀土元素X的组合浓度之和为1.0×1014原子每立方厘米。
Figure PCTCN2016087567-appb-000001
本发明的晶体硅材料掺杂镓以减少光衰、并利用硼元素调节电阻率分布,提高产率及品质。并且,掺杂的镧系稀土元素X通过下转换作用,能够有效的提高硅材料对紫外波段光的利用率,利用该晶体制得的太阳电池显著提高了转换效率。
本技术方案第二实施例提供一种晶体硅太阳能电池。该太阳能电池采用常规四主删电池工艺、HIT工艺或者PERC工艺制成。本实施例中,采用第一实施例的晶体硅材料,经PERC工艺制成。太阳能电池的转换效率大于20%,6小时光致衰减小于5%。
本技术方案第三实施例提供一种晶体硅的制备方法,包括以下步骤:
首先,提供太阳能级多晶硅原料,在该太阳能级多晶硅原料中加入一定量的镓、以及浓度为1010~1017的镧系稀土元素X,制得单晶硅或多晶硅,该单晶硅或多晶硅中稀土元素的浓度为1010~1017原子每立方厘米。
具体地,镧系稀土元素X优选为镧(La)、铈(Ce)、钕(Nd)或其组合。当然,其中的镧(La)、铈(Ce)、钕(Nd)还可以分别为其氧化物或化合物。
本实施例中,镧系稀土元素X选取镧、铈及钕的组合,镧系稀土元素X的组合浓度和为1.0×1014原子每立方厘米。
以直拉法制造单晶硅为例,在等径生长阶段,调节生长工艺,使得晶转大于等于15转每分钟,拉晶速度大于等于1.5毫米每分钟。优选地,在拉晶收尾完成后,对晶体硅的尾部进行热处理。具体地,收尾结束后保持晶体硅的尾部在加热器的加热范围内,控制加热器保持在晶体收尾温度0.5-2小时,停炉冷却时间5小时以上。
然后,将所述的单晶硅或多晶硅,在700℃~1000℃进行退火处理。将获得的单晶硅或多晶硅进行切片,使所得硅片在惰性气体保护下,650℃~1000℃进行退火处理1~60min。
本实施例的晶体硅的制备方法,能以高产率制得低光致衰减及高转换效率的晶体硅。

Claims (10)

  1. 晶体硅,包括硅、硼、镓及镧系稀土元素X,所述镧系稀土元素X的浓度为1010~1017原子每立方厘米。
  2. 如权利要求1所述的晶体硅,其特征在于,所述镧系稀土元素X为镧、铈、钕任意一种或多种的组合。
  3. 如权利要求1所述的晶体硅,其特征在于,所述镧系稀土元素X为镧、镧的氧化物、铈、铈的氧化物、钕、钕的氧化物任意一种或多种的组合。
  4. 如权利要求1所述的晶体硅,其特征在于,所述镧系稀土元素X为镧、镧的化合物、铈、铈的化合物、钕、钕的化合物任意一种或多种的组合。
  5. 如权利要求1至4中任一项所述的晶体硅,其特征在于,所述镓的浓度为1×1015~5×1017原子每立方厘米,所述硼的浓度为1×1014~1×1016原子每立方厘米。
  6. 利用如权利要求1至5中任一项所述的晶体硅制造的太阳能电池,其特征在于,所述太阳能电池的转换效率大于20%。
  7. 如权利要求6所述的晶体硅制造的太阳能电池,其特征在于,所述太阳能电池的光致衰减小于1%。
  8. 一种晶体硅的制备方法,其特征在于,包括步骤:
    1】取太阳能级多晶硅原料,在所述太阳能级多晶硅原料中加入1×1015~5×1017原子每立方厘米的镓、1×1014~1×1016原子每立方厘米的硼以及浓度为1010~1017的镧系稀土元素X,制得单晶硅或多晶硅,所述单晶硅或多晶硅中稀土元素的浓度为1010~1017
    2】将经步骤1制备的单晶硅或多晶硅在700℃~1000℃进行退火处理。
  9. 如权利要求8所述的晶体硅的制备方法,其特征在于,所述镧系稀土元素X为镧、铈、钕或其组合。
  10. 如权利要求9所述的晶体硅的制备方法,其特征在于,所述镧系稀土元素X为镧、镧的化合物、铈、铈的化合物、钕、钕的化合物或其组合。
PCT/CN2016/087567 2016-04-11 2016-06-29 晶体硅及其制备方法 WO2017177554A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016102215863 2016-04-11
CN201610221586.3A CN105839182A (zh) 2016-04-11 2016-04-11 晶体硅及其制备方法

Publications (1)

Publication Number Publication Date
WO2017177554A1 true WO2017177554A1 (zh) 2017-10-19

Family

ID=56597289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087567 WO2017177554A1 (zh) 2016-04-11 2016-06-29 晶体硅及其制备方法

Country Status (2)

Country Link
CN (1) CN105839182A (zh)
WO (1) WO2017177554A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106169512A (zh) * 2016-08-24 2016-11-30 晶科能源有限公司 一种稀土掺杂的晶体硅、其制备方法及太阳能电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280706A (zh) * 1997-10-24 2001-01-17 住友特殊金属株式会社 热电转换材料及其制造方法
DE102004053646A1 (de) * 2004-11-03 2006-05-04 Otto-Von-Guericke-Universität Magdeburg Verfahren zur örtlich definierten Erzeugung von Silizium-Nanokristallen
CN103361724A (zh) * 2013-06-21 2013-10-23 东海晶澳太阳能科技有限公司 硼-镓共掺高效多晶硅及其制备方法
CN103757689A (zh) * 2013-12-31 2014-04-30 浙江大学 一种利用单晶硅籽晶诱导生长铸造单晶硅的方法及产品
CN105019022A (zh) * 2015-08-12 2015-11-04 常州天合光能有限公司 一种镓锗硼共掺准单晶硅及其制备方法
CN105063750A (zh) * 2015-08-12 2015-11-18 常州天合光能有限公司 一种镓锗硼共掺单晶硅及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10353995A1 (de) * 2003-11-19 2005-06-09 Degussa Ag Nanoskaliges, kristallines Siliciumpulver
JP2007142370A (ja) * 2005-10-21 2007-06-07 Sumco Solar Corp 太陽電池用シリコン単結晶基板および太陽電池素子、並びにその製造方法
DE102006031300A1 (de) * 2006-06-29 2008-01-03 Schmid Technology Systems Gmbh Verfahren zur Dotierung von Siliziummaterial für Solarzellen, entsprechend dotiertes Siliziummaterial und Solarzelle
CN101560693A (zh) * 2009-04-22 2009-10-21 浙江碧晶科技有限公司 一种含有掺杂元素的太阳能级硅晶体的制备方法
CN102400219A (zh) * 2011-11-30 2012-04-04 东海晶澳太阳能科技有限公司 一种硼-镓共掺准单晶硅及其制备方法
CN102828242B (zh) * 2012-09-06 2015-05-27 西安隆基硅材料股份有限公司 含有下转换发光量子点的晶体硅及其制备方法
CN102832267B (zh) * 2012-09-06 2014-11-26 西安隆基硅材料股份有限公司 含有上转换发光量子点的晶体硅及其制备方法
CN103137720B (zh) * 2013-02-06 2016-01-06 内蒙古大学 一种掺杂稀土元素的光伏薄膜材料
CN104124292B (zh) * 2013-04-23 2016-11-02 晶澳太阳能有限公司 硼镓共掺单晶硅片及其制备方法和太阳能电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280706A (zh) * 1997-10-24 2001-01-17 住友特殊金属株式会社 热电转换材料及其制造方法
DE102004053646A1 (de) * 2004-11-03 2006-05-04 Otto-Von-Guericke-Universität Magdeburg Verfahren zur örtlich definierten Erzeugung von Silizium-Nanokristallen
CN103361724A (zh) * 2013-06-21 2013-10-23 东海晶澳太阳能科技有限公司 硼-镓共掺高效多晶硅及其制备方法
CN103757689A (zh) * 2013-12-31 2014-04-30 浙江大学 一种利用单晶硅籽晶诱导生长铸造单晶硅的方法及产品
CN105019022A (zh) * 2015-08-12 2015-11-04 常州天合光能有限公司 一种镓锗硼共掺准单晶硅及其制备方法
CN105063750A (zh) * 2015-08-12 2015-11-18 常州天合光能有限公司 一种镓锗硼共掺单晶硅及其制备方法

Also Published As

Publication number Publication date
CN105839182A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN109994570B (zh) 一种高效p型钝化接触晶硅太阳电池的制备方法
CN101820007B (zh) 高转化率硅晶及薄膜复合型多结pin太阳能电池及其制造方法
CN101866963B (zh) 高转化率硅基多结多叠层pin薄膜太阳能电池及其制造方法
CN101834224B (zh) 一种用于太阳电池制造的硅片快速热处理磷扩散吸杂工艺
CN112349802B (zh) 一种铸锭单晶或多晶非晶硅异质结太阳电池的制作方法
CN104124292A (zh) 硼镓共掺单晶硅片及其制备方法和太阳能电池
CN101851779A (zh) 一种太阳能电池单晶硅片的制造方法
CN202134564U (zh) 一种新型ibc 结构n型硅异质结电池
CN102569443A (zh) 一种可调带隙铜锌锡硫半导体薄膜及其制备方法
CN102157617B (zh) 一种硅基纳米线太阳电池的制备方法
CN102005506B (zh) 一种抑制光衰减的掺锗晶体硅太阳电池及其制备方法
CN105063750A (zh) 一种镓锗硼共掺单晶硅及其制备方法
WO2017177554A1 (zh) 晶体硅及其制备方法
WO2017177553A1 (zh) 晶体硅及其制备方法
JP2007142370A (ja) 太陽電池用シリコン単結晶基板および太陽電池素子、並びにその製造方法
CN101894871A (zh) 高转化率硅晶及薄膜复合型单结pin太阳能电池及其制造方法
CN101597794A (zh) 一种镓和锗共掺的直拉硅单晶
CN101710568B (zh) 用醋酸镍溶液诱导晶化非晶硅薄膜的方法
CN101499502A (zh) 一种晶体硅太阳能电池及其钝化方法
CN104779305A (zh) 一种基于硅电池的上转换加场效应结构的太阳电池及其制备方法
CN102005505B (zh) 一种抑制光衰减的掺锡晶体硅太阳电池及其制备方法
CN104600137B (zh) 体钝化的晶体硅太阳能电池及其体钝化方法
CN104576801B (zh) 具有过渡层的晶硅及硅薄膜复合型单结pin太阳能电池及其制备方法
CN103030119B (zh) 用作太阳能电池吸收层的稀土半导体化合物及其制备方法
CN106449891A (zh) 一种抑制太阳电池光衰减的制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898369

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898369

Country of ref document: EP

Kind code of ref document: A1