WO2017177507A1 - Oled显示器件及其制作方法 - Google Patents

Oled显示器件及其制作方法 Download PDF

Info

Publication number
WO2017177507A1
WO2017177507A1 PCT/CN2016/082700 CN2016082700W WO2017177507A1 WO 2017177507 A1 WO2017177507 A1 WO 2017177507A1 CN 2016082700 W CN2016082700 W CN 2016082700W WO 2017177507 A1 WO2017177507 A1 WO 2017177507A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
display device
oled display
electron
Prior art date
Application number
PCT/CN2016/082700
Other languages
English (en)
French (fr)
Inventor
彭其明
李先杰
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/120,742 priority Critical patent/US20180151812A1/en
Publication of WO2017177507A1 publication Critical patent/WO2017177507A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an OLED display device and a method of fabricating the same.
  • OLED Organic Light Emitting Display
  • OLED Organic Light Emitting Display
  • a large-area full-color display and many other advantages have been recognized by the industry as the most promising display device.
  • An OLED display device is a self-luminous type display device, and generally includes a pixel electrode respectively serving as an anode, a cathode, and a common electrode, and an organic light-emitting layer disposed between the pixel electrode and the common electrode, so that an appropriate voltage is applied to When the anode and the cathode are used, light is emitted from the organic light-emitting layer.
  • the organic light-emitting layer includes a hole injection layer provided on the anode, a hole transport layer provided on the hole injection layer, a light-emitting layer provided on the hole transport layer, and an electron transport layer provided on the light-emitting layer.
  • the electron injection layer on the electron transport layer has a light-emitting mechanism in which electrons and holes are injected from the cathode and the anode to the electron injection layer and the hole injection layer, respectively, and the electrons and holes pass through the electron transport layer and
  • the hole transport layer migrates to the light-emitting layer and meets in the light-emitting layer to form excitons and excite the light-emitting molecules, which undergo radiation relaxation to emit visible light.
  • both the electron transport layer and the hole transport layer of the OLED display device are organic layers.
  • the electron mobility of the electron transport layer is much lower than the hole mobility of the hole transport layer, resulting in unbalanced transport of carriers inside the OLED display device, thereby reducing the luminous efficiency of the OLED display device.
  • Organometal halide perovskites are considered to be semiconductor materials with excellent photoelectric properties, which have a long carrier diffusion length (up to 1 ⁇ m) and high carrier mobility (about 10 cm 2 / Vs) combines the photoelectric properties of inorganic semiconductors with the low-temperature film formation of organic materials, making it ideal for industrial production of low-cost, large-area and flexible substrate devices.
  • An object of the present invention is to provide an OLED display device capable of improving the luminous efficiency of an OLED display device and improving the performance of the OLED display device.
  • Another object of the present invention is to provide a method for fabricating an OLED display device, which can easily and quickly produce an OLED display device with good film formation, carrier injection and transmission balance, and high luminous efficiency.
  • the present invention provides an OLED display device comprising: a substrate, an anode formed on the substrate, a hole injection layer formed on the anode, and an empty space formed on the hole injection layer a hole transport layer, a light emitting layer formed on the hole transport layer, a hole blocking layer formed on the light emitting layer, and an electron transport layer formed on the hole blocking layer, formed in the electron transport An electron injection layer on the layer, a cathode formed on the electron injection layer, a cover plate covering the substrate opposite to the substrate, and an encapsulant disposed between the edge of the substrate and the cover material;
  • the material of the electron transport layer is a mixture of an organic electron transport material and an organometallic halide perovskite material.
  • the mass ratio of the organic electron transporting material to the organometallic halide perovskite material is 1:0.5 to 1:50.
  • the organic electron transporting material is a metal complex material or an imidazole electron transporting material.
  • the organic metal halide perovskite material has the structural formula: CH 3 NH 3 PbA 3 , wherein A is a combination of one or more of a chlorine element, a bromine element, and an iodine element.
  • the electron transport layer has a film thickness of between 10 nm and 100 nm.
  • the invention also provides a method for fabricating an OLED display device, comprising the following steps:
  • Step 1 Providing a substrate on which an anode, a hole injection layer, a hole transport layer, a light-emitting layer, and a hole blocking layer are sequentially formed from bottom to top;
  • Step 2 providing a mixture of an organic electron transporting material and an organometallic halide perovskite material, forming an electron transporting layer on the hole blocking layer by using a mixture of an organic electron transporting material and an organometallic halide perovskite material;
  • Step 3 forming an electron injection layer on the electron transport layer, forming a cathode on the electron injection layer;
  • Step 4 coating an encapsulant on the edge of the substrate to form a ring of encapsulating glue, providing a cover plate, covering the substrate with the cover plate, and bonding the substrate with the encapsulant, the cover Board Opposite to the substrate.
  • the mass ratio of the organic electron transporting material to the organometallic halide perovskite material is 1:0.5 to 1:50.
  • the organic electron transporting material is a metal complex material or an imidazole electron transporting material.
  • the organic metal halide perovskite material has the structural formula: CH 3 NH 3 PbA 3 , wherein A is a combination of one or more of a chlorine element, a bromine element, and an iodine element.
  • the electron transport layer is formed by a wet film formation process, and the film thickness is between 10 nm and 100 nm.
  • the present invention also provides an OLED display device comprising: a substrate, an anode formed on the substrate, a hole injection layer formed on the anode, a hole transport layer formed on the hole injection layer, a light emitting layer formed on the hole transport layer, a hole blocking layer formed on the light emitting layer, an electron transport layer formed on the hole blocking layer, and an electron formed on the electron transport layer
  • the material of the electron transport layer is a mixture of an organic electron transport material and an organometallic halide perovskite material;
  • the mass ratio of the organic electron transport material to the organometallic halide perovskite material is 1:0.5 to 1:50;
  • the electron transport layer has a film thickness of between 10 nm and 100 nm.
  • the present invention provides an OLED display device comprising: a substrate, an anode formed on the substrate, a hole injection layer formed on the anode, and being formed on the hole injection layer a hole transport layer, a light emitting layer formed on the hole transport layer, a hole blocking layer formed on the light emitting layer, and an electron transport layer formed on the hole blocking layer, formed in the An electron injection layer on the electron transport layer, a cathode formed on the electron injection layer, a cover plate covering the substrate opposite to the substrate, and a gap between the edge of the substrate and the cover plate An encapsulating material; wherein the material of the electron transporting layer is a mixture of an organic electron transporting material and an organometallic halide perovskite material, and the electron is produced by using a mixture of an organic electron transporting material and an organometallic halide perovskite material.
  • the transport layer can enhance the electron mobility of the electron transport layer, balance the carrier injection transport of the OLED display device, improve the luminous efficiency of the OLED display device, and reduce the difficulty of film formation. Film quality, to ensure stability of the OLED display device.
  • the invention also provides a manufacturing method of an OLED display device, which can be simple The OLED display device with good film formation, carrier injection and transmission balance, and high luminous efficiency is quickly produced.
  • FIG. 1 is a structural view of an OLED display device of the present invention
  • FIG. 2 is a flow chart of a method of fabricating an OLED display device of the present invention.
  • an OLED display device includes: a substrate 10, an anode 20 formed on the substrate 10, a hole injection layer 30 formed on the anode 20, and a hole formed in the hole. a hole transport layer 40 on the injection layer 30, a light emitting layer 50 formed on the hole transport layer 40, a hole blocking layer 60 provided on the light emitting layer 50, and a hole blocking layer 60 formed on the hole blocking layer 60.
  • the material of the electron transport layer 70 is a mixture of an organic electron transport material and an organometallic halide perovskite material.
  • the mass ratio of the organic electron transporting material to the organometallic halide perovskite material is 1:0.5 to 1:50.
  • the organic electron transporting material may be selected from a metal complex material (such as tris(8-quinolinolato)aluminum, Alq 3 ), or an imidazole electron transporting material (eg 1, 3 , 5-). Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene, TPBi), etc.).
  • the organometallic halide perovskite material has the structural formula: CH 3 NH 3 PbA 3 , wherein A is a combination of one or more of a chlorine element, a bromine element, and an iodine element.
  • the electron transport layer 70 is prepared by a wet film formation process and has a film thickness of between 10 nm and 100 nm.
  • the use of a mixture of an organic electron transport material and an organometallic halide perovskite material to form the electron transport layer 70 enhances the electron mobility of the electron transport layer compared to a single organic electron transport material, balancing carrier injection transport of the OLED display device Compared with a single organometallic halide perovskite material, it can reduce the difficulty of film formation, improve the film formation quality, and ensure the stability of the OLED display device.
  • each of the pixels includes a plurality of light emitting units 130, and the respective light emitting units 130 are separated by a pixel isolation layer 120.
  • An opening penetrating the pixel isolation layer 120 is formed on the pixel isolation layer 120. Each opening corresponds to a light emitting unit 130, and the anode 20, the hole injection layer 30, the hole transport layer 40, and the light emitting layer 50 of each of the light emitting units 130.
  • the holes are all located in the openings of their corresponding pixel isolation layers 120, that is, the anode 20, the hole injection layer 30, the hole transport layer 40, and the light-emitting layer 50 are formed separately for each of the light-emitting units 130, and the hole blocking layer is formed.
  • 60, the electron transport layer 70, the electron injection layer 80, and the cathode 90 may be formed as a whole film on the light emitting layer 50 and the pixel isolation layer 120.
  • the hole blocking layer 60 may also correspond to each of the light emitting units 130. Forming, likewise, the electron transport layer 70 may be formed separately for each of the light emitting units 130.
  • each of the pixels includes a red light emitting unit, a green light emitting unit, and a blue light emitting unit, and the light emitting layers of the red light emitting unit, the green light emitting unit, and the blue light emitting unit are respectively a red light emitting layer 51 and a green light emitting layer 52. , blue light emitting layer 53.
  • the hole injection layers 20 corresponding to the red, green and blue light-emitting units may be the same material or different materials, and their thicknesses may be the same or different.
  • the hole transport layers 30 corresponding to the three red, green and blue light emitting units may be the same material or different materials, and their thicknesses may be the same or different.
  • the hole blocking layers 60 corresponding to the three red, green and blue light emitting units may be the same material or different materials, and their thicknesses may be the same or different.
  • the electron transport layers 70 corresponding to the red, green and blue light-emitting units may be the same material or different materials, and their thicknesses may be the same or different. If the red, green and blue light-emitting elements 50 correspond to the host-guest doping form, their host-guest doping ratios may be the same or different, and their thicknesses may be the same or different.
  • Their bodies can be the same material or different materials.
  • the substrate 10 is a Thin Film Transistor (TFT).
  • the array substrate includes a base substrate and a TFT array formed on the base substrate.
  • the base substrate uses a glass substrate having a high visible light transmittance.
  • the material of the encapsulating material 110 is epoxy resin or UV glue, preferably epoxy resin;
  • the material of the cover plate 100 is quartz glass or metal, preferably quartz glass.
  • the material of the anode 20 may be selected from a transparent conductive metal oxide (such as Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), etc.) or a high work function metal or a high work function metal.
  • An alloy such as gold (Au), platinum (Pt), silver (Ag), etc.
  • the above anode materials may be used singly or in combination of two or more, and the anode 20 has a film thickness of between 20 nm and 200 nm. .
  • the hole injection layer 30 is for assisting injection of holes from the anode 20 into the hole transport layer 40, and the material may be selected from organic small molecule hole injection materials (eg, 2, 3, 6, 7, 10, 11-hexacyano group). -1,4,5,8,9,12-hexazabenzophenanthrene (Dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11- Hexacarbonitrile, HATCN, etc.), or a polymer hole injecting material (such as poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT:PSS), etc.), or a metal oxide hole injecting material ( For example, molybdenum trioxide (MoO 3 ), etc., the film thickness is between 1 nm and 100 nm.
  • organic small molecule hole injection materials eg, 2, 3, 6, 7, 10, 11-hexacyano group.
  • the hole transport layer 40 is for transporting holes from the hole injection layer 30 into the light-emitting layer 50, and the material is an organic small molecule hole transport material (such as N, N'-diphenyl-N, N'- Bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (N,N'-Bis-(1-naphthalenyl)-N,N'-bis-phenyl-(1,1 '-biphenyl)-4,4'-diamine, NPB), 4,4'-cyclohexyl bis[N,N-bis(4-methylphenyl)aniline] (4,4'-yclohexylidenebis[N,N -bis(p-tolyl)aniline], TAPC), etc., or polymer hole transport material (such as poly[bis(4-phenyl)(4-butylphenyl)amine] (Poly[bis(4- Phenyl (4-buty
  • the luminescent layer 50 is divided into three types: a red luminescent layer 51, a green luminescent layer 52, and a blue luminescent layer 53.
  • the electrons and holes are combined and illuminate in the luminescent layer 50.
  • the material may be selected from: organic small molecule fluorescent materials or organic A polymer fluorescent material, or a small molecule phosphorescent material, or a polymer phosphorescent material.
  • the light-emitting layer 50 may be formed in a host-guest doped form or in an undoped form with a film thickness between 5 nm and 50 nm.
  • the hole blocking layer 60 serves to block holes from being injected into the electron transport layer 70 from the light emitting layer 50 while the hole blocking layer 60 can also transport electrons.
  • Materials can be selected from organic small molecular materials or polymers with very low maximum occupied orbital (HOMO) (eg 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline (2, 9-dimethyl-4,7-diphenyl-1, 10-Phenanthroline, BCP), etc., with a film thickness between 2 nm and 20 nm.
  • HOMO very low maximum occupied orbital
  • the molecular structure of the BCP is:
  • the electron injecting layer 80 is used to help electrons are injected from the cathode 90 into the electron transporting layer 70, and the material may be selected from a metal complex (such as 8-Hydroxyquinolinolato-lithium (Liq), etc.), or an alkali metal and Its salts (such as lithium (Li), sodium (Na), potassium (K), strontium (Rb), cesium (Cs), lithium fluoride (LiF), lithium carbonate (Li 2 CO 3 ), lithium chloride ( LiCl), sodium fluoride (NaF), sodium carbonate (Na 2 CO 3 ), sodium chloride (NaCl), cesium fluoride (CsF), cesium carbonate (Cs 2 CO 3 ), and cesium chloride (CsCl), etc.
  • a metal complex such as 8-Hydroxyquinolinolato-lithium (Liq), etc.
  • alkali metal and Its salts such as lithium (Li), sodium (Na
  • alkaline earth metals and their salts such as magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), calcium fluoride (CaF 2 ), calcium carbonate (CaCO 3 ), barium fluoride ( SrF 2 ), strontium carbonate (SrCO 3 ), barium fluoride (BaF 2 ), and barium carbonate (BaCO 3 ), etc.
  • the above materials may be used singly or in combination of two or more to form the electron injecting layer 80 having a film thickness of between 0.5 nm and 10 nm.
  • the material of the cathode 90 is a low work function metal material (such as Li, Mg, Ca, Sr, lanthanum (La), cerium (Ce), lanthanum (Eu), ytterbium (Yb), aluminum (Al), Cs, Rb. Or so, or alloys of low work function metals, these cathode materials may be used singly or in combination of two or more.
  • the cathode 90 is formed into a film by a vacuum evaporation method, and has a film thickness of between 10 nm and 1000 nm.
  • the material of the anode 20 is ITO and the film thickness is 90 nm; the material of the hole injection layer 30 is HATCN, and the film thickness is 10 nm; and the material of the hole transport layer 40 is NPB.
  • the film thickness is 30 nm;
  • the light-emitting layer 50 includes: a red light-emitting layer 51, a green light-emitting layer 52, and a blue light-emitting layer 53, each having a film thickness of 20 nm, and the materials are all doped in a host-guest form, wherein the blue light-emitting layer 53
  • the host material is 9,9'-(1,3-phenyl)di-9H-carbazole (1,3-Di-9-carbazolylbenzene, mCP), and the guest material of the blue light-emitting layer 53 is: double (4 ,6-difluorophenylpyridine-N,C2) pyridine formyl hydrazide (Bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III), FIrPic), the green
  • the host material of the light-emitting layer 52 is:
  • the guest material of the red light-emitting layer 51 is: bis(1-phenyl-isoquinoline) (acetylacetone) ruthenium (III) (Bi) s (1-phenyl-isoquinoline- C2, N) (acetylacetonato) iridium (III), Ir (piq) 2 (acac));
  • the hole blocking material 60 is a layer of BCP, a film thickness of 10 nm;
  • the organic electron transporting material in 70 is TPBi, and the organometallic halide perovskite material in the electron transporting layer 70 is CH 3 NH 3 PbI 2 Cl, that is, Methylammonium lead Chloride Iodide, and the electron transporting layer 70 has a film thickness of 50 nm.
  • the mass ratio of the organic electron transporting material to the organometallic halide perovskite material in the electron transport layer 70 is 1:9; the material of the electron injecting layer 80 is LiF, and the film thickness is 1 nm; the material of the cathode 90 is Al, and the film thickness is 200nm.
  • FIrPic The molecular structure of FIrPic is:
  • the molecular structure of CBP is:
  • the present invention further provides a method for fabricating an OLED display device, comprising the following steps:
  • Step 1 a substrate 10 is provided. On the substrate 10, an anode 20, a hole injection layer 30, a hole transport layer 40, a light-emitting layer 50, and a hole blocking layer 60 are sequentially formed from bottom to top. .
  • the substrate 10 is a TFT array substrate, and includes a base substrate and a TFT array formed on the base substrate.
  • the substrate substrate is a glass substrate having a high visible light transmittance.
  • the material of the anode 20 is a transparent conductive metal oxide or a high work function metal, preferably ITO, prepared by magnetron sputtering, having a film thickness of 20 nm to 200 nm, preferably a film thickness of 90 nm;
  • the material of the hole injection layer 30 is an organic small molecule hole injection material, a polymer hole injection material, or a metal oxide hole injection material.
  • the material is preferably HATCN, and the preparation method is vacuum evaporation film formation method or wet. Film forming method (such as inkjet printing, nozzle printing, etc.), the film thickness is 1 nm to 100 nm, preferably the film thickness is 10 nm;
  • the material of the hole transport layer 40 is an organic small molecule hole transport material or a polymer hole transport material, and the preparation method is a vacuum vapor deposition film formation method or a wet film formation method, and the material is preferably NPB, and the film thickness is 10 nm to 100 nm, preferably a film thickness of 30 nm;
  • the material of the light-emitting layer 50 is an organic small molecule fluorescent material, a polymer fluorescent material, a small molecule phosphorescent material, or a polymer phosphorescent material, and the preparation method is a vacuum evaporation film forming method or a wet film forming method, and the film thickness is 5 nm to 50 nm. ;
  • the light-emitting layer 50 comprises a blue light-emitting layer 53, a green light-emitting layer 52, and a red light-emitting layer 51, which are formed by a host-guest doping form, and the host materials are respectively mCP, CBP, and CBP, and the guest materials are: FlrPic, lr(ppy) 3 , and lr(piq) 2 (acac), the host-to-doping ratio is 8%, 6%, and 4%, respectively, and the film thickness is 20 nm;
  • the material of the hole blocking layer 60 is an organic small having a very low highest occupied orbit (HOMO).
  • the molecular material or polymer, preferably BCP is prepared by a vacuum evaporation film formation method or a wet film formation method, and has a film thickness of between 2 nm and 20 nm, preferably a film thickness of 10 nm.
  • Step 2 Providing a mixture of an organic electron transporting material and an organometallic halide perovskite material, and forming an electron transporting layer 70 on the hole blocking layer 60 by using a mixture of an organic electron transporting material and an organometallic halide perovskite material.
  • the mass ratio of the organic electron transporting material to the organometallic halide perovskite material is from 1:0.5 to 1:50.
  • the organic electron transporting material may be selected from a metal complex material or an imidazole electron transporting material.
  • the organometallic halide perovskite material has the structural formula: CH 3 NH 3 PbA 3 , wherein A is a combination of one or more of a chlorine element, a bromine element, and an iodine element.
  • the electron transport layer 70 is formed by a wet film formation process with a film thickness of between 10 nm and 100 nm.
  • the material of the electron transport layer 70 is 10% TPBi and 90% CH 3 NH 3 Pbl 2 Cl, and the film thickness is 50 nm.
  • the electron transport layer 70 is formed by using a mixture of an organic electron transport material and an organometallic halide perovskite material, which can enhance the electron mobility of the electron transport layer compared to a single organic electron transport material, and balance the OLED display device.
  • the carrier injection transport can reduce the film formation difficulty, improve the film formation quality and ensure the stability of the OLED display device compared to the single organometallic halide perovskite material.
  • Step 3 An electron injection layer 80 is formed on the electron transport layer 70, and a cathode 90 is formed on the electron injection layer 80.
  • the electron injecting layer 80 is used to assist electrons from being injected from the cathode 90 into the electron transporting layer 70, and the material may be selected from a metal complex, or an alkali metal and a salt thereof, or an alkaline earth metal and a salt thereof.
  • the above materials may be used singly or in combination of two or more, preferably LiF, the preparation method is a vacuum evaporation film forming method, the film thickness is between 0.5 nm and 10 nm, preferably the film thickness is 1 nm;
  • the material of the cathode 90 is a low work function metal material or an alloy of a low work function metal. These cathode materials may be used singly or in combination of two or more.
  • the preferred material is Al, and the preparation method is vacuum evaporation.
  • the film method has a film thickness of between 10 nm and 1000 nm, preferably a film thickness of 200 nm.
  • Step 4 applying an encapsulant on the edge of the substrate 10 to form a ring surrounding the anode 20 on the substrate 10, the hole injection layer 30, the hole transport layer 40, the light emitting layer 50, and the space
  • the sealing layer 60, the electron transporting layer 70, the electron injecting layer 80, and the encapsulating material 110 of the cathode 90 are provided with a cover plate 100, and the substrate 10 is covered by the cover plate 100 and passed through the encapsulant 110 and the substrate. 10, the cover plate 100 is disposed opposite to the substrate 10.
  • the material of the encapsulant is epoxy resin or UV glue, preferably epoxy resin.
  • the material of the cover plate 110 is quartz glass or metal, preferably quartz glass.
  • the present invention provides an OLED display device comprising: a substrate, an anode formed on the substrate, a hole injection layer formed on the anode, and a hole injection layer formed on the hole injection layer a hole transport layer, a light emitting layer formed on the hole transport layer, a hole blocking layer formed on the light emitting layer, an electron transport layer formed on the hole blocking layer, and an electron formed on the hole transport layer
  • the material of the electron transport layer is a mixture of an organic electron transport material and an organometallic halide perovskite material, and an electron transport layer is formed by using a mixture of an organic electron transport material and an organometallic halide perovskite material.
  • the electron mobility of the electron transport layer can be enhanced, the carrier injection transport of the OLED display device can be balanced, the luminous efficiency of the OLED display device can be improved, the film formation difficulty can be reduced, and the film formation quality can be improved. Ensure stability of the OLED display device.
  • the invention also provides a method for fabricating an OLED display device, which can quickly and easily produce an OLED display device with good film formation, carrier injection and transmission balance, and high luminous efficiency.

Abstract

一种OLED显示器件及其制作方法,所述OLED显示器件包括:基板(10)、于所述基板(10)上自下而上依次形成的阳极(20)、空穴注入层(30)、空穴传输层(40)、发光层(50)、空穴阻挡层(60)、电子传输层(70)、电子注入层(80)、阴极(90)、与所述基板(10)相对设置的覆盖所述基板(10)的盖板(100)、及设于所述基板(10)边缘与所述盖板(100)之间的封装胶材(110);其中,所述电子传输层(70)的材料为有机电子传输材料与有机金属卤化物钙钛矿材料的混合物。

Description

OLED显示器件及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种OLED显示器件及其制作方法。
背景技术
有机发光二极管(Organic Light Emitting Display,OLED)显示器件具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED显示器件属于自发光型显示设备,通常包括分别用作阳极、与阴极的像素电极、和公共电极、以及设在像素电极与公共电极之间的有机发光层,使得在适当的电压被施加于阳极与阴极时,从有机发光层发光。有机发光层包括了设于阳极上的空穴注入层、设于空穴注入层上的空穴传输层、设于空穴传输层上的发光层、设于发光层上的电子传输层、设于电子传输层上的电子注入层,其发光机理为在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子注入层和空穴注入层,电子和空穴分别经过电子传输层和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
虽然OLED显示器件已经实现了商业生产,但其发光效率还有较大的提升空间。在现有技术中,OLED显示器件的电子传输层和空穴传输层均为有机层。而通常电子传输层的电子迁移率远低于空穴传输层的空穴迁移率,导致OLED显示器件内部载流子的传输不平衡,进而降低OLED显示器件的发光效率。
有机金属卤化物钙钛矿材料(Organometal halide perovskites)被认为是具有卓越光电性能的半导体材料,其具有很长的载流子扩散长度(高达1μm)、高载流子迁移率(约10cm2/Vs),兼具无机半导体的光电特性及有机材料的低温成膜优点,非常适合低成本、大面积及柔性基底器件的工业化生产。
然而,目前技术制备高质量的有机金属卤化物钙钛矿薄膜还相对困难,因此,有必要研发一种新的,结合有机金属卤化物钙钛矿材料,制作工艺较简单、稳定性高、成膜质量好、载流子注入传输平衡的OLED显示 器件结构。
发明内容
本发明的目的在于提供一种OLED显示器件,能够提高OLED显示器件的发光效率,提升OLED显示器件的性能。
本发明的目的还在于提供一种OLED显示器件的制作方法,能够简单快捷的制作成膜制量好、载流子注入传输平衡、且发光效率高的OLED显示器件。
为实现上述目的,本发明提供一种OLED显示器件,包括:基板、形成于所述基板上的阳极、形成于所述阳极上的空穴注入层、形成于所述空穴注入层上的空穴传输层、形成于所述空穴传输层上的发光层、形成于所述发光层上的空穴阻挡层、形成于所述空穴阻挡层上的电子传输层、形成于所述电子传输层上的电子注入层、形成于所述电子注入层上的阴极、与所述基板相对设置的覆盖所述基板的盖板、及设于所述基板边缘与所述盖板之间的封装胶材;
所述电子传输层的材料为有机电子传输材料与有机金属卤化物钙钛矿材料的混合物。
所述有机电子传输材料与有机金属卤化物钙钛矿材料的混合物中,有机电子传输材料与有机金属卤化物钙钛矿材料混合质量比为1:0.5至1:50。
所述有机电子传输材料为金属配合物材料、或咪唑类电子传输材料。
所述机金属卤化物钙钛矿材料的结构式为:CH3NH3PbA3,其中A为氯元素、溴元素、及碘元素中的一种或多种的组合。
所述电子传输层的膜厚为10nm至100nm之间。
本发明还提供一种OLED显示器件的制作方法,包括如下步骤:
步骤1、提供一基板,在所述基板上自下而上依次形成阳极、空穴注入层、空穴传输层、发光层、及空穴阻挡层;
步骤2、提供有机电子传输材料与有机金属卤化物钙钛矿材料的混合物,利用有机电子传输材料与有机金属卤化物钙钛矿材料的混合物在所述空穴阻挡层上形成电子传输层;
步骤3、在所述电子传输层上形成电子注入层,在电子注入层上形成阴极;
步骤4、在所述基板的边缘上涂布封装胶,形成一圈封装胶材,提供盖板,用所述盖板覆盖所述基板并通过封装胶材与所述基板贴合,所述盖板 与所述基板相对设置。
所述有机电子传输材料与有机金属卤化物钙钛矿材料的混合物中,有机电子传输材料与有机金属卤化物钙钛矿材料混合质量比为1:0.5至1:50。
所述有机电子传输材料为金属配合物材料、或咪唑类电子传输材料。
所述机金属卤化物钙钛矿材料的结构式为:CH3NH3PbA3,其中A为氯元素、溴元素、及碘元素中的一种或多种的组合。
所述步骤2中采用湿法成膜工艺形成所述电子传输层,膜厚为10nm至100nm之间。
本发明还提供一种OLED显示器件,包括:基板、形成于所述基板上的阳极、形成于所述阳极上的空穴注入层、形成于所述空穴注入层上的空穴传输层、形成于所述空穴传输层上的发光层、形成于所述发光层上的空穴阻挡层、形成于所述空穴阻挡层上的电子传输层、形成于所述电子传输层上的电子注入层、形成于所述电子注入层上的阴极、与所述基板相对设置的覆盖所述基板的盖板、及设于所述基板边缘与所述盖板之间的封装胶材;
所述电子传输层的材料为有机电子传输材料与有机金属卤化物钙钛矿材料的混合物;
其中,所述有机电子传输材料与有机金属卤化物钙钛矿材料的混合物中,有机电子传输材料与有机金属卤化物钙钛矿材料混合质量比为1:0.5至1:50;
其中,所述电子传输层的膜厚为10nm至100nm之间。
本发明的有益效果:本发明提供了一种OLED显示器件,包括:基板、形成于所述基板上的阳极、形成于所述阳极上的空穴注入层、形成于所述空穴注入层上的空穴传输层、形成于所述空穴传输层上的发光层、形成于所述发光层上的空穴阻挡层、形成于所述空穴阻挡层上的电子传输层、形成于所述电子传输层上的电子注入层、形成于所述电子注入层上的阴极、与所述基板相对设置的覆盖所述基板的盖板、及设于所述基板边缘与所述盖板之间的封装胶材;其中,所述电子传输层的材料为有机电子传输材料与有机金属卤化物钙钛矿材料的混合物,通过采用有机电子传输材料与有机金属卤化物钙钛矿材料的混合物来制作电子传输层,能够增强电子传输层的电子迁移率,平衡OLED显示器件的载流子注入传输,提升OLED显示器件的发光效率,同时降低成膜难度,提高成膜质量,保证OLED显示器件的稳定性。本发明还提供一种OLED显示器件的制作方法,能够简单 快捷的制作成膜制量好、载流子注入传输平衡、且发光效率高的OLED显示器件。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的OLED显示器件的结构图;
图2为本发明的OLED显示器件的制作方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种OLED显示器件,包括:基板10、形成于所述基板10上的阳极20、形成于所述阳极20上的空穴注入层30、形成于所述空穴注入层30上的空穴传输层40、形成于所述空穴传输层40上的发光层50、设于所述发光层50上的空穴阻挡层60、形成于所述空穴阻挡层60上的电子传输层70、形成于所述电子传输层70上的电子注入层80、形成于所述电子注入层80上的阴极90、与所述基板10相对设置的覆盖所述基板10的盖板100、及设于所述基板10的边缘与盖板100之间的封装胶材110;
所述电子传输层70的材料为有机电子传输材料与有机金属卤化物钙钛矿材料的混合物。
具体地,所述有机电子传输材料与有机金属卤化物钙钛矿材料的混合物中,有机电子传输材料与有机金属卤化物钙钛矿材料混合质量比为1:0.5至1:50。所述有机电子传输材料可选择金属配合物材料(如8-羟基喹啉铝(tris(8-quinolinolato)aluminum,Alq3)等)、或者选择咪唑类电子传输材料(如1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene,TPBi)等)。所述有机金属卤化物钙钛矿材料的结构式为:CH3NH3PbA3,其中A为氯元素、溴元素、及碘元素中的一种或多种的组合。所述电子传输层70采用湿法成膜工艺制备,其膜厚为10nm至100nm之间。采用有机电子传输材料与有机金属卤化物钙钛矿材料的混合物来制作电子传输层70相比于单一有机电子传 输材料能够增强电子传输层的电子迁移率,平衡OLED显示器件的载流子注入传输,相比于单一有机金属卤化物钙钛矿材料又能够降低成膜难度,提高成膜质量,保证OLED显示器件的稳定性。
其中,所述TPBi的分子结构式为:
Figure PCTCN2016082700-appb-000001
进一步地,所述OLED显示器件中,基板10上形成有多个阵列排布的像素,每一像素包括多个发光单元130,各个发光单元130之间被像素隔离层120分隔开,所述像素隔离层120上形成有贯穿所述像素隔离层120的开口,每一开口对应一发光单元130,各个发光单元130的阳极20、空穴注入层30、空穴传输层40、及发光层50均位于其对应的像素隔离层120的开口内,也即所述阳极20、空穴注入层30、空穴传输层40、及发光层50对应每一发光单元130单独形成,而空穴阻挡层60、电子传输层70、电子注入层80、及阴极90均可以为一个整体薄膜依次形成于发光层50和像素隔离层120上,其中,空穴阻挡层60也可以对应每一发光单元130分别形成,同样,电子传输层70也可以对应每一发光单元130分别形成。
优选地,每一像素均包括:红色发光单元、绿色发光单元、蓝色发光单元,所述红色发光单元、绿色发光单元、蓝色发光单元的发光层分别为红色发光层51、绿色发光层52、蓝色发光层53。所述红绿蓝三种发光单元所对应的空穴注入层20可以是相同材料也可以是不同材料,他们的厚度可以是相同的也可以是不同的。所述红绿蓝三种发光单元对应的空穴传输层30可以是相同材料也可以是不同材料,他们的厚度可以是相同的也可以是不同的。所述红绿蓝三种发光单元对应的空穴阻挡层60可以是相同材料也可以是不同材料,他们的厚度可以是相同的也可以是不同的。所述红绿蓝三种发光单元对应的电子传输层70可以是相同材料也可以是不同材料,他们的厚度可以是相同的也可以是不同的。所述红绿蓝三种发光单元对应的发光层50如果是主客体掺杂形式,他们的主客体掺杂比例可以是相同的也可以是不同的,他们的厚度可以是相同的也可以是不同的,他们的主体可以是相同材料也可以是不同材料。
需要说明的是,所述基板10为薄膜晶体管(Thin Film Transistor,TFT) 阵列基板,包括衬底基板、及形成于衬底基板之上的TFT阵列,优选地,所述衬底基板采用可见光透过率高的玻璃基板。
具体地,所述封装胶材110的材料为环氧树脂或者UV胶,优选环氧树脂;所述盖板100的材料为石英玻璃或者金属,优选石英玻璃。
所述阳极20的材料可选择透明导电金属氧化物(如氧化铟锡(Indium Tin Oxide,ITO)、氧化铟锌(Indium Zinc Oxide,IZO)等),或者高功函数金属或高功函数金属的合金(如金(Au)、铂(Pt)、银(Ag)等),上述阳极材料可以单独使用,也可两种或者更多组合使用,所述阳极20的膜厚在20nm到200nm之间。
所述空穴注入层30用于帮助空穴从阳极20注入到空穴传输层40,材料可选择有机小分子空穴注入材料(如2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(Dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile,HATCN)等),或者聚合物空穴注入材料(如聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)等),或者金属氧化物空穴注入材料(如三氧化钼(MoO3)等),膜厚在1nm到100nm之间。
其中,所述HATCN的分子结构式为:
Figure PCTCN2016082700-appb-000002
所述空穴传输层40用于将空穴从空穴注入层30传输到发光层50中,材料为有机小分子空穴传输材料(如N,N’-二苯基-N,N’-二(1-萘基)-1,1’-联苯-4,4’-二胺(N,N‘-Bis-(1-naphthalenyl)-N,N’-bis-phenyl-(1,1‘-biphenyl)-4,4’-diamine,NPB)、4,4'-环己基二[N,N-二(4-甲基苯基)苯胺](4,4'-yclohexylidenebis[N,N-bis(p-tolyl)aniline],TAPC)等),或者聚合物空穴传输材料(如聚[双(4-苯基)(4-丁基苯基)胺](Poly[bis(4-phenyl)(4-butylphenyl)amine],Poly-TPD)等),膜厚在10nm到100nm之间。
其中,所述NPB的分子结构式为:
Figure PCTCN2016082700-appb-000003
所述发光层50分为红光发光层51、绿光发光层52和蓝光发光层53三种,电子和空穴在发光层50中复合发光,材料可选择:有机小分子荧光材料、或者有机聚合物荧光材料,或者小分子磷光材料、或者聚合物磷光材料。发光层50可采用主客体掺杂形式构成、或者是非掺杂形式构成,膜厚在5nm到50nm之间。
所述空穴阻挡层60用于阻挡空穴从发光层50注入到电子传输层70中,同时该空穴阻挡层60还可以传输电子。材料可选择具有很低的最高占有轨道(HOMO)的有机小分子材料或者聚合物(如2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲(2,9-dimethyl-4,7-diphenyl-1,10-Phenanthroline,BCP)等),膜厚在2nm到20nm之间。
其中,所述BCP的分子结构式为:
Figure PCTCN2016082700-appb-000004
所述电子注入层80用于帮助电子从阴极90注入到电子传输层70,材料可选择金属配合物(如8-羟基喹啉锂(8-Hydroxyquinolinolato-lithium,Liq)等),或者碱金属及其盐类(如锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)、氟化锂(LiF)、碳酸锂(Li2CO3)、氯化锂(LiCl)、氟化钠(NaF)、碳酸钠(Na2CO3),氯化钠(NaCl)、氟化铯(CsF)、碳酸铯(Cs2CO3)、及氯化铯(CsCl)等),或者碱土金属及其盐类(如镁(Mg)、钙(Ca)、锶(Sr)、钡(Ba)、氟化钙(CaF2)、碳酸钙(CaCO3)、氟化锶(SrF2)、碳酸锶(SrCO3)、氟化钡(BaF2)、及碳酸钡(BaCO3)等)。上述材料可以单独使用也可以两个或者两个以上组合使用以形成所述电子注入层80,所述电子注入层80的膜厚在0.5nm到10nm之间。
所述阴极90的材料为低功函数金属材料(如Li、Mg、Ca、Sr、镧(La),铈(Ce)、铕(Eu)、镱(Yb)、铝(Al)、Cs、Rb等)、或者低功函数金属的合金,这些阴极材料可以单独使用,也可两种或者更多组合使用。所述阴极90通过真空蒸镀方法成膜形成,膜厚在10nm到1000nm之间。举例说明,在本发明的一优选实施例中,阳极20的材料为ITO,膜厚为90nm; 空穴注入层30的材料为HATCN,膜厚为10nm;空穴传输层40的材料为NPB,膜厚为30nm;发光层50包括:红色发光层51、绿色发光层52、及蓝色发光层53,膜厚均为20nm,材料均采用主客体掺杂的形式,其中,蓝色发光层53的主体材料为9,9'-(1,3-苯基)二-9H-咔唑(1,3-Di-9-carbazolylbenzene,mCP),蓝色发光层53的客体材料为:双(4,6-二氟苯基吡啶-N,C2)吡啶甲酰合铱(Bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III),FIrPic),所述绿色发光层52的主体材料为:4,4'-二(9-咔唑)联苯(4,4'-Bis(N-carbazolyl)-1,1'-biphenyl,CBP),绿色发光层52的客体材料为:三(2-苯基吡啶)合铱(Tris(2-phenylpyridinato-C2,N)iridium(III),Ir(ppy)3),所述红色发光层51的主体材料为:CBP,红色发光层51的客体材料为:二(1-苯基-异喹啉)(乙酰丙酮)合铱(III)(Bis(1-phenyl-isoquinoline-C2,N)(acetylacetonato)iridium(III),Ir(piq)2(acac));所述空穴阻挡层60的材料为BCP,膜厚为10nm;电子传输层70中的有机电子传输材料为TPBi,电子传输层70中的有机金属卤化物钙钛矿材料为CH3NH3PbI2Cl,也即Methylammonium lead Chloride Iodide,电子传输层70的膜厚为50nm,电子传输层70中有机电子传输材料与有机金属卤化物钙钛矿材料混合质量比为1:9;电子注入层80的材料为LiF,膜厚为1nm;阴极90的材料为Al,膜厚为200nm。
其中,mCP的分子结构式为:
Figure PCTCN2016082700-appb-000005
FIrPic的分子结构式为:
Figure PCTCN2016082700-appb-000006
CBP的分子结构式为:
Figure PCTCN2016082700-appb-000007
Ir(ppy)3的分子结构式为:
Figure PCTCN2016082700-appb-000008
Ir(piq)2(acac)的分子结构式为:
Figure PCTCN2016082700-appb-000009
请参阅图2,本发明还提供一种OLED显示器件的制作方法,包括如下步骤:
步骤1、请参阅图1,提供一基板10,在所述基板10上自下而上依次形成阳极20、空穴注入层30、空穴传输层40、发光层50、及空穴阻挡层60。
其中,所述基板10为TFT阵列基板,包括衬底基板、及形成于衬底基板之上的TFT阵列,优选地,所述衬底基板采用可见光透过率高的玻璃基板。
所述阳极20的材料为透明导电金属氧化物或高功函数金属,优选材料为ITO,制备方法为磁控溅射,膜厚为20nm至200nm,优选膜厚为90nm;
所述空穴注入层30的材料为有机小分子空穴注入材料、聚合物空穴注入材料、或金属氧化物空穴注入材料,优选材料为HATCN,制备方法为真空蒸镀成膜法或者湿法成膜法(如喷墨打印、喷嘴打印等),膜厚为1nm至100nm,优选膜厚为10nm;
所述空穴传输层40的材料为有机小分子空穴传输材料、或聚合物空穴传输材料,制备方法为真空蒸镀成膜法或者湿法成膜法,优选材料为NPB,膜厚为10nm至100nm,优选膜厚为30nm;
发光层50的材料为有机小分子荧光材料、聚合物荧光材料、小分子磷光材料、或者聚合物磷光材料,制备方法为真空蒸镀成膜法或者湿法成膜法,膜厚为5nm至50nm;
优选的,所述发光层50包括蓝色发光层53、绿色发光层52、及红色发光层51,采用主客体掺杂形式构成,主体材料分别为mCP、CBP、及CBP,客体材料分别为:FlrPic、lr(ppy)3、及lr(piq)2(acac),主客掺杂比分别为8%、6%、及4%,膜厚均为20nm;
空穴阻挡层60的材料为具有很低的最高占有轨道(HOMO)的有机小 分子材料或者聚合物,优选材料为BCP,制备方法为真空蒸镀成膜法或者湿法成膜法,膜厚在2nm到20nm之间,优选膜厚为10nm。
步骤2、提供有机电子传输材料与有机金属卤化物钙钛矿材料的混合物,利用有机电子传输材料与有机金属卤化物钙钛矿材料的混合物在所述空穴阻挡层60上形成电子传输层70。
具体地,所述有机电子传输材料与有机金属卤化物钙钛矿材料混合质量比为1:0.5至1:50。所述有机电子传输材料可选择金属配合物材料、或者选择咪唑类电子传输材料。所述有机金属卤化物钙钛矿材料的结构式为:CH3NH3PbA3,其中A为氯元素、溴元素、及碘元素中的一种或多种的组合。所述电子传输层70采用湿法成膜工艺形成,膜厚为10nm至100nm之间。
优选地,所述电子传输层70的材料为10%TPBi和90%CH3NH3Pbl2Cl,膜厚为50nm。
需要说明的是,采用有机电子传输材料与有机金属卤化物钙钛矿材料的混合物来制作电子传输层70,相比于单一有机电子传输材料能够增强电子传输层的电子迁移率,平衡OLED显示器件的载流子注入传输,相比于单一有机金属卤化物钙钛矿材料又能够降低成膜难度,提高成膜质量,保证OLED显示器件的稳定性。
步骤3、在所述电子传输层70上形成电子注入层80,在电子注入层80上形成阴极90。
所述电子注入层80用于帮助电子从阴极90注入到电子传输层70,材料可选择金属配合物、或者碱金属及其盐类、或者碱土金属及其盐类。上述材料可以单独使用也可以两个或者两个以上组合使用,优选材料为LiF,制备方法为真空蒸镀成膜法,膜厚在0.5nm到10nm之间,优选膜厚为1nm;
所述阴极90的材料为低功函数金属材料、或者低功函数金属的合金,这些阴极材料可以单独使用,也可两种或者更多组合使用,优选材料为Al,制备方法为真空蒸镀成膜法,膜厚在10nm到1000nm之间,优选膜厚为200nm。
步骤4、在所述设于所述基板10的边缘上涂布封装胶,形成一圈包围所述基板10上的阳极20、空穴注入层30、空穴传输层40、发光层50、空穴阻挡层60、电子传输层70、电子注入层80、及阴极90的封装胶材110,提供盖板100,用所述盖板100覆盖所述基板10并通过封装胶材110与所述基板10贴合,所述盖板100与所述基板10相对设置。
具体地,所述封装胶的材料为环氧树脂或者UV胶,优选环氧树脂, 盖板110的材料为石英玻璃或者金属,优选石英玻璃。
综上所述,本发明提供了一种OLED显示器件,包括:基板、形成于所述基板上的阳极、形成于所述阳极上的空穴注入层、形成于所述空穴注入层上的空穴传输层、形成于所述空穴传输层上的发光层、形成于所述发光层上的空穴阻挡层、形成于所述空穴阻挡层上的电子传输层、形成于所述电子传输层上的电子注入层、形成于所述电子注入层上的阴极、与所述基板相对设置的覆盖所述基板的盖板、及设于所述基板的边缘与盖板之间的封装胶材;其中,所述电子传输层的材料为有机电子传输材料与有机金属卤化物钙钛矿材料的混合物,通过采用有机电子传输材料与有机金属卤化物钙钛矿材料的混合物来制作电子传输层,能够增强电子传输层的电子迁移率,平衡OLED显示器件的载流子注入传输,提升OLED显示器件的发光效率,同时降低成膜难度,提高成膜质量,保证OLED显示器件的稳定性。本发明还提供一种OLED显示器件的制作方法,能够简单快捷的制作成膜制量好、载流子注入传输平衡、且发光效率高的OLED显示器件。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (13)

  1. 一种OLED显示器件,包括:基板、形成于所述基板上的阳极、形成于所述阳极上的空穴注入层、形成于所述空穴注入层上的空穴传输层、形成于所述空穴传输层上的发光层、形成于所述发光层上的空穴阻挡层、形成于所述空穴阻挡层上的电子传输层、形成于所述电子传输层上的电子注入层、形成于所述电子注入层上的阴极、与所述基板相对设置的覆盖所述基板的盖板、及设于所述基板边缘与所述盖板之间的封装胶材;
    所述电子传输层的材料为有机电子传输材料与有机金属卤化物钙钛矿材料的混合物。
  2. 如权利要求1所述的OLED显示器件,其中,所述有机电子传输材料与有机金属卤化物钙钛矿材料的混合物中,有机电子传输材料与有机金属卤化物钙钛矿材料混合质量比为1:0.5至1:50。
  3. 如权利要求2所述的OLED显示器件,其中,所述有机电子传输材料为金属配合物材料、或咪唑类电子传输材料。
  4. 如权利要求2所述的OLED显示器件,其中,所述机金属卤化物钙钛矿材料的结构式为:CH3NH3PbA3,其中A为氯元素、溴元素、及碘元素中的一种或多种的组合。
  5. 如权利要求1所述的OLED显示器件,其中,所述电子传输层的膜厚为10nm至100nm之间。
  6. 一种OLED显示器件的制作方法,包括如下步骤:
    步骤1、提供一基板,在所述基板上自下而上依次形成阳极、空穴注入层、空穴传输层、发光层、及空穴阻挡层;
    步骤2、提供有机电子传输材料与有机金属卤化物钙钛矿材料的混合物,利用有机电子传输材料与有机金属卤化物钙钛矿材料的混合物在所述空穴阻挡层上形成电子传输层;
    步骤3、在所述电子传输层上形成电子注入层,在电子注入层上形成阴极;
    步骤4、在所述基板的边缘上涂布封装胶,形成一圈封装胶材,提供盖板,用所述盖板覆盖所述基板并通过封装胶材与所述基板贴合,所述盖板与所述基板相对设置。
  7. 如权利要求6所述的OLED显示器件的制作方法,其中,所述有机电子传输材料与有机金属卤化物钙钛矿材料的混合物中,有机电子传输材 料与有机金属卤化物钙钛矿材料混合质量比为1:0.5至1:50。
  8. 如权利要求7所述的OLED显示器件的制作方法,其中,所述有机电子传输材料为金属配合物材料、或咪唑类电子传输材料。
  9. 如权利要求7所述的OLED显示器件的制作方法,其中,所述机金属卤化物钙钛矿材料的结构式为:CH3NH3PbA3,其中A为氯元素、溴元素、及碘元素中的一种或多种的组合。
  10. 如权利要求6所述的OLED显示器件的制作方法,其中,所述步骤2中采用湿法成膜工艺形成所述电子传输层,膜厚为10nm至100nm之间。
  11. 一种OLED显示器件,包括:基板、形成于所述基板上的阳极、形成于所述阳极上的空穴注入层、形成于所述空穴注入层上的空穴传输层、形成于所述空穴传输层上的发光层、形成于所述发光层上的空穴阻挡层、形成于所述空穴阻挡层上的电子传输层、形成于所述电子传输层上的电子注入层、形成于所述电子注入层上的阴极、与所述基板相对设置的覆盖所述基板的盖板、及设于所述基板边缘与所述盖板之间的封装胶材;
    所述电子传输层的材料为有机电子传输材料与有机金属卤化物钙钛矿材料的混合物;
    其中,所述有机电子传输材料与有机金属卤化物钙钛矿材料的混合物中,有机电子传输材料与有机金属卤化物钙钛矿材料混合质量比为1:0.5至1:50;
    其中,所述电子传输层的膜厚为10nm至100nm之间。
  12. 如权利要求11所述的OLED显示器件,其中,所述有机电子传输材料为金属配合物材料、或咪唑类电子传输材料。
  13. 如权利要求11所述的OLED显示器件,其中,所述机金属卤化物钙钛矿材料的结构式为:CH3NH3PbA3,其中A为氯元素、溴元素、及碘元素中的一种或多种的组合。
PCT/CN2016/082700 2016-04-15 2016-05-19 Oled显示器件及其制作方法 WO2017177507A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/120,742 US20180151812A1 (en) 2016-04-15 2016-05-19 OLED DISPLAY DEVICE and MANUFACTURING METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610235382.5 2016-04-15
CN201610235382.5A CN105679807B (zh) 2016-04-15 2016-04-15 Oled显示器件及其制作方法

Publications (1)

Publication Number Publication Date
WO2017177507A1 true WO2017177507A1 (zh) 2017-10-19

Family

ID=56310183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082700 WO2017177507A1 (zh) 2016-04-15 2016-05-19 Oled显示器件及其制作方法

Country Status (3)

Country Link
US (1) US20180151812A1 (zh)
CN (1) CN105679807B (zh)
WO (1) WO2017177507A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105938845B (zh) * 2016-07-12 2019-01-22 深圳市华星光电技术有限公司 显示器
CN106450040B (zh) * 2016-11-10 2017-10-31 京东方科技集团股份有限公司 一种有机发光二极管、其制备方法及显示装置
CN106409877B (zh) * 2016-11-21 2019-06-14 上海天马有机发光显示技术有限公司 一种有机发光显示面板和有机发光显示装置
CN106328824B (zh) * 2016-11-24 2019-05-24 Tcl集团股份有限公司 顶发射qled器件及其制备方法
KR20180074577A (ko) * 2016-12-23 2018-07-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 표시 장치, 및 조명 장치
EP3379592B1 (en) 2017-03-17 2023-02-22 Samsung Electronics Co., Ltd. Photoelectric conversion device including perovskite compound, method of manufacturing the same, and imaging device including the same
KR102506443B1 (ko) * 2017-03-17 2023-03-07 삼성전자주식회사 페로브스카이트 화합물을 포함하는 광전 변환 소자 및 이를 포함하는 촬상 장치
US20200259112A1 (en) 2017-07-06 2020-08-13 Kyulux, Inc. Organic light-emitting element
CN107346779A (zh) * 2017-09-04 2017-11-14 上海天马有机发光显示技术有限公司 有机发光显示面板、装置及有机发光显示面板的制作方法
CN109713142B (zh) * 2017-10-26 2021-10-22 北京鼎材科技有限公司 组合物及其有机电致发光器件
CN107799653A (zh) * 2017-10-27 2018-03-13 吉林大学 双边体相异质结结构的水相有机无机杂化太阳能电池及其制备方法
KR102442210B1 (ko) * 2017-12-21 2022-09-14 삼성디스플레이 주식회사 유기 전계 발광 소자, 이의 제조 방법 및 이를 포함하는 유기 전계 발광 표시장치
CN111712923B (zh) * 2019-01-16 2023-12-05 京东方科技集团股份有限公司 发光层、其制造方法、显示设备
KR20200109675A (ko) * 2019-03-14 2020-09-23 주식회사 디비하이텍 애노드 구조물, 이의 형성 방법 및 이를 포함하는 유기 발광 다이오드 표시 장치
CN110492017A (zh) * 2019-08-01 2019-11-22 武汉华星光电半导体显示技术有限公司 一种电致发光器件
US20220006027A1 (en) * 2020-06-24 2022-01-06 The Regents Of The University Of Michigan Organic electroluminescent device
CN117157378A (zh) * 2021-04-07 2023-12-01 浙江光昊光电科技有限公司 一种混合物及其在光电领域的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037340A (zh) * 2014-06-25 2014-09-10 上海道亦化工科技有限公司 一种有机电致发光器件
CN104183718A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 有机电致发光装置及其制备方法
CN104662625A (zh) * 2012-05-18 2015-05-27 埃西斯创新有限公司 包括具有混合阴离子的有机金属钙钛矿的光电器件
CN104681731A (zh) * 2015-02-09 2015-06-03 南京工业大学 一种钙钛矿型电致发光器件及其制备方法
CN104795505A (zh) * 2015-04-09 2015-07-22 山西大同大学 一种有机发光二极管
WO2015166006A1 (en) * 2014-04-30 2015-11-05 Cambridge Enterprise Limited Electroluminescent device
US20150380169A1 (en) * 2014-06-30 2015-12-31 Sharp Laboratories Of America, Inc. Surface-Passivated Mesoporous Structure Solar Cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183733A (zh) * 2013-05-21 2014-12-03 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
EP2942826B1 (en) * 2014-05-09 2023-03-01 Novaled GmbH Doped perovskites and their use as active and/or charge transport layers in optoelectronic devices
WO2016014845A1 (en) * 2014-07-23 2016-01-28 The University Of Akron Ultrasensitive solution-processed perovskite hybrid photodetectors
CN104201285A (zh) * 2014-09-03 2014-12-10 北京大学 空穴传输体系不含有离子添加剂的钙钛矿太阳能电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662625A (zh) * 2012-05-18 2015-05-27 埃西斯创新有限公司 包括具有混合阴离子的有机金属钙钛矿的光电器件
CN104183718A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 有机电致发光装置及其制备方法
WO2015166006A1 (en) * 2014-04-30 2015-11-05 Cambridge Enterprise Limited Electroluminescent device
CN104037340A (zh) * 2014-06-25 2014-09-10 上海道亦化工科技有限公司 一种有机电致发光器件
US20150380169A1 (en) * 2014-06-30 2015-12-31 Sharp Laboratories Of America, Inc. Surface-Passivated Mesoporous Structure Solar Cell
CN104681731A (zh) * 2015-02-09 2015-06-03 南京工业大学 一种钙钛矿型电致发光器件及其制备方法
CN104795505A (zh) * 2015-04-09 2015-07-22 山西大同大学 一种有机发光二极管

Also Published As

Publication number Publication date
CN105679807A (zh) 2016-06-15
CN105679807B (zh) 2020-04-28
US20180151812A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
WO2017177507A1 (zh) Oled显示器件及其制作方法
US10510809B2 (en) OLED display
JP6805290B2 (ja) 発光素子、発光装置、電子機器および照明装置
US8507314B2 (en) Organic light emitting device and manufacturing method thereof
US10541276B2 (en) Double-sided organic light-emitting diode lighting panel
CN105938845B (zh) 显示器
WO2017190373A1 (zh) 自发光型显示装置及其制作方法
KR101458402B1 (ko) 유기전계 발광소자
EP2372805A2 (en) Organic light emitting diode device
US9099416B2 (en) Organic light-emitting device
US20140091287A1 (en) Organic el device, method for manufacturing the same, and electronic apparatus
JP2015216113A (ja) 発光装置、電子機器、及び照明装置
KR20160024349A (ko) 유기 발광 소자
US20160056404A1 (en) Organic light emitting diode and organic light emitting display device including the same
KR20110027484A (ko) 유기전계발광소자
US20140361257A1 (en) Organic light emitting diode display
KR101549262B1 (ko) 유기전계발광소자 및 그 제조방법
KR100862068B1 (ko) 단일 청색 호스트에 선택적 도핑 기법을 적용한 백색유기발광소자
JP5736935B2 (ja) 発光装置、表示装置および電子機器
US9590200B2 (en) Organic light emitting device, method of manufacturing the same, and organic light emitting display apparatus using the same
US11737343B2 (en) Method of manufacturing perovskite light emitting device by inkjet printing
KR20160082895A (ko) 유기 발광 소자와 그 제조 방법 및 그를 이용한 유기 발광 디스플레이 장치
KR101902414B1 (ko) 유기전계 발광소자 및 이의 제조 방법
KR101589744B1 (ko) 유기전계발광소자
KR20190022958A (ko) 유기 발광 표시 장치 및 이를 포함하는 평판 표시 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15120742

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898322

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898322

Country of ref document: EP

Kind code of ref document: A1