WO2017177458A1 - 无人飞行器的机架及无人飞行器 - Google Patents

无人飞行器的机架及无人飞行器 Download PDF

Info

Publication number
WO2017177458A1
WO2017177458A1 PCT/CN2016/079485 CN2016079485W WO2017177458A1 WO 2017177458 A1 WO2017177458 A1 WO 2017177458A1 CN 2016079485 W CN2016079485 W CN 2016079485W WO 2017177458 A1 WO2017177458 A1 WO 2017177458A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
aerial vehicle
rack
power
flight control
Prior art date
Application number
PCT/CN2016/079485
Other languages
English (en)
French (fr)
Inventor
陈星元
张永生
王佳迪
梁贵彬
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/079485 priority Critical patent/WO2017177458A1/zh
Priority to CN201680012476.4A priority patent/CN107466281B/zh
Publication of WO2017177458A1 publication Critical patent/WO2017177458A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/90Cooling
    • B64U20/96Cooling using air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/83Electronic components structurally integrated with aircraft elements, e.g. circuit boards carrying loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the present invention relates to the field of aircraft technology, and in particular, to a rack of an unmanned aerial vehicle and an unmanned aerial vehicle.
  • the unmanned aerial vehicle is a rapidly developing flying device that has the advantages of flexibility, quick response, no flight, and low operational requirements. At present, the scope of use of drones has been expanded to three major areas of military, scientific research and civil use.
  • the battery is used for power supply in the unmanned aerial vehicle, and the flight controller is used to control the flight.
  • the unmanned aerial vehicles in the prior art are generally powered by a lithium battery, and the power distribution circuit board is used to distribute electric energy to the respective rotors.
  • the power distribution board used is sometimes mounted as a structural member on the center frame of the aircraft, and sometimes the power of the battery is divided into individual rotors by simple welding.
  • As a structural member mounted on the center frame of the aircraft when subjected to a large external force, the circuit board is easily damaged, causing unnecessary loss to the user.
  • the disassembly and maintenance of the sub-circuit board is inconvenient.
  • the flight controller of the UAV needs to be installed by the user, and the installation position is relatively free and messy, and is not easy to install and maintain.
  • an embodiment of the present invention provides a rack of an unmanned aerial vehicle, including: a center frame, a power distribution circuit board, and a flight control installation component;
  • the center frame includes a top surface and a bottom surface opposite to the top surface;
  • One of the power distribution circuit board and the flight control mounting component is disposed on a top surface of the center frame, and the other one is disposed on a bottom surface of the center frame;
  • the center frame is detachably connected to the power distribution circuit board.
  • an embodiment of the present invention provides an unmanned aerial vehicle, including: a power system, and a rack of the unmanned aerial vehicle according to any one of the above;
  • the power system is mounted on a frame of the UAV and is electrically connected to the flight controller.
  • the unmanned aerial vehicle frame and the unmanned aerial vehicle provided by the embodiments of the present invention.
  • the rack of the unmanned aerial vehicle includes: a center frame, a power distribution circuit board, and a flight control mounting assembly; the center board includes a top surface and a bottom surface opposite to the top surface; the power distribution circuit board and the flight control mounting component One is disposed on a top surface of the center frame, and the other is disposed on a bottom surface of the center frame; the center frame is detachably connected to the power distribution circuit board. Since the flight controller assembly is mounted on the top or bottom of the center frame, the flight controller is installed in a position that is easy to install and maintain. And the center frame is detachably connected to the power distribution circuit board, so that the power distribution circuit board is not mounted on the center frame as a structural component, and is not easily damaged. And easy to disassemble and maintain.
  • FIG. 1 is a first schematic structural view of a rack of an unmanned aerial vehicle according to Embodiment 1 of the present invention
  • FIG. 2 is a second schematic structural diagram of a rack of an unmanned aerial vehicle according to Embodiment 1 of the present invention.
  • FIG. 3 is a first schematic structural diagram of a power distribution circuit board in a rack of an unmanned aerial vehicle according to Embodiment 2 of the present invention
  • FIG. 4 is a second schematic structural diagram of a power distribution circuit board in a rack of an unmanned aerial vehicle according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic exploded view showing the structure of a flight control mounting assembly in a rack of an unmanned aerial vehicle according to Embodiment 2 of the present invention
  • FIG. 6 is a schematic structural diagram of a lower cover of a power distribution circuit board in a rack of an unmanned aerial vehicle according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic structural view of a center frame upper cover in a rack of an unmanned aerial vehicle according to Embodiment 4 of the present invention.
  • Embodiment 8 is a schematic structural diagram of an unmanned aerial vehicle according to Embodiment 5 of the present invention.
  • Fig. 9 is a partially enlarged view of the A area and the B area in Fig. 8.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • Embodiment 1 of the present invention provides a rack of an unmanned aerial vehicle.
  • 1 is a first schematic structural view of a rack of an unmanned aerial vehicle according to a first embodiment of the present invention, which is shown from the bottom of a rack of an unmanned aerial vehicle.
  • FIG. 2 is a schematic view showing the second structure of the rack of the unmanned aerial vehicle according to the first embodiment of the present invention, which is a schematic structural view from the top of the rack of the unmanned aerial vehicle.
  • the structure of the rack of the UAV provided by the first embodiment of the present invention is not limited to the structure shown in FIGS. 1 and 2.
  • the combination of Fig. 1 and Fig. 2 is only a schematic diagram of one of the structures of the unmanned aerial vehicle frame.
  • the rack of the UAV provided by this embodiment includes: a center frame 1, a power distribution circuit board 2, and a flight control mounting assembly 3.
  • the center frame 1 includes a top surface and a bottom surface opposite to the top surface.
  • One of the power distribution circuit board 2 and the flight control mounting assembly 3 is disposed on the top surface of the center frame 1, and the other is disposed on the bottom surface of the center frame 1.
  • the center frame 1 and the power distribution circuit board 2 are detachably connected.
  • the center frame 1 can be a structure having a cavity, including a top surface and a bottom surface, and the top surface and the bottom surface are oppositely disposed.
  • the center frame 1 includes an upper support plate, a lower support plate, and a plurality of partition plates.
  • the upper support plate is spaced apart from the lower support plate.
  • the plurality of partitions are fixedly connected between the upper support plate and the lower support plate, and together with the upper support plate and the lower support plate form a plurality of battery compartments for accommodating the battery.
  • the center frame is not limited to the illustrated structure, and may be other structures, for example, the center frame is a hollow casing structure.
  • the flight control mounting assembly 3 can be disposed on the top surface of the center frame 1, and the power distribution circuit board 2 can be disposed on the bottom surface of the center frame 1.
  • the flight control mounting unit 3 may be disposed on the bottom surface of the center frame 1, and the power distribution circuit board 2 may be disposed on the top surface of the center frame 1.
  • the specific positions of the flying control mounting component 3 and the power distribution circuit board 2 disposed on the top surface or the bottom surface of the center frame 1 are not limited. If the flight control mounting component 3 and the power distribution circuit board 2 are relatively disposed, they are all disposed in the central area of the top surface or the bottom surface of the center frame 1. It is also possible to set the flight control mounting unit 3 and the power distribution circuit board 2 not to be oppositely arranged. If the flight control mounting assembly 3 can be disposed in the left side region of the top surface of the center frame 1, the power distribution circuit board 2 is disposed in the right side region of the bottom surface of the center frame 1.
  • the flight control mounting assembly 3 and the center frame 1 can be detachably connected.
  • Non-detachable connections are also possible. For example, welding, riveting, etc., this embodiment does not limit this.
  • the center frame 1 and the power distribution circuit board 2 are detachably connected.
  • it can be stuck, screwed, etc.
  • the rack of the UAV includes: a center frame 1, a power distribution circuit board 2, and a flight control mounting component 3.
  • the center frame 1 includes a top surface and a bottom surface opposite to the top surface.
  • Distribution board 2 One of the flight control mounting assemblies 3 is disposed on the top surface of the center frame 1, and the other is disposed on the bottom surface of the center frame 1.
  • the center frame 1 is detachably connected to the power distribution circuit board 2. Since the flight control mounting assembly 3 is mounted on the top or bottom surface of the center frame 1, the flight controller mounting position is determined, which is easy to install and maintain.
  • the center frame 1 and the power distribution circuit board 2 are detachably connected, so that the power distribution circuit board 2 is not mounted as a structural member on the center frame 1, and is not easily damaged. And easy to disassemble and maintain.
  • Embodiment 2 of the present invention provides a rack of an unmanned aerial vehicle.
  • 3 is a first schematic structural diagram of a power distribution circuit board in a rack of an unmanned aerial vehicle according to Embodiment 2 of the present invention. It is a structural exploded view of the electrical circuit board 2
  • FIG. 4 is a second structural schematic diagram of the power distribution circuit board in the rack of the unmanned aerial vehicle according to the second embodiment of the present invention, which is a power distribution circuit board 2 after installation.
  • FIG. 5 is a schematic exploded view showing the structure of the flight control mounting assembly 3 in the rack of the UAV provided by the second embodiment of the present invention.
  • the structure of the power distribution circuit board 2 of the rack of the unmanned aerial vehicle provided by the second embodiment of the present invention is not limited to the structure shown in FIGS. 3 and 4. 3 and 4 are only schematic structural views of one of the power-distributing circuit boards 2.
  • the structure of the flight control mounting assembly 3 of the rack of the UAV provided by the second embodiment of the present invention is not limited to the structure shown in FIG. As shown in FIG. 3, FIG. 4 and FIG. 5, the present embodiment further includes the following features on the basis of the technical solution provided in the first embodiment.
  • the center frame 1 and the power distribution circuit board 2 are fixedly connected by a connecting member.
  • the connectors can be threaded fasteners, pins, snaps, latches, and the like.
  • the number and position of the connecting members that the center frame 1 and the power distribution circuit board 2 are fixedly connected by the connecting member are not limited. If the number of the connectors is one, the connector can be disposed at the center of the substrate 21 of the power distribution circuit board 2. There may also be a plurality of connectors, as in FIG. 3, the center frame 1 and the power distribution circuit board 2 are fixedly connected by the power distribution circuit board fasteners 22 in the threaded fasteners. Specifically, a plurality of through holes may be spaced apart in the circumferential direction of the substrate 21 of the power distribution circuit board 2, and the power distribution circuit board 2 may be fixed to the center frame 1 by the power distribution circuit board fasteners 22. Specifically in the illustrated embodiment, the electrical circuit board fasteners 22 are mounting screws.
  • the center frame 1 and the power distribution circuit board 2 are fixedly connected by a connecting member.
  • the connectors can be threaded fasteners, pins, snaps, latches, and the like.
  • the connection structure of the center frame 1 and the power distribution circuit board 2 is simple and easy to install and disassemble.
  • the power distribution circuit board 2 is disposed on the bottom surface of the center frame 1, and is installed by flying control.
  • the assembly 3 is provided on the top surface of the center frame 1.
  • the center frame 1 may be a cylindrical cavity structure
  • the flight control mounting assembly 3 is disposed on the top surface of the center frame 1
  • the power distribution circuit board 2 is disposed on the bottom surface of the center frame 1.
  • the flight control mounting assembly 3 and the power distribution circuit board 2 are oppositely disposed in a central area of the top surface and the bottom surface.
  • the power distribution circuit board 2 is disposed on the bottom surface of the center frame 1
  • the flight control mounting component 3 is disposed on the top surface of the center frame 1 to facilitate the separation between the power distribution circuit board and the flight control mounting component, and other systems. Connection and wiring.
  • the rack of the UAV provided by the embodiment further includes: an elastic cushion 23, and the elastic cushion 23 is connected to the substrate 21 of the power distribution circuit board 2 to face the substrate 21 of the power distribution circuit board 2 Perform shock absorption.
  • the elastic cushion 23 can be made of an elastic material such as silica gel.
  • the elastic cushion 23 is connected to the substrate 21 of the power distribution circuit board 2, and specifically, an elastic cushion 23 is connected to both the upper surface and the lower surface of the substrate 21.
  • the substrate 21 of the electrical distribution circuit board 2 is provided with a buffer hole 24; the elastic cushion 23 is detachably connected to the substrate 21 by deformation through the buffer hole 24.
  • the substrate 21 has a central symmetrical structure, and a plurality of buffer holes 24 are provided uniformly on the substrate 21 in the circumferential direction of the substrate 21.
  • the upper and lower surfaces of the substrate 21 are blocked by the elastic cushion 23, which can more effectively mitigate the shock of the substrate 21.
  • the substrate 21 may have a center symmetrical structure such as a circle, a rectangle, a diamond, or the like.
  • the substrate may also be a non-central symmetric structure, such as an isosceles trapezoidal structure.
  • the substrate 21 is provided with a power control circuit, and a plurality of electrical interfaces are mounted on the substrate 21 and electrically connected to the power control circuit.
  • the power control circuit is configured to control the series-parallel relationship of the plurality of batteries, and distribute the total power after the plurality of battery strings are connected in parallel to the plurality of electrical interfaces.
  • the power control circuit distributes the total power to the plurality of electrical interfaces in a manner that the voltage is evenly distributed and the current is distributed as needed.
  • the number of the electrical interfaces may be the same as the number of the arm of the smart battery or the unmanned aerial vehicle, and may be six or other values, which is not limited in this embodiment.
  • a battery mounting position can be set on the center frame, and the smart battery is fixedly disposed in the battery mounting position.
  • a plurality of electrical interfaces may be detachably mounted on the substrate 21, and may be mounted on the substrate 21 in a non-removable manner, which is not limited in this embodiment.
  • the electrical interface includes a power interface 25 for electrically connecting to the positive and negative terminals of the battery, and a communication interface 26 for communicating with the control circuit in the battery.
  • the positive interface and the negative interface of the power interface 25 can be separated, and each set of the power interface 25 includes a positive power interface and a negative power supply interface. They are disposed at intervals at the edge of the substrate 21.
  • the power source interface 25 can be uniformly disposed at the edge of the substrate 21 in groups.
  • the communication interface 26 can be uniformly disposed inside the power interface 25 in the circumferential direction of the substrate 21.
  • the substrate 21 is provided with a flight control signal interface 27, and the flight control mounting assembly 3 includes a flight controller 31, and the flight control signal interface 27 is communicatively coupled to the flight controller 31.
  • the flight control signal interface 27 can be disposed at the center of the substrate 21 to minimize the difficulty in connecting the flight control signal interface 27 to the flight controller 31.
  • the substrate 21 is provided with a plurality of electrical connection terminals for electrical connection with a plurality of arms.
  • the ESC connection terminal includes an ESC signal interface 28 for communication connection with the ESC communication interface, so that the ESC is communicatively coupled to the flight controller 31 through the sub-circuit board 2.
  • the ESC connection terminal includes an ESC power supply interface 29 for electrically connecting to the ESC power interface to supply power to the ESC.
  • a plurality of ESC connection terminals may be detachably mounted on the substrate 21, such as a screw connection. It can also be mounted on the substrate 21 in a non-removable manner, such as the manner of soldering, which is not limited in this embodiment.
  • a plurality of electrically connected connection terminals may be disposed on the lower surface of the substrate 21.
  • the ESC power supply interface 29 can be disposed on the substrate 21 in the circumferential direction of the substrate 21. lower surface.
  • the ESC power supply interface 29 can be uniformly disposed on the lower surface of the substrate 21 in the circumferential direction of the substrate 21.
  • the ESC signal interface 28 is disposed on the inner side of the ESC power supply interface 29 in the circumferential direction of the substrate 21.
  • the ESC signal interface 28 can be evenly disposed inside the ESC power supply interface 29 along the circumferential direction of the substrate 21.
  • the user sends a control signal to the flight controller 31 via the remote controller, and the flight controller 31 transmits a control signal to the ESC via the flight control signal interface 27 and the ESC signal interface 28.
  • the ESC sends a drive signal to the motor that is electrically connected according to the control signal, and drives the motor to change the rotational speed, steering and other parameters to change the motion state of the UAV.
  • At least one expansion interface is provided on the substrate 21, and the expansion interface is used for electrical connection with the external device.
  • the expansion interface can provide 18 volts, 22 volts and other DC power supplies to power the mounted components of the UAV.
  • At least one expansion interface is provided on the substrate 21.
  • the installation position of the expansion interface and the manner of connection with the substrate 21 are not limited.
  • the first expansion interface 210 and the third expansion interface 212 are disposed on the lower surface of the substrate 21, and the second expansion interface 211 is disposed on the upper surface of the substrate 21.
  • External devices can be equipment such as pan/tilt, cameras, and cameras.
  • the substrate 21 is provided with at least one expansion interface, and the expansion interface is used for electrical connection with the external device, and the external interface is reserved for the external device, so that the UAV chassis can meet different application scenarios.
  • the rack of the UAV provided by the embodiment further includes an insulating protective layer 213.
  • the insulating protective layer 213 is provided with a hollow window, and the insulating protective layer 213 is adhered to the lower surface of the substrate 21.
  • the shape of the insulating protective layer 213 is the same as the shape of the substrate 21.
  • the insulating protective layer 213 is an insulating protective cotton layer. In other embodiments, the insulating protective layer 213 may also be an insulating rubber layer.
  • the substrate 21 since a plurality of electrical connection terminals, at least one expansion interface, and an elastic cushion 23 are disposed on the lower surface of the substrate 21, in order to insulate and protect the electrical circuit board 2, the substrate 21 is provided.
  • the lower surface is bonded to the insulating protective layer 213.
  • a hollow window is formed on the insulating protective layer 213.
  • the hollow window can be used for the interface, the connecting member, the elastic cushion 23 and the like.
  • the shape of the exposed hollow window is not limited in this embodiment. As shown in FIG.
  • the shape of the insulating protective layer 213 is circular, and the hollow window includes an arrow type hollow window and a hollow window recessed from the edge toward the center, and an arrow type hollow window Distributed in the radial direction on the insulating protective layer 213, the head is in a direction away from the center of the circle, and the tail is in the direction of the center of the circle. Between the adjacent arrow-shaped hollow windows is a hollow window that is recessed from the edge toward the center.
  • the elastic cushion 23 is exposed at the head of the arrow, and the electrical signal interface 28 is exposed at the tail of the arrow-type hollow window, and the ESC power supply interface 29 is exposed at the hollow window recessed from the edge toward the center.
  • the rack of the unmanned aerial vehicle provided in this embodiment further includes an insulating protective layer 213.
  • the insulating protective layer 213 is provided with a hollow window, and the insulating protective layer 213 is adhered to the lower surface of the substrate 21.
  • the circuit board 2 can be insulated and protected to improve the safety of the circuit board 2.
  • the flight control mounting assembly 3 further includes a flight control mounting plate 32 fixedly disposed on the top surface of the center frame 1, and the flight controller 31 is fixedly disposed on the upper surface of the flight control mounting plate 32.
  • the flight control mounting plate 32 and the center frame 1 are detachably connected by a connecting member, and the connecting member includes at least one of the following: a threaded fastener, a pin, a buckle 41, and a latch.
  • Non-detachable connections are also possible, such as welding, riveting, and the like.
  • the manner in which the flight controller 31 is fixedly coupled to the flight control mounting plate 32 may be screwed, snapped, bonded, or the like.
  • the flight control mounting plate 32 can be fixedly disposed at a central portion of the top surface of the center frame 1.
  • the flight controller 31 can be fixedly disposed at a central portion of the upper surface of the flight control mounting plate 32.
  • the flight control mounting plate 32 includes a center plate 321 , and the flight controller 31 is fixedly disposed on the upper surface of the center plate 321 .
  • the center plate 321 extends outwardly from the plurality of side plates 322, and the flight control mounting plate 32 and the center frame 1 are detachably connected through the side plates 322.
  • the flight control mounting plate 32 and the center frame 1 are screwed and fixed by the through holes of the side plates 322 and the fly control mounting plate locking members 33.
  • the flight control mounting plate locking member 33 is a locking screw.
  • the control panel locking member 33 can also be a latch, a buckle, or the like.
  • the flight controller is bonded to the upper surface of the center plate 321 .
  • the flight controller 31 may be bonded to the upper surface of the center plate 321 by a double-sided tape 34.
  • the center plate 321 of the flight control mounting plate 32 has a rectangular structure
  • the flight controller 31 has a rectangular structure
  • the flight controller 31 is fixedly disposed on the upper surface of the center plate 321.
  • Four side plates 322 are extended from the four sides of the center plate 321 , and through holes are provided in each of the side plates 322 , and the flight control mounting plate 32 is passed through the through holes of the side plates 322 and the fly control mounting plate locking members 33 . It is fixed to the top surface of the center frame 1.
  • the flight control mounting plate 32 includes a center plate 321 and the flight controller 31 is fixedly disposed. On the upper surface of the center plate 321.
  • the center plate 321 extends outwardly from the plurality of side plates 322, and the flight control mounting plate 32 and the center frame 1 are detachably connected through the side plates 322.
  • the flight control mounting plate 32 and the center frame 1 are screwed and fixed by the through holes of the side plates 322 and the fly control mounting plate locking members 33.
  • the flight controller 31 is bonded to the upper surface of the center plate 321.
  • the flight controller 31 is made easier to disassemble and maintain.
  • the flight control mounting assembly 3 further includes a fly control locking bracket 35 and a flight control locking member 36.
  • the flight control locking bracket 35 presses the flight controller 31 against the flight control mounting plate 32.
  • the flight control locking member 36 detachably fixes the flight control locking bracket 35 to the flight control mounting plate 32.
  • the shape of the flight control locking bracket 35 can be set according to the shape of the flight controller 31, and matched with the shape of the flight controller 31, so that the flight control locking bracket 35 can press the flight controller 31. Close to the flight control mounting plate 32.
  • the flight control locking member 36 can be a threaded fastener, a pin, a buckle, a latch, or the like.
  • the fly control locking bracket 35 is detachably fixed to the flight control mounting plate 32.
  • the flight control locking bracket 35 is formed by sequentially connecting the first side strip, the first top strip and the second side strip, the first side strip and the second side.
  • the lower end of the strip is symmetrically disposed with a through hole, the first top strip abuts against the upper surface of the flight controller 31, and the flyweight locking member 36 is locked to the side of the flight control mounting plate 32 through the through hole.
  • the flight control locking bracket 35 is formed by sequentially connecting the first side strip, the first top strip, and the first side strip.
  • the angle between the first side strip and the first top strip is 90 degrees
  • the angle between the first top strip and the second side strip is 90 degrees.
  • the flight control locking bracket 35 has a frame structure.
  • a through hole is symmetrically disposed at a lower end of the first side strip and the second side strip, and the fly control locking bracket 35 is pressed against the flight controller 31, that is, the first top strip is abutted on the upper surface of the flight controller 31, The one side strip and the second side strip abut against the side of the flight controller 31. Then, the fly control locking member 36 is locked to the side of the flight control mounting plate 32 through the through hole.
  • the flight control mounting assembly 3 further includes a flight control locking bracket 35 and a flight control locking member 36.
  • the flight control locking bracket 35 presses the flight controller 31 against the flight control mounting plate 32.
  • the flight control locking member 36 detachably fixes the flight control locking bracket 35 to the flight control mounting plate 32.
  • the flight controller 31 is more securely fixed to the center frame 1, thereby making the entire UAV frame more stable.
  • the flight control locking bracket 35 is formed by sequentially connecting the first side strip, the first top strip, and the first side strip.
  • the lower ends of the first side strip and the second side strip are symmetrically disposed with a through hole, the first top strip abuts against the upper surface of the flight controller 31, and the fly control locking member 36 is locked to the flight control mounting plate 32 through the through hole. side surface.
  • the rack of the UAV provided by the embodiment further includes a first thermal conductive silica gel 37.
  • the first thermal conductive silicone 37 is disposed between the fly-controlled locking bracket 35 and the upper surface of the flight controller 31.
  • the first thermal conductive silica gel 37 may be a strip structure having the same size as the first top strip.
  • the first thermal conductive silicone 37 is disposed between the flight control locking bracket 35 and the upper surface of the flight controller 31, so that the first top strip of the flight control locking bracket 35 and the flight controller 31 are non-hard contact, and Excessively through the thermal silica gel, both the locking of the flight controller 31 and the appearance of the flight controller 31 can be protected, and the heat generated by the flight controller 31 can be transmitted to the flight control locking bracket 35, enhancing The heat dissipation function of the flight controller 31.
  • the flight control installation component 3 further includes a power management module 38, and the power management module 38 is electrically connected to the flight controller 31 and the power distribution circuit board 2, respectively.
  • the power management module 38 is fixedly disposed below the flight control mounting board 32.
  • the power management module 38 is configured to manage power of a plurality of smart batteries. It can be fixedly disposed under the flight control mounting plate 32 in a detachable manner.
  • the flight control installation component 3 further includes a power management module mounting board 39.
  • the power management module mounting board 39 is fixedly disposed on the lower surface of the flight control mounting board 32, and the power management module 38 is fixedly disposed under the power management module mounting board 39. surface.
  • the power management module mounting plate 39 is fixedly disposed on the lower surface of the flight control mounting plate 32 in a detachable manner, and specifically may be disposed on the lower surface of the center plate 321 of the flight control mounting plate 32.
  • the power management module 38 is fixedly disposed on the lower surface of the power management module mounting board 39 in a detachable manner, and specifically may be disposed in a central area of the lower surface of the power management module mounting board 39.
  • the circumferential edge of the power management module mounting board 39 is provided with a through hole, and the power management module mounting board 39 and the flight control mounting board 32 pass through the through hole and the power management module mounting board.
  • the locking member 310 is screwed and fixed.
  • the power management module mounting board 39 may have a rectangular structure, and through holes may be disposed on each side of the power management module mounting board 39, and each power management module mounting board locking member 310 passes through the through hole and the flight control The mounting plate 32 is screwed and fixed.
  • the flight control mounting assembly 3 further includes a power management module locking bracket 311 and a power tube The module locking member 312.
  • the power management module locking bracket 311 presses the power management module 38 against the power management module mounting board 39.
  • the power management module locking member 312 detachably fixes the power management module locking bracket 311 on the power management module mounting board 39.
  • the shape of the power management module locking bracket 311 can be set according to the shape of the power management module 38 to match the shape of the power management module 38.
  • the power management module locking bracket 311 is enabled to press the power management module 38 against the power management module mounting plate 39.
  • the power management module locking bracket 311 can be a threaded fastener, a pin, a buckle, a latch, or the like.
  • the power management module locking bracket 311 is detachably fixed to the power management module 38.
  • the power management module locking bracket 311 is formed by sequentially connecting the third side strip, the first bottom strip, and the fourth side strip.
  • the upper ends of the third side strip and the fourth side strip are symmetrically provided with through holes.
  • the first bottom bar abuts against the lower surface of the power management module 38, and the power management module locking member 312 is locked to the side of the power management module mounting plate 39 through the through hole.
  • the power management module locking bracket 311 is formed by sequentially connecting the third side strip, the first bottom strip, and the fourth side strip.
  • the angle between the third side strip and the first bottom strip is 90 degrees
  • the angle between the first bottom strip and the fourth side strip is 90 degrees.
  • the power management module locking bracket 311 is a frame-shaped structure, and a through hole is symmetrically disposed at a lower end of the third side strip and the fourth side strip, and the power management module locking bracket 311 is pressed against the power management module 38, that is, the first A bottom strip abuts the lower surface of the power management module 38, and the third side strip and the fourth side strip abut against the side of the power management module 38. Then, the power management module locking member 312 is locked to the side of the power management module mounting plate 39 through the through hole.
  • the flight control mounting assembly 3 further includes a power management module locking bracket 311 and a power management module locking member 312.
  • the power management module locking bracket 311 presses the power management module 38 against the power management module mounting board 39.
  • the power management module locking member 312 detachably fixes the power management module locking bracket 311 on the power management module mounting board 39.
  • the power management module 38 is more securely attached to the flight control mounting plate 32, thereby making the entire UAV rack more stable.
  • the power management module locking bracket 311 is formed by sequentially connecting the third side strip, the first bottom strip, and the fourth side strip.
  • the upper ends of the third side strip and the fourth side strip are symmetrically provided with through holes.
  • the first bottom strip abuts the lower surface of the power management module 38.
  • the power management module locking member 312 is locked to the side of the power management module mounting plate 39 through the through hole.
  • the power management module mounting board 39 is provided with heat dissipation fins 313.
  • the heat dissipation fins 313 may be disposed on the upper surface of the power management module mounting plate 39, or the heat dissipation fins 313 may be disposed on the upper and lower surfaces.
  • the power management module mounting board 39 is provided with heat dissipation fins 313 to improve the heat dissipation effect of the power management module 38.
  • the rack of the UAV provided by the embodiment further includes a second thermal conductive silicone 314 disposed between the power management module locking bracket 311 and the lower surface of the power management module 38.
  • the second thermal conductive silicone 314 may be a strip structure of the same size as the first bottom strip.
  • the second thermal conductive silicone 314 is disposed between the power management module locking bracket 311 and the lower surface of the power management module 38 to make non-hard contact between the first bottom strip of the power management module locking bracket 311 and the power management module 38.
  • the thermal conduction of the silicone is excessive, which ensures that the power management module 38 can be locked, and the appearance of the power management module 38 can be protected, and the heat generated by the power management module 38 can be transmitted to the power management module locking bracket 311.
  • the heat dissipation function of the power management module 38 is enhanced.
  • the power management module 38 further includes a plug 315.
  • the flight control mounting assembly 3 further includes a plug locking member 316 and a plug locking member 317.
  • the plug locking member 316 locks the plug 315 to the lower surface of the power management module locking bracket 311 through the plug locking member 317.
  • the plug 315 extended by the power management module 38 is partially suspended.
  • the flight control mounting assembly 3 further includes: a plug locking member 316 and a plug locking. Item 317.
  • the plug locking member 316 locks the plug 315 to the lower surface of the power management module locking bracket 311 through the plug locking member 317.
  • Embodiment 3 of the present invention provides a rack of an unmanned aerial vehicle.
  • FIG. 6 is a schematic structural diagram of a lower cover of a power distribution circuit board in a rack of an unmanned aerial vehicle according to Embodiment 3 of the present invention. As shown in FIG. 6, this embodiment is based on the technical solution provided in the first embodiment or the second embodiment, and further refines the frame structure of the unmanned aerial vehicle.
  • the rack of the UAV provided by the embodiment further includes the following knot Structure.
  • the rack of the UAV provided by the embodiment further includes a power distribution circuit board lower cover 4.
  • the power distribution circuit board lower cover 4 is disposed below the power distribution circuit board 2 and is fixedly coupled to the power distribution circuit board 2.
  • the shape of the lower cover 4 of the power distribution circuit board is not limited, and only needs to be matched with the shape of the power distribution circuit board 2.
  • One or more clips 41 may be disposed in the circumferential direction of the inner side of the lower cover 4 of the power distribution circuit board, and the lower cover of the power distribution circuit board 2 may be fixedly disposed below the power distribution circuit board 2 by the buckle 41.
  • the rack of the UAV provided by this embodiment further includes a power distribution circuit board lower cover 4.
  • the power distribution circuit board lower cover 4 is disposed below the power distribution circuit board 2 and is fixedly coupled to the power distribution circuit board 2.
  • the power distribution circuit board 2 can be further protected from damage to the power distribution circuit board 2.
  • Embodiment 4 of the present invention provides a rack of an unmanned aerial vehicle.
  • FIG. 7 is a schematic structural view of a center frame upper cover in a rack of an unmanned aerial vehicle according to Embodiment 4 of the present invention. As shown in FIG. 7 , this embodiment is based on the technical solutions provided in the first embodiment or the second embodiment or the third embodiment, and further refines the frame structure of the unmanned aerial vehicle.
  • the rack of the UAV provided by the embodiment further includes the following structure.
  • the rack of the UAV provided by the embodiment further includes a center frame upper cover 5 covering the flight controller 31 and fixedly connected to the center frame 1.
  • the shape of the center frame upper cover 5 is not limited, and only needs to match the shape of the flight controller 31. If the shape of the flight controller 31 is rectangular, the shape of the center frame upper cover 5 may be hexagonal. .
  • the center frame upper cover 5 covers the flight controller 31 and is detachably connectable to the center frame 1. For example, it can be screwed, snapped, etc.
  • the rack of the UAV provided by the embodiment further includes a center frame upper cover 5, and the center frame upper cover 5 covers the flight controller 31 and is fixedly connected to the center frame 1.
  • the flight controller 31 can be protected from damage to the flight controller 31.
  • a diffuser fan is built in the top of the center frame upper cover 5, and the heat radiating fan 51 is electrically connected to the flight controller 31.
  • the side of the diffuser fan is provided with an air guiding passage 52 and an air exhausting hole 53.
  • a diffusing fan may be built in the top of the upper cover of the center frame 1, and the cooling fan 51 is electrically connected to the flight controller 31 to obtain electric energy from the flight controller 31.
  • An air guiding passage 52 is provided on one side of the air diffusing fan, and an air exhausting hole 53 is provided in a side surface of the air guiding passage 52 in the outward extending direction.
  • the flight controller 31 can be effectively dissipated.
  • an anti-slip structure 54 is respectively disposed on two side surfaces of the center frame upper cover 5 adjacent to the air exhaust hole 53.
  • the anti-slip structure 54 may be a non-slip bump or other non-slip structure, which is not limited in this embodiment.
  • the two sides of the center frame upper cover 5 adjacent to the air venting opening 53 are respectively provided with an anti-slip structure 54 for facilitating disassembly and maintenance of the center frame upper cover 5.
  • Embodiment 5 of the present invention provides an unmanned aerial vehicle.
  • FIG. 8 is a schematic structural diagram of an unmanned aerial vehicle according to Embodiment 5 of the present invention.
  • the unmanned aerial vehicle provided in this embodiment includes: a power system, and a rack of the unmanned aerial vehicle provided by any of the above embodiments.
  • the power system is installed on the frame of the unmanned aerial vehicle and is electrically connected to the flight controller.
  • the structure and function of the rack of the unmanned aerial vehicle in the unmanned aerial vehicle are the same as those of the unmanned aerial vehicle frame in any of the first embodiment to the fourth embodiment, and Repeat them one by one.
  • the power system is mounted on the frame of the unmanned aerial vehicle and is electrically connected to the flight controller.
  • the user sends a control signal to the flight controller through the remote controller, and the flight controller controls the parameters in the power system according to the control signal to change the motion state of the unmanned aerial vehicle.
  • the unmanned aerial vehicle provided in this embodiment includes: the power system 7, and the rack of the unmanned aerial vehicle provided by any of the above embodiments.
  • the power system 7 is mounted on the frame of the UAV and is electrically connected to the flight controller.
  • the rack of the unmanned aerial vehicle includes: a center frame, a power distribution circuit board, and a flight control mounting assembly; the center board includes a top surface and a bottom surface opposite to the top surface; the power distribution circuit board and the flight control mounting component One is disposed on a top surface of the center frame, and the other is disposed on a bottom surface of the center frame; the center frame is detachably connected to the power distribution circuit board.
  • the flight controller assembly is mounted on the top or bottom of the center frame, the flight controller is installed in a position that is easy to install and maintain.
  • the center frame is detachably connected to the power distribution circuit board, so that the power distribution circuit board is not mounted on the center frame as a structural component, and is not easily damaged. And easy to disassemble and maintain.
  • the unmanned aerial vehicle frame further includes an arm 6 connected to the center frame 1.
  • the power system 7 includes a power unit that provides flight power, and the power unit is mounted on the arm 6.
  • the center frame 1 of the unmanned aerial vehicle frame can be detachably connected to the arm 6 .
  • the center frame 1 and the arm 6 are fixedly connected by a connecting member.
  • the connecting member can be any one of a threaded fastener, a pin, a buckle, and a latch.
  • the power system 7 includes a power unit, and the power unit is mounted on the arm 6. The specific mounting manner is not limited in this embodiment.
  • the power unit includes a propeller 71 and a motor 72 that drives the rotation of the propeller 71.
  • the propeller 71 and the motor 72 that drives the propeller 71 to rotate may be disposed at the end of each of the arms 6.
  • the power system 7 further includes an ESC 73 that is electrically coupled to the motor 72 for controlling the operating state of the motor 72.
  • the ESC 73 is electrically connected to the motor 72 for controlling the operating state of the motor 72, such as controlling the rotational speed, steering, and the like of the motor 72.
  • the motor 72 is mounted on the motor block, the motor mount 63 is fixed to the arm 6, and the ESC 73 is mounted in the motor mount 63.
  • FIG. 9 is a partial enlarged view of the A area and the B area in FIG.
  • the ESC 73 is mounted on a plurality of arms and is electrically connected to a plurality of ESC 73 connection terminals on the substrate, respectively.
  • the ESC 73 includes a communication interface, and the communication interface of the ESC 73 is communicatively coupled to the ESC signal interface 28 on the substrate, such that the ESC is communicatively coupled to the flight controller 31 via the sub-circuit board 2.
  • the ESC includes a power interface, and the power interface of the ESC is electrically connected to the ESC interface 29 on the substrate 21 to supply power to the ESC.
  • an ESC can be disposed on the plurality of arms 6, and the ESCs are electrically connected to the ESC terminals on the substrate, respectively.
  • a communication interface and a power interface are provided on the ESC, and the ESC interface 28 in the ESC connection terminal provided on the substrate 21 is communicatively connected with the communication interface provided on the ESC, so that the ESC passes
  • the electrical circuit board 2 is communicatively coupled to the flight controller 31.
  • the ESC power supply interface 29 of the ESC connection terminal provided on the substrate 21 is electrically connected to the power port provided on the ESC to supply power to the ESC.
  • the setting manner of the electrical connection terminal on the substrate 21 It is the same as that in the second embodiment, and the configuration of the communication interface and the power interface on the ESC is not limited in this embodiment.
  • the unmanned aerial vehicle provided in this embodiment is electrically mounted on a plurality of arm arms and electrically connected to a plurality of electrically adjustable connection terminals on the substrate.
  • the ESC includes a communication interface, and the ESC communication interface 71 is communicatively coupled to the ESC signal interface 28 on the substrate, such that the ESC is communicatively coupled to the flight controller 31 via the sub-circuit board 2.
  • the ESC includes a power interface, and the power interface 72 of the ESC is electrically connected to the ESC interface 29 on the substrate 21 to supply power to the ESC.
  • the layout of the entire UAV is more compact, which in turn makes the UAV more stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Toys (AREA)

Abstract

一种无人飞行器的机架,包括:中心架(1)、分电电路板(2)及飞控安装组件(3);所述中心架(1)包括顶面以及与所述顶面相对的底面;所述分电电路板(2)及所述飞控安装组件(3)中的一个设于所述中心架(1)的顶面,另外一个设于所述中心架(1)的底面;其中,所述中心架(1)与所述分电电路板(2)可拆卸连接。提供的无人飞行器的机架和无人飞行器,由于飞控安装组件(3)安装在中心架(1)的顶面或底面,使飞行控制器(31)安装位置确定,易于安装和维护。并且中心架(1)与分电电路板(2)可拆卸连接,使分电电路板(2)不作为结构件安装于中心架(1)上,不易受损,并且便于拆装和维护。

Description

无人飞行器的机架及无人飞行器 技术领域
本发明涉及飞行器技术领域,尤其涉及一种无人飞行器的机架及无人飞行器。
背景技术
无人飞行器,是一种处于迅速发展中的飞行装置,其具有机动灵活、反应快速、无人飞行、操作要求低的优点。目前,无人机的使用范围已经扩宽到军事、科研、民用三大领域。在无人飞行器中采用电池进行供电,采用飞行控制器控制飞行。
在现有技术中的无人飞行器一般采用锂电池供电,采用分电电路板分配电能到各个旋翼。所用的分电电路板有时候是作为结构件安装于飞行器的中心架上,有时候采用简单的焊接方式将电池的电能分到各个旋翼。作为结构件安装于飞行器的中心架上,在受到较大外力作用时,使得分电电路板容易受损,给用户带来不必要的损失。采用简单的焊接方式时,分电电路板的拆装和维护较为不便。
在现有技术中,无人飞行器的飞行控制器需要用户自行安装,安装位置较为自由杂乱,不容易安装和维护。
发明内容
第一方面,本发明实施例提供一种无人飞行器的机架,包括:中心架、分电电路板及飞控安装组件;
所述中心架包括顶面以及与所述顶面相对的底面;
所述分电电路板及所述飞控安装组件中的一个设于所述中心架的顶面,另外一个设于所述中心架的底面;
其中,所述中心架与所述分电电路板可拆卸连接。
第二方面,本发明实施例提供一种无人飞行器,包括:动力系统、及上述任一项所述的无人飞行器的机架;
其中,所述动力系统安装在所述无人飞行器的机架上,并且与所述飞行控制器电连接。
本发明实施例提供的无人飞行器的机架和无人飞行器。在无人飞行器的机架中包括:中心架、分电电路板及飞控安装组件;中心板包括顶面以及与所述顶面相对的底面;分电电路板及所述飞控安装组件中的一个设于所述中心架的顶面,另外一个设于所述中心架的底面;中心架与所述分电电路板可拆卸连接。由于飞行控制器组件安装在中心架的顶面或底面,使飞行控制器安装位置确定,易于安装和维护。并且中心架与所述分电电路板可拆卸连接,使分电电路板不作为结构件安装于中心架上,不易受损。并且便于拆装和维护。
附图说明
图1为本发明实施例一提供的无人飞行器的机架的第一结构示意图;
图2为本发明实施例一提供的无人飞行器的机架的第二结构示意图;
图3为本发明实施例二提供的无人飞行器的机架中的分电电路板的第一结构示意图;
图4为本发明实施例二提供的无人飞行器的机架中的分电电路板的第二结构示意图;
图5为本发明实施例二提供的无人飞行器的机架中的飞控安装组件的结构爆炸示意图;
图6为本发明实施例三提供的无人飞行器的机架中分电电路板下盖的结构示意图;
图7为本发明实施例四提供的无人飞行器的机架中中心架上盖的结构示意图;
图8为本发明实施例五提供的无人飞行器的结构示意图;
图9为图8中的A区域和B区域的局部放大图。
附图标记:
1-中心架 2-分电电路板 21-基板 22-分电电路板紧固件 23-弹 性减震垫 24-缓冲孔 25-电源接口 26-通信接口 27-飞控信号接口 28-电调信号接口 29-电调供电接口 210-第一扩展接口 211-第二扩展接口 212-第三扩展接口 213-绝缘保护层 3-飞控安装组件 31-飞行控制器 32-飞控安装板 321-中心板 322-侧板 33-飞控安装板锁紧件 34-双面胶 35-飞控锁紧支架 36-飞控锁紧件 37-第一导热硅胶 38-电源管理模块 39-电源管理模块安装板 310-电源管理模块安装板锁紧件 311-电源管理模块锁紧支架 312-电源管理模块锁紧件 313-散热鳍片 314-第二导热硅胶 315-插头 316-插头锁紧件 317-插头锁紧件 4-分电电路板下盖 41-卡扣 5-中心架上盖 51-散风风扇 52-导风通道 53-排风孔 54-防滑结构 6-机臂 63-电机安装座 7-动力系统 71-螺旋桨 72-电机 73-电调
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
实施例一
本发明实施例一提供一种无人飞行器的机架。图1为本发明实施例一提供的无人飞行器的机架的第一结构示意图,其表示从无人飞行器的机架的底 部仰视的结构示意图,图2为本发明实施例一提供的无人飞行器的机架的第二结构示意图,其表示从无人飞行器的机架的顶部俯视的结构示意图。本发明实施例一提供的无人飞行器的机架的结构并不限定于图1和图2中所示的结构。图1和图2相结合只是无人飞行器的机架的其中一种结构的示意图。
如图1和图2所示,本实施例提供的无人飞行器的机架包括:中心架1、分电电路板2及飞控安装组件3。
其中,中心架1包括顶面以及与顶面相对的底面。分电电路板2及飞控安装组件3中的一个设于中心架1的顶面,另外一个设于中心架1的底面;中心架1与分电电路板2可拆卸连接。
本实施例中,中心架1可以为一具有腔体的结构,包括顶面和底面,顶面和底面相对设置。具体地,中心架1包括上支撑板、下支撑板、多个隔板。所述上支撑板与所述下支撑板相对间隔设置。所述多个隔板固定连接于所述上支撑板与所述下支撑板之间,并且与上支撑板及下支撑板共同围成多个用于容纳电池的电池仓。当然,在本发明中,中心架不限于图示的结构,也可以为其他结构,例如,中心架为中空的壳体结构。
可以理解,可将飞控安装组件3设于中心架1的顶面,将分电电路板2设于中心架1的底面。或者,可将飞控安装组件3设于中心架1的底面,将分电电路板2设于中心架1的顶面。
本实施例中,对飞控安装组件3、分电电路板2设于中心架1的顶面或底面的具体位置不进行限定。如可将飞控安装组件3、分电电路板2进行相对设置,均设于中心架1顶面或底面的中部区域。也可将飞控安装组件3、分电电路板2不进行相对设置。如可将飞控安装组件3设置在中心架1的顶面的左侧区域,将分电电路板2设置在中心架1的底面的右侧区域。
本实施例中,飞控安装组件3与中心架1可以进行可拆卸连接。如卡接、螺接等。也可进行不可拆卸连接。如焊接、铆接等,本实施例对此不做限定。
本实施例中,中心架1与分电电路板2可拆卸连接。如可以为卡接、螺接等。
本实施例提供的无人飞行器的机架,包括:中心架1、分电电路板2及飞控安装组件3。中心架1包括顶面以及与顶面相对的底面。分电电路板2 及飞控安装组件3中的一个设于中心架1的顶面,另外一个设于中心架1的底面。中心架1与分电电路板2可拆卸连接。由于飞控安装组件3安装在中心架1的顶面或底面,使飞行控制器安装位置确定,易于安装和维护。并且中心架1与分电电路板2可拆卸连接,使分电电路板2不作为结构件安装于中心架1上,不易受损。并且便于拆装和维护。
实施例二
本发明实施例二提供一种无人飞行器的机架。图3为本发明实施例二提供的无人飞行器的机架中的分电电路板的第一结构示意图。其为分电电路板2的结构爆炸图,图4为本发明实施例二提供的无人飞行器的机架中的分电电路板的第二结构示意图,其为安装后的分电电路板2的仰视图。图5为本发明实施例二提供的无人飞行器的机架中的飞控安装组件3的结构爆炸示意图。本发明实施例二提供的无人飞行器的机架的分电电路板2的结构并不限定于图3和图4中所示的结构。图3和图4只是其中一种分电电路板2的结构示意图。本发明实施例二提供的无人飞行器的机架的飞控安装组件3的结构并不限定于图5中所示的结构。如图3、图4和图5所示,本实施例在实施例一提供的技术方案的基础上,还包括以下特征。
进一步地,本实施例中,中心架1与分电电路板2通过连接件固定连接。例如,连接件可以为螺纹紧固件,销钉,卡扣,插销等。
具体地,本实施例中,中心架1与分电电路板2通过连接件固定连接的连接件的个数和位置不做限定。如连接件为一个,则可将连接件设置在分电电路板2的基板21的中心位置。连接件也可为多个,如在图3中,中心架1与分电电路板2通过螺纹紧固件中的分电电路板紧固件22固定连接。具体地,可在分电电路板2的基板21的周向上间隔设置多个通孔,通过分电电路板紧固件22将分电电路板2固定在中心架1上。具体在图示的实施例中,分电电路板紧固件22为安装螺丝。
本实施例中,中心架1与分电电路板2通过连接件固定连接。例如,连接件可以为螺纹紧固件,销钉,卡扣,插销等。使中心架1与分电电路板2的连接结构简单,易于安装和拆卸。
进一步地,本实施例中,分电电路板2设于中心架1的底面,飞控安装 组件3设于中心架1的顶面。
具体地,本实施例中,中心架1可以为柱形的腔体结构,将飞控安装组件3设于中心架1的顶面,分电电路板2设于中心架1的底面。飞控安装组件3、分电电路板2相对设置在顶面、底面的中心区域。
本实施例中,将分电电路板2设于中心架1的底面,飞控安装组件3设于中心架1的顶面,便于分电电路板与飞控安装组件、及其他系统之间的连接和布线。
进一步地,本实施例提供的无人飞行器的机架,还包括:弹性减震垫23,弹性减震垫23与分电电路板2的基板21连接,以对分电电路板2的基板21进行减震。
具体地,本实施例中,弹性减震垫23可由硅胶等弹性材料制成。弹性减震垫23与分电电路板2的基板21连接,具体可在基板21的上面和下面均连接有弹性减震垫23。以在无人飞行器的机架受力变形时不会影响到分电电路板2,对分电电路板2的基板21进行减震。
优选地,分电电路板2的基板21上设有缓冲孔24;弹性减震垫23通过形变穿过缓冲孔24,与基板21可拆卸连接。
可以理解,基板21为中心对称结构,缓冲孔24为多个,并沿基板21的周向方向均匀地设置在基板21上。在无人飞行器的机架受力变形时,基板21的上面和下面具有弹性减震垫23的阻挡,能对基板21起到更有效的减震作用。
例如,基板21可以为圆形、矩形、菱形等中心对称结构。当然,在本发明中的其他实施例中,基板也可以为非中心对称结构,例如,等腰梯形结构。
进一步地,本实施例中,基板21设有电源控制电路,多个电接口安装在基板21上,并且与电源控制电路电连接。其中,电源控制电路用于对多个电池的串并联关系进行控制,并将多个电池串并联之后的总电能分配给多个电接口。
具体地,本实施例中,电源控制电路按照电压平均分配、电流按需分配的方式将总电能分配给多个电接口。
本实施例中,电接口的个数可以与智能电池、无人飞行器的机臂的个数相同,如可以为六个或其他数值,本实施例中不做限定。
本实施例中,可在中心架上设置电池安装位,将智能电池固定设置在电池安装位中。
本实施例中,多个电接口可采用可拆卸的方式安装在基板21上,也可采用不可拆卸的方式安装在基板21上,本实施例中不做限定。
其中,电接口包括电源接口25以及通信接口26,电源接口25用于与电池的正极及负极电连接,通信接口26用于与电池内的控制电路通讯连接。
可以理解,如图3所示,本实施例中,可将电源接口25的正极接口和负极接口分离,每组电源接口25包括电源正极接口和电源负极接口,具体可以为六组,电源接口25间隔地设置在基板21的边缘处。优选地,可将电源接口25按组均匀地设置在基板21的边缘处。通信接口26也可以为六个,通信接口26沿基板21的周向方向间隔地设置在电源接口25的内侧。优选地,可将通信接口26沿基板21的周向方向均匀地设置在电源接口25的内侧。
进一步地,本实施例中,基板21设有飞控信号接口27,飞控安装组件3包括飞行控制器31,飞控信号接口27与飞行控制器31通讯连接。
本实施例中,飞控信号接口27可设置在基板21的中心位置,最大限度地降低飞控信号接口27与飞行控制器31的连接难度。
进一步地,本实施例中,基板21上设有多个电调连接端子,分别用于与多个机臂上的电调电连接。电调连接端子包括电调信号接口28,用于与电调的通讯接口通讯连接,使电调通过分电电路板2与飞行控制器31通讯连接。电调连接端子包括电调供电接口29,用于与电调的电源接口电连接,为电调供电。
本实施例中,多个电调连接端子可采用可拆卸的方式安装在基板21上,如螺接的方式。也可采用不可拆卸的方式安装在基板21上,如焊接的方式,本实施例中不做限定。
本实施例中,可将多个电调连接端子设置在基板21的下表面。具体地,如图4所示,可将电调供电接口29沿基板21周向方向间隔设置在基板21的 下表面。优选地,可将电调供电接口29沿基板21周向方向均匀地设置在基板21的下表面。将电调信号接口28沿基板21周向方向间隔设置在电调供电接口29的内侧。优选地,可将电调信号接口28沿基板21周向方向均匀地设置在电调供电接口29的内侧。
在实际应用中,用户通过遥控器向飞行控制器31发送控制信号,飞行控制器31通过飞控信号接口27、电调信号接口28向电调发送控制信号。电调根据控制信号向与之电连接的电机发送驱动信号,驱动电机的改变转速,转向等参数,以改变无人飞行器的运动状态。
进一步地,本实施例中,基板21上设有至少一个扩展接口,扩展接口用于与外接设备电连接。例如,扩展接口可以对外提供18伏,22伏等直流电源,为无人飞行器的搭载部件供电
具体地,本实施例中,在基板21上设有至少一个扩展接口。扩展接口的设置位置以及与基板21连接的方式不做限定。如图3和图4中,将第一扩展接口210和第三扩展接口212设置在基板21的下表面,将第二扩展接口211设置在基板21的上表面。外接设备可以为云台、照相机、摄像机等设备。
本实施例中,基板21上设有至少一个扩展接口,扩展接口用于与外接设备电连接,为外接设备预留对外接口,能够使无人飞行器机架满足不同的应用场景。
进一步地,本实施例提供的无人飞行器的机架,还包括绝缘保护层213,绝缘保护层213上开设有镂空窗口,绝缘保护层213粘接在基板21的下表面。
本实施例中,绝缘保护层213的形状与基板21的形状相同。绝缘保护层213为绝缘保护棉层。在其他实施例中,绝缘保护层213也可以为绝缘橡胶层。
具体地,本实施例中,由于在基板21下表面设置了有多个电调连接端子、至少一个扩展接口及弹性减震垫23,为了对分电电路板2进行绝缘和保护,在基板21的下表面粘接绝缘保护层213。在绝缘保护层213上开设有的镂空窗口。镂空窗口可以供接口、连接件、弹性减震垫23等。露出镂空窗口的形状本实施例中不做限定。如在图4中,绝缘保护层213的形状为圆形,镂空窗口包括箭头型镂空窗口和从边缘向中心凹陷的镂空窗口,箭头型镂空窗口 沿径向分布在绝缘保护层213上,头部为背离圆心的方向,尾部靠近圆心的方向。在相邻的箭头型镂空窗口之间为从边缘向中心凹陷的镂空窗口。在箭头的头部露出弹性减震垫23,在箭头型镂空窗口的尾部露出电调信号接口28,在从边缘向中心凹陷的镂空窗口露出电调供电接口29。
本实施例提供的无人飞行器的机架,还包括绝缘保护层213,绝缘保护层213上开设有镂空窗口,绝缘保护层213粘接在基板21的下表面。可对分电电路板2进行绝缘和保护,提高分电电路板2的安全性。
进一步地,飞控安装组件3还包括飞控安装板32,飞控安装板32固定设置在中心架1的顶面,飞行控制器31固定设置在飞控安装板32上表面。
具体地,本实施例中,飞控安装板32与中心架1可通过连接件进行可拆卸连接,连接件包括如下至少一种:螺纹紧固件,销钉,卡扣41,插销。也可进行不可拆卸连接,如可以为焊接、铆接等。飞行控制器31与飞控安装板32的固定连接的方式可以为螺接、卡接、粘接等。飞控安装板32可固定设置在中心架1的顶面的中部区域。飞行控制器31可固定设置在飞控安装板32上表面的中部区域。
优选地,本实施例中,飞控安装板32包括中心板321,飞行控制器31固定设置在中心板321的上表面。中心板321向外延伸出多个侧板322,飞控安装板32与中心架1通过侧板322可拆卸连接。具体地,飞控安装板32与中心架1通过侧板322的通孔和飞控安装板锁紧件33进行螺接固定。具体在图示的实施例中,飞控安装板锁紧件33为锁紧螺丝。在其他实施例中,控安装板锁紧件33也可以为插销、卡扣等。
优选地,飞行控制器粘接在中心板321的上表面。具体地,如图5所示,飞行控制器31可通过双面胶34粘接在中心板321的上表面。
如图5所示,本实施例中,飞控安装板32的中心板321为矩形结构,飞行控制器31为矩形结构,飞行控制器31固定设置在中心板321的上表面。从中心板321的四个侧边延伸出四个侧板322,在每个侧板322上设置通孔,通过侧板322的通孔和飞控安装板锁紧件33将飞控安装板32固定在中心架1的顶面。
本实施例中,飞控安装板32包括中心板321,飞行控制器31固定设置 在中心板321的上表面。中心板321向外延伸出多个侧板322,飞控安装板32与中心架1通过侧板322可拆卸连接。飞控安装板32与中心架1通过侧板322的通孔和飞控安装板锁紧件33进行螺接固定。飞行控制器31粘接在中心板321的上表面。使飞行控制器31更便于拆装和维护。
进一步地,飞控安装组件3还包括飞控锁紧支架35和飞控锁紧件36。飞控锁紧支架35将飞行控制器31压紧在飞控安装板32。飞控锁紧件36将飞控锁紧支架35可拆卸地固定在飞控安装板32上。
具体地,本实施例中,飞控锁紧支架35的形状可根据飞行控制器31的形状进行设置,与飞行控制器31的形状匹配,使飞控锁紧支架35能够将飞行控制器31压紧在飞控安装板32上。飞控锁紧件36可以为螺纹紧固件,销钉,卡扣,插销等。以将飞控锁紧支架35可拆卸地固定在飞控安装板32上。
优选地,如图5所示,本实施例中,飞控锁紧支架35由第一侧条、第一顶条、第二侧条的首尾依次连接而成,第一侧条和第二侧条的下端对称设置有通孔,第一顶条抵在飞行控制器31的上表面,飞控锁紧件36穿过通孔锁紧在飞控安装板32的侧面。
具体地,本实施例中,飞控锁紧支架35由第一侧条、第一顶条、第二侧条的首尾依次连接而成。第一侧条和第一顶条之间的夹角为90度,第一顶条和第二侧条之间的夹角为90度。飞控锁紧支架35为一框形结构。在第一侧条和第二侧条的下端对称设置有通孔,将飞控锁紧支架35压紧在飞行控制器31上,即第一顶条抵在飞行控制器31的上表面,第一侧条和第二侧条抵在飞行控制器31的侧面。再通过飞控锁紧件36穿过通孔锁紧在飞控安装板32的侧面。
本实施例中,飞控安装组件3还包括飞控锁紧支架35和飞控锁紧件36,飞控锁紧支架35将飞行控制器31压紧在飞控安装板32。飞控锁紧件36将飞控锁紧支架35可拆卸地固定在飞控安装板32上。使飞行控制器31更牢固地固定在中心架1上,进而使整个无人飞行器的机架更加稳固。
本实施例中,飞控锁紧支架35由第一侧条、第一顶条、第二侧条的首尾依次连接而成。第一侧条和第二侧条的下端对称设置有通孔,第一顶条抵在飞行控制器31的上表面,飞控锁紧件36穿过通孔锁紧在飞控安装板32的侧 面。使飞行控制器31更牢固地固定在中心架1上的同时,更便于拆装和维护。
进一步地,本实施例提供的无人飞行器的机架中,还包括第一导热硅胶37。第一导热硅胶37设置在飞控锁紧支架35与飞行控制器31的上表面之间。
本实施例中,第一导热硅胶37可以为与第一顶条同尺寸的条形结构。将第一导热硅胶37设置在飞控锁紧支架35与飞行控制器31的上表面之间,使飞控锁紧支架35的第一顶条和飞行控制器31之间为非硬性接触,而是通过导热硅胶进行过度,既保证了能够将飞行控制器31锁紧,又能保护飞行控制器31的外观,而且能够将飞行控制器31产生的热量传导到飞控锁紧支架35上,增强飞行控制器31的散热功能。
进一步地,本实施例中,飞控安装组件3还包括电源管理模块38,电源管理模块38分别与飞行控制器31、分电电路板2电连接。电源管理模块38固定设置在飞控安装板32的下方。
本实施例中,电源管理模块38用于对多个智能电池的电能进行管理。可采用可拆卸的方式固定设置在飞控安装板32的下方。具体地,飞控安装组件3还包括电源管理模块安装板39,电源管理模块安装板39固定设置在飞控安装板32的下表面,电源管理模块38固定设置在电源管理模块安装板39的下表面。
本实施例中,电源管理模块安装板39通过可拆卸的方式固定设置在飞控安装板32的下表面,具体可设置在飞控安装板32的中心板321的下表面。电源管理模块38通过可拆卸的方式固定设置在电源管理模块安装板39的下表面,具体可设置在电源管理模块安装板39的下表面的中心区域。
优选地,如图5所示,本实施例中,电源管理模块安装板39的周向边缘设置有通孔,电源管理模块安装板39与飞控安装板32通过通孔和电源管理模块安装板锁紧件310进行螺接固定。
具体地,电源管理模块安装板39可以为矩形结构,可在电源管理模块安装板39的每个侧边上设置通孔,每个电源管理模块安装板锁紧件310穿过通孔与飞控安装板32螺接固定。
进一步地,飞控安装组件3还包括电源管理模块锁紧支架311和电源管 理模块锁紧件312。电源管理模块锁紧支架311将电源管理模块38压紧在电源管理模块安装板39。电源管理模块锁紧件312将电源管理模块锁紧支架311可拆卸地固定在电源管理模块安装板39上。
具体地,本实施例中,电源管理模块锁紧支架311的形状可根据电源管理模块38的形状进行设置,与电源管理模块38的形状匹配。使电源管理模块锁紧支架311能够将电源管理模块38压紧在电源管理模块安装板39上。电源管理模块锁紧支架311可以为螺纹紧固件,销钉,卡扣,插销等。以将电源管理模块锁紧支架311可拆卸地固定在电源管理模块38上。
优选地,如图5所示,本实施例中,电源管理模块锁紧支架311由第三侧条、第一底条、第四侧条首尾依次连接而成。第三侧条和第四侧条的上端对称设置有通孔。第一底条抵在电源管理模块38的下表面,电源管理模块锁紧件312穿过通孔锁紧在电源管理模块安装板39的侧面。
具体地,本实施例中,电源管理模块锁紧支架311由第三侧条、第一底条、第四侧条首尾依次连接而成。第三侧条和第一底条之间的夹角为90度,第一底条和第四侧条之间的夹角为90度。电源管理模块锁紧支架311为一框形结构,在第三侧条和第四侧条的下端对称设置有通孔,将电源管理模块锁紧支架311压紧在电源管理模块38上,即第一底条抵在电源管理模块38的下表面,第三侧条和第四侧条抵在电源管理模块38的侧面。再通过电源管理模块锁紧件312穿过通孔锁紧在电源管理模块安装板39的侧面。
本实施例中,飞控安装组件3还包括电源管理模块锁紧支架311和电源管理模块锁紧件312。电源管理模块锁紧支架311将电源管理模块38压紧在电源管理模块安装板39。电源管理模块锁紧件312将电源管理模块锁紧支架311可拆卸地固定在电源管理模块安装板39上。使电源管理模块38更牢固地固定在飞控安装板32上,进而使整个无人飞行器的机架更加稳固。
本实施例中,电源管理模块锁紧支架311由第三侧条、第一底条、第四侧条首尾依次连接而成。第三侧条和第四侧条的上端对称设置有通孔。第一底条抵在电源管理模块38的下表面。电源管理模块锁紧件312穿过通孔锁紧在电源管理模块安装板39的侧面。使电源管理模块38更牢固地固定在飞控安装板32上的同时,更便于拆装和维护。
进一步地,电源管理模块安装板39上设置有散热鳍片313。
具体地,本实施例中,可在电源管理模块安装板39上的上表面设置散热鳍片313,也可在上下表面均设置散热鳍片313。
本实施例中,电源管理模块安装板39上设置有散热鳍片313,提高了电源管理模块38的散热效果。
进一步地,本实施例提供的无人飞行器的机架,还包括第二导热硅胶314,第二导热硅胶314设置在电源管理模块锁紧支架311与电源管理模块38的下表面之间。
具体地,第二导热硅胶314可以为与第一底条同尺寸的条形结构。将第二导热硅胶314设置在电源管理模块锁紧支架311与电源管理模块38的下表面之间,使电源管理模块锁紧支架311的第一底条和电源管理模块38之间为非硬性接触,而是通过导热硅胶进行过度,既保证了能够将电源管理模块38锁紧,又能保护电源管理模块38的外观,而且能够将电源管理模块38产生的热量传导到电源管理模块锁紧支架311上,增强电源管理模块38的散热功能。
进一步地,本实施例提供的无人飞行器的机架,电源管理模块38还包括插头315。相应地,飞控安装组件3还包括:插头锁紧件316和插头锁紧件317。插头锁紧件316通过插头锁紧件317将插头315锁紧在电源管理模块锁紧支架311的下表面。
具体地,如图5所示,本实施例中,电源管理模块38延伸出的插头315一部分悬空,为了对插头315进行保护,飞控安装组件3还包括:插头锁紧件316和插头锁紧件317。插头锁紧件316通过插头锁紧件317将插头315锁紧在电源管理模块锁紧支架311的下表面。
实施例三
本发明实施例三提供一种无人飞行器的机架。图6为本发明实施例三提供的无人飞行器的机架中分电电路板下盖的结构示意图。如图6所示,本实施例是在实施例一或实施例二提供的技术方案的基础上,对无人飞行器的机架结构的进一步细化。则本实施例提供的无人飞行器的机架,还包括以下结 构。
进一步地,本实施例提供的无人飞行器的机架,还包括分电电路板下盖4。分电电路板下盖4设置在分电电路板2的下方,并与分电电路板2卡接固定。
具体地,本实施例中,分电电路板下盖4的形状不做限定,只需与分电电路板2的形状匹配即可。可在分电电路板下盖4的内侧的周向上设置一个或多个卡扣41,通过卡扣41将分电电路板2下盖固定设置在分电电路板2的下方。
本实施例提供的无人飞行器的机架,还包括分电电路板下盖4。分电电路板下盖4设置在分电电路板2的下方,并与分电电路板2卡接固定。能够对分电电路板2进一步地进行保护,防止分电电路板2受损。
实施例四
本发明实施例四提供一种无人飞行器的机架。图7为本发明实施例四提供的无人飞行器的机架中中心架上盖的结构示意图。如图7所示,本实施例是在实施例一或实施例二或实施例三提供的技术方案的基础上,对无人飞行器的机架结构的进一步细化。则本实施例提供的无人飞行器的机架,还包括以下结构。
进一步地,本实施例提供的无人飞行器的机架,还包括中心架上盖5,中心架上盖5盖住飞行控制器31,并与中心架1固定连接。
具体地,中心架上盖5的形状不做限定,只需与飞行控制器31的形状匹配即可,如飞行控制器31的形状为矩形,则中心架上盖5的形状可以为六边形。中心架上盖5盖住飞行控制器31,可与中心架1进行可拆卸的连接。如可以为螺接、卡接等。
本实施例提供的无人飞行器的机架,还包括中心架上盖5,中心架上盖5盖住飞行控制器31,并与中心架1固定连接。可对飞行控制器31进行保护,防止飞行控制器31受损。
进一步地,中心架上盖5的顶部内置有散风风扇,散热风扇51与飞行控制器31电连接。散风风扇的侧面设置有导风通道52和排风孔53。
具体地,如图7所示,可在中心架1的上盖的顶部内置散风风扇,散热风扇51与飞行控制器31电连接,以从飞行控制器31中获取电能。在散风风扇的一个侧面设置有导风通道52,在导风通道52向外的延伸方向的侧面设置排风孔53。可对飞行控制器31进行有效的散热。
进一步地,中心架上盖5上与排风孔53相邻的两个侧面上分别设置有防滑结构54。
具体地,本实施例中,在防滑结构54可以为防滑凸点或其他防滑结构,本实施例中不做限定。
本实施例中,中心架上盖5上与排风孔53相邻的两个侧面上分别设置有防滑结构54,更便于对中心架上盖5进行拆装和维护。
实施例五
本发明实施例五提供一种无人飞行器。图8为本发明实施例五提供的无人飞行器的结构示意图。如图8所示,本实施例提供的无人飞行器包括:动力系统、及上述任一实施例提供的无人飞行器的机架。
其中,动力系统安装在无人飞行器的机架上,并且与飞行控制器电连接。
本实施例中,无人飞行器中的无人飞行器的机架的结构和功能与实施例一至实施例四中的任一实施例中的无人飞行器的机架的结构和功能相同,在此不再一一赘述。
本实施例中,动力系统安装在无人飞行器的机架上,并且与飞行控制器电连接。在实施应用中,用户通过遥控器向飞行控制器发送控制信号,飞控控制器根据控制信号控制动力系统中的参数,以改变无人飞行器的运动状态。
本实施例提供的无人飞行器,包括:动力系统7、及上述任一实施例提供的无人飞行器的机架。其中,动力系统7安装在无人飞行器的机架上,并且与飞行控制器电连接。在无人飞行器的机架中包括:中心架、分电电路板及飞控安装组件;中心板包括顶面以及与所述顶面相对的底面;分电电路板及所述飞控安装组件中的一个设于所述中心架的顶面,另外一个设于所述中心架的底面;中心架与所述分电电路板可拆卸连接。由于飞行控制器组件安装在中心架的顶面或底面,使飞行控制器安装位置确定,易于安装和维护。 并且中心架与所述分电电路板可拆卸连接,使分电电路板不作为结构件安装于中心架上,不易受损。并且便于拆装和维护。
进一步地,无人飞行器的机架还包括与中心架1连接的机臂6,动力系统7包括提供飞行动力的动力装置,动力装置安装在机臂6上。
具体地,本实施例中,无人飞行器的机架中中心架1可与机臂6进行可拆卸的连接。如可中心架1与机臂6通过连接件固定连接。连接件可以为螺纹紧固件,销钉,卡扣,插销中任意一种。动力系统7包括动力装置,动力装置安装在机臂6上,具体的安装方式本实施例中不做限定。
进一步地,动力装置包括螺旋桨71以及驱动螺旋桨71转动的电机72。具体地,本实施例中,螺旋桨71及驱动螺旋桨71转动的电机72可设置在每个机臂6的端部。
进一步地,动力系统7还包括电调73,电调73与电机72电连接,用于控制电机72的工作状态。具体地,本实施例中,电调73与电机72电连接,用于控制电机72的工作状态,如控制电机72的转速、转向等。具体在图示的实施例中,电机72安装在电机座上,电机安装座63固定在机臂6,电调73安装在电机安装座63内。
进一步地,图9为图8中的A区域和B区域的局部放大图。如图9所示,所述电调73安装在多个机臂上,并分别与所述基板上的多个电调73连接端子电连接。电调73包括通讯接口,所述电调73的通讯接口与所述基板上的电调信号接口28通讯连接,使所述电调通过分电电路板2与所述飞行控制器31通讯连接。电调包括电源接口,所述电调的电源接口与所述基板21上的电调供电接口29电连接,为所述电调供电。
具体地,本实施例中,可在多个机臂6上设置电调,电调分别与基板上的电调连接端子电连接。可以理解,在电调上设置有通讯接口和电源接口,在基板21上设有的电调连接端子中的电调信号接口28与电调上设有的通讯接口通讯连接,使电调通过分电电路板2与飞行控制器31通讯连接。基板21上设有的电调连接端子中的电调供电接口29与电调上设有的电源接口电连接,为电调供电。
本实施例中提供的无人飞行器中,基板21上的电调连接端子的设置方式 与实施例二中的相同,在此不再赘述,电调上的通讯接口和电源接口的设置方式本实施例中不做限定。
本实施例提供的无人飞行器,电调安装在多个机臂上,并分别与所述基板上的多个电调连接端子电连接。电调包括通讯接口,所述电调的通讯接口71与所述基板上的电调信号接口28通讯连接,使所述电调通过分电电路板2与所述飞行控制器31通讯连接。电调包括电源接口,所述电调的电源接口72与所述基板21上的电调供电接口29电连接,为所述电调供电。使整个无人飞行器的布局更加紧凑,进而使无人飞行器有更好的稳定性。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (47)

  1. 一种无人飞行器的机架,其特征在于,包括:中心架、分电电路板及飞控安装组件;
    所述中心架包括顶面以及与所述顶面相对的底面;
    所述分电电路板及所述飞控安装组件中的一个设于所述中心架的顶面,另外一个设于所述中心架的底面;
    其中,所述中心架与所述分电电路板可拆卸连接。
  2. 根据权利要求1所述的无人飞行器的机架,其特征在于,所述中心架与所述分电电路板通过连接件固定连接。
  3. 根据权利要求2所述的无人飞行器的机架,其特征在于,所述连接件包括如下至少一种:螺纹紧固件,销钉,卡扣,插销。
  4. 根据权利要求1-3任一项所述的无人飞行器的机架,其特征在于,所述分电电路板设置在所述中心架的底面。
  5. 根据权利要求4所述的无人飞行器的机架,其特征在于,所述飞控安装组件固定设置在所述中心架的顶面。
  6. 根据权利要求4所述的无人飞行器的机架,其特征在于,还包括弹性减震垫,所述弹性减震垫与所述分电电路板的基板连接,以对所述分电电路板的基板进行减震。
  7. 根据权利要求6所述的无人飞行器的机架,其特征在于,所述分电电路板的基板上设有缓冲孔;
    所述弹性减震垫通过形变穿过所述缓冲孔,与所述基板可拆卸连接。
  8. 根据权利要求7所述的无人飞行器的机架,其特征在于,所述基板为中心对称结构,所述缓冲孔为多个,并沿所述基板的周向方向均匀地设置在所述基板上。
  9. 根据权利要求8所述的无人飞行器的机架,其特征在于,所述基板设有电源控制电路,多个电接口安装在所述基板上,并且与所述电源控制电路电连接;
    其中,所述电源控制电路用于对多个电池的串并联关系进行控制,并将所述多个电池串并联之后的总电能分配给所述多个电接口。
  10. 根据权利要求9所述的无人飞行器的机架,其特征在于,所述电接口包括电源接口以及通信接口,所述电源接口用于与所述电池的正极及负极电连接,所述通信接口用于与所述电池内的控制电路通讯连接。
  11. 根据权利要求10所述的无人飞行器的机架,其特征在于,所述电源接口间隔地设置在所述基板的边缘处。
  12. 根据权利要求11所述的无人飞行器的机架,其特征在于,所述通信接口沿所述基板的周向方向间隔地设置在所述电源接口的内侧。
  13. 根据权利要求9-12任一项所述的无人飞行器的机架,其特征在于,所述基板设有飞控信号接口,所述飞控安装组件包括飞行控制器,所述飞控信号接口与所述飞行控制器通讯连接。
  14. 根据权利要求13所述的无人飞行器的机架,其特征在于,所述基板上设有多个电调连接端子,分别用于与多个机臂上的电调电连接。
  15. 根据权利要求14所述的无人飞行器的机架,其特征在于,所述电调连接端子包括电调信号接口,用于与所述电调的通讯接口通讯连接,使所述电调通过分电电路板与所述飞行控制器通讯连接。
  16. 根据权利要求15所述的无人飞行器的机架,其特征在于,所述电调连接端子包括电调供电接口,用于与电调的电源接口电连接,为所述电调供电。
  17. 根据权利要求16所述的无人飞行器的机架,其特征在于,所述基板上设有至少一个扩展接口,所述扩展接口用于与外接设备电连接。
  18. 根据权利要求17所述的无人飞行器的机架,其特征在于,还包括绝缘保护层,所述绝缘保护层粘接在所述基板的下表面;
    所述绝缘保护层上开设有镂空窗口,所述镂空窗口对应与所述基板上的紧固连接件或/及接口。
  19. 根据权利要求13所述的无人飞行器的机架,其特征在于,所述飞控安装组件还包括飞控安装板,所述飞控安装板固定设置在所述中心架的顶面, 所述飞行控制器固定设置在所述飞控安装板的上表面。
  20. 根据权利要求19所述的无人飞行器的机架,其特征在于,所述飞控安装板包括中心板,所述飞行控制器固定设置在所述中心板的上表面。
  21. 根据权利要求20所述的无人飞行器的机架,其特征在于,所述中心板向外延伸出多个侧板,所述飞控安装板与所述中心架通过侧板可拆卸连接。
  22. 根据权利要求21所述的无人飞行器的机架,其特征在于,所述飞控安装板与所述中心架通过所述侧板和飞控安装板锁紧件进行固定。
  23. 根据权利要求22所述的无人飞行器的机架,其特征在于,所述飞行控制器粘接在所述中心板的上表面。
  24. 根据权利要求23所述的无人飞行器的机架,其特征在于,所述飞控安装组件还包括飞控锁紧支架和飞控锁紧件;
    所述飞控锁紧支架将所述飞行控制器压紧在所述飞控安装板;
    所述飞控锁紧件将所述飞控锁紧支架可拆卸地固定在所述飞控安装板上。
  25. 根据权利要求24所述的无人飞行器的机架,其特征在于,所述飞控锁紧支架由第一侧条、第一顶条、第二侧条的首尾依次连接而成,所述第一侧条和所述第二侧条的下端对称设置有通孔,所述第一顶条抵在所述飞行控制器的上表面,所述飞控锁紧件穿过所述通孔锁紧在所述飞控安装板的侧面。
  26. 根据权利要求25所述的无人飞行器的机架,其特征在于,还包括第一导热硅胶,所述第一导热硅胶设置在所述飞控锁紧支架与所述飞行控制器的上表面之间。
  27. 根据权利要求19-26任一项所述的无人飞行器的机架,其特征在于,所述飞控安装组件还包括电源管理模块,所述电源管理模块分别与所述飞行控制器、所述分电电路板电连接。
  28. 根据权利要求27所述的无人飞行器的机架,其特征在于,电源管理模块固定设置在所述飞控安装板的下方。
  29. 根据权利要求28所述无人飞行器的机架,其特征在于,所述飞控安装组件还包括电源管理模块安装板,所述电源管理模块安装板固定设置在所 述飞控安装板的下表面,所述电源管理模块固定设置在所述电源管理模块安装板的下表面。
  30. 根据权利要求29所述无人飞行器的机架,其特征在于,所述电源管理模块安装板的周向边缘设置有通孔,所述电源管理模块安装板与所述飞控安装板通过通孔和电源管理模块安装板锁紧件进行固定。
  31. 根据权利要求30所述无人飞行器的机架,其特征在于,所述飞控安装组件还包括电源管理模块锁紧支架和电源管理模块锁紧件;
    所述电源管理模块锁紧支架将所述电源管理模块压紧在所述电源管理模块安装板;
    所述电源管理模块锁紧件将所述电源管理模块锁紧支架可拆卸地固定在所述电源管理模块安装板上。
  32. 根据权利要求31所述的无人飞行器的机架,其特征在于,所述电源管理模块锁紧支架由第三侧条、第一底条、第四侧条首尾依次连接而成,所述第三侧条和所述第四侧条的上端对称设置有通孔,所述第一底条抵在所述电源管理模块的下表面,所述电源管理模块锁紧件穿过所述通孔锁紧在所述电源管理模块安装板的侧面。
  33. 根据权利要求29所述无人飞行器的机架,其特征在于,所述电源管理模块安装板上设置有散热鳍片。
  34. 根据权利要求33所述无人飞行器的机架,其特征在于,还包括第二导热硅胶,所述第二导热硅胶设置在所述电源管理模块锁紧支架与所述电源管理模块的下表面之间。
  35. 根据权利要求34所述无人飞行器的机架,其特征在于,所述电源管理模块还包括插头;
    相应地,所述飞控安装组件还包括:插头锁紧件和插头锁紧件;
    所述插头锁紧件通过所述插头锁紧件将所述插头锁紧在所述电源管理模块锁紧支架的下表面。
  36. 根据权利要求28-35任一项所述的无人飞行器的机架,其特征在于,还包括分电电路板下盖,所述分电电路板下盖设置在所述分电电路板的下方, 并与所述分电电路板卡接固定。
  37. 根据权利要求36所述的无人飞行器的机架,其特征在于,还包括中心架上盖,所述中心架上盖盖住所述飞行控制器的机架,并与所述中心架固定连接。
  38. 根据权利要求37所述的无人飞行器的机架,其特征在于,所述中心架上盖的顶部内置有散风风扇,所述散热风扇与所述飞行控制器电连接。
  39. 根据权利要求38所述的无人飞行器的机架,其特征在于,所述散风风扇的侧面设置有导风通道和排风孔。
  40. 根据权利要求39所述的无人飞行器的机架,其特征在于,所述中心架上盖上与排风孔相邻的两个侧面上分别设置有防滑结构。
  41. 一种无人飞行器,其特征在于,包括:动力系统、及权利要求1-40任一项所述的无人飞行器的机架;
    其中,所述动力系统安装在所述无人飞行器的机架上,并且与所述飞行控制器电连接。
  42. 根据权利要求41所述的无人飞行器,其特征在于,所述无人飞行器的机架还包括与所述中心架连接的机臂,所述动力系统包括提供飞行动力的动力装置,所述动力装置安装在所述机臂上。
  43. 根据权利要求42所述的无人飞行器,其特征在于,所述动力装置包括螺旋桨以及驱动所述螺旋桨转动的电机。
  44. 根据权利要求43所述的无人飞行器,其特征在于,所述动力系统还包括电调,所述电调与所述电机电连接,用于控制电机的工作状态。
  45. 根据权利要求44所述的无人飞行器,其特征在于,所述电调安装在多个机臂上,并分别与所述基板上的多个电调连接端子电连接。
  46. 根据权利要求45所述的无人飞行器,其特征在于,所述电调包括通讯接口,所述电调的通讯接口与所述基板上的电调信号接口通讯连接,使所述电调通过分电电路板与所述飞行控制器通讯连接。
  47. 根据权利要求46所述的无人飞行器,其特征在于,所述电调包括电 源接口,所述电调的电源接口与所述基板上的电调供电接口电连接,为所述电调供电。
PCT/CN2016/079485 2016-04-15 2016-04-15 无人飞行器的机架及无人飞行器 WO2017177458A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/079485 WO2017177458A1 (zh) 2016-04-15 2016-04-15 无人飞行器的机架及无人飞行器
CN201680012476.4A CN107466281B (zh) 2016-04-15 2016-04-15 无人飞行器的机架及无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079485 WO2017177458A1 (zh) 2016-04-15 2016-04-15 无人飞行器的机架及无人飞行器

Publications (1)

Publication Number Publication Date
WO2017177458A1 true WO2017177458A1 (zh) 2017-10-19

Family

ID=60042340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079485 WO2017177458A1 (zh) 2016-04-15 2016-04-15 无人飞行器的机架及无人飞行器

Country Status (2)

Country Link
CN (1) CN107466281B (zh)
WO (1) WO2017177458A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108394545A (zh) * 2018-03-27 2018-08-14 傲飞创新科技(深圳)有限公司 拼接式无人机机身
CN109823554A (zh) * 2019-04-02 2019-05-31 福建电力职业技术学院 一种无人机飞控舱模块化快速拆装结构
WO2020006877A1 (zh) * 2018-07-02 2020-01-09 深圳市大疆创新科技有限公司 散热组件及遥控器
CN112896497A (zh) * 2021-03-23 2021-06-04 珠海紫燕无人飞行器有限公司 一种无人直升机

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108622398B (zh) * 2018-06-04 2023-07-25 广州市华科尔科技股份有限公司 一种油电混动多旋翼无人机控制系统及控制方法
CN208530829U (zh) * 2018-06-26 2019-02-22 深圳市大疆创新科技有限公司 无人机扩展系统及其无人机、扩展模块
CN208377065U (zh) * 2018-06-26 2019-01-15 深圳市大疆创新科技有限公司 无人飞行器及其机臂
CN209070404U (zh) * 2018-11-30 2019-07-05 深圳市大疆创新科技有限公司 负载控制电路及可移动平台
CN109625254A (zh) * 2018-12-28 2019-04-16 浙江星米体育有限公司 竞技类无人机
CN112078804B (zh) * 2019-06-12 2024-04-26 张毅 卡门共振纳米线晶体压电无人机增程电源

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868314B1 (en) * 2001-06-27 2005-03-15 Bentley D. Frink Unmanned aerial vehicle apparatus, system and method for retrieving data
CN204179455U (zh) * 2014-07-28 2015-02-25 深圳市大疆创新科技有限公司 接线座、使用该接线座的供能组件及飞行器
CN204289684U (zh) * 2014-12-25 2015-04-22 深圳市大疆创新科技有限公司 天线组件、起落架及无人飞行器
CN104584330A (zh) * 2014-07-28 2015-04-29 深圳市大疆创新科技有限公司 接线座、使用该接线座的供能组件及飞行器
CN104648667A (zh) * 2015-02-17 2015-05-27 何春旺 飞行器
CN204383757U (zh) * 2014-12-26 2015-06-10 深圳市大疆创新科技有限公司 无人飞行器及其电路板组件
CN205602086U (zh) * 2016-04-15 2016-09-28 深圳市大疆创新科技有限公司 无人飞行器的机架及无人飞行器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042200B1 (ko) * 2010-09-02 2011-06-16 드림스페이스월드주식회사 Pcb를 사용한 무인 비행체
CN103895462A (zh) * 2014-04-15 2014-07-02 北京航空航天大学 一种可实现人脸检测和光伏发电的陆空两用搜救装置
FR3020282B1 (fr) * 2014-04-24 2016-05-13 Parrot Platine universelle de montage pour drone a voilure tournante
CN204776051U (zh) * 2015-06-24 2015-11-18 哈瓦国际航空技术(深圳)有限公司 一种无人机机舱结构
CN204925788U (zh) * 2015-08-26 2015-12-30 韩振铎 一种一体化飞控系统
CN205022920U (zh) * 2015-08-28 2016-02-10 哈瓦国际航空技术(深圳)有限公司 一种航拍飞行器的集成安装结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868314B1 (en) * 2001-06-27 2005-03-15 Bentley D. Frink Unmanned aerial vehicle apparatus, system and method for retrieving data
CN204179455U (zh) * 2014-07-28 2015-02-25 深圳市大疆创新科技有限公司 接线座、使用该接线座的供能组件及飞行器
CN104584330A (zh) * 2014-07-28 2015-04-29 深圳市大疆创新科技有限公司 接线座、使用该接线座的供能组件及飞行器
CN204289684U (zh) * 2014-12-25 2015-04-22 深圳市大疆创新科技有限公司 天线组件、起落架及无人飞行器
CN204383757U (zh) * 2014-12-26 2015-06-10 深圳市大疆创新科技有限公司 无人飞行器及其电路板组件
CN104648667A (zh) * 2015-02-17 2015-05-27 何春旺 飞行器
CN205602086U (zh) * 2016-04-15 2016-09-28 深圳市大疆创新科技有限公司 无人飞行器的机架及无人飞行器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108394545A (zh) * 2018-03-27 2018-08-14 傲飞创新科技(深圳)有限公司 拼接式无人机机身
CN108394545B (zh) * 2018-03-27 2024-03-26 傲飞创新科技(深圳)有限公司 拼接式无人机机身
WO2020006877A1 (zh) * 2018-07-02 2020-01-09 深圳市大疆创新科技有限公司 散热组件及遥控器
CN109823554A (zh) * 2019-04-02 2019-05-31 福建电力职业技术学院 一种无人机飞控舱模块化快速拆装结构
CN112896497A (zh) * 2021-03-23 2021-06-04 珠海紫燕无人飞行器有限公司 一种无人直升机

Also Published As

Publication number Publication date
CN107466281A (zh) 2017-12-12
CN107466281B (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
WO2017177458A1 (zh) 无人飞行器的机架及无人飞行器
KR101919574B1 (ko) 무인항공기
EP3272652B1 (en) Unmanned aerial vehicle
US8294020B2 (en) Energy harvesting devices
WO2018103576A1 (zh) 无人飞行器
US20210309342A1 (en) Frame assembly for unmanned aerial vehicle (uav), and uav having the same
KR101212552B1 (ko) 전기자동차 배터리팩 구조
KR101965991B1 (ko) 태양 전지들을 바이패스 다이오드 히트 싱크들로서 사용
CN205469856U (zh) 电源组件、无人飞行器及遥控移动装置
WO2017147764A1 (zh) 电源组件、无人飞行器及遥控移动装置
CN107000828A (zh) 飞行控制装置以及具有该飞行控制装置的无人机
CN206118273U (zh) 散热结构、电子装置、云台及飞行器
US20190276128A1 (en) Unmanned aerial vehicle fuselage
CN205602086U (zh) 无人飞行器的机架及无人飞行器
WO2019127356A1 (zh) 中心板单元及无人飞行器
CN111942601A (zh) 用于太阳能无人机的热管理模块、热管理系统以及热管理方法
WO2020034160A1 (zh) 散热组件、散热模组和无人飞行器
WO2017202223A1 (zh) 一种飞行器及其动力装置、动力组件
WO2017215200A1 (zh) 无线充电无人机
CN217533238U (zh) 组合式多旋翼无人机系统
CN214776618U (zh) 照明无人机
US20200136468A1 (en) Electric motor with integrated motor controller
CN207346071U (zh) 无人机及基壳体
WO2020000206A1 (zh) 无人机
CN207346070U (zh) 基壳体、机架及无人机

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898276

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898276

Country of ref document: EP

Kind code of ref document: A1