WO2017175680A1 - シリコーン変性ポリウレタン系繊維及びその製造方法 - Google Patents
シリコーン変性ポリウレタン系繊維及びその製造方法 Download PDFInfo
- Publication number
- WO2017175680A1 WO2017175680A1 PCT/JP2017/013658 JP2017013658W WO2017175680A1 WO 2017175680 A1 WO2017175680 A1 WO 2017175680A1 JP 2017013658 W JP2017013658 W JP 2017013658W WO 2017175680 A1 WO2017175680 A1 WO 2017175680A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- silicone
- fiber
- formula
- polyurethane resin
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
- C08G18/12—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
- C08G18/1816—Catalysts containing secondary or tertiary amines or salts thereof having carbocyclic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
- C08G18/1883—Catalysts containing secondary or tertiary amines or salts thereof having heteroatoms other than oxygen and nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3203—Polyhydroxy compounds
- C08G18/3206—Polyhydroxy compounds aliphatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/4009—Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4854—Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/61—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6666—Compounds of group C08G18/48 or C08G18/52
- C08G18/667—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6674—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/751—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
- C08G18/752—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
- C08G18/753—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
- C08G18/755—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
- C08G18/7671—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0015—Electro-spinning characterised by the initial state of the material
- D01D5/003—Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/70—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/4358—Polyurethanes
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/728—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
Definitions
- the present invention relates to a fiber formed of a resin containing a silicone-modified polyurethane resin and a method for producing the fiber.
- resin fibers are obtained mainly by a dry spinning method, and depending on the type, a melt spinning method, a wet spinning method, or the like.
- an electrospinning method electrostatic spinning method, electrospinning method, melt electrospinning method
- the electrospinning method is a method in which a high voltage is applied between a nozzle tip of a syringe containing a solution containing a polymer and a melt obtained by melting the polymer and a collector substrate, and the polymer is made fine by electrostatic repulsion.
- the fiber structure is cured and formed by evaporation of the solvent from the polymer solution during the spinning process. Curing is also performed by cooling (eg, when the sample is liquid at high temperature), chemical curing (eg, treatment with curing vapor), solvent evaporation (eg, when the sample is liquid at room temperature), and the like.
- the manufactured nonwoven fabric is collected on the structure arrange
- nanofibers of polyurethane resin have been reported (Patent Documents 4 and 5), but these have low slipperiness and flexibility, inferior blocking resistance, and water repellency is not sufficient depending on applications.
- Patent Documents 4 and 5 nanofibers made of silicone resin (Patent Document 6) and silsesquioxane (Patent Document 7) have also been reported, but such fibers made of a silicone resin crosslinked three-dimensionally at high density are flexible. There was a problem that it was lacking in, and inferior in workability.
- An object of the present invention is to provide a fiber having characteristics excellent in flexibility, slipperiness, blocking resistance, heat retention, water vapor permeability, water repellency, and spinnability, and a method for producing the same.
- the active hydrogen group-containing organopolysiloxane (C-1) having a carbinol group is represented by the following formula (1): R 1 R 2 R 3 SiO (SiR 2 R 3 O) n SiR 2 R 3 R 4 (1) [In the formula (1), R 1 , R 2 , and R 3 are each independently a linear, branched, or cyclic group having 1 to 10 carbon atoms in which a part of hydrogen atoms may be substituted with fluorine atoms.
- R 4 is a group selected from an alkyl group, an optionally substituted aryl group having 5 to 12 carbon atoms, or a vinyl group, and R 4 is a group represented by the following formula (2) R 5 —X—CH 2 CR 6 (R 7 ) 2 (2)
- R 5 is a divalent alkylene group having 2 to 10 carbon atoms which may contain an oxygen atom in the chain
- R 6 is a hydrogen atom, an amino group, or 1 having 1 to 10 carbon atoms.
- R 7 is a carbinol group having 1 to 10 carbon atoms
- X is a single bond or —O— bond
- n is an integer of 1 to 200.
- the fiber according to [1] which is an organopolysiloxane represented by the formula: [3]
- the carbinol group is a hydroxymethyl group, 2-hydroxyeth-1-yl group, 2-hydroxyprop-1-yl group, 3-hydroxyprop-1-yl group, 2-hydroxybut-1-yl group, 4 -Hydroxybut-1-yl group, 5-hydroxypent-1-yl group, 6-hydroxyhex-1-yl group, 7-hydroxyhept-1-yl group, 8-hydroxyoct-1-yl group,
- the fiber according to [2] which is selected from a 9-hydroxynon-1-yl group and a 10-hydroxydec-1-yl group.
- the component (C) is further represented by the following formula (3) R 8 SiR 2 R 3 O (SiR 2 R 3 O) m SiR 2 R 3 R 8 (3)
- R 2 and R 3 are the same as defined above, and R 8 each independently has a hydroxyl group or a mercapto group, and the carbon number of 1 to 1 which may have an oxygen atom in the chain) 10 monovalent hydrocarbon groups or monovalent hydrocarbon groups having 1 to 10 carbon atoms having a primary amino group or a secondary amino group, and m is an integer of 1 to 60.
- the present invention it is possible to provide a fiber having characteristics excellent in flexibility, slipperiness, blocking resistance, heat retention, water vapor permeability, water repellency, and spinnability.
- the fiber of the present invention is a fiber formed from a resin containing a silicone-modified polyurethane resin.
- the silicone-modified polyurethane resin is obtained by reacting a polyol (A), a chain extender (B), an active hydrogen group-containing organopolysiloxane (C), and a polyisocyanate (D).
- A) to (D) It is preferable that 0.1 to 50 parts by weight, more preferably 0.1 to 40 parts by weight, and further 1 to 30 parts by weight of the active hydrogen group-containing organopolysiloxane (C) is contained in 100 parts by weight of the total component. .
- reaction product in the present invention is not limited to the reaction product containing only the components (A) to (D), but other than the components (A) to (D), other than polyamine (E) and the like. It may be a reaction product containing components.
- the silicone-modified polyurethane resin can be produced by using a known polyurethane synthesis method.
- a silicone-modified polyurethane resin can be obtained by a reaction of a polyol (A), a chain extender (B), an active hydrogen group-containing organopolysiloxane (C), and a polyisocyanate (D).
- the polyol (A) is a polymer polyol having a number average molecular weight of 500 or more, preferably 500 to 10,000, more preferably 700 to 3,000, and other than active hydrogen group-containing organopolysiloxane (C). Can be used. Specific examples of the polymer polyol include those belonging to the following groups (i) to (vi). In the present invention, the number average molecular weight is a value in terms of polymethyl methacrylate by gel permeation chromatography.
- polyether polyols for example, those obtained by polymerizing or copolymerizing alkylene oxides (ethylene oxide, propylene oxide, butylene oxide, etc.) and / or heterocyclic ethers (tetrahydrofuran, etc.), specifically polyethylene Glycol, polypropylene glycol, polyethylene glycol-polytetramethylene glycol (block or random), polytetramethylene ether glycol, polyhexamethylene glycol and the like.
- alkylene oxides ethylene oxide, propylene oxide, butylene oxide, etc.
- heterocyclic ethers tetrahydrofuran, etc.
- Polyester polyol for example, aliphatic dicarboxylic acids (for example, succinic acid, adipic acid, sebacic acid, glutaric acid, azelaic acid, etc.) and / or aromatic dicarboxylic acids (for example, isophthalic acid, terephthalic acid, etc.)
- low molecular weight glycols for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, 1,6-hexamethylene glycol, neopentyl glycol, 1,4-bis
- Polylactone polyol for example, polycaprolactone diol or triol, poly-3-methylvalerolactone diol, etc.
- Polycarbonate polyol include polytrimethylene carbonate diol, polytetramethylene carbonate diol, polypentamethylene carbonate diol, polyneopentyl carbonate diol, polyhexamethylene carbonate diol, poly (1, 4-cyclohexanedimethylene carbonate) diol, polydecamethylene carbonate diol, and random / block copolymers thereof.
- V Polyolefin polyol; for example, polybutadiene glycol, polyisoprene glycol or a hydride thereof.
- polymethacrylate polyol for example, ⁇ , ⁇ -polymethyl methacrylate diol, ⁇ , ⁇ -polybutyl methacrylate diol, etc.
- polyether polyol is preferable, and polyethylene glycol, polypropylene glycol, or polytetramethylene ether glycol is more preferable.
- the chain extender (B) is a short-chain polyol having a number average molecular weight of less than 500, preferably 60 or more and less than 500, more preferably 75 to 300, such as ethylene glycol, 1,2-propanediol, 1,3- Aliphatic glycols such as propanediol, 1,4-butanediol, 1,3-butanediol, 1,6-hexamethylene glycol, neopentyl glycol, and their alkylene oxide low-mole adducts (number average molecular weight less than 500); Cycloaliphatic glycols such as 1,4-bishydroxymethylcyclohexane and 2-methyl-1,1-cyclohexanedimethanol and their alkylene oxide low molar adducts (number average molecular weight less than 500); Fragrance such as xylylene glycol Group glycols and their alkylene oxide low molar adducts (number Average molecular weight
- the amount of the chain extender (B) used is preferably 1 to 200 parts by weight, particularly 10 to 30 parts by weight, based on 100 parts by weight of the polyol (A).
- the active hydrogen group-containing organopolysiloxane (C) includes an organopolysiloxane (C-1) having a carbinol group only at one end represented by the formula (1).
- R 1 , R 2 , and R 3 are each independently a linear, branched, or cyclic group having 1 to 10 carbon atoms in which a part of hydrogen atoms may be substituted with fluorine atoms.
- R 4 is a group selected from an alkyl group, an optionally substituted aryl group having 5 to 12 carbon atoms, or a vinyl group, and R 4 is a group represented by the following formula (2) R 5 —X—CH 2 CR 6 (R 7 ) 2 (2)
- R 5 is a divalent alkylene group having 2 to 10 carbon atoms which may contain an oxygen atom in the chain
- R 6 is a hydrogen atom, an amino group, or 1 having 1 to 10 carbon atoms.
- R 7 is a carbinol group having 1 to 10 carbon atoms
- X is a single bond or —O— bond
- n is an integer of 1 to 200.
- R 1 , R 2 and R 3 are each independently a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms in which a part of hydrogen atoms may be substituted with fluorine atoms.
- linear, branched or cyclic alkyl group having 1 to 10 carbon atoms examples include, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, cyclohexyl group, 2-ethylhex-1- Yl group, 2-phenyleth-1-yl group, 2-methyl-2-phenyleth-1-yl group and the like.
- Examples of the linear, branched or cyclic alkyl group having 1 to 10 carbon atoms in which a part of hydrogen atoms are substituted with fluorine atoms include, for example, 3,3,3-trifluoropropyl group, 3,3, 4,4,4-pentafluorobutyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group, 3,3,4,4,5,5,6,6 7,7,7-undecafluoroheptyl group, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl group, 3,3,4, 4,5,5,6,6,7,7,8,8,9,9,9-pentadecafluorononyl group, 3,3,4,4,5,5,6,6,7,7,7, Examples include 8,8,9,9,10,10,10-heptadecafluorodecyl group.
- Examples of the aryl group having 5 to 12 carbon atoms which may have a substituent include, for example, a phenyl group, a 2-methyl-1-phenyl group, a 3-methyl-1-phenyl group, and 4-methyl-1-phenyl.
- a phenyl group a 2-methyl-1-phenyl group, a 3-methyl-1-phenyl group, and 4-methyl-1-phenyl.
- Group, 2,3-dimethyl-1-phenyl group, 3,4-dimethyl-1-phenyl group, 2,3,4-trimethyl-1-phenyl group, 2,4,6-trimethyl-1-phenyl group, A naphthyl group etc. are mentioned.
- R 2 and R 3 a methyl group, a phenyl group, a 3,3,3-trifluoropropyl group or a vinyl group is preferable.
- R 5 is a divalent alkylene group having 2 to 10 carbon atoms which may contain an oxygen atom in the chain, and is a 1,2-ethylene group or 1,2-propylene group.
- R 6 is a hydrogen atom or a monovalent alkyl group having 1 to 10 carbon atoms, specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a cyclohexyl group.
- they are a hydrogen atom, a methyl group, or an ethyl group.
- R 7 is a divalent carbinol group having 1 to 10 carbon atoms, specifically, a hydroxymethyl group, a 2-hydroxyeth-1-yl group, or 2-hydroxyprop-1-yl.
- Preferred are a hydroxymethyl group and a 2-hydroxyeth-1-yl group.
- X in the formula (2) is a single bond or —O— bond.
- N in the formula (1) is an integer of 1 to 200, preferably an integer of 10 to 160.
- Such organopolysiloxane (C-1) may be synthesized according to the necessary substituents, and specific examples thereof include the following compounds (1-1) to (1-6).
- Me represents a methyl group
- Ph represents a phenyl group
- Bu represents a butyl group (hereinafter the same).
- n 1 n and n 1 is 1 or more.
- n 1 + n 2 N
- n 1 is 1 or more
- n 2 is 1 or more.
- Such a compound can be synthesized by a hydrosilylation reaction of one-end hydrogen polydimethylsiloxane and trimethylolpropane monoallyl ether.
- the active hydrogen group-containing organopolysiloxane (C) may be composed only of the organopolysiloxane (C-1) of the formula (1), but in addition to the organopolysiloxane (C-1)
- an active hydrogen group-containing organopolysiloxane (C-2) represented by the following formula (3) can further be included.
- R 2 and R 3 are the same as defined above, and R 8 each independently has a hydroxyl group or a mercapto group, and the carbon number of 1 to 1 which may have an oxygen atom in the chain) 10 monovalent hydrocarbon groups or monovalent hydrocarbon groups having 1 to 10 carbon atoms having a primary amino group or a secondary amino group, and m is an integer of 1 to 60.
- Examples of the monovalent hydrocarbon group having 1 to 10 carbon atoms which has a hydroxyl group or a mercapto group and may have an oxygen atom in the chain include, for example, a hydroxymethyl group, a 2-hydroxyeth-1-yl group 2-hydroxyprop-1-yl group, 3-hydroxyprop-1-yl group, 2-hydroxybut-1-yl group, 3-hydroxybut-1-yl group, 4-hydroxybut-1-yl group 2-hydroxyphenyl group, 3-hydroxyphenyl group, 4-hydroxyphenyl group, 2- (hydroxymethoxy) eth-1-yl group, 2- (2-hydroxyethoxy) eth-1-yl group, 2- ( 2-hydroxypropoxy) eth-1-yl group, 2- (3-hydroxypropoxy) eth-1-yl group, 2- (2-hydroxybutoxy) eth-1-yl group, 2- (3-hydride) Xybutoxy) eth-1-yl group, 2- (4-hydroxybutoxy) eth-1-yl group, 3- (hydroxymethoxy
- Examples of the monovalent hydrocarbon group having 1 to 10 carbon atoms having a primary amino group or a secondary amino group include an aminomethyl group, a 2-aminoeth-1-yl group, and 2-aminoprop-1- Yl group, 3-aminoprop-1-yl group, 2-aminobut-1-yl group, 3-aminobut-1-yl group, 4-aminobut-1-yl group, N-methylaminomethyl group, N-methyl- 2-aminoeth-1-yl group, N-methyl-2-aminoprop-1-yl group, N-methyl-3-aminoprop-1-yl group, N-methyl-2-aminobut-1-yl group, N- Methyl-3-aminobut-1-yl group, N-methyl-4-aminobut-1-yl group, N-ethylaminomethyl group, N-ethyl-2-aminoeth-1-yl group, N-ethyl-2- An aminoprop-1-yl group
- a monovalent hydrocarbon group having 2 to 6 carbon atoms preferably having a primary hydroxyl group or a secondary hydroxyl group, and optionally having an oxygen atom in the chain
- R 2 and R 3 in the formula (3) are the same as described above, but are preferably a methyl group, a phenyl group, a 3,3,3-trifluoropropyl group or a vinyl group.
- m is an integer of 1 to 60, preferably an integer of 5 to 40.
- Such organopolysiloxane (C-2) may be synthesized according to the necessary substituents, but a commercially available product may be used. Specific examples include the following compounds (3-1) and (3-2). (M is as described above.)
- the mass ratio of the organopolysiloxane (C-1) of the formula (1) to the organopolysiloxane (C-2) of the formula (3) can be changed from 100: 0 to The ratio is preferably 1:99.
- the organopolysiloxane (C-2) is blended, it is preferably 99: 1 to 1:99.
- the usage-amount of the whole (A) component is as having mentioned above.
- polyisocyanate (D) any conventionally known one can be used.
- the amount of polyisocyanate (D) used is preferably such that the equivalent ratio of isocyanate groups to active hydrogen groups derived from the components (A) to (C) is 0.9 to 1.1, more preferably 0. A range of .95 to 1.05, particularly preferably a range of 0.99 to 1.01.
- polyamine (E) may be added.
- the polyamine (E) include short-chain diamines, aliphatic diamines, aromatic diamines, long-chain diamines, hydrazines, and the like, and those other than the active hydrogen group-containing organopolysiloxane (C) are used. it can.
- short chain diamines examples include aliphatic diamine compounds such as ethylenediamine, trimethylenediamine, hexamethylenediamine, trimethylhexamethylenediamine and octamethylenediamine, phenylenediamine, and 3,3′-dichloro-4,4′-diaminodiphenylmethane.
- Aromatic diamine compounds such as 4,4′-methylenebis (phenylamine), 4,4′-diaminodiphenyl ether and 4,4′-diaminodiphenylsulfone, cyclopentanediamine, cyclohexyldiamine, 4,4-diaminodicyclohexylmethane, And alicyclic diamine compounds such as 1,4-diaminocyclohexane and isophoronediamine.
- long-chain diamines include those obtained from polymers or copolymers of alkylene oxides (ethylene oxide, propylene oxide, butylene oxide, etc.), and specific examples include polyoxyethylene diamine and polyoxypropylene diamine. It is done.
- hydrazines examples include hydrazine, carbodihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, and phthalic acid dihydrazide.
- an amino-modified silane coupling agent if used, a self-curing reaction type paint can be designed.
- N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane KBM-602 manufactured by Shin-Etsu Chemical Co., Ltd.
- N-2- (aminoethyl) -3-aminopropylmethyltrimethoxysilane Shin-Etsu
- KBM-603 N-2- (aminoethyl) -3-aminopropylmethyldiethoxysilane (Shin-Etsu Chemical Co., Ltd. KBE-602), 3-aminopropyltrimethoxysilane (Shin-Etsu) Chemical Industry Co., Ltd. KBE-603), 3-aminopropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd. KBE-903), 3-ureidopropyltriethoxysilane, and the like.
- the polyamine (E) When used, the polyamine (E) is used in an amount of 1 to 20 parts by weight, more preferably 1 to 15 parts by weight, based on 100 parts by weight of the total amount of the components (A) to (D). is there.
- a catalyst can be used as necessary.
- dibutyltin dilaurate dibutyltin maleate, dibutyltin phthalate, dibutyltin dioctanoate, dibutyltin bis (2-ethylhexanoate), dibutyltin bis (methyl maleate), dibutyltin bis (ethyl maleate), dibutyltin bis (butyl maleate) Acid
- salts of metals with organic and inorganic acids such as complexes obtained by reacting a diol and organometallic derivatives, trimethylamine, triethylamine (Et 3 N), diisopropylethylamine (DI EA), tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptylamine, tri-n-octylamine, N-methylpyrrolidine, N-methylpiperidine, N-methyl Morpholine (NMO), N, N, N ′, N′-tetramethylethylenediamine (TMEDA), N-methylimidazole (NMI), pyridine, 2,6-lutidine, 1,3,5-collidine, N, N— Dimethylaminopyridine (DMAP), pyrazine, quinoline, 1,8-diazabicyclo- [5,4,0] -7-undecene (DBU), 1,4-diazabicy
- the amount of the catalyst used is the amount of the catalyst, preferably 0.01 to 10 mol%, more preferably 0.1 to 5 mol%, based on the total amount of the components (A) to (E). .
- the silicone-modified polyurethane resin of the present invention may be synthesized without a solvent or may be synthesized using an organic solvent if necessary.
- Preferred solvents as organic solvents include those that are inert to isocyanate groups or less active than the reaction components.
- ketone solvents acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, menthone, etc.
- aromatic hydrocarbon solvents toluene, o-xylene, m-xylene, p-xylene, 1,3,5-mesitylene, 1 , 2,3-mesitylene, 1,2,4-mesitylene, ethylbenzene, n-propylbenzene, i-propylbenzene, n-butylbenzene, i-butylbenzene, sec-butylbenzene, t-butylbenzene, n-pentyl Benzene, i-pentylbenzene, sec-pentylbenzene, t-pentylbenzene, n-hexylbenzene, i-hexylbenzene, sec-hexylbenzene, t-
- DMF methyl ethyl ketone, ethyl acetate, acetone, tetrahydrofuran, and the like are preferable in consideration of solvent recovery, solubility during urethane synthesis, reactivity, boiling point, and emulsification dispersibility in water.
- an isocyanate terminal termination reaction may be further performed.
- monofunctional compounds such as monoalcohols and monoamines
- compounds having two types of functional groups having different reactivities with respect to isocyanate can be used.
- methyl alcohol Monoalcohols such as ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol; monoethylamine, n-propylamine, diethylamine, di-n-propylamine, di-n- Examples thereof include monoamines such as butylamine; alkanolamines such as monoethanolamine and diethanolamine, and among these, alkanolamines are preferable because of easy reaction control.
- the number average molecular weight of the silicone-modified polyurethane resin is preferably 10,000 to 200,000.
- the polymer chains are sufficiently entangled in the polymer solution, and are easily fibrillated.
- the range of a number average molecular weight is the said range also from the point which the polymer solution expresses the viscosity suitable for the spinning by an electrospinning method.
- a particularly preferred number average molecular weight is 40,000 to 120,000.
- various additives such as inorganic or organic fillers can be blended for the purpose of improving various properties of the obtained fiber.
- an additive is blended, it is preferable to add a predetermined amount in advance to the reaction system during the production of the silicone-modified polyurethane resin because a nonwoven fabric in which additives such as fillers are uniformly dispersed can be obtained.
- additives such as nucleating agents, carbon black, pigments such as inorganic baked pigments, antioxidants, stabilizers, plasticizers, lubricants, mold release agents and flame retardants are added as long as the effects of the invention are not impaired. Desired properties can be imparted.
- the fiber according to the present invention is formed from a resin containing the silicone-modified polyurethane resin, and the resin is preferably formed only from the silicone-modified polyurethane resin. If necessary, a vinyl resin or an acrylic resin is used. Further, a resin such as a methacrylic resin, an epoxy resin, a urethane resin, an olefin resin, or a silicone resin may be contained alone or in combination of two or more, and may be contained in an amount of 0 to 50% by mass, more preferably 0 to 20% by mass.
- the fiber laminate structure refers to a three-dimensional structure formed by laminating and weaving, knitting, or other methods in which the obtained single or plural fibers are laminated.
- Specific forms of the fiber laminate structure include, for example, a nonwoven fabric, a tube, a mesh, and the like.
- the nonwoven fabric of the present invention has an elastic modulus of 1 to 20 MPa, more preferably 2 to 10 MPa, a surface dynamic friction coefficient of 0.5 to 2.0, more preferably 0.5 to 1.0,
- the conductivity is 0.001 to 0.02 W / mK, more preferably 0.01 to 0.02 W / mK, and the water contact angle is 100 ° or more (water repellency), more preferably 120 to 160 °.
- the moisture content is 150% or less, more preferably 50 to 120%, and the elongation at break is 80% or more, more preferably 100% or more.
- the fiber made of the silicone-modified polyurethane resin of the present invention is preferably produced through the following three steps.
- the first step is a step of producing a silicone-modified polyurethane resin
- the second step is a step of preparing a solution or dispersion containing the silicone-modified polyurethane resin using an organic solvent, water, or a mixture thereof.
- the third step is a step of spinning the solution or dispersion of the silicone-modified polyurethane resin.
- the silicone-modified polyurethane resin in the first process for example, in the presence of an organic solvent not containing an active hydrogen group in the molecule or in the absence of a solvent, a polyol (A), a chain extender (B ), An active hydrogen group-containing organopolysiloxane (C), and a polyisocyanate (D), with an equivalent ratio of isocyanate group to active hydrogen group of usually 0.9 to 1.1, Alternatively, the reaction is usually performed at 20 to 150 ° C., preferably 50 to 110 ° C.
- a polyurethane resin (or its emulsion in water) can be obtained.
- the second step is a step of preparing a resin solution or dispersion containing the silicone-modified polyurethane resin using an organic solvent, water, or a mixture thereof.
- the solid content concentration of the solution or dispersion is preferably 10 to 50% by mass. If the solid content concentration is less than 10% by mass, it is difficult to form fibers, which is not preferable because it is in the form of particles or beads. On the other hand, if it is larger than 50% by mass, the fiber diameter of the resulting fiber becomes large, and the viscosity of the liquid becomes high, so that liquid feeding failure and nozzle clogging are likely to occur in the spinning apparatus, which is not preferable.
- a more preferable solid content concentration is 20 to 40% by mass.
- the solvent used in the second step is a substance having a boiling point of 300 ° C. or less at 1 atm and a liquid at 25 ° C., and dissolves the silicone-modified polyurethane resin and the resin to be added as necessary. If there is no particular limitation.
- the solvent used in the polymerization of the silicone-modified polyurethane resin can be used, and the silicone-modified polyurethane resin solution obtained by the polymerization can be used as it is.
- Other solvents include organic solvents such as dimethylformamide and methyl ethyl ketone (ether compounds, alcohol compounds, ketone compounds, amide compounds, nitrile compounds, aliphatic hydrocarbons, aromatic hydrocarbons), And at least one mixed solvent selected from water and water.
- ether compound examples include diethyl ether, t-butyl methyl ether (TBME), dibutyl ether, cyclopentyl methyl ether (CPME), diphenyl ether, dimethoxymethane (DMM), tetrahydrofuran (THF), 2-methyltetrahydrofuran, 2- Examples include ethyltetrahydrofuran, tetrahydropyran (THP), dioxane, trioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, and diethylene glycol diethyl ether, with THF being particularly preferred.
- Examples of the alcohol compounds include methanol, ethanol, 1-propanol, 2-propanol, n-butyl alcohol, i-butyl alcohol, s-butyl alcohol, t-butyl alcohol, ethylene glycol, 2-methoxyethanol, 2- (2-methoxyethoxy) ethanol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-butene-1,4-diol, 2-methyl-2,4-pentanediol, glycerin, 2-ethyl-2-mercaptomethyl-1,3-propanediol, 1,2,6-hexanetriol, cyclopent Particularly preferred are tanol, cyclohexanol, phenol and the like.
- ketone compound examples include methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, acetone, limonene and the like, and methyl ethyl ketone is particularly preferable.
- amide compound examples include dimethylformamide (DMF), diethylformamide, dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), N-ethylpyrrolidone, 1,3-dimethyl-2-imidazolidinone (DMI).
- DMPU 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone (DMPU) and the like, particularly preferably dimethylformamide.
- the nitrile compound include acetonitrile, propionitrile, butyronitrile, benzonitrile and the like, and acetonitrile or propionitrile is particularly preferable.
- aliphatic and aromatic hydrocarbons examples include toluene, o-xylene, m-xylene, p-xylene, 1,3,5-mesitylene, 1,2,3-mesitylene, 1,2,4-mesitylene, Ethylbenzene, n-propylbenzene, i-propylbenzene, n-butylbenzene, i-butylbenzene, sec-butylbenzene, t-butylbenzene, n-pentylbenzene, i-pentylbenzene, sec-pentylbenzene, t-pentyl Benzene, n-hexylbenzene, i-hexylbenzene, sec-hexylbenzene, t-hexylbenzene, cyclopentane, cyclohexane, cycloheptane, cyclooctane, methylcyclohex
- an ether compound and water As the combination of the mixed solvents, an ether compound and water, an ether compound and an alcohol compound, a ketone compound and water, or a combination of an amide compound and a ketone compound is preferable. More preferably, it is a mixed solvent of an amide compound and a ketone compound, and as a mixing ratio, if a ketone compound having a low boiling point is used, the evaporation rate increases and spinning becomes difficult. In this case, 50:50 to 80:20 (both mass ratios) are more preferable.
- the viscosity of the resin solution or dispersion containing the silicone-modified polyurethane resin is preferably in the range of 1 to 1,500 dPa ⁇ s.
- a particularly preferred viscosity is 200 to 800 dPa ⁇ s.
- a viscosity is a viscosity of 25 degreeC by a rotational viscometer.
- the third step is a step of spinning the solution or dispersion of the silicone-modified polyurethane resin.
- the spinning method is not particularly limited, but an electrospinning method (electrostatic spinning method, electrospinning method, melting method) is preferable.
- a polymer solution is discharged into an electrostatic field formed by applying a high voltage between electrodes between a nozzle and a collector, and a nonwoven fabric is obtained by laminating the formed fibers on a collection substrate.
- the non-woven fabric is not limited to a state where the solvent has already been evaporated and removed, but also refers to a state containing the solvent.
- a spinning device by an electrospinning method preferably used in the present invention will be described.
- the electrode any metal, inorganic, or organic material that exhibits conductivity can be used. Moreover, you may have a thin film of the metal, inorganic substance, or organic substance which shows electroconductivity on an insulator.
- the electrostatic field is formed by applying a high voltage between the nozzle and the target, and may be formed between a pair or a plurality of electrodes. For example, this includes a case where a total of three electrodes including two electrodes having different voltage values (for example, 15 kV and 10 kV) and an electrode connected to the ground are used, or a case where a plurality of more electrodes are used.
- the solvent used when producing fibers by the electrospinning method may be used alone or in combination with a plurality of solvents.
- Examples of the method for adjusting the evaporation rate of the solvent include a method for adjusting the nozzle shape, a method using a mixed solvent, a method for adjusting the spinning environment temperature or humidity, and the like, which can be used in appropriate combinations.
- the solution using a mixed solvent is simple and effective.
- any method can be used to discharge the prepared polymer solution into the electrostatic field from the nozzle.
- a polymer solution 2 is supplied to a polymer solution tank provided with a nozzle 1, and the polymer solution is ejected from a nozzle of a polymer solution tank fixed in an electrostatic field to be fiberized.
- an appropriate device can be used.
- an injection needle-like nozzle in which voltage is applied to the tip of the polymer solution holding portion of the cylindrical syringe syringe 3 by an appropriate means, for example, the high voltage generator 5 1 is placed at an appropriate distance from the collection substrate 4 whose electrodes are grounded.
- the polymer solution 2 is ejected from the tip of the nozzle 1, fibers can be formed between the tip of the nozzle 1 and the collection substrate 4.
- a known method can be used. For example, an electrode paired with an electrode for collecting a fibrous structure directly in a syringe containing a polymer solution having a nozzle May be inserted. Since the capacity of a syringe is often small, a tank may be used instead of a syringe, and spinning may be performed from the bottom nozzle by applying pressure from the top of the tank, or pressure from the bottom of the opposite tank. Thus, spinning may be performed from the nozzle at the top of the tank.
- Japanese Unexamined Patent Application Publication No. 2007-303031 Japanese Unexamined Patent Application Publication No. 2007-303031
- an assist air spraying part Japanese Unexamined Patent Application Publication No. 2014-47440
- a method of increasing the orientation of nanofibers by disposing an electrode body between a nozzle and a collection substrate and applying a predetermined potential Japanese Patent Laid-Open No. 2008-223186
- a plurality of Use nozzles with assist air outlets in each nozzle and control the position between the nozzles Japanese Patent Laid-Open No.
- the distance between the electrodes depends on the voltage, nozzle size (diameter), spinning solution flow rate, spinning solution concentration, etc., but in order to suppress corona discharge, for example, when the applied voltage is 10 to 20 kV, a distance of 5 to 30 cm is used. Is appropriate. As another method for suppressing corona discharge, spinning under vacuum is also possible.
- the magnitude of the applied voltage is not particularly limited, but the applied voltage is preferably 3 to 100 kV. If the applied voltage is less than 3 kV, the Coulomb repulsion tends to be small and fiberization tends to be difficult, and if it exceeds 100 kV, sparking may occur between the electrodes, and spinning may not be possible. More preferably, it is 5 to 30 kV.
- the size of the nozzle from which the polymer solution is ejected is not particularly limited, but it is preferably 0.05 to 2 mm, more preferably 0.1 to 1 mm in consideration of the balance between productivity and the obtained fiber diameter.
- the supply rate (or extrusion rate) of the polymer solution is not particularly limited, but it is preferable to set an appropriate value because it affects the target fiber diameter. If the supply rate is too high, the desired fiber may not be obtained due to the effect of insufficient evaporation of the solvent and insufficient Coulomb repulsion. If the supply rate is too slow, the productivity of the fiber is not preferable.
- the supply rate of the polymer solution is preferably 0.01 to 0.1 ml / min per nozzle.
- the electrode also serves as a collection substrate, but it is also possible to collect fibers on a collection substrate installed between the electrodes.
- a belt-like repair substrate is installed between the electrodes, thereby enabling continuous production.
- the solvent evaporates to form a fibrous structure.
- the solvent evaporates until it is collected on the collection substrate at room temperature, but if the solvent evaporation is insufficient, spinning may be performed under reduced pressure conditions.
- the spinning environment temperature varies depending on the solvent used, and depends on the evaporation of the solvent and the viscosity of the polymer solution. Generally, it is carried out at 0 to 50 ° C. However, when a low volatility solvent is used, the temperature may exceed 50 ° C., as long as the function of the spinning device and the resulting fiber laminate structure is not impaired. I just need it.
- the humidity is suitably from 0 to 50% RH, but can be appropriately changed depending on the polymer concentration, the type of solvent, and the like.
- the fiber of the present invention may be used alone, but may be used in combination with other members in accordance with handleability and other requirements.
- a support substrate such as a nonwoven fabric, woven fabric, or film as a collection substrate, and laminating the fiber of the present invention thereon, a composite material combining the support substrate and the fiber laminate structure of the present invention is obtained. It is also possible to manufacture.
- the fiber or fiber laminate structure of the present invention can be used for filters, clothing, biocompatible materials, and other various uses.
- Examples of the filter application include air filters as constituent members such as HEPA and ULPA, gas permeable membranes, gas separation membranes, battery separators that require fine pores, and polymer electrolyte membranes for fuel cells.
- air filters as constituent members such as HEPA and ULPA, gas permeable membranes, gas separation membranes, battery separators that require fine pores, and polymer electrolyte membranes for fuel cells.
- the apparel for clothing for example, it can be used for a protective device that directly covers the mouth and nose of a neck warmer or a face mask, and can prevent the unpleasant feeling of steaming from breath.
- Sportswear that quickly releases sweat, heat-retaining properties due to low thermal conductivity, climbing clothing, winter innerwear materials, and outerwear lining fabrics.
- biocompatible material examples include, for example, a tube for clothing such as a catheter and an artificial blood vessel, an abrasion material such as a wound pad, a gauze, a medium for regenerative medical engineering, and the like.
- polishing pads such as glass and metal silicon
- cosmetic tools such as puffs, clean cloth used for dirt removal, and surface materials for artificial leather.
- water-soluble nanofibers, sheet materials and the like that can enclose food additives and release them slowly can be mentioned.
- the number average molecular weight (Mn) is a value in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC). GPC measurement was performed under the conditions of apparatus: HLC-8320GPC (manufactured by Tosoh Corporation), solvent: tetrahydrofuran (THF), and resin concentration: 0.1%.
- IPDI isophorone diisocyanate
- IPDA isophoronediamine
- IPDI isophorone diisocyanate
- Example 1 SiPU1 fiberization> In a mixed solvent composed of 7.7 g of N, N-dimethylformamide and 4.3 g of methyl ethyl ketone, 3.0 g of SiPU1 synthesized in Synthesis Example 1 was dissolved. This solution was stirred for 24 hours at room temperature to obtain a uniform milky white solution. Using the apparatus shown in FIG. 1, the polymer solution was discharged to the fibrous structure collection substrate 4 for 10 hours. The inner diameter of the nozzle 1 was 0.6 mm, the voltage was 20 kV, and the distance from the nozzle 1 to the collection substrate 4 of the fibrous structure was 10 cm. The fiber diameter was measured from the SEM image of the obtained nonwoven fabric, the average fiber diameter was 0.93 ⁇ m, and fibers of 1 ⁇ m or more were not observed. A scanning electron micrograph of the nonwoven fabric surface is shown in FIG.
- Example 2 Fiber formation of SiPU5> Fiberization was performed under the same conditions except that SiPU 1 of Example 1 was replaced with SiPU 5 of Synthesis Example 5, and the fiber diameter of the obtained nonwoven fabric was 0.81 ⁇ m, and fibers of 1 ⁇ m or more were not observed. A scanning electron micrograph of the nonwoven fabric surface is shown in FIG.
- Example 3 Fiber formation of SiPU7> Fiberization was performed under the same conditions except that SiPU 1 of Example 1 was replaced with SiPU 7 of Synthesis Example 7. The fiber diameter of the obtained nonwoven fabric was 0.82 ⁇ m, and fibers of 1 ⁇ m or more were not observed. A scanning electron micrograph of the nonwoven fabric surface is shown in FIG.
- ⁇ Blocking resistance> The nonwoven fabrics of the same type were overlapped and placed at 36 ° C. and 80% RH for 24 hours, and then the nonwoven fabrics were slid. ⁇ : Non-woven fabrics do not adhere to each other and slippery is good ⁇ : Non-woven fabrics do not adhere to each other and slipperiness is moderate x: Non-woven fabrics do not adhere to each other and slipperiness is poor
- Thermal conductivity was measured using a KES-F7 precision rapid thermophysical property measuring apparatus Thermolab IIB (manufactured by Kato Tech Co., Ltd.).
- the fiber of the present invention includes apparel, It can contribute to various fields such as filters and medical fields.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Dispersion Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
- Artificial Filaments (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
〔1〕
ポリオール(A)、鎖伸長剤(B)、活性水素基含有オルガノポリシロキサン(C)、及びポリイソシアネート(D)の反応生成物からなるシリコーン変性ポリウレタン樹脂を含む樹脂から形成された繊維であって、前記活性水素基含有オルガノポリシロキサン(C)が、片末端のみにカルビノール基を有する活性水素基含有オルガノポリシロキサン(C-1)を含有することを特徴とする繊維。
〔2〕
前記カルビノール基を有する活性水素基含有オルガノポリシロキサン(C-1)が、下記式(1)
R1R2R3SiO(SiR2R3O)nSiR2R3R4 (1)
[式(1)中、R1、R2、R3はそれぞれ独立して、水素原子の一部がフッ素原子置換されていてもよい直鎖状、分岐状又は環状の炭素数1~10のアルキル基、置換基を有していてもよい炭素数5~12のアリール基、又はビニル基から選択される基であり、R4は下記式(2)
R5-X-CH2CR6(R7)2 (2)
(式(2)中、R5は鎖中に酸素原子を含んでもよい炭素数2~10の2価のアルキレン基であり、R6は水素原子、アミノ基、又は炭素数1~10の1価のアルキル基であり、R7は炭素数1~10のカルビノール基であり、Xは単結合又は-O-結合である。)であり、nは1~200の整数である。]
で表されるオルガノポリシロキサンである〔1〕記載の繊維。
〔3〕
カルビノール基が、ヒドロキシメチル基、2-ヒドロキシエタ-1-イル基、2-ヒドロキシプロパ-1-イル基、3-ヒドロキシプロパ-1-イル基、2-ヒドロキシブタ-1-イル基、4-ヒドロキシブタ-1-イル基、5-ヒドロキシペンタ-1-イル基、6-ヒドロキシへキサ-1-イル基、7-ヒドロキシヘプタ-1-イル基、8-ヒドロキシオクタ-1-イル基、9-ヒドロキシノナ-1-イル基、10-ヒドロキシデカ-1-イル基から選ばれる〔2〕記載の繊維。
〔4〕
(C)成分が、更に下記式(3)
R8SiR2R3O(SiR2R3O)mSiR2R3R8 (3)
(式(3)中、R2、R3は前記と同じであり、R8はそれぞれ独立して、水酸基又はメルカプト基を有し、鎖中に酸素原子を介していてもよい炭素数1~10の1価炭化水素基、又は第1級アミノ基もしくは第2級アミノ基を有する炭素数1~10の1価炭化水素基であり、mは1~60の整数である。)
で表されるオルガノポリシロキサン(C-2)を含有する〔1〕~〔3〕のいずれかに記載の繊維。
〔5〕
式(1)のオルガノポリシロキサン(C-1)と式(3)のオルガノポリシロキサン(C-2)との割合が質量比として(C-1):(C-2)=100:0~1:99である〔4〕記載の繊維。
〔6〕
(C)成分の含有量が、(A)~(D)成分の全体100質量部中、0.1~50質量部である〔1〕~〔5〕のいずれかに記載の繊維。
〔7〕
前記シリコーン変性ポリウレタン樹脂の数平均分子量が10,000~200,000である〔1〕~〔6〕のいずれかに記載の繊維。
〔8〕
繊維径が100nm以上1,000nm未満である〔1〕~〔7〕のいずれかに記載の繊維。
〔9〕
〔1〕~〔8〕のいずれかに記載の繊維からなる繊維積層構造体。
〔10〕
シリコーン変性ポリウレタン樹脂の溶液又は分散液をエレクトロスピニング法によって紡糸することを特徴とする〔1〕~〔8〕のいずれかに記載の繊維の製造方法。
〔11〕
前記シリコーン変性ポリウレタン樹脂が、有機溶媒、水、もしくはそれらの混合物の溶液又は分散液の状態で供給されることを特徴とする〔10〕記載の繊維の製造方法。
本発明の繊維は、シリコーン変性ポリウレタン樹脂を含む樹脂から形成された繊維であることを特徴とする。
(i)ポリエーテルポリオール;例えば、アルキレンオキシド(エチレンオキシド、プロピレンオキシド、ブチレンオキシド等)、及び/又は、複素環式エーテル(テトラヒドロフラン等)を重合又は共重合して得られるもの、具体的にはポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール-ポリテトラメチレングリコール(ブロック又はランダム)、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレングリオール等。
(ii)ポリエステルポリオール;例えば、脂肪族系ジカルボン酸類(例えば、コハク酸、アジピン酸、セバシン酸、グルタル酸、アゼライン酸等)及び/又は芳香族系ジカルボン酸(例えば、イソフタル酸、テレフタル酸等)と低分子量グリコール類(例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブチレングリコール、1,6-ヘキサメチレンングリコール、ネオペンチルグリコール、1,4-ビスヒドロキシメチルシクロヘキサン等)とを縮重合したもの、具体的にはポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリネオペンチルアジペートジオール、ポリエチレン/ブチレンアジペートジオール、ポリネオペンチル/ヘキシルアジペートジオール、ポリ-3-メチルペンタンアジペートジオール、ポリブチレンイソフタレートジオール等。
(iii)ポリラクトンポリオール;例えば、ポリカプロラクトンジオール又はトリオール、ポリ-3-メチルバレロラクトンジオール等。
(iv)ポリカーボネートポリオール;例えば、ポリカーボネートポリオールの具体例としては、ポリトリメチレンカーボネートジオール、ポリテトラメチレンカーボネートジオール、ポリペンタメチレンカーボネートジオール、ポリネオペンチルカーボネートジオール、ポリヘキサメチレンカーボネートジオール、ポリ(1,4-シクロヘキサンジメチレンカーボネート)ジオール、ポリデカメチレンカーボネートジオール、及びこれらのランダム/ブロック共重合体等。
(v)ポリオレフィンポリオール;例えば、ポリブタジエングリコール、ポリイソプレングリコール又は、その水素化物等。
(vi)ポリメタクリレートポリオール;例えば、α,ω-ポリメチルメタクリレートジオール、α,ω-ポリブチルメタクリレートジオール等。
これらの中でも、ポリエーテルポリオールが好ましく、より好ましくはポリエチレングリコール、ポリプロピレングリコール、又はポリテトラメチレンエーテルグリコールである。
R1R2R3SiO(SiR2R3O)nSiR2R3R4 (1)
[式(1)中、R1、R2、R3はそれぞれ独立して、水素原子の一部がフッ素原子置換されていてもよい直鎖状、分岐状又は環状の炭素数1~10のアルキル基、置換基を有していてもよい炭素数5~12のアリール基、又はビニル基から選択される基であり、R4は下記式(2)
R5-X-CH2CR6(R7)2 (2)
(式(2)中、R5は鎖中に酸素原子を含んでもよい炭素数2~10の2価のアルキレン基であり、R6は水素原子、アミノ基、又は炭素数1~10の1価のアルキル基であり、R7は炭素数1~10のカルビノール基であり、Xは単結合又は-O-結合である。)であり、nは1~200の整数である。]
このような化合物は片末端ハイドロジェンポリジメチルシロキサンとトリメチロールプロパンモノアリルエーテルとをヒドロシリル化反応することで合成が可能である。
R8SiR2R3O(SiR2R3O)mSiR2R3R8 (3)
(式(3)中、R2、R3は前記と同じであり、R8はそれぞれ独立して、水酸基又はメルカプト基を有し、鎖中に酸素原子を介していてもよい炭素数1~10の1価炭化水素基、又は第1級アミノ基もしくは第2級アミノ基を有する炭素数1~10の1価炭化水素基であり、mは1~60の整数である。)
なお、(A)成分全体の使用量は、上述した通りである。
また、本発明の効果を害さない範囲で、その他の樹脂を混合した樹脂組成物としてもよい。更に、発明の効果を害さない範囲で、核剤、カーボンブラック、無機焼成顔料等の顔料、酸化防止剤、安定剤、可塑剤、滑剤、離型剤及び難燃剤等の添加剤を添加して、所望の特性を付与することができる。
(合成例1:SiPU1の合成)
撹拌機、還流冷却管、温度計、窒素吹き込み管、及び開口部を備えた反応容器を用意した。反応容器の内部を窒素ガスで置換しながら、ポリテトラメチレングリコール(商品名「PolyTHF1000」、BASFジャパン社製、数平均分子量1,000、水酸基価113mgKOH/g)200g、1,4-ブタンジオール38g、片末端型シリコーンジオール(式(1)、(2)において、化合物(1-1),n=10)50g、ジメチルホルムアミド(DMF)686.4gを仕込んだ。加熱撹拌を開始して系内が均一となった後、50℃で4,4’-メチレンビス(フェニレンイソシアネート)(MDI)169.6gを添加し、次いで、80℃に昇温して反応させた。赤外吸収スペクトル分析で測定される遊離イソシアネート基による2,270cm-1の吸収が消失するまで反応を進行させた。その後、DMF61.0g及びメチルエチルケトン(MEK)320.3gを添加して、シリコーン含有率10.9%、数平均分子量(Mn)71,000、固形分30%のシリコーンポリウレタン樹脂SiPU1の溶液を得た。結果を表1に示す。
撹拌機、還流冷却管、温度計、窒素吹き込み管、及び開口部を備えた反応容器を用意した。反応容器の内部を窒素ガスで置換しながら、ポリテトラメチレングリコール(商品名「PolyTHF1000」、BASFジャパン社製、数平均分子量1,000、水酸基価113mgKOH/g)200g、1,4-ブタンジオール38g、片末端型シリコーンジオール(式(1)、(2)において、化合物(1-1),n=25)48g、ジメチルホルムアミド(DMF)669.0gを仕込んだ。加熱撹拌を開始して系内が均一となった後、50℃で4,4’-メチレンビス(フェニレンイソシアネート)(MDI)160.6gを添加し、次いで、80℃に昇温して反応させた。赤外吸収スペクトル分析で測定される遊離イソシアネート基による2,270cm-1の吸収が消失するまで反応を進行させた。その後、DMF59.5g及びメチルエチルケトン(MEK)312.6gを添加して、シリコーン含有率10.7%、数平均分子量70,000、固形分30%のシリコーンポリウレタン樹脂SiPU2の溶液を得た。結果を表1に示す。
撹拌機、還流冷却管、温度計、窒素吹き込み管、及び開口部を備えた反応容器を用意した。反応容器の内部を窒素ガスで置換しながら、ポリテトラメチレングリコール(商品名「PolyTHF1000」、BASFジャパン社製、数平均分子量1,000、水酸基価113mgKOH/g)200g、1,4-ブタンジオール38g、片末端型シリコーンジオール(式(1)、(2)において、化合物(1-1),n=30)0.5g、ジメチルホルムアミド(DMF)591.8gを仕込んだ。加熱撹拌を開始して系内が均一となった後、50℃で4,4’-メチレンビス(フェニレンイソシアネート)(MDI)156.0gを添加し、次いで、80℃に昇温して反応させた。赤外吸収スペクトル分析で測定される遊離イソシアネート基による2,270cm-1の吸収が消失するまで反応を進行させた。その後、DMF52.6g及びメチルエチルケトン(MEK)276.1gを添加して、シリコーン含有率0.13%、数平均分子量76,000、固形分30%のシリコーンポリウレタン樹脂SiPU3の溶液を得た。結果を表1に示す。
撹拌機、還流冷却管、温度計、窒素吹き込み管、及び開口部を備えた反応容器を用意した。反応容器の内部を窒素ガスで置換しながら、ポリテトラメチレングリコール(商品名「PolyTHF1000」、BASFジャパン社製、数平均分子量1,000、水酸基価113mgKOH/g)200g、1,4-ブタンジオール38g、片末端型シリコーンジオール(式(1)、(2)において、化合物(1-1),n=30)4.5g、ジメチルホルムアミド(DMF)598.2gを仕込んだ。加熱撹拌を開始して系内が均一となった後、50℃で4,4’-メチレンビス(フェニレンイソシアネート)(MDI)156.3gを添加し、次いで、80℃に昇温して反応させた。赤外吸収スペクトル分析で測定される遊離イソシアネート基による2,270cm-1の吸収が消失するまで反応を進行させた。その後、DMF53.2g及びメチルエチルケトン(MEK)279.2gを添加して、シリコーン含有率1.1%、数平均分子量75,000、固形分30%のシリコーンポリウレタン樹脂SiPU4の溶液を得た。結果を表1に示す。
撹拌機、還流冷却管、温度計、窒素吹き込み管、及び開口部を備えた反応容器を用意した。反応容器の内部を窒素ガスで置換しながら、ポリテトラメチレングリコール(商品名「PolyTHF1000」、BASFジャパン社製、数平均分子量1,000、水酸基価113mgKOH/g)200g、1,4-ブタンジオール38g、片末端型シリコーンジオール(式(1)、(2)において、化合物(1-1),n=30)48g、ジメチルホルムアミド(DMF)668.6gを仕込んだ。加熱撹拌を開始して系内が均一となった後、50℃で4,4’-メチレンビス(フェニレンイソシアネート)(MDI)159.7gを添加し、次いで、80℃に昇温して反応させた。赤外吸収スペクトル分析で測定される遊離イソシアネート基による2,270cm-1の吸収が消失するまで反応を進行させた。その後、DMF59.4g及びメチルエチルケトン(MEK)312.0gを添加して、シリコーン含有率10.8%、数平均分子量72,000、固形分30%のシリコーンポリウレタン樹脂SiPU5の溶液を得た。結果を表1に示す。
撹拌機、還流冷却管、温度計、窒素吹き込み管、及び開口部を備えた反応容器を用意した。反応容器の内部を窒素ガスで置換しながら、ポリテトラメチレングリコール(商品名「PolyTHF1000」、BASFジャパン社製、数平均分子量1,000、水酸基価113mgKOH/g)22.5g、1,4-ブタンジオール38g、片末端型シリコーンジオール(式(1)、(2)において、化合物(1-1),n=30)177.5g、ジメチルホルムアミド(DMF)544.7gを仕込んだ。加熱撹拌を開始して系内が均一となった後、50℃で4,4’-メチレンビス(フェニレンイソシアネート)(MDI)125.1gを添加し、次いで、80℃に昇温して反応させた。赤外吸収スペクトル分析で測定される遊離イソシアネート基による2,270cm-1の吸収が消失するまで反応を進行させた。その後、DMF48.4g及びメチルエチルケトン(MEK)254.2gを添加して、シリコーン含有率48.9%、数平均分子量70,000、固形分30%のシリコーンポリウレタン樹脂SiPU6の溶液を得た。結果を表1に示す。
撹拌機、還流冷却管、温度計、窒素吹き込み管、及び開口部を備えた反応容器を用意した。反応容器の内部を窒素ガスで置換しながら、ポリテトラメチレングリコール(商品名「PolyTHF1000」、BASFジャパン社製、数平均分子量1,000、水酸基価113mgKOH/g)200g、1,4-ブタンジオール38g、片末端型シリコーンジオール(式(1)、(2)において、化合物(1-1),n=120)47g、ジメチルホルムアミド(DMF)662.9gを仕込んだ。加熱撹拌を開始して系内が均一となった後、50℃で4,4’-メチレンビス(フェニレンイソシアネート)(MDI)156.9gを添加し、次いで、80℃に昇温して反応させた。赤外吸収スペクトル分析で測定される遊離イソシアネート基による2,270cm-1の吸収が消失するまで反応を進行させた。その後、DMF58.9g及びメチルエチルケトン(MEK)309.3gを添加して、シリコーン含有率10.6%、数平均分子量78,000、固形分30%のシリコーンポリウレタン樹脂SiPU7の溶液を得た。結果を表1に示す。
撹拌機、還流冷却管、温度計、窒素吹き込み管、及び開口部を備えた反応容器を用意した。反応容器の内部を窒素ガスで置換しながら、ポリテトラメチレングリコール(商品名「PolyTHF1000」、BASFジャパン社製、数平均分子量1,000、水酸基価113mgKOH/g)150g、1,4-ブタンジオール38g、片末端型シリコーンジオール(式(1)、(2)において、化合物(1-1),n=30)50g、ジメチルホルムアミド(DMF)186.0gを仕込んだ。加熱撹拌を開始して系内が均一となった後、50℃でイソホロンジイソシアネート(IPDI)196.1g(イソシアネートと水酸基の比が1.5)を添加し、次いで、100℃に昇温して反応させた。NCO%が所定の数値(3.99%)になるまで反応させた後、DMF943.8gを添加し、40℃とした。ここにイソホロンジアミン(IPDA)50.1gを添加し、赤外吸収スペクトル分析で測定される遊離イソシアネート基による2,270cm-1の吸収が消失するまで反応を進行させ、シリコーン含有率10.3%、数平均分子量80,000、固形分30%のシリコーンポリウレタン樹脂SiPU8の溶液を得た。結果を表1に示す。
(合成例9:SiPU9の合成)
撹拌機、還流冷却管、温度計、窒素吹き込み管、及び開口部を備えた反応容器を用意した。反応容器の内部を窒素ガスで置換しながら、ポリテトラメチレングリコール(商品名「PolyTHF1000」、BASFジャパン社製、数平均分子量1,000、水酸基価113mgKOH/g)200g、1,4-ブタンジオール38g、片末端型シリコーンジオール(式(1)、(2)において、化合物(1-1),n=30)24g、両末端型シリコーンジオール(化合物(3-1),m=30)24g、ジメチルホルムアミド(DMF)670.7gを仕込んだ。加熱撹拌を開始して系内が均一となった後、50℃で4,4’-メチレンビス(フェニレンイソシアネート)(MDI)161.1gを添加し、次いで、80℃に昇温して反応させた。赤外吸収スペクトル分析で測定される遊離イソシアネート基による2,270cm-1の吸収が消失するまで反応を進行させた。その後、DMF59.6g及びメチルエチルケトン(MEK)313.0gを添加して、シリコーン含有率10.7%、数平均分子量78,000、固形分30%のシリコーンポリウレタン樹脂SiPU9の溶液を得た。結果を表1に示す。
撹拌機、還流冷却管、温度計、窒素吹き込み管、及び開口部を備えた反応容器を用意した。反応容器の内部を窒素ガスで置換しながら、ポリテトラメチレングリコール(商品名「PolyTHF1000」、BASFジャパン社製、数平均分子量1,000、水酸基価113mgKOH/g)150g、1,4-ブタンジオール38g、片末端型シリコーンジオール(式(1)、(2)において、化合物(1-1),n=30)24g、ジメチルホルムアミド(DMF)173.7gを仕込んだ。加熱撹拌を開始して系内が均一となった後、50℃でイソホロンジイソシアネート(IPDI)193.4g(イソシアネートと水酸基の比が1.5)を添加し、次いで、100℃に昇温して反応させた。NCO%が所定の数値(4.21%)になるまで反応させた後、DMF937.4gを添加し、40℃とした。ここに両末端型シリコーンジアミン(化合物(3-2),m=20)24g、続いてイソホロンジアミン(IPDA)46.8gを添加し、赤外吸収スペクトル分析で測定される遊離イソシアネート基による2,270cm-1の吸収が消失するまで反応を進行させ、シリコーン含有率10.1%、数平均分子量81,000、固形分30%のシリコーンポリウレタン樹脂SiPU10の溶液を得た。結果を表1に示す。
(比較合成例1:PU1の合成)
撹拌機、還流冷却管、温度計、窒素吹き込み管、及び開口部を備えた反応容器を用意した。反応容器の内部を窒素ガスで置換しながら、ポリテトラメチレングリコール(商品名「PolyTHF1000」、BASFジャパン社製、数平均分子量1,000、水酸基価113mgKOH/g)200g、1,4-ブタンジオール38g、ジメチルホルムアミド(DMF)590.9gを仕込んだ。加熱撹拌を開始して系内が均一となった後、50℃で4,4’-メチレンビス(フェニレンイソシアネート)(MDI)156.0gを添加し、次いで、80℃に昇温して反応させた。赤外吸収スペクトル分析で測定される遊離イソシアネート基による2,270cm-1の吸収が消失するまで反応を進行させた。その後、DMF52.5g及びメチルエチルケトン(MEK)275.2gを添加して、シリコーン含有率0%、数平均分子量75,000、固形分30%のシリコーン非含有ポリウレタン樹脂PU1の溶液を得た。結果を表1に示す。
N,N-ジメチルホルムアミド7.7gとメチルエチルケトン4.3gからなる混合溶媒に合成例1で合成されたSiPU1を3.0g溶解した。この溶液を24時間、室温で撹拌を行い、均一な乳白色の溶液を得た。図1に示す装置を用いて、ポリマー溶液を繊維状構造体の捕集基板4へ10時間吐出した。ノズル1の内径は0.6mm、電圧は20kV、ノズル1から繊維状構造体の捕集基板4までの距離は10cmであった。得られた不織布のSEM画像より繊維径を測定し、平均繊維径は0.93μmであり、1μm以上の繊維は観察されなかった。不織布表面の走査型電子顕微鏡写真を図2に示す。
実施例1のSiPU1を合成例5のSiPU5に代えた以外は同じ条件で繊維化を行い、得られた不織布の繊維径は0.81μmであり、1μm以上の繊維は観察されなかった。不織布表面の走査型電子顕微鏡写真を図3に示す。
実施例1のSiPU1を合成例7のSiPU7に代えた以外は同じ条件で繊維化を行い、得られた不織布の繊維径は0.82μmであり、1μm以上の繊維は観察されなかった。不織布表面の走査型電子顕微鏡写真を図4に示す。
N,N-ジメチルホルムアミド10.9gとメチルエチルケトン6.1gからなる混合溶媒に比較合成例1で得られたPU1(シリコーン非含有ポリウレタン樹脂)を3.0g溶解した。この溶液を24時間、室温で撹拌を行い、均一な乳白色の溶液を得た。図1に示す装置を用いて、ポリマー溶液を繊維状構造体の捕集基板4へ10時間吐出した。ノズル1の内径は0.6mm、電圧は15kV、ノズル1から繊維状構造体の捕集基板4までの距離は10cmであった。得られた不織布の平均繊維径は0.72μmであり、1μm以上の繊維は観察されなかった。不織布表面の走査型電子顕微鏡写真を図5に示す。
各不織布を幅5mm、長さ10mmの試験片とし、小型卓上試験機EZTest/EZ-S((株)島津製作所製)を使用して、引張速度10mm/分で測定し、応力-歪み曲線から弾性率を求めた。
各不織布を幅5mm、長さ10mmの試験片とし、小型卓上試験機EZTest/EZ-S((株)島津製作所製)を使用して、引張速度10mm/分で測定し、応力―歪み曲線から破断伸びを求めた。
水平方向引っ張り試験機AGS-X((株)島津製作所製)を用いて、荷重200g、移動速度0.3m/分の条件における動摩擦係数を求めた。
条件:不織布基材-人工皮革(サプラーレ(登録商標)、出光テクノファイン社製)間の動摩擦係数
同種の不織布同士を重ね合わせ、36℃、80%RHで24時間置いた後、不織布同士をスライドさせた。
○:不織布同士が密着せず、滑り性がよい
△:不織布同士が密着せず、滑り性が中程度
×:不織布同士が密着せず、滑り性が悪い
KES-F7精密迅速熱物性測定装置サーモラボIIB(カトーテック(株)製)を使用し、熱伝導率を測定した。
自動接触角計DM-501Hi(協和界面科学(株)製)を使用し、純水の静的接触角を測定した。
L80-5000型水蒸気透過度計(Systech Instruments社製)を使用して、40℃(JIS K7129A)の条件にて測定した。
各不織布を24時間水中で浸透し、その後24時間60℃(JIS L1096)の条件で乾燥した。
水分率(%)=(乾燥前の質量(g)-乾燥後の質量(g))/乾燥後の質量(g)×100
気体透過測定率測定装置K-315-N(東洋理化(株)製)を使用し、40℃で測定を行った。
走査型電子顕微鏡により繊維径を観察し、下記の通り評価した。
○:繊維径が均一
×:繊維径が不均一
2 ポリマー溶液
3 シリンジ(ポリマー溶液槽)
4 捕集基板
5 高電圧発生器
Claims (11)
- ポリオール(A)、鎖伸長剤(B)、活性水素基含有オルガノポリシロキサン(C)、及びポリイソシアネート(D)の反応生成物からなるシリコーン変性ポリウレタン樹脂を含む樹脂から形成された繊維であって、前記活性水素基含有オルガノポリシロキサン(C)が、片末端のみにカルビノール基を有する活性水素基含有オルガノポリシロキサン(C-1)を含有することを特徴とする繊維。
- 前記カルビノール基を有する活性水素基含有オルガノポリシロキサン(C-1)が、下記式(1)
R1R2R3SiO(SiR2R3O)nSiR2R3R4 (1)
[式(1)中、R1、R2、R3はそれぞれ独立して、水素原子の一部がフッ素原子置換されていてもよい直鎖状、分岐状又は環状の炭素数1~10のアルキル基、置換基を有していてもよい炭素数5~12のアリール基、又はビニル基から選択される基であり、R4は下記式(2)
R5-X-CH2CR6(R7)2 (2)
(式(2)中、R5は鎖中に酸素原子を含んでもよい炭素数2~10の2価のアルキレン基であり、R6は水素原子、アミノ基、又は炭素数1~10の1価のアルキル基であり、R7は炭素数1~10のカルビノール基であり、Xは単結合又は-O-結合である。)であり、nは1~200の整数である。]
で表されるオルガノポリシロキサンである請求項1記載の繊維。 - カルビノール基が、ヒドロキシメチル基、2-ヒドロキシエタ-1-イル基、2-ヒドロキシプロパ-1-イル基、3-ヒドロキシプロパ-1-イル基、2-ヒドロキシブタ-1-イル基、4-ヒドロキシブタ-1-イル基、5-ヒドロキシペンタ-1-イル基、6-ヒドロキシへキサ-1-イル基、7-ヒドロキシヘプタ-1-イル基、8-ヒドロキシオクタ-1-イル基、9-ヒドロキシノナ-1-イル基、10-ヒドロキシデカ-1-イル基から選ばれる請求項2記載の繊維。
- (C)成分が、更に下記式(3)
R8SiR2R3O(SiR2R3O)mSiR2R3R8 (3)
(式(3)中、R2、R3は前記と同じであり、R8はそれぞれ独立して、水酸基又はメルカプト基を有し、鎖中に酸素原子を介していてもよい炭素数1~10の1価炭化水素基、又は第1級アミノ基もしくは第2級アミノ基を有する炭素数1~10の1価炭化水素基であり、mは1~60の整数である。)
で表されるオルガノポリシロキサン(C-2)を含有する請求項1~3のいずれか1項に記載の繊維。 - 式(1)のオルガノポリシロキサン(C-1)と式(3)のオルガノポリシロキサン(C-2)との割合が質量比として(C-1):(C-2)=100:0~1:99である請求項4記載の繊維。
- (C)成分の含有量が、(A)~(D)成分の全体100質量部中、0.1~50質量部である請求項1~5のいずれか1項に記載の繊維。
- 前記シリコーン変性ポリウレタン樹脂の数平均分子量が10,000~200,000である請求項1~6のいずれか1項に記載の繊維。
- 繊維径が100nm以上1,000nm未満である請求項1~7のいずれか1項に記載の繊維。
- 請求項1~8のいずれか1項に記載の繊維からなる繊維積層構造体。
- シリコーン変性ポリウレタン樹脂の溶液又は分散液をエレクトロスピニング法によって紡糸することを特徴とする請求項1~8のいずれか1項に記載の繊維の製造方法。
- 前記シリコーン変性ポリウレタン樹脂が、有機溶媒、水、もしくはそれらの混合物の溶液又は分散液の状態で供給されることを特徴とする請求項10記載の繊維の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780021070.7A CN108884597B (zh) | 2016-04-04 | 2017-03-31 | 有机硅改性聚氨酯系纤维及其制造方法 |
EP17779059.9A EP3441508A4 (en) | 2016-04-04 | 2017-03-31 | SILICONE-MODIFIED POLYURETHANE-BASED FIBER AND MANUFACTURING METHOD THEREOF |
US16/091,024 US11174335B2 (en) | 2016-04-04 | 2017-03-31 | Silicone-modified polyurethane fiber and method for manufacturing same |
KR1020187031632A KR102311214B1 (ko) | 2016-04-04 | 2017-03-31 | 실리콘 변성 폴리유레테인계 섬유 및 그 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-075002 | 2016-04-04 | ||
JP2016075002A JP6701896B2 (ja) | 2016-04-04 | 2016-04-04 | シリコーン変性ポリウレタン系繊維及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017175680A1 true WO2017175680A1 (ja) | 2017-10-12 |
Family
ID=60001207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/013658 WO2017175680A1 (ja) | 2016-04-04 | 2017-03-31 | シリコーン変性ポリウレタン系繊維及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11174335B2 (ja) |
EP (1) | EP3441508A4 (ja) |
JP (1) | JP6701896B2 (ja) |
KR (1) | KR102311214B1 (ja) |
CN (1) | CN108884597B (ja) |
TW (1) | TWI754636B (ja) |
WO (1) | WO2017175680A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021090904A1 (ja) * | 2019-11-07 | 2021-05-14 | 信越化学工業株式会社 | 繊維、繊維積層構造体、エレクトロスピニング用紡糸液、並びに繊維の製造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108498868B (zh) * | 2018-04-03 | 2020-09-15 | 北京大学口腔医学院 | 具有细胞外基质电学拓扑特征的带电复合膜及其制备方法 |
JP6978375B2 (ja) | 2018-04-23 | 2021-12-08 | 信越化学工業株式会社 | 粘着性膜、粘着性膜の形成方法、及びウレタンポリマー |
GB201808417D0 (en) * | 2018-05-23 | 2018-07-11 | Univ Leeds Innovations Ltd | Copolymer |
WO2020129811A1 (ja) * | 2018-12-19 | 2020-06-25 | 大日精化工業株式会社 | ポリウレタンウレア水分散体、艶消し塗料及び表面処理剤 |
WO2020175229A1 (ja) * | 2019-02-28 | 2020-09-03 | 信越化学工業株式会社 | 医療用材料及びその製造方法 |
JP7139299B2 (ja) * | 2019-10-01 | 2022-09-20 | エスケーシー ソルミックス カンパニー,リミテッド | 研磨パッド、その製造方法及びそれを用いた研磨方法 |
TWI747455B (zh) * | 2020-08-24 | 2021-11-21 | 南亞塑膠工業股份有限公司 | 有機矽改質的聚氨酯樹脂及其製造方法 |
CN113005638B (zh) * | 2021-02-23 | 2022-04-22 | 重庆文理学院 | 一种航空用保温隔音玻璃微纤维棉毡及其制备方法 |
WO2023239891A1 (en) * | 2022-06-10 | 2023-12-14 | Lubrizol Advanced Materials, Inc. | Thermoplastic polyurethanes with high temperature stability and uses thereof |
CN116288811A (zh) * | 2023-03-20 | 2023-06-23 | 西安理工大学 | 一种改性热塑性聚氨酯弹性体复丝的制备方法 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4043331A (en) | 1974-08-05 | 1977-08-23 | Imperial Chemical Industries Limited | Fibrillar product of electrostatically spun organic material |
JP2001207334A (ja) * | 2000-01-27 | 2001-08-03 | Matsumoto Yushi Seiyaku Co Ltd | 制電性に優れる弾性繊維 |
JP2002517616A (ja) * | 1998-06-02 | 2002-06-18 | バイエル アクチェンゲゼルシャフト | エラスタンスレッドおよびその製造方法 |
JP2006501373A (ja) | 2002-04-04 | 2006-01-12 | ザ ユニバーシティ オブ アクロン | 不織繊維集成体 |
JP2007303031A (ja) | 2006-05-12 | 2007-11-22 | Kato Tech Kk | エレクトロスピニグ用ノズル及びそれを用いた微細熱可塑性樹脂繊維の製造方法 |
JP2008223186A (ja) | 2007-03-14 | 2008-09-25 | Mecc Co Ltd | ナノ・ファイバ製造方法および装置 |
JP2010121221A (ja) | 2008-11-17 | 2010-06-03 | Fyuuensu:Kk | ナノファイバー構造体およびその製造方法 |
JP2010189771A (ja) | 2009-02-16 | 2010-09-02 | Kato Tech Kk | エレクトロスピニング装置 |
JP2011503387A (ja) | 2007-11-20 | 2011-01-27 | ダウ・コーニング・コーポレイション | 繊維を含む物品およびその製造方法 |
JP2011173936A (ja) * | 2010-01-29 | 2011-09-08 | Mitsubishi Chemicals Corp | ポリウレタン成形体 |
JP2014025157A (ja) | 2012-07-25 | 2014-02-06 | Kri Inc | ポリシルセスキオキサン系不織布及びその製造方法、電池用セパレータ並びにリチウム二次電池 |
JP2014047440A (ja) | 2012-08-31 | 2014-03-17 | Kato Tech Co Ltd | エレクトロスピニング装置 |
JP2014111850A (ja) | 2012-12-05 | 2014-06-19 | Mitsuhiro Takahashi | 溶融電界紡糸方式およびこれを使用して生成したナノ繊維構造体。 |
JP2014177728A (ja) | 2013-03-15 | 2014-09-25 | Mecc Co Ltd | ナノファイバ製造装置 |
WO2016158967A1 (ja) * | 2015-03-31 | 2016-10-06 | 信越化学工業株式会社 | シリコーン変性ポリウレタン系繊維及びその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS589401A (ja) * | 1981-07-08 | 1983-01-19 | Murata Mfg Co Ltd | 分布定数形フイルタ |
US4839443A (en) * | 1987-02-04 | 1989-06-13 | Chisso Corporation | Polysiloxane containing hydroxyl groups and a silicone-modified polyurethane using the same |
JP2525181B2 (ja) * | 1987-05-22 | 1996-08-14 | チッソ株式会社 | シリコ−ン変性ポリウレタン及びその製造方法 |
US7270675B2 (en) * | 2002-05-10 | 2007-09-18 | Cordis Corporation | Method of forming a tubular membrane on a structural frame |
WO2008088730A2 (en) * | 2007-01-12 | 2008-07-24 | Dow Corning Corporation | Method of forming an elastomeric fiber by electrospinning |
EP2202059B1 (en) | 2007-10-18 | 2013-09-25 | Ulvac, Inc. | Method for lamination of decorative metal film on resin base material, and resin base material having decorative metal film thereon |
US20100255745A1 (en) * | 2007-11-20 | 2010-10-07 | Donald Liles | Article And Method Of Manufacturing Same |
TW201016909A (en) * | 2008-08-29 | 2010-05-01 | Dow Corning | Article formed from electrospinning a dispersion |
KR101789987B1 (ko) * | 2009-10-30 | 2017-10-25 | 미쯔비시 케미컬 주식회사 | 폴리에스테르폴리올, 그것을 사용한 폴리우레탄 및 그 제조 방법, 그리고 폴리우레탄 성형체 |
-
2016
- 2016-04-04 JP JP2016075002A patent/JP6701896B2/ja active Active
-
2017
- 2017-03-31 CN CN201780021070.7A patent/CN108884597B/zh active Active
- 2017-03-31 EP EP17779059.9A patent/EP3441508A4/en active Pending
- 2017-03-31 TW TW106111472A patent/TWI754636B/zh active
- 2017-03-31 KR KR1020187031632A patent/KR102311214B1/ko active IP Right Grant
- 2017-03-31 US US16/091,024 patent/US11174335B2/en active Active
- 2017-03-31 WO PCT/JP2017/013658 patent/WO2017175680A1/ja active Application Filing
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4043331A (en) | 1974-08-05 | 1977-08-23 | Imperial Chemical Industries Limited | Fibrillar product of electrostatically spun organic material |
JP2002517616A (ja) * | 1998-06-02 | 2002-06-18 | バイエル アクチェンゲゼルシャフト | エラスタンスレッドおよびその製造方法 |
JP2001207334A (ja) * | 2000-01-27 | 2001-08-03 | Matsumoto Yushi Seiyaku Co Ltd | 制電性に優れる弾性繊維 |
JP2006501373A (ja) | 2002-04-04 | 2006-01-12 | ザ ユニバーシティ オブ アクロン | 不織繊維集成体 |
JP2007303031A (ja) | 2006-05-12 | 2007-11-22 | Kato Tech Kk | エレクトロスピニグ用ノズル及びそれを用いた微細熱可塑性樹脂繊維の製造方法 |
JP2008223186A (ja) | 2007-03-14 | 2008-09-25 | Mecc Co Ltd | ナノ・ファイバ製造方法および装置 |
JP2011503387A (ja) | 2007-11-20 | 2011-01-27 | ダウ・コーニング・コーポレイション | 繊維を含む物品およびその製造方法 |
JP2010121221A (ja) | 2008-11-17 | 2010-06-03 | Fyuuensu:Kk | ナノファイバー構造体およびその製造方法 |
JP2010189771A (ja) | 2009-02-16 | 2010-09-02 | Kato Tech Kk | エレクトロスピニング装置 |
JP2011173936A (ja) * | 2010-01-29 | 2011-09-08 | Mitsubishi Chemicals Corp | ポリウレタン成形体 |
JP2014025157A (ja) | 2012-07-25 | 2014-02-06 | Kri Inc | ポリシルセスキオキサン系不織布及びその製造方法、電池用セパレータ並びにリチウム二次電池 |
JP2014047440A (ja) | 2012-08-31 | 2014-03-17 | Kato Tech Co Ltd | エレクトロスピニング装置 |
JP2014111850A (ja) | 2012-12-05 | 2014-06-19 | Mitsuhiro Takahashi | 溶融電界紡糸方式およびこれを使用して生成したナノ繊維構造体。 |
JP2014177728A (ja) | 2013-03-15 | 2014-09-25 | Mecc Co Ltd | ナノファイバ製造装置 |
WO2016158967A1 (ja) * | 2015-03-31 | 2016-10-06 | 信越化学工業株式会社 | シリコーン変性ポリウレタン系繊維及びその製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021090904A1 (ja) * | 2019-11-07 | 2021-05-14 | 信越化学工業株式会社 | 繊維、繊維積層構造体、エレクトロスピニング用紡糸液、並びに繊維の製造方法 |
JPWO2021090904A1 (ja) * | 2019-11-07 | 2021-05-14 | ||
JP7333922B2 (ja) | 2019-11-07 | 2023-08-28 | 信越化学工業株式会社 | 繊維、繊維積層構造体、エレクトロスピニング用紡糸液、並びに繊維の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US11174335B2 (en) | 2021-11-16 |
KR102311214B1 (ko) | 2021-10-12 |
JP6701896B2 (ja) | 2020-05-27 |
US20190071534A1 (en) | 2019-03-07 |
KR20180126575A (ko) | 2018-11-27 |
TW201809052A (zh) | 2018-03-16 |
CN108884597A (zh) | 2018-11-23 |
EP3441508A1 (en) | 2019-02-13 |
JP2017186691A (ja) | 2017-10-12 |
CN108884597B (zh) | 2022-03-15 |
TWI754636B (zh) | 2022-02-11 |
EP3441508A4 (en) | 2019-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6436229B2 (ja) | シリコーン変性ポリウレタン系繊維及びその製造方法 | |
WO2017175680A1 (ja) | シリコーン変性ポリウレタン系繊維及びその製造方法 | |
JP7333922B2 (ja) | 繊維、繊維積層構造体、エレクトロスピニング用紡糸液、並びに繊維の製造方法 | |
EP1336683B1 (de) | Organopolysiloxan/Polyharnstoff/Polyurethan-Blockcopolymer aufweisende textile Gebilde | |
EP1660704B1 (en) | Process for preparing superhydrophobic surface compositions, surfaces obtained by said process and use of them | |
CN102712736B (zh) | 聚酯多元醇、使用该聚酯多元醇的聚氨酯及其制造方法以及聚氨酯成形体 | |
KR100501660B1 (ko) | 다공질 형성용 수계 우레탄 수지 조성물, 섬유 시트상복합물의 제조방법 및 인공 피혁 | |
WO2008088730A2 (en) | Method of forming an elastomeric fiber by electrospinning | |
JP6828743B2 (ja) | シート状物 | |
TW201134862A (en) | High strength non-woven elastic fabrics | |
US20220169779A1 (en) | Material for medical use and method for producing same | |
JP2008038281A (ja) | 人工皮革用ポリウレタンエマルジョンおよび人工皮革 | |
JP3940013B2 (ja) | 皮革様シート材料 | |
JP2016176040A (ja) | ウレタン樹脂組成物、防水加工布帛およびその製造方法 | |
US4192928A (en) | Thermoplastic polyurethane and process for the preparation thereof | |
JP2008037988A (ja) | 多孔質構造体 | |
TW202020046A (zh) | 胺基甲酸酯樹脂組成物、及積層體 | |
JP3304056B2 (ja) | ポリウレタンウレア発泡シート | |
JP2011162645A (ja) | 多孔質構造体 | |
JPH05239175A (ja) | 多孔質シート材料 | |
JP2006169445A (ja) | ポリカーボネート系ポリウレタン樹脂組成物及びそれを用いた立毛調皮革様シート状物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187031632 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017779059 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017779059 Country of ref document: EP Effective date: 20181105 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17779059 Country of ref document: EP Kind code of ref document: A1 |