WO2017175302A1 - 最適化システムおよび最適化方法 - Google Patents

最適化システムおよび最適化方法 Download PDF

Info

Publication number
WO2017175302A1
WO2017175302A1 PCT/JP2016/061103 JP2016061103W WO2017175302A1 WO 2017175302 A1 WO2017175302 A1 WO 2017175302A1 JP 2016061103 W JP2016061103 W JP 2016061103W WO 2017175302 A1 WO2017175302 A1 WO 2017175302A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
optimization
variable
objective variable
distribution warehouse
Prior art date
Application number
PCT/JP2016/061103
Other languages
English (en)
French (fr)
Inventor
淳一 平山
知明 秋富
篤志 宮本
泰毅 嶋津
崇治 櫻田
Original Assignee
株式会社日立物流
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立物流 filed Critical 株式会社日立物流
Priority to JP2018510148A priority Critical patent/JP6530559B2/ja
Priority to PCT/JP2016/061103 priority patent/WO2017175302A1/ja
Publication of WO2017175302A1 publication Critical patent/WO2017175302A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Definitions

  • the present invention relates to an optimization system and an optimization method for optimizing distribution warehouse operations.
  • distribution centers At distribution warehouses, distribution centers, and other product supply centers, products manufactured by suppliers on the supply side are received, temporarily stored in a predetermined location in the distribution warehouse, and distributed according to orders from shipping destinations on the demand side. Collect the goods from a predetermined location in the warehouse and deliver them to the shipping destination. In addition, before delivery, there are cases where distribution processing such as assembling and decoration of collected goods and packaging suitable for delivery such as cardboard are performed.
  • Costs referred to here include, for example, costs related to space such as warehouse management costs and land costs necessary for product storage, and labor costs required for goods arrival / shipment work. In order to increase the cost effectiveness, it is necessary to improve the work efficiency of various operations.
  • Patent Document 1 listed below is a step-by-step formula model that calculates space cost and shipping work cost from product placement information and product demand information in order to reduce space cost during product storage and work cost during product shipment. It is disclosed that optimization is performed to obtain a product supply frequency that minimizes costs by using the created mathematical model.
  • Patent Document 2 inputs the number of workers, distribution of goods, warehouse layout, and equipment used in a distribution warehouse, simulates the movement of workers during work, and calculates the total work time of all workers. It is disclosed that a simulation model is created and, for example, the number of workers in each work process is optimized.
  • Patent Document 3 can acquire and reuse knowledge indicating what kind of work should be executed in a certain situation from the history of past work, thereby improving the efficiency of subsequent work.
  • a work procedure management system that can be used is disclosed.
  • a model that reproduces work in the warehouse is created in advance according to the purpose of optimization.
  • a mathematical model that calculates the expected value or predicted value of an objective variable (for example, work time) using various attributes (for example, the number of workers, product placement) as inputs for example.
  • the simulation model After creating the model, the objective variable is calculated from the warehouse work attributes based on these models, the desired attribute of the warehouse work that maximizes or minimizes the value of the objective variable is obtained, and the optimization result is can get.
  • optimization development is broadly divided into an optimization model creation process that calculates the value of the objective variable from the work attribute, and which work attribute to change in order to maximize or minimize the objective variable. And a determining step.
  • models used for optimizing work are individually developed by data analysts according to the purpose of optimization to be realized.
  • we learn on-site work, conduct on-site task interviews, etc. we learn on-site work, conduct on-site task interviews, etc., and perform trial and error of function systems and parameters to calculate objective variables from the attributes of warehouse work.
  • redevelopment of the model is necessary.
  • the object of the present invention is to automatically generate an optimized model without performing individual model generation and parameter tuning trial and error depending on the purpose of optimization to be realized.
  • An optimization system includes a processor that executes a program and a storage device that stores the program, and the storage device stores work results in physical distribution warehouse work.
  • the work record storage information includes, as the work record, an objective variable indicating a work result of the physical distribution warehouse work, an explanatory variable indicating a work attribute of the physical distribution warehouse work, and the physical distribution warehouse work.
  • the processor assigns a first allocation indicating whether or not there is a combination of each value in the different explanatory variables for the work performance of a certain distribution warehouse operation.
  • a first assigned feature value generation process for generating a feature value; a first assigned feature value generated by the first assigned feature value generation process; Variables and, based on, and executes a and optimization model generation process of generating an optimization model to optimize the objective variables.
  • An optimization system includes a processor that executes a program and a storage device that stores the program, and the storage device stores work results in physical distribution warehouse work.
  • the work record storage information includes, as the work record, an objective variable indicating a work result of the distribution warehouse work, an explanatory variable indicating a work attribute of the distribution warehouse work, and the distribution warehouse.
  • An order variable indicating the work order of work is stored for each physical distribution warehouse work, and the processor stores a series of physical distribution warehouses in a continuous section including the physical distribution warehouse work with respect to the work performance of the physical distribution warehouse work.
  • a first explanatory variable group is obtained from the work result storage information and a variation in the order of the explanatory variable group within the continuous section is defined.
  • An order feature quantity generation process for generating an introductory feature quantity and a second assigned feature quantity for classifying the first order feature quantity generated by the order feature quantity generation process into any of a plurality of ranges
  • An optimization model that optimizes the objective variable based on the second assigned feature value generation process, the second assigned feature value generated by the second assigned feature value generation process, and the objective variable
  • an optimization model generation process for generating.
  • an optimization model can be automatically generated without performing individual model generation and parameter tuning trial and error depending on the purpose of optimization to be realized. Problems, configurations, and effects other than those described above will become apparent from the description of the following embodiments.
  • FIG. 1 is a block diagram of a system configuration example of the physical distribution system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a hardware configuration example of the optimization system.
  • FIG. 3 is an explanatory diagram showing an example of the stored contents of the work performance table.
  • FIG. 4 is an explanatory diagram of an example of the contents stored in the work instruction table.
  • FIG. 5 is an explanatory diagram showing an example of the contents stored in the calculation pattern table.
  • FIG. 6 is a block diagram of a functional configuration example of the optimization system according to the first embodiment.
  • FIG. 7 is an explanatory diagram illustrating an example of generation of order feature amounts.
  • FIG. 8 is an explanatory diagram illustrating an example of generation of an assigned feature amount.
  • FIG. 9 is an explanatory diagram showing the labeling process.
  • FIG. 10 is an explanatory diagram illustrating an example of calculating importance.
  • FIG. 11 is an explanatory diagram of an example of generating an optimization model.
  • FIG. 12 is an explanatory diagram of a replacement variable and replacement unit determination example 1.
  • FIG. 13 is an explanatory diagram of a determination example 2 of replacement variables and replacement units.
  • FIG. 14 is an explanatory diagram showing an example of replacement of explanatory variables.
  • FIG. 15 is an explanatory diagram illustrating a generation example of work instruction feature amounts and a calculation example of evaluation values.
  • FIG. 16 is a flowchart illustrating a detailed processing procedure example of the optimization processing by the optimization processing unit.
  • FIG. 17 is an explanatory diagram of an example of stored contents of the evaluation result table.
  • FIG. 18 is a block diagram of a functional configuration example of the optimization system according to the second embodiment.
  • FIG. 19 is an explanatory diagram of a presentation example 1 by the presentation unit.
  • FIG. 20 is an explanatory diagram illustrating a second example of presentation by the presentation unit.
  • the “system” refers to one computer or a plurality of computers that cooperate to communicate with each other.
  • FIG. 1 is a block diagram of a system configuration example of the physical distribution system according to the first embodiment.
  • the distribution system 100 includes a management system 101, an optimization system 102, a work performance table 111, a work instruction table 112, and an optimization work instruction table 113.
  • the management system 101 and the optimization system 102 will be described separately. However, these do not necessarily have to be configured separately, and the functions of the management system 101 and the optimization system 102 on one system. It may be configured as a subsystem having
  • the management system 101 is a system for managing distribution warehouse work. Specifically, for example, the management system 101 accesses the work record table 111 and the work instruction table 112 to perform work records of various works related to the distribution warehouse (for example, receipt, shipment, collection, distribution processing, packaging) and Manage work orders. The management system 101 may also manage information on product arrangement and product attributes (for example, weight). The management system 101 refers to the optimization work instruction table 113 and issues a work instruction.
  • the management system 101 is, for example, a hardware management system (WMS).
  • WMS hardware management system
  • the optimization system 102 is a system that optimizes logistics work instructions. Specifically, for example, the optimization system 102 refers to the work result table 111 to optimize the work instruction that is an entry in the work instruction table 112 and generates the optimized work instruction table 113. After the optimization work instruction table 113 is generated, the optimization system 102 optimizes the work instruction that is an entry in the optimization work instruction table 113 and updates the optimization work instruction table 113.
  • the work instruction table 112 is work instruction storage information for storing work instructions as entries. Specifically, for example, in the case of a work instruction related to an arrival work, the work instruction table 112 is created by the management system 101 based on the commodity arrival information from the commodity supplier to the distribution warehouse. Further, in the case of work instructions related to shipping work, the work instruction table 112 is created by the management system 101 based on product order information from a product consumer to a distribution warehouse. In this way, each entry in the work instruction table 112 is a work instruction for confirming what kind of product, who, how and from which supplier.
  • the work performance table 111 is work performance storage information for storing work performance as an entry. Specifically, for example, in the case of work results related to the arrival work, the work result table 111 is created by the management system 101 based on the results of the product arrival work performed based on the product arrival information from the product supplier to the distribution warehouse. Is done. In the case of work instructions related to shipping work, the work instruction table 112 is created by the management system 101 based on the results of product order work performed based on product order information from product consumers to the distribution warehouse. Thus, each entry of the work performance table 111 is, for example, a work performance indicating what kind of product, who, how and from which supplier.
  • the work record performed by the worker based on the work instruction issued by the management system 101 is recorded as an entry by the management system 101 in the work record table 111.
  • the work results are transmitted to the management system 101 by operating the handy terminal by the operator, or sent to the management system 101 from various sensors installed in the equipment in the warehouse. 111.
  • the work instructions stored in the optimization work instruction table 113 are issued to the warehouse workers by the management system 101. Specifically, for example, it is performed by printing a work instruction document to the worker, displaying on the worker's handy terminal, or displaying on other equipment in the warehouse.
  • an optimized work instruction can be given to the worker, and work efficiency can be improved.
  • FIG. 2 is a block diagram illustrating a hardware configuration example of the optimization system 102.
  • the optimization system 102 includes a processor 201, a storage device 202, an input device 203, an output device 204, and a communication interface (communication IF 205).
  • the processor 201, the storage device 202, the input device 203, the output device 204, and the communication IF 205 are connected by a bus.
  • the processor 201 controls the optimization system 102.
  • the storage device 202 serves as a work area for the processor 201.
  • the storage device 202 is a non-temporary or temporary recording medium that stores various programs and data.
  • Examples of the storage device 202 include a ROM (Read Only Memory), a RAM (Random Access Memory), a HDD (Hard Disk Drive), and a flash memory.
  • the input device 203 inputs data. Examples of the input device 203 include a keyboard, a mouse, a touch panel, a numeric keypad, and a scanner.
  • the output device 204 outputs data. Examples of the output device 204 include a display and a printer.
  • the communication IF 205 is connected to a network and transmits / receives data.
  • FIG. 3 is an explanatory diagram showing an example of stored contents of the work record table 111
  • FIG. 4 is an explanatory diagram showing an example of stored contents of the work instruction table 112.
  • the work result table 111 and the work instruction table 112 show, as an example, work results and work instruction examples of shipping work.
  • Each row of the work record table 111 is an entry indicating a work record related to the shipping work.
  • Each row of the work instruction table 112 is an entry indicating a work instruction related to the shipping work.
  • Each column of the work record table 111 and the work instruction table 112 indicates a column related to shipping work.
  • the work performance table 111 and the work instruction table 112 have, as common columns, a column related to work order and a column related to work attributes.
  • the column relating to the work order is a storage area that defines the work order, and includes a work group number column 300 and a work number column 301.
  • the work group number column 300 is a storage area for storing a work group number for each entry.
  • the work number column 301 is a storage area for storing a work number for each entry.
  • the work number is a number that defines the order of work. In this example, work is executed in ascending order of work numbers.
  • the work group place number is a number that defines the order of work groups when a series of work (for example, work groups specified by work numbers 1 to 4) is defined as one unit. In this example, work groups are executed in ascending order of work group numbers.
  • the column related to the work attribute is a storage area for defining the work attribute.
  • the worker ID column 302 is a storage area for storing a worker ID for each entry.
  • the worker ID is identification information that uniquely identifies the worker.
  • the product ID column 303 is a storage area for storing a product ID for each entry.
  • the product ID is identification information that uniquely identifies the product.
  • the product weight column 304 is a storage area for storing the product weight for each entry.
  • the product weight is information indicating the weight of the product specified by the product ID.
  • the work place column 305 is a storage area for storing the work place for each entry.
  • the work place is a place in the distribution warehouse where the worker specified by the worker ID works on the product specified by the product ID.
  • the X coordinate column 306 and the Y coordinate column 307 are attached attribute columns of the work place column 305.
  • the X coordinate column 306 and the Y coordinate column 307 are storage areas for storing an X coordinate value and a Y coordinate value that specify a work place in the distribution warehouse for each entry.
  • the work performance table 111 has a column related to work results.
  • the column relating to the work result is a storage area for defining the work result, and includes a work time column 308 and a work time column 309.
  • the work time column 308 is a storage area for storing work time for each entry.
  • the work time column 309 is a storage area for storing a work start time (or an end time) for each entry.
  • the axis attribute 311 and the type 312 are set in each column 300 to 309 in the work performance table 111 and the work instruction table 112.
  • the axis attribute 311 defines the attribute of the column.
  • the column attribute 311 related to the work order is “order” indicating the work order
  • the axis attribute 311 related to the work result is “purpose” indicating the objective variable
  • the axis attribute 311 related to the work attribute is “Description” indicating an explanatory variable.
  • the objective variable is a variable that is to be minimized during optimization.
  • the type 312 defines the type of information stored in the columns 300 to 309. Types 312 include “numerical value”, “time”, and “character”.
  • FIG. 5 is an explanatory diagram showing an example of the contents stored in the calculation pattern table.
  • the calculation pattern table 500 is a table that defines the calculation 502 and the viewpoint 503 for each type 501 of the columns 300 to 309.
  • the calculation 502 is information that defines the calculation method of the order feature amount for the information stored in the columns 300 to 309 specified by the type 501.
  • the viewpoint 503 is information indicating the purpose for generating the order feature quantity of the operation 502.
  • the order feature amount is a feature amount that characterizes the work order, and is generated by the calculation 502. There are one or more operations 502 in the same type 501.
  • Which type 501 is used when there are a plurality of types of operations 502 may be associated with the columns 300 to 309 of the work performance table 111 in advance. Further, when generating a feature amount, a specific calculation 502 may be selected by an operator's operation.
  • FIG. 6 is a block diagram of a functional configuration example of the optimization system 102 according to the first embodiment.
  • the optimization system 102 includes an order feature quantity generation unit 601, an assigned feature quantity generation unit 602, a calculation unit 603, a selection unit 604, an optimization model generation unit 605, a determination unit 606, and an optimization processing unit 607. And having. Specifically, these are realized by causing the processor 201 to execute a program stored in the storage device 202, for example. Note that the flow of optimization processing by the optimization system 102 follows the arrows connecting the order feature quantity generation unit 601 to the optimization processing unit 607 shown in FIG.
  • the optimization system 102 stores a calculation pattern table 500, a work performance feature value table 611, a model feature value table 612, and an optimization model M. Specifically, these are realized by information stored in the storage device 202, for example.
  • the calculation pattern table 500 is a master table
  • the work performance feature value table 611, the model feature value table 612, and the optimization model M are intermediate generation data.
  • the order feature quantity generation unit 601 refers to the work performance table 111 and the calculation pattern table 500 to generate an order feature quantity of explanatory variables. Specifically, for example, the order feature value generation unit 601 sets a group of explanatory variables in a series of distribution warehouse operations in a continuous section including a certain distribution warehouse operation for the operation results of a certain distribution warehouse operation. And an order feature quantity that defines the variation in the order of the explanatory variable group in the continuous section is generated. More specifically, for example, the order feature quantity generation unit 601 specifies a time-series entry group including an entry that is a generation source of the order feature quantity from the work performance table 111. The order feature value generation unit 601 refers to the calculation pattern table 500 and specifies the calculation 502 of the explanatory variable group of the specified entry group. The order feature quantity generation unit 601 calculates the order feature quantity by the specified calculation 502.
  • FIG. 7 is an explanatory diagram showing an example of generation of order feature quantities.
  • FIG. 7 shows an example in which the order feature amount is generated using the value of the work attribute surrounded by the thick frame of the work result table 111 as a generation source and stored in the work result table 111.
  • the operation 502 of the type “character” in the work place column 305 is “UniqNum”.
  • “UniqNum” is a calculation method of counting the number of appearances of the generation source in the target section.
  • the target section of the calculation 502 is a time-series work attribute value including the generation source.
  • the order feature amount is a feature amount indicating how many work attribute values are included in the target section.
  • the value of the work attribute from “C03” three entries before the generation source 701 to “B02” one entry after the generation source 701 in the entry E21 is set as the target section (in FIG. 7, with an arrow). display). It is assumed that the target section is set in advance. The larger the order feature amount, the more work is performed at the work place “B02” that is the generation source 701 in the target section. In this case, the work place “B02” as the generation source 701 appears three times in the target section. Therefore, the order feature quantity 711 of the generation source 701 is “3”.
  • the order feature quantity generation unit 601 stores the order feature quantity 711 in the UniqueNum work location column 750.
  • the operation 502 of the type “numerical value” in the X coordinate column 306 is “Var” and “Max”.
  • “Var” is a calculation method for calculating the variance value of the generation source in the target section.
  • “Max” is a calculation method for obtaining the maximum value of the generation source in the target section.
  • Var which is the order feature quantity 721 of the generation source 702
  • Max which is the order feature quantity 722 of the generation source 702 becomes the maximum value “60” of the X coordinate values “60”, “40”, “30”, “50”, and “30” in the target section.
  • the order feature quantity generation unit 601 stores the order feature quantities 721 and 722 in the VarX coordinate column 761 and the MaxX coordinate column 762. In this manner, the order feature quantity regarding the work attribute value is held in the work performance feature quantity table 611.
  • the assigned feature value generation unit 602 refers to the work result table 111 and the work result feature value table 611 to generate an assigned feature value.
  • the assigned feature amount is a feature amount assigned to the work performance.
  • the assigned feature amount includes a feature amount (first assigned feature amount) when the type 312 is an explanatory variable and a feature amount (second assigned feature amount) when the type 312 is a numerical value.
  • the first assigned feature amount is a feature amount assigned to the combination of the explanatory variables in the work performance table 111, that is, an assigned feature amount indicating whether or not there is a combination of each value in different explanatory variables.
  • the second assigned feature amount is a feature amount assigned according to the magnitude of the explanatory variable in the work performance feature table 111 or the work performance feature value table 611, that is, the order feature amount is one of a plurality of ranges. This is an assigned feature amount for classifying into two.
  • FIG. 8 is an explanatory diagram showing an example of generation of assigned feature values.
  • a set of columns in which the first assigned feature value and the second assigned feature value are stored is referred to as a work performance feature value column.
  • worker ID [WK01] ⁇ work location [A01] column 801 to worker ID [WK03] ⁇ work location [A03] column 809 are set to worker ID ⁇ work location feature quantity column for work location. 800.
  • the VarX coordinate [low] column 811 to the VarX coordinate [high] column 813 are referred to as a work performance feature value column 810 regarding the VarX coordinate.
  • the combinations of the worker ID 32 and the work place 35 in the entry E11 of the work performance table 111 are “WK01” and “A01”. Therefore, “1” indicating the existence of the combination is the first assigned feature amount in the worker ID [WK01] ⁇ work location [A01] column 801 in the entry corresponding to the entry E11 in the work performance feature table 611. 81 is set.
  • “0” indicating the absence of the combination is the first. 1 (see worker ID [WK03] ⁇ work location [A03] column 809).
  • the VarX coordinate 76 in the entry of the work record feature value table 611 corresponding to the entry E24 is “153”. “153” is classified as a high value in the VarX coordinate column 761. In this case, in the VarX coordinate [high] column 813, “1” indicating the presence of “153” of the VarX coordinate 76 is set as the second assigned feature amount 83. In the entry, “0” indicating the absence of the VarX coordinate 76 is set as the second assigned feature amount in the work performance feature amount column 810 regarding the VarX coordinate other than the VarX coordinate [high] column 813. (See VarX coordinate column 811).
  • the allocation feature amount generation process will be described more specifically using a labeling process.
  • FIG. 9 is an explanatory diagram showing the labeling process.
  • the assigned feature value generation unit 602 generates an intermediate table 900 in which each value or range of values of the explanatory variable is a column. If the type of the explanatory variable is “character” in the entry of the intermediate table 900 corresponding to the work record table 111, the assigned feature amount generation unit 602 stores the value of the intermediate table 900 corresponding to the value of the explanatory variable in the work record table 111. A value “1” indicating that the explanatory variable exists is set in the column.
  • the assigned feature value generation unit 602 sets “1” in the worker ID [WK01] column 911 in the entry of the corresponding intermediate table 900, “0” is set in the worker ID [WK02] column 912 and the worker ID [WK03] column 913.
  • the assigned feature value generation unit 602 corresponds to the range of the value of the explanatory variable in the work performance table 111 when the type of the explanatory variable is “numeric”.
  • a value “1” indicating that the explanatory variable exists is set in the column of the intermediate table 900.
  • the assigned feature value generation unit 602 has a product weight of 600 kg in the corresponding entry in the intermediate table 900.
  • the assigned feature value generation unit 602 calculates the logical product of the combination of explanatory variables using the intermediate table 900, and puts the calculated logical product value in the column that defines the combination of the explanatory variables in the work performance feature value table 611. Set.
  • the calculation unit 603 calculates the importance in the work performance feature amount table 611. Specifically, for example, when the first allocation feature amount is generated for a plurality of types of combinations, the calculation unit 603 determines the first allocation feature amount and the objective variable for each of the plurality of types of combinations. Based on this, the importance regarding the combination is calculated. Also, the calculation unit 603, for each of the plurality of types of order feature quantities, based on the second assignment feature quantity and the objective variable, the importance regarding the order feature quantity that is the generation source of the second assignment feature quantity Is calculated.
  • the importance is a quantity representing the importance and contribution of the work performance feature value in each work performance feature value column in describing the objective variable of the work performance feature value table 611.
  • the importance level for example, for each work result feature value column, the work result feature value is used as an explanatory variable, and a determination coefficient is used when the objective variable (work time) is subjected to multiple regression analysis.
  • the coefficient of determination is an index indicating whether the obtained multiple regression equation is applied, and indicates that the larger the value, the better.
  • the square of the multiple correlation coefficient obtained by multiple regression analysis is the determination coefficient.
  • the analysis of variance may be performed using the value of the objective variable when the work performance feature value in each work performance feature value column is “1”, and the variation ratio of the analysis of variance may be used.
  • any other method may be used as long as the work performance feature value in each work performance feature value column can quantitatively determine the amount that can explain the objective variable.
  • FIG. 10 is an explanatory diagram showing an example of calculating importance.
  • the objective variable is the work performance feature quantity in the work time column 308, and the explanatory variable is the work performance feature quantity (first assigned feature quantity) in the work performance feature quantity column 800 regarding the worker ID ⁇ work location.
  • the calculation unit 603 obtains a determination coefficient “0.3” by solving the number of entries using multiple regression analysis.
  • the objective variable is the work performance feature amount in the work time column 308, and the explanatory variable is the work performance feature amount (second assigned feature amount) in the work performance feature amount column 810 regarding the VarX coordinate.
  • the calculation unit 603 obtains the determination coefficient “0.2” by solving the equations for the number of entries using multiple regression analysis.
  • the selection unit 604 selects a work performance feature amount used for generating the optimization model M based on the importance calculated by the calculation unit 603. Specifically, for example, the selection unit 604 holds a threshold value of importance. For example, the threshold value of the determination coefficient that is importance is set to 0.3. In the case of the example of FIG. 10, the selection unit 604 uses the work performance feature quantity in the work performance feature quantity column 800 related to the worker ID x work place whose determination coefficient is equal to or greater than the threshold value to generate the optimization model M Select the actual feature amount.
  • the selection unit 604 may select work performance feature quantities in the top n work performance feature quantity columns having the highest importance. As a result, the selection unit 604 generates the model feature quantity table 612 from the work performance feature quantity table 611.
  • the model feature quantity table 612 is a table obtained by excluding work performance feature quantities not selected by the selection unit 604 from the work performance feature quantity table 611.
  • the optimization model generation unit 605 generates an optimization model M using the model feature table 612. Specifically, for example, as with the calculation unit 603, the relational expression between the objective variable and the explanatory variable group is obtained by performing multiple regression analysis using the actual work feature amount as the explanatory variable and the objective variable (working time). Is generated as an optimization model M.
  • the optimization model M may be generated by using a neural network. In addition, the method is not limited to these as long as the relational expression between the objective variable and the explanatory variable is obtained.
  • FIG. 11 is an explanatory diagram showing an example of generating the optimization model M.
  • FIG. 11 shows an example in which an optimization model M is generated by multiple regression analysis. Thereby, the values of ai and b shown in FIG. 11 are determined.
  • N is the number of entries in the model feature table 612, and i is an arbitrary integer between 1 and N.
  • the optimization model generation unit 605 When the optimization model generation unit 605 generates the optimization model M by the multiple regression equation, when the calculation unit 603 has already obtained the multiple regression equation when obtaining the determination coefficient as the importance, the multiple regression equation is used.
  • the formula may be used. Thereby, the generation speed of the optimization model M can be increased.
  • the determination unit 606 accesses the work instruction table 112, and determines a replacement variable from the explanatory variables of the work instruction table 112 based on the work performance feature amount column used to generate the optimization model M.
  • the replacement unit is determined from the sequence variable.
  • the replacement variable is a variable (a value in the column) that is a replacement target during the optimization processing by the optimization processing unit 607.
  • the replacement unit is a variable that represents a group when the replacement variable is replaced, and sections in which the replacement unit variable is continuously the same value are always replaced as one group.
  • the determination unit 606 is a column group (for example, a work performance feature value column 800) that defines a combination of explanatory variables with different work performance feature value columns used to generate the optimization model M. In such a case, one of the explanatory variables constituting the combination is determined as a replacement variable. In this case, the determination unit 606 determines the work group number column 300 as a replacement unit. In addition, when the work performance feature value column used for generating the optimization model M is a column group that defines the same kind of explanatory variable (for example, work performance feature value column 810), the determination unit 606 performs the work number column 301. Are determined as replacement variables and replacement units.
  • the optimization processing unit 607 can obtain an optimized work instruction using the optimization model M in a state where the explanatory variables are replaced.
  • FIG. 12 is an explanatory diagram showing a determination example 1 of replacement variables and replacement units.
  • the example of FIG. 12 is an example of determination in the case where the work performance feature amount column used to generate the optimization model M is a column group that defines different combinations of explanatory variables.
  • the work performance feature value column used for generating the optimization model M is the work performance feature value column 800 related to worker ID ⁇ work location used for generating the optimization model M in FIG.
  • the assigned feature amount columns constituting the combination of the work performance feature amount column 800 regarding the worker ID ⁇ work place are the worker ID column 302 and the work place column 305.
  • the determination unit 606 determines any explanatory variable of the worker ID column 302 and the work place column 305 as a replacement variable. For example, the determination unit 606 preferentially determines an explanatory variable including a variable corresponding to an order variable that is a replacement unit as a replacement variable.
  • the replacement unit is the work group number column 300
  • the work group number “1” corresponds to the worker ID “WK01”
  • the work group number “2” corresponds to the worker ID “WK03”
  • the work group The number “3” corresponds to the worker ID “WK02”.
  • the work group number “1” is not supported because the work places are “A01”, “C03”, and “B02”. Therefore, the determination unit 606 determines the worker ID column 302 as a replacement variable.
  • the determination unit 606 randomly determines any explanatory variable as a replacement variable.
  • FIG. 13 is an explanatory diagram showing a determination example 2 of replacement variables and replacement units.
  • the example of FIG. 13 is an example of determination in the case where the work performance feature amount column used for generating the optimization model M is a column group that defines the same kind of explanatory variable.
  • the work performance feature value column used to generate the optimization model M is a work performance feature value column 810 related to VarX coordinates.
  • the work performance feature value column 810 regarding the VarX coordinate is a set of the same type of VarX coordinate [low] column 811, VarX coordinate [mid] column 812, and VarX coordinate [high] column 813.
  • the explanatory variable is only the VarX coordinate column 306. Therefore, the determination unit 606 determines the work number column 301 as a replacement variable and replacement unit.
  • the optimization processing unit 607 replaces the replacement variable in the work instruction table 112 according to the replacement unit, and executes the optimization process using the work instruction table 112 after the replacement. Specifically, for example, the optimization processing unit 607 generates a work instruction feature value table using the work instruction table 112 after replacement.
  • the work instruction feature value table is a table in which the explanatory variables, which are work instructions in the work instruction table 112, are converted into assigned feature values.
  • the specific conversion method is the same as the generation example of the assigned feature amount described with reference to FIGS. More specifically, when the replacement is determined as shown in FIG. 12, it is the same as the generation example of the first assigned feature quantity shown in FIGS. 8 and 9, and the replacement is determined as shown in FIG. In this case, it is the same as the generation example of the second assigned feature amount shown in FIGS. That is, in FIG. 7 to FIG. 9, the work performance feature quantity table 611 including the assigned feature quantity is generated from the work performance table 111, but the optimization processing unit 607 does not generate the work performance table 111 but the work instruction table 112. Then, a work instruction feature quantity table including the assigned feature quantity is generated from the work instruction table 112 by the same method as in FIGS.
  • the optimization processing unit 607 calculates a prediction variable for each entry by giving the allocation feature amount in the work performance feature amount column to the optimization model M.
  • a predictive variable is a predictive value of an objective variable.
  • the optimization processing unit 607 calculates a statistical value of each calculated prediction variable and sets it as an evaluation value.
  • the statistical value is a statistical representative value such as an average value, a maximum value, a minimum value, a median value, or a total value of prediction variables. That is, the evaluation value is a value indicating the characteristic of the prediction variable, that is, the prediction value of the objective variable.
  • FIG. 14 is an explanatory diagram showing an example of replacement of explanatory variables.
  • FIG. 14 shows a replacement example using the replacement variable and replacement unit determined in the determination example 1 of FIG.
  • the worker ID “WK01” of three consecutive entries whose work group number is “1”, and the worker ID “WK03” of two consecutive entries whose work group number is “2”; Are replaced.
  • the replacement variable the value of the replacement source and the value of the replacement destination are determined at random. Since the work place column 305 is not a replacement variable, replacement is not executed.
  • the worker IDs of the three consecutive entries whose work group number is “1” are all replaced with “WK03”, and the work of the two consecutive entries whose work group number is “2”. Each person ID is replaced with “WK01”.
  • FIG. 15 is an explanatory diagram illustrating a generation example of work instruction feature values and a calculation example of evaluation values.
  • (A) shows the work instruction table 112 after the replacement shown in FIG.
  • (B) shows an example of generation of an assigned feature amount when a combination of explanatory variables, a worker ID, and a work place, that is, a work instruction feature amount table 1500 is generated.
  • the work instruction feature quantity table 1500 is generated by the processes as shown in FIGS.
  • a worker ID [WK01] ⁇ work location [A01] column 801 to a worker ID [WK03] ⁇ work location [A03] column 809 including a worker ID ⁇ work location related work instruction feature quantity column 1501 is included.
  • An instruction feature table 1500 is generated.
  • (C) shows a calculation example of the evaluation value.
  • An evaluation value is a statistical value of a predictor.
  • the work time column 308 specified as the objective variable in the work performance table 111 is used as the prediction variable.
  • the optimization processing unit 607 gives an assignment feature amount of the work instruction feature amount column 1501 regarding the worker ID ⁇ work location in the work instruction feature amount table 1500 to the optimization model M, so that an entry in the work instruction feature amount table 1500 is obtained.
  • the work time which is a predictive variable for each, is calculated.
  • the optimization processing unit 607 calculates a statistical value of the calculated work time and sets it as an evaluation value.
  • FIG. 16 is a flowchart showing a detailed processing procedure example of the optimization processing by the optimization processing unit 607.
  • the optimization processing unit 607 increments the index i (step S1602).
  • the optimization processing unit 607 executes a work instruction replacement process (step S1603).
  • the work instruction replacement process (step S1603) is, for example, the process shown in FIG.
  • the work instruction replacement process (step S1603), the combination of the replacement source value and the replacement destination value in the replacement variable is held, and the work instruction replacement process (step S1603) is performed from the next time so that the combination is not the same. Execute. Thereby, more replacement patterns can be covered.
  • the optimization processing unit 607 executes feature amount restoration processing (step S1604).
  • the feature amount restoration processing (step S1604) is processing for restoring the assigned feature amount in the work instruction table 112 after replacement.
  • the work instruction feature amount table 1500 shown in FIG. I is a process for generating
  • the optimization processing unit 607 executes an evaluation value calculation process (step S1605).
  • the evaluation value calculation process (step S1605) calculates a prediction variable by giving the allocation feature amount of the work instruction feature amount table 1500 to the optimization model M, and calculates the statistical value as an evaluation value. Specifically, for example, the process shown in FIG.
  • the optimization processing unit 607 determines whether or not the replacement at the index i is appropriate based on the evaluation value (step S1606). Specifically, for example, the optimization processing unit 607 compares the evaluation value before replacement with the evaluation value after replacement, and determines whether or not the evaluation value after replacement is smaller than the evaluation value before replacement. To do.
  • the prediction variable is the work time column 308, and the shorter the work time, the higher the evaluation value. For this reason, in step S1606, it is determined whether or not the evaluation value after replacement is smaller than the evaluation value before replacement. On the other hand, for example, when the evaluation value is higher as the prediction variable is larger, it is determined whether or not the evaluation value before replacement is larger than the evaluation value after replacement. In this way, the determination process in step S1606 may be determined according to the nature of the prediction variable.
  • step S1606 When it is determined that the replacement is appropriate (step S1606: Yes), the optimization processing unit 607 determines to adopt replacement in the work instruction replacement process (step S1603) at the index i (step S1607), and step S1610. Migrate to
  • step S1606 when it is determined that the replacement is not appropriate (step S1606: No), the optimization processing unit 607 determines that the replacement is not adopted in the work instruction replacement process (step S1603) at the index i (step S1608). The work instruction table 112 is returned to before the replacement (step S1609), and the process proceeds to step S1610.
  • step S1610 the optimization processing unit 607 stores, in the evaluation result table 1700, the evaluation result indicating whether or not the replacement with the number of replacements of the index i can be adopted (step S1607 or S1608) and the evaluation calculation process (step S1605) as a new entry. Registration is performed (step S1610).
  • the optimization processing unit 607 determines whether or not to end the optimization process (step S1611). When it is determined that the processing is not finished (step S1611: No), the process returns to step S1602, and the optimization processing unit 607 increments the index i (step S1602). On the other hand, when it is determined that the process is finished (step S1611: Yes), the optimization processing unit 607 stores the work instruction table 112 in the current replacement state as the optimization work instruction table 113 (step S1612), and performs optimization. The process is terminated.
  • the end determination (step S1611) is a process for determining whether or not the number of replacements has been performed a sufficient number of times.
  • the reduction rate is calculated by the latest evaluation value / initial evaluation value.
  • the optimization processing unit 607 determines to end the optimization process.
  • the optimization processing unit 607 may determine that the optimization processing is to be ended. Further, when the latest evaluation value reaches the target value, the optimization processing unit 607 may determine that the optimization processing is to be ended. Further, when there are no more new replacement patterns, the optimization processing unit 607 may determine that the optimization process is to be terminated. In addition, when a predetermined time has elapsed from the start of the optimization process, the optimization processing unit 607 may determine to end the optimization process.
  • FIG. 17 is an explanatory diagram showing an example of the stored contents of the evaluation result table.
  • the evaluation result table 1700 includes a replacement number column 1701, a replacement determination result column 1702, and an evaluation value column 1703.
  • the replacement number column 1701 is a storage area for storing the index i for each entry.
  • the initial value is “0”.
  • the replacement determination result column 1702 is a storage area for storing whether or not the index i can be adopted based on the number of replacements (step S1607 or S1608). There is no initial value.
  • the evaluation value column 1703 is a storage area for storing an evaluation value obtained in the evaluation calculation process (step S1605) with the number of times the index i is input.
  • the initial value is a sufficiently large value.
  • the optimization processing unit 607 stores the work instruction table 112 indicating the replacement state when the evaluation value becomes the minimum as the optimization work instruction table 113. Therefore, it is possible to provide an operator with an optimized work instruction that shortens the work time compared to the work instruction before optimization.
  • the optimization model M can be automatically generated without generating individual optimization models M and trial and error of parameter tuning depending on the purpose of optimization to be realized. Thereby, the production cost of the optimization model M by manual work can be reduced.
  • the maintenance cost can be reduced by automatically updating the optimization model M and the parameters in the optimization model M according to changes in the work environment. In other words, when the work environment changes, the optimization model M and the parameters in the optimization model M can be automatically updated simply by changing the contents of the work instruction table 112, and the maintenance cost can be reduced. .
  • Example 2 is an example in which an optimization viewpoint for optimizing work instructions is presented to an operator prior to generation of the optimization model M. This presentation process is executed after the importance is calculated by the calculation unit 603 and before the work result feature quantity used for generation of the optimization model M is selected by the selection unit 604. By presenting the optimization viewpoint before the generation of the optimization model M, the operator can determine which combination is valid and which is invalid among the combinations of explanatory variables in the work instruction feature column. Can be confirmed. In addition, in Example 2, it demonstrates centering on a presentation process, Since it is the same as Example 1 except it, description is abbreviate
  • FIG. 18 is a block diagram of a functional configuration example of the optimization system 102 according to the second embodiment.
  • the optimization system 102 includes a presentation unit 1800 in addition to the configuration described in the first embodiment.
  • the presenting unit 1800 is realized by causing the processor 201 to execute a program stored in the storage device 202, for example.
  • the presentation unit 1800 generates an optimization viewpoint and outputs it to the output device 204 (for example, a display) to present it to the operator. Specifically, for example, the presentation unit 1800 presents to the operator what optimization viewpoints they can have with respect to each feature quantity group in the work performance feature quantity table 611.
  • the presentation method of the optimization viewpoint differs depending on whether the feature quantity group to be presented is a combination of a plurality of different assigned feature quantities or a plurality of assigned feature quantities of the same type.
  • FIG. 19 is an explanatory diagram showing a presentation example 1 by the presentation unit 1800.
  • Presentation example 1 shown in FIG. 19 is an example in which an optimization viewpoint is presented when the work performance feature quantity to be presented is a combination of a plurality of different assigned feature quantities.
  • the presentation unit 1800 has a work performance feature value column 800 (first assigned feature) related to a worker ID ⁇ work place where the assigned feature amount is a combination of “worker ID” and “work place”.
  • the first optimization viewpoint presentation information 1900 is generated as a statistical feature quantity based on the quantity) and the objective variable.
  • the presentation unit 1800 prepares a table in which the two explanatory variables constituting the assigned feature amount are the vertical axis and the horizontal axis.
  • the presentation unit 1800 obtains a correlation coefficient between the value of the objective variable and the value of each feature value in the entry indicating each work result in the work result feature value table 611, and stores the correlation coefficient in the corresponding table cell.
  • the 1st optimization viewpoint presentation information 1900 is produced
  • the numerical value on the left is the obtained correlation coefficient
  • the numerical value in parentheses on the right is the number of entries used for calculating the correlation coefficient.
  • the presentation unit 1800 has 42 explanatory variables in the work performance feature value column 800 regarding the worker ID [WK01] ⁇ work location [A01] and 42 purposes in the work time column 308.
  • the correlation coefficient “0.4” is obtained by multiple regression analysis using variables. This correlation coefficient indicates that the value of the objective variable increases when each work record in the work record feature value table 611 matches the feature value, that is, “the worker with worker ID: WK01 When the work is performed at the place [A01], the work time [s] tends to increase ”. The same idea also indicates that “when the worker with worker ID: WK01 performs work at the work place [C03], the work time [s] tends to decrease” (the correlation coefficient is ⁇ 0.3).
  • the correlation coefficient is not limited as long as the method can determine whether the value of the objective variable is large or small when each work record matches a certain feature value.
  • it may be an average value of the objective variable when it matches each feature quantity.
  • the presentation unit 1800 extracts the maximum value and the minimum value of the correlation coefficient from one line in the vertical direction or the horizontal direction of the first optimization viewpoint presentation information 1900. Then, the presentation unit 1800 generates trend information indicating a change tendency of the objective variable due to mutual allocation between the two explanatory variables constituting the allocation feature amount.
  • the presentation unit 1800 refers to the vertical column of the worker [WK01], so that “for the worker [WK01], the work place [C03] is ⁇ (meaning OK, the same applies hereinafter). ),
  • the first trend information 1901 is generated as “work place [A01] is x (meaning of NG, the same applies hereinafter)”.
  • the presentation unit 1800 refers to the vertical column of the worker [WK03], so that “the worker [WK03] has a work place [C03] of ⁇ and a work place [A01] of ⁇ ” is second.
  • the trend information 1902 is generated.
  • the worker can grasp the relationship between the explanatory variables at the present time by looking at the presented trend information.
  • “worker [WK01] and worker [WK03] are not good at work places.
  • the worker [WK01] is good at the work place [A01] and is not good at the work place [C03].
  • the operator [WK03] is the opposite. Can be interpreted as.
  • the presentation unit 1800 extracts a combination in which a cell having a relatively large correlation coefficient and a cell having a small correlation coefficient are paired in a plurality of columns in the first optimization viewpoint presentation information 1900. Suggestions for optimization can be presented. Specifically, for example, in the case of the above two pieces of trend information 1901, 1902, the tendency regarding the work place of the first trend information 1901 and the tendency regarding the work place of the second trend information 1902 are opposite.
  • the presentation unit 1800 re-assigns “work location [A01] assigned to worker [WK01] to [C03] for worker [WK01], and conversely assigned to worker [WK03].
  • the assigned work place [C03] may be reassigned to [A01]. Can be generated and presented.
  • FIG. 20 is an explanatory diagram illustrating a second example of presentation by the presentation unit 1800.
  • Presentation example 2 shown in FIG. 20 is an example in which an optimization viewpoint is presented when the work performance feature quantity to be presented is a plurality of the same type of assigned feature quantities.
  • the presentation unit 1800 performs the respective work results relating to “VarX coordinates [low]”, “VarX coordinates [mid]”, and “VarX coordinates [high]” whose assigned feature amount is “VarX coordinates”.
  • second optimization viewpoint presentation information 2000 is generated as a statistical feature amount.
  • the presentation unit 1800 prepares a table with a plurality of explanatory variables, which are assigned feature amounts of the same type, on the horizontal axis.
  • the presentation unit 1800 obtains a correlation coefficient between the value of the objective variable and the value of each assigned feature value in the work performance feature value table 611, and stores the correlation coefficient in the corresponding table cell.
  • the 2nd optimization viewpoint presentation information 2000 is produced
  • the numerical value on the left is the calculated correlation coefficient
  • the numerical value in parentheses on the right is the number of entries used for calculating the correlation coefficient.
  • the second optimization viewpoint presentation information 2000 indicates that “when the variance (variation) of the X coordinate is [low] (small), the objective variable tends to be small”.
  • the presentation unit 1800 extracts the maximum value and the minimum value of the correlation coefficient from the second optimization viewpoint presentation information 2000. Then, the presentation unit 1800 generates trend information 2001 indicating a tendency of change in the objective variable due to mutual allocation among the three explanatory variables constituting a plurality of the same type of allocated feature values.
  • the presentation unit 1800 can present to the worker the trend information 2001 indicating the change in the objective variable due to the order relationship in the work order direction, such as “X if the X-coordinate variation is large, ⁇ if small,”.
  • the operator looks at the presented trend information 2001 and grasps the work prediction that “the work time is shortened when work places are arranged close to each other compared to the previous and next work, that is, the X coordinate variation”. be able to. Further, it is possible to grasp the work prediction that “the work order may be changed so that the variation before and after the X coordinate is small”.
  • the selection unit 604 may receive the optimization viewpoint selected by the selection input from the worker after the presentation unit 1800 presents the optimization viewpoint to the worker.
  • the selection of the optimization viewpoint is performed by the input device.
  • the optimization system can easily present the optimization viewpoint to the operator before the optimization process. As a result, the operator's intention can be reflected and optimized.
  • the optimization model M can be automatically generated without trial and error of individual model generation and parameter tuning depending on the purpose of optimization to be realized. Thereby, the production cost of the optimization model M by manual work can be reduced.
  • the first assigned feature amount is generated for a plurality of types of the combinations
  • a statistical contribution to the objective variable can be obtained by calculating the importance for each of the plurality of types of the combinations. Therefore, by comparing the importance levels, a combination to be optimized can be easily specified.
  • the worker can use the management system 101 with a sense of satisfaction with the optimization viewpoint devised by the optimization system 102.
  • the optimization target can be optimized by the optimization model M having a truly effective optimization viewpoint without staying within the scope of problem awareness in the field.
  • the work attribute can be set. Therefore, efficient work improvement can be supported by using the work instruction after optimization.
  • the optimization process may be executed again using the optimization work instruction table 113 according to changes in the work environment.
  • the optimization model M and the parameters in the optimization model M can be automatically updated, and the maintenance cost can be reduced.
  • the optimization model M is generated using the first allocation feature amount and the second allocation feature amount has been described.
  • the first allocation feature amount and the second allocation feature are described.
  • the optimization model M may be generated using at least one of the quantities.
  • the present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment may be replaced with the configuration of another embodiment.
  • each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
  • Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

最適化システムは、プログラムを実行するプロセッサと、プログラムを記憶する記憶デバイスと、を有し、記憶デバイスは、物流倉庫作業における作業実績を記憶する作業実績記憶情報を有し、作業実績記憶情報は、作業実績として、物流倉庫作業の作業結果を示す目的変数と、物流倉庫作業の作業属性を示す説明変数と、物流倉庫作業の作業順序を示す順序変数とを、物流倉庫作業ごとに記憶しており、プロセッサは、ある物流倉庫作業の作業実績について、異なる説明変数における各値の組み合わせの存否を示す第1の割当特徴量を生成する第1の割当特徴量生成処理と、第1の割当特徴量生成処理によって生成された割当特徴量と、目的変数と、に基づいて、目的変数を最適化する最適化モデルを生成する最適化モデル生成処理と、を実行する。

Description

最適化システムおよび最適化方法
 本発明は、物流倉庫作業を最適化する最適化システムおよび最適化方法に関する。
 物流倉庫、物流センタ、その他商品供給センタでは、供給側の製造者が製造した商品を入荷し、物流倉庫内の所定の場所に一時的に保管し、需要側の出荷先の注文に応じて物流倉庫内の所定の場所から当該商品を集品し、出荷先に配送する。また配送前に、集品した商品の詰め合わせや装飾付けといった流通加工や、段ボールのような配送に適した形への包装を行うこともある。
 物流倉庫業務においては、この入荷→保管→集品→流通加工→包装→配送サイクルにおいて、より少ないコストでより多くの商品を入荷、保管、出荷できることが望ましい。ここで言うコストには、たとえば、商品保管に必要な倉庫の管理費や土地代といったスペースにかかるコストや、商品の入荷・出荷作業に必要な人件費といった作業に係るコストがある。このコスト対効果を上げるために、各種作業の作業効率の向上が必要である。
 物流倉庫内の作業効率の向上に関しては、従来から、特定の作業において最適化を行う取り組みがあった。たとえば、下記特許文献1は、商品保管時のスペースコストおよび商品出荷時の作業コストを削減すべく、商品配置情報と商品需要情報から、スペースコストと出荷作業コストを算出する数式モデルを段階的に作成し、作成した数式モデルを用いて、コストを最小にする商品供給頻度を求める最適化を行うことを開示する。
 また、特許文献2は、物流倉庫における作業者の人数、商品の配置、倉庫レイアウト、使用設備を入力し、作業時の作業者の動きをシミュレートし、全作業者の総作業時間を算出するシミュレーションモデルを作成し、たとえば各作業工程における作業者の数の最適化を行うことを開示する。
 また、特許文献3は、過去の作業の履歴から、ある状況においてどのような作業を実行すべきかを示す知識を獲得、再利用することができ、よって、以降の作業の効率を向上させることができる作業手順管理システムを開示する。
 以上のように、物流作業の最適化を行う際には、最適化の目的に応じ、倉庫内作業を再現するモデルが事前に作成される。前述のようなモデルには、たとえば、倉庫作業に関する様々な属性(たとえば、作業者数、商品配置)を入力とし、目的変数(たとえば、作業時間)の期待値または予測値を算出する数式モデルやシミュレーションモデルがある。モデル作成後は、これらのモデルに基づいて、倉庫作業の属性から目的変数が算出され、目的変数の値を最大化または最小化するような倉庫作業の所望の属性が求められ、最適化結果が得られる。このように、最適化の開発は大きく分けて、作業属性から目的変数の値を算出する最適化モデル作成工程と、目的変数を最大化または最小化するために、どの作業属性を変化させるかを定める工程と、からなる。
特開2010-61260号公報 特開2002-269192号公報 特開平10-105540号公報
 従来、作業の最適化に用いるモデルは、実現したい最適化の目的に応じて個別にデータ分析者により開発される。モデル作成時には、現場の業務を学び、また現場の課題ヒアリング等を実施し、倉庫作業の属性から目的変数を算出するための関数系およびパラメータの試行錯誤を行う。しかし、このような個別の開発では、「作業属性からどのように目的変数を算出するか、目的変数の最大化または最小化を実現するにあたってどの作業属性を変化させるか」という最適化の観点ごとに、モデルの再開発が必要である。
 また、作業者や商品の入れ替わり、商品の配置変更のように倉庫内の作業環境が変化するたびに、モデルの持つパラメータを再設計する必要がある。さらに、現場の業務知識や課題ヒアリングを元にした最適化開発では、最適化の観点が現場の課題意識の範囲に留まってしまう。したがって、意識の外に真に効果のある最適化の観点がある場合に、これらを考慮できない。
 本発明は、実現したい最適化の目的によって個別のモデル生成およびパラメータチューニングの試行錯誤を行うことなく、最適化モデルを自動生成することを目的とする。
 本願において開示される発明の一側面となる最適化システムは、プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスと、を有し、前記記憶デバイスは、物流倉庫作業における作業実績を記憶する作業実績記憶情報を有し、前記作業実績記憶情報は、前記作業実績として、前記物流倉庫作業の作業結果を示す目的変数と、前記物流倉庫作業の作業属性を示す説明変数と、前記物流倉庫作業の作業順序を示す順序変数とを、物流倉庫作業ごとに記憶しており、前記プロセッサは、ある物流倉庫作業の作業実績について、異なる前記説明変数における各値の組み合わせの存否を示す第1の割当特徴量を生成する第1の割当特徴量生成処理と、前記第1の割当特徴量生成処理によって生成された第1の割当特徴量と、前記目的変数と、に基づいて、前記目的変数を最適化する最適化モデルを生成する最適化モデル生成処理と、を実行することを特徴とする。
 本願において開示される発明の他の側面となる最適化システムは、プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスと、を有し、前記記憶デバイスは、物流倉庫作業における作業実績を記憶する作業実績記憶情報を有し、前記作業実績記憶情報は、前記作業実績として、前記物流倉庫作業の作業結果を示す目的変数と、前記物流倉庫作業の作業属性を示す説明変数と、前記物流倉庫作業の作業順序を示す順序変数とを、物流倉庫作業ごとに記憶しており、前記プロセッサは、ある物流倉庫作業の作業実績について、前記ある物流倉庫作業を含む連続する区間内の一連の物流倉庫作業での説明変数群を前記作業実績記憶情報から取得し、前記連続する区間内での前記説明変数群の順序のばらつきを規定する第1の順序特徴量を生成する順序特徴量生成処理と、前記順序特徴量生成処理によって生成された第1の順序特徴量を複数の範囲のいずれかに分類するための第2の割当特徴量を生成する第2の割当特徴量生成処理と、前記第2の割当特徴量生成処理によって生成された第2の割当特徴量と、前記目的変数と、に基づいて、前記目的変数を最適化する最適化モデルを生成する最適化モデル生成処理と、を実行することを特徴とする。
 本発明の代表的な実施の形態によれば、実現したい最適化の目的によって個別のモデル生成およびパラメータチューニングの試行錯誤を行うことなく、最適化モデルを自動生成することができる。前述した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。
図1は、実施例1にかかる物流システムのシステム構成例を示すブロック図である。 図2は、最適化システムのハードウェア構成例を示すブロック図である。 図3は、作業実績テーブルの記憶内容例を示す説明図である。 図4は、作業指示テーブルの記憶内容例を示す説明図である。 図5は、演算パターンテーブルの記憶内容例を示す説明図である。 図6は、実施例1にかかる最適化システムの機能的構成例を示すブロック図である。 図7は、順序特徴量の生成例を示す説明図である。 図8は、割当特徴量の生成例を示す説明図である。 図9は、ラベル化処理を示す説明図である。 図10は、重要度の算出例を示す説明図である。 図11は、最適化モデルの生成例を示す説明図である。 図12は、入替変数および入替単位の決定例1を示す説明図である。 図13は、入替変数および入替単位の決定例2を示す説明図である。 図14は、説明変数の入替例を示す説明図である。 図15は、作業指示特徴量の生成例および評価値の算出例を示す説明図である。 図16は、最適化処理部による最適化処理の詳細な処理手順例を示すフローチャートである。 図17は、評価結果テーブルの記憶内容例を示す説明図である。 図18は、実施例2にかかる最適化システムの機能的構成例を示すブロック図である。 図19は、提示部による提示例1を示す説明図である。 図20は、提示部による提示例2を示す説明図である。
 以下の実施例においては、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施例において、要素の数(たとえば、個数、数値、量、範囲を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
 さらに、以下の実施例において、その構成要素(たとえば、要素ステップも含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施例において、構成要素の形状、位置関係に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合を除き、実質的にその形状等に近似または類似するものを含むものとする。このことは、上記数値および範囲についても同様である。
 最適化においては、目的変数の最大化または最小化を行うように、他の説明変数を変化させる。以下では、目的変数の最小化を主な事例として述べるが、目的変数の最大化であっても適宜関連する判定条件を入れ替えることにより実現可能である(たとえば、後述する入替採用判定ステップS1606における判定条件)。また、本実施例において、「システム」とは、1台のコンピュータ、または、通信可能に連携しあう複数台のコンピュータである。
 <物流システムのシステム構成例>
 図1は、実施例1にかかる物流システムのシステム構成例を示すブロック図である。物流システム100は、管理システム101と、最適化システム102と、作業実績テーブル111と、作業指示テーブル112と、最適化作業指示テーブル113と、を有する。以下の説明では、管理システム101と最適化システム102を分けて説明するが、これらは必ずしも分けて構成される必要はなく、1つのシステムの上に管理システム101および最適化システム102の各々の機能を持つサブシステムとして構成されてもよい。
 管理システム101は、物流倉庫作業を管理するシステムである。具体的には、たとえば、管理システム101は、作業実績テーブル111および作業指示テーブル112にアクセスして、物流倉庫に関する各種作業(たとえば、入荷、出荷、集品、流通加工、包装)の作業実績および作業指示を管理する。管理システム101は、商品の配置および商品の属性(たとえば、重さ)の情報も管理することもある。管理システム101は、最適化作業指示テーブル113を参照して、作業指示を発行する。管理システム101は、たとえば、Warehouse Management System(WMS)である。
 最適化システム102は、物流作業指示を最適化するシステムである。具体的には、たとえば、最適化システム102は、作業実績テーブル111を参照して、作業指示テーブル112のエントリである作業指示を最適化し、最適化作業指示テーブル113を生成する。最適化作業指示テーブル113の生成後は、最適化システム102は、最適化作業指示テーブル113のエントリである作業指示を最適化し、最適化作業指示テーブル113を更新する。
 作業指示テーブル112は、作業指示をエントリとして格納する作業指示記憶情報である。具体的には、たとえば、入荷作業に関する作業指示の場合、作業指示テーブル112は、管理システム101により、商品供給者から物流倉庫への商品入荷情報に基づいて作成される。また、出荷作業に関する作業指示の場合、作業指示テーブル112は、管理システム101により、商品需要者から物流倉庫への商品発注情報に基づいて作成される。このように、作業指示テーブル112の各エントリは、たとえば、どのような商品を、誰が、いくつ、どの供給者から受けるかを確認する作業指示となる。
 作業実績テーブル111は、作業実績をエントリとして格納する作業実績記憶情報である。具体的には、たとえば、入荷作業に関する作業実績の場合、作業実績テーブル111は、管理システム101により、商品供給者から物流倉庫への商品入荷情報に基づいて行われた商品入荷作業の実績によって作成される。また、出荷作業に関する作業指示の場合、作業指示テーブル112は、管理システム101により、商品需要者から物流倉庫への商品発注情報に基づいて行われた商品発注作業の実績によって作成される。このように、作業実績テーブル111の各エントリは、たとえば、どのような商品を、誰が、いくつ、どの供給者から受けたかを示す作業実績となる。
 作業実績収集121では、管理システム101によって発行された作業指示に基づいて作業者が実施した作業実績が、管理システム101によってエントリとして作業実績テーブル111に記録される。作業実績は、具体的には、たとえば、作業者がハンディターミナルを操作して管理システム101に送信したり、倉庫内設備に搭載した各種センサから管理システム101に送信されることによって、作業実績テーブル111に記録される。
 作業指示発行122では、最適化作業指示テーブル113に蓄積された作業指示が、管理システム101によって倉庫の作業者に発行される。具体的には、たとえば、作業者への作業指示書の印刷や、作業者のハンディターミナルへの表示、その他倉庫内設備への表示によって行われる。このように、物流システム100では、最適化された作業指示を作業者に与えることができ、作業効率の向上を図ることができる。
 <最適化システム102のハードウェア構成例>
 図2は、最適化システム102のハードウェア構成例を示すブロック図である。最適化システム102は、プロセッサ201と、記憶デバイス202と、入力デバイス203と、出力デバイス204と、通信インターフェース(通信IF205)と、を有する。プロセッサ201、記憶デバイス202、入力デバイス203、出力デバイス204、および通信IF205は、バスにより接続される。プロセッサ201は、最適化システム102を制御する。記憶デバイス202は、プロセッサ201の作業エリアとなる。また、記憶デバイス202は、各種プログラムやデータを記憶する非一時的なまたは一時的な記録媒体である。記憶デバイス202としては、たとえば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリがある。入力デバイス203は、データを入力する。入力デバイス203としては、たとえば、キーボード、マウス、タッチパネル、テンキー、スキャナがある。出力デバイス204は、データを出力する。出力デバイス204としては、たとえば、ディスプレイ、プリンタがある。通信IF205は、ネットワークと接続し、データを送受信する。
 <作業実績テーブルおよび作業指示テーブル>
 図3は、作業実績テーブル111の記憶内容例を示す説明図であり、図4は、作業指示テーブル112の記憶内容例を示す説明図である。作業実績テーブル111および作業指示テーブル112は、一例として、出荷作業の作業実績および作業指示例を示す。作業実績テーブル111の各行は、出荷作業に関する作業実績を示すエントリである。作業指示テーブル112の各行は、出荷作業に関する作業指示を示すエントリである。作業実績テーブル111および作業指示テーブル112の各列は、出荷作業に関するカラムを示す。
 作業実績テーブル111および作業指示テーブル112は、共通のカラムとして、作業順序に関するカラムと、作業属性に関するカラムと、を有する。作業順序に関するカラムとは、作業順序を規定する記憶領域であり、作業群番号カラム300と、作業番号カラム301と、を有する。作業群番号カラム300は、エントリごとに作業群番号を格納する記憶領域である。作業番号カラム301は、エントリごとに作業番号を格納する記憶領域である。作業番号とは、作業の順序を規定する番号である。本例では作業番号の昇順で作業が実行される。作業群場号とは、一連の作業(たとえば、作業番号1~4で特定される作業群)を1単位とした場合に、作業群の順序を規定する番号である。本例では作業群番号の昇順で作業群が実行される。
 作業属性に関するカラムは、作業属性を規定する記憶領域であり、作業者IDカラム302と、商品IDカラム303と、商品重さカラム304と、作業場所カラム305と、X座標カラム306と、Y座標カラム307と、を有する。作業者IDカラム302は、エントリごとに作業者IDを格納する記憶領域である。作業者IDは、作業者を一意に特定する識別情報である。商品IDカラム303は、エントリごとに商品IDを格納する記憶領域である。商品IDは、商品を一意に特定する識別情報である。
 商品重さカラム304は、エントリごとに商品重さを格納する記憶領域である。商品重さは、商品IDで特定される商品の重さを示す情報である。作業場所カラム305は、エントリごとに作業場所を格納する記憶領域である。作業場所は、作業者IDで特定される作業者が、商品IDで特定される商品について作業する物流倉庫内の場所である。X座標カラム306およびY座標カラム307は、作業場所カラム305の付属属性カラムである。X座標カラム306およびY座標カラム307は、エントリごとに物流倉庫内の作業場所を特定するX座標の値およびY座標の値を格納する記憶領域である。
 また、作業実績テーブル111は、作業結果に関するカラムを有する。作業結果に関するカラムは、作業結果を規定する記憶領域であり、作業時間カラム308と、作業時刻カラム309と、を有する。作業時間カラム308は、エントリごとに作業時間を格納する記憶領域である。作業時刻カラム309は、エントリごとに作業の開始時刻(または終了時刻でもよい)を格納する記憶領域である。
 作業実績テーブル111および作業指示テーブル112における各カラム300~309には、軸属性311と、タイプ312とが、設定される。軸属性311は、カラムの属性を規定する。作業順序に関するカラムの軸属性311は、作業順序を示す「順序」であり、作業結果に関するカラムの軸属性311は、目的変数を示す「目的」であり、作業属性に関するカラムの軸属性311は、説明変数を示す「説明」である。目的変数は、最適化時に最小化したい変数である。また、タイプ312は、カラム300~309に格納される情報の種類を規定する。タイプ312には、「数値」、「時刻」、および、「文字」がある。
 <演算パターンテーブル>
 図5は、演算パターンテーブルの記憶内容例を示す説明図である。演算パターンテーブル500は、カラム300~309のタイプ501ごとに演算502と観点503とを規定するテーブルである。演算502とは、タイプ501で特定されるカラム300~309に格納される情報について順序特徴量の演算方法を規定する情報である。観点503とは、演算502の順序特徴量を生成するための目的を示す情報である。順序特徴量は、作業順序を特徴づける特徴量であり、演算502により生成される。また、同じタイプ501に1以上の演算502がある。複数種類の演算502がある場合にどのタイプ501を利用するかは、あらかじめ作業実績テーブル111のカラム300~309に関連付けておいてもよい。また、特徴量を生成する場合に、特定の演算502が作業者の操作により選択されてもよい。
 <最適化システム102の機能的構成例>
 図6は、実施例1にかかる最適化システム102の機能的構成例を示すブロック図である。最適化システム102は、順序特徴量生成部601と、割当特徴量生成部602と、算出部603と、選択部604と、最適化モデル生成部605と、決定部606と、最適化処理部607と、を有する。これらは、具体的には、たとえば、記憶デバイス202に記憶されたプログラムをプロセッサ201に実行させることにより実現される。なお、最適化システム102による最適化の処理の流れは、図6に示した順序特徴量生成部601~最適化処理部607を接続する矢印に従う。
 また、最適化システム102は、演算パターンテーブル500と、作業実績特徴量テーブル611と、モデル用特徴量テーブル612と、最適化モデルMと、を記憶する。これらは、具体的には、たとえば、記憶デバイス202に記憶された情報により実現される。演算パターンテーブル500は、マスタテーブルであり、作業実績特徴量テーブル611、モデル用特徴量テーブル612、および、最適化モデルMは、中間生成データである。
 順序特徴量生成部601は、作業実績テーブル111および演算パターンテーブル500を参照して、説明変数の順序特徴量を生成する。具体的には、たとえば、順序特徴量生成部601は、ある物流倉庫作業の作業実績について、ある物流倉庫作業を含む連続する区間内の一連の物流倉庫作業での説明変数群を作業実績テーブル111から取得し、連続する区間内での説明変数群の順序のばらつきを規定する順序特徴量を生成する。より具体的には、たとえば、順序特徴量生成部601は、作業実績テーブル111から、順序特徴量の生成元となるエントリを含む時系列なエントリ群を特定する。順序特徴量生成部601は、演算パターンテーブル500を参照して、特定したエントリ群の説明変数群の演算502を特定する。順序特徴量生成部601は、特定した演算502により順序特徴量を算出する。
 図7は、順序特徴量の生成例を示す説明図である。図7では、作業実績テーブル111の太枠で囲った作業属性の値を生成元としてその順序特徴量を生成し、作業実績テーブル111に格納する例を示す。ここでは、作業場所カラム305のタイプ「文字」の演算502は、「UniqNum」とする。「UniqNum」は、対象区間において生成元の出現数を計数する演算方法である。演算502の対象区間は、生成元を含む時系列な作業属性の値である。すなわち、順序特徴量は、対象区間内で作業属性の値がどのくらい含まれているかを示す特徴量となる。
 本例では、エントリE21における生成元701から3エントリ前の「C03」から、生成元701から1エントリ後の「B02」までの作業属性の値を、対象区間とする(図7中、矢印で表示)。対象区間は、あらかじめ設定されているものとする。順序特徴量が多いほど、対象区間で生成元701である作業場所「B02」での作業が多かったことを示す。この場合、対象区間内において生成元701である作業場所「B02」は、3回出現する。したがって、生成元701の順序特徴量711は「3」となる。順序特徴量生成部601は、順序特徴量711をUniqueNum作業場所カラム750に格納する。
 また、X座標カラム306のタイプ「数値」の演算502は、「Var」および「Max」とする。「Var」は、対象区間において生成元の分散値を算出する演算方法である。「Max」は、対象区間において生成元の最大値を求める演算方法である。生成元702の順序特徴量721であるVarは、対象区間におけるX座標値「60」、「40」、「30」、「50」、「30」の分散値「134」となる。同様に、生成元702の順序特徴量722であるMaxは、対象区間におけるX座標値「60」、「40」、「30」、「50」、「30」の最大値「60」となる。順序特徴量生成部601は、順序特徴量721,722をVarX座標カラム761,MaxX座標カラム762に格納する。このようにして、作業属性の値に関する順序特徴量が作業実績特徴量テーブル611に保持される。
 図6に戻り、割当特徴量生成部602は、作業実績テーブル111および作業実績特徴量テーブル611を参照して、割当特徴量を生成する。割当特徴量は、作業実績に割り当てられる特徴量である。割当特徴量には、タイプ312が文字である説明変数の場合の特徴量(第1の割当特徴量)と、タイプ312が数値の場合の特徴量(第2の割当特徴量)とがある。
 第1の割当特徴量は、作業実績テーブル111において当該説明変数の組み合わせに割り当てられる特徴量、すなわち、異なる説明変数における各値の組み合わせの存否を示す割当特徴量である。また、第2の割当特徴量は、作業実績テーブル111または作業実績特徴量テーブル611において当該説明変数の数量の大きさに応じて割り当てられる特徴量、すなわち、順序特徴量を複数の範囲のいずれかに分類するための割当特徴量である。
 図8は、割当特徴量の生成例を示す説明図である。ここで、第1の割当特徴量および第2の割当特徴量が格納されるカラムの集合を、作業実績特徴量カラムと称す。具体的には、たとえば、作業者ID[WK01]×作業場所[A01]カラム801~作業者ID[WK03]×作業場所[A03]カラム809を、作業者ID×作業場所に関する作業実績特徴量カラム800という。また、VarX座標[low]カラム811~VarX座標[high]カラム813を、VarX座標に関する作業実績特徴量カラム810という。
 まず、第1の割当特徴量について説明する。作業実績テーブル111のエントリE11における作業者ID32と作業場所35との組み合わせは、「WK01」および「A01」である。したがって、作業実績特徴量テーブル611においてエントリE11に対応するエントリにおける、作業者ID[WK01]×作業場所[A01]カラム801には、当該組み合わせの存在を示す「1」が第1の割当特徴量81として設定される。なお、当該エントリにおいて、作業者ID[WK01]×作業場所[A01]カラム801以外の作業者ID×作業場所に関する作業実績特徴量カラム800については、当該組み合わせの不存在を示す「0」が第1の割当特徴量として設定される(作業者ID[WK03]×作業場所[A03]カラム809を参照。)。
 つぎに、第2の割当特徴量について説明する。エントリE24に対応する作業実績特徴量テーブル611のエントリにおけるVarX座標76は、「153」である。「153」は、VarX座標カラム761の中で高い値に分類されるものとする。この場合、VarX座標[high]カラム813には、VarX座標76の「153」の存在を示す「1」が第2の割当特徴量83として設定される。なお、当該エントリにおいて、VarX座標[high]カラム813以外のVarX座標に関する作業実績特徴量カラム810については、当該VarX座標76の不存在を示す「0」が第2の割当特徴量として設定される(VarX座標カラム811を参照。)。ここで、割当特徴量の生成処理についてラベル化処理を用いてより具体的に説明する。
 図9は、ラベル化処理を示す説明図である。割当特徴量生成部602は、説明変数の各値または値の範囲をカラムとする中間テーブル900を生成する。割当特徴量生成部602は、作業実績テーブル111と対応する中間テーブル900のエントリにおいて、説明変数のタイプが「文字」である場合、作業実績テーブル111における説明変数の値に対応する中間テーブル900のカラムに、その説明変数が存在することを示す値「1」を設定する。
 割当特徴量生成部602は、たとえば、太枠で囲った作業者ID「WK01」については、対応する中間テーブル900のエントリにおける作業者ID[WK01]カラム911に、「1」を設定し、作業者ID[WK02]カラム912、作業者ID[WK03]カラム913に「0」を設定する。
 また、割当特徴量生成部602は、作業実績テーブル111と対応する中間テーブル900のエントリにおいて、説明変数のタイプが「数値」である場合、作業実績テーブル111における説明変数の値の範囲に対応する中間テーブル900のカラムに、その説明変数が存在することを示す値「1」を設定する。割当特徴量生成部602は、たとえば、太枠で囲った商品重さ「300」、「125」、「125」、「120」については、対応する中間テーブル900のエントリにおける商品重さが600kgより低いことを示す商品重さ[g][low](-600)カラム921に「1」を設定し、商品重さ[g][mid](600-1300)カラム922、商品重さ[g][high](1300-)カラム923に「0」を設定する。
 これにより、中間テーブル900に設定された値は、「1」または「0」の論理値となる。割当特徴量生成部602は、中間テーブル900を用いて説明変数の組み合わせの論理積を算出し、作業実績特徴量テーブル611における当該説明変数の組み合わせを規定したカラムに、算出した論理積の値を設定する。
 図6に戻り、算出部603は、作業実績特徴量テーブル611において、重要度を算出する。具体的には、たとえば、算出部603は、第1の割当特徴量が複数種類の組み合わせについて生成された場合、複数種類の組み合わせの各々について、第1の割当特徴量と、目的変数と、に基づいて、当該組み合わせに関する重要度を算出する。また、算出部603は、複数種類の順序特徴量の各々について、第2の割当特徴量と、目的変数と、に基づいて、第2の割当特徴量の生成元である順序特徴量に関する重要度を算出する。
 重要度とは、作業実績特徴量テーブル611の目的変数を説明する上で、各作業実績特徴量カラムにおける作業実績特徴量の重要さや寄与度を表す数量である。重要度としては、たとえば、作業実績特徴量カラムごとに、作業実績特徴量を説明変数とし、目的変数(作業時間)を重回帰分析した際の決定係数を用いる。
 決定係数は、得られた重回帰式が当てはまっているかを示す指標であり、その値が大きいほどよいことを示す。重回帰分析で得られる重相関係数の二乗が決定係数である。また他の方法として、各作業実績特徴量カラムにおける作業実績特徴量が「1」になるときの目的変数の値を用いて分散分析を行い、分散分析の変動比を用いてもよい。また、その他、各作業実績特徴量カラムにおける作業実績特徴量が目的変数を説明できる量を定量的に求められる方法であればこれらには依らない。
 図10は、重要度の算出例を示す説明図である。ここでは、重回帰分析を用いる場合について説明する。目的変数を作業時間カラム308における作業実績特徴量とし、説明変数を作業者ID×作業場所に関する作業実績特徴量カラム800における作業実績特徴量(第1の割当特徴量)とする。算出部603は、エントリ数分の式を重回帰分析を用いて解くことにより、決定係数「0.3」を得る。また、目的変数を作業時間カラム308における作業実績特徴量とし、説明変数をVarX座標に関する作業実績特徴量カラム810における作業実績特徴量(第2の割当特徴量)とする。算出部603は、エントリ数分の式を重回帰分析を用いて解くことにより、決定係数「0.2」を得る。
 図6に戻り、選択部604は、算出部603によって算出された重要度に基づいて、最適化モデルMの生成に用いる作業実績特徴量を選択する。具体的には、たとえば、選択部604は、重要度のしきい値を保持する。たとえば、重要度である決定係数のしきい値を0.3とする。図10の例の場合、選択部604は、決定係数がしきい値以上である作業者ID×作業場所に関する作業実績特徴量カラム800の作業実績特徴量を、最適化モデルMの生成に用いる作業実績特徴量に選択する。
 また、選択部604は、重要度の高い上位n個の作業実績特徴量カラムの作業実績特徴量を選択してもよい。これにより、選択部604は、作業実績特徴量テーブル611から、モデル用特徴量テーブル612を生成することになる。モデル用特徴量テーブル612は、作業実績特徴量テーブル611から、選択部604によって選択されなかった作業実績特徴量を除外したテーブルである。
 最適化モデル生成部605は、モデル用特徴量テーブル612を用いて、最適化モデルMを生成する。具体的には、たとえば、算出部603と同様、作業実績特徴量を説明変数とし、目的変数(作業時間)として、重回帰分析を実行することにより、目的変数と説明変数群の間の関係式である重回帰式を最適化モデルMとして生成する。また、重回帰分析のほか、ニューラルネットワークを用いることにより、最適化モデルMを生成してもよい。このほか、目的変数と説明変数との間の関係式を求める方法であれば、これらには限定されない。
 図11は、最適化モデルMの生成例を示す説明図である。図11では、重回帰分析により最適化モデルMを生成する例である。これにより、図11に示したaiの値とbの値が決定される。Nは、モデル用特徴量テーブル612のエントリ数であり、iは、1以上N以下の任意の整数である。
 なお、最適化モデル生成部605において重回帰式により最適化モデルMを生成する場合、すでに、算出部603において重要度として決定係数を求める際に重回帰式を得ている場合は、その重回帰式を流用してもよい。これにより、最適化モデルMの生成速度の高速化を図ることができる。
 図6に戻り、決定部606は、作業指示テーブル112にアクセスして、最適化モデルMの生成に用いられた作業実績特徴量カラムに基づいて、作業指示テーブル112の説明変数から入替変数を決定し、順序変数から入替単位を決定する。入替変数とは、最適化処理部607による最適化処理時に入替の対象となる変数(カラム内の値)である。入替単位とは入替変数を入れ替える際の纏まりを表す変数であり、入替単位の変数が連続して同値となっている区間が、常に1つの纏まりとして入れ替えられる。
 具体的には、たとえば、決定部606は、最適化モデルMの生成に用いられた作業実績特徴量カラムが異なる説明変数の組み合わせを規定するカラム群(たとえば、作業実績特徴量カラム800)である場合、当該組み合わせを構成する説明変数のうちいずれかの説明変数を、入替変数に決定する。またこの場合、決定部606は、作業群番号カラム300を入替単位に決定する。また、決定部606は、最適化モデルMの生成に用いられた作業実績特徴量カラムが同種の説明変数を規定するカラム群(たとえば、作業実績特徴量カラム810)である場合、作業番号カラム301を入替変数および入替単位に決定する。
 このように、入替変数および入替単位を決定することにより、最適化処理部607において、説明変数が入れ替わった状態で、最適化モデルMを用い、最適化された作業指示を得ることができる。
 図12は、入替変数および入替単位の決定例1を示す説明図である。図12の例は、最適化モデルMの生成に用いられた作業実績特徴量カラムが異なる説明変数の組み合わせを規定するカラム群である場合の決定例である。ここでは、最適化モデルMの生成に用いられた作業実績特徴量カラムを、図11の最適化モデルMの生成に用いられた作業者ID×作業場所に関する作業実績特徴量カラム800とする。
 作業指示テーブル112のカラム300~307において、作業者ID×作業場所に関する作業実績特徴量カラム800の組み合わせを構成する割当特徴量のカラムは、作業者IDカラム302および作業場所カラム305である。決定部606は、作業者IDカラム302および作業場所カラム305のうちいずれかの説明変数を、入替変数に決定する。たとえば、決定部606は、入替単位である順序変数に対応する変数を含む説明変数を、優先的に入替変数に決定する。
 たとえば、入替単位が作業群番号カラム300である場合、作業群番号「1」が作業者ID「WK01」に対応し、作業群番号「2」が作業者ID「WK03」に対応し、作業群番号「3」が作業者ID「WK02」に対応する。これに対し、作業群番号「1」の場合、作業場所は「A01」、「C03」、「B02」であるため、対応していない。したがって、決定部606は、作業者IDカラム302を入替変数に決定する。なお、いずれの説明変数も作業群番号カラム300に対応しない場合、決定部606は、いずれかの説明変数をランダムに入替変数に決定する。
 図13は、入替変数および入替単位の決定例2を示す説明図である。図13の例は、最適化モデルMの生成に用いられた作業実績特徴量カラムが同種の説明変数を規定するカラム群である場合の決定例である。ここでは、最適化モデルMの生成に用いられた作業実績特徴量カラムを、VarX座標に関する作業実績特徴量カラム810とする。VarX座標に関する作業実績特徴量カラム810は、同種であるVarX座標[low]カラム811,VarX座標[mid]カラム812,VarX座標[high]カラム813の集合である。このため、説明変数は、VarX座標カラム306のみである。したがって、決定部606は、作業番号カラム301を入替変数および入替単位に決定する。
 図6に戻り、最適化処理部607は、入替単位にしたがって、作業指示テーブル112内の入替変数を入れ替え、入替後の作業指示テーブル112を用いて最適化処理を実行する。具体的には、たとえば、最適化処理部607は、入替後の作業指示テーブル112を用いて、作業指示特徴量テーブルを生成する。作業指示特徴量テーブルは、作業指示テーブル112の作業指示である説明変数を、割当特徴量に変換したテーブルである。
 具体的な変換方法は、図7~図9で説明した割当特徴量の生成例と同じである。より具体的には、図12に示したように入替が決定された場合、図8および図9で示した第1の割当特徴量の生成例と同じであり、図13のように入替が決定された場合、図7~図9に示した第2の割当特徴量の生成例と同じである。すなわち、図7~図9では、作業実績テーブル111から割当特徴量を含む作業実績特徴量テーブル611を生成したが、最適化処理部607では、生成元を作業実績テーブル111ではなく作業指示テーブル112とし、図7~図9と同じ方法で、作業指示テーブル112から割当特徴量を含む作業指示特徴量テーブルを生成する。
 そして、最適化処理部607は、作業実績特徴量カラム内の割当特徴量を最適化モデルMに与えることにより、予測変数をエントリごとに算出する。予測変数とは、目的変数の予測値である。最後に、最適化処理部607は、算出した各予測変数の統計値を算出し、評価値とする。統計値とは、予測変数の平均値、最大値、最小値、中央値、合計値といった統計的な代表値である。すなわち、評価値は、予測変数、すなわち、目的変数の予測値の特徴を示す値である。
 図14は、説明変数の入替例を示す説明図である。図14は、図12の決定例1で決定された入替変数および入替単位を用いた入替例を示す。たとえば、作業群番号が「1」である3個の連続するエントリの作業者ID「WK01」と、作業群番号が「2」である2個の連続するエントリの作業者ID「WK03」と、が入れ替えられる。入替変数において、入替元の値および入替先の値はランダムに決定される。なお、作業場所カラム305は入替変数ではないため、入替が実行されない。この入替により、作業群番号が「1」である3個の連続するエントリの作業者IDはいずれも「WK03」に入れ替えられ、作業群番号が「2」である2個の連続するエントリの作業者IDはいずれも「WK01」に入れ替えられる。
 図15は、作業指示特徴量の生成例および評価値の算出例を示す説明図である。(A)は、図14に示した入替後の作業指示テーブル112を示す。(B)は、説明変数の組み合わせと、作業者IDおよび作業場所とした場合の割当特徴量の生成、すなわち、作業指示特徴量テーブル1500の生成例を示す。上述したように、作業指示特徴量テーブル1500は、図8および図9に示したような処理により生成される。ここでは、作業者ID[WK01]×作業場所[A01]カラム801~作業者ID[WK03]×作業場所[A03]カラム809を含む作業者ID×作業場所に関する作業指示特徴量カラム1501を有する作業指示特徴量テーブル1500が生成される。
 (C)は、評価値の算出例を示す。評価値とは、予測変数の統計値である。ここでは、作業実績テーブル111で目的変数に指定されている作業時間カラム308を予測変数とする。最適化処理部607は、作業指示特徴量テーブル1500における作業者ID×作業場所に関する作業指示特徴量カラム1501の割当特徴量を、最適化モデルMに与えることにより、作業指示特徴量テーブル1500のエントリごとの予測変数である作業時間を算出する。そして、最適化処理部607は、算出した作業時間の統計値を算出して、評価値とする。
 図16は、最適化処理部607による最適化処理の詳細な処理手順例を示すフローチャートである。最適化処理部607は、まず、入替回数のインデックスiをi=0に設定する(ステップS1601)。つぎに、最適化処理部607は、インデックスiをインクリメントする(ステップS1602)。そして、最適化処理部607は、作業指示入替処理を実行する(ステップS1603)。
 作業指示入替処理(ステップS1603)は、たとえば、図14に示した処理である。なお、作業指示入替処理(ステップS1603)では、入替変数における入替元の値および入替先の値の組み合わせを保持しておき、次回以降、同一の組み合わせとならないよう作業指示入替処理(ステップS1603)を実行する。これにより、より多くの入替パターンを網羅することができる。
 つぎに、最適化処理部607は、特徴量復元処理を実行する(ステップS1604)。特徴量復元処理(ステップS1604)は、入替後の作業指示テーブル112において割当特徴量を復元する処理であり、具体的には、たとえば、図15の(B)に示した作業指示特徴量テーブル1500を生成する処理である。
 つぎに、最適化処理部607は、評価値計算処理を実行する(ステップS1605)。評価値計算処理(ステップS1605)は、作業指示特徴量テーブル1500の割当特徴量を最適化モデルMに与えることにより、予測変数を算出し、その統計値を評価値として算出する。具体的には、たとえば、図15の(C)に示した処理である。
 このあと、最適化処理部607は、評価値によりインデックスiにおける入替が適切であるか否かを判定する(ステップS1606)。具体的には、たとえば、最適化処理部607は、入替前の評価値と入替後の評価値とを比較して、入替後の評価値が入替前の評価値よりも小さいか否かを判定する。最適化処理部607は、図17で後述する評価結果テーブル1700から入替前の評価値を取得する。インデックスiがi=1の場合、入替前の評価値は存在しないため、評価結果テーブル1700の入替回数が0のエントリにおいて、評価値として十分大きい評価値が初期値として設定されている。
 また、本例では、予測変数が作業時間カラム308であり、作業時間は短いほど評価が高い評価値となる。このため、ステップS1606では、入替後の評価値が入替前の評価値よりも小さいか否かを判定し、小さければ、入替が適切とする。一方、たとえば、予測変数が大きいほど評価が高い評価値の場合、入替前の評価値が入替後の評価値よりも大きいか否かを判定し、大きければ、入替が適切とする。このように、ステップS1606の判定処理は、予測変数の性質に応じた判定内容にすればよい。
 入替が適切であると判定された場合(ステップS1606:Yes)、最適化処理部607は、インデックスiにおける作業指示入替処理(ステップS1603)での入替の採用を決定し(ステップS1607)、ステップS1610に移行する。
 一方、入替が適切でないと判定された場合(ステップS1606:No)、最適化処理部607は、インデックスiにおける作業指示入替処理(ステップS1603)での入替の不採用を決定し(ステップS1608)、作業指示テーブル112を入替前に戻して(ステップS1609)、ステップS1610に移行する。
 ステップS1610では、最適化処理部607は、インデックスiの入替回数での入替の採用可否(ステップS1607またはS1608)および評価計算処理(ステップS1605)である評価結果を、新規エントリとして評価結果テーブル1700に登録する(ステップS1610)。
 そして、最適化処理部607は、最適化処理の終了判定を実行する(ステップS1611)。終了でないと判定された場合(ステップS1611:No)、ステップS1602に戻り、最適化処理部607は、インデックスiをインクリメントする(ステップS1602)。一方、終了であると判定された場合(ステップS1611:Yes)、最適化処理部607は、現時点での入替状態の作業指示テーブル112を最適化作業指示テーブル113として保存し(ステップS1612)、最適化処理を終了する。
 ここで、終了判定(ステップS1611)について具体的に説明する。終了判定(ステップS1611)は、入替回数が十分な回数実行されたか否かを判定する処理である。たとえば、最適化処理部607は、初期、たとえば、インデックスi=1における評価値と最新の評価値とを比較して、減少率を算出する。減少率とは、最新の評価値÷初期の評価値により算出される。減少率がしきい値th1以下である場合、最適化処理部607は、最適化処理を終了すると判定する。
 また、インデックスiがしきい値th2になった場合、最適化処理部607は、最適化処理を終了すると判定してもよい。また、最新の評価値が目標値に到達した場合に、最適化処理部607は、最適化処理を終了すると判定してもよい。また、これ以上新規な入替パターンが存在しない場合に、最適化処理部607は、最適化処理を終了すると判定してもよい。また、最適化処理の開始から所定時間経過した場合に、最適化処理部607は、最適化処理を終了すると判定してもよい。
 図17は、評価結果テーブルの記憶内容例を示す説明図である。評価結果テーブル1700は、入替回数カラム1701と、入替判定結果カラム1702と、評価値カラム1703と、を有する。入替回数カラム1701は、エントリごとに、インデックスiを格納する記憶領域である。なお、初期値は「0」である。入替判定結果カラム1702は、インデックスiの入替回数での採用可否(ステップS1607またはS1608)を格納する記憶領域である。なお、初期値はない。評価値カラム1703は、インデックスiの入力回数での評価計算処理(ステップS1605)で得られる評価値を格納する記憶領域である。なお、初期値は十分に大きな値とする。
 本例では、入替回数が増加するにしたがって、評価値が小さくなるため、最適化処理を繰り返し実行することにより、適切な入替を検出することができる。すなわち、最適化処理部607は、評価値が最小となったときの入替状態を示す作業指示テーブル112を、最適化作業指示テーブル113として保存する。したがって、最適化前の作業指示よりも作業時間を短縮する最適化作業指示を作業者に提供することができる。
 このように、実施例1によれば、実現したい最適化の目的によって個別の最適化モデルMの生成およびパラメータチューニングの試行錯誤を行うことなく、最適化モデルMを自動生成することができる。これにより、手作業による最適化モデルMの生成コストを削減することができる。
 また、現場の課題意識の範囲に留まることなく、真に効果のある最適化観点を持つモデル生成および最適化対象の作業属性の設定を行うことで、効率的な作業改善を支援することが可能となる。また、作業環境の変化に応じ、最適化モデルMや最適化モデルM内のパラメータを自動で更新することにより、メンテナンスコストを削減することができる。すなわち、作業環境が変化した場合、作業指示テーブル112の内容を変更するだけで、最適化モデルMや最適化モデルM内のパラメータを自動で更新することができ、メンテナンスコストを削減することができる。
 実施例2は、最適化モデルMの生成に先立って、作業指示を最適化する上での最適化観点を作業者に提示する例である。この提示処理は、算出部603によって重要度を算出してから、選択部604によって最適化モデルMの生成に用いる作業実績特徴量を選択する前に実行される。最適化モデルMの生成前に、最適化観点を提示することにより、作業者は、作業指示特徴量カラムにおける説明変数の組み合わせ群のうち、どの組み合わせが妥当で、どの組み合わせが不当であるかを確認することができる。なお、実施例2では、提示処理を中心に説明し、それ以外については、実施例1と同じであるため、説明を省略する。
 <最適化システム102の機能的構成例>
 図18は、実施例2にかかる最適化システム102の機能的構成例を示すブロック図である。最適化システム102は、実施例1で説明した構成のほか、提示部1800を有する。提示部1800は、具体的には、たとえば、記憶デバイス202に記憶されたプログラムをプロセッサ201に実行させることにより実現される。
 提示部1800は、最適化観点を生成して、出力デバイス204(たとえば、ディスプレイ)に出力することで、作業者に提示する。具体的には、たとえば、提示部1800は、作業実績特徴量テーブル611内にある各特徴量群に関して、それらがどのような最適化の観点を持ち得るかを作業者に提示する。最適化観点の提示方法は、提示対象の特徴量群が複数の異なる割当特徴量の組み合わせであるか、複数の同種の割当特徴量であるかによって異なる。
 図19は、提示部1800による提示例1を示す説明図である。図19に示す提示例1は、提示対象の作業実績特徴量が複数の異なる割当特徴量の組み合わせである場合の最適化観点を提示する例である。具体的には、たとえば、提示部1800は、割当特徴量が「作業者ID」と「作業場所」との組み合わせである作業者ID×作業場所に関する作業実績特徴量カラム800(第1の割当特徴量)と、目的変数と、に基づいて、統計的な特徴量として第1の最適化観点提示情報1900を生成する。
 この場合、提示部1800は、割当特徴量を構成する2つの説明変数を縦軸および横軸とした表を用意する。提示部1800は、作業実績特徴量テーブル611の各作業実績を示すエントリにおける目的変数の値と各特徴量の値との相関係数を求めて、該当する表のセルに格納する。これにより、第1の最適化観点提示情報1900が生成される。マトリクスを構成する各セルにおいて、左側の数値が、求めた相関係数であり、右側のカッコ内数値が、相関係数の計算に用いられたエントリ数である。
 たとえば、左上のセルは、提示部1800が、作業者ID[WK01」×作業場所[A01]に関する作業実績特徴量カラム800においける42個の説明変数と、作業時間カラム308の42個の目的変数と、を用いて、重回帰分析により相関係数「0.4」を得たことを示す。この相関係数は、作業実績特徴量テーブル611の各作業実績がその特徴量に合致している場合に、目的変数の値が大きくなること、すなわち、『作業者ID:WK01の作業者が作業場所[A01]にて作業を行うと、作業時間[s]が大きくなる傾向がある』ことを示している。同様の考えで、『作業者ID:WK01の作業者が作業場所[C03]にて作業を行うと、作業時間[s]が小さくなる傾向がある』ことも示している(相関係数が-0.3)。
 また、各作業実績が、ある特徴量に合致している場合に目的変数の値が大きくなるか小さくなるかを判定できる方法であれば、相関係数に限られない。たとえば、各特徴量に合致している場合の目的変数の平均値であってもよい。
 また、提示部1800は、第1の最適化観点提示情報1900の縦方向または横方向の1つの並びのうち、相関係数の最大値と最小値を抽出する。そして、提示部1800は、割当特徴量を構成する2つの説明変数間の相互の割当による目的変数の変化の傾向を示す傾向情報を生成する。
 具体的には、たとえば、提示部1800は、作業者[WK01]の縦の列を参照することにより、『作業者[WK01]については、作業場所[C03]が○(OKの意味、以下同様)、作業場所[A01]が×(NGの意味、以下同様)』という第1の傾向情報1901を生成する。また、提示部1800は、作業者[WK03]の縦の列を参照することにより、『作業者[WK03]については、作業場所[C03]が○、作業場所[A01]が×』という第2の傾向情報1902を生成する。
 このように、傾向情報1901,1902を作業者に提示することにより、作業者は提示された傾向情報を見て、現時点での説明変数間の関係を把握することができる。具体的には、たとえば、上記の2つの傾向情報1901,1902の場合、『作業者[WK01]と作業者[WK03]は、それぞれ作業場所に得意不得意がある。作業者[WK01]は、作業場所[A01]を得意としており、作業場所[C03]を不得意としている。作業者[WK03]はその逆である。』というように解釈することができる。
 さらに、提示部1800は、第1の最適化観点提示情報1900内の複数の列において、相対的に相関係数の大きなセルと小さなセルが相互に対になっている組み合わせを抽出することで、最適化の実施案を提示することができる。具体的には、たとえば、上記2つの傾向情報1901,1902の場合、第1の傾向情報1901の作業場所に関する傾向と、第2の傾向情報1902の作業場所に関する傾向は、真逆である。
 したがって、提示部1800は、『作業者[WK01]について、作業者[WK01]に割り当てられている作業場所[A01]を[C03]に割り当て直し、逆に、作業者[WK03]に割り当てられている作業場所[C03]を[A01]に割り当て直せばよい。』というような実施案を生成して、提示することができる。
 図20は、提示部1800による提示例2を示す説明図である。図20に示す提示例2は、提示対象の作業実績特徴量が複数の同種の割当特徴量である場合の最適化観点を提示する例である。具体的には、たとえば、提示部1800は、割当特徴量が「VarX座標」である「VarX座標[low]」、「VarX座標[mid]」、および「VarX座標[high]」に関する各作業実績特徴量(第2の割当特徴量)と、目的変数と、に基づいて、統計的な特徴量として第2の最適化観点提示情報2000を生成する。
 この場合、提示部1800は、複数の同種の割当特徴量である説明変数を横軸とした表を用意する。提示部1800は、作業実績特徴量テーブル611における目的変数の値と各割当特徴量の値との相関係数を求めて、該当する表のセルに格納する。これにより、第2の最適化観点提示情報2000が生成される。各セルにおいて、左側の数値が、求めた相関係数であり、右側のカッコ内数値が、相関係数の計算に用いられたエントリ数である。
 たとえば、第2の最適化観点提示情報2000は、『X座標の分散(ばらつき)が[low](小さい)と、目的変数が小さくなる傾向がある』ことを示す。また、提示部1800は、第2の最適化観点提示情報2000から相関係数の最大値と最小値とを抽出する。そして、提示部1800は、複数の同種の割当特徴量を構成する3つの説明変数間の相互の割当による目的変数の変化の傾向を示す傾向情報2001を生成する。
 たとえば、提示部1800は、『X座標のばらつきが大きいと×、小さいと○』といった作業順序方向の順序関係による目的変数の変化を示す傾向情報2001を作業者に提示することができる。作業者は提示された傾向情報2001を見て、『X座標のばらつき、すなわち前後の作業と比較して作業場所が互いに近くに配置されていると作業時間が短くなる』という作業予測を把握することができる。また、『X座標の前後のばらつきが小さくなるように作業順序を入れ替えればよい』という作業予測を把握することができる。
 また、選択部604は、提示部1800により作業者に最適化観点を提示したのち、作業者からの選択入力により選択された最適化観点を受け付けることとしてもよい。最適化観点の選択は、入力デバイスにより行われる。
 実施例2によれば、最適化システムは、最適化処理の前に、作業者に最適化観点を分かりやすく提示することができる。これにより、作業者の意図を反映させて最適化することができる。
 このように、本実施例によれば、実現したい最適化の目的によって個別のモデル生成およびパラメータチューニングの試行錯誤を行うことなく、最適化モデルMを自動生成することができる。これにより、手作業による最適化モデルMの生成コストを削減することができる。
 また、第1の割当特徴量が複数種類の前記組み合わせについて生成された場合、複数種類の前記組み合わせの各々について重要度を算出することにより、目的変数に対する統計的な寄与度を得ることができる。したがって、重要度を比較することにより、最適化の対象となる組み合わせを容易に特定することができる。
 また、作業者に最適化の観点を分かりやすく提示することにより、作業者が、最適化システム102が考案した最適化観点に納得感を持って管理システム101を利用することができる。
 また、説明変数内の値を入れ替えて作業指示テーブル112を最適化することにより、現場の課題意識の範囲に留まることなく、真に効果のある最適化観点を持つ最適化モデルMで最適化対象の作業属性の設定を行うことができる。したがって、最適化後の作業指示を用いることにより、効率的な作業改善を支援することが可能となる。
 また、作業環境の変化に応じ、最適化作業指示テーブル113を用いて、再度最適化処理を実行してもよい。これにより、最適化モデルMや最適化モデルM内のパラメータを自動更新することができ、メンテナンスコストを削減することができる。
 また、上述した実施例では、第1の割当特徴量と第2の割当特徴量とを用いて最適化モデルMを生成する例について説明したが、第1の割当特徴量と第2の割当特徴量とのうち少なくともいずれか一方を用いて最適化モデルMを生成してもよい。
 なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加、削除、または置換をしてもよい。
 また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。
 各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。

Claims (15)

  1.  プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスと、を有し、
     前記記憶デバイスは、物流倉庫作業における作業実績を記憶する作業実績記憶情報を有し、前記作業実績記憶情報は、前記作業実績として、前記物流倉庫作業の作業結果を示す目的変数と、前記物流倉庫作業の作業属性を示す説明変数と、前記物流倉庫作業の作業順序を示す順序変数とを、物流倉庫作業ごとに記憶しており、
     前記プロセッサは、
     ある物流倉庫作業の作業実績について、異なる前記説明変数における各値の組み合わせの存否を示す第1の割当特徴量を生成する第1の割当特徴量生成処理と、
     前記第1の割当特徴量生成処理によって生成された第1の割当特徴量と、前記目的変数と、に基づいて、前記目的変数を最適化する最適化モデルを生成する最適化モデル生成処理と、
     を実行することを特徴とする最適化システム。
  2.  請求項1に記載の最適化システムであって、
     前記プロセッサは、
     前記第1の割当特徴量が複数種類の前記組み合わせについて生成された場合、前記複数種類の前記組み合わせの各々について、前記第1の割当特徴量と、前記目的変数と、に基づいて、前記目的変数を説明するための前記組み合わせに関する重要度を算出する算出処理と、
     前記算出処理によって算出された各重要度に基づいて、前記第1の割当特徴量を選択する選択処理と、を実行し、
     前記最適化モデル生成処理では、前記プロセッサは、前記選択処理によって選択された前記第1の割当特徴量と、前記目的変数と、に基づいて、前記目的変数を最適化する最適化モデルを生成することを特徴とする最適化システム。
  3.  請求項1に記載の最適化システムであって、
     前記プロセッサは、
     前記異なる説明変数における値の組み合わせの各々について、当該値の組み合わせの存否を示す第1の割当特徴量と、前記目的変数と、に基づく統計的な特徴量を算出して、出力デバイスに出力する提示処理を実行することを特徴とする最適化システム。
  4.  請求項1に記載の最適化システムであって、
     前記プロセッサは、
     前記ある物流倉庫作業の作業実績について、前記ある物流倉庫作業を含む連続する区間内の一連の物流倉庫作業での説明変数群を前記作業実績記憶情報から取得し、前記連続する区間内での前記説明変数群の順序のばらつきを規定する第1の順序特徴量を生成する順序特徴量生成処理と、
     前記順序特徴量生成処理によって生成された第1の順序特徴量を複数の範囲のいずれかに分類するための第2の割当特徴量を生成する第2の割当特徴量生成処理と、
     前記最適化モデル生成処理では、前記プロセッサは、前記第1の割当特徴量または前記第2の割当特徴量生成処理によって生成された第2の割当特徴量と、前記目的変数と、に基づいて、前記目的変数を最適化する最適化モデルを生成することを特徴とする最適化システム。
  5.  請求項4に記載の最適化システムであって、
     前記プロセッサは、
     前記第1の割当特徴量と、前記目的変数と、に基づいて、前記組み合わせに関する第1の重要度を算出する第1の算出処理と、
     前記第2の割当特徴量と、前記目的変数と、に基づいて、前記目的変数を説明するための、前記第2の割当特徴量の生成元である前記第1の順序特徴量に関する第2の重要度を算出する第2の算出処理と、
     前記第1の算出処理によって算出された第1の重要度と、前記第2の算出処理によって算出された第2の重要度と、に基づいて、前記第1の割当特徴量または前記第2の割当特徴量のうちいずれか一方の割当特徴量を選択する選択処理と、を実行し、
     前記最適化モデル生成処理では、前記プロセッサは、前記選択処理によって選択された割当特徴量と、前記目的変数と、に基づいて、前記目的変数を最適化する最適化モデルを生成することを特徴とする最適化システム。
  6.  請求項1に記載の最適化システムであって、
     前記記憶デバイスは、前記物流倉庫作業における作業指示を記憶する作業指示記憶情報を有し、前記作業指示記憶情報は、前記作業指示として、前記物流倉庫作業の作業属性を示す説明変数と、前記物流倉庫作業の作業順序を示す順序変数とを、物流倉庫作業ごとに記憶しており、
     前記プロセッサは、
     前記作業指示記憶情報内の説明変数群のうち、前記第1の割当特徴量の生成元である前記異なる説明変数の組み合わせのいずれかの説明変数内の値を入れ替えることにより、前記作業指示記憶情報を最適化する最適化処理を実行し、
     前記最適化処理では、前記プロセッサは、入替後の前記作業指示記憶情報の作業指示について、前記異なる説明変数の組み合わせの存否を示す第3の割当特徴量を生成し、前記第3の割当特徴量と、前記作業指示記憶情報内の前記目的変数と、前記最適化モデルと、に基づいて、入替後の前記作業指示記憶情報内の前記目的変数の特徴を示す評価値を算出し、前記評価値に基づいて、前記作業指示記憶情報を最適化することを特徴とする最適化システム。
  7.  プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスと、を有し、
     前記記憶デバイスは、物流倉庫作業における作業実績を記憶する作業実績記憶情報を有し、前記作業実績記憶情報は、前記作業実績として、前記物流倉庫作業の作業結果を示す目的変数と、前記物流倉庫作業の作業属性を示す説明変数と、前記物流倉庫作業の作業順序を示す順序変数とを、物流倉庫作業ごとに記憶しており、
     前記プロセッサは、
     ある物流倉庫作業の作業実績について、前記ある物流倉庫作業を含む連続する区間内の一連の物流倉庫作業での説明変数群を前記作業実績記憶情報から取得し、前記連続する区間内での前記説明変数群の順序のばらつきを規定する第1の順序特徴量を生成する順序特徴量生成処理と、
     前記順序特徴量生成処理によって生成された第1の順序特徴量を複数の範囲のいずれかに分類するための第2の割当特徴量を生成する第2の割当特徴量生成処理と、
     前記第2の割当特徴量生成処理によって生成された第2の割当特徴量と、前記目的変数と、に基づいて、前記目的変数を最適化する最適化モデルを生成する最適化モデル生成処理と、
     を実行することを特徴とする最適化システム。
  8.  請求項7に記載の最適化システムであって、
     前記第2の割当特徴量が複数種類の前記第1の順序特徴量について生成された場合、前記複数種類の前記第1の順序特徴量の各々について、前記第2の割当特徴量と、前記目的変数と、に基づいて、前記第2の割当特徴量の生成元である前記第1の順序特徴量の重要度を算出する算出処理と、
     前記算出処理によって算出された各重要度に基づいて、前記第2の割当特徴量を選択する選択処理と、を実行し、
     前記最適化モデル生成処理では、前記プロセッサは、前記選択処理によって選択された前記第2の割当特徴量と、前記目的変数と、に基づいて、前記目的変数を最適化する最適化モデルを生成することを特徴とする最適化システム。
  9.  請求項7に記載の最適化システムであって、
     前記プロセッサは、
     前記第1の順序特徴量に対応する前記複数の範囲おける前記第2の割当特徴量の各々について、当該第2の割当特徴量と、前記目的変数と、に基づく統計的な特徴量を算出して、出力デバイスに出力する提示処理を実行することを特徴とする最適化システム。
  10.  請求項7に記載の最適化システムであって、
     前記記憶デバイスは、前記物流倉庫作業における作業指示を記憶する作業指示記憶情報を有し、前記作業指示記憶情報は、前記作業指示として、前記物流倉庫作業の作業属性を示す説明変数と、前記物流倉庫作業の作業順序を示す順序変数とを、物流倉庫作業ごとに記憶しており、
     前記プロセッサは、
     前記作業指示記憶情報内の前記第1の順序特徴量の生成元の説明変数内の値を入れ替えることにより、前記作業指示記憶情報を最適化する最適化処理を実行し、
     前記最適化処理では、前記プロセッサは、入替後の前記作業指示記憶情報の作業指示について、第2の順序特徴量を生成し、前記第2の順序特徴量を前記複数の範囲のいずれかに分類するための第4の割当特徴量を生成し、前記第4の割当特徴量と前記作業指示記憶情報内の前記目的変数と前記最適化モデルとに基づいて、入替後の前記作業指示記憶情報に関する評価値を算出し、前記評価値に基づいて、前記作業指示記憶情報を最適化することを特徴とする最適化システム。
  11.  請求項1または7に記載の最適化システムであって、
     前記物流倉庫作業は、物流倉庫における集品作業、入荷作業、流通加工作業、または、包装作業であることを特徴とする最適化システム。
  12.  プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスと、を有する最適化システムが実行する最適化方法であって、
     前記記憶デバイスは、物流倉庫作業における作業実績を記憶する作業実績記憶情報を有し、前記作業実績記憶情報は、前記作業実績として、前記物流倉庫作業の作業結果を示す目的変数と、前記物流倉庫作業の作業属性を示す説明変数と、前記物流倉庫作業の作業順序を示す順序変数とを、物流倉庫作業ごとに記憶しており、
     前記最適化方法は、
     前記プロセッサは、
     ある物流倉庫作業の作業実績について、異なる前記説明変数における各値の組み合わせの存否を示す第1の割当特徴量を生成する第1の割当特徴量生成処理と、
     前記第1の割当特徴量生成処理によって生成された割当特徴量と、前記目的変数と、に基づいて、前記目的変数を最適化する最適化モデルを生成する最適化モデル生成処理と、
     を実行することを特徴とする最適化方法。
  13.  請求項12に記載の最適化方法であって、
     前記プロセッサは、
     前記第1の割当特徴量が複数種類の前記組み合わせについて生成された場合、前記複数種類の前記組み合わせの各々について、前記第1の割当特徴量と、前記目的変数と、に基づいて、前記組み合わせに関する重要度を算出する算出処理と、
     前記算出処理によって算出された各重要度に基づいて、前記第1の割当特徴量を選択する選択処理と、を実行し、
     前記最適化モデル生成処理では、前記プロセッサは、前記選択処理によって選択された前記第1の割当特徴量と、前記目的変数と、に基づいて、前記目的変数を最適化する最適化モデルを生成することを特徴とする最適化方法。
  14.  請求項12に記載の最適化方法であって、
     前記プロセッサは、
     前記異なる説明変数における値の組み合わせの各々について、当該値の組み合わせの存否を示す第1の割当特徴量と、前記目的変数と、に基づく統計的な特徴量を算出して、出力デバイスに出力する提示処理を実行することを特徴とする最適化方法。
  15.  請求項12に記載の最適化方法であって、
     前記記憶デバイスは、前記物流倉庫作業における作業指示を記憶する作業指示記憶情報を有し、前記作業指示記憶情報は、前記作業指示として、前記物流倉庫作業の作業属性を示す説明変数と、前記物流倉庫作業の作業順序を示す順序変数とを、物流倉庫作業ごとに記憶しており、
     前記最適化方法は、
     前記プロセッサは、
     前記作業指示記憶情報内の説明変数群のうち、前記第1の割当特徴量の生成元である前記異なる説明変数の組み合わせのいずれかの説明変数内の値を入れ替えることにより、前記作業指示記憶情報を最適化する最適化処理を実行し、
     前記最適化処理では、前記プロセッサは、入替後の前記作業指示記憶情報の作業指示について、前記異なる説明変数の組み合わせの存否を示す第3の割当特徴量を生成し、前記第3の割当特徴量と、前記作業指示記憶情報内の前記目的変数と、前記最適化モデルと、に基づいて、入替後の前記作業指示記憶情報に関する評価値を算出し、前記評価値に基づいて、前記作業指示記憶情報を最適化することを特徴とする最適化方法。
PCT/JP2016/061103 2016-04-05 2016-04-05 最適化システムおよび最適化方法 WO2017175302A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018510148A JP6530559B2 (ja) 2016-04-05 2016-04-05 最適化システムおよび最適化方法
PCT/JP2016/061103 WO2017175302A1 (ja) 2016-04-05 2016-04-05 最適化システムおよび最適化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061103 WO2017175302A1 (ja) 2016-04-05 2016-04-05 最適化システムおよび最適化方法

Publications (1)

Publication Number Publication Date
WO2017175302A1 true WO2017175302A1 (ja) 2017-10-12

Family

ID=60001076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061103 WO2017175302A1 (ja) 2016-04-05 2016-04-05 最適化システムおよび最適化方法

Country Status (2)

Country Link
JP (1) JP6530559B2 (ja)
WO (1) WO2017175302A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022016A (ja) * 2019-07-24 2021-02-18 株式会社日立製作所 出荷作業支援システム、その方法、及びコンピュータプログラム
JP2021056918A (ja) * 2019-10-01 2021-04-08 株式会社日立製作所 データ分析装置およびデータ分析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002269192A (ja) * 2001-03-07 2002-09-20 Mitsubishi Heavy Ind Ltd 物流最適化システム
JP2004110470A (ja) * 2002-09-19 2004-04-08 Fujitsu Ltd 最適設計計算装置及びそのプログラム記憶媒体
JP2015022584A (ja) * 2013-07-19 2015-02-02 富士通株式会社 応答曲面計算プログラム、応答曲面計算装置及び応答曲面計算方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002269192A (ja) * 2001-03-07 2002-09-20 Mitsubishi Heavy Ind Ltd 物流最適化システム
JP2004110470A (ja) * 2002-09-19 2004-04-08 Fujitsu Ltd 最適設計計算装置及びそのプログラム記憶媒体
JP2015022584A (ja) * 2013-07-19 2015-02-02 富士通株式会社 応答曲面計算プログラム、応答曲面計算装置及び応答曲面計算方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022016A (ja) * 2019-07-24 2021-02-18 株式会社日立製作所 出荷作業支援システム、その方法、及びコンピュータプログラム
JP7386010B2 (ja) 2019-07-24 2023-11-24 株式会社日立製作所 出荷作業支援システム、その方法、及びコンピュータプログラム
JP2021056918A (ja) * 2019-10-01 2021-04-08 株式会社日立製作所 データ分析装置およびデータ分析方法
JP7262359B2 (ja) 2019-10-01 2023-04-21 株式会社日立製作所 データ分析装置およびデータ分析方法

Also Published As

Publication number Publication date
JP6530559B2 (ja) 2019-06-12
JPWO2017175302A1 (ja) 2018-12-06

Similar Documents

Publication Publication Date Title
JP6926008B2 (ja) 保守計画装置、及び保守計画方法
Grosse et al. The effect of worker learning and forgetting on storage reassignment decisions in order picking systems
JP2863347B2 (ja) 視覚化によるフロ−プロセスの将来計画及び動的管理方法
JP7033490B2 (ja) 在庫管理装置、在庫管理方法及びプログラム
US20200104169A1 (en) Systems and methods of a production environment tool
KR102042318B1 (ko) 스마트 팩토리 레이아웃 설계 방법 및 시스템
US20180107961A1 (en) Task Support System and Task Support Method
US10318908B2 (en) Prioritizing client accounts
US10679228B2 (en) Systems, devices, and methods for predicting product performance in a retail display area
JP7208029B2 (ja) 配置最適化システム及び配置最適化方法
JP2018142199A (ja) 学習システムおよび学習方法
Stricker et al. Supporting multi-level and robust production planning and execution
US20190147463A1 (en) Systems and methods for planogram generation for a facility
US10222788B2 (en) Plan generating device and plan generating method
US8687213B2 (en) Data filtering for print service providers
WO2017175302A1 (ja) 最適化システムおよび最適化方法
JP6094594B2 (ja) 情報システム構築支援装置、情報システム構築支援方法および情報システム構築支援プログラム
JP2006085645A (ja) データ予測装置及びデータ予測方法並びにプログラム
WO2012150628A1 (ja) 大規模itシステム管理における管理コスト削減方法
Fletcher et al. An investigation of production workers’ performance variations and the potential impact of attitudes
JP7177759B2 (ja) 作業人員割当システムおよび作業人員割当装置
Eriksen et al. Strategic implications of business process re-engineering
US20220171908A1 (en) Support system and support method supporting system construction
Lin An integrated digital twin simulation and scheduling system under cyber-physical digital twin environment
JP6449578B2 (ja) 購買予測分析システム及びそのプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018510148

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897861

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897861

Country of ref document: EP

Kind code of ref document: A1