WO2017170675A1 - Resin composition production method - Google Patents

Resin composition production method Download PDF

Info

Publication number
WO2017170675A1
WO2017170675A1 PCT/JP2017/012871 JP2017012871W WO2017170675A1 WO 2017170675 A1 WO2017170675 A1 WO 2017170675A1 JP 2017012871 W JP2017012871 W JP 2017012871W WO 2017170675 A1 WO2017170675 A1 WO 2017170675A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
powder
kneading
resin
feeder
Prior art date
Application number
PCT/JP2017/012871
Other languages
French (fr)
Japanese (ja)
Inventor
眞田 隆
嶌野 光吉
幸司 亀尾
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2018508143A priority Critical patent/JP6871914B2/en
Publication of WO2017170675A1 publication Critical patent/WO2017170675A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres

Definitions

  • the present invention relates to a method for producing a resin composition in which a thermoplastic resin and powder are melt-kneaded using a biaxial kneader.
  • a resin composition filled with a powder reinforcing material such as an inorganic filler gives a molded article having an excellent balance of required physical properties such as impact resistance, and is widely used as an industrial member typified by automobile parts.
  • a polymerized resin such as polyphenylene ether or polyphenylene sulfide, which is powdery and bulky is compounded with a kneader and used in various applications because of its excellent characteristics.
  • the powder raw material is a pellet raw material. Since the apparent density is lower than that, the biting into the extruder is inferior. For this reason, the amount of extrusion achieved is small and productivity is often low.
  • productivity improvement techniques of the method of melt-kneading powder raw materials.
  • Patent Document 1 discloses a screw having a configuration in which a single screw having a wide flight width and a kneading disk having a specific twist angle are combined for the purpose of improving the productivity of a resin composition containing a filler component at a high concentration.
  • a method for producing a resin composition using a twin screw extruder housed in a barrel is described.
  • Patent Document 2 discloses a resin using a twin-screw extruder provided with a screw having a combination of a single screw and a specific kneading disk for the purpose of improving productivity in the production of a resin composition using a powder raw material. A method for producing the composition is described.
  • the material is included in the barrel downstream of the barrel to which the material supply port is connected for the purpose of increasing the extrusion amount at the time of extrusion molding of the fine powder raw material or the synthetic resin material containing a large amount of fine powder.
  • An extrusion method in which a synthetic resin is melt-kneaded using a twin-screw extruder provided with an opening for discharging the air without providing a pressurizing region that gives strong compression between the material supply port and the opening. are listed.
  • Patent Document 4 discloses a method for producing a resin composition containing a polypropylene resin and an inorganic filler by supplying a polypropylene resin and an inorganic filler from the upstream side of a twin-screw kneading extruder, and melt-kneading the product.
  • a method is described in which the resin pressure in the plasticized region is 1 MPa or less.
  • Patent Document 5 in the method for producing a resin composition containing a powdered polyphenylene ether and other thermoplastic resin, in order to improve the conveying ability of the powdered polyphenylene ether, the molten thermoplastic resin is transported in a region.
  • a method of supplying powdery polyphenylene ether from the side of a twin screw extruder using a forced side feeder is described.
  • an opening hole for venting gas is provided on the upstream side of the upper lid of the extruder barrel at the site where the forced side feeder is connected. Is preferably performed.
  • the object of the present invention is to stably produce a resin composition that gives a molded article having excellent impact resistance in a method for producing a resin composition in which a thermoplastic resin and powder are melt-kneaded. It is to provide a manufacturing method.
  • the present inventors have intensively studied and completed the present invention.
  • the present invention is a method for producing a resin composition in which a thermoplastic resin having a transition temperature of less than 200 ° C. and powder are melt-kneaded using a biaxial kneading extruder,
  • the powder is a kind selected from the group consisting of an inorganic filler having an apparent density of 0.1 to 1.5 g / ml and a thermoplastic resin powder having an apparent density of 0.1 to 1.0 g / ml and a transition temperature of 200 ° C. or higher.
  • the biaxial kneading extruder includes, in order from the upstream, a supply port, a first kneading zone, a screw-type side feeder to which a weight type feeder is connected, a second kneading zone, and a vent port,
  • the thermoplastic resin having a transition temperature of less than 200 ° C.
  • the present invention relates to a method for producing a resin composition for removing gas from the vent port.
  • the transition temperature of the thermoplastic resin is the melting peak temperature of the resin in the case of a crystalline thermoplastic resin, and the glass transition temperature of the resin in the case of an amorphous thermoplastic resin. It is determined by differential scanning calorimetry. More specifically, the melting peak temperature means a temperature corresponding to a melting peak of a crystal measured by differential scanning calorimetry according to JIS K7122 and observed in a range of ⁇ 50 ° C. or higher and 200 ° C. or lower. The glass transition temperature means a glass transition temperature measured by differential scanning calorimetry according to JIS K7121. Specific examples of thermoplastic resins having a transition temperature of less than 200 ° C.
  • polystyrene resins high density polyethylene, low density polyethylene, polypropylene, etc.
  • cyclic olefin resins aliphatic polyester resins
  • aliphatic polyester resins polylactic acid, etc.
  • fat Group polycarbonate polyoxymethylene (polyacetal, etc.)
  • styrene resin polystyrene, SEBS, acrylonitrile-butadiene-styrene copolymer
  • the shape may be pellets or powder.
  • an olefin-based, styrene-based, acrylic-based, urethane-based, or engineering plastic-based elastomer may be added to improve impact strength and impart flexibility.
  • the olefin elastomer include an ethylene-butene copolymer and an ethylene-octene copolymer.
  • the transition temperature of the thermoplastic resin is preferably 190 ° C. or lower, preferably 0 ° C. or higher, and preferably 30 ° C. or higher.
  • the state of the thermoplastic resin when it is supplied to the biaxial kneading extruder is not particularly limited, and for example, a pellet shape, a granule shape, a powder (powder) shape, or the like can be adopted.
  • the powder to be melt-kneaded with the thermoplastic resin having a transition temperature of less than 200 ° C. may be an inorganic filler having an apparent density of 0.1 to 1.5 g / ml.
  • Natural silicates or natural silicates such as talc, kaolinite, clay, pyrophyllite, sericite, bentonite, silica, carbonates such as calcium carbonate, magnesium carbonate, hydrotalcite, aluminum hydroxide, magnesium hydroxide, etc.
  • Hydroxide zinc oxide, iron oxide, magnesium oxide, aluminum oxide, titanium oxide, mullite and other oxides, hydrous silicic acid, synthetic silicic acid such as anhydrous silicic acid or particulate filler such as mica, flakes such as mica Filler, basic magnesium sulfate whisker, calcium titanate whisker, chita
  • Examples include potassium filler whiskers, aluminum borate whiskers, wollastonite, sepiolite, zeolite, attapulgite, zonotlite, rock wool, glass wool and other amorphous fillers such as carbon black, mesoporous carbon and activated carbon. .
  • the apparent density of the inorganic filler is preferably from 0.1 to 1.0 g / ml, more preferably from 0.1 to 0.8 g / ml.
  • the inorganic filler having an apparent density of 0.1 to 1.5 g / ml is more prominent in improving productivity by the production method of the present invention. It is preferable in that it can be seen.
  • the apparent density of a powder is an apparent density measured by the method of JIS K7365: 1999.
  • the true density is a density calculated from the volume of the container excluding the gap portion when the container is filled with the powder.
  • the true density of the powder is JIS Z8807: 2012. It refers to the density measured by the method.
  • the powder that is melt-kneaded together with the thermoplastic resin having a transition temperature of less than 200 ° C. may be a thermoplastic resin powder having an apparent density of 0.1 to 1.0 g / ml and a transition temperature of 200 ° C. or more.
  • the thermoplastic resin powder include polyphenylene ether, polyphenylene sulfide, polyether ketone, polyamide resin (nylon 6, nylon 66, etc.), aromatic polyester resin (polyethylene terephthalate, polybutylene terephthalate, polybutylene). Naphthalate, etc.), aromatic polycarbonate, liquid crystalline polymer, and the like.
  • the effects of the present invention are high, such as polyphenylene ether, polyphenylene sulfide, liquid crystalline polymer, etc., which have a high melting point and glass transition temperature, do not enter a melt flow state until a relatively high temperature, and maintain powder fluidity. It is done.
  • the transition temperature of the thermoplastic resin constituting the thermoplastic resin powder is 200 ° C. or higher, preferably 210 ° C. or higher, preferably 450 ° C. or lower, more preferably 400 ° C. or lower.
  • the preferred range of the amount of the powder is 5 to 80% by weight, more preferably 10 to 70% by weight. %, More preferably 15 to 60% by weight.
  • the biaxial kneading extruder of the present invention includes a supply port, a first kneading zone, a screw-type side feeder to which a weight type feeder is connected, a second kneading zone, and a vent port in order from the upstream.
  • the supply port is located in the most upstream part of the twin-screw kneading extruder. It is preferable that a weight type feeder is connected to the supply port.
  • thermoplastic resin having a transition temperature of less than 200 ° C. is supplied from the supply port to the biaxial kneading extruder, and is kneaded in the first kneading zone under a condition that the resin pressure is less than 1 MPa.
  • a weight type feeder is connected to the supply port, a thermoplastic resin having a transition temperature of less than 200 ° C. is supplied from the weight type feeder to the twin-screw kneading extruder through the supply port.
  • the resin pressure in the first kneading zone (plasticization region) is preferably 0.8 MPa or less, more preferably 0.5 MPa or less.
  • the resin pressure in the first kneading zone is usually 0.02 MPa or more, preferably 0.1 MPa or more.
  • the screw of the twin-screw kneading extruder according to the present invention is preferably a screw having two kneading segments from the viewpoint of increasing productivity.
  • An example of the segment having an effect of blocking the resin is a seal ring. It is preferable to arrange only a so-called forward kneading disk (hereinafter referred to as “forward disk”) having a twist angle of less than 90 ° with respect to the feed direction in the first kneading zone of the screw.
  • a so-called orthogonal disk having a twist angle of 90 ° can be further disposed in the first kneading zone of the screw as necessary.
  • the position where the orthogonal disk is arranged is preferably on the downstream side of the above-mentioned forward disk.
  • the pressure in each kneading zone of the twin-screw kneading extruder can be measured by installing a pressure sensor in each kneading zone of the cylinder and using the pressure sensor in each kneading zone.
  • a predetermined amount of powder is supplied from the weight-type feeder to the screw-type side feeder, and further supplied from the screw-type side feeder to the twin-screw kneading extruder.
  • the conveying ability of the screw-type side feeder at this time is twice or more the effective volume per unit time of the powder supplied from the weight-type feeder to the screw-type side feeder.
  • the conveying capacity of the screw-type side feeder is the volume per unit time of the powder supplied from the screw-type side feeder to the twin-screw kneading extruder, and this is the front while the screw of the screw-type side feeder rotates once.
  • the effective volume of the powder must be evaluated based on the volume actually supplied to the side feeder. The powder is weighed by a weight-type feeder connected to the upper part of the screw-type side feeder and supplied to the screw-type side feeder by natural fall.
  • the effective volume per unit time of the powder supplied from the gravimetric feeder to the screw side feeder is the apparent density of the powder per unit time of the powder supplied from the gravimetric feeder to the screw side feeder.
  • the apparent density of the powder used to calculate the effective volume is the same height as when the powder is actually supplied from the weight type feeder to the screw type side feeder. It is a value obtained by dropping and dividing the weight of the powder in the measuring container by the volume of the powder measured in the measuring container.
  • the conveying capacity of the screw-type side feeder depends on the specifications of the apparatus, but is preferably at least twice the effective volume per unit time of the powder supplied from the weight-type feeder to the screw-type side feeder, more preferably 2. It is 4 times or more, preferably less than 8 times, more preferably less than 10 times.
  • the powder when the powder is supplied to the twin-screw kneading extruder using a screw-type side feeder, resin pellets or the like different from the powder may be supplied together with the powder.
  • the conveying capacity of the screw-type side feeder is sufficiently higher than the total amount of the effective volume of the powder supplied from the weight-type feeder to the screw-type side feeder and the volume of the resin pellets, the screw-type side feeder can be conveyed. It is not necessary to consider the volume of the resin pellet when setting the capacity.
  • the powder and the resin pellets of 25 parts by weight or more with respect to 100 parts by weight of the powder are passed through the screw type side feeder from the weight type feeder. It is preferably supplied to a shaft kneading extruder.
  • the resin pellets supplied from the weight type feeder to the biaxial kneading extruder through the screw type side feeder are preferably 200 parts by weight or less with respect to 100 parts by weight of the powder.
  • thermoplastic resin pellets having an (apparent density) / (true density) of 0.9 or more, and a transition temperature. There is no limit.
  • a second kneading zone is provided on the downstream side of the position where the powder is fed by the side feeder, but the powder is fed to the twin-screw kneading extruder.
  • a conveyance zone may be provided between the position and the second kneading zone.
  • the resin pressure in the second kneading zone is set to less than 5 MPa, and the rate at which the gas mixed in the biaxial kneading extruder and the volatile components contained in the raw material escape to the downstream side of the biaxial kneading extruder with the powder supply is increased.
  • the amount of the gas or volatile component flowing back upstream is reduced. It is possible to set a resin pressure of less than 5 MPa by appropriately arranging, on the downstream side in the second kneading zone, a segment that pushes the resin back in the upstream direction by the rotation of the screw, or a segment that has an effect of blocking the resin. it can. From the viewpoint of sufficiently dispersing the powder supplied from the screw-type side feeder, the resin pressure in the second kneading zone is preferably 0.02 MPa or more, more preferably 0.1 MPa or more.
  • the gap distance (chip clearance) from the stirring edge, which is the outermost peripheral end surface of the segment such as a reverse disk installed downstream of the second kneading zone, to the inner wall of the cylinder is equivalent to the gap distance from the flight top to the inner wall of the cylinder.
  • the gap distance of the kneading disk used in the second kneading zone is two to three times the usual distance. Is preferably used.
  • the normal gap distance varies depending on the manufacturer of the twin-screw kneading extruder, the cylinder diameter, the characteristics of the product to be produced, etc., but is generally about 0.2 to 1.5 mm.
  • the thickness (disk width) of each kneading disk is usually about 1 / 5D (D is the screw diameter), but in the second kneading zone according to the present invention, 2 / 5D or more is preferable.
  • the biaxial kneading extruder applied to the present invention is provided with a vent port downstream from the second kneading zone, and removes the gas and volatile components out of the system.
  • This vent (that is, removal to the outside of the system) may be a normal atmospheric release or a vent sucked under reduced pressure.
  • the biaxial kneading extruder may further be provided with a third kneading zone downstream of the vent port.
  • the resin pressure in the third kneading zone is preferably about 1 to 5 MPa.
  • Examples of the method of setting the resin pressure in the third kneading zone to about 1 to 5 MPa include a method of arranging a reverse disk and a seal ring on the downstream side in the third kneading zone, and a method of narrowing the clearance between the cylinder and the segment. It is done.
  • the biaxial kneader-extruder may be further provided with a vacuum vent port downstream from the third kneading zone.
  • a vacuum vent port downstream from the third kneading zone By providing a decompression vent port downstream of the third kneading zone, the gas and volatile components can be removed from the system more efficiently.
  • the screw configuration of the twin-screw kneading extruder will be described.
  • the screw configuration of the first kneading zone only a forward disk or, if necessary, an orthogonal disk or a reverse disk can be used in combination. If only a forward disk is used, the degree of fullness of the kneading zone is lowered, and the resin pressure in the first kneading zone is less than 1 MPa, so that the thermoplastic resin is transported downstream in a semi-molten state without being completely plasticized. can do.
  • the resin pressure in the first kneading zone is preferably 0.01 MPa or more.
  • the thickness of the disk is thinner in the first kneading zone.
  • the gap distance (chip clearance) is preferably wider than usual.
  • the purpose of the second kneading zone is to gradually knead the powder into the above-mentioned semi-molten resin while letting some volatile components escape to the vent port downstream from the second kneading zone.
  • a wide disk is preferable which is mainly a forward disk. Further, it is preferable that the gap distance (chip clearance) is wider than usual.
  • the second kneading zone resin melting and dispersion of the powder in the molten resin have already been achieved to some extent by the second kneading zone. It can be set to about 5 MPa. It is preferable to use a full flight screw in a screw other than the kneading zone described here, that is, in a feed zone, a conveyance zone between the kneading unit and the kneading unit, a pressure increasing zone at the tip, and the like. Normally, two full flight screws are used. However, when it is desired to increase the transport volume, one full flight screw may be used.
  • another arbitrary component may be mix
  • optional components include antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, lubricants, antistatic agents, colorants, conductive agents, dispersants, printability-imparting agents, and organic fillings.
  • thermoplastic resin may be supplied together with the thermoplastic resin from the supply port in the first conveying zone of the biaxial kneading extruder into the biaxial kneading extruder, or in the second conveying zone or the third conveying zone.
  • You may provide a supply port and it may supply in a twin-screw kneading extruder from there.
  • the first transport zone is located between the most upstream supply port and the first kneading zone
  • the second transport zone is located between the first kneading zone and the second kneading zone
  • the third transport zone Is located between the second kneading zone and the third kneading zone.
  • a fourth transport zone may be further provided downstream of the third kneading zone.
  • the raw materials are not smoothly fed into the biaxial kneading extruder.
  • Izod impact strength (unit: kJ / m 2 ) According to the method defined in JIS K7110, the Izod impact strength of the test piece produced by the following method was measured using an Izod impact tester manufactured by Toyo Seiki Seisakusho. The measurement was performed at a temperature of 23 ° C.
  • polypropylene transition temperature 160 ° C.
  • olefin elastomer pellets ethylene-butene copolymer pellets transition temperature 38 ° C.
  • ethylene-octene copolymer pellets transition temperature 35 ° C.
  • Talc apparent density 0.6 g / ml
  • the apparent density of talc used to calculate the effective volume is dropped from a height of 2.3 m and received by the graduated cylinder in order to simulate the state of being fed from the weight type feeder to the screw type side feeder. It was obtained by measuring the weight per unit volume, and was 0.51 g / ml.
  • Example 1 As the biaxial kneading extruder, a twin-screw kneading extruder of the same direction meshing type with a cylinder diameter of 47 mm was used.
  • the biaxial kneading and extruding machine has a cylinder and two screw shafts accommodated in the cylinder. From the upstream, the cylinder has a first conveyance zone, a first kneading zone, a second conveyance zone, a second It is divided into a kneading zone, a third transport zone, a third kneading zone, and a fourth transport zone.
  • the cylinder was provided with a supply port at the uppermost stream in the first transfer zone, an open vent at the uppermost stream in the third transfer zone, and a vacuum vent at the uppermost stream in the fourth transfer zone.
  • a biaxial screw-type side feeder was connected to the second transport zone of the cylinder, and a weight-type feeder was connected to the screw-type side feeder.
  • a forward (forward feed direction) disk was disposed so that the resin pressure in the first kneading zone was less than 1 MPa.
  • the thickness of the forward disk was 0.2D (D is the screw diameter).
  • a forward disk was placed long from the upstream side, and finally a reverse disk was placed so that the resin pressure in the second kneading zone was less than 5 MPa.
  • the thicknesses of the forward disk and the reverse disk were 0.5D, respectively.
  • the air gap distance of these discs was twice the air gap distance of the flight.
  • An open vent was provided downstream of the reverse disk in the second kneading zone.
  • a forward disk, an orthogonal disk, and a reverse disk are arranged so that the resin pressure in the third kneading zone is 1 to 5 MPa, and the thickness of each disk is 0.1D.
  • the total feed amount of polypropylene pellets, olefinic elastomer pellets and talc fed into the twin-screw kneading extruder was 800 kg / hour.
  • the effective volume of talc supplied from the weight type feeder to the biaxial screw type side feeder was 314 L / hour, and the conveying capacity of the screw type side feeder was 801 L / hour.
  • the conveying capacity of the screw-type side feeder was about 2.5 times the volume per unit time of talc supplied from the weight-type feeder to the screw-type side feeder.
  • the raw material is melt-kneaded at a screw rotational speed of 1350 rpm of a twin-screw kneading extruder and suctioned under reduced pressure from the vacuum vent, so that the raw material is smoothly fed into the twin-screw kneading extruder and stably polypropylene, olefin-based elastomer, Resin composition pellets containing additives and talc could be produced.
  • the resin pressure in the first kneading zone was 0.1 MPa
  • the resin pressure in the second kneading zone was 0.4 MPa
  • the resin pressure in the third kneading zone was 3.6 MPa.
  • the injection molded article made of the obtained resin composition pellets had an Izod impact strength of 58 kJ / m 2 .
  • Comparative Example 1 The same twin-screw kneading extruder as in Example 1 was used.
  • a forward disk and an orthogonal disk were used so that the resin pressure in the first kneading zone was 1 MPa or more. Arranged the reverse disk.
  • the same procedure as in Example 1 was performed except that the total feed amount of polypropylene pellets, olefinic elastomer pellets and talc fed into the twin-screw kneading extruder was 900 kg / hour.
  • the raw material was smoothly fed into the twin-screw kneading extruder, and the resin composition pellets could be produced stably.
  • the resin pressure in the first kneading zone was 5.5 MPa
  • the resin pressure in the second kneading zone was 0.4 MPa
  • the resin pressure in the third kneading zone was 2.4 MPa.
  • An injection molded article using the obtained resin composition pellets had an Izod impact strength of 49 kJ / m 2 .
  • Comparative Example 2 Using the same biaxial kneading extruder as in Example 1, the cylinder of the biaxial kneading extruder is provided with the first kneading zone of Comparative Example 2 slightly downstream from the second kneading zone of Example 1.
  • the second kneading zone of Comparative Example 2 is provided at the same position as the third kneading zone of Example 1, an open vent is provided between the first kneading zone and the second kneading zone of Comparative Example 2, and the second kneading zone of Comparative Example 2 is provided.
  • a vacuum vent was provided downstream of the two kneading zones.
  • the zone upstream of the first kneading zone of Comparative Example 1 was the first transport zone of Comparative Example 1.
  • a forward disk is arranged long from the upstream so that the resin pressure in the first kneading zone is 0.2 to 3 MPa, and finally a reverse disk is arranged. did.
  • a forward disk, an orthogonal disk, and a reverse disk were arranged so that the resin pressure in the second kneading zone was 1 to 4 MPa.
  • 60 parts by weight of polypropylene pellets, 20 parts by weight of olefin-based elastomer pellets, 20 parts by weight of additives and talc are batched into the twin-screw kneading extruder from the most upstream supply port in the first conveying zone of the twin-screw kneading extruder.
  • the resin composition pellets containing polypropylene, olefinic elastomer, additive and talc are adjusted to the conditions that can be produced stably, the polypropylene pellets and olefinic
  • the total feed amount of the elastomer pellets and talc was 450 kg / hour, and the screw rotation speed of the twin-screw kneading extruder was 1320 rpm.
  • the resin pressure in the first kneading zone was 1.8 MPa
  • the resin pressure in the second kneading zone was 1.6 MPa.
  • the injection molded product using the obtained resin composition pellets had an Izod impact strength of 56 kJ / m 2 .
  • the screw rotation speed of the twin-screw kneading extruder was lowered to 1000 rpm, the raw materials were not smoothly fed into the twin-screw kneading extruder and production could not be continued.
  • the resin composition When a resin composition is produced by melt-kneading using a twin-screw kneader / extruder, it is preferable that the resin composition can be stably melt-kneaded at an appropriate screw speed without applying excessive energy to the resin composition, and as many raw materials as possible Is more productive if it can be stably melt-kneaded at a low rotational speed.
  • Comparative Example 2 since the resin composition cannot be produced unless the total feed amount of the raw materials is less than that in Example 1, the productivity is low and the production stability is also poor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a method for producing a resin composition stably and with high productivity, in particular, a resin composition-producing method that melt-kneads a thermoplastic resin with a transition temperature of less than 200°C and a powder using a twin-screw kneading extruder, wherein: the powder is at least one kind of powder selected from a group consisting of inorganic fillers with an apparent density of 0.1-1.5 g/mL and thermoplastic resin powders with an apparent density of 0.1-1.0 g/mL and a transition temperature of at least 200°C; the thermoplastic resin with a transition temperature of less than 200°C is supplied to the twin-screw kneading extruder from a supply port; the powder is supplied to the twin-screw kneading extruder from a gravimetric feeder through a screw-type side feeder; the conveyance capacity of the screw-type side feeder is at least twice the effective volume of the powder per unit time; in the twin-screw kneading extruder, melt-kneading is performed under conditions in which the resin pressure in a first kneading zone is at least 1 MPa and the resin pressure in a second kneading zone is less than 5 MPa; and gas is removed from a vent port.

Description

樹脂組成物の製造方法Method for producing resin composition
 本発明は、熱可塑性樹脂と粉体とを二軸混練機を用いて溶融混練する樹脂組成物の製造方法に関するものである。 The present invention relates to a method for producing a resin composition in which a thermoplastic resin and powder are melt-kneaded using a biaxial kneader.
 無機フィラー等の粉体強化材が充填された樹脂組成物は、耐衝撃性等の要求物性のバランスに優れる成形体を与え、自動車部品に代表される工業部材として幅広く使用されている。また、ポリフェニレンエーテルやポリフェニレンスルフィドのように、重合後の樹脂がパウダー状で嵩高いものも、その優れた特性から、混練機でコンパウンドされて、種々の用途で利用されている。 A resin composition filled with a powder reinforcing material such as an inorganic filler gives a molded article having an excellent balance of required physical properties such as impact resistance, and is widely used as an industrial member typified by automobile parts. Also, a polymerized resin, such as polyphenylene ether or polyphenylene sulfide, which is powdery and bulky is compounded with a kneader and used in various applications because of its excellent characteristics.
 前記熱可塑性樹脂が粉体や、多量の粉体強化材を含む粉体原料を、押出機を用いて溶融混練して樹脂組成物を製造する際には、かかる粉体原料は、ペレット状原料に比べて見掛け密度が低い為、押出機への噛み込み性が劣る。そのため、達成される押出量が少なく、生産性が低い場合が多い。 When producing a resin composition by melting and kneading the thermoplastic resin powder or a powder raw material containing a large amount of powder reinforcing material using an extruder, the powder raw material is a pellet raw material. Since the apparent density is lower than that, the biting into the extruder is inferior. For this reason, the amount of extrusion achieved is small and productivity is often low.
 粉体原料を溶融混練する方法の生産性改良技術については、次のようなものが知られている。 The following are known as productivity improvement techniques of the method of melt-kneading powder raw materials.
 例えば、特許文献1には、高濃度にフィラー成分を含有する樹脂組成物の生産性向上を目的として、フライト幅の広い一条スクリューと特定のひねり角を有するニーディングディスクを組み合わせた構成のスクリューがバレル内に収容された二軸押出機を用いる樹脂組成物の製造方法が記載されている。 For example, Patent Document 1 discloses a screw having a configuration in which a single screw having a wide flight width and a kneading disk having a specific twist angle are combined for the purpose of improving the productivity of a resin composition containing a filler component at a high concentration. A method for producing a resin composition using a twin screw extruder housed in a barrel is described.
 また、特許文献2には、粉体原料を用いる樹脂組成物の製造における生産性向上を目的として、一条スクリューと特定のニーディングディスクを組み合わせた構成のスクリューを備えた二軸押出機を用いる樹脂組成物の製造方法が記載されている。 Patent Document 2 discloses a resin using a twin-screw extruder provided with a screw having a combination of a single screw and a specific kneading disk for the purpose of improving productivity in the production of a resin composition using a powder raw material. A method for producing the composition is described.
 特許文献3には、微粉体原料、或いは微粉体を多量に含む合成樹脂材料の押出成形時の押出量の増大を目的として、材料供給口が接続されたバレルより下流のバレルに前記材料に包含される空気を排出する開口部を設けた二軸押出機を用い、材料供給口と開口部との間で強い圧縮を与えるような昇圧域を設けずに合成樹脂を溶融混練する押出成形方法が記載されている。 In Patent Document 3, the material is included in the barrel downstream of the barrel to which the material supply port is connected for the purpose of increasing the extrusion amount at the time of extrusion molding of the fine powder raw material or the synthetic resin material containing a large amount of fine powder. An extrusion method in which a synthetic resin is melt-kneaded using a twin-screw extruder provided with an opening for discharging the air without providing a pressurizing region that gives strong compression between the material supply port and the opening. Are listed.
 特許文献4には、ポリプロピレン系樹脂と無機フィラーとを二軸混練押出機の上流から供給し溶融混練してポリプロピレン系樹脂と無機フィラーを含有する樹脂組成物を製造する方法であって、生産性向上を目的として、可塑化領域の樹脂圧力を1MPa以下とする方法が記載されている。 Patent Document 4 discloses a method for producing a resin composition containing a polypropylene resin and an inorganic filler by supplying a polypropylene resin and an inorganic filler from the upstream side of a twin-screw kneading extruder, and melt-kneading the product. For the purpose of improvement, a method is described in which the resin pressure in the plasticized region is 1 MPa or less.
 特許文献5には、パウダー状ポリフェニレンエーテルとそれ以外の熱可塑性樹脂を含む樹脂組成物の製造方法において、パウダー状ポリフェニレンエーテルの搬送能力の向上を目的として、溶融した熱可塑性樹脂の搬送領域に、パウダー状ポリフェニレンエーテルを、二軸押出機のサイドから強制サイドフィーダーを用いて供給する方法が記載されている。また、パウダー状ポリフェニレンエーテルの搬送能力の低下を防止するために、強制サイドフィーダーを接続した部位の押出機バレルの上蓋の上流側にガス抜き用の開口孔を設け、当該開口孔から、ガス抜きを行うことが好ましいと記載されている。 In Patent Document 5, in the method for producing a resin composition containing a powdered polyphenylene ether and other thermoplastic resin, in order to improve the conveying ability of the powdered polyphenylene ether, the molten thermoplastic resin is transported in a region. A method of supplying powdery polyphenylene ether from the side of a twin screw extruder using a forced side feeder is described. In addition, in order to prevent a decrease in the conveying capacity of the powdered polyphenylene ether, an opening hole for venting gas is provided on the upstream side of the upper lid of the extruder barrel at the site where the forced side feeder is connected. Is preferably performed.
 しかしながら、上記のいずれの製造方法も、生産性の改善効果は十分ではなかった。 However, none of the above-described manufacturing methods has a sufficient productivity improvement effect.
特開平9-29814号公報Japanese Patent Laid-Open No. 9-29814 特開平10-24483号公報Japanese Patent Laid-Open No. 10-24483 特開昭58-29644号公報JP 58-29644 A 特開2002-187125号公報JP 2002-187125 A 特開2011-255652号公報Japanese Unexamined Patent Publication No. 2011-255552
 かかる状況のもと、本発明の目的は、熱可塑性樹脂と粉体とを溶融混練する樹脂組成物の製造方法において、耐衝撃性に優れる成形体を与える樹脂組成物を安定的に高い生産性で製造する方法を提供することにある。 Under such circumstances, the object of the present invention is to stably produce a resin composition that gives a molded article having excellent impact resistance in a method for producing a resin composition in which a thermoplastic resin and powder are melt-kneaded. It is to provide a manufacturing method.
 本発明者等は、鋭意検討して、本発明を完成するに至った。 The present inventors have intensively studied and completed the present invention.
 すなわち本発明は、転移温度200℃未満の熱可塑性樹脂と粉体とを二軸混練押出機を用いて溶融混練する樹脂組成物の製造方法であって、
前記粉体は、見掛け密度0.1~1.5g/mlの無機フィラーおよび見掛け密度0.1~1.0g/mlかつ転移温度200℃以上の熱可塑性樹脂粉体からなる群より選ばれる一種以上の粉体であり、
前記二軸混練押出機は、上流から順に、供給口、第一混練ゾーン、重量式フィーダーが接続されたスクリュー式サイドフィーダー、第二混練ゾーン、及びベント口を備え、
前記転移温度200℃未満の熱可塑性樹脂は前記供給口から前記二軸混練押出機に供給され、
前記粉体は前記重量式フィーダーから前記スクリュー式サイドフィーダーを経て前記二軸混練押出機に供給され、
前記スクリュー式サイドフィーダーの搬送能力は、前記重量式フィーダーから前記スクリュー式サイドフィーダーに供給される前記粉体の単位時間あたりの実効体積の2倍以上であり、
前記第一混練ゾーンの樹脂圧力が1MPa未満であり、前記第二混練ゾーンの樹脂圧力が5MPa未満である条件で溶融混練し、
気体を前記ベント口から除去する樹脂組成物の製造方法に関するものである。
That is, the present invention is a method for producing a resin composition in which a thermoplastic resin having a transition temperature of less than 200 ° C. and powder are melt-kneaded using a biaxial kneading extruder,
The powder is a kind selected from the group consisting of an inorganic filler having an apparent density of 0.1 to 1.5 g / ml and a thermoplastic resin powder having an apparent density of 0.1 to 1.0 g / ml and a transition temperature of 200 ° C. or higher. Or more powder,
The biaxial kneading extruder includes, in order from the upstream, a supply port, a first kneading zone, a screw-type side feeder to which a weight type feeder is connected, a second kneading zone, and a vent port,
The thermoplastic resin having a transition temperature of less than 200 ° C. is supplied from the supply port to the biaxial kneading extruder,
The powder is supplied from the gravimetric feeder through the screw-type side feeder to the biaxial kneading extruder,
The conveying capacity of the screw-type side feeder is at least twice the effective volume per unit time of the powder supplied from the weight-type feeder to the screw-type side feeder,
The resin pressure in the first kneading zone is less than 1 MPa, and the melt pressure is kneaded under the condition that the resin pressure in the second kneading zone is less than 5 MPa,
The present invention relates to a method for producing a resin composition for removing gas from the vent port.
 本発明によれば、安定的に高い生産性で、熱可塑性樹脂と粉体とを溶融混練して耐衝撃性に優れる成形体を与える樹脂組成物を製造することができる。 According to the present invention, it is possible to produce a resin composition that gives a molded article having excellent impact resistance by melting and kneading a thermoplastic resin and powder with high productivity.
 本発明において、熱可塑性樹脂の転移温度とは、結晶性熱可塑性樹脂の場合は該樹脂の融解ピーク温度であり、非晶性熱可塑性樹脂の場合は該樹脂のガラス転移温度であり、いずれも示差走査熱量測定により求められる。より具体的には、前記融解ピーク温度とは、JIS  K7122に従って示差走査熱量測定によって測定され、-50℃以上200℃以下の範囲に観測される結晶の融解ピークに対応する温度を意味する。前記ガラス転移温度とは、JIS  K7121に従って示差走査熱量測定により測定されるガラス転移温度を意味する。
 転移温度200℃未満の熱可塑性樹脂としては、具体的には、ポリオレフィン系樹脂(高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン等)、環状オレフィン系樹脂、脂肪族ポリエステル系樹脂(ポリ乳酸等)、脂肪族ポリカーボネート、ポリオキシメチレン(ポリアセタール等)、スチレン系樹脂(ポリスチレン、SEBS、アクリロニトリル・ブタジエン・スチレン共重合体)等が挙げられ、これらはそれぞれ単独で用いても複数の樹脂を組み合わせてもよい。形状はペレットでもパウダー(粉体)でもよい。さらに、衝撃強度の改良や、柔軟性を付与するために、オレフィン系やスチレン系、アクリル系、ウレタン系、エンプラ系のエラストマーを加えてもよい。オレフィン系エラストマーとして、エチレン-ブテン共重合体、エチレン-オクテン共重合体が挙げられる。該熱可塑性樹脂の転移温度は、好ましくは190℃以下であり、また、好ましくは0℃以上であり、好ましくは30℃以上である。二軸混練押出機に供給する際の該熱可塑性樹脂の状態は特に限定されず、例えば、ペレット状、顆粒状、パウダー(粉末)状などを採用することができる。
In the present invention, the transition temperature of the thermoplastic resin is the melting peak temperature of the resin in the case of a crystalline thermoplastic resin, and the glass transition temperature of the resin in the case of an amorphous thermoplastic resin. It is determined by differential scanning calorimetry. More specifically, the melting peak temperature means a temperature corresponding to a melting peak of a crystal measured by differential scanning calorimetry according to JIS K7122 and observed in a range of −50 ° C. or higher and 200 ° C. or lower. The glass transition temperature means a glass transition temperature measured by differential scanning calorimetry according to JIS K7121.
Specific examples of thermoplastic resins having a transition temperature of less than 200 ° C. include polyolefin resins (high density polyethylene, low density polyethylene, polypropylene, etc.), cyclic olefin resins, aliphatic polyester resins (polylactic acid, etc.), fat Group polycarbonate, polyoxymethylene (polyacetal, etc.), styrene resin (polystyrene, SEBS, acrylonitrile-butadiene-styrene copolymer), etc., may be used alone or in combination with a plurality of resins. The shape may be pellets or powder. Furthermore, an olefin-based, styrene-based, acrylic-based, urethane-based, or engineering plastic-based elastomer may be added to improve impact strength and impart flexibility. Examples of the olefin elastomer include an ethylene-butene copolymer and an ethylene-octene copolymer. The transition temperature of the thermoplastic resin is preferably 190 ° C. or lower, preferably 0 ° C. or higher, and preferably 30 ° C. or higher. The state of the thermoplastic resin when it is supplied to the biaxial kneading extruder is not particularly limited, and for example, a pellet shape, a granule shape, a powder (powder) shape, or the like can be adopted.
 本発明において、前記転移温度200℃未満の熱可塑性樹脂と共に溶融混練される粉体は、見掛け密度0.1~1.5g/mlの無機フィラーであり得、かかる無機フィラーとしては具体的には、タルク、カオリナイト、クレー、パイロフィライト、セリサイト、ベントナイト、シリカ、などの天然珪酸または天然珪酸塩、炭酸カルウシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩、水酸化アルミニウム、水酸化マグネシウムなどの水酸化物、亜鉛華、酸化鉄、酸化マグネシウム、酸化アルミニウム、酸化チタン、ムライトなどの酸化物、含水珪酸、無水珪酸などの合成珪酸または合成珪酸塩などの粒子状充填材、マイカなどのフレーク状充填材、塩基性硫酸マグネシウムウイスカー、チタン酸カルシウムウイスカー、チタン酸カリウムウィスカー、ホウ酸アルミニウムウイスカー、ウォラストナイト、セピオライト、ゼオライト、アタパルジャイト、ゾノトライト、ロックウール、グラスウールなどの繊維状充填材、カーボンブラック、メソポーラスカーボン、活性炭などの無定形カーボン充填剤等が挙げられる。無機フィラーの見掛け密度は、0.1~1.0g/mlが好ましく、0.1~0.8g/mlがより好ましい。見掛け密度0.1~1.5g/mlの無機フィラーのうち、(見掛け密度)/(真密度)が0.3以下の無機フィラーは、本発明の製造方法による生産性の改善効果がより顕著に見られるという点で好ましい。本願において粉体の見掛け密度とは、JIS K7365:1999の方法により測定される見掛け密度のことである。また、真密度とは、一定容積の容器に粉体を充填したときの、容器の体積から隙間部分を除いた体積から算出した密度であり、本願において粉体の真密度は、JIS Z8807:2012の方法により測定される密度を指す。 In the present invention, the powder to be melt-kneaded with the thermoplastic resin having a transition temperature of less than 200 ° C. may be an inorganic filler having an apparent density of 0.1 to 1.5 g / ml. Natural silicates or natural silicates such as talc, kaolinite, clay, pyrophyllite, sericite, bentonite, silica, carbonates such as calcium carbonate, magnesium carbonate, hydrotalcite, aluminum hydroxide, magnesium hydroxide, etc. Hydroxide, zinc oxide, iron oxide, magnesium oxide, aluminum oxide, titanium oxide, mullite and other oxides, hydrous silicic acid, synthetic silicic acid such as anhydrous silicic acid or particulate filler such as mica, flakes such as mica Filler, basic magnesium sulfate whisker, calcium titanate whisker, chita Examples include potassium filler whiskers, aluminum borate whiskers, wollastonite, sepiolite, zeolite, attapulgite, zonotlite, rock wool, glass wool and other amorphous fillers such as carbon black, mesoporous carbon and activated carbon. . The apparent density of the inorganic filler is preferably from 0.1 to 1.0 g / ml, more preferably from 0.1 to 0.8 g / ml. Among the inorganic fillers having an apparent density of 0.1 to 1.5 g / ml, the inorganic filler having an (apparent density) / (true density) of 0.3 or less is more prominent in improving productivity by the production method of the present invention. It is preferable in that it can be seen. In the present application, the apparent density of a powder is an apparent density measured by the method of JIS K7365: 1999. The true density is a density calculated from the volume of the container excluding the gap portion when the container is filled with the powder. In this application, the true density of the powder is JIS Z8807: 2012. It refers to the density measured by the method.
 本発明において、前記転移温度200℃未満の熱可塑性樹脂と共に溶融混練される粉体は、見掛け密度0.1~1.0g/mlかつ転移温度200℃以上の熱可塑性樹脂粉体であり得る。熱可塑性樹脂粉体としては、具体的には、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリアミド系樹脂(ナイロン6、ナイロン66等)、芳香族ポリエステル系樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等)、芳香族ポリカーボネート、液晶性ポリマー等があげられる。この中で本発明の効果が高いのは、融点やガラス転移温度が高く、比較的高温まで溶融流動状態にならず、粉体流動性を保持するポリフェニレンエーテル、ポリフェニレンスルフィド、液晶性ポリマー等が挙げられる。該熱可塑性樹脂粉体を構成する熱可塑性樹脂の転移温度は、200℃以上であり、好ましくは210℃以上であり、また、好ましくは450℃以下であり、より好ましくは400℃以下である。
 前記転移温度200℃未満の熱可塑性樹脂と前記粉体の合計の重量を100重量%としたとき、該粉体の量の好ましい範囲は5~80重量%であり、より好ましくは10~70重量%であり、更に好ましくは15~60重量%である。
In the present invention, the powder that is melt-kneaded together with the thermoplastic resin having a transition temperature of less than 200 ° C. may be a thermoplastic resin powder having an apparent density of 0.1 to 1.0 g / ml and a transition temperature of 200 ° C. or more. Specific examples of the thermoplastic resin powder include polyphenylene ether, polyphenylene sulfide, polyether ketone, polyamide resin (nylon 6, nylon 66, etc.), aromatic polyester resin (polyethylene terephthalate, polybutylene terephthalate, polybutylene). Naphthalate, etc.), aromatic polycarbonate, liquid crystalline polymer, and the like. Among these, the effects of the present invention are high, such as polyphenylene ether, polyphenylene sulfide, liquid crystalline polymer, etc., which have a high melting point and glass transition temperature, do not enter a melt flow state until a relatively high temperature, and maintain powder fluidity. It is done. The transition temperature of the thermoplastic resin constituting the thermoplastic resin powder is 200 ° C. or higher, preferably 210 ° C. or higher, preferably 450 ° C. or lower, more preferably 400 ° C. or lower.
When the total weight of the thermoplastic resin having the transition temperature of less than 200 ° C. and the powder is 100% by weight, the preferred range of the amount of the powder is 5 to 80% by weight, more preferably 10 to 70% by weight. %, More preferably 15 to 60% by weight.
 本発明の二軸混練押出機は、上流から順に、供給口、第一混練ゾーン、重量式フィーダーが接続されたスクリュー式サイドフィーダー、第二混練ゾーン、及びベント口を備えるものである。上記供給口は、二軸混練押出機の最上流部に位置する。上記供給口には重量式フィーダーが接続されていることが好ましい。 The biaxial kneading extruder of the present invention includes a supply port, a first kneading zone, a screw-type side feeder to which a weight type feeder is connected, a second kneading zone, and a vent port in order from the upstream. The supply port is located in the most upstream part of the twin-screw kneading extruder. It is preferable that a weight type feeder is connected to the supply port.
 転移温度200℃未満の熱可塑性樹脂は、上記供給口から二軸混練押出機に供給され、第一混練ゾーンにおいて、樹脂圧力が1MPa未満となる条件で混練される。上記供給口に重量式フィーダーが接続されている場合は、転移温度200℃未満の熱可塑性樹脂は重量式フィーダーから上記供給口を経て二軸混練押出機に供給される。
 第一混練ゾーン(可塑化領域)の樹脂圧力は、好ましくは0.8MPa以下であり、より好ましくは0.5MPa以下である。また、第一混練ゾーンの樹脂圧力は、通常は0.02MPa以上であり、好ましくは0.1MPa以上である。
 本発明に係る二軸混練押出機のスクリューは、生産性を高くするという観点から、2条の混練セグメントを有するスクリューが好ましい。第一混練ゾーンの樹脂圧力を1MPa未満にする方法としては、二軸混練押出機のスクリューの第一混練ゾーンに、スクリューの回転によって上流方向に樹脂を押し戻すようなセグメントや樹脂を堰き止める効果のあるセグメントを配置しない方法や、シリンダとセグメントのクリアランスを広くする方法が挙げられる。スクリューの回転によって上流方向に樹脂を押し戻すようなセグメントとしては、逆フライト、ねじれ角が送り方向に対して90°を超える一般的に逆ニーディングディスクと称されるディスク(以下、「逆ディスク」と称する)が挙げられる。樹脂を堰き止める効果のあるセグメントとしては、シールリングが挙げられる。スクリューの第一混練ゾーンに、ねじれ角が送り方向に対して90°未満であるいわゆる順ニーディングディスク(以下、「順ディスク」と称する)のみを配置することが好ましい。スクリューの第一混練ゾーン内には、さらに必要に応じてねじれ角が90°のいわゆる直交ディスクを配置することができる。直交ディスクを配置する位置は、前述の順ディスクの下流側が好ましい。二軸混練押出機の各混練ゾーンの圧力は、シリンダの各混練ゾーンに圧力センサーを設置し、各混練ゾーンの圧力センサーによって測定することができる。
The thermoplastic resin having a transition temperature of less than 200 ° C. is supplied from the supply port to the biaxial kneading extruder, and is kneaded in the first kneading zone under a condition that the resin pressure is less than 1 MPa. When a weight type feeder is connected to the supply port, a thermoplastic resin having a transition temperature of less than 200 ° C. is supplied from the weight type feeder to the twin-screw kneading extruder through the supply port.
The resin pressure in the first kneading zone (plasticization region) is preferably 0.8 MPa or less, more preferably 0.5 MPa or less. The resin pressure in the first kneading zone is usually 0.02 MPa or more, preferably 0.1 MPa or more.
The screw of the twin-screw kneading extruder according to the present invention is preferably a screw having two kneading segments from the viewpoint of increasing productivity. As a method of setting the resin pressure in the first kneading zone to less than 1 MPa, there is an effect of blocking the segment and the resin that pushes the resin back in the upstream direction by the rotation of the screw in the first kneading zone of the screw of the biaxial kneading extruder There are a method of not arranging a segment and a method of widening the clearance between the cylinder and the segment. As a segment that pushes the resin back in the upstream direction by the rotation of the screw, a reverse flight, a disk generally referred to as a reverse kneading disk whose twist angle exceeds 90 ° with respect to the feed direction (hereinafter referred to as “reverse disk”). For example). An example of the segment having an effect of blocking the resin is a seal ring. It is preferable to arrange only a so-called forward kneading disk (hereinafter referred to as “forward disk”) having a twist angle of less than 90 ° with respect to the feed direction in the first kneading zone of the screw. A so-called orthogonal disk having a twist angle of 90 ° can be further disposed in the first kneading zone of the screw as necessary. The position where the orthogonal disk is arranged is preferably on the downstream side of the above-mentioned forward disk. The pressure in each kneading zone of the twin-screw kneading extruder can be measured by installing a pressure sensor in each kneading zone of the cylinder and using the pressure sensor in each kneading zone.
 粉体は、重量式フィーダーからスクリュー式サイドフィーダーに所定量供給され、更にスクリュー式サイドフィーダーから二軸混練押出機に供給される。この時のスクリュー式サイドフィーダーの搬送能力は、重量式フィーダーからスクリュー式サイドフィーダーに供給される粉体の単位時間あたりの実効体積の2倍以上である。スクリュー式サイドフィーダーの搬送能力とは、スクリュー式サイドフィーダーから二軸混練押出機に供給する粉体の単位時間あたりの体積であり、これは、スクリュー式サイドフィーダーのスクリューが1回転する間に前方に送る空間体積とスクリュー回転数との積、またはスクリュー式サイドフィーダーのスクリューの1リード長あたりのシリンダーバレルの体積とスクリュー式サイドフィーダーの1リード長あたりのスクリューの体積の差と、スクリュー式サイドフィーダーのスクリュー回転数との積として求めることができる。粉体の実効体積は、実際に当該サイドフィーダーに供給されるところの体積で評価しなければならない。粉体はスクリュー式サイドフィーダーの上部に接続された重量式フィーダーで計量されて自然落下によってスクリュー式サイドフィーダーに供給される。重量式フィーダーからスクリュー式サイドフィーダーに供給される粉体の単位時間あたりの実効体積は、重量式フィーダーからスクリュー式サイドフィーダーに供給される粉体の単位時間あたりの重量を粉体の見掛け密度で除して得られた値として求められる。本願において実効体積の算出に用いる粉体の見掛け密度とは、実際に重量式フィーダーからスクリュー式サイドフィーダーに粉体が供給される時と同じ高さから、粉体をメスシリンダー等の計量容器に落下させて、計量容器内の粉体の重量を、計量容器で測定した粉体の体積で除することにより、求められる値である。スクリュー式サイドフィーダーの搬送能力は、装置の仕様によるが、好ましくは重量式フィーダーからスクリュー式サイドフィーダーに供給される粉体の単位時間あたりの実効体積の2倍以上であり、より好ましくは2.4倍以上であり、また、好ましくは8倍未満であり、より好ましくは10倍未満である。
 また、粉体をスクリュー式サイドフィーダーで二軸混練押出機に供給する際に、該粉体とは異なる樹脂ペレット等を粉体と一緒に供給してもよい。この場合、スクリュー式サイドフィーダーの搬送能力が、重量式フィーダーからスクリュー式サイドフィーダーに供給される粉体の実効体積と樹脂ペレットの体積の合計量を十分上回っている限り、スクリュー式サイドフィーダーの搬送能力を設定する際に樹脂ペレットの体積を考慮する必要がない。粉体をより安定的に二軸混練押出機に供給するという観点から、粉体と、粉体100重量部に対し25重量部以上の樹脂ペレットとが重量式フィーダーからスクリュー式サイドフィーダーを経て二軸混練押出機に供給されることが好ましい。重量式フィーダーからスクリュー式サイドフィーダーを経て二軸混練押出機に供給される樹脂ペレットは、粉体100重量部に対し200重量部以下であることが好ましい。重量式フィーダーからスクリュー式サイドフィーダーを経て二軸混練押出機に供給される樹脂ペレットとしては、(見掛け密度)/(真密度)が0.9以上である熱可塑性樹脂ペレットが挙げられ、転移温度に制限はない。
A predetermined amount of powder is supplied from the weight-type feeder to the screw-type side feeder, and further supplied from the screw-type side feeder to the twin-screw kneading extruder. The conveying ability of the screw-type side feeder at this time is twice or more the effective volume per unit time of the powder supplied from the weight-type feeder to the screw-type side feeder. The conveying capacity of the screw-type side feeder is the volume per unit time of the powder supplied from the screw-type side feeder to the twin-screw kneading extruder, and this is the front while the screw of the screw-type side feeder rotates once. The product of the volume of space to be sent to the screw and the rotational speed of the screw, or the difference between the volume of the cylinder barrel per lead length of the screw of the screw-type side feeder and the volume of the screw per lead length of the screw-type side feeder, It can be determined as the product of the screw rotation speed of the feeder. The effective volume of the powder must be evaluated based on the volume actually supplied to the side feeder. The powder is weighed by a weight-type feeder connected to the upper part of the screw-type side feeder and supplied to the screw-type side feeder by natural fall. The effective volume per unit time of the powder supplied from the gravimetric feeder to the screw side feeder is the apparent density of the powder per unit time of the powder supplied from the gravimetric feeder to the screw side feeder. It is obtained as a value obtained by dividing. In this application, the apparent density of the powder used to calculate the effective volume is the same height as when the powder is actually supplied from the weight type feeder to the screw type side feeder. It is a value obtained by dropping and dividing the weight of the powder in the measuring container by the volume of the powder measured in the measuring container. The conveying capacity of the screw-type side feeder depends on the specifications of the apparatus, but is preferably at least twice the effective volume per unit time of the powder supplied from the weight-type feeder to the screw-type side feeder, more preferably 2. It is 4 times or more, preferably less than 8 times, more preferably less than 10 times.
Further, when the powder is supplied to the twin-screw kneading extruder using a screw-type side feeder, resin pellets or the like different from the powder may be supplied together with the powder. In this case, as long as the conveying capacity of the screw-type side feeder is sufficiently higher than the total amount of the effective volume of the powder supplied from the weight-type feeder to the screw-type side feeder and the volume of the resin pellets, the screw-type side feeder can be conveyed. It is not necessary to consider the volume of the resin pellet when setting the capacity. From the viewpoint of more stably supplying the powder to the twin-screw kneading extruder, the powder and the resin pellets of 25 parts by weight or more with respect to 100 parts by weight of the powder are passed through the screw type side feeder from the weight type feeder. It is preferably supplied to a shaft kneading extruder. The resin pellets supplied from the weight type feeder to the biaxial kneading extruder through the screw type side feeder are preferably 200 parts by weight or less with respect to 100 parts by weight of the powder. Examples of the resin pellet supplied from the weight type feeder to the twin-screw kneading extruder through the screw type side feeder include thermoplastic resin pellets having an (apparent density) / (true density) of 0.9 or more, and a transition temperature. There is no limit.
 本発明に適用される二軸混練押出機において、粉体をサイドフィーダーで供給した位置の下流側に第二混練ゾーンが設けられているが、前記粉体が前記二軸混練押出機に供給された位置と前記第二混練ゾーンとの間に搬送ゾーンが設けられることがある。第二混練ゾーンの樹脂圧力は5MPa未満に設定し、粉体供給に伴い二軸混練押出機に混入する気体や原料に含まれる揮発成分が二軸混練押出機の下流側に抜ける割合を増やして、該気体や揮発成分が上流側に逆流する量を減らす。第二混練ゾーン内の下流側に、スクリューの回転によって上流方向に樹脂を押し戻すようなセグメントや、樹脂を堰き止める効果のあるセグメントを適切に配置することによって5MPa未満の樹脂圧力を設定することができる。スクリュー式サイドフィーダーから供給された粉体を十分に分散させる観点からは、第二混練ゾーンの樹脂圧力は0.02MPa以上が好ましく、より好ましくは0.1MPa以上である。第二混練ゾーンの下流側に設置された逆ディスク等のセグメント最外周端面である撹拌縁からシリンダー内壁までの空隙距離(チップクリアランス)は、通常フライトトップとシリンダー内壁までの空隙距離と同等であるのが一般的だが、本願発明においては、第二混練ゾーンの樹脂圧力を上記のように制御するために第二混練ゾーンに用いられるニーディングディスクの空隙距離は通常の2倍から3倍のものを用いることが好ましい。通常の空隙距離は二軸混練押出機のメーカーおよびシリンダー径や生産される製品の特性等で変化するが、一般的に0.2~1.5mm程度である。ニーディングディスク1枚1枚の軸方向の厚さ(ディスク幅)は、通常1/5D(Dはスクリュー直径とする)程度である場合が多いが、本発明に係る第二混練ゾーンでは2/5D以上とすることが好ましい。 In the twin-screw kneading extruder applied to the present invention, a second kneading zone is provided on the downstream side of the position where the powder is fed by the side feeder, but the powder is fed to the twin-screw kneading extruder. A conveyance zone may be provided between the position and the second kneading zone. The resin pressure in the second kneading zone is set to less than 5 MPa, and the rate at which the gas mixed in the biaxial kneading extruder and the volatile components contained in the raw material escape to the downstream side of the biaxial kneading extruder with the powder supply is increased. , The amount of the gas or volatile component flowing back upstream is reduced. It is possible to set a resin pressure of less than 5 MPa by appropriately arranging, on the downstream side in the second kneading zone, a segment that pushes the resin back in the upstream direction by the rotation of the screw, or a segment that has an effect of blocking the resin. it can. From the viewpoint of sufficiently dispersing the powder supplied from the screw-type side feeder, the resin pressure in the second kneading zone is preferably 0.02 MPa or more, more preferably 0.1 MPa or more. The gap distance (chip clearance) from the stirring edge, which is the outermost peripheral end surface of the segment such as a reverse disk installed downstream of the second kneading zone, to the inner wall of the cylinder is equivalent to the gap distance from the flight top to the inner wall of the cylinder. However, in the present invention, in order to control the resin pressure in the second kneading zone as described above, the gap distance of the kneading disk used in the second kneading zone is two to three times the usual distance. Is preferably used. The normal gap distance varies depending on the manufacturer of the twin-screw kneading extruder, the cylinder diameter, the characteristics of the product to be produced, etc., but is generally about 0.2 to 1.5 mm. The thickness (disk width) of each kneading disk is usually about 1 / 5D (D is the screw diameter), but in the second kneading zone according to the present invention, 2 / 5D or more is preferable.
 本発明に適用される二軸混練押出機には、第二混練ゾーンより下流に、ベント口が設けられており、上記気体や揮発成分を系外に除去する。このベント(すなわち、系外への除去)は、通常の大気解放であっても、減圧吸引したベントであってもよい。二軸混練押出機には、前記ベント口の下流に、更に第三混練ゾーンが設けられていてもよい。第三混練ゾーンにおける樹脂圧力は、1~5MPa程度が好ましい。
 第三混練ゾーンの樹脂圧力を1~5MPa程度に設定する方法としては、第三混練ゾーン内の下流側に逆ディスクやシールリングを配置する方法や、シリンダとセグメントのクリアランスを狭くする方法が挙げられる。
The biaxial kneading extruder applied to the present invention is provided with a vent port downstream from the second kneading zone, and removes the gas and volatile components out of the system. This vent (that is, removal to the outside of the system) may be a normal atmospheric release or a vent sucked under reduced pressure. The biaxial kneading extruder may further be provided with a third kneading zone downstream of the vent port. The resin pressure in the third kneading zone is preferably about 1 to 5 MPa.
Examples of the method of setting the resin pressure in the third kneading zone to about 1 to 5 MPa include a method of arranging a reverse disk and a seal ring on the downstream side in the third kneading zone, and a method of narrowing the clearance between the cylinder and the segment. It is done.
 二軸混練押出機には、第三混練ゾーンより下流に更に減圧ベント口が設けられていてもよい。第三混練ゾーンの下流に減圧ベント口を設けることにより、上記気体や揮発成分を更に効率よく系外に除去することができる。 The biaxial kneader-extruder may be further provided with a vacuum vent port downstream from the third kneading zone. By providing a decompression vent port downstream of the third kneading zone, the gas and volatile components can be removed from the system more efficiently.
 次に、本発明に係る二軸混練押出機のスクリュー構成について説明する。第一混練ゾーンのスクリュー構成は、順ディスクのみ、または、必要に応じて直交ディスクまたは逆ディスクを併用することができる。順ディスクのみとすれば、混練ゾーンの充満度を低くし、第一混練ゾーンの樹脂圧力を1MPa未満とすることにより、熱可塑性樹脂を完全に可塑化させることなく、半溶融状態で下流に搬送することができる。また、第一混練ゾーンの樹脂圧力は0.01MPa以上が好ましい。短い区間で所望の圧力まで昇圧できるという観点から、第一混練ゾーンではディスクの厚みは薄いほうが好ましい。また空隙距離(チップクリアランス)は通常より広いものが好ましい。第二混練ゾーンは、一部の揮発分については第二混練ゾーンより下流のベント口に逃がしながら、粉体を前述の半溶融状態の樹脂の中に、徐々に練り込んでいくことを目的としており、順ディスク主体で、幅の広いディスクが好ましい。また、空隙距離(チップクリアランス)も通常よりも広いものが好ましい。第三混練ゾーンについては、既に第二混練ゾーンまでに樹脂の溶融や粉体の溶融樹脂中の分散がある程度は達成されているので、通常の分散混合に必要なスクリュー構成で樹脂圧力を1~5MPa程度に設定することができる。ここで述べた混練ゾーン以外の部分のスクリュー、すなわち、フィードゾーンや混練部と混練部の間の搬送ゾーン、先端の昇圧ゾーン等においてはフルフライトスクリューを用いることが好ましい。通常は2条のフルフライトスクリューが用いられるが、搬送体積を増やしたいときには、1条のフルフライトスクリューを用いる場合もある。 Next, the screw configuration of the twin-screw kneading extruder according to the present invention will be described. As the screw configuration of the first kneading zone, only a forward disk or, if necessary, an orthogonal disk or a reverse disk can be used in combination. If only a forward disk is used, the degree of fullness of the kneading zone is lowered, and the resin pressure in the first kneading zone is less than 1 MPa, so that the thermoplastic resin is transported downstream in a semi-molten state without being completely plasticized. can do. The resin pressure in the first kneading zone is preferably 0.01 MPa or more. From the viewpoint that the pressure can be increased to a desired pressure in a short section, it is preferable that the thickness of the disk is thinner in the first kneading zone. The gap distance (chip clearance) is preferably wider than usual. The purpose of the second kneading zone is to gradually knead the powder into the above-mentioned semi-molten resin while letting some volatile components escape to the vent port downstream from the second kneading zone. In addition, a wide disk is preferable which is mainly a forward disk. Further, it is preferable that the gap distance (chip clearance) is wider than usual. With respect to the third kneading zone, resin melting and dispersion of the powder in the molten resin have already been achieved to some extent by the second kneading zone. It can be set to about 5 MPa. It is preferable to use a full flight screw in a screw other than the kneading zone described here, that is, in a feed zone, a conveyance zone between the kneading unit and the kneading unit, a pressure increasing zone at the tip, and the like. Normally, two full flight screws are used. However, when it is desired to increase the transport volume, one full flight screw may be used.
 このようにして樹脂組成物を製造する際、目的に応じて他の任意成分が配合されてもかまわない。このような任意成分としては、例えば、酸化防止剤、紫外線吸収剤、光安定化剤、熱安定化剤、滑剤、帯電防止剤、着色剤、導電剤、分散剤、印刷性付与剤、有機充填剤、難燃剤、難燃助剤、発泡剤、加工助剤、中和剤、重金属不活性化剤、造核剤、防曇剤、抗菌剤、防かび剤等を挙げることができる。
 これらの添加剤は、熱可塑性樹脂と一緒に二軸混練押出機の第一搬送ゾーン内の供給口から二軸混練押出機内に供給してもよいし、第二搬送ゾーンや第三搬送ゾーンに供給口を設け、そこから二軸混練押出機内に供給してもよい。前記第一搬送ゾーンは最上流の供給口と第一混練ゾーンとの間に位置し、前記第二搬送ゾーンは第一混練ゾーンと第二混練ゾーンとの間に位置し、前記第三搬送ゾーンは第二混練ゾーンと第三混練ゾーンとの間に位置する。第三混練ゾーンの下流に更に第四搬送ゾーンが設けられていてもよい。
Thus, when manufacturing a resin composition, another arbitrary component may be mix | blended according to the objective. Examples of such optional components include antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, lubricants, antistatic agents, colorants, conductive agents, dispersants, printability-imparting agents, and organic fillings. Agents, flame retardants, flame retardant aids, foaming agents, processing aids, neutralizing agents, heavy metal deactivators, nucleating agents, antifogging agents, antibacterial agents, fungicides and the like.
These additives may be supplied together with the thermoplastic resin from the supply port in the first conveying zone of the biaxial kneading extruder into the biaxial kneading extruder, or in the second conveying zone or the third conveying zone. You may provide a supply port and it may supply in a twin-screw kneading extruder from there. The first transport zone is located between the most upstream supply port and the first kneading zone, the second transport zone is located between the first kneading zone and the second kneading zone, and the third transport zone Is located between the second kneading zone and the third kneading zone. A fourth transport zone may be further provided downstream of the third kneading zone.
 本発明により、見掛け密度が小さい粉体と熱可塑性樹脂とを二軸混練押出機を用いて溶融混練する樹脂組成物の製造において、原料が順調に二軸混練押出機内に供給されない等の製造上のトラブルなく、高効率で生産を可能とするだけでなく、粉体およびエラストマーの分散や、耐衝撃性等の樹脂組成物の物性においても、従来必要とされるレベルを満足できる方法が提供できる。 According to the present invention, in the production of a resin composition in which powder having a low apparent density and a thermoplastic resin are melt-kneaded using a biaxial kneading extruder, the raw materials are not smoothly fed into the biaxial kneading extruder. In addition to enabling high-efficiency production without any trouble, it is possible to provide a method that can satisfy the conventionally required level in the physical properties of the resin composition such as dispersion of powder and elastomer and impact resistance. .
 以下に実施例を用いて、本発明を更に詳細に説明するが、本発明はこれによって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 実施例中の各項目の測定値は、下記の方法で測定した。 Measured values of each item in the examples were measured by the following methods.
(1)アイゾット衝撃強度(単位:kJ/m2
 JIS K7110に規定された方法に従い、株式会社東洋精機製作所製Izod衝撃試験機を用いて下記方法により作製された試験片のアイゾッド衝撃強度を測定した。測定は23℃の温度で実施した。
(試験片の作製方法)
 樹脂組成物のペレットを住友重機械社製Sycap110/50型射出成形機を用いて、成形温度200℃、金型冷却温度30℃、射出時間15秒、冷却時間30秒で、縦64×横12.7×厚み6.4(mm)の角棒の成形体を射出成形した。上記成形体の厚み方向にV型ノッチ加工し、試験片を得た。
(1) Izod impact strength (unit: kJ / m 2 )
According to the method defined in JIS K7110, the Izod impact strength of the test piece produced by the following method was measured using an Izod impact tester manufactured by Toyo Seiki Seisakusho. The measurement was performed at a temperature of 23 ° C.
(Test piece preparation method)
Using a Sycap 110/50 type injection molding machine manufactured by Sumitomo Heavy Industries, Ltd., the resin composition pellets were molded at a molding temperature of 200 ° C., a mold cooling temperature of 30 ° C., an injection time of 15 seconds, a cooling time of 30 seconds, and a length of 64 × width 12 A molded body of a square bar having a thickness of 0.7 × 6.4 (mm) was injection molded. A V-shaped notch was processed in the thickness direction of the molded body to obtain a test piece.
 原料として、ポリプロピレン(転移温度160℃)のペレット、オレフィン系エラストマーペレットであるエチレン-ブテン共重合体ペレット(転移温度38℃)のとエチレン-オクテン共重合体のペレット(転移温度35℃)の、粉体としてタルク(見掛け密度0.6g/ml)を用いた。また、実効体積の算出に用いるタルクの見掛け密度は、重量式フィーダーからスクリュー式サイドフィーダーに投入される状態を模擬的に再現すべく、2.3mの高さから落下させて、メスシリンダーに受けて単位体積当たりの重量を測定することで求められ、0.51g/mlであった。 As raw materials, polypropylene (transition temperature 160 ° C.) pellets, olefin elastomer pellets ethylene-butene copolymer pellets (transition temperature 38 ° C.) and ethylene-octene copolymer pellets (transition temperature 35 ° C.) Talc (apparent density 0.6 g / ml) was used as the powder. In addition, the apparent density of talc used to calculate the effective volume is dropped from a height of 2.3 m and received by the graduated cylinder in order to simulate the state of being fed from the weight type feeder to the screw type side feeder. It was obtained by measuring the weight per unit volume, and was 0.51 g / ml.
 (実施例1)
 二軸混練押出機として、シリンダー径47mmの同方向かみ合いタイプの二軸混練押出機を用いた。該二軸混練押出機は、シリンダーと、上記シリンダー内に収容される二本のスクリュー軸を有し、シリンダーは、上流から、第一搬送ゾーン、第一混練ゾーン、第二搬送ゾーン、第二混練ゾーン、第三搬送ゾーン、第三混練ゾーン、及び第四搬送ゾーンに分けられる。シリンダーには、第一搬送ゾーン内の最上流部に供給口を設け、第三搬送ゾーン内の最上流部にオープンベントを設け、第四搬送ゾーン内の最上流部に真空ベントを設けた。シリンダーの第二搬送ゾーンには二軸のスクリュー式サイドフィーダーを接続し、スクリュー式サイドフィーダーには重量式フィーダーを接続した。
 第一混練ゾーンに対応する部分のスクリューには、第一混練ゾーンの樹脂圧力が1MPa未満になるように、順(順送り方向)ディスクのみを配置した。上記順ディスクの厚みは0.2D(Dはスクリュー径)であった。第二混練ゾーンに対応する部分のスクリューには、第二混練ゾーンの樹脂圧力が5MPa未満になるように、上流から順ディスクを長く配置し、最後に逆ディスクを配置した。上記順ディスクおよび逆ディスクの厚みはそれぞれ0.5Dであった。これらのディスクの空隙距離は、フライトの空隙距離の2倍であった。第二混練ゾーンの逆ディスクの下流に、オープンベントを設けた。
第三混練ゾーンに対応する部分のスクリューには、第三混練ゾーンの樹脂圧力が1~5MPaになるように、順ディスク、直交ディスク、逆ディスクを配置し、いずれのディスクの厚みも0.1Dのものを用いた。
 ポリプロピレンペレット40重量部とオレフィン系エラストマーペレット20重量部と添加剤とを二軸混練押出機の第一搬送ゾーン内の最上流部の供給口から二軸混練押出機内に供給した。タルク20重量部とポリプロピレンペレット20重量部とを重量式フィーダーに供給し、重量式フィーダーから二軸のスクリュー式サイドフィーダーに供給し、二軸のスクリュー式サイドフィーダーから二軸混練押出機内に供給した。二軸混練押出機内に供給されるポリプロピレンペレットとオレフィン系エラストマーペレットとタルクの合計のフィード量は800kg/時間であった。重量式フィーダーから二軸のスクリュー式サイドフィーダーに供給されるタルクの実効体積を314L/時間とし、スクリュー式サイドフィーダーの搬送能力を801L/時間とした。スクリュー式サイドフィーダーの搬送能力は、重量式フィーダーからスクリュー式サイドフィーダーに供給されるタルクの単位時間あたりの体積の約2.5倍であった。上記原料を二軸混練押出機のスクリュー回転数1350rpmで溶融混練し、上記真空ベントから減圧吸引を行うことにより、原料が順調に二軸混練押出機内に供給され安定的にポリプロピレン、オレフィン系エラストマー、添加剤およびタルクを含有する樹脂組成物ペレットを生産することができた。このとき、第一混練ゾーンの樹脂圧力は0.1MPa、第二混練ゾーンの樹脂圧力は0.4MPa、第三混練ゾーンの樹脂圧力は3.6MPaであった。
 得られた樹脂組成物ペレットからなる射出成形体は、アイゾット衝撃強度が58kJ/m2であった。
Example 1
As the biaxial kneading extruder, a twin-screw kneading extruder of the same direction meshing type with a cylinder diameter of 47 mm was used. The biaxial kneading and extruding machine has a cylinder and two screw shafts accommodated in the cylinder. From the upstream, the cylinder has a first conveyance zone, a first kneading zone, a second conveyance zone, a second It is divided into a kneading zone, a third transport zone, a third kneading zone, and a fourth transport zone. The cylinder was provided with a supply port at the uppermost stream in the first transfer zone, an open vent at the uppermost stream in the third transfer zone, and a vacuum vent at the uppermost stream in the fourth transfer zone. A biaxial screw-type side feeder was connected to the second transport zone of the cylinder, and a weight-type feeder was connected to the screw-type side feeder.
In the screw corresponding to the first kneading zone, only a forward (forward feed direction) disk was disposed so that the resin pressure in the first kneading zone was less than 1 MPa. The thickness of the forward disk was 0.2D (D is the screw diameter). In the screw corresponding to the second kneading zone, a forward disk was placed long from the upstream side, and finally a reverse disk was placed so that the resin pressure in the second kneading zone was less than 5 MPa. The thicknesses of the forward disk and the reverse disk were 0.5D, respectively. The air gap distance of these discs was twice the air gap distance of the flight. An open vent was provided downstream of the reverse disk in the second kneading zone.
For the screw corresponding to the third kneading zone, a forward disk, an orthogonal disk, and a reverse disk are arranged so that the resin pressure in the third kneading zone is 1 to 5 MPa, and the thickness of each disk is 0.1D. The thing of was used.
40 parts by weight of polypropylene pellets, 20 parts by weight of olefin-based elastomer pellets, and additives were fed into the twin-screw kneading extruder from the supply port at the most upstream part in the first transport zone of the twin-screw kneading extruder. 20 parts by weight of talc and 20 parts by weight of polypropylene pellets were supplied to a gravimetric feeder, fed from a gravimetric feeder to a biaxial screw side feeder, and fed from a biaxial screw side feeder into a biaxial kneading extruder. . The total feed amount of polypropylene pellets, olefinic elastomer pellets and talc fed into the twin-screw kneading extruder was 800 kg / hour. The effective volume of talc supplied from the weight type feeder to the biaxial screw type side feeder was 314 L / hour, and the conveying capacity of the screw type side feeder was 801 L / hour. The conveying capacity of the screw-type side feeder was about 2.5 times the volume per unit time of talc supplied from the weight-type feeder to the screw-type side feeder. The raw material is melt-kneaded at a screw rotational speed of 1350 rpm of a twin-screw kneading extruder and suctioned under reduced pressure from the vacuum vent, so that the raw material is smoothly fed into the twin-screw kneading extruder and stably polypropylene, olefin-based elastomer, Resin composition pellets containing additives and talc could be produced. At this time, the resin pressure in the first kneading zone was 0.1 MPa, the resin pressure in the second kneading zone was 0.4 MPa, and the resin pressure in the third kneading zone was 3.6 MPa.
The injection molded article made of the obtained resin composition pellets had an Izod impact strength of 58 kJ / m 2 .
 (比較例1)
 実施例1と同じ二軸混練押出機を用い、比較例1の第一混練ゾーンに対応する部分のスクリューには、第一混練ゾーンの樹脂圧力が1MPa以上になるように、順ディスク、直交ディスク、逆ディスクを配置した。さらに、二軸混練押出機内に供給されるポリプロピレンペレットとオレフィン系エラストマーペレットとタルクの合計のフィード量を900kg/時間とする以外は、実施例1と同様に行った。原料が順調に二軸混練押出機内に供給され安定的に樹脂組成物ペレットを生産することができた。このとき、第一混練ゾーンの樹脂圧力は5.5MPa、第二混練ゾーンの樹脂圧力は0.4MPa、第三混練ゾーンの樹脂圧力は2.4MPaであった。得られた樹脂組成物ペレットを用いた射出成形品体は、アイゾット衝撃強度が49kJ/m2であった。
(Comparative Example 1)
The same twin-screw kneading extruder as in Example 1 was used. For the screw corresponding to the first kneading zone in Comparative Example 1, a forward disk and an orthogonal disk were used so that the resin pressure in the first kneading zone was 1 MPa or more. Arranged the reverse disk. Furthermore, the same procedure as in Example 1 was performed except that the total feed amount of polypropylene pellets, olefinic elastomer pellets and talc fed into the twin-screw kneading extruder was 900 kg / hour. The raw material was smoothly fed into the twin-screw kneading extruder, and the resin composition pellets could be produced stably. At this time, the resin pressure in the first kneading zone was 5.5 MPa, the resin pressure in the second kneading zone was 0.4 MPa, and the resin pressure in the third kneading zone was 2.4 MPa. An injection molded article using the obtained resin composition pellets had an Izod impact strength of 49 kJ / m 2 .
(比較例2)
実施例1と同じ二軸混練押出機を用い、二軸混練押出機のシリンダーには、実施例1の第二混練ゾーンよりも少し下流側に、比較例2の第一混練ゾーンを設け、実施例1の第三混練ゾーンと同じ位置に、比較例2の第二混練ゾーンを設け、比較例2の第一混練ゾーンと第二混練ゾーンの間にはオープンベントを設け、比較例2の第二混練ゾーンより下流に真空ベントを設けた。比較例1の第一混練ゾーンより上流のゾーンは、比較例1の第一搬送ゾーンとした。
 比較例2の第一混練ゾーンに対応する部分のスクリューには、第一混練ゾーンの樹脂圧力が0.2~3MPaになるように、上流から順ディスクを長く配置し、最後に逆ディスクを配置した。比較例2の第二混練ゾーンに対応する部分のスクリューには、第二混練ゾーンの樹脂圧力が1~4MPaになるように、順ディスク、直交ディスク、逆ディスクを用い配置した。
 ポリプロピレンペレット60重量部とオレフィン系エラストマーペレット20重量部と添加剤とタルク20重量部とを一括して二軸混練押出機の第一搬送ゾーン内の最上流部の供給口から二軸混練押出機内に供給し、原料が順調に二軸混練押出機内に供給され安定的にポリプロピレン、オレフィン系エラストマー、添加剤およびタルクを含有する樹脂組成物ペレットを生産可能な条件に調整すると、ポリプロピレンペレットとオレフィン系エラストマーペレットとタルクの合計のフィード量は450kg/時間、二軸混練押出機のスクリュー回転数は1320rpmの条件であった。このとき、第一混練ゾーンの樹脂圧力は1.8MPa、第二混練ゾーンの樹脂圧力は1.6MPaであった。得られた樹脂組成物ペレットを用いた射出成形体は、アイゾット衝撃強度が56kJ/m2であった。
 二軸混練押出機のスクリュー回転数を1000rpmまで下げると、原料が順調に二軸混練押出機内に供給されず、生産が継続できなかった。
(Comparative Example 2)
Using the same biaxial kneading extruder as in Example 1, the cylinder of the biaxial kneading extruder is provided with the first kneading zone of Comparative Example 2 slightly downstream from the second kneading zone of Example 1. The second kneading zone of Comparative Example 2 is provided at the same position as the third kneading zone of Example 1, an open vent is provided between the first kneading zone and the second kneading zone of Comparative Example 2, and the second kneading zone of Comparative Example 2 is provided. A vacuum vent was provided downstream of the two kneading zones. The zone upstream of the first kneading zone of Comparative Example 1 was the first transport zone of Comparative Example 1.
In the screw corresponding to the first kneading zone of Comparative Example 2, a forward disk is arranged long from the upstream so that the resin pressure in the first kneading zone is 0.2 to 3 MPa, and finally a reverse disk is arranged. did. For the screw corresponding to the second kneading zone of Comparative Example 2, a forward disk, an orthogonal disk, and a reverse disk were arranged so that the resin pressure in the second kneading zone was 1 to 4 MPa.
60 parts by weight of polypropylene pellets, 20 parts by weight of olefin-based elastomer pellets, 20 parts by weight of additives and talc are batched into the twin-screw kneading extruder from the most upstream supply port in the first conveying zone of the twin-screw kneading extruder. When the raw material is steadily fed into the twin-screw kneading extruder and the resin composition pellets containing polypropylene, olefinic elastomer, additive and talc are adjusted to the conditions that can be produced stably, the polypropylene pellets and olefinic The total feed amount of the elastomer pellets and talc was 450 kg / hour, and the screw rotation speed of the twin-screw kneading extruder was 1320 rpm. At this time, the resin pressure in the first kneading zone was 1.8 MPa, and the resin pressure in the second kneading zone was 1.6 MPa. The injection molded product using the obtained resin composition pellets had an Izod impact strength of 56 kJ / m 2 .
When the screw rotation speed of the twin-screw kneading extruder was lowered to 1000 rpm, the raw materials were not smoothly fed into the twin-screw kneading extruder and production could not be continued.
 二軸混練押出機を用いて溶融混練して樹脂組成物を製造する場合、樹脂組成物に過度のエネルギーを負荷しない適当なスクリュー回転数で安定的に溶融混練できる方が好ましく、できるだけ多くの原料を供給して小さい回転数で安定的に溶融混練できる方が生産性が高い。比較例2では、実施例1よりも原料の合計のフィード量を少なくしないと、樹脂組成物を製造できないため、生産性が低く、生産安定性も悪い。 When a resin composition is produced by melt-kneading using a twin-screw kneader / extruder, it is preferable that the resin composition can be stably melt-kneaded at an appropriate screw speed without applying excessive energy to the resin composition, and as many raw materials as possible Is more productive if it can be stably melt-kneaded at a low rotational speed. In Comparative Example 2, since the resin composition cannot be produced unless the total feed amount of the raw materials is less than that in Example 1, the productivity is low and the production stability is also poor.

Claims (7)

  1.  転移温度200℃未満の熱可塑性樹脂と粉体とを二軸混練押出機を用いて溶融混練する樹脂組成物の製造方法であって、
    前記粉体は、見掛け密度0.1~1.5g/mlの無機フィラーおよび見掛け密度0.1~1.0g/mlかつ転移温度200℃以上の熱可塑性樹脂粉体からなる群より選ばれる一種以上の粉体であり、
    前記二軸混練押出機は、上流から順に、供給口、第一混練ゾーン、重量式フィーダーが接続されたスクリュー式サイドフィーダー、第二混練ゾーン、及びベント口を備え、
    前記転移温度200℃未満の熱可塑性樹脂は前記供給口から前記二軸混練押出機に供給され、
    前記粉体は前記重量式フィーダーから前記スクリュー式サイドフィーダーを経て前記二軸混練押出機に供給され、
    前記スクリュー式サイドフィーダーの搬送能力は、前記重量式フィーダーから前記スクリュー式サイドフィーダーに供給される前記粉体の単位時間あたりの実効体積の2倍以上であり、
    前記第一混練ゾーンの樹脂圧力が1MPa未満であり、前記第二混練ゾーンの樹脂圧力が5MPa未満である条件で溶融混練し、
    気体を前記ベント口から除去する樹脂組成物の製造方法。
    A method for producing a resin composition in which a thermoplastic resin having a transition temperature of less than 200 ° C. and a powder are melt-kneaded using a biaxial kneading extruder,
    The powder is a kind selected from the group consisting of an inorganic filler having an apparent density of 0.1 to 1.5 g / ml and a thermoplastic resin powder having an apparent density of 0.1 to 1.0 g / ml and a transition temperature of 200 ° C. or higher. Or more powder,
    The biaxial kneading extruder includes, in order from the upstream, a supply port, a first kneading zone, a screw-type side feeder to which a weight type feeder is connected, a second kneading zone, and a vent port,
    The thermoplastic resin having a transition temperature of less than 200 ° C. is supplied from the supply port to the biaxial kneading extruder,
    The powder is supplied from the gravimetric feeder through the screw-type side feeder to the biaxial kneading extruder,
    The conveying capacity of the screw-type side feeder is at least twice the effective volume per unit time of the powder supplied from the weight-type feeder to the screw-type side feeder,
    The resin pressure in the first kneading zone is less than 1 MPa, and the melt pressure is kneaded under the condition that the resin pressure in the second kneading zone is less than 5 MPa,
    A method for producing a resin composition, wherein gas is removed from the vent port.
  2.  前記第二混練ゾーンの樹脂圧力が3MPa未満である請求項1に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 1, wherein the resin pressure in the second kneading zone is less than 3 MPa.
  3.  前記二軸混練押出機が、前記ベント口のさらに下流に、前記第三混練ゾーンと該第三混練ゾーンより下流の減圧ベント口とを有する請求項1または2に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 1 or 2, wherein the biaxial kneader-extruder has the third kneading zone and a decompression vent port downstream from the third kneading zone further downstream of the vent port. .
  4.  前記第三混練ゾーンの樹脂圧力が1MPa以上5MPa未満である請求項3に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 3, wherein the resin pressure in the third kneading zone is 1 MPa or more and less than 5 MPa.
  5.  前記スクリュー式サイドフィーダーの搬送能力が、前記重量式フィーダーから前記スクリュー式サイドフィーダーに供給される粉体の単位時間あたりの実効体積の2.4倍以上である請求項1~4のいずれか一項に記載の樹脂組成物の製造方法。 The conveying capability of the screw-type side feeder is 2.4 times or more the effective volume per unit time of the powder supplied from the weight-type feeder to the screw-type side feeder. The manufacturing method of the resin composition as described in a term.
  6.  前記粉体と、前記粉体100重量部に対し25重量部以上の樹脂ペレットとが前記重量式フィーダーから前記スクリュー式サイドフィーダーを経て前記二軸混練押出機に供給される請求項1~5のいずれか一項に記載の樹脂組成物の製造方法。 The powder and 25 parts by weight or more of resin pellets with respect to 100 parts by weight of the powder are supplied from the gravimetric feeder to the twin-screw kneading extruder through the screw-type side feeder. The manufacturing method of the resin composition as described in any one.
  7.  前記粉体が、タルク、カオリナイト、およびクレーからなる群より選ばれる一種以上の粉体であり、前記転移温度200℃未満の熱可塑性樹脂が、ポリオレフィン系樹脂である請求項1~6のいずれか一項に記載の樹脂組成物の製造方法。 7. The powder according to claim 1, wherein the powder is one or more powders selected from the group consisting of talc, kaolinite, and clay, and the thermoplastic resin having a transition temperature of less than 200 ° C. is a polyolefin resin. A method for producing the resin composition according to claim 1.
PCT/JP2017/012871 2016-03-31 2017-03-29 Resin composition production method WO2017170675A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018508143A JP6871914B2 (en) 2016-03-31 2017-03-29 Method for manufacturing resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-070640 2016-03-31
JP2016070640 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170675A1 true WO2017170675A1 (en) 2017-10-05

Family

ID=59964705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012871 WO2017170675A1 (en) 2016-03-31 2017-03-29 Resin composition production method

Country Status (2)

Country Link
JP (1) JP6871914B2 (en)
WO (1) WO2017170675A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185647A (en) * 1990-11-21 1992-07-02 Daikin Ind Ltd Production of granulated filled polytetrafluoroethylene powder
JPH10180841A (en) * 1996-12-25 1998-07-07 Asahi Chem Ind Co Ltd Side feed extruder of powder and extrusion method using the extruder
JP2002187125A (en) * 2000-12-19 2002-07-02 Japan Polychem Corp Method for manufacturing polypropylene resin composition, polypropylene resin composition, and molding
JP2004027125A (en) * 2002-06-27 2004-01-29 Sharp Corp Molding material and molding and its manufacturing method, and method of re-using waste toner
JP2009280710A (en) * 2008-05-22 2009-12-03 Daiwa Can Co Ltd Antistatic resin composition and film made thereof
JP2013071281A (en) * 2011-09-27 2013-04-22 Sumitomo Chemical Co Ltd Method for producing resin composition
WO2017010511A1 (en) * 2015-07-16 2017-01-19 住友化学株式会社 Method for producing resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185647A (en) * 1990-11-21 1992-07-02 Daikin Ind Ltd Production of granulated filled polytetrafluoroethylene powder
JPH10180841A (en) * 1996-12-25 1998-07-07 Asahi Chem Ind Co Ltd Side feed extruder of powder and extrusion method using the extruder
JP2002187125A (en) * 2000-12-19 2002-07-02 Japan Polychem Corp Method for manufacturing polypropylene resin composition, polypropylene resin composition, and molding
JP2004027125A (en) * 2002-06-27 2004-01-29 Sharp Corp Molding material and molding and its manufacturing method, and method of re-using waste toner
JP2009280710A (en) * 2008-05-22 2009-12-03 Daiwa Can Co Ltd Antistatic resin composition and film made thereof
JP2013071281A (en) * 2011-09-27 2013-04-22 Sumitomo Chemical Co Ltd Method for producing resin composition
WO2017010511A1 (en) * 2015-07-16 2017-01-19 住友化学株式会社 Method for producing resin composition

Also Published As

Publication number Publication date
JPWO2017170675A1 (en) 2019-02-07
JP6871914B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
WO2017179584A1 (en) Method for manufacturing resin composition and biaxial kneading and extruding machine
JP5369614B2 (en) Extruder for powder raw material and method for producing thermoplastic resin composition
WO2006123824A1 (en) Process for producing resin composition containing fibrous filler in high concentration and resin composition pellet
JP3701391B2 (en) Extruder for powder and extrusion method using the same
JP2013000913A (en) Extruder and melting and kneading method using the same
JP6506396B2 (en) Method for producing resin composition
JP2008238626A (en) Manufacturing method for thermoplastic resin composition
JPH10180840A (en) Highly productive extruder and extrusion method using that
JP2010089500A5 (en)
JP6126351B2 (en) Raw material supply apparatus, resin composition manufacturing apparatus using the same, and resin composition manufacturing method
JP2004510600A (en) Mixing device and method for producing thermoplastically processable molding materials, especially additive masterbatches
JPH09239726A (en) Tandem type kneading apparatus and kneading of thermoplastic resin and/or rubber using the same
WO2017170675A1 (en) Resin composition production method
CN104105580A (en) Resin mixture fabrication method
JP7215942B2 (en) Side feeder, extruder, and method for manufacturing thermoplastic resin composition
JP2018183933A (en) Method for manufacturing polycarbonate resin composition
JP4219211B2 (en) Production method and flame-retardant resin composition thereof
JP4330490B2 (en) Method for producing thermoplastic resin composition containing compressed talc using biaxial continuous kneader
TW201249627A (en) Method for manufacturing polysulfone pellets
JP5032244B2 (en) Apparatus for producing fiber-reinforced thermoplastic resin composition and method for producing the same
JP2017222734A (en) Method for producing thermoplastic resin composition
JP2002079515A (en) Method for manufacturing thermoplastic resin composition and rubber composition
JP2002187125A (en) Method for manufacturing polypropylene resin composition, polypropylene resin composition, and molding
JP2014233865A (en) Apparatus and method for producing inorganic material-highly filled resin pellet
JP4564534B2 (en) Breaker plate and method for granulating thermoplastic resin composition using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508143

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775209

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775209

Country of ref document: EP

Kind code of ref document: A1