JP2009280710A - Antistatic resin composition and film made thereof - Google Patents

Antistatic resin composition and film made thereof Download PDF

Info

Publication number
JP2009280710A
JP2009280710A JP2008134570A JP2008134570A JP2009280710A JP 2009280710 A JP2009280710 A JP 2009280710A JP 2008134570 A JP2008134570 A JP 2008134570A JP 2008134570 A JP2008134570 A JP 2008134570A JP 2009280710 A JP2009280710 A JP 2009280710A
Authority
JP
Japan
Prior art keywords
resin composition
polyester
antistatic
group
antistatic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008134570A
Other languages
Japanese (ja)
Other versions
JP5126840B2 (en
Inventor
Keita Katsuma
啓太 勝間
Sadamu Nakatsuka
定 中司
Kanejiro Yokota
兼二郎 横田
Hideaki Sotomura
秀明 外村
Keiichi Kanbe
敬一 神戸
Hiroshi Jodai
洋 城代
Masaya Goino
昌也 五位野
Yasuhiro Kakita
泰宏 柿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Can Co Ltd
Toho Chemical Industry Co Ltd
Bell Polyester Products Inc
Futamura Chemical Co Ltd
Original Assignee
Daiwa Can Co Ltd
Toho Chemical Industry Co Ltd
Bell Polyester Products Inc
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Can Co Ltd, Toho Chemical Industry Co Ltd, Bell Polyester Products Inc, Futamura Chemical Co Ltd filed Critical Daiwa Can Co Ltd
Priority to JP2008134570A priority Critical patent/JP5126840B2/en
Publication of JP2009280710A publication Critical patent/JP2009280710A/en
Application granted granted Critical
Publication of JP5126840B2 publication Critical patent/JP5126840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester resin composition causing reduced contamination of an adherend by bleeding without lowering transparency and having an antistatic performance (especially a surface resistivity of ≤10<SP>10</SP>Ω/sq.) and a polyester film made of the composition. <P>SOLUTION: The antistatic resin composition comprises (A) a polyester polycondensation product composed of ethylene terephthalate as ≥90 mol% of the main repeating units, (B) a polyester polycondensation product containing a monomer component having an alicyclic hydrocarbon group as at least one component, and (C) an ionic liquid. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、経時によるブリードアウトが少なく且つ透明性に優れた帯電防止性ポリエステル樹脂組成物とそれからなるポリエステルフィルムに関するものである。特に、電子機器、電化製品、自動車、建材などを保護する表面保護フィルムに関するものである。   The present invention relates to an antistatic polyester resin composition having little bleed-out over time and excellent transparency, and a polyester film comprising the same. In particular, the present invention relates to a surface protective film for protecting electronic devices, electrical appliances, automobiles, building materials, and the like.

熱可塑性樹脂材料は、易型性に富み、安価であることからそれぞれの特性に応じて、包装分野を始めとして多くの分野で使用されている。中でも、比較的耐熱性に富み、環境負荷の少ないポリエステル系樹脂材料が多く使用されている。しかしながら、ポリエステル系樹脂は電気抵抗率が高く帯電し易いため、成形品の表面に静電気に起因する埃や塵が付着して、透明性を要求される包装材などの価値を低下させるという問題が起こりやすい。   Thermoplastic resin materials are used in many fields including the packaging field depending on their properties because they are easy to mold and inexpensive. Among them, a polyester resin material having a relatively high heat resistance and a low environmental load is often used. However, since polyester resins have high electrical resistivity and are easily charged, there is a problem in that dust or dust caused by static electricity adheres to the surface of the molded product, reducing the value of packaging materials that require transparency. It is easy to happen.

かかる問題を解決するために、帯電防止性を有した樹脂組成物は広く普及している。このような帯電防止性樹脂組成物としては、例えば種々の樹脂にカーボンブラックなどの導電性フィラーを高充填練り込みした組成物があり、非常に高い帯電防止性能(体積抵抗率で10Ω・cmレベル)を有しているが、成形物の透明性が無い、フィラーの脱落により被着体を汚染しやすい、あまり高くないレベルの帯電防止性(10〜1010Ω・cm)を付与するには安定生産が困難であるという問題があった。 In order to solve this problem, resin compositions having antistatic properties are widely used. As such an antistatic resin composition, for example, there is a composition in which a conductive filler such as carbon black is highly filled and kneaded into various resins, and extremely high antistatic performance (volume resistivity of 10 5 Ω · cm level), but the molded product is not transparent, the adherend is easily contaminated by dropping the filler, and the antistatic property (10 7 to 10 10 Ω · cm) is not so high. However, there was a problem that stable production was difficult.

一方、いわゆる親水性の活性剤を用いたものが多く提案されているが、これらは末端基にヒドロキシル化合物を有しているので温度や湿度の環境変化によって帯電防止性能が左右される、ブリードアウトが生じやすい等という問題があった。   On the other hand, many proposals using so-called hydrophilic activators have been proposed, but these have hydroxyl compounds at the end groups, so the antistatic performance is affected by changes in the temperature and humidity environment. There was a problem that it was easy to occur.

例えば特許文献1では、有機スルホン酸型帯電防止剤を樹脂に練り込む方法や、特許文献2ではポリアルキレンオキシドとモノグリコールとスルホン化フタル酸金属塩もしくはそのエステルを反応させて得られるポリエーテルエステル系帯電防止剤を用いることが記載されている。   For example, Patent Document 1 discloses a method of kneading an organic sulfonic acid type antistatic agent into a resin, and Patent Document 2 discloses a polyether ester obtained by reacting a polyalkylene oxide, a monoglycol and a sulfonated phthalic acid metal salt or an ester thereof. The use of an antistatic agent is described.

しかしながら、特許文献1のごとく、界面活性剤を樹脂内部に添加する方法では、界面活性剤が経時的に樹脂成形物表面にブリードアウトし、被着体を汚染しやすい、経時的に帯電防止性能が低下するなどの問題があり、更なる改良が求められる。また、特許文献2のごとく、分子量を高くした内部添加型帯電防止剤の場合は、実用上支障ないレベルの帯電防止効果を得ようとすれば、大量に添加する必要があり、その場合はベース樹脂との屈折率差により白濁して透明性を落とすものであった。   However, as in Patent Document 1, in the method of adding a surfactant to the inside of the resin, the surfactant bleeds out to the surface of the resin molding with time, and the adherend is easily contaminated. There is a problem such as lowering, and further improvement is required. Further, as in Patent Document 2, in the case of an internally added antistatic agent having a high molecular weight, it is necessary to add a large amount in order to obtain an antistatic effect at a level that does not hinder practical use. Due to the difference in refractive index with the resin, it became cloudy and lowered transparency.

また、表面保護フィルム材料としては、特許文献3、特許文献4、特許文献5などに記載されるようにフィルムの片面あるいは両面へ水溶性イオン導電性樹脂や4級アンモニウム塩を主体とした樹脂組成物を塗布して塗膜を形成する方法が記載されている。   In addition, as a surface protective film material, a resin composition mainly composed of a water-soluble ion conductive resin or a quaternary ammonium salt on one side or both sides of a film as described in Patent Document 3, Patent Document 4, Patent Document 5, etc. A method for forming a coating film by applying an object is described.

かかる手法の場合、帯電防止剤が経時的にブリードアウトすることはなく、帯電防止剤が表面に存在するために、帯電防止効果が得られることが広く知られている。しかしながら、フィルム表面に塗液を塗布する場合、塗布、乾燥を別の工程で実施する必要があるので効率的ではない。また、表面に塗膜を形成しているために、外部からの衝撃などで傷が付き易い、剥がれ易く帯電防止性組成物が脱落して被着体を汚すなどの課題が残っている。   In the case of such a method, it is widely known that the antistatic agent does not bleed out with time and the antistatic effect is obtained because the antistatic agent is present on the surface. However, when a coating solution is applied to the film surface, it is not efficient because application and drying must be performed in separate steps. In addition, since the coating film is formed on the surface, there remain problems such as being easily scratched by an external impact or the like, being easily peeled off and the antistatic composition falling off and soiling the adherend.

一方、上記の問題を解決するために、特許文献6では室温付近の広い温度範囲において液体であり、蒸気圧が極めて低くカチオンとアニオンからなる塩であるイオン液体を、熱可塑性樹脂に含有させる手法が提案されている。しかしながら、かかる文献における熱可塑性樹脂はポリカーボネート系樹脂にイオン液体を単に分散させるものであり、この場合の帯電防止性能は満足いくものではなく、またポリエステル樹脂に言及したものではない。   On the other hand, in order to solve the above problem, Patent Document 6 discloses a method in which a thermoplastic resin contains an ionic liquid which is a liquid in a wide temperature range near room temperature and has a very low vapor pressure and a salt composed of a cation and an anion. Has been proposed. However, the thermoplastic resin in this document simply disperses the ionic liquid in the polycarbonate-based resin, and the antistatic performance in this case is not satisfactory, and the polyester resin is not mentioned.

ポリエステル系樹脂とイオン液体の併用に関しては、特許文献7に側鎖に炭化水素基を含有した分子量を特定したポリエステルとイオン液体を含有した粘着剤組成物が記載されている。   Regarding the combined use of a polyester-based resin and an ionic liquid, Patent Document 7 describes a pressure-sensitive adhesive composition containing a polyester and an ionic liquid having a specified molecular weight containing a hydrocarbon group in the side chain.

しかしながら、かかる技術は保護フィルムなどの粘着剤に限定したものであり、そのために脂肪族ポリステルを主体としたガラス転移温度が0℃よりも低く、水溶液としての帯電防止性液体にかかるものであり、該組成物ではフィルムや成型物を単独で成型することはできない。   However, such technology is limited to adhesives such as protective films, and for that reason, the glass transition temperature mainly composed of aliphatic polyester is lower than 0 ° C., and is applied to an antistatic liquid as an aqueous solution. With this composition, a film or a molded product cannot be molded alone.

特開平9−40855号公報Japanese Patent Laid-Open No. 9-40855 特開平9−59601号公報JP-A-9-59601 特開平5−1164号公報JP-A-5-1164 特開平10−330518号公報Japanese Patent Laid-Open No. 10-330518 特開2004−123932号公報JP 2004-123932 A 特開2005−15573号公報JP 2005-15573 A 特開2007−8985号公報JP 2007-8985 A

本発明の目的は、このような事情に照らして、透明性が損なわれること無く、ブリードアウトによる被着体への汚染が低減され、帯電防止性能(特に表面抵抗率が1010Ω/sq.以下)が付与されたポリエステル樹脂組成物を提供することにある。 In light of such circumstances, the object of the present invention is to reduce contamination of the adherend due to bleed-out without impairing transparency, and to provide antistatic performance (especially surface resistivity of 10 10 Ω / sq.). It is in providing the polyester resin composition to which the following) was provided.

本発明者らは、上記課題を解決するため鋭意検討した結果、驚くべきことに、単独では全く帯電防止性能を持たない脂環式炭化水素基を有するモノマー成分を含有するポリエステル樹脂組成物、すなわち従来にはない帯電防止性樹脂組成物を用いることによって、上記目的を達成するに至り、また該樹脂組成物を用いたポリエステルフィルムを提供するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have surprisingly found that a polyester resin composition containing a monomer component having an alicyclic hydrocarbon group that has no antistatic performance by itself, that is, By using an antistatic resin composition that has not existed before, the above object has been achieved, and a polyester film using the resin composition has been provided.

すなわち、本発明の帯電防止性樹脂組成物は、主たる繰り返し単位の90モル%以上がエチレンテレフタレートからなるポリステル重縮合体(A)と、少なくとも一成分として脂環式炭化水素基を有するモノマー成分を含有するポリエステル重縮合体(B)と、イオン液体(C)とを含有することを特徴としている。また、本発明のポリエステルフィルムは、少なくとも一つの層が該帯電防止性樹脂組成物からなることを特徴とする。   That is, the antistatic resin composition of the present invention comprises a polyester polycondensate (A) in which 90 mol% or more of main repeating units are composed of ethylene terephthalate, and a monomer component having an alicyclic hydrocarbon group as at least one component. The polyester polycondensate (B) and ionic liquid (C) are contained. The polyester film of the present invention is characterized in that at least one layer is made of the antistatic resin composition.

本発明によると、良好な帯電防止性能を有しており、ブリードアウトによる被着体への汚染が少なく、透明性に優れた帯電防止性樹脂組成物を得ることができる。また、該帯電防止性樹脂組成物は、単独でもフィルムや成形品への成形が可能であり、かつ汎用のポリエステル樹脂やポリアミド樹脂などの熱可塑性樹脂との共押し出しによる成形も可能であるために、機械特性に優れており、フィルムの表面が剥離することなく、またフィルム表面の傷付きも防ぐことができる。このような帯電防止性樹脂組成物を少なくとも一層に用いたポリエステルフィルムは、電子機器、電化製品、自動車、建材などを保護する表面保護フィルムに供するに好適なものとなる。   According to the present invention, it is possible to obtain an antistatic resin composition having excellent antistatic performance, less contamination of the adherend due to bleed-out, and excellent transparency. Further, the antistatic resin composition can be molded into a film or a molded product by itself, and can be molded by co-extrusion with a thermoplastic resin such as a general-purpose polyester resin or polyamide resin. It is excellent in mechanical properties, can prevent the film surface from peeling, and can prevent the film surface from being damaged. A polyester film using such an antistatic resin composition in at least one layer is suitable for use as a surface protective film for protecting electronic devices, electrical appliances, automobiles, building materials, and the like.

以下に、本発明を詳細に説明する。本発明の帯電防止性樹脂組成物は、ポリエステル重縮合体(A)と、脂環式炭化水素基を有するモノマー成分を含有するポリステル重縮合体(B)と、イオン液体(C)とを含有するものである。   The present invention is described in detail below. The antistatic resin composition of the present invention comprises a polyester polycondensate (A), a polyester polycondensate (B) containing a monomer component having an alicyclic hydrocarbon group, and an ionic liquid (C). To do.

ポリエステル重縮合体(A)
本発明におけるポリステル重縮合体(A)は、主たる繰り返し単位の90モル%以上がエチレンテレフタレートである。すなわち、カルボン酸成分の90モル%以上がテレフタル酸あるいはそのアルキルエステルからなり、またグリコール成分の90モル%以上がエチレングリコールからなる。エチレンテレフタレート単位が90モル%以上であれば特に制限されることなく用いることができ、フィルム成形品の特性を維持できる範囲で他のカルボン酸成分やグリコール成分を用いて改質することができる。エチレンテレフタレート単位が90モル%以上であると、特にフィルムなどの成形品では延伸による配向結晶化が維持できるので、寸法安定性に優れかつ耐熱性に優れた成形品を得ることができる。
Polyester polycondensate (A)
In the polyster polycondensate (A) in the present invention, 90 mol% or more of the main repeating unit is ethylene terephthalate. That is, 90 mol% or more of the carboxylic acid component is composed of terephthalic acid or an alkyl ester thereof, and 90 mol% or more of the glycol component is composed of ethylene glycol. If an ethylene terephthalate unit is 90 mol% or more, it can be used without particular limitation, and can be modified with other carboxylic acid components or glycol components within the range in which the properties of the film molded product can be maintained. When the ethylene terephthalate unit is 90 mol% or more, particularly in a molded product such as a film, oriented crystallization by stretching can be maintained, so that a molded product having excellent dimensional stability and excellent heat resistance can be obtained.

他のカルボン酸成分としては、例えば、イソフタル酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、1,4−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸、1,12−ドデカン酸、あるいはこれらのアルキルエステルなどが挙げられ、これらを単独で使用しても、2種類以上を混合して使用してもよい。   Examples of other carboxylic acid components include isophthalic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, 1,4-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 1,12-dodecanoic acid, or These alkyl esters are mentioned, and these may be used alone or in combination of two or more.

他のグリコール成分としては、例えば、1,3−プロピレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、ネオペンチルグリコール、2−メチル−1,3−プロパンジオール、2,2−ジエチル−1,3−プロパンジオールなどが挙げられ、これらも単独使用あるいは混合使用してもよい。   Examples of other glycol components include 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, and 1,9-nonanediol. 1,10-decanediol, neopentyl glycol, 2-methyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, etc., and these may be used alone or in combination. Good.

ポリエステル重縮合体(A)の製造は公知の方法で行うことができ、例えば、ジカルボン酸の末端にメチル基が付加された出発物質を用いて触媒添加によりグリコール成分とエステル交換反応を行い、その後に高真空下で重縮合反応を行う方法、ジカルボン酸を出発物質としてグリコール成分と直接エステル化反応を行い、その後に高真空下で重縮合反応を行う方法、一連の反応を連続して行う直接連続重縮合法などを採用することができる。ポリエステル重縮合体の重合度、溶融粘度等の各種物性は、本発明の目的を損なわない範囲で適宜選択することができる。   The polyester polycondensate (A) can be produced by a known method. For example, a starting material in which a methyl group is added to the end of a dicarboxylic acid is used to carry out a transesterification reaction with a glycol component by adding a catalyst. A polycondensation reaction under high vacuum, a direct esterification reaction with a glycol component using dicarboxylic acid as a starting material, followed by a polycondensation reaction under high vacuum, and a series of reactions performed directly. A continuous polycondensation method or the like can be employed. Various physical properties such as the degree of polymerization and melt viscosity of the polyester polycondensate can be appropriately selected within a range not impairing the object of the present invention.

ポリエスエル重縮合体(A)には、成形する目的に応じて、滑剤、耐熱剤、紫外線吸収剤、顔料などを適宜量配合することができる。   In the polyester polycondensate (A), an appropriate amount of a lubricant, a heat-resistant agent, an ultraviolet absorber, a pigment, and the like can be blended depending on the purpose of molding.

ポリエステル重縮合体(B)
本発明の組成物における最も重要な成分であるポリエステル重縮合体(B)は、少なくとも一成分として脂環式炭化水素基を有するモノマー成分を含有するものである。従来より、帯電防止性能を付与するためには親水性を持ったポリオキシアルキレン基を含有させること等が一般的であったが、本発明においては、それ自体全く親水性も帯電防止性能も持たない脂環式炭化水素基を有するモノマー成分を含有したポリエステル重縮合体(B)を、後述するイオン液体(C)と併用することにより、帯電防止性能、特に表面抵抗率を大きく向上させることができる。
Polyester polycondensate (B)
The polyester polycondensate (B), which is the most important component in the composition of the present invention, contains a monomer component having an alicyclic hydrocarbon group as at least one component. Conventionally, in order to impart antistatic performance, it has been common to include a polyoxyalkylene group having hydrophilicity, but in the present invention, it has both hydrophilicity and antistatic performance. By using the polyester polycondensate (B) containing a monomer component having no alicyclic hydrocarbon group in combination with the ionic liquid (C) described later, the antistatic performance, particularly the surface resistivity can be greatly improved. it can.

脂環式炭化水素基を有するモノマー成分として、脂環式グリコール成分を用いる場合は、例えば、シクロプロパンジオール、メチルシクロブタンジオール、ジブチルシクロペンタンジオール、1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノールなどが挙げられるが、汎用性、重縮合反応性の点から1,4−シクロへキサンジメタノールが好ましい。また、1,4−シクロヘキサンジメタノールは異性体を持つのが一般的であるが、シス体/トランス体=10/90〜40/60の範囲のものが、汎用的であり好ましい。   When an alicyclic glycol component is used as the monomer component having an alicyclic hydrocarbon group, for example, cyclopropanediol, methylcyclobutanediol, dibutylcyclopentanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, and the like. From the viewpoint of versatility and polycondensation reactivity, 1,4-cyclohexanedimethanol is preferable. 1,4-cyclohexanedimethanol generally has an isomer, but a cis / trans isomer in the range of 10/90 to 40/60 is generally preferred.

また、脂環式グリコール成分の含有量は特に限定するものでないが、重縮合反応性、帯電防止性樹脂組成物を製造した場合の透明性の観点から、全グリコール成分に対して共重合率が3〜50モル%であることが好ましい。脂環式グリコール成分が3モル%未満であれば、帯電防止性樹脂組成物における帯電防止性能が劣り、50モル%を超える場合、帯電防止性樹脂組成物自体が白濁して透明性を損なう。   In addition, the content of the alicyclic glycol component is not particularly limited, but from the viewpoint of transparency when producing a polycondensation reactive, antistatic resin composition, the copolymerization rate is relative to the total glycol component. It is preferable that it is 3-50 mol%. If the alicyclic glycol component is less than 3 mol%, the antistatic performance of the antistatic resin composition is inferior. If it exceeds 50 mol%, the antistatic resin composition itself becomes cloudy and impairs transparency.

脂環式炭化水素基を有するモノマー成分として、脂環式ジカルボン酸を用いる場合は、例えば、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、デカリンジカルボン酸、ノルボルナンジカルボン酸、トリシクロデセンジカルボン酸、あるいはこれらのアルキルエステルなどが挙げられるが、汎用性、重縮合反応性の観点から1,4−シクロヘキサンジカルボン酸が好ましい。   When an alicyclic dicarboxylic acid is used as a monomer component having an alicyclic hydrocarbon group, for example, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, decalin dicarboxylic acid is used. Examples thereof include acid, norbornane dicarboxylic acid, tricyclodecene dicarboxylic acid, and alkyl esters thereof, and 1,4-cyclohexanedicarboxylic acid is preferable from the viewpoint of versatility and polycondensation reactivity.

また、脂環式ジカルボン酸成分の含有量は特に限定するものでないが、重縮合反応性、樹脂の取り扱い性の観点より全酸成分に対して共重合率が5〜50モル%であることが好ましい。5モル%未満であれば、帯電防止性樹脂組成物における帯電防止性能が劣り、50モル%を超える場合は、帯電防止性樹脂組成物が白濁して透明性を損なうだけでなく、ポリエステル重縮合体(B)のガラス転移点が著しく低下するので樹脂同士の融着が発生するなどの問題が生じる。   In addition, the content of the alicyclic dicarboxylic acid component is not particularly limited, but the copolymerization rate may be 5 to 50 mol% with respect to the total acid component from the viewpoints of polycondensation reactivity and resin handling properties. preferable. If it is less than 5 mol%, the antistatic performance of the antistatic resin composition is inferior, and if it exceeds 50 mol%, the antistatic resin composition becomes cloudy and impairs transparency, as well as polyester polycondensation. Since the glass transition point of the body (B) is remarkably lowered, problems such as occurrence of fusion between resins occur.

ポリエステル重縮合体(B)のグリコール成分は、上記脂環式グリコール成分以外に、例えば、エチレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、ネオペンチルグリコール、2−メチル−1,3−プロパンジオール、2,2−ジエチル−1,3−プロパンジオールなどが挙げられ、これらを単独あるいは混合使用することができる。また、ポリエチレングリコール、ポリテトラメチレングリコール、ポリトリメチレングリコール等の高分子型ポリアルキレングリコールを混合使用することも可能である。   The glycol component of the polyester polycondensate (B) is, for example, ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6 in addition to the alicyclic glycol component. -Hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, neopentyl glycol, 2-methyl-1,3-propanediol, 2,2-diethyl-1,3- Examples thereof include propanediol, and these can be used alone or in combination. It is also possible to use a mixture of polymer polyalkylene glycols such as polyethylene glycol, polytetramethylene glycol and polytrimethylene glycol.

また、ポリエステル重縮合体(B)の酸成分は、上記脂環式ジカルボン酸成分以外に、例えば、テレフタル酸、イソフタル酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、1,4−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸、1,12−ドデカン酸、あるいはこれらのアルキルエステルなどが挙げられ、これらを単独で使用しても、2種類以上を混合して使用してもよい。   In addition to the alicyclic dicarboxylic acid component, the acid component of the polyester polycondensate (B) is, for example, terephthalic acid, isophthalic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, 1,4-naphthalenedicarboxylic acid. Examples thereof include acids, 4,4′-biphenyldicarboxylic acid, 1,12-dodecanoic acid, and alkyl esters thereof. These may be used alone or in combination of two or more.

ポリエステル重縮合体(B)には、成形する目的に応じて、滑剤、耐熱剤、紫外線吸収剤、顔料などを適宜量配合することができる。   In the polyester polycondensate (B), an appropriate amount of a lubricant, a heat-resistant agent, an ultraviolet absorber, a pigment and the like can be blended depending on the purpose of molding.

ポリエステル重縮合体(B)の製造は公知の方法で行うことができ、例えば、ジカルボン酸の末端にメチル基が付加された出発物質を用いて触媒添加によりグリコール成分とエステル交換反応を行い、その後に高真空下で重縮合反応を行う方法、ジカルボン酸を出発物質としてグリコール成分と直接エステル化反応を行い、その後で高真空下で重縮合反応を行う方法、一連の反応を連続して行う直接連続重縮合法などを採用することができる。ポリエステル重縮合体の重合度、溶融粘度は、本発明の目的を損なわない範囲で適宜選択することができる。   The polyester polycondensate (B) can be produced by a known method. For example, a starting material having a methyl group added to the end of a dicarboxylic acid is used to carry out a transesterification reaction with a glycol component by adding a catalyst, and then A polycondensation reaction under high vacuum, a direct esterification reaction with a glycol component using dicarboxylic acid as a starting material, and then a polycondensation reaction under high vacuum, a series of reactions performed directly A continuous polycondensation method or the like can be employed. The degree of polymerization and melt viscosity of the polyester polycondensate can be appropriately selected within a range not impairing the object of the present invention.

イオン液体(C)
イオン液体(C)とは、カチオンと、アニオンとから構成される塩であって、800℃程度の融点を有する一般的な無機塩に比べて比較的低温で液体状態になり、融点が−90℃〜100℃の塩をいう。かかるイオン液体は、不揮発性、低粘度という特徴に加えて、非プロトン性のイオン構造に基づく高い極性により有機化合物及び無機化合物に対して優れた溶解力を有するという特徴がある。
イオン液体の合成方法としては、アニオン交換法や酸エステル法、中和法等の方法を採用することができる。
Ionic liquid (C)
The ionic liquid (C) is a salt composed of a cation and an anion, and becomes a liquid state at a relatively low temperature as compared with a general inorganic salt having a melting point of about 800 ° C., and has a melting point of −90. It refers to a salt at -100 ° C. In addition to the characteristics of non-volatility and low viscosity, such an ionic liquid has a characteristic that it has excellent dissolving power for organic compounds and inorganic compounds due to its high polarity based on an aprotic ionic structure.
As an ionic liquid synthesis method, an anion exchange method, an acid ester method, a neutralization method, or the like can be employed.

イオン液体を構成するカチオンとしては、第4級窒素含有カチオン、ホスホニウムカチオン、スルホニウムカチオン等が挙げられ、中でも第4級窒素含有カチオンが好ましい。第4級窒素含有カチオンとしては特に限定されないが、環状及び脂肪族第4級窒素含有カチオンをも包含する概念である。第4級窒素含有カチオンとしては、例えば、イミダゾリウムカチオン、ピリジニウムカチオン、ピロリジニウムカチオン、第4級アンモニウムカチオン、ピラゾリウムカチオン、トリアゾリウムカチオンが挙げられ、中でもイミダゾリウムカチオン、ピリジニウムカチオン、ピロリジニウムカチオン、第4級アンモニウムカチオンが好ましい。好適なカチオンとしては、例えば、下記式(1)、(2)、(3)又は(4)で表されるカチオン種が挙げられ、中でも融点の低いイオン液体を数多く多様に調製できるという点から、下記式(1)で表されるイミダゾリウムカチオンがより好ましい。   Examples of the cation constituting the ionic liquid include a quaternary nitrogen-containing cation, a phosphonium cation, and a sulfonium cation. Among them, a quaternary nitrogen-containing cation is preferable. Although it does not specifically limit as a quaternary nitrogen containing cation, It is a concept also including a cyclic | annular and aliphatic quaternary nitrogen containing cation. Examples of the quaternary nitrogen-containing cation include imidazolium cation, pyridinium cation, pyrrolidinium cation, quaternary ammonium cation, pyrazolium cation, and triazolium cation. Among them, imidazolium cation, pyridinium cation, Pyrrolidinium cation and quaternary ammonium cation are preferred. Suitable cations include, for example, cation species represented by the following formula (1), (2), (3) or (4), and in particular, from the point that many ionic liquids having a low melting point can be prepared. An imidazolium cation represented by the following formula (1) is more preferable.

Figure 2009280710
Figure 2009280710

Figure 2009280710
Figure 2009280710

Figure 2009280710
Figure 2009280710

Figure 2009280710
Figure 2009280710

上記式(1)において、R〜Rは、それぞれ独立に、水素原子、ビニル基、炭素数1〜25のアルキル基若しくはアルコキシ基、又は炭素数6〜25のアリール基若しくはアラルキル基を表す。上記アルキル基及びアルコキシ基は、直鎖、分岐状及び環状のいずれの形態であってもよいが、中でも直鎖が好ましい。また、上記アルキル基、アルコキシ基、アリール基及びアラルキル基は、ハロゲン原子で置換されていてもよい。
炭素数1〜25のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、シクロヘキシル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、トリフルオロメチル基、ペンタフルオロエチル基、2,2,2−トリフルオロエチル基、ヘプタフルオロプロピル基等が挙げられ、また炭素数1〜25のアルコキシ基としては、上記アルキル基に酸素原子が結合して形成されるアルコキシ基(例えば、メトキシ基)が例示できる。炭素数6〜25のアリール基としては、フェニル基、トリル基、キシリル基、ビフェニリル基、ナフチル基、アントリル基、フェナントリル基、p位がフッ素原子又は塩素原子で置換されたフェニル基、3,4位が塩素原子で置換されたフェニル基、m位がトリフルオロメチル基で置換されたフェニル基等が挙げられる。炭素数6〜25のアラルキル基としては、ベンジル基、フェニルエチル基、1−メチル−1−フェニルエチル基、芳香環の3,4位が塩素原子で置換されたベンジル基等が挙げられる。
としては、炭素数1〜10のアルキル基が好ましく、炭素数1〜6のアルキル基が好ましい。Rとしては、炭素数2〜18のアルキル基が好ましく、炭素数2〜12のアルキル基がより好ましい。R、R及びRとしては、水素原子又は炭素数1〜6のアルキル基が好ましく、水素原子がより好ましい。
In the above formula (1), R 1 to R 5 each independently represent a hydrogen atom, a vinyl group, an alkyl group or alkoxy group having 1 to 25 carbon atoms, or an aryl group or aralkyl group having 6 to 25 carbon atoms. . The alkyl group and alkoxy group may be in any form of straight chain, branched and cyclic, but the straight chain is preferable. The alkyl group, alkoxy group, aryl group and aralkyl group may be substituted with a halogen atom.
Examples of the alkyl group having 1 to 25 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, n-pentyl, n-hexyl, cyclohexyl, decyl, undecyl, and dodecyl. Group, tetradecyl group, hexadecyl group, octadecyl group, trifluoromethyl group, pentafluoroethyl group, 2,2,2-trifluoroethyl group, heptafluoropropyl group, etc., and also an alkoxy group having 1 to 25 carbon atoms. As an example, an alkoxy group (for example, a methoxy group) formed by bonding an oxygen atom to the alkyl group can be exemplified. Examples of the aryl group having 6 to 25 carbon atoms include a phenyl group, a tolyl group, a xylyl group, a biphenylyl group, a naphthyl group, an anthryl group, a phenanthryl group, a phenyl group substituted at the p-position with a fluorine atom or a chlorine atom, 3, 4 Examples include a phenyl group substituted at the position with a chlorine atom, and a phenyl group substituted at the m-position with a trifluoromethyl group. Examples of the aralkyl group having 6 to 25 carbon atoms include a benzyl group, a phenylethyl group, a 1-methyl-1-phenylethyl group, a benzyl group in which the aromatic rings are substituted with chlorine atoms at the 3rd and 4th positions.
The R 1, preferably an alkyl group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms. As R < 3 >, a C2-C18 alkyl group is preferable and a C2-C12 alkyl group is more preferable. The R 2, R 4 and R 5, preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom.

具体的には、1,3−ジメチルイミダゾリウム、1−ブチル−2,3−ジメチルイミダゾリウム、1−ブチル−3−メチルイミダゾリウム、1−エチル−2,3−ジメチルイミダゾリウム、1−エチル−3−メチルイミダゾリウム、1−ヘキシル−3−メチルイミダゾリウム、1−ヘキシル−3−プロピルイミダゾリウムなどが挙げられ、中でも1−エチル−3−メチルイミダゾリウムが好ましい。   Specifically, 1,3-dimethylimidazolium, 1-butyl-2,3-dimethylimidazolium, 1-butyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-ethyl Examples include -3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-hexyl-3-propylimidazolium, and the like, among which 1-ethyl-3-methylimidazolium is preferable.

上記式(2)において、R11及びR12は、それぞれ独立に、水素原子、炭素数1〜25のアルキル基若しくはアルコキシ基、又は炭素数6〜25のアリール基若しくはアラルキル基を表す。上記アルキル基及びアルコキシ基は、直鎖、分岐状若しくは環状のいずれの形態であってもよいが、中でも直鎖が好ましい。また、上記アルキル基、アルコキシ基、アリール基及びアラルキル基は、ハロゲン原子で置換されていてもよい。アルキル基、アルコキシ基、アリール基及びアラルキル基としては、上述と同様の基が例示される。
11としては、炭素数1〜4のアルキル基が好ましく、炭素数1〜2のアルキル基がより好ましい。R12としては、炭素数2〜8のアルキル基が好ましく、炭素数2〜4のアルキル基がより好ましい。なお、R11とR12は、同一基でない(非対称である)ことが好ましい。
In the above formula (2), R 11 and R 12 each independently represent a hydrogen atom, an alkyl group having 1 to 25 carbon atoms or an alkoxy group, or an aryl group or aralkyl group having 6 to 25 carbon atoms. The alkyl group and alkoxy group may be linear, branched, or cyclic, but a straight chain is preferable. The alkyl group, alkoxy group, aryl group and aralkyl group may be substituted with a halogen atom. Examples of the alkyl group, alkoxy group, aryl group, and aralkyl group include the same groups as described above.
R 11 is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably an alkyl group having 1 to 2 carbon atoms. R 12 is preferably an alkyl group having 2 to 8 carbon atoms, and more preferably an alkyl group having 2 to 4 carbon atoms. R 11 and R 12 are preferably not the same group (asymmetric).

具体的には、1−ブチル−3−メチルピロジニウム、1−ブチル−4−メチルピロジニウム、1−ブチルピロジニウム、1−エチル−3−メチルピロジニウム、1−エチルピロジニウムなどが挙げられ、中でも1−ブチルピロジニウムが好ましい。   Specifically, 1-butyl-3-methylpyrodinium, 1-butyl-4-methylpyrodinium, 1-butylpyrodinium, 1-ethyl-3-methylpyrodinium, 1-ethylpyrodinium In particular, 1-butylpyridinium is preferable.

上記式(3)において、R21及びR22は、それぞれ独立に、水素原子、炭素数1〜25のアルキル基若しくはアルコキシ基、又は炭素数6〜25のアリール基若しくはアラルキル基を表す。上記アルキル基及びアルコキシ基は、直鎖、分岐状若しくは環状のいずれの形態であってもよいが、中でも直鎖が好ましい。また、上記アルキル基、アルコキシ基、アリール基及びアラルキル基は、ハロゲン原子で置換されていてもよい。アルキル基、アルコキシ基、アリール基及びアラルキル基としては、上述と同様の基が例示される。
21としては、炭素数2〜12のアルキル基が好ましく、炭素数4〜6のアルキル基がより好ましい。R22としては、水素原子、又は炭素数1〜2のアルキル基が好ましく、水素原子がより好ましい。
In the above formula (3), R 21 and R 22 each independently represent a hydrogen atom, an alkyl group or alkoxy group having 1 to 25 carbon atoms, or an aryl group or aralkyl group having 6 to 25 carbon atoms. The alkyl group and alkoxy group may be linear, branched, or cyclic, but a straight chain is preferable. The alkyl group, alkoxy group, aryl group and aralkyl group may be substituted with a halogen atom. Examples of the alkyl group, alkoxy group, aryl group, and aralkyl group include the same groups as described above.
R 21 is preferably an alkyl group having 2 to 12 carbon atoms, and more preferably an alkyl group having 4 to 6 carbon atoms. R 22 is preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and more preferably a hydrogen atom.

具体的には、1−メチルピリジニウム、1−ブチルピリジニウム、1−メチル−3−メチルピリジニウム、1−ブチル−3−メチルピリジニウム、1−ブチル−2−メチルピリジニウムなどが挙げられる。   Specific examples include 1-methylpyridinium, 1-butylpyridinium, 1-methyl-3-methylpyridinium, 1-butyl-3-methylpyridinium, 1-butyl-2-methylpyridinium, and the like.

また、上記式(4)において、R31、R32、R33及びR34は、それぞれ独立に、水素原子、炭素数1〜25のアルキル基若しくはアルコキシ基、又は炭素数6〜25のアリール基若しくはアラルキル基を表す。上記アルキル基及びアルコキシ基は、直鎖、分岐状若しくは環状のいずれの形態であってもよいが、中でも直鎖が好ましい。また、上記アルキル基、アルコキシ基、アリール基及びアラルキル基は、ハロゲン原子で置換されていてもよい。アルキル基、アルコキシ基、アリール基及びアラルキル基としては、上述と同様の基が例示される。
31、R32、R33及びR34としては、水素原子又は炭素数1〜17のアルキル基が好ましく、炭素数1〜8のアルキル基がより好ましい。
In the above formula (4), R 31 , R 32 , R 33 and R 34 are each independently a hydrogen atom, an alkyl group having 1 to 25 carbon atoms or an alkoxy group, or an aryl group having 6 to 25 carbon atoms. Or represents an aralkyl group. The alkyl group and alkoxy group may be any of linear, branched or cyclic forms, but the straight chain is preferred among them. The alkyl group, alkoxy group, aryl group and aralkyl group may be substituted with a halogen atom. Examples of the alkyl group, alkoxy group, aryl group and aralkyl group include the same groups as described above.
As R < 31 > , R < 32> , R <33> and R < 34 >, a hydrogen atom or a C1-C17 alkyl group is preferable, and a C1-C8 alkyl group is more preferable.

具体的には、シクロヘキシルトリメチルアンモニウム、メチルトリ−n−オクチルアンモニウム、テトラブチルアンモニウムなどが挙げられる。   Specific examples include cyclohexyltrimethylammonium, methyltri-n-octylammonium, and tetrabutylammonium.

また、イオン液体を構成するアニオンとしては、上記カチオンと組み合わせた場合に融点を低くすることが可能なアニオンが好適に用いられる。かかるアニオンとしては、無機アニオン及び有機アニオンのいずれであってもよく、特に限定されるものではない。具体的なアニオン種としては、AlCl 、AlCl 、AlCl 等のクロロアルミネートアニオン、BF 、PF 、F(HF) 等のフッ素系無機アニオン、CFCOO、CFSO 、(CFSO(TFSI)、(CFSO(TFSM)等のフッ素系有機アニオン、及びNO 、CHCOO等が挙げられるが、これらに限定されるものではない。 Moreover, as an anion which comprises an ionic liquid, the anion which can make melting | fusing point low when combined with the said cation is used suitably. Such an anion may be either an inorganic anion or an organic anion, and is not particularly limited. Specific anion species include chloroaluminate anions such as AlCl 4 , Al 3 Cl 8 and Al 2 Cl 7 , and fluorine-based inorganic anions such as BF 4 , PF 6 and F (HF) n −. , CF 3 COO , CF 3 SO 3 , (CF 3 SO 2 ) 2 N (TFSI), (CF 3 SO 2 ) 3 C (TFSM), and other fluorine-based organic anions, and NO 3 and CH 3 COO − and the like can be mentioned, but are not limited thereto.

本発明の帯電防止性樹脂組成物は、ポリエステル重縮合体(A)、ポリエステル重縮合体(B)及びイオン液体(C)を混合することにより得られる。混合する方法としては、例えば、下記(1)〜(3)が挙げられる。
(1)ポリエステル重縮合体(A)、ポリエステル重縮合体(B)のペレットをヘンシェルミキサー、スーパーミキサー、ロッキングミキサー等の混合機で混合した後、単軸あるいは二軸混練機にて溶融混合し、イオン液体(C)を投入口より適当な配合比で添加して混練する方法。
(2)ポリエステル重縮合体(A)の重縮合工程の途中あるいは重縮合終了後に、イオン液体(C)を添加してペレット状樹脂組成物を得た後、別に重縮合にて得られたポリエステル重縮合体(B)のペレット状樹脂組成物と該樹脂組成物を混合機で混合した後に、溶融混合して帯電防止性樹脂組成物を得る方法。或いは、成形物の成形段階で両ペレットを溶融混合して成形物を得る方法。
(3)ポリエステル重縮合体(B)の重縮合工程の途中あるいは重縮合終了後に、イオン液体(C)を添加してペレット状樹脂組成物を得た後、別に重縮合にて得られたポリエステル重縮合体(A)のペレット状樹脂組成物と該樹脂組成物を混合機で混合した後に、溶融混合して帯電防止性樹脂組成物を得る方法。或いは、成形物の成形段階で両ペレットを溶融混合して成形物を得る方法。
The antistatic resin composition of the present invention is obtained by mixing the polyester polycondensate (A), the polyester polycondensate (B) and the ionic liquid (C). Examples of the mixing method include the following (1) to (3).
(1) After mixing the polyester polycondensate (A) and polyester polycondensate (B) pellets in a mixer such as a Henschel mixer, super mixer, rocking mixer, etc., melt and mix in a single-screw or twin-screw kneader. The ionic liquid (C) is added at an appropriate mixing ratio from the charging port and kneaded.
(2) Polyester obtained by polycondensation after adding ionic liquid (C) to obtain a pellet-shaped resin composition during or after the polycondensation step of polyester polycondensate (A) A method in which an antistatic resin composition is obtained by mixing the pellet-shaped resin composition of the polycondensate (B) and the resin composition with a mixer and then melt-mixing them. Alternatively, a method of obtaining a molded product by melting and mixing both pellets in the molding stage of the molded product.
(3) After the polycondensation step of the polyester polycondensate (B) or after the completion of the polycondensation, after adding the ionic liquid (C) to obtain a pellet-shaped resin composition, a polyester obtained by polycondensation separately. A method of obtaining an antistatic resin composition by mixing the pellet-shaped resin composition of the polycondensate (A) and the resin composition with a mixer and then melt-mixing them. Alternatively, a method of obtaining a molded product by melting and mixing both pellets in the molding stage of the molded product.

本発明の帯電防止性樹脂組成物における、イオン液体(C)の含有量は、0.1〜10質量%であることが好ましく、さらに好ましくは0.5〜5質量%である。0.1質量%よりも低い場合は帯電防止性能に劣り、10質量%を超えると帯電防止性能は良好なるものの、イオン液体(C)が樹脂組成物や成形物の表面に製造段階でブリードアウトして設備を汚染しやすくなる。   The content of the ionic liquid (C) in the antistatic resin composition of the present invention is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass. When the content is lower than 0.1% by mass, the antistatic performance is inferior. When the content exceeds 10% by mass, the antistatic performance is improved. It becomes easy to pollute the equipment.

また、ポリエステル重縮合体(B)の含有量は、限定するものではないが、帯電防止性能と成形物の透明性の観点より、3〜60質量%であることが好ましい。3質量%未満であれば帯電防止性能が劣り、60質量%を超える場合は、成形物の寸法安定性が乏しいものとなる。   Moreover, although content of a polyester polycondensate (B) is not limited, It is preferable that it is 3-60 mass% from a viewpoint of antistatic performance and the transparency of a molding. If it is less than 3% by mass, the antistatic performance is inferior, and if it exceeds 60% by mass, the dimensional stability of the molded product is poor.

本発明の帯電防止性樹脂組成物の成形方法としては、射出成形、ブロー成形、フィルム成形、圧縮成形などが挙げられ、目的とする成形物に対して任意の方法を選択することができる。中でも、本発明のポリエステルフィルムの成形方法としては、例えば、下記(1)〜(3)が挙げられる。
(1)本発明の帯電防止性樹脂組成物ペレットを押出機にて溶融し、別の押出機にて溶融したポリエステル系樹脂とをT−ダイに供給して2層以上の多層フィルムを得る方法。
(2)本発明の帯電防止性樹脂組成物ペレットを押出機にて溶融し、T−ダイへ導入して単層フィルムを得る方法。
(3)上記多層フィルムまたは単層フィルムを一軸あるいは二軸延伸機にて延伸して、延伸フィルムを得る方法。
これらのフィルムは、コロナ放電処理等により表面活性化を行い印刷加工や防汚加工などを付与することができる。
Examples of the molding method of the antistatic resin composition of the present invention include injection molding, blow molding, film molding, compression molding, and the like, and any method can be selected for the target molded product. Especially, as a shaping | molding method of the polyester film of this invention, following (1)-(3) is mentioned, for example.
(1) A method of obtaining a multilayer film having two or more layers by melting the antistatic resin composition pellets of the present invention in an extruder and supplying the polyester resin melted in another extruder to a T-die .
(2) A method in which the antistatic resin composition pellets of the present invention are melted by an extruder and introduced into a T-die to obtain a single layer film.
(3) A method of obtaining a stretched film by stretching the multilayer film or single-layer film with a uniaxial or biaxial stretching machine.
These films can be surface-activated by corona discharge treatment or the like to be imparted with printing or antifouling.

いずれの場合でも、本発明の帯電防止性樹脂組成物によれば、単独押出し、あるいは共押出しにてフィルムを製造できることが本発明の根幹を為している。   In any case, according to the antistatic resin composition of the present invention, the basis of the present invention is that a film can be produced by single extrusion or coextrusion.

以下、実施例により本発明をさらに詳しく説明する。尚、以下の実施例における特性値は、次に示す方法で評価したものである。   Hereinafter, the present invention will be described in more detail with reference to examples. The characteristic values in the following examples are evaluated by the following method.

(1)帯電防止性評価
帯電防止性樹脂組成物よりフィルムを作製し、温度23℃相対湿度50%の恒温恒湿条件下に24時間以上放置したのち、高抵抗率計ハイレスターUP(三菱化学株式会社製)にて、MCC−A法により直流電圧500Vを30秒間印加して表面抵抗率(Ω/sq.)を測定した。数値が小さい程、帯電防止性が優れていることを示す。表面抵抗率は以下の基準で評価した。
1010Ω/sq.以下 ・・・ ○(優)
1010〜1011Ω/sq.以下 ・・・ △(良)
1011Ω/sq.を超える ・・・ ×(不良)
(1) Evaluation of antistatic property A film was prepared from the antistatic resin composition and left for 24 hours or more in a constant temperature and humidity condition at a temperature of 23 ° C. and a relative humidity of 50%. Co., Ltd.) was applied with a DC voltage of 500 V for 30 seconds by the MCC-A method, and the surface resistivity (Ω / sq.) Was measured. The smaller the value, the better the antistatic property. The surface resistivity was evaluated according to the following criteria.
10 10 Ω / sq. Below ... ○ (excellent)
10 10 to 10 11 Ω / sq. Below △ △ (good)
10 11 Ω / sq. Exceeding × (defect)

(2)透明性評価(ヘーズ)
帯電防止性評価に供したフィルム試料を用い、曇度計(日本電色工業株式会社製)を使用して、JIS−K−7105−1981に準じて測定した。ヘーズの数値が小さい程、透明性が優れていることを示す。ヘーズは以下の基準で評価し、○、△で評価されたものは透明性がある。
5%未満 ・・・ ○(優)
5%〜7%未満 ・・・ △(良)
7%以上 ・・・ ×(不良)
(2) Transparency evaluation (haze)
Using a film sample subjected to antistatic property evaluation, measurement was performed according to JIS-K-7105-1981 using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd.). The smaller the haze value, the better the transparency. Haze is evaluated according to the following criteria, and those evaluated with ○ and Δ are transparent.
Less than 5% ... ○ (excellent)
5% to less than 7% ... △ (good)
7% or more ・ ・ ・ × (defect)

(3)表面汚染性評価
帯電防止性樹脂組成物よりフィルムを作製し、一般片面処理ポリエチレンテレフタレートフィルム(フタムラ化学製 #12 FE2001)のコロナ処理面と重ね、これらの上から0.01MPaの荷重を掛け40℃の条件下、2週間経過後に、接触角計DropMaster DM500(協和界面科学株式会社製)を用いて、一般片面処理ポリエチレンテレフタレートフィルムのコロナ処理面と水(1μmL)との表面接触角を測定し、初期の表面接触角と2週間経過後の接触角の角度変化より、表面汚染性を下記の基準で評価した。角度変化が大きい場合は、帯電防止剤が移行して汚染している。
角度変化0〜5° ・・・ ○(優)
角度変化5〜10° ・・・ △(良)
角度変化10°以上 ・・・ ×(不良)
(3) Surface contamination evaluation A film was prepared from the antistatic resin composition, and was superimposed on the corona-treated surface of a general single-side treated polyethylene terephthalate film (# 12 FE2001 manufactured by Phutamura Chemical), and a load of 0.01 MPa was applied from above. Using a contact angle meter DropMaster DM500 (manufactured by Kyowa Interface Science Co., Ltd.) after a lapse of 2 weeks under a condition of 40 ° C., the surface contact angle between the corona-treated surface of general single-sided polyethylene terephthalate film and water (1 μmL) The surface contamination was evaluated according to the following criteria from the initial surface contact angle and the change in contact angle after two weeks. When the angle change is large, the antistatic agent is transferred and contaminated.
Angle change 0-5 ° ・ ・ ・ ○ (excellent)
Angle change 5-10 ° ・ ・ ・ △ (good)
Angle change of 10 ° or more ・ ・ ・ × (defect)

<1>ポリエステル重縮合体(A)の製造
テレフタル酸254部、エチレングリコール100部と熱安定剤としてトリエチルリン酸0.02部によりスラリーを作製し、第1エステル化槽へ逐次導入して窒素加圧下270℃でエステル化反応を行い、第2エステル化槽へ導入して窒素雰囲気下常圧にて追加エステル化反応を行い、重縮合触媒として三酸化アンチモン0.07部を添加し、第1重縮合槽、第2重縮合槽、第3重縮合槽へ逐次導入して、最終の槽内圧力が200Pa以下の高真空下で重縮合反応を行いポリエステル重縮合体(A)を製造し、ペレット試料を得た。該ポリエステル重縮合体(A)のフェノール/テトラクロロエタン=6/4(重量比)混合溶媒中23℃での、ウベローデ法による極限粘度は0.64であった。
<1> Manufacture of Polyester Polycondensate (A) A slurry is prepared with 254 parts of terephthalic acid, 100 parts of ethylene glycol and 0.02 part of triethyl phosphoric acid as a heat stabilizer, and introduced into the first esterification tank and introduced into nitrogen. An esterification reaction is performed at 270 ° C. under pressure, introduced into the second esterification tank, an additional esterification reaction is performed at normal pressure under a nitrogen atmosphere, 0.07 part of antimony trioxide is added as a polycondensation catalyst, A polyester polycondensate (A) is produced by sequentially introducing into a first polycondensation tank, a second polycondensation tank, and a third polycondensation tank, and performing a polycondensation reaction under a high vacuum of 200 Pa or less in the final tank pressure. A pellet sample was obtained. The intrinsic viscosity according to the Ubbelohde method at 23 ° C. in a mixed solvent of phenol / tetrachloroethane = 6/4 (weight ratio) of the polyester polycondensate (A) was 0.64.

上記で得られたポリエステル重縮合体(A)を130℃で6時間以上真空乾燥を行い、以降の帯電防止性樹脂組成物の製造に供した。   The polyester polycondensate (A) obtained above was vacuum-dried at 130 ° C. for 6 hours or more and used for the subsequent production of an antistatic resin composition.

<2>ポリエステル重縮合体(B)の製造
<重縮合体B−Iの製造>
精留塔を備えたエステル化反応槽へ、テレフタル酸(以後、TPAと呼称)202部に対してエチレングリコール(以後、EGと呼称)100部と、80℃に加熱溶融した1,4−シクロヘキサンジメタノール(以後、1,4−CHDMと呼称)57.9部のスラリーを投入して、窒素雰囲気下250℃の内温にて、反応により溜出する水を取り除きエステル化率95.5%までエステル化反応を進めた。その後、重合槽にて熱安定剤としてトリエチルリン酸を0.04部、重縮合触媒として三酸化アンチモンを0.07部添加し、275℃にて常圧から徐々に減圧を進めて、最終槽内圧力が200Pa以下の高真空下で攪拌機が所定のトルクに達するまで4時間の重縮合反応を行い、重縮合体B−Iを製造し、水中へ策を押し出してカッティング後にペレット状試料を得た。NMR分析による1,4−CHDMに基づくピークの積分値より算定した共重合率は全グリコール成分に対して、30.1モル%であった。
<2> Production of polyester polycondensate (B) <Production of polycondensate B-I>
To an esterification reaction vessel equipped with a rectifying column, 100 parts of ethylene glycol (hereinafter referred to as EG) and 202 parts of terephthalic acid (hereinafter referred to as TPA) and 1,4-cyclohexane heated and melted at 80 ° C. A slurry of 57.9 parts of dimethanol (hereinafter referred to as 1,4-CHDM) was added, and the water distilled by the reaction was removed at an internal temperature of 250 ° C. under a nitrogen atmosphere to obtain an esterification rate of 95.5%. The esterification reaction was advanced to Thereafter, 0.04 part of triethyl phosphoric acid as a heat stabilizer and 0.07 part of antimony trioxide as a polycondensation catalyst were added in a polymerization tank, and the pressure was gradually reduced from normal pressure at 275 ° C. A polycondensation reaction is performed for 4 hours until the stirrer reaches a predetermined torque under a high vacuum with an internal pressure of 200 Pa or less, to produce a polycondensate B-I. It was. The copolymerization rate calculated from the integrated value of the peak based on 1,4-CHDM by NMR analysis was 30.1 mol% based on the total glycol components.

<重縮合体B−II〜VIの製造>
重縮合体B−Iと同様にして、B−IIでは1,4−シクロヘキサンジカルボン酸(以後、1,4−CHDAと呼称)、B−IIIでは平均分子量が1,000のポリエチレングリコール(以後、PEG#1000と呼称)を、B−IV〜VIでは1,4−CHDMを、重縮合体の成分組成が下記(表1)となるように添加してエステル化反応および重縮合反応を行い、それぞれペレット状試料を得た。
<Production of polycondensates B-II to VI>
In the same manner as the polycondensate B-I, 1,4-cyclohexanedicarboxylic acid (hereinafter referred to as 1,4-CHDA) is used for B-II, and polyethylene glycol (hereinafter referred to as 1,000 molecular weight) is average for B-III. PEG # 1000), B-IV to VI, 1,4-CHDM is added so that the component composition of the polycondensate is the following (Table 1), and esterification reaction and polycondensation reaction are performed, A pellet sample was obtained.

以上の重縮合体B−I〜VIのペレットをそれぞれ真空乾燥機にて70℃で15時間以上乾燥し、以降の帯電防止性樹脂組成物の製造に供した。   The pellets of the above polycondensates B-I to VI were each dried in a vacuum dryer at 70 ° C. for 15 hours or more, and used for the subsequent production of the antistatic resin composition.

<3>イオン液体(C)の製造
N−メチルイミダゾール214.8gに臭化エチル342.2gを加えて0℃に冷却し、アセトニトリル中で一昼夜撹拌した。アセトニトリル中を減圧留去した後、ジエチルエーテル中に滴下した。析出した結晶を濾別し、結晶を室温で48時間減圧乾燥した。1−メチル−3−エチルイミダゾリウムブロミドの結晶494.2gを得た。
1−メチル−3−エチルイミダゾリウムブロミド水溶液(66%)442.9gを、撹拌しながら、カリウムビス(トリフルオロメタンスルホニル)イミド489.5gをイオン交換水600mlに希釈したものを、60℃に加熱下で滴下し、50分間撹拌した。この反応液を静置した後、上層の水層を分離除去した。下層の油層部分をイオン交換水で3回洗浄した後、減圧下、70℃で脱水し、NMR分析した結果、得られた液体は1−メチル−3−エチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(以下、EMI−TFSIと略す)593.7gであった。収率は99%であった。又、液体の水分を測定した結果200ppmであった。
<3> Production of Ionic Liquid (C) 342.2 g of ethyl bromide was added to 214.8 g of N-methylimidazole, cooled to 0 ° C., and stirred overnight in acetonitrile. The acetonitrile was distilled off under reduced pressure and then dropped into diethyl ether. The precipitated crystals were separated by filtration, and the crystals were dried under reduced pressure at room temperature for 48 hours. There were obtained 494.2 g of 1-methyl-3-ethylimidazolium bromide crystals.
While stirring 442.9 g of 1-methyl-3-ethylimidazolium bromide aqueous solution (66%), 489.5 g of potassium bis (trifluoromethanesulfonyl) imide in 600 ml of ion-exchanged water was heated to 60 ° C. Added dropwise and stirred for 50 minutes. After the reaction solution was allowed to stand, the upper aqueous layer was separated and removed. The lower oil layer was washed with ion-exchanged water three times, dehydrated at 70 ° C. under reduced pressure, and subjected to NMR analysis. As a result, the obtained liquid was 1-methyl-3-ethylimidazolium bis (trifluoromethanesulfonyl) imide. It was 593.7 g (hereinafter abbreviated as EMI-TFSI). The yield was 99%. Moreover, it was 200 ppm as a result of measuring the water | moisture content of a liquid.

Figure 2009280710
Figure 2009280710

<4>帯電防止性樹脂組成物の製造
以上のようにして調製したポリエステル重縮合体(B)の含有量を以下に示す(表2)の配合量となるようにポリエステル重縮合体(A)とドライブレンドを行い、スクリューフィーダーを備えた重量フィーダー(クボタ製)にて10kg/時間の吐出量で排出し、同方向回転の二軸押出混練機TEM−35B(東芝機械製)へ供して、溶融温度280〜270℃で溶融混練した。なお、二軸押出混練機の第1排気口よりイオン液体(C)として、EMI−TFSIをプランジャー式ポンプにて(表2)に示す配合量となるように供して、ポリエステル重縮合体(A)及び(B)とスクリュー回転数100rpmで混練して、水中へ該樹脂組成物を策状に水中へ押し出し、カッターにてペレット状態にカットし、(表2)記載の本発明実施例および比較例に記載の帯電防止性樹脂組成物を得た。
<4> Manufacture of antistatic resin composition Polyester polycondensate (A) so that the content of the polyester polycondensate (B) prepared as described above is the amount shown in Table 2 below. And dry blended, discharged at a discharge rate of 10 kg / hour with a weight feeder (manufactured by Kubota) equipped with a screw feeder, and supplied to a twin-screw extrusion kneader TEM-35B (manufactured by Toshiba Machine) rotating in the same direction. Melt kneading was performed at a melting temperature of 280 to 270 ° C. In addition, as an ionic liquid (C) from the 1st exhaust port of a twin-screw extrusion kneader, EMI-TFSI was provided with a plunger pump so as to have a blending amount shown in (Table 2), and a polyester polycondensate ( Kneading with A) and (B) at a screw speed of 100 rpm, extruding the resin composition into water like water, cutting it into a pellet with a cutter, and examples of the present invention described in (Table 2) and The antistatic resin composition described in the comparative example was obtained.

<5>帯電防止性樹脂組成物からなるポリエステルフィルムの製造
以上のようにして得られた帯電防止性樹脂組成物を真空乾燥機で120℃にて10時間以上乾燥後、ヘッド部分に一軸押出機およびT−ダイを備えたラボプラストミル(東洋精機製)へ該帯電防止樹脂組成物を供給して、スクリュー回転数60〜65rpmにて280℃でシート状に押し出しして、冷却ローラー、引き取りローラーを経て巻き取り機にてシート幅120mm、厚み約250μmのポリエステルシートを得た。その後、バッチ式二軸延伸機を用いて、該シートを90℃で30秒の予熱後に延伸倍率が経方向3.4倍、緯方向3.4倍となるように同時二軸延伸して厚み約20μmの延伸フィルムを得た。該フィルムは、235℃、10秒の熱セットを行い、帯電防止性ポリエステルフィルムを得た。該フィルムを用いて、(表2)記載の物性評価を行った。
<5> Production of Polyester Film Consisting of Antistatic Resin Composition After drying the antistatic resin composition obtained as described above at 120 ° C. for 10 hours or more with a vacuum dryer, a single-screw extruder is applied to the head portion. The antistatic resin composition is supplied to a lab plast mill (manufactured by Toyo Seiki Co., Ltd.) equipped with a T-die and extruded into a sheet at 280 ° C. at a screw rotational speed of 60 to 65 rpm, and a cooling roller and a take-off roller After that, a polyester sheet having a sheet width of 120 mm and a thickness of about 250 μm was obtained with a winder. Thereafter, using a batch-type biaxial stretching machine, the sheet was simultaneously biaxially stretched so that the stretching ratio was 3.4 times in the warp direction and 3.4 times in the weft direction after preheating at 90 ° C. for 30 seconds. A stretched film of about 20 μm was obtained. The film was heat set at 235 ° C. for 10 seconds to obtain an antistatic polyester film. Using the film, the physical properties described in (Table 2) were evaluated.

Figure 2009280710
Figure 2009280710

実施例1〜16は、表面抵抗率が1011/sq.以下であり、帯電防止性能を備えたポリエステルフィルムであった。また、ヘーズ値が7%以下であり、透明性に優れたものであった。更に、表面汚染も無く良好であった。 Examples 1 to 16 have a surface resistivity of 10 11 / sq. It was the following and it was the polyester film provided with the antistatic performance. Further, the haze value was 7% or less, and the transparency was excellent. Furthermore, it was good with no surface contamination.

比較例1は、本発明の範囲である脂環式炭化水素基を持たないポリエステル重縮合体(B)であり、表面抵抗率は満足いくものでなかった。また、得られたフィルムは白濁しておりヘーズ値も満足いくものではなかった。   Comparative Example 1 was a polyester polycondensate (B) having no alicyclic hydrocarbon group, which is within the scope of the present invention, and the surface resistivity was not satisfactory. Further, the obtained film was cloudy and the haze value was not satisfactory.

比較例2はポリエステル重縮合体(A)へのみ、イオン液体(C)を添加したものであり、比較例3はポリエステル重縮合体(B)へのみ、イオン液体(C)を添加したものであり、本発明の範囲外である為、帯電防止性能が劣るものであった。   Comparative Example 2 is obtained by adding ionic liquid (C) only to polyester polycondensate (A), and Comparative Example 3 is obtained by adding ionic liquid (C) only to polyester polycondensate (B). The antistatic performance was inferior because it was out of the scope of the present invention.

比較例4は、界面活性剤としてアルキルスルホン酸ソーダを含有する帯電防止性ポリエステル重縮合体を用いて実施例1と同様にフィルムを作成し、表面抵抗率、ヘーズ、及び表面汚染性を評価したものであり、帯電防止性、表面汚染性は満足いくものではなかった。   In Comparative Example 4, a film was prepared in the same manner as in Example 1 using an antistatic polyester polycondensate containing sodium alkyl sulfonate as a surfactant, and the surface resistivity, haze, and surface contamination were evaluated. The antistatic properties and surface contamination were not satisfactory.

比較例5は、汎用のポリエチレンテレフタレートフィルムの片面へコロナ処理を施し、ポリチオフェンを膜厚2μmでコーティングしたものであり、帯電防止性能は優れるものの、表面汚染性は劣るものであった。   In Comparative Example 5, one side of a general-purpose polyethylene terephthalate film was subjected to corona treatment, and polythiophene was coated with a film thickness of 2 μm. Although antistatic performance was excellent, surface contamination was inferior.

本発明の帯電防止性樹脂組成物は、ポリエステル樹脂の透明性を損なうことなく優れた帯電防止性を付与することができる。また、該帯電防止性樹脂組成物より得られたポリエステルフィルムは、透明性に富み且つ経時的に被着体を汚染することが少ないために、特に、電子機器、電化製品、自動車、建材などを保護する表面保護フィルムや、包装材フィルム、建築材用シート、テープ基材などの材料として用いることができる。
The antistatic resin composition of the present invention can impart excellent antistatic properties without impairing the transparency of the polyester resin. Further, since the polyester film obtained from the antistatic resin composition is rich in transparency and rarely contaminates the adherend over time, it is particularly suitable for electronic devices, electrical appliances, automobiles, building materials, etc. It can be used as a material such as a surface protective film to be protected, a packaging material film, a sheet for building materials, and a tape base material.

Claims (8)

主たる繰り返し単位の90モル%以上がエチレンテレフタレートからなるポリエステル重縮合体(A)と、少なくとも一成分として脂環式炭化水素基を有するモノマー成分を含有するポリエステル重縮合体(B)と、イオン液体(C)とを含有することを特徴とする帯電防止性樹脂組成物。   A polyester polycondensate (A) in which 90 mol% or more of the main repeating units are composed of ethylene terephthalate, a polyester polycondensate (B) containing a monomer component having an alicyclic hydrocarbon group as at least one component, and an ionic liquid An antistatic resin composition comprising (C). ポリエステル重縮合体(B)における脂環式炭化水素基を有するモノマー成分が、脂環式グリコール成分であって、全グリコール成分に対して3〜50モル%含有することを特徴とする請求項1記載の帯電防止性樹脂組成物。   The monomer component having an alicyclic hydrocarbon group in the polyester polycondensate (B) is an alicyclic glycol component and is contained in an amount of 3 to 50 mol% based on the total glycol component. The antistatic resin composition as described. ポリエステル重縮合体(B)における脂環式炭化水素基を有するモノマー成分が、脂環式ジカルボン酸成分であって、全酸成分に対して3〜50モル%含有することを特徴とする請求項1記載の帯電防止性樹脂組成物。   The monomer component having an alicyclic hydrocarbon group in the polyester polycondensate (B) is an alicyclic dicarboxylic acid component, and is contained in an amount of 3 to 50 mol% based on the total acid component. 1. An antistatic resin composition according to 1. イオン液体(C)を0.1〜10質量%含有することを特徴とする請求項1〜3記載の帯電防止性樹脂組成物。   The antistatic resin composition according to claim 1, comprising 0.1 to 10% by mass of the ionic liquid (C). ポリエステル重縮合体(B)を3〜60質量%含有することを特徴とする請求項1〜4のいずれか記載の帯電防止性樹脂組成物。   The antistatic resin composition according to any one of claims 1 to 4, comprising 3 to 60% by mass of the polyester polycondensate (B). イオン液体(C)が、カチオンとしてイミダゾリウムイオンを含有することを特徴とする請求項1〜5のいずれか記載の帯電防止性樹脂組成物。   The antistatic resin composition according to any one of claims 1 to 5, wherein the ionic liquid (C) contains imidazolium ions as cations. 少なくとも一つの層が請求項1〜6のいずれか記載の帯電防止性樹脂組成物からなることを特徴とするポリエステルフィルム。   A polyester film comprising at least one layer comprising the antistatic resin composition according to claim 1. 帯電防止性樹脂組成物からなる少なくとも一つの層が表面抵抗率1010Ω/sq.以下であることを特徴とする請求項7記載のポリエステルフィルム。 At least one layer of the antistatic resin composition has a surface resistivity of 10 10 Ω / sq. The polyester film according to claim 7, wherein:
JP2008134570A 2008-05-22 2008-05-22 Antistatic resin composition and film comprising the same Active JP5126840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134570A JP5126840B2 (en) 2008-05-22 2008-05-22 Antistatic resin composition and film comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134570A JP5126840B2 (en) 2008-05-22 2008-05-22 Antistatic resin composition and film comprising the same

Publications (2)

Publication Number Publication Date
JP2009280710A true JP2009280710A (en) 2009-12-03
JP5126840B2 JP5126840B2 (en) 2013-01-23

Family

ID=41451505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134570A Active JP5126840B2 (en) 2008-05-22 2008-05-22 Antistatic resin composition and film comprising the same

Country Status (1)

Country Link
JP (1) JP5126840B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098116A (en) * 2012-11-15 2014-05-29 Du Pont Mitsui Polychem Co Ltd Polymer composition
WO2016167084A1 (en) * 2015-04-15 2016-10-20 東レ株式会社 Polyester resin composition and method of manufacturing same
JP2016210868A (en) * 2015-05-07 2016-12-15 大和製罐株式会社 Antistatic resin composition and film consisting of the same
WO2017010511A1 (en) * 2015-07-16 2017-01-19 住友化学株式会社 Method for producing resin composition
WO2017170675A1 (en) * 2016-03-31 2017-10-05 住友化学株式会社 Resin composition production method
JP2018052881A (en) * 2016-09-29 2018-04-05 東レ株式会社 Ion salt, thermoplastic resin composition containing the same, and method for producing the same
JP2019108527A (en) * 2017-12-18 2019-07-04 東レ株式会社 Polyester film
JP2021505732A (en) * 2017-12-05 2021-02-18 ティコナ・エルエルシー Liquid crystal polymer composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484392A (en) * 2018-05-08 2018-09-04 中国科学院过程工程研究所 The method that choline eutectic ionic liquid catalyzed alcoholysis polyethylene terephthalate prepares Di-2-ethylhexyl terephthalate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971668A (en) * 1995-06-29 1997-03-18 C I Kasei Co Ltd Heat shrinking polyester film, its production and copolyester composition used therefor
JP2001081209A (en) * 1999-09-09 2001-03-27 Sumitomo Bakelite Co Ltd Polyester resin sheet
JP2003511505A (en) * 1999-10-06 2003-03-25 スリーエム イノベイティブ プロパティズ カンパニー Antistatic composition
JP2005015573A (en) * 2003-06-24 2005-01-20 Mitsubishi Engineering Plastics Corp Antistatic resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971668A (en) * 1995-06-29 1997-03-18 C I Kasei Co Ltd Heat shrinking polyester film, its production and copolyester composition used therefor
JP2001081209A (en) * 1999-09-09 2001-03-27 Sumitomo Bakelite Co Ltd Polyester resin sheet
JP2003511505A (en) * 1999-10-06 2003-03-25 スリーエム イノベイティブ プロパティズ カンパニー Antistatic composition
JP2005015573A (en) * 2003-06-24 2005-01-20 Mitsubishi Engineering Plastics Corp Antistatic resin composition

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098116A (en) * 2012-11-15 2014-05-29 Du Pont Mitsui Polychem Co Ltd Polymer composition
US10850485B2 (en) * 2015-04-15 2020-12-01 Toray Industries, Inc. Polyester resin composition and production method thereof
CN107429047B (en) * 2015-04-15 2020-01-21 东丽株式会社 Polyester resin composition and method for producing same
US20180126714A1 (en) * 2015-04-15 2018-05-10 Toray Industries, Inc. Polyester resin composition and production method thereof
JPWO2016167084A1 (en) * 2015-04-15 2017-06-01 東レ株式会社 Polyester resin composition and method for producing the same
JP2018111822A (en) * 2015-04-15 2018-07-19 東レ株式会社 Polyester resin composition and polyester film formed form the same
CN107429047A (en) * 2015-04-15 2017-12-01 东丽株式会社 Polyester and resin composition and its manufacture method
TWI750113B (en) * 2015-04-15 2021-12-21 日商東麗股份有限公司 Polyester resin composition and manufacturing method thereof
WO2016167084A1 (en) * 2015-04-15 2016-10-20 東レ株式会社 Polyester resin composition and method of manufacturing same
JP2016210868A (en) * 2015-05-07 2016-12-15 大和製罐株式会社 Antistatic resin composition and film consisting of the same
US10676603B2 (en) 2015-07-16 2020-06-09 The Japan Steel Works, Ltd. Method for producing resin composition
JPWO2017010511A1 (en) * 2015-07-16 2018-03-15 住友化学株式会社 Method for producing resin composition
WO2017010511A1 (en) * 2015-07-16 2017-01-19 住友化学株式会社 Method for producing resin composition
JPWO2017170675A1 (en) * 2016-03-31 2019-02-07 住友化学株式会社 Method for producing resin composition
WO2017170675A1 (en) * 2016-03-31 2017-10-05 住友化学株式会社 Resin composition production method
JP2018052881A (en) * 2016-09-29 2018-04-05 東レ株式会社 Ion salt, thermoplastic resin composition containing the same, and method for producing the same
JP7295111B2 (en) 2017-12-05 2023-06-20 ティコナ・エルエルシー liquid crystal polymer composition
JP2021505732A (en) * 2017-12-05 2021-02-18 ティコナ・エルエルシー Liquid crystal polymer composition
US11578269B2 (en) 2017-12-05 2023-02-14 Ticona Llc Liquid crystalline polymer composition
JP2019108527A (en) * 2017-12-18 2019-07-04 東レ株式会社 Polyester film
JP7206857B2 (en) 2017-12-18 2023-01-18 東レ株式会社 polyester film

Also Published As

Publication number Publication date
JP5126840B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5126840B2 (en) Antistatic resin composition and film comprising the same
JP5568550B2 (en) Biaxially stretched polyester film for solar cells
JP4996858B2 (en) Polyester film for solar cell backside sealing
CN103517808B (en) Stack membrane and formed body
KR101500124B1 (en) Highly stable solution for coating compositions and method for manufacturing the same, polyester film using the same
JP2009256621A (en) Biaxially oriented polyester film
JP2010037533A (en) Method of manufacturing antistatic polyester film, antistatic polyester film manufactured by the method and use thereof
JP2009083456A (en) Manufacturing method for antistatic polyester film
JP2007077220A (en) Polyester film for optical use
JP2009242461A (en) Polyester resin, polyester water dispersion, and polyester film with coat
JP2006281498A (en) Laminated polyester film
JP5243135B2 (en) Polyester film for solar cell back surface protective film and solar cell back surface protective film
WO2017169662A1 (en) Film, electrical insulation sheet using same, adhesive tape, and rotating machine
JP6529120B6 (en) Antistatic resin composition and film comprising the same
JPH09291157A (en) Biaxially oriented polyester film
KR101209195B1 (en) Anti-static polyester film to protect the polarizer plate and manufacturing method thereof
JP2005281704A (en) Antistatic coating composition
JP7327537B2 (en) Method for producing polyester film
JP6279896B2 (en) Polyester resin and polyester resin aqueous liquid
JP2009214356A (en) Biaxially oriented laminated polyester film
JP7516822B2 (en) Laminated Polyester Film
CN111989368A (en) Liquid crystal polyester composition and molded article
JPS60170660A (en) Polyester block copolymer composition
JP2018119091A (en) Polyethylene terephthalate resin composition and film made of the same
KR102177746B1 (en) Optical film and organic light emitting display using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121024

R150 Certificate of patent or registration of utility model

Ref document number: 5126840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250