WO2017179584A1 - Method for manufacturing resin composition and biaxial kneading and extruding machine - Google Patents

Method for manufacturing resin composition and biaxial kneading and extruding machine Download PDF

Info

Publication number
WO2017179584A1
WO2017179584A1 PCT/JP2017/014854 JP2017014854W WO2017179584A1 WO 2017179584 A1 WO2017179584 A1 WO 2017179584A1 JP 2017014854 W JP2017014854 W JP 2017014854W WO 2017179584 A1 WO2017179584 A1 WO 2017179584A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
zone
cylinder
resin
kneading
Prior art date
Application number
PCT/JP2017/014854
Other languages
French (fr)
Japanese (ja)
Inventor
眞田 隆
幸司 亀尾
勇治 福田
嘉隆 木村
大吾 佐賀
Original Assignee
住友化学株式会社
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 株式会社日本製鋼所 filed Critical 住友化学株式会社
Publication of WO2017179584A1 publication Critical patent/WO2017179584A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/86Component parts, details or accessories; Auxiliary operations for working at sub- or superatmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/94Liquid charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Definitions

  • the present invention relates to a method for producing a resin composition and a twin-screw kneading extruder. More specifically, the present invention relates to a method for producing a resin composition in which a thermoplastic resin and powder are melt-kneaded using a biaxial kneader, and the resin composition is produced stably and with high productivity. In addition, the present invention relates to a method for reducing the amount of a volatile organic compound (Volatile Organic Compounds: abbreviated as VOC) remaining in a resin composition.
  • VOC volatile Organic Compounds
  • Thermoplastic resins such as polypropylene are relatively inexpensive, lightweight, and excellent in properties such as molding processability, mechanical properties, heat resistance, cold resistance, and long-term durability.
  • Various containers, food packaging materials, and household goods It is used in a wide range of applications, such as textiles for carpets and sofas, interior and exterior materials for automobiles, materials for household appliances, and building materials such as interior materials for buildings or houses.
  • VOC volatile organic compounds
  • thermoplastic resin As a method of reducing VOC in a thermoplastic resin, there is a method of drying and devolatilizing a thermoplastic resin which is a raw material before producing a resin composition by melt kneading, or drying and devolatilizing a resin composition after melt kneading. Although it is general, there are cases where it is not economical in view of the introduction of equipment such as a drying silo suitable for the production scale and the running cost for hot air or hot air drying. Also known is a method of reducing VOC by melt-kneading the resin composition produced by melt-kneading and water-injecting foam devolatilization again, but it is necessary to carry out melt-kneading twice. Therefore, it cannot be said to be an efficient method for producing a resin composition having a low VOC content.
  • the following is known as a technique for reducing VOC by performing water injection foam devolatilization.
  • a vacuum expansion zone is provided between the water injection dispersion zone and the devolatilization zone for the purpose of efficiently removing VOC from the molten resin, and between the vacuum expansion zone and the devolatilization zone, A water injection foaming devolatilization method in which a decompression ring having a slit is arranged is described.
  • Patent Document 2 in order to obtain a high screw rotation speed, water injection pressure, and water dispersibility for improving devolatilization efficiency, a seal ring is disposed only at one location downstream of the water injection dispersion zone. The water injection foam devolatilization method is described.
  • the conveying screw of the devolatilization unit has a half-angle flight shape for the purpose of suppressing heat generation of the resin due to shear friction and extending the residence time of the resin.
  • a conveying and kneading method is described in which gaps are formed on both sides of the flight so that a part of the resin flows backward from the downstream side to the upstream side.
  • Patent Document 4 improves the devolatilization efficiency by arranging a water injection dispersion zone consisting of a water dispersion foaming zone and a stirring zone for the purpose of speeding up the increase in the resin temperature near the bubble-resin interface in the water injection devolatilization step.
  • the water injection devolatilization method is described.
  • Japanese Patent Publication “JP 7-164509 A (published on June 27, 1995)” Japanese Patent Publication “Japanese Patent Laid-Open No. 10-249913 (published on September 22, 1998)” Japanese Patent Publication “Japanese Patent Laid-Open No. 11-277604 (published on Oct. 12, 1999)” Japanese Patent Publication “JP 2002-326273 A (published on November 12, 2002)”
  • an object of the present invention is a method for producing a resin composition in which a thermoplastic resin and powder are melt-kneaded, and the resin composition is produced stably and with high productivity.
  • An object of the present invention is to provide a method for reducing the amount of VOC remaining therein.
  • the present inventors have intensively studied and completed the present invention.
  • the present invention provides any of the following. 1) A method for producing a resin composition using a biaxial kneading extruder, wherein the resin composition contains a thermoplastic resin and powder as raw materials of the resin composition, and the biaxial
  • the kneading extruder includes a cylinder, a screw-type side feeder connected to the cylinder, a weight-type feeder connected to the screw-type side feeder, and a screw installed in the cylinder.
  • the cylinder includes a supply port, a connection port of the screw-type side feeder, a first vent port, a water injection port, and a second vent port in order from the upstream side of the cylinder.
  • the screw includes a first kneading zone located between the supply port and the connection port of the screw-type side feeder, and the screw-type side-feed.
  • a second kneading zone located between the connection port of the feeder and the first vent port, and a water injection devolatilization zone located downstream of the first vent port, the water injection devolatilization zone Is composed of, in order from the upstream of the cylinder, a full pressure increase zone, a water injection dispersion zone where the water injection port is located, and a vacuum expansion zone where the second vent port is located.
  • the thermoplastic resin has a transition temperature of less than 200 ° C.
  • the powder comprises an inorganic filler having an apparent density of 0.1 to 1.5 g / ml and an apparent density of 0.1 to 1.0 g / ml and one or more kinds of powder selected from the group consisting of thermoplastic resin powders having a transition temperature of 200 ° C. or higher, and the conveying ability of the screw-type side feeder is from the weight-type feeder to the screw-type
  • the effective volume per unit time of the powder supplied to the side feeder is 1.2 times or more.
  • the amount of water supplied to the water injection dispersion zone is Less than 5 parts by weight or more 0.1 parts by weight based on the total feed weight of the raw material into the Nda, resin pressure in the water injection dispersion zone is 1MPa or more, the production method.
  • thermoplastic resin in the cylinder A supply port for supplying to the cylinder, a connection port of the screw-type side feeder for connecting the screw-type side feeder for supplying the powder into the cylinder, and a gas or a volatile component in the cylinder.
  • a first vent port for removal outside the cylinder, a water injection port for supplying water to the resin composition, A second vent port for vaporizing the volatile component in the resin composition together with the water and devolatilizing, and the inside of the cylinder and the screw are connected to the supply port and the screw-type side feeder.
  • a twin-screw kneading extruder comprising a devolatilization zone.
  • a resin composition can be produced stably with high productivity, and the amount of VOC remaining in the resin composition can be reduced.
  • the resin composition targeted for the production of the present invention is a resin composition containing a powdered resin reinforcing material.
  • the resin composition obtained by the production method of the present invention may be provided as a resin compound product having a pellet shape or the like.
  • the resin composition obtained by the production according to the present invention is widely used as an industrial member such as an automobile part, and specifically, is used for an interior material of an automobile.
  • thermoplastic resin used as a raw material of the resin composition according to the present invention is a thermoplastic resin having a transition temperature of less than 200 ° C.
  • the transition temperature of the thermoplastic resin is the melting peak temperature of the resin in the case of a crystalline thermoplastic resin, and the glass transition temperature of the resin in the case of an amorphous thermoplastic resin.
  • the temperature can also be determined by differential scanning calorimetry.
  • thermoplastic resins include polyolefin resins (high density polyethylene, low density polyethylene, polypropylene, etc.), cyclic olefin resins, aliphatic polyester resins (polylactic acid, etc.), aliphatic polycarbonates, poly Examples include oxymethylene and styrene resins.
  • polyoxymethylene include polyacetal and the like
  • examples of styrene resins include polystyrene, SEBS (styrene / ethylene / butylene / styrene block copolymer), and acrylonitrile / butadiene / styrene copolymer. Etc. These may be used alone or in combination with a plurality of resins.
  • the shape supplied to this manufacturing method may be a pellet or a powder (powder).
  • the powder that can be used as a raw material for the resin composition of the present invention includes an inorganic filler having an apparent density of 0.1 to 1.5 g / ml, an apparent density of 0.1 to 1.0 g / ml, and a transition temperature of 200 ° C. It is selected from the group consisting of the above thermoplastic resin powders (hereinafter sometimes simply referred to as “thermoplastic resin powder”). Only one type of powder may be used, or a plurality of types may be used.
  • indicating a numerical range indicates a numerical range including the lower limit and the upper limit (that is, above and below) unless otherwise specified.
  • the inorganic filler having the above-described conditions include natural silicic acid or silicate, carbonate, hydroxide, oxide, particulate filler, flaky filler, fibrous filler, and carbon.
  • natural silicic acid or silicate include talc, kaolinite, clay, pyrophyllite, sericite, bentonite and silica.
  • carbonates include calbium carbonate, magnesium carbonate, hydrotalcite and the like.
  • the hydroxide include aluminum hydroxide and magnesium hydroxide.
  • the oxide include zinc white, iron oxide, magnesium oxide, aluminum oxide, titanium oxide and mullite.
  • the particulate filler examples include a synthetic filler such as hydrous silicate or anhydrous silicate, or a particulate filler such as silicate.
  • examples of the flaky filler include mica
  • examples of the fibrous filler include basic magnesium sulfate whisker, calcium titanate whisker, potassium titanate whisker, aluminum borate whisker, and wollastonite. , Sepiolite, zeolite, attapulgite, zonotlite, rock wool, glass wool, glass fiber and carbon fiber.
  • the apparent density of the inorganic filler is 0.1 to 1.5 g / ml, preferably 0.1 to 1.0 g / ml, more preferably 0.1 to 0.8 g / ml.
  • the apparent density means a density expressed by weight per unit volume
  • the apparent density of the powder indicates an apparent density measured by the method of JIS K7365: 1999.
  • (apparent density) / (true density) is preferably 0.3 or less, more preferably 0.25 or less, and still more preferably 0.00. Those that are 2 or less are used.
  • the inorganic filler having an (apparent density) / (true density) of 0.3 or less has an effect of improving productivity by the production method of the present invention. It is preferable in that it is more noticeable.
  • the “true density” is a density calculated from the volume of the container excluding the gap portion when the container is filled with the powder, and in this application the true density of the powder is JIS Z8807. : The density measured by the method of 2012 is pointed out.
  • the thermoplastic resin powder that can be used as a raw material for the resin composition of the present invention is a thermoplastic resin powder having an apparent density of 0.1 to 1.0 g / ml and a transition temperature of 200 ° C. or higher.
  • Specific examples of the thermoplastic resin powder include polyphenylene ether, polyphenylene sulfide, polyether ketone, polyamide resins (such as nylon 6 and nylon 66), and aromatic polyester resins (polyethylene terephthalate, polybutylene terephthalate, polybutylene). Naphthalate, etc.), aromatic polycarbonate, liquid crystal polymer and the like.
  • the effects of the present invention are particularly high, such as polyphenylene ether, polyphenylene sulfide, and liquid crystallinity, which have a high melting point and glass transition temperature, do not enter a melt-flow state up to a relatively high temperature, and maintain powder fluidity.
  • examples thereof include polymers.
  • the ratio of the raw materials supplied to the biaxial kneading extruder described later is the total weight of the thermoplastic resin having a transition temperature of less than 200 ° C. and the powder.
  • the preferred range of the powder is 5 to 80% by weight, more preferably 10 to 70% by weight, still more preferably 15 to 60% by weight.
  • Optional component In the resin composition to be produced according to the present invention, other optional components may be blended in addition to the above-described components.
  • optional components include elastomers, and more specifically, olefin-based, styrene-based, acrylic-based, urethane-based or engineering plastic (engineering plastic) -based elastomers.
  • olefin elastomer examples include ethylene- ⁇ -olefin copolymers such as an ethylene-propylene copolymer, an ethylene-butene copolymer, and an ethylene-octene copolymer.
  • antioxidants such as an agent, a foaming agent, a processing aid, a neutralizing agent, a heavy metal deactivator, a nucleating agent, an antifogging agent, an antibacterial agent, and an antifungal agent.
  • the impact strength of the produced resin composition can be improved or flexibility can be imparted.
  • thermoplastic resin having a transition temperature of less than 200 ° C. is 20 to 95 parts by weight, more preferably 30 to 90 parts by weight, and still more preferably 40 to 85 parts by weight.
  • the preferred range of the powder is 5 to 80 parts by weight, more preferably 10 to 70 parts by weight, and still more preferably 15 to 60 parts by weight.
  • thermoplastic resin pellets may be further used as a raw material.
  • thermoplastic resin pellets having an (apparent density) / (true density) of 0.9 or more can be mentioned.
  • the transition temperature of the resin pellet is arbitrary.
  • the ratio of the supply amount of the resin pellet in the raw material includes the thermoplastic resin having a transition temperature of less than 200 ° C. and the resin pellet.
  • the total supply amount with the thermoplastic resin of less than 200 ° C. is calculated as the supply amount of the thermoplastic resin having a transition temperature of less than 200 ° C. as the raw material of the resin composition according to the present invention.
  • the powder as a raw material of the resin composition is at least one powder selected from the group consisting of talc, kaolinite and clay, and the thermoplastic resin having a transition temperature of less than 200 ° C. Polyolefin resin.
  • the present invention is a method for producing the above-described resin composition. More specifically, the present invention relates to a method for producing a resin composition using a biaxial kneading extruder having a predetermined structure, which will be described later. 1) Biaxial kneading extrusion of raw materials (thermoplastic resin or powder) 2) a supply process for supplying into the cylinder of the machine, 2) a melt-kneading process for melting and kneading the raw material supplied into the cylinder to produce a resin composition, and 3) water for the resin composition produced in the melt-kneading process.
  • FIG. 1 is a diagram showing a schematic configuration of an exemplary apparatus for carrying out a manufacturing method according to the present invention.
  • the twin-screw kneading extruder 100 includes a cylinder 50, a screw-type side feeder 2 connected to the cylinder 50, a weight-type feeder 3 connected to the screw-type side feeder 2, And a screw 30 installed in the cylinder 50.
  • the cylinder 50 includes a supply port 1, a connection port for the screw-type side feeder 2, a first vent port 4, a water injection port 5, and a second vent port 6 in order from the upstream side of the cylinder.
  • the inside of the cylinder 50 and the screw 30 include a first kneading zone 9 located between the supply port 1 and the connection port of the screw-type side feeder 2, and a connection port of the screw-type side feeder 2 and the first vent port 4.
  • a second kneading zone 10 located in between and a water injection and devolatilization zone 15 located downstream of the first vent port 4 are configured.
  • the water injection devolatilization zone 15 includes a third kneading zone 11 and a decompression / expansion zone 14 in order from the upstream side, and the third kneading zone 11 further includes a full pressure increase zone 12 and a water injection side in order from the upstream side.
  • the dispersion zone 13 is included.
  • the water injection port 5 is provided so as to open to the water injection dispersion zone 13, and the second vent port 6 is provided so as to open to the reduced pressure expansion zone 14.
  • the inside of the cylinder 50 and the screw 30 upstream of the first kneading zone 9 is a first transport zone
  • the transport zone between the first kneading zone 9 and the second kneading zone 10 is a second transport zone.
  • a conveyance zone between the second kneading zone 10 and the third kneading zone 11 is defined as a third conveyance zone.
  • the water injection devolatilization zone 15 is also a 4th conveyance zone.
  • the fourth transport zone may be from the water injection devolatilization zone 15 to a transport zone further provided downstream of the water injection devolatilization zone 15.
  • the expressions “upper” and “lower” when describing the positional relationship between the two configurations in the vertical direction, for example, the expressions “upper” and “lower” are used, and each configuration is positioned in contact with or apart from each other. means.
  • the direction of the arrow shown in the lower part of FIG. 1 means the flow direction when the resin material is transferred in the apparatus, and there are a certain part of the apparatus and other parts.
  • the positional relationship at a certain point in one member of the apparatus it is referred to as “upstream” and “downstream” or “upstream” and “downstream” with respect to the flow direction of the resin material.
  • the most upstream and downstream end faces in one member are expressed as “upstream end” and “downstream end”, respectively.
  • This step is a step of supplying the raw material into the cylinder 50.
  • the thermoplastic resin supplying step of supplying the above-described thermoplastic resin into the cylinder 50 continuously or intermittently, and the thermoplastic resin Is a step of performing the powder supply step in parallel with the above-described powder supply continuously or intermittently into the cylinder 50 to which is supplied.
  • This step is a step of supplying the thermoplastic resin from the supply port 1 into the cylinder 50.
  • the thermoplastic resin supplied into the cylinder 50 in this step is transferred to the first kneading zone 9 through the first transport zone.
  • the first kneading zone 9 is a plasticizing region for plasticizing the thermoplastic resin. In this region, the first kneading zone 9 is melt-kneaded under the condition that the resin pressure in the first kneading zone 9 is 0.1 MPa or more, and the thermoplastic resin is plasticized. Make it.
  • a weight type feeder 16 may be connected to the supply port 1, and a thermoplastic resin may be supplied from the weight type feeder 16 through the supply port 1.
  • one or more other optional components such as an elastomer or an additive may be supplied together with the thermoplastic resin.
  • one or more weight type feeders 16 ′ and / or capacity type feeders 17 different from the weight type feeder 16 used for supplying the thermoplastic resin are connected to the supply port 1, and an elastomer or an additive 1 or the like is connected.
  • Two or more other components may be supplied through the supply port 1 from a different feeder for each component.
  • a weight-type feeder 16 ′ and a capacity-type feeder 17 that are different from the weight-type feeder 16 used for supplying the thermoplastic resin are connected to the supply port 1, and the elastomer is weighted.
  • the additive is supplied from the capacity feeder 16 ′ from the capacity feeder 17 through the supply port 1.
  • a biaxial kneading extruder 100 includes a screw 30 for transferring a resin composition in a cylinder 50.
  • the screw 30 of the twin-screw kneading extruder 100 according to the present invention is preferably a screw having two kneading segments from the viewpoint of increasing productivity.
  • the rotational speed of the screw 30 is, for example, 200 to 2000 rpm, and preferably 1000 to 1800 rpm. The higher the number of revolutions, the more frequently the gas-liquid interface is renewed and the lower the equilibrium concentration, so that the VOC devolatilization efficiency can be improved. However, if the rotational speed is too high, the resin deteriorates due to shearing heat generation. Therefore, it is necessary to appropriately adjust the rotational speed in view of the degree of heat generation. The devolatilization of VOC will be described later.
  • the twin-screw kneading extruder 100 is set so that the resin pressure in the first kneading zone 9 is 0.1 MPa or more, preferably 0.1 to 5 MPa, more preferably 0.1 to 1 MPa.
  • a predetermined resin pressure in the first kneading zone 9 may be maintained by appropriately installing a segment capable of adjusting the resin pressure in the first kneading zone 9 of the screw 30.
  • the segment disposed in the first kneading zone 9 includes a segment for sending resin (concept including a resin composition) in the downstream direction by rotating a screw, a segment for pushing the resin back in the upstream direction, or damming the resin.
  • Examples include a segment having an effect.
  • a segment that pushes the resin back in the upstream direction by the rotation of the screw a disk generally referred to as a reverse kneading disk (hereinafter referred to as “reverse disk”) whose reverse flight and twist angle exceed 90 ° with respect to the feed direction.
  • reverse disk a reverse kneading disk
  • a seal ring is mentioned as a segment which has an effect which dams up resin.
  • forward disks may be disposed at a position upstream of the center of the first kneading zone 9 of the screw 30.
  • a forward disk is a disk whose twist angle is less than 90 ° with respect to the feed direction. If the forward disk is disposed, the degree of plasticization of the thermoplastic resin can be adjusted while efficiently increasing the resin pressure.
  • a so-called orthogonal disk having a twist angle of 90 ° can be further arranged as necessary. Further, two or more of these segments may be arranged in combination.
  • the position where the orthogonal disk is arranged is preferably between the aforementioned reverse disk and the sequential disk, or between the sequential disk and the sequential disk.
  • the pressure in the first kneading zone 9 can be measured using a pressure sensor installed in the first kneading zone 9. It is preferable to install one to three pressure sensors in the center to the downstream region of the first kneading zone 9 filled with the resin in the cylinder 50 as necessary.
  • the pressure sensor must be installed in the cylinder 50 so as not to be damaged by the rotating screw. If the pressure sensor is located deeper in the direction of the screw 30 than the wall surface of the cylinder inner wall, the resin accumulates in the pressure sensor and accurately measures the pressure. Since it becomes impossible, it is preferable to install the tip of the pressure sensor at a position that matches the wall surface of the cylinder inner wall as much as possible.
  • This step is a step of supplying the powder from the screw-type side feeder 2 into the cylinder 50 to which the above-described thermoplastic resin is supplied.
  • the screw side feeder 2 is connected to a weight type feeder 3. Therefore, first, powder is supplied to the weight-type feeder 3, and the powder is transferred from the weight-type feeder 3 to the screw-type side feeder 2. Powder is supplied from the screw-type side feeder 2 into the twin-screw kneading extruder 100.
  • the conveying capacity of the powder of the screw-type side feeder 2 is preferably 1.2 times or more of the effective volume per unit time of the powder supplied from the weight-type feeder 3 to the screw-type side feeder 2, and more Preferably, it is 2 times or more, more preferably 4 times or more.
  • the upper limit of the powder conveyance capacity of the screw-type side feeder 2 depends on the design and durability of the apparatus, it is usually per unit time of the powder supplied from the weight-type feeder 3 to the screw-type side feeder 2.
  • the effective volume is 10 times or less.
  • the powder conveying ability of the screw-type side feeder 2 means the volume per unit time of the powder supplied from the screw-type side feeder 2 to the biaxial kneading extruder 100.
  • the product of the volume of space sent to the front of the feeder that is, the direction of the cylinder 50 in FIG. 1 and the screw rotation speed while the screw of the screw-type side feeder 2 makes one rotation, or the screw
  • the difference between the volume of the cylinder barrel per screw length of the screw of the side feeder 2 and the volume of the screw per lead length of the screw side feeder 2 and the screw rotation speed of the screw side feeder 2 are obtained. be able to.
  • the effective volume of the powder must be evaluated based on the volume actually supplied to the side feeder.
  • the effective volume per unit time of the powder supplied from the weight-type feeder 3 to the screw-type side feeder 2 is the weight of the powder supplied from the weight-type feeder 3 to the screw-type side feeder 2 per unit time. It can be determined as a value divided by the density.
  • the “bulk density of the powder” means that the powder is measured from the same height as when the powder is actually supplied from the weight-type feeder 3 to the screw-type side feeder 2, and a measuring container such as a measuring cylinder is used. And the weight of the powder in the measuring container is divided by the volume of the powder measured in the measuring container.
  • the conveying capacity of the screw-type side feeder 2 is preferably at least twice the effective volume per unit time of the powder supplied from the weight-type feeder 3 to the screw-type side feeder 2.
  • the screw-type side feeder 2 when the powder is supplied to the biaxial kneading extruder 100 with the screw-type side feeder 2, resin pellets or the like different from the powder may be supplied together with the powder.
  • the conveying capacity of the screw-type side feeder 2 is sufficiently larger than the total amount of the effective volume of the powder supplied from the weight-type feeder 3 to the screw-type side feeder 2 and the volume of the resin pellets, the screw-type side feeder 2 There is no need to consider the volume of the resin pellets when setting the feeding capacity of the feeder.
  • the powder and the resin pellets of 25 parts by weight or more with respect to 100 parts by weight of the powder pass from the weight type feeder through the screw type side feeder. It is preferable to be supplied to the biaxial kneading extruder 100.
  • the resin pellet supplied from the weight type feeder 3 through the screw type side feeder 2 into the cylinder 50 is preferably 200 parts by weight or less with respect to 100 parts by weight of the powder.
  • Examples of the resin pellet supplied from the weight type feeder 3 through the screw type side feeder 2 to the biaxial kneading extruder 100 include thermoplastic resin pellets having an (apparent density) / (true density) of 0.9 or more. There is no restriction on the transition temperature. Furthermore, the above-described thermoplastic resin may be additionally supplied together with the powder through the screw-type side feeder 2.
  • one or more weight-type feeders 3 'and / or capacity-type side feeders are connected to the screw-type side feeder 2, and the above-mentioned thermoplastic resin and / or a plurality of types of optional components are added to each component.
  • a weight-type feeder 3 ′ is connected to the screw-type side feeder 2, and thermoplastic resin is added into the biaxial kneading extruder 100 through the weight-type feeder 3 ′ and the side feeder 2. Supply.
  • thermoplastic resin supplied from the supply port 1 in the above steps and the powder supplied using the screw-type side feeder 2 are conveyed to the second kneading zone 10 through the second conveyance zone.
  • thermoplastic resin which may be a resin composition
  • the above-described thermoplastic resin is melt-kneaded in the cylinder 50 (more specifically, the first to third kneading zones, particularly the first to second kneading zones). It is a process to do.
  • the thermoplastic resin and the powder conveyed to the second kneading zone 10 are kneaded, and the powder is uniformly dispersed in the thermoplastic resin, thereby including the thermoplastic resin and the powder.
  • a resin composition is produced.
  • the biaxial kneading extruder 100 is operated so that the resin pressure in the second kneading zone 10 is less than 5 MPa, preferably less than 3 MPa, more preferably less than 1 MPa.
  • the resin pressure in the second kneading zone 10 is preferably 0.02 MPa or more, and more preferably 0.1 MPa or more.
  • the resin pressure in the first kneading zone at this time is as described above.
  • a predetermined resin pressure in the second kneading zone 10 may be maintained by appropriately installing a segment capable of adjusting the resin pressure in the second kneading zone 10 of the screw 30.
  • a segment capable of adjusting the resin pressure in the second kneading zone 10 of the screw 30 For example, in the second kneading zone 10, for example, on the downstream side of the center in the second kneading zone 10, a segment that pushes back the resin in the upstream direction by rotation of the screw or a segment that has an effect of blocking the resin is disposed. By doing so, the resin pressure may be maintained.
  • the gap distance (chip clearance) from the stirring edge, which is the outermost peripheral end surface of the segment such as an inverted disk installed downstream of the second kneading zone 10, to the inner wall of the cylinder is equal to the gap distance from the normal flight top to the inner wall of the cylinder. It is common. However, the gap distance of the kneading disk used in the second kneading zone 10 is preferably 2 to 3 times the usual distance. With such a gap distance, the resin pressure in the second kneading zone 10 can be controlled within the pressure range described above.
  • the thickness in the axial direction (disk width) of each kneading disk is usually about 0.1D to 0.2D (D is the screw diameter) in many cases.
  • D is the screw diameter
  • the thermoplastic resin and the powder are melt-kneaded so that the powder is uniformly dispersed in the thermoplastic resin.
  • the gas or volatile component is removed to the outside of the biaxial kneading extruder 100 from the first vent port 4 downstream from the second kneading zone 10.
  • a gas or a volatile component may be released to the atmosphere from the first vent port 4, and a vacuum pump may be connected to the first vent port 4 and sucked under reduced pressure. Next, it transfers to the 3rd kneading zone 11 through the 3rd conveyance zone.
  • the resin composition obtained by kneading in the above-described step is supplied with water from the water inlet 5 to the water pouring and dispersing zone 13 in the third kneading zone 11 to knead and disperse the resin composition.
  • the volatile component in the resin composition is vaporized together with water and removed from the second vent port 6.
  • the resin in the kneading and dispersing step, is further filled in the cylinder 50 and the pressure is increased to a desired pressure, and water is supplied to the resin composition by supplying water to the resin composition. It includes a water injection dispersion step for mixing and dispersing, and a pressure reduction expansion step for removing the VOC contained in the resin by foaming the water mixed and dispersed in the resin under reduced pressure in the water injection dispersion step.
  • a water injection dispersion step for mixing and dispersing
  • a pressure reduction expansion step for removing the VOC contained in the resin by foaming the water mixed and dispersed in the resin under reduced pressure in the water injection dispersion step.
  • ⁇ Charge boosting process> The resin obtained in the above process is further transferred downstream of the first vent port 4. Subsequently, in the filling pressure increasing step, the resin composition is filled in the cylinder 50 in the filling pressure increasing zone 12, and the pressure is increased. Preferably, it is desirable to appropriately increase the resin pressure by appropriately arranging segments such as a forward disk.
  • the resin composition to be transferred is pressurized in the filling pressure increase zone 12 in order to suppress the water injection and vaporization to some extent and disperse it in the resin. It is necessary to maintain the state.
  • a seal ring 8 may be disposed between at least one of the filling pressure increase zone 12 and the water injection dispersion zone 13 and at least one of the water injection dispersion zone 13 and the decompression expansion zone 14, preferably both. If the seal ring 8 is installed, the resin can be blocked. In the case where it is installed both between the filling pressure increase zone 12 and the water injection dispersion zone 13 and between the water injection dispersion zone 13 and the decompression expansion zone 14, seals at the upstream end and the downstream end of the water injection dispersion zone 13 are provided. Dam the resin with the ring. If it is the said structure, it will suppress that the resin kneaded flows back upstream, maintaining the state pressure
  • the water injection dispersion step is a step of mixing and dispersing water in the resin in the water injection dispersion zone 13 following the above-described filling pressure increasing step. Resin is transferred to the water injection dispersion zone 13. Water is injected from the water injection port 5 provided upstream of the center of the water injection dispersion zone 13. The water is injected by, for example, connecting the water injection port 5 to the water injection nozzle 5 'and further connecting the nozzle to a liquid pump or the like.
  • the amount of water supplied to the water injection dispersion zone is preferably 0.1 parts by weight or more and less than 5 parts by weight with respect to the total weight of the raw materials supplied into the cylinder 50, and 0.3 parts by weight or more.
  • the amount is more preferably less than 4 parts by weight, and still more preferably 0.5 parts by weight or more and less than 3 parts by weight. It is preferable to efficiently disperse water in the resin using a desired segment or the like disposed in the water injection dispersion zone 13.
  • a segment for example, a segment such as an orthogonal disk with little change in pressure state and a stirring effect can be cited.
  • the resin pressure in the water injection dispersion zone 13 is 1 MPa or more.
  • the resin pressure in the water injection dispersion zone 13 is preferably about 1 to 5 MPa, more preferably 1 to 4 MPa, and even more preferably 1 to 3 MPa.
  • the decompression expansion step is a step of removing VOC contained in the resin by foaming the water mixed and dispersed in the resin in the water injection dispersion step described above under reduced pressure.
  • the resin composition in which water is mixed and dispersed is transferred to the vacuum expansion zone 14.
  • the water mixed and dispersed in the resin is foamed under reduced pressure to greatly increase the bubble-resin interface.
  • the segment used in the decompression / expansion zone 14 may be only a flight screw having a conveyance capability, or may be a combination of two or more segments such as an orthogonal disk or a gear kneading disk and a mixing disk having a mixing effect. Good.
  • the vent port 6 may be connected to the opening provided in the upper part of the cylinder 50 through a vacuum pump for suction under reduced pressure, or from the side of the cylinder 50 for the purpose of suppressing bent-up or entrainment phenomenon of the molten resin.
  • vacuum devolatilization may be performed using the devolatilizer 7 equipped with the biaxial screw.
  • the method for producing a resin composition according to the present invention may further include a step of supplying an optional component depending on the purpose.
  • an optional component what was described in the item (arbitrary component) of the item of the above-mentioned raw material is mentioned.
  • additives may be supplied into the biaxial kneading extruder 100 from the supply port 1 in the first conveying zone of the biaxial kneading extruder 100 together with the thermoplastic resin, or in the second conveying zone. Or you may supply into the biaxial kneading extruder 100 from the supply port provided in the 3rd conveyance zone.
  • the additive is supplied together with the thermoplastic resin. May be.
  • one or more weight-type feeders 16 ′ and / or capacitive feeders 17 different from the weight-type feeder 16 used for supplying the thermoplastic resin are connected to the supply port 1, and a plurality of types of optional components are added to each of them.
  • one or more weight-type feeders 3 'and / or capacity-type side feeders are connected to the screw-type side feeder 2, and a plurality of kinds of optional components are different for each component.
  • the biaxial kneading extruder 100 may be supplied through the capacity-type side feeder and the screw-type side feeder 2.
  • a granulating step for connecting the granulating device or the like for pelletizing the resin composition to the downstream of the biaxial kneading extruder 100 and making the resin composition into a pellet shape is included. Also good.
  • a VOC residual amount measurement step of measuring the VOC residual amount in the obtained resin composition using a gas chromatograph or the like may be included as necessary.
  • twin screw kneading extruder 100 The main configuration and operation of the twin-screw kneading extruder 100 according to the present invention are as described above. Here, the changeable points of each configuration and configurations not shown will be described.
  • the biaxial kneading extruder 100 is a biaxial kneading extruder that kneads a resin composition raw material while melting it and extrudes the resin composition obtained by kneading in a shape such as a pellet shape. Therefore, two kneading screws 30 for kneading the resin are accommodated in the cylinder 50 so as to be freely rotatable.
  • the supply port 1 may have a configuration such as a hopper.
  • the screw-type side feeder 2 includes a biaxial screw-type side feeder.
  • a plurality of supply ports and screw side feeders for supplying each raw material into the cylinder 50 may be provided.
  • a drain pot and a vacuum pump may be further connected to the devolatilizer 7.
  • the screw configuration of the second kneading zone 10 is mainly a forward disk, and a wide disk is preferable. Further, it is preferable that the gap distance (chip clearance) is wider than usual.
  • the disk is preferably thinner in order to quickly increase the pressure to 1 MPa or more required for the water injection dispersion zone 13.
  • the thickness of the disk is thin in order to efficiently mix and disperse the water injected in a short section into the resin.
  • a full flight screw in the full pressure zone of the tip As an example, two full flight screws are used.
  • a square flight or half angle flight shaped screw or a single full flight screw may be used.
  • the biaxial kneading extruder 100 of the present invention is the above-mentioned [1. It can be suitably used in the production method described in the production method of the resin composition].
  • a granulation apparatus for pelletizing the resin composition is provided downstream of the twin-screw kneading extruder. Furthermore, an apparatus for measuring the remaining amount of VOC may be provided.
  • the raw materials are not smoothly fed into the biaxial kneading extruder.
  • the present invention includes any of the following 1) to 9).
  • the kneading extruder includes a cylinder, a screw-type side feeder connected to the cylinder, a weight-type feeder connected to the screw-type side feeder, and a screw installed in the cylinder.
  • the cylinder includes a supply port, a connection port of the screw-type side feeder, a first vent port, a water injection port, and a second vent port in order from the upstream side of the cylinder.
  • the screw includes a first kneading zone located between the supply port and the connection port of the screw-type side feeder, and the screw-type side-feed.
  • a second kneading zone located between the connection port of the feeder and the first vent port, and a water injection devolatilization zone located downstream of the first vent port, the water injection devolatilization zone Is composed of, in order from the upstream of the cylinder, a full pressure increase zone, a water injection dispersion zone where the water injection port is located, and a vacuum expansion zone where the second vent port is located.
  • the thermoplastic resin has a transition temperature of less than 200 ° C.
  • the powder comprises an inorganic filler having an apparent density of 0.1 to 1.5 g / ml and an apparent density of 0.1 to 1.0 g / ml and one or more kinds of powder selected from the group consisting of thermoplastic resin powders having a transition temperature of 200 ° C. or higher, and the conveying ability of the screw-type side feeder is from the weight-type feeder to the screw-type
  • the effective volume per unit time of the powder supplied to the side feeder is 1.2 times or more.
  • the amount of water supplied to the water injection dispersion zone is Less than 5 parts by weight or more 0.1 parts by weight based on the total feed weight of the raw material into the Nda, resin pressure in the water injection dispersion zone is 1MPa or more, the production method.
  • the biaxial kneader-extruder is provided with a seal ring between at least one of the filling pressure increase zone and the water injection dispersion zone and between the water injection dispersion zone and the reduced pressure expansion zone 1) to 3).
  • the manufacturing method of the resin composition in any one of.
  • the powder and the resin pellets are supplied from the gravimetric feeder through the screw-type side feeder into the cylinder, and the amount of the resin pellets is 100 parts by weight of the powder.
  • the powder is at least one powder selected from the group consisting of talc, kaolinite and clay, and the thermoplastic resin having a transition temperature of less than 200 ° C. is a polyolefin resin 1) to 6)
  • the manufacturing method of the resin composition in any one of. 8)
  • a second vent port for vaporizing the volatile component in the resin composition together with the water and devolatilizing, and the inside of the cylinder and the screw are connected to the supply port and the screw-type side feeder.
  • a twin-screw kneading extruder comprising a devolatilization zone. 9) A granulation system comprising a twin-screw kneading extruder for producing pellets of a resin composition using the production method according to any one of 1) to 7).
  • a resin composition was produced in an apparatus having the same configuration as that of the biaxial kneading extruder 100.
  • the twin-screw kneading extruder 100 used was TEX44 ⁇ II manufactured by Nippon Steel Co., Ltd., which is a meshing type with a cylinder diameter of 47 mm.
  • the biaxial kneader-extruder had a cylinder and two screw shafts accommodated in the cylinder.
  • a biaxial screw-type side feeder was used as the screw-type side feeder 2.
  • a vacuum pump was connected to the first vent port 4.
  • the 2nd vent port 6 which connected the devolatilizer 7 from the side surface was provided.
  • the water injection port 5 is provided with a water injection nozzle 5 ′. Further, a weight type feeder 16, a weight type feeder 16 ′ and a capacity type feeder 17 were connected to the supply port 1. Further, the weight feeder 3 and the weight feeder 3 ′ were connected to the screw side feeder 2.
  • the screw corresponding to the first kneading zone 9 includes, in order from the upstream side, a forward (forward feed direction) disc, an orthogonal (neutral) disc, and a screw so that the resin pressure in the first kneading zone is 0.1 MPa or more.
  • Reverse (reverse feed direction) was arranged.
  • the thicknesses of the forward disk, orthogonal disk, and reverse disk were 0.2D (D is the screw diameter).
  • a forward disk was placed long from upstream so that the resin pressure in the second kneading zone 10 was less than 5 MPa, and finally a reverse disk was placed.
  • the forward disk and the reverse disk each had a thickness of 0.5D.
  • the part of the screw corresponding to the third kneading zone 11 is arranged by using a forward disk, an orthogonal disk and a reverse disk in order from the upstream side so that the resin pressure in the water injection dispersion zone 13 is 1 MPa or more.
  • the disc thickness was also 0.1D.
  • Talc was used as the powder.
  • the bulk density of talc was measured by simulating the state where the weight type feeder 3 is put into the screw type side feeder 2. That is, the weight of talc per unit volume is measured after dropping from a height of 2.3 m corresponding to the length of the shooter connecting the weight type feeder 3 and the screw type side feeder 2 and receiving it on the measuring cylinder. I asked for it. By this measurement, it was 0.51.
  • VOC remaining amount in the resin composition was evaluated by a head space method gas chromatograph using the obtained resin composition pellets.
  • the resin composition which does not devolatilize water by only melt kneading is used as a standard, it is preferable that the VOC remaining amount is small.
  • the total supply amount of polypropylene pellets, rubber pellets, and talc supplied into the biaxial kneading extruder 100 was 490 kg / hour.
  • the effective volume of talc supplied from the weight type feeder 3 to the screw type side feeder 2 was 144 L / hour, and the conveying capacity of the screw type side feeder 2 was 801 L / hour. That is, the conveying capacity of the screw-type side feeder 2 was about 5.6 times the volume per unit time of talc supplied from the weight-type feeder 3 to the screw-type side feeder 2.
  • the raw material was melt-kneaded at a screw rotation speed of 1350 rpm of the biaxial kneading extruder 100, and vacuum suction was performed from the first vent port and the second vent port without pouring water from the water injection port.
  • the amount of VOC remaining in the obtained resin composition pellets was set to 1.0 as a reference.
  • Example 1 Using the same apparatus as in Comparative Example 1, a resin composition was produced under different conditions.
  • Example 2 A resin composition was produced under the same conditions as in Example 1 except that 4 parts by weight of water was injected from the water injection port 5 to the total supply weight of the raw materials. The amount of VOC remaining in the obtained resin composition pellets was good, being reduced to 0.51 on the basis of Comparative Example 1 where water injection was not volatilized.
  • Example 2 A resin composition was produced under the same conditions as in Example 1 except that 5 parts by weight of water was poured from the water inlet 5 into the total supply weight of the raw materials. As a result, the resin composition extruded from the biaxial kneader-extruder 100 was foamed, and pellets could not be produced.
  • Example 3 A resin composition was produced under the same conditions as in Example 1 except that the total supply amount of polypropylene pellets, rubber pellets, and talc supplied into the biaxial kneading extruder 100 was 600 kg / hour.
  • the effective volume of talc supplied from the weight type feeder 3 to the screw type side feeder 2 was 176 L / hour, and the conveying capacity of the screw type side feeder was 801 L / hour. That is, the conveying ability of the screw-type side feeder was about 4.6 times the volume per unit time of talc supplied from the weight-type feeder 3 to the screw-type side feeder 2.
  • the amount of VOC remaining in the obtained resin composition pellets was reduced to 0.68 on the basis of Comparative Example 1 in which water injection was not volatilized. Compared with Comparative Example 1, productivity was improved by 20%, and VOC was reduced by 31%, which was favorable.
  • Example 4 A resin composition was produced under the same conditions as in Example 2 except that the screw rotation speed of the biaxial kneading extruder 100 was 1650 rpm. The amount of VOC remaining in the obtained resin composition pellets was good, being reduced to 0.46 on the basis of Comparative Example 1 where water injection was not volatilized.
  • the present invention can be used in a method for producing a resin composition in which a thermoplastic resin and powder are melt-kneaded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is a novel method for manufacturing a resin composition in which thermoplastic resin and powder are melted and kneaded together, or the like. The manufacturing method of the present invention is a method for manufacturing a resin composition using a biaxial kneading and extruding machine. The biaxial kneading and extruding machine includes a cylinder (50) configured to include a first kneading zone (9), a second kneading zone (10), and a water-pouring and devolatilizing zone (15). The water-pouring and devolatilizing zone 15 includes a water-pouring and dispersing zone (13). The method includes a step of supplying water to the water-pouring and dispersing zone (13) and kneading and dispersing a resin composition to vaporize and remove a volatile component in the resin composition together with water.

Description

樹脂組成物の製造方法および二軸混練押出機Method for producing resin composition and twin-screw kneading extruder
 本発明は樹脂組成物の製造方法および二軸混練押出機に関するものである。より詳細には、本発明は、熱可塑性樹脂と粉体とを二軸混練機を用いて溶融混練する樹脂組成物の製造方法であって、安定的に高い生産性で樹脂組成物を製造し、かつ樹脂組成物中に残存する揮発性有機化合物(Volatile Organic Compounds:略称VOC)の量を低減する方法に関するものである。 The present invention relates to a method for producing a resin composition and a twin-screw kneading extruder. More specifically, the present invention relates to a method for producing a resin composition in which a thermoplastic resin and powder are melt-kneaded using a biaxial kneader, and the resin composition is produced stably and with high productivity. In addition, the present invention relates to a method for reducing the amount of a volatile organic compound (Volatile Organic Compounds: abbreviated as VOC) remaining in a resin composition.
 ポリプロピレン等の熱可塑性樹脂は、比較的廉価で軽量かつ成形加工性、機械的特性、耐熱性、耐寒性および長期耐久性等の特性に優れることから、各種容器、食品用包装材料、日用雑貨、カーペットやソファー用の繊維、自動車内外装材、家電用材料およびビルまたは住宅の内装材等の建築材料などの広範な用途に利用されている。近年、シックハウス(室内空気汚染)問題への懸念から、様々な用途に使用する樹脂材料に対して、揮発性有機化合物(VOC)の低減が求められるようになってきている。VOCは、シックハウス問題の原因物質であると報告されている物質の1つである。シックハウス問題はビルまたは住宅の内装材等建築材料のみではなく、自動車等の車両の内装材料等においても対象とされ、VOCの少ない樹脂材料の使用が望まれている。 Thermoplastic resins such as polypropylene are relatively inexpensive, lightweight, and excellent in properties such as molding processability, mechanical properties, heat resistance, cold resistance, and long-term durability. Various containers, food packaging materials, and household goods It is used in a wide range of applications, such as textiles for carpets and sofas, interior and exterior materials for automobiles, materials for household appliances, and building materials such as interior materials for buildings or houses. In recent years, due to concerns about the problem of sick house (indoor air pollution), reduction of volatile organic compounds (VOC) has been demanded for resin materials used in various applications. VOC is one of the materials reported to be the causative agent of the sick house problem. The sick house problem is not only applied to building materials such as interior materials for buildings or houses, but also to interior materials for vehicles such as automobiles, and the use of resin materials with low VOC is desired.
 熱可塑性樹脂中のVOCを低減する方法として、溶融混練により樹脂組成物を生産する前に原料である熱可塑性樹脂を乾燥脱揮するか、溶融混練後の樹脂組成物を乾燥脱揮する手法が一般的であるが、生産規模に見合った乾燥サイロ等の設備導入や温風または熱風乾燥の為のランニングコストを鑑みると経済性を欠く場合がある。また、溶融混練により生産した樹脂組成物を再度、溶融混練し注水発泡脱揮することでVOCを低減する手法も知られているが、溶融混練を二度実施する必要があることから、経済性に即した効率的な低VOC量の樹脂組成物の製造方法とはいえない。 As a method of reducing VOC in a thermoplastic resin, there is a method of drying and devolatilizing a thermoplastic resin which is a raw material before producing a resin composition by melt kneading, or drying and devolatilizing a resin composition after melt kneading. Although it is general, there are cases where it is not economical in view of the introduction of equipment such as a drying silo suitable for the production scale and the running cost for hot air or hot air drying. Also known is a method of reducing VOC by melt-kneading the resin composition produced by melt-kneading and water-injecting foam devolatilization again, but it is necessary to carry out melt-kneading twice. Therefore, it cannot be said to be an efficient method for producing a resin composition having a low VOC content.
 注水発泡脱揮することでVOCを低減する手法については、次のようなものが知られている。 The following is known as a technique for reducing VOC by performing water injection foam devolatilization.
 例えば、特許文献1には、溶融樹脂からVOCを効率よく除去することを目的として、注水分散ゾーンと脱揮ゾーンの間に減圧膨張ゾーンを設け、減圧膨張ゾーンと脱揮ゾーンとの間に、スリットを有する減圧リングを配置する注水発泡脱揮方法が記載されている。 For example, in Patent Document 1, a vacuum expansion zone is provided between the water injection dispersion zone and the devolatilization zone for the purpose of efficiently removing VOC from the molten resin, and between the vacuum expansion zone and the devolatilization zone, A water injection foaming devolatilization method in which a decompression ring having a slit is arranged is described.
 また、特許文献2には、脱揮効率を向上させる為の高いスクリュー回転数、注水圧、水分散性を得ることを目的として、シールリングを注水分散ゾーンの下流の一ケ所のみに配置するための注水発泡脱揮方法が記載されている。 Further, in Patent Document 2, in order to obtain a high screw rotation speed, water injection pressure, and water dispersibility for improving devolatilization efficiency, a seal ring is disposed only at one location downstream of the water injection dispersion zone. The water injection foam devolatilization method is described.
 特許文献3には、スクリュー回転数を高めてもせん断摩擦による樹脂の発熱を抑制し、樹脂の滞留時間が長くなる様にすることを目的として、脱揮部の搬送スクリューが半角フライト形状であり、フライトの両側に隙間が形成されるようにし、樹脂の一部を下流側から上流側に逆流させるようにする搬送混練方法が記載されている。 In Patent Document 3, even if the screw rotation speed is increased, the conveying screw of the devolatilization unit has a half-angle flight shape for the purpose of suppressing heat generation of the resin due to shear friction and extending the residence time of the resin. In addition, a conveying and kneading method is described in which gaps are formed on both sides of the flight so that a part of the resin flows backward from the downstream side to the upstream side.
 特許文献4には、注水脱揮工程における気泡-樹脂界面近傍の樹脂温度の上昇を速くすることを目的として、水の分散発泡ゾーンと撹拌ゾーンからなる注水分散ゾーンを配置し脱揮効率を向上させる注水脱揮方法が記載されている。 Patent Document 4 improves the devolatilization efficiency by arranging a water injection dispersion zone consisting of a water dispersion foaming zone and a stirring zone for the purpose of speeding up the increase in the resin temperature near the bubble-resin interface in the water injection devolatilization step. The water injection devolatilization method is described.
日本国公開特許公報「特開平7-164509号公報(1995年6月27日公開)」Japanese Patent Publication “JP 7-164509 A (published on June 27, 1995)” 日本国公開特許公報「特開平10-249913号公報(1998年9月22日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 10-249913 (published on September 22, 1998)” 日本国公開特許公報「特開平11-277604号公報(1999年10月12日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 11-277604 (published on Oct. 12, 1999)” 日本国公開特許公報「特開2002-326273号公報(2002年11月12日公開)」Japanese Patent Publication “JP 2002-326273 A (published on November 12, 2002)”
 上述のいずれの製造方法も樹脂組成物を生産した後にVOCを脱揮する工程を経ていたことから時間とコストが余分にかかり、樹脂組成物中のVOCを低減する方法としては、効率や経済性の観点から好ましくはなかった。 Since any of the above-described production methods has undergone a step of devolatilizing VOC after producing the resin composition, it takes extra time and cost, and as a method for reducing VOC in the resin composition, efficiency and economy From the viewpoint of
 かかる状況のもと本発明の目的は、熱可塑性樹脂と粉体とを溶融混練する樹脂組成物の製造方法であって、安定的に高い生産性で樹脂組成物を製造し、かつ樹脂組成物中に残存するVOCの量を低減する方法を提供することにある。 Under such circumstances, an object of the present invention is a method for producing a resin composition in which a thermoplastic resin and powder are melt-kneaded, and the resin composition is produced stably and with high productivity. An object of the present invention is to provide a method for reducing the amount of VOC remaining therein.
 本発明者等は、鋭意検討して、本発明を完成するに至った。 The present inventors have intensively studied and completed the present invention.
 上記の課題を解決するために、本発明は以下の何れかのものを提供する。
1) 二軸混練押出機を用いた樹脂組成物の製造方法であって、上記樹脂組成物は、当該樹脂組成物の原料として、熱可塑性樹脂と、粉体とを含んでおり、上記二軸混練押出機は、シリンダーと、該シリンダーに接続されているスクリュー式サイドフィーダーと、該スクリュー式サイドフィーダーに接続されている重量式フィーダーと、該シリンダー内に設置されているスクリューとを備えており、上記シリンダーは、該シリンダーの上流から順に、供給口と、上記スクリュー式サイドフィーダーの接続口と、第1ベント口と、注水口と、第2ベント口とを備えており、上記シリンダーの内部および上記スクリューは、上記供給口と上記スクリュー式サイドフィーダーの接続口との間に位置する第1混練ゾーンと、上記スクリュー式サイドフィーダーの接続口と上記第1ベント口との間に位置する第2混練ゾーンと、上記第1ベント口の下流に位置する注水脱揮ゾーンとを含んで構成されており、上記注水脱揮ゾーンは、上記シリンダーの上流から順に、充満昇圧ゾーンと、上記注水口が位置する注水分散ゾーンと、上記第2ベント口が位置する減圧膨張ゾーンとを含んで構成されており、上記熱可塑性樹脂を、上記供給口から上記シリンダー内へ供給し、上記粉体を、上記重量式フィーダーからスクリュー式サイドフィーダーを経て上記シリンダー内へ供給する、供給工程と、上記第1混練ゾーンの樹脂圧力が0.1MPa以上で、上記第2混練ゾーンの樹脂圧力は5MPa未満である条件で溶融混練して、上記熱可塑性樹脂と粉体とを含む樹脂組成物を生成する溶融混練工程と、上記注水口から上記注水分散ゾーンに水を供給して、上記樹脂組成物を混練分散させることで、当該樹脂組成物中の揮発成分を水と共に気化させて上記第2ベント口から除去する混練分散工程と、を包含しており、上記熱可塑性樹脂は、転移温度が200℃未満であり、上記粉体は、見掛け密度0.1~1.5g/mlの無機フィラーおよび見掛け密度0.1~1.0g/mlかつ転移温度200℃以上の熱可塑性樹脂粉体からなる群より選ばれる1種類以上の粉体であり、上記スクリュー式サイドフィーダーの搬送能力は、上記重量式フィーダーから該スクリュー式サイドフィーダーへ供給される上記粉体の単位時間あたりの実効体積の1.2倍以上であり、上記混練分散工程において、上記注水分散ゾーンに供給される水の量は、上記シリンダー内への上記原料の供給重量の合計に対して0.1重量部以上5重量部未満であり、上記注水分散ゾーンにおける樹脂圧力は1MPa以上である、製造方法。
2) 原料として、熱可塑性樹脂と、粉体とを含んでいる樹脂組成物を製造するために用いる二軸混練押出機であって、シリンダーと、該シリンダーに接続されているスクリュー式サイドフィーダーと、該スクリュー式サイドフィーダーに接続されている重量式フィーダーと、該シリンダー内に設置されているスクリューとを備えており、上記シリンダーは、該シリンダーの上流から順に、上記熱可塑性樹脂を該シリンダー内へ供給するための供給口と、上記粉体を該シリンダー内へ供給するための上記スクリュー式サイドフィーダーを接続するための上記スクリュー式サイドフィーダーの接続口と、該シリンダー内の気体または揮発成分を該シリンダー外へ除去するための第1ベント口と、上記樹脂組成物に水を供給するための注水口と、上記樹脂組成物中の揮発成分を上記水と共に気化させて脱揮するための第2ベント口とを備えており、上記シリンダーの内部および上記スクリューは、上記供給口と上記スクリュー式サイドフィーダーの接続口との間に位置する第1混練ゾーンと、上記スクリュー式サイドフィーダーの接続口と上記第1ベント口との間に位置する第2混練ゾーンと、上記第1ベント口の下流に位置する注水脱揮ゾーンとを含んで構成されている、二軸混練押出機。
In order to solve the above problems, the present invention provides any of the following.
1) A method for producing a resin composition using a biaxial kneading extruder, wherein the resin composition contains a thermoplastic resin and powder as raw materials of the resin composition, and the biaxial The kneading extruder includes a cylinder, a screw-type side feeder connected to the cylinder, a weight-type feeder connected to the screw-type side feeder, and a screw installed in the cylinder. The cylinder includes a supply port, a connection port of the screw-type side feeder, a first vent port, a water injection port, and a second vent port in order from the upstream side of the cylinder. And the screw includes a first kneading zone located between the supply port and the connection port of the screw-type side feeder, and the screw-type side-feed. Comprising a second kneading zone located between the connection port of the feeder and the first vent port, and a water injection devolatilization zone located downstream of the first vent port, the water injection devolatilization zone Is composed of, in order from the upstream of the cylinder, a full pressure increase zone, a water injection dispersion zone where the water injection port is located, and a vacuum expansion zone where the second vent port is located. Supplying the powder from the supply port into the cylinder and supplying the powder from the gravimetric feeder through the screw-type side feeder into the cylinder, and the resin pressure in the first kneading zone is 0. A melt-kneading step of producing a resin composition containing the thermoplastic resin and powder by melt-kneading under a condition of 1 MPa or more and a resin pressure in the second kneading zone of less than 5 MPa; Kneading dispersion in which water is supplied from the water injection port to the water injection dispersion zone and the resin composition is kneaded and dispersed to vaporize volatile components in the resin composition together with water and remove from the second vent port. The thermoplastic resin has a transition temperature of less than 200 ° C., and the powder comprises an inorganic filler having an apparent density of 0.1 to 1.5 g / ml and an apparent density of 0.1 to 1.0 g / ml and one or more kinds of powder selected from the group consisting of thermoplastic resin powders having a transition temperature of 200 ° C. or higher, and the conveying ability of the screw-type side feeder is from the weight-type feeder to the screw-type The effective volume per unit time of the powder supplied to the side feeder is 1.2 times or more. In the kneading and dispersing step, the amount of water supplied to the water injection dispersion zone is Less than 5 parts by weight or more 0.1 parts by weight based on the total feed weight of the raw material into the Nda, resin pressure in the water injection dispersion zone is 1MPa or more, the production method.
2) A biaxial kneading extruder used for producing a resin composition containing a thermoplastic resin and powder as raw materials, a cylinder, and a screw-type side feeder connected to the cylinder A weight-type feeder connected to the screw-type side feeder, and a screw installed in the cylinder, and the cylinder in order from the upstream of the cylinder, the thermoplastic resin in the cylinder A supply port for supplying to the cylinder, a connection port of the screw-type side feeder for connecting the screw-type side feeder for supplying the powder into the cylinder, and a gas or a volatile component in the cylinder. A first vent port for removal outside the cylinder, a water injection port for supplying water to the resin composition, A second vent port for vaporizing the volatile component in the resin composition together with the water and devolatilizing, and the inside of the cylinder and the screw are connected to the supply port and the screw-type side feeder. A first kneading zone located between the mouth, a second kneading zone located between the connection port of the screw-type side feeder and the first vent port, and water injection located downstream of the first vent port. A twin-screw kneading extruder comprising a devolatilization zone.
 本発明によれば、安定的に高い生産性で樹脂組成物を製造し、かつ樹脂組成物中に残存するVOCの量を低減することができる。 According to the present invention, a resin composition can be produced stably with high productivity, and the amount of VOC remaining in the resin composition can be reduced.
本発明の一実施形態に係る二軸混練押出機の概略構成を示す図である。It is a figure which shows schematic structure of the twin-screw kneading extruder which concerns on one Embodiment of this invention.
 まず、本発明の製造方法で製造される樹脂組成物と、樹脂組成物の原料とについて、以下に説明する。 First, the resin composition produced by the production method of the present invention and the raw material of the resin composition will be described below.
 本発明の製造の目的とする樹脂組成物は、粉体の樹脂強化材を含む樹脂組成物である。本発明の製造方法で得られる樹脂組成物は、ペレット形状等を有する、樹脂コンパウンドの製品として提供されるものであり得る。本発明による製造で得られる樹脂組成物は、自動車部品等をはじめとする工業部材として幅広く使用され、具体的には自動車の内装材料等に用いられる。 The resin composition targeted for the production of the present invention is a resin composition containing a powdered resin reinforcing material. The resin composition obtained by the production method of the present invention may be provided as a resin compound product having a pellet shape or the like. The resin composition obtained by the production according to the present invention is widely used as an industrial member such as an automobile part, and specifically, is used for an interior material of an automobile.
 (熱可塑性樹脂)
 本発明に係る樹脂組成物の原料として用いる熱可塑性樹脂は、転移温度200℃未満の熱可塑性樹脂である。ここで、本発明において、熱可塑性樹脂の転移温度とは、結晶性熱可塑性樹脂の場合は樹脂の融解ピーク温度であり、非晶性熱可塑性樹脂の場合は樹脂のガラス転移温度であり、いずれの温度も示差走査熱量測定により求めることができる。
(Thermoplastic resin)
The thermoplastic resin used as a raw material of the resin composition according to the present invention is a thermoplastic resin having a transition temperature of less than 200 ° C. Here, in the present invention, the transition temperature of the thermoplastic resin is the melting peak temperature of the resin in the case of a crystalline thermoplastic resin, and the glass transition temperature of the resin in the case of an amorphous thermoplastic resin. The temperature can also be determined by differential scanning calorimetry.
 熱可塑性樹脂の例としては、具体的には、ポリオレフィン系樹脂(高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン等)、環状オレフィン系樹脂、脂肪族ポリエステル系樹脂(ポリ乳酸等)、脂肪族ポリカーボネート、ポリオキシメチレンおよびスチレン系樹脂等が挙げられる。さらに、ポリオキシメチレンとしては、具体的には、ポリアセタール等が挙げられ、スチレン系樹脂としては、ポリスチレン、SEBS(スチレン・エチレン・ブチレン・スチレンブロック共重合体)およびアクリロニトリル・ブタジエン・スチレン共重合体等が挙げられる。これらはそれぞれ単独で用いても複数の樹脂を組み合わせてもよい。本製造方法に供給される形状としてはペレット状でもパウダー状(粉体状)でもよい。 Specific examples of thermoplastic resins include polyolefin resins (high density polyethylene, low density polyethylene, polypropylene, etc.), cyclic olefin resins, aliphatic polyester resins (polylactic acid, etc.), aliphatic polycarbonates, poly Examples include oxymethylene and styrene resins. Specific examples of polyoxymethylene include polyacetal and the like, and examples of styrene resins include polystyrene, SEBS (styrene / ethylene / butylene / styrene block copolymer), and acrylonitrile / butadiene / styrene copolymer. Etc. These may be used alone or in combination with a plurality of resins. The shape supplied to this manufacturing method may be a pellet or a powder (powder).
 (粉体)
 本発明の樹脂組成物の原料として用いることができる粉体は、見掛け密度0.1~1.5g/mlの無機フィラー、および、見掛け密度0.1~1.0g/mlかつ転移温度200℃以上の熱可塑性樹脂粉体(以下、単に「熱可塑性樹脂粉体」と称する場合もある)からなる群より選ばれるものである。粉体は、1種類のみを用いてもよいし、複数種類を用いてもよい。
(powder)
The powder that can be used as a raw material for the resin composition of the present invention includes an inorganic filler having an apparent density of 0.1 to 1.5 g / ml, an apparent density of 0.1 to 1.0 g / ml, and a transition temperature of 200 ° C. It is selected from the group consisting of the above thermoplastic resin powders (hereinafter sometimes simply referred to as “thermoplastic resin powder”). Only one type of powder may be used, or a plurality of types may be used.
 なお、本明細書において数値の範囲を示す「~」は、特に断りのない限り、その下限と上限とを含む数値範囲(すなわち、以上、以下)を示す。 In the present specification, “˜” indicating a numerical range indicates a numerical range including the lower limit and the upper limit (that is, above and below) unless otherwise specified.
 <無機フィラー>
 上述の条件を有する無機フィラーとしては、具体的には、天然珪酸または珪酸塩、炭酸塩、水酸化物、酸化物、粒子状充填材、フレーク状充填材、繊維状充填材、およびカーボン等が挙げられる。さらに天然珪酸または珪酸塩の例としては、タルク、カオリナイト、クレー、パイロフィライト、セリサイト、ベントナイトおよびシリカ等が挙げられる。また、炭酸塩の例としては、炭酸カルウシウム、炭酸マグネシウム、ハイドロタルサイト等が挙げられる。水酸化物としては、水酸化アルミニウムおよび水酸化マグネシウム等が挙げられる。酸化物としては、亜鉛華、酸化鉄、酸化マグネシウム、酸化アルミニウム、酸化チタンおよびムライト等が挙げられる。また、粒子状充填材の例としては、含水珪酸または無水珪酸などの合成珪酸、または珪酸塩等の粒子状充填材が挙げられる。さらに、フレーク状充填材の例としては、マイカ等が挙げられ、繊維状充填材の例としては、塩基性硫酸マグネシウムウイスカー、チタン酸カルシウムウイスカー、チタン酸カリウムウィスカー、ホウ酸アルミニウムウイスカー、ウォラストナイト、セピオライト、ゼオライト、アタパルジャイト、ゾノトライト、ロックウール、グラスウール、ガラス繊維および炭素繊維等が挙げられる。
<Inorganic filler>
Specific examples of the inorganic filler having the above-described conditions include natural silicic acid or silicate, carbonate, hydroxide, oxide, particulate filler, flaky filler, fibrous filler, and carbon. Can be mentioned. Furthermore, examples of natural silicic acid or silicate include talc, kaolinite, clay, pyrophyllite, sericite, bentonite and silica. Examples of carbonates include calbium carbonate, magnesium carbonate, hydrotalcite and the like. Examples of the hydroxide include aluminum hydroxide and magnesium hydroxide. Examples of the oxide include zinc white, iron oxide, magnesium oxide, aluminum oxide, titanium oxide and mullite. Examples of the particulate filler include a synthetic filler such as hydrous silicate or anhydrous silicate, or a particulate filler such as silicate. Further, examples of the flaky filler include mica, and examples of the fibrous filler include basic magnesium sulfate whisker, calcium titanate whisker, potassium titanate whisker, aluminum borate whisker, and wollastonite. , Sepiolite, zeolite, attapulgite, zonotlite, rock wool, glass wool, glass fiber and carbon fiber.
 無機フィラーの見掛け密度は0.1~1.5g/mlであるが、0.1~1.0g/mlが好ましく、0.1~0.8g/mlがより好ましい。 The apparent density of the inorganic filler is 0.1 to 1.5 g / ml, preferably 0.1 to 1.0 g / ml, more preferably 0.1 to 0.8 g / ml.
 ここで見掛け密度とは、単位体積当たりの重量で表される密度を意味しており、本願において粉体の見掛け密度は、JIS K7365:1999の方法により測定される見掛け密度を指している。 Here, the apparent density means a density expressed by weight per unit volume, and in this application, the apparent density of the powder indicates an apparent density measured by the method of JIS K7365: 1999.
 さらに、見掛け密度0.1~1.5g/mlの無機フィラーのうち、(見掛け密度)/(真密度)が、好ましくは0.3以下、より好ましくは0.25以下、さらに好ましくは0.2以下であるものを用いる。例えば、見掛け密度0.1~1.5g/mlの無機フィラーのうち、(見掛け密度)/(真密度)が0.3以下の無機フィラーは、本発明の製造方法による生産性の改善効果がより顕著に見られるという点で好ましい。 Further, among the inorganic fillers having an apparent density of 0.1 to 1.5 g / ml, (apparent density) / (true density) is preferably 0.3 or less, more preferably 0.25 or less, and still more preferably 0.00. Those that are 2 or less are used. For example, among the inorganic fillers having an apparent density of 0.1 to 1.5 g / ml, the inorganic filler having an (apparent density) / (true density) of 0.3 or less has an effect of improving productivity by the production method of the present invention. It is preferable in that it is more noticeable.
 ここで「真密度」とは、一定容積の容器に粉体を充填したときの、容器の体積から隙間部分を除いた体積から算出した密度であり、本願において粉体の真密度は、JIS Z8807:2012の方法により測定される密度を指している。 Here, the “true density” is a density calculated from the volume of the container excluding the gap portion when the container is filled with the powder, and in this application the true density of the powder is JIS Z8807. : The density measured by the method of 2012 is pointed out.
 <熱可塑性樹脂粉体>
 本発明の樹脂組成物の原料として用いることができる熱可塑性樹脂粉体は、見掛け密度0.1~1.0g/mlかつ転移温度200℃以上の熱可塑性樹脂粉体である。熱可塑性樹脂粉体としては、具体的には、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリアミド系樹脂(ナイロン6およびナイロン66等)、芳香族ポリエステル系樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等)、芳香族ポリカーボネートおよび液晶性ポリマー等が挙げられる。この中で本発明の効果が特に高いものとしては、融点やガラス転移温度が高く、比較的高温まで溶融流動状態にならず、粉体流動性を保持する、ポリフェニレンエーテル、ポリフェニレンスルフィド、および液晶性ポリマー等が挙げられる。
<Thermoplastic resin powder>
The thermoplastic resin powder that can be used as a raw material for the resin composition of the present invention is a thermoplastic resin powder having an apparent density of 0.1 to 1.0 g / ml and a transition temperature of 200 ° C. or higher. Specific examples of the thermoplastic resin powder include polyphenylene ether, polyphenylene sulfide, polyether ketone, polyamide resins (such as nylon 6 and nylon 66), and aromatic polyester resins (polyethylene terephthalate, polybutylene terephthalate, polybutylene). Naphthalate, etc.), aromatic polycarbonate, liquid crystal polymer and the like. Among them, the effects of the present invention are particularly high, such as polyphenylene ether, polyphenylene sulfide, and liquid crystallinity, which have a high melting point and glass transition temperature, do not enter a melt-flow state up to a relatively high temperature, and maintain powder fluidity. Examples thereof include polymers.
 本発明の製造方法において、樹脂組成物を製造するために、後述する二軸混練押出機に供給される原料の割合としては、転移温度200℃未満の熱可塑性樹脂と粉体との合計の重量を100重量%としたとき、粉体の好ましい範囲は5~80重量%であり、より好ましくは10~70重量%であり、更に好ましくは15~60重量%である。 In the production method of the present invention, in order to produce the resin composition, the ratio of the raw materials supplied to the biaxial kneading extruder described later is the total weight of the thermoplastic resin having a transition temperature of less than 200 ° C. and the powder. The preferred range of the powder is 5 to 80% by weight, more preferably 10 to 70% by weight, still more preferably 15 to 60% by weight.
 (任意成分)
 本発明の製造対象となる樹脂組成物においては、上述の成分の他に、他の任意成分を配合させてもよい。かかる任意成分としては、例えば、エラストマーが挙げられ、さらに具体的には、オレフィン系、スチレン系、アクリル系、ウレタン系またはエンプラ(エンジニアリングプラスチック)系等のエラストマーが挙げられる。オレフィン系エラストマーとしては、エチレン-プロピレン共重合体、エチレン-ブテン共重合体およびエチレン-オクテン共重合体等のエチレン-α-オレフィン共重合体が挙げられる。また、酸化防止剤、紫外線吸収剤、光安定化剤、熱安定化剤、滑剤、帯電防止剤、着色剤、導電剤、分散剤、印刷性付与剤、有機充填剤、難燃剤、難燃助剤、発泡剤、加工助剤、中和剤、重金属不活性化剤、造核剤、防曇剤、抗菌剤、および防かび剤等の添加剤を挙げることができる。
(Optional component)
In the resin composition to be produced according to the present invention, other optional components may be blended in addition to the above-described components. Examples of such optional components include elastomers, and more specifically, olefin-based, styrene-based, acrylic-based, urethane-based or engineering plastic (engineering plastic) -based elastomers. Examples of the olefin elastomer include ethylene-α-olefin copolymers such as an ethylene-propylene copolymer, an ethylene-butene copolymer, and an ethylene-octene copolymer. Also, antioxidants, UV absorbers, light stabilizers, heat stabilizers, lubricants, antistatic agents, colorants, conductive agents, dispersants, printability imparting agents, organic fillers, flame retardants, flame retardant aids And additives such as an agent, a foaming agent, a processing aid, a neutralizing agent, a heavy metal deactivator, a nucleating agent, an antifogging agent, an antibacterial agent, and an antifungal agent.
 熱可塑性樹脂に加え、エラストマーを添加すれば、製造される樹脂組成物の衝撃強度を改良したり、柔軟性を付与したりすることができる。 If an elastomer is added in addition to the thermoplastic resin, the impact strength of the produced resin composition can be improved or flexibility can be imparted.
 本発明の製造方法において、樹脂組成物を製造するために、後述する二軸混練押出機に供給される原料の割合としては、組成物の全原料の合計の重量を100重量部としたとき、転移温度200℃未満の熱可塑性樹脂の好ましい範囲は20~95重量部であり、より好ましくは30~90重量部であり、更に好ましくは40~85重量部である。また、粉体の好ましい範囲は5~80重量部であり、より好ましくは10~70重量部であり、更に好ましくは15~60重量部である。 In the production method of the present invention, in order to produce a resin composition, as a ratio of raw materials supplied to a biaxial kneading extruder described later, when the total weight of all raw materials of the composition is 100 parts by weight, A preferable range of the thermoplastic resin having a transition temperature of less than 200 ° C. is 20 to 95 parts by weight, more preferably 30 to 90 parts by weight, and still more preferably 40 to 85 parts by weight. The preferred range of the powder is 5 to 80 parts by weight, more preferably 10 to 70 parts by weight, and still more preferably 15 to 60 parts by weight.
 また、上述の転移温度200℃未満の熱可塑性樹脂および転移温度200℃以上の熱可塑性樹脂粉体に加えて、樹脂ペレットをさらに原料として用いてもよい。例えば、(見掛け密度)/(真密度)が0.9以上である熱可塑性樹脂ペレットが挙げられる。また、樹脂ペレットの転移温度は任意である。また、樹脂ペレットが200℃未満の熱可塑性樹脂を含む樹脂ペレットである場合は、原料中の樹脂ペレットの供給量の割合としては、転移温度200℃未満の熱可塑性樹脂と当該樹脂ペレットの含有する200℃未満の熱可塑性樹脂との合計の供給量を、本発明に係る樹脂組成物の原料としての転移温度200℃未満の熱可塑性樹脂の供給量として算出する。 Further, in addition to the above-described thermoplastic resin having a transition temperature of less than 200 ° C. and thermoplastic resin powder having a transition temperature of 200 ° C. or more, resin pellets may be further used as a raw material. For example, thermoplastic resin pellets having an (apparent density) / (true density) of 0.9 or more can be mentioned. Moreover, the transition temperature of the resin pellet is arbitrary. Moreover, when the resin pellet is a resin pellet containing a thermoplastic resin of less than 200 ° C., the ratio of the supply amount of the resin pellet in the raw material includes the thermoplastic resin having a transition temperature of less than 200 ° C. and the resin pellet. The total supply amount with the thermoplastic resin of less than 200 ° C. is calculated as the supply amount of the thermoplastic resin having a transition temperature of less than 200 ° C. as the raw material of the resin composition according to the present invention.
 (熱可塑性樹脂組成物の原料の組合せの特に具体的な一例)
 一実施形態では、樹脂組成物の原料としての上記粉体は、タルク、カオリナイトおよびクレーからなる群より選ばれる1種以上の粉体であり、上記転移温度200℃未満の熱可塑性樹脂は、ポリオレフィン系樹脂である。
(Specific example of combination of raw materials for thermoplastic resin composition)
In one embodiment, the powder as a raw material of the resin composition is at least one powder selected from the group consisting of talc, kaolinite and clay, and the thermoplastic resin having a transition temperature of less than 200 ° C. Polyolefin resin.
 〔1.樹脂組成物の製造方法〕
 本発明は、上述した樹脂組成物を製造する方法である。より詳細には、本発明は、後述する所定の構造を持つ二軸混練押出機を用いた樹脂組成物の製造方法であって、1)原料(熱可塑性樹脂や粉体)を二軸混練押出機のシリンダー内へ供給する供給工程、2)シリンダー内に供給された原料を溶融混練して樹脂組成物を生成する溶融混練工程、および、3)溶融混練工程で生成した樹脂組成物に水を供給して混練分散を行う混練分散工程、を含む、方法である。これらの工程は、二軸混練押出機のシリンダーに対して連続的にまたは間欠的に原料を供給して樹脂組成物を製造し、製造した樹脂組成物をシリンダーから連続的に押し出す一連のプロセスの中で、同時並行に行われる。
[1. Method for producing resin composition]
The present invention is a method for producing the above-described resin composition. More specifically, the present invention relates to a method for producing a resin composition using a biaxial kneading extruder having a predetermined structure, which will be described later. 1) Biaxial kneading extrusion of raw materials (thermoplastic resin or powder) 2) a supply process for supplying into the cylinder of the machine, 2) a melt-kneading process for melting and kneading the raw material supplied into the cylinder to produce a resin composition, and 3) water for the resin composition produced in the melt-kneading process. A kneading and dispersing step of supplying and kneading and dispersing. These steps are a series of processes in which a raw material is continuously or intermittently supplied to a cylinder of a twin-screw kneading extruder to produce a resin composition, and the produced resin composition is continuously extruded from the cylinder. In parallel.
 本発明に係る方法は、例えば図1に示す二軸混練押出機100を用いて実施可能である。図1は、本発明に係る製造方法を実施するための例示的な装置の概略的な構成を示す図である。 The method according to the present invention can be carried out using, for example, a twin-screw kneading extruder 100 shown in FIG. FIG. 1 is a diagram showing a schematic configuration of an exemplary apparatus for carrying out a manufacturing method according to the present invention.
 (二軸混練押出機100)
 図1に示すように、二軸混練押出機100は、シリンダー50と、該シリンダー50に接続されているスクリュー式サイドフィーダー2と、スクリュー式サイドフィーダー2に接続されている重量式フィーダー3と、該シリンダー50内に設置されているスクリュー30とを備えている。シリンダー50は、シリンダーの上流から順に、供給口1と、スクリュー式サイドフィーダー2の接続口と、第1ベント口4と、注水口5と、第2ベント口6とを備えている。シリンダー50の内部およびスクリュー30は、供給口1とスクリュー式サイドフィーダー2の接続口との間に位置する第1混練ゾーン9と、スクリュー式サイドフィーダー2の接続口と第1ベント口4との間に位置する第2混練ゾーン10と、第1ベント口4の下流に位置する注水脱揮ゾーン15とを含んで構成されている。注水脱揮ゾーン15は、上流から順に、第3混練ゾーン11と、減圧膨張ゾーン14とを含んで構成されおり、第3混練ゾーン11は、さらに、上流から順に、充満昇圧ゾーン12と、注水分散ゾーン13とを含んで構成されている。また、注水口5は、注水分散ゾーン13に対して開口するように備えられており、第2ベント口6は、減圧膨張ゾーン14に対して開口するように備えられている。
(Biaxial kneading extruder 100)
As shown in FIG. 1, the twin-screw kneading extruder 100 includes a cylinder 50, a screw-type side feeder 2 connected to the cylinder 50, a weight-type feeder 3 connected to the screw-type side feeder 2, And a screw 30 installed in the cylinder 50. The cylinder 50 includes a supply port 1, a connection port for the screw-type side feeder 2, a first vent port 4, a water injection port 5, and a second vent port 6 in order from the upstream side of the cylinder. The inside of the cylinder 50 and the screw 30 include a first kneading zone 9 located between the supply port 1 and the connection port of the screw-type side feeder 2, and a connection port of the screw-type side feeder 2 and the first vent port 4. A second kneading zone 10 located in between and a water injection and devolatilization zone 15 located downstream of the first vent port 4 are configured. The water injection devolatilization zone 15 includes a third kneading zone 11 and a decompression / expansion zone 14 in order from the upstream side, and the third kneading zone 11 further includes a full pressure increase zone 12 and a water injection side in order from the upstream side. The dispersion zone 13 is included. The water injection port 5 is provided so as to open to the water injection dispersion zone 13, and the second vent port 6 is provided so as to open to the reduced pressure expansion zone 14.
 また、シリンダー50の内部およびスクリュー30における、第1混練ゾーン9より上流を、第1搬送ゾーンとし、第1混練ゾーン9と第2混練ゾーン10との間の搬送ゾーンを第2搬送ゾーンとする。また、第2混練ゾーン10と第3混練ゾーン11との間の搬送ゾーンを第3搬送ゾーンとする。また、注水脱揮ゾーン15は第4搬送ゾーンでもある。図には示されていないが、注水脱揮ゾーン15から、注水脱揮ゾーン15の下流にさらに設けた搬送ゾーンまでを、第4搬送ゾーンとしてもよい。 In addition, the inside of the cylinder 50 and the screw 30 upstream of the first kneading zone 9 is a first transport zone, and the transport zone between the first kneading zone 9 and the second kneading zone 10 is a second transport zone. . Further, a conveyance zone between the second kneading zone 10 and the third kneading zone 11 is defined as a third conveyance zone. Moreover, the water injection devolatilization zone 15 is also a 4th conveyance zone. Although not shown in the drawing, the fourth transport zone may be from the water injection devolatilization zone 15 to a transport zone further provided downstream of the water injection devolatilization zone 15.
 以降の項目において、本発明に係る製造方法および作用の詳細を、図1を参照しながら、並行して連続的に実施している各工程に分けて説明する。本発明の二軸混練押出機の各構成については、各工程の詳細とともに詳細を説明する。 In the following items, the details of the manufacturing method and operation according to the present invention will be described separately for each step that is continuously performed in parallel with reference to FIG. About each structure of the twin-screw kneading extruder of this invention, a detail is demonstrated with the detail of each process.
 なお、本明細書において、2つの構成の上下方向の位置関係を説明するとき、例えば「上部」および「下部」という表現を使用し、各構成は互いに接して、または、離れて位置することを意味する。また、本明細書において、図1の下方にて示している矢印の方向は、樹脂材料を装置中で移送する際の流動方向を意味しており、装置における構成のある部分と他の部分との位置関係、または装置のある1部材内でのある地点における位置関係を説明するとき、樹脂材料の流動方向に対して、「上流」および「下流」あるいは「上流側」および「下流側」という表現を使用する。また1部材内の最も上流および下流の端面をそれぞれ、「上流端」および「下流端」と表現する。 In this specification, when describing the positional relationship between the two configurations in the vertical direction, for example, the expressions “upper” and “lower” are used, and each configuration is positioned in contact with or apart from each other. means. Moreover, in this specification, the direction of the arrow shown in the lower part of FIG. 1 means the flow direction when the resin material is transferred in the apparatus, and there are a certain part of the apparatus and other parts. Or the positional relationship at a certain point in one member of the apparatus, it is referred to as “upstream” and “downstream” or “upstream” and “downstream” with respect to the flow direction of the resin material. Use expressions. Further, the most upstream and downstream end faces in one member are expressed as “upstream end” and “downstream end”, respectively.
 (供給工程)
 本工程は、シリンダー50内に原料を供給する工程であり、詳細には、上述の熱可塑性樹脂をシリンダー50内へ連続的にまたは間欠的に供給する熱可塑性樹脂供給工程と、この熱可塑性樹脂が供給されているシリンダー50内へ、上述の粉体を連続的にまたは間欠的に供給する、粉体供給工程とを並行して行う工程である。
(Supply process)
This step is a step of supplying the raw material into the cylinder 50. Specifically, the thermoplastic resin supplying step of supplying the above-described thermoplastic resin into the cylinder 50 continuously or intermittently, and the thermoplastic resin Is a step of performing the powder supply step in parallel with the above-described powder supply continuously or intermittently into the cylinder 50 to which is supplied.
 <熱可塑性樹脂供給工程>
 本工程は、熱可塑性樹脂を供給口1からシリンダー50内へ供給する工程である。本工程によってシリンダー50内へ供給された熱可塑性樹脂は、第1搬送ゾーンを通じて、第1混練ゾーン9まで移送される。第1混練ゾーン9は熱可塑性樹脂を可塑化させる可塑化領域であり、当該領域において、第1混練ゾーン9の樹脂圧力が0.1MPa以上となる条件で溶融混練して、熱可塑性樹脂を可塑化させる。なお、上記供給口1に、重量式フィーダー16を接続し、熱可塑性樹脂を重量式フィーダー16から上記供給口1を経て供給してもよい。また、エラストマー、あるいは添加剤等の1つ以上のその他の任意成分を熱可塑性樹脂とともに供給してもよい。また、上記供給口1に、熱可塑性樹脂の供給に用いている重量式フィーダー16とは異なる重量式フィーダー16’および/または容量式フィーダー17を1つ以上接続し、エラストマーまたは添加剤等の1つ以上のその他の成分を、成分毎に異なるフィーダーから上記供給口1を経て供給してもよい。一実施形態では、例えば、上記供給口1に、熱可塑性樹脂の供給に用いている重量式フィーダー16とは異なる重量式フィーダー16’および容量式フィーダー17を供給口1に接続し、エラストマーを重量式フィーダー16’から、添加剤を容量式フィーダー17から、上記供給口1を経て供給する。
<Thermoplastic resin supply process>
This step is a step of supplying the thermoplastic resin from the supply port 1 into the cylinder 50. The thermoplastic resin supplied into the cylinder 50 in this step is transferred to the first kneading zone 9 through the first transport zone. The first kneading zone 9 is a plasticizing region for plasticizing the thermoplastic resin. In this region, the first kneading zone 9 is melt-kneaded under the condition that the resin pressure in the first kneading zone 9 is 0.1 MPa or more, and the thermoplastic resin is plasticized. Make it. Note that a weight type feeder 16 may be connected to the supply port 1, and a thermoplastic resin may be supplied from the weight type feeder 16 through the supply port 1. Further, one or more other optional components such as an elastomer or an additive may be supplied together with the thermoplastic resin. In addition, one or more weight type feeders 16 ′ and / or capacity type feeders 17 different from the weight type feeder 16 used for supplying the thermoplastic resin are connected to the supply port 1, and an elastomer or an additive 1 or the like is connected. Two or more other components may be supplied through the supply port 1 from a different feeder for each component. In one embodiment, for example, a weight-type feeder 16 ′ and a capacity-type feeder 17 that are different from the weight-type feeder 16 used for supplying the thermoplastic resin are connected to the supply port 1, and the elastomer is weighted. The additive is supplied from the capacity feeder 16 ′ from the capacity feeder 17 through the supply port 1.
 図1に示しているとおり、本発明に係る二軸混練押出機100は、シリンダー50内に、樹脂組成物を移送するためのスクリュー30を備えている。本発明に係る二軸混練押出機100のスクリュー30は、生産性を高くするという観点から、2条の混練セグメントを有するスクリューが好ましい。スクリュー30の回転数は、例えば200~2000rpmであり、好ましくは1000~1800rpmである。回転数が高いほど気液界面の更新頻度が向上し、平衡濃度が低下するため、VOCの脱揮効率を向上させることができる。しかしながら、回転数が高すぎるとせん断発熱により樹脂が劣化する為、発熱の程度をみて回転数を適宜調整する必要がある。VOCの脱揮については後述する。 As shown in FIG. 1, a biaxial kneading extruder 100 according to the present invention includes a screw 30 for transferring a resin composition in a cylinder 50. The screw 30 of the twin-screw kneading extruder 100 according to the present invention is preferably a screw having two kneading segments from the viewpoint of increasing productivity. The rotational speed of the screw 30 is, for example, 200 to 2000 rpm, and preferably 1000 to 1800 rpm. The higher the number of revolutions, the more frequently the gas-liquid interface is renewed and the lower the equilibrium concentration, so that the VOC devolatilization efficiency can be improved. However, if the rotational speed is too high, the resin deteriorates due to shearing heat generation. Therefore, it is necessary to appropriately adjust the rotational speed in view of the degree of heat generation. The devolatilization of VOC will be described later.
 そして、上述の通り、第1混練ゾーン9における樹脂圧力を、0.1MPa以上とし、好ましくは0.1~5MPaとし、より好ましくは0.1~1MPaとするように、二軸混練押出機100を運転する。スクリュー30の第1混練ゾーン9内に、樹脂圧力を調整可能なセグメントを適切に設置して、第1混練ゾーン9における所定の樹脂圧力を維持してもよい。例えば、第1混練ゾーン9内に配置するセグメントとしては、スクリューの回転によって樹脂(樹脂組成物も含む概念)を下流方向に送るセグメント、樹脂を上流方向に押し戻すようなセグメント、または樹脂を堰き止める効果を有するセグメント等が挙げられる。スクリューの回転によって上流方向に樹脂を押し戻すようなセグメントとしては、逆フライトおよびねじれ角が送り方向に対して90°を超える一般的に逆ニーディングディスクと称されるディスク(以下、「逆ディスク」と称する)が挙げられる。樹脂を堰き止める効果を有するセグメントとしては、シールリングが挙げられる。 As described above, the twin-screw kneading extruder 100 is set so that the resin pressure in the first kneading zone 9 is 0.1 MPa or more, preferably 0.1 to 5 MPa, more preferably 0.1 to 1 MPa. To drive. A predetermined resin pressure in the first kneading zone 9 may be maintained by appropriately installing a segment capable of adjusting the resin pressure in the first kneading zone 9 of the screw 30. For example, the segment disposed in the first kneading zone 9 includes a segment for sending resin (concept including a resin composition) in the downstream direction by rotating a screw, a segment for pushing the resin back in the upstream direction, or damming the resin. Examples include a segment having an effect. As a segment that pushes the resin back in the upstream direction by the rotation of the screw, a disk generally referred to as a reverse kneading disk (hereinafter referred to as “reverse disk”) whose reverse flight and twist angle exceed 90 ° with respect to the feed direction. For example). A seal ring is mentioned as a segment which has an effect which dams up resin.
 また、スクリュー30の第1混練ゾーン9の領域の中央よりも上流の位置に、いわゆる順ニーディングディスク(以下、「順ディスク」と称する)を1つ以上配置してもよい。順ディスクは、ねじれ角が送り方向に対して90°未満であるディスクである。順ディスクを配置すれば、効率的に樹脂圧力を昇圧しながら、熱可塑性樹脂の可塑化の程度を調整することができる。 Further, one or more so-called kneading disks (hereinafter referred to as “forward disks”) may be disposed at a position upstream of the center of the first kneading zone 9 of the screw 30. A forward disk is a disk whose twist angle is less than 90 ° with respect to the feed direction. If the forward disk is disposed, the degree of plasticization of the thermoplastic resin can be adjusted while efficiently increasing the resin pressure.
 スクリューの第1混練ゾーン9内には、さらに必要に応じてねじれ角が90°のいわゆる直交ディスクを配置することができる。また、これらのセグメントを2つ以上組み合わせて配置してもよい。直交ディスクを配置する位置は、前述の逆ディスクと順ディスクとの間、または、順ディスクと順ディスクとの間が好ましい。また、第1混練ゾーン9の圧力は、第1混練ゾーン9に設置した圧力センサーを用いて測定することができる。圧力センサーは、必要に応じて、シリンダー50内であって樹脂が充満している第1混練ゾーン9の中央~下流域に1~3箇所設置することが好ましい。また、圧力センサーは回転するスクリューで損傷しないようにシリンダー50内に設置しなければならないが、シリンダー内壁の壁面よりスクリュー30方向に深い位置にあると、樹脂が圧力センサーに溜まり圧力を正確に測定できなくなるため、圧力センサーの先端をシリンダー内壁の壁面に可能な限り一致させた位置に設置することが好ましい。 In the first kneading zone 9 of the screw, a so-called orthogonal disk having a twist angle of 90 ° can be further arranged as necessary. Further, two or more of these segments may be arranged in combination. The position where the orthogonal disk is arranged is preferably between the aforementioned reverse disk and the sequential disk, or between the sequential disk and the sequential disk. The pressure in the first kneading zone 9 can be measured using a pressure sensor installed in the first kneading zone 9. It is preferable to install one to three pressure sensors in the center to the downstream region of the first kneading zone 9 filled with the resin in the cylinder 50 as necessary. In addition, the pressure sensor must be installed in the cylinder 50 so as not to be damaged by the rotating screw. If the pressure sensor is located deeper in the direction of the screw 30 than the wall surface of the cylinder inner wall, the resin accumulates in the pressure sensor and accurately measures the pressure. Since it becomes impossible, it is preferable to install the tip of the pressure sensor at a position that matches the wall surface of the cylinder inner wall as much as possible.
 <粉体供給工程>
 本工程は、上述の熱可塑性樹脂が供給されているシリンダー50内へ、粉体を、スクリュー式サイドフィーダー2から供給する工程である。図1に示すように、スクリュー式サイドフィーダー2は重量式フィーダー3に接続している。よって、まず、重量式フィーダー3に粉体を供給し、重量式フィーダー3からスクリュー式サイドフィーダー2へ粉体を移送する。このスクリュー式サイドフィーダー2から二軸混練押出機100内へ粉体の供給を行う。
<Powder supply process>
This step is a step of supplying the powder from the screw-type side feeder 2 into the cylinder 50 to which the above-described thermoplastic resin is supplied. As shown in FIG. 1, the screw side feeder 2 is connected to a weight type feeder 3. Therefore, first, powder is supplied to the weight-type feeder 3, and the powder is transferred from the weight-type feeder 3 to the screw-type side feeder 2. Powder is supplied from the screw-type side feeder 2 into the twin-screw kneading extruder 100.
 このときスクリュー式サイドフィーダー2の粉体の搬送能力は、重量式フィーダー3からスクリュー式サイドフィーダー2へ供給される粉体の単位時間あたりの実効体積の好ましくは1.2倍以上であり、より好ましくは、2倍以上であり、さらに好ましくは4倍以上である。また、スクリュー式サイドフィーダー2の粉体の搬送能力の上限は装置の設計および耐久性に依存するが、通常は、重量式フィーダー3からスクリュー式サイドフィーダー2へ供給される粉体の単位時間あたりの実効体積の10倍以下である。 At this time, the conveying capacity of the powder of the screw-type side feeder 2 is preferably 1.2 times or more of the effective volume per unit time of the powder supplied from the weight-type feeder 3 to the screw-type side feeder 2, and more Preferably, it is 2 times or more, more preferably 4 times or more. Moreover, although the upper limit of the powder conveyance capacity of the screw-type side feeder 2 depends on the design and durability of the apparatus, it is usually per unit time of the powder supplied from the weight-type feeder 3 to the screw-type side feeder 2. The effective volume is 10 times or less.
 スクリュー式サイドフィーダー2の粉体の搬送能力とは、スクリュー式サイドフィーダー2から二軸混練押出機100へ供給する粉体の単位時間あたりの体積を意味している。 The powder conveying ability of the screw-type side feeder 2 means the volume per unit time of the powder supplied from the screw-type side feeder 2 to the biaxial kneading extruder 100.
 搬送能力の算出方法としては、スクリュー式サイドフィーダー2のスクリューが1回転する間に該フィーダーの前方(すなわち図1におけるシリンダー50の方向)に送る空間体積とスクリュー回転数との積、または、スクリュー式サイドフィーダー2のスクリューの1リード長あたりのシリンダーバレルの体積とスクリュー式サイドフィーダー2の1リード長あたりのスクリューとの体積の差と、スクリュー式サイドフィーダー2のスクリュー回転数との積として求めることができる。粉体の実効体積は、実際に当該サイドフィーダーに供給されるところの体積で評価しなければならない。 As a method for calculating the conveyance capacity, the product of the volume of space sent to the front of the feeder (that is, the direction of the cylinder 50 in FIG. 1) and the screw rotation speed while the screw of the screw-type side feeder 2 makes one rotation, or the screw The difference between the volume of the cylinder barrel per screw length of the screw of the side feeder 2 and the volume of the screw per lead length of the screw side feeder 2 and the screw rotation speed of the screw side feeder 2 are obtained. be able to. The effective volume of the powder must be evaluated based on the volume actually supplied to the side feeder.
 粉体を、スクリュー式サイドフィーダー2の上部に接続された重量式フィーダー3で計量し、自然落下によってスクリュー式サイドフィーダー2へ供給する。重量式フィーダー3からスクリュー式サイドフィーダー2へ供給する粉体の単位時間あたりの実効体積は、重量式フィーダー3からスクリュー式サイドフィーダー2へ供給する粉体の単位時間あたりの重量を粉体の嵩密度で除した値として求めることができる。本明細書において、「粉体の嵩密度」とは、実際に重量式フィーダー3からスクリュー式サイドフィーダー2へ粉体を供給するときと同一の高さから、粉体をメスシリンダー等の計量容器へ落下させて、該計量容器内の粉体の重量を、計量容器で測定した粉体の体積で除することにより、求められる値である。スクリュー式サイドフィーダー2の搬送能力は、好ましくは重量式フィーダー3からスクリュー式サイドフィーダー2へ供給される粉体の単位時間あたりの実効体積の2倍以上である。 Powder is weighed by the weight type feeder 3 connected to the upper part of the screw type side feeder 2 and supplied to the screw type side feeder 2 by natural fall. The effective volume per unit time of the powder supplied from the weight-type feeder 3 to the screw-type side feeder 2 is the weight of the powder supplied from the weight-type feeder 3 to the screw-type side feeder 2 per unit time. It can be determined as a value divided by the density. In this specification, the “bulk density of the powder” means that the powder is measured from the same height as when the powder is actually supplied from the weight-type feeder 3 to the screw-type side feeder 2, and a measuring container such as a measuring cylinder is used. And the weight of the powder in the measuring container is divided by the volume of the powder measured in the measuring container. The conveying capacity of the screw-type side feeder 2 is preferably at least twice the effective volume per unit time of the powder supplied from the weight-type feeder 3 to the screw-type side feeder 2.
 また、粉体をスクリュー式サイドフィーダー2で二軸混練押出機100へ供給する際に、該粉体とは異なる樹脂ペレット等を粉体とともに供給してもよい。この場合、スクリュー式サイドフィーダー2の搬送能力が、重量式フィーダー3からスクリュー式サイドフィーダー2へ供給される粉体の実効体積と樹脂ペレットの体積の合計量を十分上回っている限り、スクリュー式サイドフィーダーの搬送能力を設定する際に樹脂ペレットの体積を考慮する必要がない。粉体をより安定的に二軸混練押出機100へ供給するという観点から、粉体と、粉体100重量部に対し25重量部以上の樹脂ペレットとが重量式フィーダーからスクリュー式サイドフィーダーを経て二軸混練押出機100へ供給されることが好ましい。重量式フィーダー3からスクリュー式サイドフィーダー2を経てシリンダー50内へ供給される樹脂ペレットは、粉体100重量部に対し200重量部以下であることが好ましい。重量式フィーダー3からスクリュー式サイドフィーダー2を経て二軸混練押出機100へ供給される樹脂ペレットとしては、(見掛け密度)/(真密度)が0.9以上である熱可塑性樹脂ペレットが挙げられ、転移温度に制限はない。さらに、上述の熱可塑性樹脂を、スクリュー式サイドフィーダー2を通じて粉体とともに追加で供給してもよい。 Further, when the powder is supplied to the biaxial kneading extruder 100 with the screw-type side feeder 2, resin pellets or the like different from the powder may be supplied together with the powder. In this case, as long as the conveying capacity of the screw-type side feeder 2 is sufficiently larger than the total amount of the effective volume of the powder supplied from the weight-type feeder 3 to the screw-type side feeder 2 and the volume of the resin pellets, the screw-type side feeder 2 There is no need to consider the volume of the resin pellets when setting the feeding capacity of the feeder. From the viewpoint of more stably supplying the powder to the biaxial kneading extruder 100, the powder and the resin pellets of 25 parts by weight or more with respect to 100 parts by weight of the powder pass from the weight type feeder through the screw type side feeder. It is preferable to be supplied to the biaxial kneading extruder 100. The resin pellet supplied from the weight type feeder 3 through the screw type side feeder 2 into the cylinder 50 is preferably 200 parts by weight or less with respect to 100 parts by weight of the powder. Examples of the resin pellet supplied from the weight type feeder 3 through the screw type side feeder 2 to the biaxial kneading extruder 100 include thermoplastic resin pellets having an (apparent density) / (true density) of 0.9 or more. There is no restriction on the transition temperature. Furthermore, the above-described thermoplastic resin may be additionally supplied together with the powder through the screw-type side feeder 2.
 また、重量式フィーダー3以外に重量式フィーダー3’および/または容量式サイドフィーダーを一つ以上スクリュー式サイドフィーダー2に接続し、上述の熱可塑性樹脂および/または複数種類の任意成分を、各成分毎に異なる重量式フィーダー3’および/または容量式サイドフィーダーと、スクリュー式サイドフィーダー2とを通じて、二軸混練押出機100中へ供給してもよい。 In addition to the weight-type feeder 3, one or more weight-type feeders 3 'and / or capacity-type side feeders are connected to the screw-type side feeder 2, and the above-mentioned thermoplastic resin and / or a plurality of types of optional components are added to each component. You may supply into the biaxial kneading extruder 100 through the weight type feeder 3 'and / or the capacity | capacitance type side feeder and the screw type side feeder 2 which are different for every.
 一実施形態において、重量式フィーダー3以外に重量式フィーダー3’をスクリュー式サイドフィーダー2に接続し、熱可塑性樹脂を重量式フィーダー3’およびサイドフィーダー2を通じて二軸混練押出機100中へ追加で供給する。 In one embodiment, in addition to the weight-type feeder 3, a weight-type feeder 3 ′ is connected to the screw-type side feeder 2, and thermoplastic resin is added into the biaxial kneading extruder 100 through the weight-type feeder 3 ′ and the side feeder 2. Supply.
 以上の工程にて供給口1から供給した熱可塑性樹脂と、スクリュー式サイドフィーダー2を用いて供給した粉体とを第2搬送ゾーンを通じて第2混練ゾーン10まで搬送する。 The thermoplastic resin supplied from the supply port 1 in the above steps and the powder supplied using the screw-type side feeder 2 are conveyed to the second kneading zone 10 through the second conveyance zone.
 <溶融混練工程>
 溶融混練工程は、シリンダー50内(より詳細には第1~第3混練ゾーン、特に第1~第2混練ゾーン)において、上述の熱可塑性樹脂(樹脂組成物であってもよい)を溶融混練する工程である。第2混練ゾーン10では、第2混練ゾーン10に搬送した熱可塑性樹脂および粉体を混練して、粉体を熱可塑性樹脂中に均一に分散させることによって、熱可塑性樹脂と粉体とを含む樹脂組成物が生成される。
<Melting and kneading process>
In the melt-kneading step, the above-described thermoplastic resin (which may be a resin composition) is melt-kneaded in the cylinder 50 (more specifically, the first to third kneading zones, particularly the first to second kneading zones). It is a process to do. In the second kneading zone 10, the thermoplastic resin and the powder conveyed to the second kneading zone 10 are kneaded, and the powder is uniformly dispersed in the thermoplastic resin, thereby including the thermoplastic resin and the powder. A resin composition is produced.
 第2混練ゾーン10における樹脂圧力は、5MPa未満、好ましくは3MPa未満、より好ましくは1MPa未満となるように、二軸混練押出機100を運転する。スクリュー式サイドフィーダーから供給された粉体を十分に分散させる観点からは、第2混練ゾーン10の樹脂圧力は0.02MPa以上が好ましく、より好ましくは0.1MPa以上である。この時の、第1混練ゾーンの樹脂圧力は上述の通りである。 The biaxial kneading extruder 100 is operated so that the resin pressure in the second kneading zone 10 is less than 5 MPa, preferably less than 3 MPa, more preferably less than 1 MPa. From the viewpoint of sufficiently dispersing the powder supplied from the screw-type side feeder, the resin pressure in the second kneading zone 10 is preferably 0.02 MPa or more, and more preferably 0.1 MPa or more. The resin pressure in the first kneading zone at this time is as described above.
 スクリュー30の第2混練ゾーン10内に、樹脂圧力を調整可能なセグメントを適切に設置して、第2混練ゾーン10における所定の樹脂圧力を維持してもよい。例えば、第2混練ゾーン10内に、例えば、第2混練ゾーン10内の中央よりも下流側に、スクリューの回転によって上流方向に樹脂を押し戻すようなセグメントまたは樹脂を堰き止める効果のあるセグメントを配置することによって樹脂圧力を維持してもよい。このようなセグメントを配置することによって、第2混練ゾーン10において、上述の圧力を維持すれば、粉体の供給に伴って二軸混練押出機100へ混入する気体または原料に含まれる揮発成分が、二軸混練押出機100の下流側に抜ける割合を増やして、該気体または揮発成分が、二軸混練押出機100の上流側に逆流する量を減らすことができる。 A predetermined resin pressure in the second kneading zone 10 may be maintained by appropriately installing a segment capable of adjusting the resin pressure in the second kneading zone 10 of the screw 30. For example, in the second kneading zone 10, for example, on the downstream side of the center in the second kneading zone 10, a segment that pushes back the resin in the upstream direction by rotation of the screw or a segment that has an effect of blocking the resin is disposed. By doing so, the resin pressure may be maintained. By arranging such a segment, if the above-mentioned pressure is maintained in the second kneading zone 10, volatile components contained in the gas or raw material mixed into the twin-screw kneading extruder 100 as the powder is supplied The ratio of the gas or the volatile component flowing back to the upstream side of the biaxial kneading extruder 100 can be reduced by increasing the rate of escape to the downstream side of the biaxial kneading extruder 100.
 第2混練ゾーン10の下流側に設置された逆ディスク等のセグメント最外周端面である撹拌縁からシリンダー内壁までの空隙距離(チップクリアランス)は、通常フライトトップとシリンダー内壁までの空隙距離と同等であるのが一般的である。しかし、第2混練ゾーン10に用いられるニーディングディスクの空隙距離は通常の2倍から3倍のものを用いることが好ましい。かかる空隙距離とすれば、第2混練ゾーン10の樹脂圧力を上述した圧力範囲に制御することができる。 The gap distance (chip clearance) from the stirring edge, which is the outermost peripheral end surface of the segment such as an inverted disk installed downstream of the second kneading zone 10, to the inner wall of the cylinder is equal to the gap distance from the normal flight top to the inner wall of the cylinder. It is common. However, the gap distance of the kneading disk used in the second kneading zone 10 is preferably 2 to 3 times the usual distance. With such a gap distance, the resin pressure in the second kneading zone 10 can be controlled within the pressure range described above.
 一般的には、ニーディングディスク1枚1枚の軸方向の厚さ(ディスク幅)は、通常0.1D~0.2D(Dはスクリュー直径とする)程度である場合が多い。これに対し、本実施形態に係る第2混練ゾーン10では0.3D以上とすることが好ましく、0.5D以上とすることがより好ましい。かかる条件で熱可塑性樹脂および粉体を溶融混練して、粉体を熱可塑性樹脂中に均一な分散状態にする。 In general, the thickness in the axial direction (disk width) of each kneading disk is usually about 0.1D to 0.2D (D is the screw diameter) in many cases. On the other hand, in the 2nd kneading zone 10 concerning this embodiment, it is preferred to set it as 0.3D or more, and it is more preferred to set it as 0.5D or more. Under such conditions, the thermoplastic resin and the powder are melt-kneaded so that the powder is uniformly dispersed in the thermoplastic resin.
 第2混練ゾーン10より下流の第1ベント口4から、上記気体または揮発成分を二軸混練押出機100の外部へ除去する。この第1ベント口4から、気体または揮発成分を大気解放してもよく、第1ベント口4に真空ポンプを接続して減圧吸引してもよい。次に、第3搬送ゾーンを通じて第3混練ゾーン11へ移送する。 The gas or volatile component is removed to the outside of the biaxial kneading extruder 100 from the first vent port 4 downstream from the second kneading zone 10. A gas or a volatile component may be released to the atmosphere from the first vent port 4, and a vacuum pump may be connected to the first vent port 4 and sucked under reduced pressure. Next, it transfers to the 3rd kneading zone 11 through the 3rd conveyance zone.
 (混練分散工程)
 混練分散工程は、上述の工程において混練して得られた樹脂組成物中に、第3混練ゾーン11において注水口5から注水分散ゾーン13に水を供給して、樹脂組成物を混練分散させることで、当該樹脂組成物中の揮発成分を水と共に気化させて第2ベント口6から除去する工程である。
(Kneading dispersion process)
In the kneading and dispersing step, the resin composition obtained by kneading in the above-described step is supplied with water from the water inlet 5 to the water pouring and dispersing zone 13 in the third kneading zone 11 to knead and disperse the resin composition. Thus, the volatile component in the resin composition is vaporized together with water and removed from the second vent port 6.
 一実施形態において、混練分散工程は、さらに、樹脂をシリンダー50内に充満させ、且つ、所望の圧力まで昇圧させる、充満昇圧工程と、樹脂組成物に水を供給して、樹脂中に水を混合分散させる注水分散工程と、該注水分散工程において、樹脂中に混合分散させた水を減圧下で発泡させ樹脂中に含まれるVOCを除去する減圧膨張工程と、を包含している。以下、各工程について説明する。 In one embodiment, in the kneading and dispersing step, the resin is further filled in the cylinder 50 and the pressure is increased to a desired pressure, and water is supplied to the resin composition by supplying water to the resin composition. It includes a water injection dispersion step for mixing and dispersing, and a pressure reduction expansion step for removing the VOC contained in the resin by foaming the water mixed and dispersed in the resin under reduced pressure in the water injection dispersion step. Hereinafter, each step will be described.
 <充満昇圧工程>
 上述の工程で得られた樹脂をさらに第1ベント口4の下流へ移送する。続いて、充満昇圧工程では、樹脂組成物を充満昇圧ゾーン12においてシリンダー50内に充満させ、昇圧させる。好ましくは、順ディスク等のセグメントを適切に配置して、効率的に樹脂圧力を昇圧することが望ましい。
<Charge boosting process>
The resin obtained in the above process is further transferred downstream of the first vent port 4. Subsequently, in the filling pressure increasing step, the resin composition is filled in the cylinder 50 in the filling pressure increasing zone 12, and the pressure is increased. Preferably, it is desirable to appropriately increase the resin pressure by appropriately arranging segments such as a forward disk.
 後述する注水分散工程では、注水分散ゾーン13において、注水した水が気化し、発泡するのをある程度抑制し、樹脂中に分散させる為に、移送される樹脂組成物は、充満昇圧ゾーン12で昇圧させた状態を維持する必要がある。 In the water injection dispersion step to be described later, in the water injection dispersion zone 13, the resin composition to be transferred is pressurized in the filling pressure increase zone 12 in order to suppress the water injection and vaporization to some extent and disperse it in the resin. It is necessary to maintain the state.
 上記充満昇圧ゾーン12と上記注水分散ゾーン13との間および上記注水分散ゾーン13と上記減圧膨張ゾーン14との間の少なくとも何れか一方、好ましくは両方に、シールリング8を配置してもよい。シールリング8を設置すれば、樹脂を堰き止めることができる。上記充満昇圧ゾーン12と上記注水分散ゾーン13との間および上記注水分散ゾーン13と上記減圧膨張ゾーン14との間の両方に設置されている場合、注水分散ゾーン13の上流端と下流端におけるシールリングで樹脂を堰き止める。当該構成であれば、充満昇圧ゾーン12で昇圧させた状態を維持しつつ、混練している樹脂が、上流側に逆流するのを抑制する。 A seal ring 8 may be disposed between at least one of the filling pressure increase zone 12 and the water injection dispersion zone 13 and at least one of the water injection dispersion zone 13 and the decompression expansion zone 14, preferably both. If the seal ring 8 is installed, the resin can be blocked. In the case where it is installed both between the filling pressure increase zone 12 and the water injection dispersion zone 13 and between the water injection dispersion zone 13 and the decompression expansion zone 14, seals at the upstream end and the downstream end of the water injection dispersion zone 13 are provided. Dam the resin with the ring. If it is the said structure, it will suppress that the resin kneaded flows back upstream, maintaining the state pressure | voltage-risen in the filling pressure | voltage rise zone 12. FIG.
 <注水分散工程>
 注水分散工程は、上述の充満昇圧工程に続いて、注水分散ゾーン13において、樹脂中に水を混合分散させる工程である。注水分散ゾーン13に樹脂を移送する。注水分散ゾーン13の中央よりも上流側に備えられている注水口5から、水を注入する。水の注入は、例えば、注水口5に、注水ノズル5’に接続し、さらにノズルを液添ポンプ等に接続して行う。上記注水分散ゾーンに供給される水の量は、上記シリンダー50内への原料の供給重量の合計に対して0.1重量部以上5重量部未満であることが好ましく、0.3重量部以上4重量部未満であることがより好ましく、0.5重量部以上3重量部未満であることがさらに好ましい。注水分散ゾーン13中に配置した所望のセグメント等を用いて、樹脂中に水を効率よく分散させることが好ましい。係るセグメントとしては、例えば、圧力状態の変化が少なく掻き混ぜ効果のある直交ディスク等のセグメント等が挙げられる。
<Water injection dispersion process>
The water injection dispersion step is a step of mixing and dispersing water in the resin in the water injection dispersion zone 13 following the above-described filling pressure increasing step. Resin is transferred to the water injection dispersion zone 13. Water is injected from the water injection port 5 provided upstream of the center of the water injection dispersion zone 13. The water is injected by, for example, connecting the water injection port 5 to the water injection nozzle 5 'and further connecting the nozzle to a liquid pump or the like. The amount of water supplied to the water injection dispersion zone is preferably 0.1 parts by weight or more and less than 5 parts by weight with respect to the total weight of the raw materials supplied into the cylinder 50, and 0.3 parts by weight or more. The amount is more preferably less than 4 parts by weight, and still more preferably 0.5 parts by weight or more and less than 3 parts by weight. It is preferable to efficiently disperse water in the resin using a desired segment or the like disposed in the water injection dispersion zone 13. As such a segment, for example, a segment such as an orthogonal disk with little change in pressure state and a stirring effect can be cited.
 注水分散ゾーン13の樹脂圧力は1MPa以上とする。注水分散ゾーン13の樹脂圧力は1~5MPa程度とすることが好ましく、1~4MPaとすることがより好ましく、1~3MPaとすることがさらに好ましい。 The resin pressure in the water injection dispersion zone 13 is 1 MPa or more. The resin pressure in the water injection dispersion zone 13 is preferably about 1 to 5 MPa, more preferably 1 to 4 MPa, and even more preferably 1 to 3 MPa.
 <減圧膨張工程>
 減圧膨張工程は、上述した注水分散工程において樹脂中に混合分散させた水を減圧下で発泡させ樹脂中に含まれるVOCを除去する工程である。
<Decompression expansion process>
The decompression expansion step is a step of removing VOC contained in the resin by foaming the water mixed and dispersed in the resin in the water injection dispersion step described above under reduced pressure.
 水を混合分散させた樹脂組成物を、減圧膨張ゾーン14へ移送する。減圧膨張ゾーン14において、減圧膨張ゾーン14に設置したセグメント等を用いて、樹脂中に混合分散させた水を減圧下で発泡させ気泡-樹脂界面を大幅に増加させる。 The resin composition in which water is mixed and dispersed is transferred to the vacuum expansion zone 14. In the decompression / expansion zone 14, using the segments installed in the decompression / expansion zone 14, the water mixed and dispersed in the resin is foamed under reduced pressure to greatly increase the bubble-resin interface.
 水を発砲させることによって、樹脂中に含まれるVOCを効率よく第2ベント口6から除去する。減圧膨張ゾーン14に設置して用いるセグメントとしては、搬送能力のあるフライトスクリューだけでもよいし、掻き混ぜ効果を有する直交ディスクまたはギヤニーディングディスクおよびミキシングディスク等のセグメントの2つ以上を組み合わせてもよい。ベント口6は、シリンダー50の上部に設けた開口部に真空ポンプを接続し、減圧吸引してもよいし、溶融樹脂のベントアップまたはエントレイメント現象を抑制する目的でシリンダー50の側面より接続した二軸のスクリューを具備した脱揮装置7を用いて真空脱揮させてもよい。 VOC contained in the resin is efficiently removed from the second vent port 6 by firing water. The segment used in the decompression / expansion zone 14 may be only a flight screw having a conveyance capability, or may be a combination of two or more segments such as an orthogonal disk or a gear kneading disk and a mixing disk having a mixing effect. Good. The vent port 6 may be connected to the opening provided in the upper part of the cylinder 50 through a vacuum pump for suction under reduced pressure, or from the side of the cylinder 50 for the purpose of suppressing bent-up or entrainment phenomenon of the molten resin. Alternatively, vacuum devolatilization may be performed using the devolatilizer 7 equipped with the biaxial screw.
 (その他の工程)
 本発明に係る樹脂組成物の製造方法は、目的に応じて、任意成分を供給する工程をさらに包含していてもよい。任意成分としては、上述の原料の項目の(任意成分)の項目に記載したものが挙げられる。
(Other processes)
The method for producing a resin composition according to the present invention may further include a step of supplying an optional component depending on the purpose. As an arbitrary component, what was described in the item (arbitrary component) of the item of the above-mentioned raw material is mentioned.
 これらの添加剤等の任意成分は、熱可塑性樹脂とともに二軸混練押出機100の第1搬送ゾーン内の供給口1から二軸混練押出機100中へ供給してもよいし、第2搬送ゾーンまたは第3搬送ゾーンに設けた供給口から二軸混練押出機100中へ供給してもよい。また、上述した通り、上記供給口1に、重量式フィーダー16を接続し、熱可塑性樹脂を重量式フィーダー16から上記供給口1を経て供給している場合、添加剤を熱可塑性樹脂とともに供給してもよい。また、上記供給口1に、熱可塑性樹脂の供給に用いている重量式フィーダー16とは異なる重量式フィーダー16’および/または容量式フィーダー17を1つ以上接続し、複数種類の任意成分を各成分毎に異なる重量式フィーダー16’および/または容量式フィーダー17から上記供給口1を経て供給してもよい。さらに、重量式フィーダー3およびスクリュー式サイドフィーダー2を通じて粉体とともに二軸混練押出機100中へ供給してもよい。また、重量式フィーダー3以外に重量式フィーダー3’および/または容量式サイドフィーダーを一つ以上スクリュー式サイドフィーダー2に接続し、複数種類の任意成分を各成分毎に異なる重量式フィーダー3’ および/または容量式サイドフィーダーと、スクリュー式サイドフィーダー2とを通じて二軸混練押出機100中へ供給してもよい。 These optional components such as additives may be supplied into the biaxial kneading extruder 100 from the supply port 1 in the first conveying zone of the biaxial kneading extruder 100 together with the thermoplastic resin, or in the second conveying zone. Or you may supply into the biaxial kneading extruder 100 from the supply port provided in the 3rd conveyance zone. In addition, as described above, when the weight type feeder 16 is connected to the supply port 1 and the thermoplastic resin is supplied from the weight type feeder 16 through the supply port 1, the additive is supplied together with the thermoplastic resin. May be. In addition, one or more weight-type feeders 16 ′ and / or capacitive feeders 17 different from the weight-type feeder 16 used for supplying the thermoplastic resin are connected to the supply port 1, and a plurality of types of optional components are added to each of them. You may supply through the said supply port 1 from the weight type feeder 16 'and / or the capacity | capacitance type feeder 17 which differ for every component. Furthermore, you may supply into the biaxial kneading extruder 100 with a powder through the weight type feeder 3 and the screw type side feeder 2. FIG. Further, in addition to the weight-type feeder 3, one or more weight-type feeders 3 'and / or capacity-type side feeders are connected to the screw-type side feeder 2, and a plurality of kinds of optional components are different for each component. Alternatively, the biaxial kneading extruder 100 may be supplied through the capacity-type side feeder and the screw-type side feeder 2.
 また、必要に応じて、二軸混練押出機100の下流に樹脂組成物をペレット化するための造粒装置等を接続して、樹脂組成物をペレット形状とする造粒工程を包含していてもよい。 In addition, if necessary, a granulating step for connecting the granulating device or the like for pelletizing the resin composition to the downstream of the biaxial kneading extruder 100 and making the resin composition into a pellet shape is included. Also good.
 さらに、造粒工程後に、必要に応じて、得られた樹脂組成物中のVOC残存量をガスクロマトグラフ等を用いて測定するVOC残存量測定工程を包含していてもよい。 Furthermore, after the granulation step, a VOC residual amount measurement step of measuring the VOC residual amount in the obtained resin composition using a gas chromatograph or the like may be included as necessary.
 〔2.二軸混練押出機〕
 本発明に係る二軸混練押出機100の主な構成および動作は上述の通りである。ここでは、各構成の変更可能な点および図示していない構成について説明する。
[2. Twin screw kneading extruder
The main configuration and operation of the twin-screw kneading extruder 100 according to the present invention are as described above. Here, the changeable points of each configuration and configurations not shown will be described.
 本発明に係る二軸混練押出機100は、樹脂組成物の原料を溶融しながら混練し、混練で得られた樹脂組成物をペレット形状等の形状で押し出す、2軸混練押出機である。よって、シリンダー50中に樹脂を混練するための2本の混練スクリュー30が回転自在に収容されている。 The biaxial kneading extruder 100 according to the present invention is a biaxial kneading extruder that kneads a resin composition raw material while melting it and extrudes the resin composition obtained by kneading in a shape such as a pellet shape. Therefore, two kneading screws 30 for kneading the resin are accommodated in the cylinder 50 so as to be freely rotatable.
 供給口1は、ホッパー等の構成を有し得る。また、スクリュー式サイドフィーダー2としては二軸のスクリュー式サイドフィーダーが挙げられる。各原料をシリンダー50中に供給するための供給口とスクリュー式サイドフィーダーとをそれぞれ複数備えていてもよい。脱揮装置7に、ドレーンポットおよび真空ポンプをさらに接続させてもよい。 The supply port 1 may have a configuration such as a hopper. Moreover, the screw-type side feeder 2 includes a biaxial screw-type side feeder. A plurality of supply ports and screw side feeders for supplying each raw material into the cylinder 50 may be provided. A drain pot and a vacuum pump may be further connected to the devolatilizer 7.
 (スクリュー30の構成)
 第1混練ゾーン9のスクリュー構成は、順ディスクのみ、または、必要に応じて直交ディスクまたは逆ディスクを併用することができる。順ディスクのみとすれば、混練ゾーンの充満度を低くし、あまり昇圧させないことで、熱可塑性樹脂を完全に可塑化させることなく、半溶融状態で下流に搬送することができる。また、樹脂圧を0.1MPa以上に昇圧する構成であることが好ましい。
(Configuration of screw 30)
As the screw configuration of the first kneading zone 9, only a forward disk or, if necessary, an orthogonal disk or a reverse disk can be used in combination. If only the forward disk is used, the degree of fullness of the kneading zone is lowered and the pressure is not increased so much that the thermoplastic resin can be conveyed downstream in a semi-molten state without being completely plasticized. Moreover, it is preferable that the resin pressure be increased to 0.1 MPa or more.
 第2混練ゾーン10の混練では、第2混練ゾーン10において生じる一部の揮発分については第2混練ゾーン10より下流の第1ベント口4から除去しながら、前述の半溶融状態の樹脂の中に、粉体を徐々に練り込み分散させることを目的としている。よって、第2混練ゾーン10のスクリュー構成は順ディスク主体で、幅の広いディスクが好ましい。また、空隙距離(チップクリアランス)も通常よりも広いものが好ましい。 In the kneading of the second kneading zone 10, a part of the volatile matter generated in the second kneading zone 10 is removed from the first vent port 4 downstream from the second kneading zone 10, while the above-mentioned semi-molten resin is mixed. The purpose is to gradually knead and disperse the powder. Therefore, the screw configuration of the second kneading zone 10 is mainly a forward disk, and a wide disk is preferable. Further, it is preferable that the gap distance (chip clearance) is wider than usual.
 充満昇圧ゾーン12については、注水分散ゾーン13に必要な1MPa以上に速やかに昇圧するため、ディスクの厚みは薄いほうが好ましい。また、注水分散ゾーン13についても、短い区間で注水した水を効率よく樹脂へ混合分散させるためにディスクの厚みは薄いほうが好ましい。 For the filling pressure increase zone 12, the disk is preferably thinner in order to quickly increase the pressure to 1 MPa or more required for the water injection dispersion zone 13. In addition, in the water injection dispersion zone 13, it is preferable that the thickness of the disk is thin in order to efficiently mix and disperse the water injected in a short section into the resin.
 ここで述べた第1、第2および第3混練ゾーン以外の部分のスクリュー、すなわち、第1混練ゾーンの上流の第1搬送ゾーン(フィードゾーン)、各混練ゾーンと混練ゾーンとの間の搬送ゾーン、または先端の充満昇圧ゾーン等においてはフルフライトスクリューを用いることが好ましい。一例としては2条のフルフライトスクリューを用いるが、搬送体積を増やしたい場合は、角フライトもしくは半角フライト形状のスクリュー、または1条のフルフライトスクリューを用いてもよい。 Screws in portions other than the first, second, and third kneading zones described here, that is, a first transport zone (feed zone) upstream of the first kneading zone, and a transport zone between each kneading zone and the kneading zone Alternatively, it is preferable to use a full flight screw in the full pressure zone of the tip. As an example, two full flight screws are used. However, when it is desired to increase the conveyance volume, a square flight or half angle flight shaped screw or a single full flight screw may be used.
 本発明の二軸混練押出機100は、上述の〔1.樹脂組成物の製造方法〕に記載の製造方法において好適に用いられるものであり得る。 The biaxial kneading extruder 100 of the present invention is the above-mentioned [1. It can be suitably used in the production method described in the production method of the resin composition].
 〔3.造粒システム〕
 また、上述の製造方法を用いて樹脂組成物のペレットを製造する為の二軸混練押出機を具備する造粒システムも本発明の範囲である。
[3. (Granulation system)
Moreover, the granulation system provided with the biaxial kneading extruder for manufacturing the pellet of a resin composition using the above-mentioned manufacturing method is also within the scope of the present invention.
 本発明の造粒システムでは、例えば、二軸混練押出機の下流に樹脂組成物をペレット化するための造粒装置を具備している。さらに、VOC残存量測定するための装置等を具備していてもよい。 In the granulation system of the present invention, for example, a granulation apparatus for pelletizing the resin composition is provided downstream of the twin-screw kneading extruder. Furthermore, an apparatus for measuring the remaining amount of VOC may be provided.
 本発明により、見掛け密度が小さい粉体と熱可塑性樹脂とを二軸混練押出機を用いて溶融混練する樹脂組成物の製造において、原料が順調に二軸混練押出機内へ供給されない等の製造上のトラブルなく高効率での生産を可能とし、かつ樹脂組成物に残存するVOCを低減できる方法が提供でき、その工業的価値は大きい。 According to the present invention, in the production of a resin composition in which a powder having a low apparent density and a thermoplastic resin are melt-kneaded using a biaxial kneading extruder, the raw materials are not smoothly fed into the biaxial kneading extruder. Thus, it is possible to provide a method that enables production with high efficiency without any trouble and can reduce VOC remaining in the resin composition, and its industrial value is great.
 〔4.まとめ〕
 すなわち、本発明は、以下の1)~9)の何れかを包含する。
1) 二軸混練押出機を用いた樹脂組成物の製造方法であって、上記樹脂組成物は、当該樹脂組成物の原料として、熱可塑性樹脂と、粉体とを含んでおり、上記二軸混練押出機は、シリンダーと、該シリンダーに接続されているスクリュー式サイドフィーダーと、該スクリュー式サイドフィーダーに接続されている重量式フィーダーと、該シリンダー内に設置されているスクリューとを備えており、上記シリンダーは、該シリンダーの上流から順に、供給口と、上記スクリュー式サイドフィーダーの接続口と、第1ベント口と、注水口と、第2ベント口とを備えており、上記シリンダーの内部および上記スクリューは、上記供給口と上記スクリュー式サイドフィーダーの接続口との間に位置する第1混練ゾーンと、上記スクリュー式サイドフィーダーの接続口と上記第1ベント口との間に位置する第2混練ゾーンと、上記第1ベント口の下流に位置する注水脱揮ゾーンとを含んで構成されており、上記注水脱揮ゾーンは、上記シリンダーの上流から順に、充満昇圧ゾーンと、上記注水口が位置する注水分散ゾーンと、上記第2ベント口が位置する減圧膨張ゾーンとを含んで構成されており、上記熱可塑性樹脂を、上記供給口から上記シリンダー内へ供給し、上記粉体を、上記重量式フィーダーからスクリュー式サイドフィーダーを経て上記シリンダー内へ供給する、供給工程と、上記第1混練ゾーンの樹脂圧力が0.1MPa以上で、上記第2混練ゾーンの樹脂圧力は5MPa未満である条件で溶融混練して、上記熱可塑性樹脂と粉体とを含む樹脂組成物を生成する溶融混練工程と、上記注水口から上記注水分散ゾーンに水を供給して、上記樹脂組成物を混練分散させることで、当該樹脂組成物中の揮発成分を水と共に気化させて上記第2ベント口から除去する混練分散工程と、を包含しており、上記熱可塑性樹脂は、転移温度が200℃未満であり、上記粉体は、見掛け密度0.1~1.5g/mlの無機フィラーおよび見掛け密度0.1~1.0g/mlかつ転移温度200℃以上の熱可塑性樹脂粉体からなる群より選ばれる1種類以上の粉体であり、上記スクリュー式サイドフィーダーの搬送能力は、上記重量式フィーダーから該スクリュー式サイドフィーダーへ供給される上記粉体の単位時間あたりの実効体積の1.2倍以上であり、上記混練分散工程において、上記注水分散ゾーンに供給される水の量は、上記シリンダー内への上記原料の供給重量の合計に対して0.1重量部以上5重量部未満であり、上記注水分散ゾーンにおける樹脂圧力は1MPa以上である、製造方法。
2) 上記第2混練ゾーンの樹脂圧力が3MPa未満である1)に記載の樹脂組成物の製造方法。
3) 上記注水分散ゾーンの樹脂圧力が1~5MPaである1)または2)に記載の樹脂組成物の製造方法。
4) 上記二軸混練押出機は、上記充満昇圧ゾーンと上記注水分散ゾーンとの間および上記注水分散ゾーンと上記減圧膨張ゾーンとの間の少なくとも一方にシールリングを備えている1)~3)のいずれかに記載の樹脂組成物の製造方法。
5) 上記二軸混練押出機は、上記第2ベント口に脱揮装置を備えている1)~4)のいずれかに記載の樹脂組成物の製造方法。
6) 上記粉体供給工程において、重量式フィーダーからスクリュー式サイドフィーダーを経て上記粉体と、樹脂ペレットとを上記シリンダー内へ供給し、上記樹脂ペレットの量は、上記粉体100重量部に対し25重量部以上である1)~5)のいずれかに記載の樹脂組成物の製造方法。
7) 上記粉体は、タルク、カオリナイトおよびクレーからなる群より選ばれる1種以上の粉体であり、上記転移温度200℃未満の熱可塑性樹脂は、ポリオレフィン系樹脂である1)~6)のいずれかに記載の樹脂組成物の製造方法。
8) 原料として、熱可塑性樹脂と、粉体とを含んでいる樹脂組成物を製造するために用いる二軸混練押出機であって、シリンダーと、該シリンダーに接続されているスクリュー式サイドフィーダーと、該スクリュー式サイドフィーダーに接続されている重量式フィーダーと、該シリンダー内に設置されているスクリューとを備えており、上記シリンダーは、該シリンダーの上流から順に、上記熱可塑性樹脂を該シリンダー内へ供給するための供給口と、上記粉体を該シリンダー内へ供給するための上記スクリュー式サイドフィーダーを接続するための上記スクリュー式サイドフィーダーの接続口と、該シリンダー内の気体または揮発成分を該シリンダー外へ除去するための第1ベント口と、上記樹脂組成物に水を供給するための注水口と、上記樹脂組成物中の揮発成分を上記水と共に気化させて脱揮するための第2ベント口とを備えており、上記シリンダーの内部および上記スクリューは、上記供給口と上記スクリュー式サイドフィーダーの接続口との間に位置する第1混練ゾーンと、上記スクリュー式サイドフィーダーの接続口と上記第1ベント口との間に位置する第2混練ゾーンと、上記第1ベント口の下流に位置する注水脱揮ゾーンとを含んで構成されている、二軸混練押出機。
9) 1)~7)のいずれかに記載の製造方法を用いて樹脂組成物のペレットを製造するための二軸混練押出機を具備する造粒システム。
[4. (Summary)
That is, the present invention includes any of the following 1) to 9).
1) A method for producing a resin composition using a biaxial kneading extruder, wherein the resin composition contains a thermoplastic resin and powder as raw materials of the resin composition, and the biaxial The kneading extruder includes a cylinder, a screw-type side feeder connected to the cylinder, a weight-type feeder connected to the screw-type side feeder, and a screw installed in the cylinder. The cylinder includes a supply port, a connection port of the screw-type side feeder, a first vent port, a water injection port, and a second vent port in order from the upstream side of the cylinder. And the screw includes a first kneading zone located between the supply port and the connection port of the screw-type side feeder, and the screw-type side-feed. Comprising a second kneading zone located between the connection port of the feeder and the first vent port, and a water injection devolatilization zone located downstream of the first vent port, the water injection devolatilization zone Is composed of, in order from the upstream of the cylinder, a full pressure increase zone, a water injection dispersion zone where the water injection port is located, and a vacuum expansion zone where the second vent port is located. Supplying the powder from the supply port into the cylinder and supplying the powder from the gravimetric feeder through the screw-type side feeder into the cylinder, and the resin pressure in the first kneading zone is 0. A melt-kneading step of producing a resin composition containing the thermoplastic resin and powder by melt-kneading under a condition of 1 MPa or more and a resin pressure in the second kneading zone of less than 5 MPa; Kneading dispersion in which water is supplied from the water injection port to the water injection dispersion zone and the resin composition is kneaded and dispersed to vaporize volatile components in the resin composition together with water and remove from the second vent port. The thermoplastic resin has a transition temperature of less than 200 ° C., and the powder comprises an inorganic filler having an apparent density of 0.1 to 1.5 g / ml and an apparent density of 0.1 to 1.0 g / ml and one or more kinds of powder selected from the group consisting of thermoplastic resin powders having a transition temperature of 200 ° C. or higher, and the conveying ability of the screw-type side feeder is from the weight-type feeder to the screw-type The effective volume per unit time of the powder supplied to the side feeder is 1.2 times or more. In the kneading and dispersing step, the amount of water supplied to the water injection dispersion zone is Less than 5 parts by weight or more 0.1 parts by weight based on the total feed weight of the raw material into the Nda, resin pressure in the water injection dispersion zone is 1MPa or more, the production method.
2) The method for producing a resin composition according to 1), wherein the resin pressure in the second kneading zone is less than 3 MPa.
3) The method for producing a resin composition according to 1) or 2), wherein the resin pressure in the water injection dispersion zone is 1 to 5 MPa.
4) The biaxial kneader-extruder is provided with a seal ring between at least one of the filling pressure increase zone and the water injection dispersion zone and between the water injection dispersion zone and the reduced pressure expansion zone 1) to 3). The manufacturing method of the resin composition in any one of.
5) The method for producing a resin composition according to any one of 1) to 4), wherein the biaxial kneading extruder includes a devolatilizer at the second vent port.
6) In the powder supply step, the powder and the resin pellets are supplied from the gravimetric feeder through the screw-type side feeder into the cylinder, and the amount of the resin pellets is 100 parts by weight of the powder. The method for producing a resin composition according to any one of 1) to 5), which is 25 parts by weight or more.
7) The powder is at least one powder selected from the group consisting of talc, kaolinite and clay, and the thermoplastic resin having a transition temperature of less than 200 ° C. is a polyolefin resin 1) to 6) The manufacturing method of the resin composition in any one of.
8) A biaxial kneading extruder used for producing a resin composition containing a thermoplastic resin and powder as raw materials, a cylinder, and a screw-type side feeder connected to the cylinder A weight-type feeder connected to the screw-type side feeder, and a screw installed in the cylinder. A supply port for supplying to the cylinder, a connection port of the screw-type side feeder for connecting the screw-type side feeder for supplying the powder into the cylinder, and a gas or a volatile component in the cylinder. A first vent port for removal outside the cylinder, a water injection port for supplying water to the resin composition, A second vent port for vaporizing the volatile component in the resin composition together with the water and devolatilizing, and the inside of the cylinder and the screw are connected to the supply port and the screw-type side feeder. A first kneading zone located between the mouth, a second kneading zone located between the connection port of the screw-type side feeder and the first vent port, and water injection located downstream of the first vent port. A twin-screw kneading extruder comprising a devolatilization zone.
9) A granulation system comprising a twin-screw kneading extruder for producing pellets of a resin composition using the production method according to any one of 1) to 7).
 以下に実施例を用いて、本発明を更に詳細に説明するが、本発明はこれによって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 比較例1および2ならびに実施例1~4について、同一の装置を用いて樹脂組成物の製造を行った。 For Comparative Examples 1 and 2 and Examples 1 to 4, resin compositions were produced using the same apparatus.
 (装置)
二軸混練押出機100と同様の構成を有している装置において樹脂組成物を製造した。なお、二軸混練押出機100には、シリンダー径47mmの同方向かみ合いタイプである、株式会社日本製鋼所製TEX44αIIを用いた。該二軸混練押出機は、シリンダーと、上記シリンダー内に収容される二本のスクリュー軸を有していた。また、スクリュー式サイドフィーダー2としては二軸のスクリュー式サイドフィーダーを用いた。第1ベント口4には真空ポンプを接続した。脱揮装置7を側面より接続した第2ベント口6を設けた。注水口5には注水ノズル5’を設けた。また、供給口1には重量式フィーダー16、重量式フィーダー16’および容量式フィーダー17を接続した。さらに、重量フィーダー3および重量式フィーダー3’をスクリュー式サイドフィーダー2に接続した。
(apparatus)
A resin composition was produced in an apparatus having the same configuration as that of the biaxial kneading extruder 100. The twin-screw kneading extruder 100 used was TEX44αII manufactured by Nippon Steel Co., Ltd., which is a meshing type with a cylinder diameter of 47 mm. The biaxial kneader-extruder had a cylinder and two screw shafts accommodated in the cylinder. Moreover, as the screw-type side feeder 2, a biaxial screw-type side feeder was used. A vacuum pump was connected to the first vent port 4. The 2nd vent port 6 which connected the devolatilizer 7 from the side surface was provided. The water injection port 5 is provided with a water injection nozzle 5 ′. Further, a weight type feeder 16, a weight type feeder 16 ′ and a capacity type feeder 17 were connected to the supply port 1. Further, the weight feeder 3 and the weight feeder 3 ′ were connected to the screw side feeder 2.
 第1混練ゾーン9に対応する部分のスクリューには、第1混練ゾーンの樹脂圧力が0.1MPa以上になるように、上流側から順に、順(順送り方向)ディスク、直交(ニュートラル)ディスク、および逆(逆送り方向)を配置した。上記順ディスク、直交ディスク、逆ディスクの厚みはそれぞれ0.2D(Dはスクリュー径)のものを用いた。第2混練ゾーン10に対応する部分のスクリューには、第2混練ゾーン10の樹脂圧力が5MPa未満になるように、上流から順ディスクを長く配置し、最後に逆ディスクを配置した。上記順ディスクおよび逆ディスクの厚みはそれぞれ0.5Dのものを用いた。第3混練ゾーン11に対応する部分のスクリューには、注水分散ゾーン13の樹脂圧力が1MPa以上になるように、上流側から順に、順ディスク、直交ディスクおよび逆ディスクを用いて配置し、いずれのディスクの厚みも0.1Dのものを用いた。 The screw corresponding to the first kneading zone 9 includes, in order from the upstream side, a forward (forward feed direction) disc, an orthogonal (neutral) disc, and a screw so that the resin pressure in the first kneading zone is 0.1 MPa or more. Reverse (reverse feed direction) was arranged. The thicknesses of the forward disk, orthogonal disk, and reverse disk were 0.2D (D is the screw diameter). In the part of the screw corresponding to the second kneading zone 10, a forward disk was placed long from upstream so that the resin pressure in the second kneading zone 10 was less than 5 MPa, and finally a reverse disk was placed. The forward disk and the reverse disk each had a thickness of 0.5D. The part of the screw corresponding to the third kneading zone 11 is arranged by using a forward disk, an orthogonal disk and a reverse disk in order from the upstream side so that the resin pressure in the water injection dispersion zone 13 is 1 MPa or more. The disc thickness was also 0.1D.
 (原料)
 原料の熱可塑性樹脂としてポリプロピレンのペレットおよびゴムペレットを用いた。ゴムペレットとして、エチレン-ブテン共重合体ペレットやエチレン-オクテン共重合体のペレットを用いた。
(material)
Polypropylene pellets and rubber pellets were used as the raw material thermoplastic resin. As the rubber pellets, ethylene-butene copolymer pellets or ethylene-octene copolymer pellets were used.
 粉体として、タルクを用いた。タルクの嵩密度は、重量式フィーダー3からスクリュー式サイドフィーダー2に投入される状態を模擬的に再現して測定した。すなわち、重量式フィーダー3とスクリュー式サイドフィーダー2とを接続するシューターの長さに相当する、2.3mの高さから落下させ、メスシリンダーに受けた後に単位体積当たりのタルクの重量を測定することで求めた。この測定によって0.51であった。 Talc was used as the powder. The bulk density of talc was measured by simulating the state where the weight type feeder 3 is put into the screw type side feeder 2. That is, the weight of talc per unit volume is measured after dropping from a height of 2.3 m corresponding to the length of the shooter connecting the weight type feeder 3 and the screw type side feeder 2 and receiving it on the measuring cylinder. I asked for it. By this measurement, it was 0.51.
 (VOC残存量の評価)
 樹脂組成物中のVOC残存量は、得られた樹脂組成物ペレットを用いてヘッドスペース法ガスクロマトグラフによって評価した。なお、溶融混練のみで注水脱揮しない樹脂組成物を基準としたときに、VOC残存量が少ない方が好ましい。
(Evaluation of remaining VOC)
The VOC remaining amount in the resin composition was evaluated by a head space method gas chromatograph using the obtained resin composition pellets. In addition, when the resin composition which does not devolatilize water by only melt kneading is used as a standard, it is preferable that the VOC remaining amount is small.
 〔比較例1〕
 (装置の稼働条件)
 原料の供給重量の合計あたり、ポリプロピレンペレット50重量部を重量式フィーダー16を介し、ゴムペレット5重量部を重量式フィーダー16’を介し、添加剤を容量式フィーダー17を介して、二軸混練押出機100の第1搬送ゾーン内の最上流部の供給口から二軸混練押出機100内へ供給した。タルク15重量部を重量式フィーダー3に、ポリプロピレンペレット30重量部を、重量式フィーダー3’に、それぞれ供給し、重量式フィーダー3および重量式フィーダー3’から二軸のスクリュー式サイドフィーダー2へ供給することで、二軸のスクリュー式サイドフィーダーから二軸混練押出機100内に供給した。二軸混練押出機100内へ供給されるポリプロピレンペレットとゴムペレットとタルクの合計の供給量は490kg/時間であった。重量式フィーダー3からスクリュー式サイドフィーダー2へ供給されるタルクの実効体積は144L/時間であり、スクリュー式サイドフィーダー2の搬送能力は801L/時間であった。すなわち、スクリュー式サイドフィーダー2の搬送能力は、重量式フィーダー3からスクリュー式サイドフィーダー2へ供給されるタルクの単位時間あたりの体積の約5.6倍であった。上記原料を二軸混練押出機100のスクリュー回転数1350rpmで溶融混練し、上記注水口より水を注水することなく、上記第1ベント口および第2ベント口から減圧吸引を行った。得られた樹脂組成物ペレットに残存するVOCの量を基準の1.0とした。
[Comparative Example 1]
(Operating conditions of the device)
Biaxial kneading extrusion with 50 parts by weight of polypropylene pellets via weight feeder 16, 5 parts by weight of rubber pellets via weight feeder 16 ′, and additive via capacity feeder 17 per total feed weight of raw materials The biaxial kneading and extruding machine 100 was supplied from the most upstream supply port in the first transport zone of the machine 100. 15 parts by weight of talc is supplied to the weight- type feeder 3 and 30 parts by weight of polypropylene pellets are supplied to the weight-type feeder 3 ′. The weight-type feeder 3 and the weight-type feeder 3 ′ are supplied to the biaxial screw-type side feeder 2. By doing so, it supplied into the biaxial kneading extruder 100 from the biaxial screw type side feeder. The total supply amount of polypropylene pellets, rubber pellets, and talc supplied into the biaxial kneading extruder 100 was 490 kg / hour. The effective volume of talc supplied from the weight type feeder 3 to the screw type side feeder 2 was 144 L / hour, and the conveying capacity of the screw type side feeder 2 was 801 L / hour. That is, the conveying capacity of the screw-type side feeder 2 was about 5.6 times the volume per unit time of talc supplied from the weight-type feeder 3 to the screw-type side feeder 2. The raw material was melt-kneaded at a screw rotation speed of 1350 rpm of the biaxial kneading extruder 100, and vacuum suction was performed from the first vent port and the second vent port without pouring water from the water injection port. The amount of VOC remaining in the obtained resin composition pellets was set to 1.0 as a reference.
 〔実施例1〕
 比較例1と同じ装置を用いて、条件を変えた樹脂組成物の製造を行なった。
[Example 1]
Using the same apparatus as in Comparative Example 1, a resin composition was produced under different conditions.
 二軸混練押出機100のスクリュー回転数を1500rpmとし、注水口5より原料の供給重量の合計あたり、1重量部の水を注水する以外は、比較例1と同様の条件で樹脂組成物の製造を行った。得られた樹脂組成物ペレットに残存するVOCの量は注水脱揮しない比較例1を基準として0.57に低減しており良好であった。 Production of the resin composition under the same conditions as in Comparative Example 1 except that the screw rotation speed of the twin-screw kneading extruder 100 is 1500 rpm and 1 part by weight of water is injected from the water injection port 5 in total of the supply weight of the raw materials. Went. The amount of VOC remaining in the obtained resin composition pellets was good, being reduced to 0.57 on the basis of Comparative Example 1 where water injection was not volatilized.
 〔実施例2〕
 注水口5より原料の供給重量の合計あたり、4重量部の水を注水する以外は、実施例1と同様の条件で樹脂組成物の製造を行った。得られた樹脂組成物ペレットに残存するVOCの量は注水脱揮しない比較例1を基準として0.51に低減しており良好であった。
[Example 2]
A resin composition was produced under the same conditions as in Example 1 except that 4 parts by weight of water was injected from the water injection port 5 to the total supply weight of the raw materials. The amount of VOC remaining in the obtained resin composition pellets was good, being reduced to 0.51 on the basis of Comparative Example 1 where water injection was not volatilized.
 〔比較例2〕
 注水口5より原料の供給重量の合計あたり、5重量部の水を注水する以外は、実施例1と同様の条件で樹脂組成物の製造を行った。その結果、二軸混練押出機100より押し出される樹脂組成物が発泡してしまい、ペレットを製造することができなかった。
[Comparative Example 2]
A resin composition was produced under the same conditions as in Example 1 except that 5 parts by weight of water was poured from the water inlet 5 into the total supply weight of the raw materials. As a result, the resin composition extruded from the biaxial kneader-extruder 100 was foamed, and pellets could not be produced.
 〔実施例3〕
 二軸混練押出機100内へ供給されるポリプロピレンペレットとゴムペレットとタルクの合計の供給量を600kg/時間とする以外は、実施例1と同様の条件で樹脂組成物の製造を行った。重量式フィーダー3からスクリュー式サイドフィーダー2へ供給されるタルクの実効体積は176L/時間であり、スクリュー式サイドフィーダーの搬送能力は801L/時間であった。すなわち、スクリュー式サイドフィーダーの搬送能力は、重量式フィーダー3からスクリュー式サイドフィーダー2へ供給されるタルクの単位時間あたりの体積の約4.6倍であった。得られた樹脂組成物ペレットに残存するVOCの量は、注水脱揮しない比較例1を基準として0.68に低減していた。比較例1よりも生産性を20%向上させ、かつVOCを31%低減でき良好であった。
Example 3
A resin composition was produced under the same conditions as in Example 1 except that the total supply amount of polypropylene pellets, rubber pellets, and talc supplied into the biaxial kneading extruder 100 was 600 kg / hour. The effective volume of talc supplied from the weight type feeder 3 to the screw type side feeder 2 was 176 L / hour, and the conveying capacity of the screw type side feeder was 801 L / hour. That is, the conveying ability of the screw-type side feeder was about 4.6 times the volume per unit time of talc supplied from the weight-type feeder 3 to the screw-type side feeder 2. The amount of VOC remaining in the obtained resin composition pellets was reduced to 0.68 on the basis of Comparative Example 1 in which water injection was not volatilized. Compared with Comparative Example 1, productivity was improved by 20%, and VOC was reduced by 31%, which was favorable.
 〔実施例4〕
 二軸混練押出機100のスクリュー回転数を1650rpmとする以外は、実施例2と同様の条件で樹脂組成物の製造を行った。得られた樹脂組成物ペレットに残存するVOCの量は注水脱揮しない比較例1を基準として0.46に低減しており良好であった。
Example 4
A resin composition was produced under the same conditions as in Example 2 except that the screw rotation speed of the biaxial kneading extruder 100 was 1650 rpm. The amount of VOC remaining in the obtained resin composition pellets was good, being reduced to 0.46 on the basis of Comparative Example 1 where water injection was not volatilized.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明は、熱可塑性樹脂と粉体とを溶融混練する樹脂組成物の製造方法に利用可能である。 The present invention can be used in a method for producing a resin composition in which a thermoplastic resin and powder are melt-kneaded.
 1 供給口1
 2 スクリュー式サイドフィーダー
 3,3’,16,16’ 重量式フィーダー
 4 第1ベント口
 5 注水口
 5’ 注水ノズル
 6 第2ベント口
 7 脱揮装置
 8 シールリング
 9 第1混練ゾーン
 10 第2混練ゾーン
 11 第3混練ゾーン
 12 充満昇圧ゾーン
 13 注水分散ゾーン
 14 減圧膨張ゾーン
 15 注水脱揮ゾーン
 17 容量式フィーダー
 30 スクリュー
 50 シリンダー
 100 二軸混練押出機
1 Supply port 1
2 Screw- type side feeder 3, 3 ′, 16, 16 ′ Heavy-weight feeder 4 First vent port 5 Water injection port 5 ′ Water injection nozzle 6 Second vent port 7 Devolatilizer 8 Seal ring 9 First kneading zone 10 Second kneading Zone 11 Third kneading zone 12 Filling pressurization zone 13 Injection water dispersion zone 14 Decompression expansion zone 15 Injection water devolatilization zone 17 Capacity type feeder 30 Screw 50 Cylinder 100 Twin screw kneading extruder

Claims (9)

  1.  二軸混練押出機を用いた樹脂組成物の製造方法であって、
     上記樹脂組成物は、当該樹脂組成物の原料として、熱可塑性樹脂と、粉体とを含んでおり、
     上記二軸混練押出機は、シリンダーと、該シリンダーに接続されているスクリュー式サイドフィーダーと、該スクリュー式サイドフィーダーに接続されている重量式フィーダーと、該シリンダー内に設置されているスクリューとを備えており、
      上記シリンダーは、該シリンダーの上流から順に、供給口と、上記スクリュー式サイドフィーダーの接続口と、第1ベント口と、注水口と、第2ベント口とを備えており、
      上記シリンダーの内部および上記スクリューは、
       上記供給口と上記スクリュー式サイドフィーダーの接続口との間に位置する第1混練ゾーンと、上記スクリュー式サイドフィーダーの接続口と上記第1ベント口との間に位置する第2混練ゾーンと、上記第1ベント口の下流に位置する注水脱揮ゾーンとを含んで構成されており、
       上記注水脱揮ゾーンは、上記シリンダーの上流から順に、充満昇圧ゾーンと、上記注水口が位置する注水分散ゾーンと、上記第2ベント口が位置する減圧膨張ゾーンとを含んで構成されており、
     上記熱可塑性樹脂を、上記供給口から上記シリンダー内へ供給し、
     上記粉体を、上記重量式フィーダーからスクリュー式サイドフィーダーを経て上記シリンダー内へ供給する、供給工程と、
     上記第1混練ゾーンの樹脂圧力が0.1MPa以上で、上記第2混練ゾーンの樹脂圧力は5MPa未満である条件で溶融混練して、上記熱可塑性樹脂と粉体とを含む樹脂組成物を生成する溶融混練工程と、
     上記注水口から上記注水分散ゾーンに水を供給して、上記樹脂組成物を混練分散させることで、当該樹脂組成物中の揮発成分を水と共に気化させて上記第2ベント口から除去する混練分散工程と、を包含しており、
     上記熱可塑性樹脂は、転移温度が200℃未満であり、
     上記粉体は、見掛け密度0.1~1.5g/mlの無機フィラーおよび見掛け密度0.1~1.0g/mlかつ転移温度200℃以上の熱可塑性樹脂粉体からなる群より選ばれる1種類以上の粉体であり、
     上記スクリュー式サイドフィーダーの搬送能力は、上記重量式フィーダーから該スクリュー式サイドフィーダーへ供給される上記粉体の単位時間あたりの実効体積の1.2倍以上であり、
     上記混練分散工程において、上記注水分散ゾーンに供給される水の量は、上記シリンダー内への上記原料の供給重量の合計に対して0.1重量部以上5重量部未満であり、上記注水分散ゾーンにおける樹脂圧力は1MPa以上である、製造方法。
    A method for producing a resin composition using a biaxial kneading extruder,
    The resin composition includes a thermoplastic resin and powder as raw materials of the resin composition,
    The biaxial kneading extruder includes a cylinder, a screw-type side feeder connected to the cylinder, a weight-type feeder connected to the screw-type side feeder, and a screw installed in the cylinder. Has
    The cylinder includes a supply port, a connection port of the screw-type side feeder, a first vent port, a water injection port, and a second vent port in order from the upstream side of the cylinder.
    The inside of the cylinder and the screw are
    A first kneading zone located between the supply port and the connection port of the screw-type side feeder; a second kneading zone located between the connection port of the screw-type side feeder and the first vent port; A water injection devolatilization zone located downstream of the first vent port,
    The water injection devolatilization zone includes, in order from the upstream of the cylinder, a filling pressure increase zone, a water injection dispersion zone where the water injection port is located, and a vacuum expansion zone where the second vent port is located,
    Supplying the thermoplastic resin from the supply port into the cylinder;
    Supplying the powder from the gravimetric feeder through the screw-type side feeder into the cylinder; and
    Melting and kneading under the conditions that the resin pressure in the first kneading zone is 0.1 MPa or more and the resin pressure in the second kneading zone is less than 5 MPa to produce a resin composition containing the thermoplastic resin and powder. A melt kneading step,
    Kneading and dispersing by supplying water from the water injection port to the water injection dispersion zone and kneading and dispersing the resin composition to vaporize volatile components in the resin composition together with water and remove them from the second vent port. A process,
    The thermoplastic resin has a transition temperature of less than 200 ° C.,
    The powder is selected from the group consisting of an inorganic filler having an apparent density of 0.1 to 1.5 g / ml and a thermoplastic resin powder having an apparent density of 0.1 to 1.0 g / ml and a transition temperature of 200 ° C. or higher. More than kinds of powders,
    The conveying capacity of the screw-type side feeder is 1.2 times or more the effective volume per unit time of the powder supplied from the weight-type feeder to the screw-type side feeder,
    In the kneading and dispersing step, the amount of water supplied to the water injection dispersion zone is not less than 0.1 parts by weight and less than 5 parts by weight with respect to the total supply weight of the raw material into the cylinder. The manufacturing method whose resin pressure in a zone is 1 Mpa or more.
  2.  上記第2混練ゾーンの樹脂圧力が3MPa未満である請求項1に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 1, wherein the resin pressure in the second kneading zone is less than 3 MPa.
  3.  上記注水分散ゾーンの樹脂圧力が1~5MPaである請求項1または2に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 1 or 2, wherein a resin pressure in the water injection dispersion zone is 1 to 5 MPa.
  4.  上記二軸混練押出機は、
     上記充満昇圧ゾーンと上記注水分散ゾーンとの間および上記注水分散ゾーンと上記減圧膨張ゾーンとの間の少なくとも一方にシールリングを備えている請求項1~3のいずれか一項に記載の樹脂組成物の製造方法。
    The biaxial kneading extruder is
    The resin composition according to any one of claims 1 to 3, further comprising a seal ring between at least one of the filling pressure increasing zone and the water injection dispersion zone and between the water injection dispersion zone and the reduced pressure expansion zone. Manufacturing method.
  5.  上記二軸混練押出機は、上記第2ベント口に脱揮装置を備えている請求項1~4のいずれか一項に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to any one of claims 1 to 4, wherein the biaxial kneading extruder includes a devolatilizer at the second vent port.
  6.  上記粉体供給工程において、重量式フィーダーからスクリュー式サイドフィーダーを経て上記粉体と、樹脂ペレットとを上記シリンダー内へ供給し、
     上記樹脂ペレットの量は、上記粉体100重量部に対し25重量部以上である請求項1~5のいずれか一項に記載の樹脂組成物の製造方法。
    In the powder supply process, the powder and the resin pellets are supplied into the cylinder from the gravimetric feeder through the screw side feeder,
    The method for producing a resin composition according to any one of claims 1 to 5, wherein the amount of the resin pellet is 25 parts by weight or more with respect to 100 parts by weight of the powder.
  7.  上記粉体は、タルク、カオリナイトおよびクレーからなる群より選ばれる1種以上の粉体であり、上記転移温度200℃未満の熱可塑性樹脂は、ポリオレフィン系樹脂である請求項1~6のいずれか一項に記載の樹脂組成物の製造方法。 7. The powder according to claim 1, wherein the powder is at least one powder selected from the group consisting of talc, kaolinite, and clay, and the thermoplastic resin having a transition temperature of less than 200 ° C. is a polyolefin resin. A method for producing the resin composition according to claim 1.
  8.  原料として、熱可塑性樹脂と、粉体とを含んでいる樹脂組成物を製造するために用いる二軸混練押出機であって、
     シリンダーと、該シリンダーに接続されているスクリュー式サイドフィーダーと、該スクリュー式サイドフィーダーに接続されている重量式フィーダーと、該シリンダー内に設置されているスクリューとを備えており、
      上記シリンダーは、該シリンダーの上流から順に、上記熱可塑性樹脂を該シリンダー内へ供給するための供給口と、上記粉体を該シリンダー内へ供給するための上記スクリュー式サイドフィーダーを接続するための上記スクリュー式サイドフィーダーの接続口と、該シリンダー内の気体または揮発成分を該シリンダー外へ除去するための第1ベント口と、上記樹脂組成物に水を供給するための注水口と、上記樹脂組成物中の揮発成分を上記水と共に気化させて脱揮するための第2ベント口とを備えており、
      上記シリンダーの内部および上記スクリューは、
       上記供給口と上記スクリュー式サイドフィーダーの接続口との間に位置する第1混練ゾーンと、上記スクリュー式サイドフィーダーの接続口と上記第1ベント口との間に位置する第2混練ゾーンと、上記第1ベント口の下流に位置する注水脱揮ゾーンとを含んで構成されている、二軸混練押出機。
    As a raw material, a biaxial kneading extruder used for producing a resin composition containing a thermoplastic resin and powder,
    A cylinder, a screw-type side feeder connected to the cylinder, a weight-type feeder connected to the screw-type side feeder, and a screw installed in the cylinder,
    The cylinder is connected to the supply port for supplying the thermoplastic resin into the cylinder and the screw-type side feeder for supplying the powder into the cylinder in order from the upstream of the cylinder. A connection port of the screw-type side feeder, a first vent port for removing gas or volatile components in the cylinder to the outside of the cylinder, a water injection port for supplying water to the resin composition, and the resin A second vent port for vaporizing the volatile components in the composition together with the water and devolatilizing,
    The inside of the cylinder and the screw are
    A first kneading zone located between the supply port and the connection port of the screw-type side feeder; a second kneading zone located between the connection port of the screw-type side feeder and the first vent port; The biaxial kneading extruder comprised including the water injection devolatilization zone located downstream of the first vent port.
  9.  請求項1~7のいずれか一項に記載の製造方法を用いて樹脂組成物のペレットを製造するための二軸混練押出機を具備する造粒システム。 A granulation system comprising a biaxial kneading extruder for producing pellets of a resin composition using the production method according to any one of claims 1 to 7.
PCT/JP2017/014854 2016-04-15 2017-04-11 Method for manufacturing resin composition and biaxial kneading and extruding machine WO2017179584A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-082460 2016-04-15
JP2016082460A JP2019104107A (en) 2016-04-15 2016-04-15 Method for producing resin composition and twin screw kneading extruder

Publications (1)

Publication Number Publication Date
WO2017179584A1 true WO2017179584A1 (en) 2017-10-19

Family

ID=60041714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014854 WO2017179584A1 (en) 2016-04-15 2017-04-11 Method for manufacturing resin composition and biaxial kneading and extruding machine

Country Status (2)

Country Link
JP (1) JP2019104107A (en)
WO (1) WO2017179584A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110216860A (en) * 2019-04-09 2019-09-10 东莞市锕舒尔智能科技有限公司 A kind of three segment hub seal glue automatic production line of "-" type in the same direction
CN111961318A (en) * 2020-08-20 2020-11-20 珠海格力绿色再生资源有限公司 Enhanced PBT resin composition, preparation method thereof and precipitation detection method
WO2021237655A1 (en) * 2020-05-26 2021-12-02 金发科技股份有限公司 Liquid additive assisted polymer extrusion and blending method and device and use thereof
CN113977908A (en) * 2021-11-26 2022-01-28 中化泉州能源科技有限责任公司 Combined screw of double-screw extruder and process for producing low-odor polyolefin
JP2022518566A (en) * 2019-11-25 2022-03-15 エルジー・ケム・リミテッド Extruder
CN115044986A (en) * 2022-06-30 2022-09-13 武汉纺织大学 Device and method for preparing polyester fiber or polyamide fiber by chip spinning without drying
WO2022259984A1 (en) * 2021-06-09 2022-12-15 株式会社日本製鋼所 Method and apparatus for manufacturing resin composite material
WO2023166780A1 (en) * 2022-03-03 2023-09-07 株式会社日本製鋼所 Feeder and injection molding machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7330056B2 (en) * 2019-10-15 2023-08-21 株式会社日本製鋼所 Method for producing resin composition and screw kneading and devolatilizing extruder
WO2023151996A1 (en) * 2022-02-10 2023-08-17 Totalenergies Onetech Polyethylene composition for injection molding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043036A (en) * 1998-07-31 2000-02-15 Toray Ind Inc Method and apparatus for producing resin material for molding
JP2000281731A (en) * 1999-01-29 2000-10-10 Sekisui Chem Co Ltd Preparation of silane-modified olefin resin and crosslinked polyolefin tube
JP2002187125A (en) * 2000-12-19 2002-07-02 Japan Polychem Corp Method for manufacturing polypropylene resin composition, polypropylene resin composition, and molding
JP2007307826A (en) * 2006-05-19 2007-11-29 Fujifilm Corp Cellulose acylate pellet and its manufacturing method, cellulose acylate film and its manufacturing method, polarizing plate, optical compensation film, reflection preventive film, and liquid crystal displaying device
WO2012147185A1 (en) * 2011-04-27 2012-11-01 ポリプラスチックス株式会社 Method for producing polyarylene sulfide resin compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043036A (en) * 1998-07-31 2000-02-15 Toray Ind Inc Method and apparatus for producing resin material for molding
JP2000281731A (en) * 1999-01-29 2000-10-10 Sekisui Chem Co Ltd Preparation of silane-modified olefin resin and crosslinked polyolefin tube
JP2002187125A (en) * 2000-12-19 2002-07-02 Japan Polychem Corp Method for manufacturing polypropylene resin composition, polypropylene resin composition, and molding
JP2007307826A (en) * 2006-05-19 2007-11-29 Fujifilm Corp Cellulose acylate pellet and its manufacturing method, cellulose acylate film and its manufacturing method, polarizing plate, optical compensation film, reflection preventive film, and liquid crystal displaying device
WO2012147185A1 (en) * 2011-04-27 2012-11-01 ポリプラスチックス株式会社 Method for producing polyarylene sulfide resin compositions

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110216860A (en) * 2019-04-09 2019-09-10 东莞市锕舒尔智能科技有限公司 A kind of three segment hub seal glue automatic production line of "-" type in the same direction
JP2022518566A (en) * 2019-11-25 2022-03-15 エルジー・ケム・リミテッド Extruder
JP7233799B2 (en) 2019-11-25 2023-03-07 エルジー・ケム・リミテッド Extruder
WO2021237655A1 (en) * 2020-05-26 2021-12-02 金发科技股份有限公司 Liquid additive assisted polymer extrusion and blending method and device and use thereof
CN111961318A (en) * 2020-08-20 2020-11-20 珠海格力绿色再生资源有限公司 Enhanced PBT resin composition, preparation method thereof and precipitation detection method
CN111961318B (en) * 2020-08-20 2022-12-16 珠海格力绿色再生资源有限公司 Enhanced PBT resin composition, preparation method thereof and precipitation detection method
WO2022259984A1 (en) * 2021-06-09 2022-12-15 株式会社日本製鋼所 Method and apparatus for manufacturing resin composite material
CN113977908A (en) * 2021-11-26 2022-01-28 中化泉州能源科技有限责任公司 Combined screw of double-screw extruder and process for producing low-odor polyolefin
WO2023166780A1 (en) * 2022-03-03 2023-09-07 株式会社日本製鋼所 Feeder and injection molding machine
CN115044986A (en) * 2022-06-30 2022-09-13 武汉纺织大学 Device and method for preparing polyester fiber or polyamide fiber by chip spinning without drying
CN115044986B (en) * 2022-06-30 2023-07-21 武汉纺织大学 Device and method for preparing polyester fiber or polyamide fiber by slice spinning without drying

Also Published As

Publication number Publication date
JP2019104107A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2017179584A1 (en) Method for manufacturing resin composition and biaxial kneading and extruding machine
JP5369614B2 (en) Extruder for powder raw material and method for producing thermoplastic resin composition
WO2006123824A1 (en) Process for producing resin composition containing fibrous filler in high concentration and resin composition pellet
JP2004137450A5 (en)
CN101418121B (en) Low melting point nylon 6 and preparation method thereof
JP2008238626A (en) Manufacturing method for thermoplastic resin composition
EP2631060A1 (en) A low-pressure process for preparing a polymer film by extrusion-blowing
JP2004510600A (en) Mixing device and method for producing thermoplastically processable molding materials, especially additive masterbatches
JP6506396B2 (en) Method for producing resin composition
CN104105580A (en) Resin mixture fabrication method
JP2018183933A (en) Method for manufacturing polycarbonate resin composition
JP7215942B2 (en) Side feeder, extruder, and method for manufacturing thermoplastic resin composition
WO1996027631A1 (en) Process for producing polyolefin solution
JP6837337B2 (en) Method of supplying liquid additive to extruder
JP6871914B2 (en) Method for manufacturing resin composition
JP2010030176A (en) Method for manufacturing thermoplastic resin composition pellet
TW201249627A (en) Method for manufacturing polysulfone pellets
JP2011245710A (en) Method for manufacturing polyolefin resin pellet
KR101699727B1 (en) System and method manufacturing for bio plastic
CN101864160B (en) Antiflaming polycarbonate alloy with excellent wear-resisting property and preparation method thereof
JP2002187125A (en) Method for manufacturing polypropylene resin composition, polypropylene resin composition, and molding
WO2024070499A1 (en) Production method for glass fiber-reinforced polyamide resin composition
JP7426451B1 (en) Method for producing glass fiber reinforced polyamide resin composition
JP7426450B1 (en) Method for producing glass fiber reinforced polyamide resin composition
US20220097259A1 (en) Single extruder barrel design to accommodate compounding, chemical reactions, and immiscible polymer blends with solids coated by one of the polymers

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782397

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP