WO2017170037A1 - 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体 - Google Patents

塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体 Download PDF

Info

Publication number
WO2017170037A1
WO2017170037A1 PCT/JP2017/011447 JP2017011447W WO2017170037A1 WO 2017170037 A1 WO2017170037 A1 WO 2017170037A1 JP 2017011447 W JP2017011447 W JP 2017011447W WO 2017170037 A1 WO2017170037 A1 WO 2017170037A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
chloride resin
acid ester
resin composition
mass
Prior art date
Application number
PCT/JP2017/011447
Other languages
English (en)
French (fr)
Inventor
崇倫 藤原
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020187027798A priority Critical patent/KR20180127368A/ko
Priority to JP2018509121A priority patent/JP6819675B2/ja
Priority to US16/088,301 priority patent/US20190112461A1/en
Priority to MX2018011858A priority patent/MX2018011858A/es
Priority to EP17774578.3A priority patent/EP3438187B1/en
Priority to CN201780019597.6A priority patent/CN109071903B/zh
Priority to CA3019086A priority patent/CA3019086A1/en
Publication of WO2017170037A1 publication Critical patent/WO2017170037A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/18Slush casting, i.e. pouring moulding material into a hollow mould with excess material being poured off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/20Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. moulding inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0228Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
    • B32B2264/0235Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/025Acrylic resin particles, e.g. polymethyl methacrylate or ethylene-acrylate copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0257Polyolefin particles, e.g. polyethylene or polypropylene homopolymers or ethylene-propylene copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0264Polyamide particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0278Polyester particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/022Foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/003Interior finishings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a vinyl chloride resin composition, a vinyl chloride resin molded body, and a laminate.
  • vinyl chloride resin is generally excellent in properties such as cold resistance, heat resistance and oil resistance, it is used in various applications.
  • the vinyl chloride resin is used, for example, when forming the skin of automobile interior parts such as automobile instrument panels and door trims.
  • an automobile interior part such as an automobile instrument panel usually has a laminated structure in which a foamed polyurethane layer is provided between a skin made of a vinyl chloride resin molded body and a base material.
  • the vinyl chloride resin molding which comprises the skin of a vehicle instrument panel is calculated
  • Patent Documents 1 and 2 include a vinyl chloride resin and a plasticizer using a trimellitic acid ester and a pyromellitic acid ester in which the alkyl group constituting the ester is a branched alkyl group.
  • a compounded vinyl chloride resin composition is disclosed.
  • Patent Documents 1 and 2 by adopting the above composition, it is possible to form a vinyl chloride resin molded article excellent in tensile elongation at low temperatures.
  • the present inventor not only has excellent tensile elongation at a low temperature, but also has a low peak top temperature of the loss elastic modulus E ′′ after the initial and thermal aging tests (that is, there are many viscous components and energy).
  • a vinyl chloride resin molded article which has excellent absorbability
  • an object of the present invention is to provide a vinyl chloride resin molded article having a low peak top temperature of the loss elastic modulus E ′′ after initial and thermal aging tests while ensuring tensile elongation at low temperatures.
  • An object of this invention is to provide the vinyl chloride resin composition which can form the said vinyl chloride resin molded object, and the laminated body which has the said vinyl chloride resin molded object.
  • the present inventor has intensively studied for the purpose of solving the above problems. And this inventor mix
  • the vinyl chloride resin composition of this invention is (a) vinyl chloride resin, (b) trimellitic acid ester, ( c) The following formula (1): [In the formula (1), R 1 , R 2 , R 3 and R 4 are alkyl groups which may be the same or different from each other, and R 1 , R 2 , R 3 and R 4 The total straight chain ratio is 90 mol% or more.
  • a pyromellitic acid ester comprising the compound represented by formula (1), wherein the content ratio of the (c) pyromellitic acid ester is the total content of the (b) trimellitic acid ester and the (c) pyromellitic acid ester.
  • a pyromellitic acid ester having an alkyl group having a predetermined linear ratio is used in combination with (a) a vinyl chloride resin and (b) trimellitic acid ester in a predetermined ratio.
  • a vinyl chloride resin molded body formed using the vinyl chloride resin composition is used as the skin of an automobile instrument panel, the skin will break as designed when the airbag is inflated and deployed. At the same time, it is possible to suppress the occurrence of cracks at unexpected positions and the scattering of fragments.
  • total linear ratio of R 1 , R 2 , R 3 , and R 4 in the above formula (1) means pyromellitic acid contained in the vinyl chloride resin composition Part or all of the ester is extracted with tetrahydrofuran, and the extract is obtained by measuring the total amount of R 1 to R 4 of the extracted pyromellitic acid ester obtained by measurement using liquid chromatography. It means the proportion (mol%) of linear alkyl groups.
  • the pyromellitic acid ester having a linearity ratio of 90 mol% or more is sometimes referred to as “linear pyromellitic acid ester”, and the pyrogenic acid having a linearity ratio of less than 90 mol% is sometimes referred to as “pyromellitic acid ester”.
  • the merit acid ester may be referred to as “branched pyromellitic acid ester”.
  • the content ratio of the (c) pyromellitic acid ester is based on the total content of the (b) trimellitic acid ester and the (c) pyromellitic acid ester. It is preferable that it is 40 mass% or less.
  • the linear pyromellitic ester is particularly susceptible to blocking of the vinyl chloride resin (a phenomenon in which the composition or molded product cannot be easily separated or separated due to sticking between the molded products).
  • (C) in the vinyl chloride resin composition It is because blocking of the vinyl chloride resin composition can be suppressed by setting the content ratio of the pyromellitic acid ester to the upper limit or less.
  • the total content of (b) trimellitic acid ester and (c) pyromellitic acid ester is 5 masses per 100 mass parts of (a) vinyl chloride resin. It is preferable that it is at least 200 parts by mass.
  • the total content of (b) trimellitic acid ester and (c) pyromellitic acid ester in the vinyl chloride resin composition is within the above range, a vinyl chloride resin molded article formed using the vinyl chloride resin composition This is because it is possible to improve the tensile elongation at low temperatures while suppressing the stickiness of the surface.
  • the vinyl chloride resin composition of the present invention further contains (d) silicone oil. If the vinyl chloride resin composition further contains (d) silicone oil in addition to the above components, the linearity of the vinyl chloride resin molded body formed using the vinyl chloride resin composition is further suppressed, This is because blocking by the pyromellitic acid ester can be further reduced.
  • the content of the (d) silicone oil is preferably 0.7 parts by mass or more with respect to 100 parts by mass of the (c) pyromellitic acid ester.
  • the linear pyromellitic acid ester is particularly likely to cause blocking of the vinyl chloride resin. If the content of the (d) silicone oil is not less than the above lower limit, the blocking of the vinyl chloride resin composition can be further reduced. Because.
  • the vinyl chloride resin composition of the present invention is preferably used for powder molding. If the vinyl chloride resin composition is used for powder molding, for example, the vinyl chloride resin composition is more suitably used for forming a vinyl chloride resin molded article used for automobile interior parts such as an automobile instrument panel. Because it can.
  • the vinyl chloride resin composition of the present invention is preferably used for powder slush molding. If the vinyl chloride resin composition is used for powder slush molding, for example, the vinyl chloride resin composition is more suitably used for forming a vinyl chloride resin molded article used for automobile interior parts such as an automobile instrument panel. Because it can.
  • the present invention aims to advantageously solve the above-mentioned problems, and the vinyl chloride resin molded article of the present invention is formed by molding any of the above-described vinyl chloride resin compositions. And If a vinyl chloride resin molded article is formed using a vinyl chloride resin composition containing the above (a) vinyl chloride resin, (b) trimellitic acid ester, and (c) a predetermined pyromellitic acid ester in a predetermined content ratio The peak top temperature of the loss elastic modulus E ′′ at the initial stage and after the heat aging test can be lowered while securing the tensile elongation at a low temperature of the obtained vinyl chloride resin molded article.
  • the vinyl chloride resin molded article of the present invention is preferably for an automobile instrument panel skin. If the vinyl chloride resin molded body of the present invention is used as the skin of an automobile instrument panel, the skin will break as designed without any debris splashing when the airbag is deployed, and it will be difficult to break at an unexpected position. is there.
  • the laminated body of this invention has a foaming polyurethane molding and one of the vinyl chloride resin moldings mentioned above.
  • the laminate will have a peak top in loss elastic modulus E ′′ after initial and thermal aging tests while ensuring tensile elongation at low temperatures.
  • a vinyl chloride resin molded body portion having a reduced temperature can be provided.
  • the vinyl chloride resin molded object with low peak top temperature of the loss elastic modulus E "after an initial stage and a heat aging test can be provided, ensuring the tensile elongation under low temperature.
  • the laminated body which has the vinyl chloride resin composition which can form the said vinyl chloride resin molded object, and the said vinyl chloride resin molded object can be provided.
  • the vinyl chloride resin composition of the present invention can be used, for example, when forming the vinyl chloride resin molded article of the present invention.
  • the vinyl chloride resin molded object formed using the vinyl chloride resin composition of this invention can be used for manufacture of the laminated body of this invention which has the said vinyl chloride resin molded object, for example.
  • the vinyl chloride resin molded article of the present invention can be suitably used for automobile interior materials, for example, for the skin of automobile interior parts such as automobile instrument panels.
  • the vinyl chloride resin composition of the present invention includes (a) a vinyl chloride resin, (b) trimellitic acid ester, and (c) a pyromellitic acid ester having an alkyl group having a predetermined linear ratio, c) The pyromellitic acid ester content is a predetermined ratio or more.
  • the vinyl chloride resin composition of the present invention may optionally further contain (d) silicone oil and additives. And since the vinyl chloride resin composition of this invention contains the said predetermined component in a predetermined ratio, while ensuring the tensile elongation under low temperature of the vinyl chloride resin molded object etc. which were formed using the said composition.
  • the peak top temperature of the loss elastic modulus E ′′ after the initial and heat aging tests can be lowered.
  • the vinyl chloride resin molded body is used as the skin of an automobile instrument panel, When the airbag is inflated and deployed, it can be cracked as designed without causing cracks at unexpected positions.
  • the (a) vinyl chloride resin used in the vinyl chloride resin composition can contain, for example, one type or two or more types of vinyl chloride resin particles, and optionally one type or two or more types of chloride. Vinyl resin fine particles can be further contained.
  • the vinyl chloride resin preferably contains at least vinyl chloride resin particles, more preferably contains vinyl chloride resin particles and vinyl chloride resin fine particles, and one kind of vinyl chloride resin particles and two kinds of vinyl chloride resin particles. More preferably, vinyl chloride resin fine particles are used in combination.
  • the vinyl chloride resin can be produced by any conventionally known production method such as a suspension polymerization method, an emulsion polymerization method, a solution polymerization method or a bulk polymerization method.
  • ⁇ Composition a vinyl chloride copolymer containing a vinyl chloride monomer unit in addition to a homopolymer composed of vinyl chloride monomer units is preferably 50% by mass or more, more preferably 70% by mass or more. A polymer is mentioned.
  • a monomer (comonomer) copolymerizable with a vinyl chloride monomer that can constitute a vinyl chloride copolymer include olefins such as ethylene and propylene; allyl chloride, vinylidene chloride, Halogenated olefins such as vinyl fluoride and ethylene trifluoride chloride; vinyl acetates such as vinyl acetate and vinyl propionate; vinyl ethers such as isobutyl vinyl ether and cetyl vinyl ether; allyl-3-chloro-2-oxypropyl Allyl ethers such as ether and allyl glycidyl ether; unsaturated carboxylic acids such as acrylic acid, maleic acid, itaconic acid, 2-hydroxyethyl acrylate, methyl methacrylate, monomethyl maleate, diethyl maleate, maleic anhydride, Its esters or acid anhydrides; Unsaturated nitriles such as acrylonitrile and meth, vinyl
  • the monomers exemplified above are only a part of the comonomer, and examples of the comonomer include “polyvinyl chloride” edited by the Kinki Chemical Association Vinyl Division, Nikkan Kogyo Shimbun (1988), No. 75- Various monomers exemplified on page 104 can be used. These comonomer may use only 1 type and may use 2 or more types.
  • the above (a) vinyl chloride resin includes ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl acrylate copolymer, chlorinated polyethylene, and (1) chloride.
  • a resin obtained by graft polymerization of vinyl or (2) vinyl chloride and the comonomer is also included.
  • “(meth) acryl” means acryl and / or methacryl.
  • Vinyl chloride resin particles In the vinyl chloride resin composition, the vinyl chloride resin particles usually function as a matrix resin (base material). The vinyl chloride resin particles are preferably produced by a suspension polymerization method.
  • the average degree of polymerization of the vinyl chloride resin particles is preferably 800 or more, more preferably 1000 or more, further preferably 1800 or more, further preferably 2300 or more, preferably 5000 or less, and more preferably 3000 or less. If the average degree of polymerization of the vinyl chloride resin particles is equal to or higher than the above lower limit, the tensile elongation at low temperature is improved more satisfactorily while ensuring sufficient physical strength of the vinyl chloride resin molded body formed using the vinyl chloride resin composition. Because it can.
  • the meltability of the vinyl chloride resin molded body can be improved and the surface smoothness can be improved.
  • the “average degree of polymerization” can be measured according to JIS K6720-2.
  • the average particle diameter of the vinyl chloride resin particles is usually 30 ⁇ m or more, preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 250 ⁇ m or less, and further preferably 200 ⁇ m or less. This is because if the average particle diameter of the vinyl chloride resin particles is equal to or greater than the above lower limit, the powder flowability of the vinyl chloride resin composition is further improved. Moreover, if the average particle diameter of the vinyl chloride resin particles is not more than the above upper limit, the meltability of the vinyl chloride resin composition is further improved, and the smoothness of the vinyl chloride resin molded body formed using the composition is further improved. This is because it can be improved.
  • the “average particle diameter” can be measured as a volume average particle diameter by a laser diffraction method in accordance with JIS Z8825.
  • the content ratio of the vinyl chloride resin particles in the (a) vinyl chloride resin is preferably 70% by mass or more and more preferably 75% by mass or more with respect to 100% by mass of the (a) vinyl chloride resin. Preferably, it can be 100 mass%, it is preferable that it is 95 mass% or less, and it is more preferable that it is 90 mass% or less.
  • the content ratio of the vinyl chloride resin particles in the vinyl chloride resin is not less than the above lower limit, the physical strength of the vinyl chloride resin molded body formed using the vinyl chloride resin composition can be sufficiently secured, and at a low temperature This is because the tensile elongation at can be further improved. Moreover, it is because the powder fluidity
  • Vinyl chloride resin fine particles In the vinyl chloride resin composition, the vinyl chloride resin fine particles usually function as a dusting agent (powder fluidity improver).
  • the vinyl chloride resin fine particles are preferably produced by an emulsion polymerization method.
  • the average degree of polymerization of the vinyl chloride resin fine particles is preferably 600 or more, more preferably 900 or more, as the entire vinyl chloride resin fine particles (arithmetic average value) contained in (a) the vinyl chloride resin. , Preferably 2000 or less, and more preferably 1700 or less.
  • the average polymerization degree of one vinyl chloride resin fine particle is 500 or more and 1500 or less; the other vinyl chloride resin fine particles The average degree of polymerization of 1600 or more and 2200 or less can be appropriately selected.
  • the average degree of polymerization of the vinyl chloride resin fine particles as a dusting agent is not less than the above lower limit, the powder flowability of the vinyl chloride resin composition becomes better and the vinyl chloride resin formed using the composition This is because the tensile elongation of the molded body at a low temperature is further improved. Further, if the average degree of polymerization of the vinyl chloride resin fine particles is not more than the above upper limit, the meltability of the vinyl chloride resin composition is further improved, and the surface smoothness of the vinyl chloride resin molded body formed using the composition is more improved. It is because it improves.
  • the average polymerization degree of the vinyl chloride resin fine particles as the dusting agent is smaller than the average polymerization degree of the vinyl chloride resin particles as the base material. Is preferred.
  • the average particle diameter of the vinyl chloride resin fine particles is usually less than 30 ⁇ m, preferably 10 ⁇ m or less, and preferably 0.1 ⁇ m or more. This is because, if the average particle diameter of the vinyl chloride resin fine particles is not less than the above lower limit, for example, the powder fluidity of the vinyl chloride resin composition can be further improved without excessively reducing the size as a dusting agent. . Moreover, if the average particle diameter of the vinyl chloride resin fine particles is not more than the above upper limit, the meltability of the vinyl chloride resin composition is further increased, and the smoothness of the formed vinyl chloride resin molded product can be further improved. is there.
  • the content ratio of the vinyl chloride resin fine particles in the (a) vinyl chloride resin is preferably 5% by mass or more, more preferably 10% by mass or more with respect to 100% by mass of the (a) vinyl chloride resin. Preferably, it is preferably 30% by mass or less, more preferably 25% by mass or less, and may be 0% by mass. (A) If the content ratio of the vinyl chloride resin fine particles in the vinyl chloride resin is not less than the above lower limit, the powder flowability of the vinyl chloride resin composition is further improved.
  • the vinyl chloride resin composition of the present invention needs to further contain (b) trimellitic acid ester. If the vinyl chloride resin composition does not contain (b) trimellitic acid ester, the vinyl chloride molded article obtained using the composition cannot exhibit good tensile elongation at low temperatures.
  • (b) trimellitic acid ester usually has a function as a plasticizer in the vinyl chloride resin composition.
  • trimellitic acid ester is usually an ester compound of trimellitic acid and a monohydric alcohol, and can be represented by, for example, a compound represented by the following formula (2).
  • R 5 , R 6 and R 7 are preferably any alkyl group, and may be the same or different from each other.
  • alkyl groups suitably possessed by (b) trimellitic acid ester as R 5 , R 6 and R 7 in the above formula (2) include, for example, a methyl group, an ethyl group, and an n-propyl group.
  • Linear alkyl groups such as n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-stearyl group; i-propyl group, i-butyl group, i-pentyl group, i-hexyl group, i-heptyl group, i-octyl group, 2-ethylhexyl group, i-nonyl group, i-decyl group, i-undecyl group, i-dode
  • the linear ratios of R 5 , R 6 and R 7 are not particularly limited and are preferably 90 mol% or more and more preferably 99 mol% or more. Preferably, it is 100 mol%.
  • R 5 , R 6 and R 7 of trimellitic acid ester are each an alkyl group having a straight chain ratio of 90 mol% or more, the low temperature of the vinyl chloride resin molded body formed using the vinyl chloride resin composition This is because the tensile elongation below increases.
  • the “linear ratio of R 5 ” in the above formula (2) means that a part or all of trimellitic acid ester contained in the vinyl chloride resin composition is extracted with tetrahydrofuran, the extract obtained when determined by liquid chromatography, means the proportion of straight-chain alkyl group (mol%) of the total solution of R 5 to extract trimellitate was has.
  • “R 6 linearity” and “R 7 linearity” have the same meaning as described above.
  • R 5 , R 6 and R 7 in the above formula (2) are each preferably an alkyl group having 8 or more carbon atoms, each having 10 or less carbon atoms. More preferably, all of R 5 , R 6 and R 7 have 8 or 9 carbon atoms, and all of R 5 , R 6 and R 7 are an n-octyl group or an n-nonyl group. Is more preferable.
  • trimellitic acid ester has an alkyl group having a carbon number equal to or more than the above lower limit, the tensile elongation at a low temperature of the vinyl chloride resin molded body formed using the vinyl chloride resin composition can be improved. is there. Moreover, it is because the physical intensity
  • the “carbon number” is not particularly limited, and can be measured using, for example, liquid chromatography.
  • trimellitic acid ester is an alkyl having 7 or less carbon atoms and 11 or more carbon atoms with respect to all R 5 to R 7 contained in (b) trimellitic acid ester contained in the vinyl chloride resin composition. It is preferable that the total group content is 0 mol% or more and 10 mol% or less. In addition, (b) trimellitic acid ester has a total content ratio of 8 to 9 alkyl groups of 5 to 100 mol% with respect to all R 5 to R 7 in formula (2).
  • the content of the alkyl group having 10 carbon atoms is preferably 0 mol% or more and 95 mol% or less with respect to all R 5 to R 7 in the above formula (2).
  • the “alkyl group content ratio” having each carbon number for trimellitic acid ester is not particularly limited, and trimellitic acid ester used in the vinyl chloride resin composition is hydrolyzed with alkali.
  • the alkyl group having each carbon number in all R 5 to R 7 of the trimellitic acid ester obtained by measuring a sample from which the hydrolyzed alcohol is separated using gas chromatography The ratio (mol%) can be obtained.
  • the content of (b) trimellitic acid ester is usually more than 0 parts by mass with respect to 100 parts by mass of (a) vinyl chloride resin, preferably 1 part by mass or more, preferably 60 parts by mass or more. Is more preferably 65 parts by mass or more, preferably 180 parts by mass or less, more preferably 150 parts by mass or less, and still more preferably 125 parts by mass or less.
  • the content of (b) trimellitic acid ester is not less than the above lower limit, the tensile elongation at low temperatures of the vinyl chloride resin molded article formed using the vinyl chloride resin composition can be better maintained.
  • the stickiness by a plasticizer of a vinyl chloride resin composition and a vinyl chloride resin molded object can be suppressed more if content of (b) trimellitic acid ester is below the said upper limit.
  • the vinyl chloride resin composition of the present invention needs to further contain (c) a pyromellitic acid ester having a predetermined structure at a ratio of a predetermined level or more. That is, the vinyl chloride resin composition of the present invention needs to use (b) trimellitic acid ester and (c) pyromellitic acid ester in combination.
  • (c) pyromellitic acid ester normally has a function as a plasticizer in the vinyl chloride resin composition, like (b) trimellitic acid ester.
  • pyromellitic acid ester is an ester compound of pyromellitic acid and a monohydric alcohol, and is represented by a compound represented by the following formula (1).
  • R ⁇ 1 >, R ⁇ 2 >, R ⁇ 3 > and R ⁇ 4 > are alkyl groups, Comprising: You may mutually be same or different.
  • the total linear ratio of R 1 , R 2 , R 3 , and R 4 needs to be a predetermined ratio or more.
  • the total linear ratio of R 1 , R 2 , R 3 , and R 4 needs to be 90 mol% or more.
  • the (c) pyromellitic acid ester needs to be a linear pyromellitic acid ester.
  • the total linear ratio of R 1 , R 2 , R 3 , and R 4 is preferably 99 mol% or more, and more preferably 100 mol%. That is, it is more preferable that all of R 1 to R 4 contained in the (c) pyromellitic acid ester contained in the vinyl chloride resin composition are linear alkyl groups.
  • alkyl group of (c) pyromellitic acid ester as R 1 , R 2 , R 3 , and R 4 in the above formula (1) include, for example, methyl group, ethyl group, n- Propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n- Linear alkyl groups such as tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-stearyl group; i-propyl group, i-butyl group, i-p
  • R 1 , R 2 , R 3 and R 4 in the above formula (1) are all preferably alkyl groups having 4 or more carbon atoms, and 6 carbon atoms. More preferably, it is an alkyl group having 12 or less carbon atoms, more preferably an alkyl group having 10 or less carbon atoms, an n-hexyl group, an n-octyl group, or n More preferred is a decyl group.
  • (c) pyromellitic acid ester is composed of two or more kinds of carbon atoms having different alkyl groups of R 1 to R 4 in (c) pyromellitic acid ester contained in the vinyl chloride resin composition in one molecule. It is preferable to have three or more different carbon numbers, and it is more preferable to have three different carbon numbers.
  • the (c) pyromellitic acid ester has a total content of alkyl groups having 6 carbon atoms with respect to all R 1 to R 4 of the (c) pyromellitic acid ester contained in the vinyl chloride resin composition.
  • the total content of the alkyl group having 8 carbon atoms is preferably 10 mol% or more and 70 mol% or less, and the total content of the alkyl group having 10 carbon atoms is It is preferable that it is 20 mol% or more and 80 mol% or less.
  • the “alkyl group content ratio” of each carbon number of the pyromellitic acid ester can be determined by the same method as for the trimellitic acid ester described above.
  • the content ratio of (c) pyromellitic acid ester is 15% by mass or more with respect to the total content (100% by mass) of (b) trimellitic acid ester and (c) pyromellitic acid ester. There must be. Further, the content ratio of the (c) pyromellitic acid ester is preferably 20% by mass or more, usually less than 100% by mass, preferably 40% by mass or less, and preferably 30% by mass or less. More preferred.
  • the content ratio of (c) pyromellitic acid ester is the total content of plasticizers (including (b) trimellitic acid ester, (c) pyromellitic acid ester, and other plasticizers described later) (100 mass). %) Is preferably 15% by mass or more, more preferably 20% by mass or more, usually less than 100% by mass, preferably 40% by mass or less, and 30% by mass or less. More preferably.
  • the content of (c) pyromellitic acid ester is preferably 1 part by mass or more, more preferably 10 parts by mass or more, and 30 parts by mass with respect to 100 parts by mass of (a) vinyl chloride resin. More preferably, it is 180 parts by mass or less, more preferably 100 parts by mass or less, and still more preferably 50 parts by mass or less.
  • the total content of (b) trimellitic acid ester and (c) pyromellitic acid ester is preferably 5 parts by mass or more with respect to 100 parts by mass of (a) vinyl chloride resin, and 70 parts by mass or more. More preferably, it is 110 parts by mass or more, further preferably 200 parts by mass or less, and more preferably 170 parts by mass or less. If the content of (b) trimellitic acid ester and (c) pyromellitic acid ester is not less than the above lower limit, for example, the effect as a plasticizer is sufficiently exerted, and vinyl chloride formed using a vinyl chloride resin composition This is because the tensile elongation of the resin molded body at a low temperature can be further improved.
  • the form of (b) trimellitic acid ester and (c) pyromellitic acid ester is not particularly limited.
  • the formed vinyl chloride resin molded article From the viewpoint of suppressing the occurrence of blooming on the surface (a phenomenon in which a compounding component breaks out on the surface of the molded body and the surface becomes white), it is preferably a liquid at normal temperature and pressure.
  • “normal temperature” refers to 23 ° C.
  • “normal pressure” refers to 1 atm (absolute pressure).
  • the vinyl chloride resin composition of the present invention may further contain (d) silicone oil in addition to the above-mentioned (a) vinyl chloride resin, (b) trimellitic acid ester, and (c) pyromellitic acid ester.
  • (D) Silicone oil usually plays a role of a molding processability modifier, a surface modifier, and the like in a vinyl chloride resin molded article molded using a vinyl chloride resin composition.
  • the vinyl chloride resin composition further includes (d) silicone oil
  • the content of (d) silicone oil is 0.7 parts by mass or more with respect to 100 parts by mass of (c) pyromellitic acid ester. It is preferably 1 part by mass or more, more preferably 1.2 parts by mass or more, preferably 2 parts by mass or less, and 1.5 parts by mass or less. More preferred.
  • content of silicone oil is more than the said minimum, it is because the blocking resulting from linear pyromellitic acid ester of a vinyl chloride resin molding can be reduced more. Moreover, it is because a vinyl chloride resin molding can be more easily manufactured using a vinyl chloride resin composition if content of (d) silicone oil is below the said upper limit.
  • the content of (d) silicone oil is 0.1% relative to 100 parts by mass of a plasticizer (including (b) trimellitic acid ester, (c) pyromellitic acid ester, and other plasticizers described later).
  • the amount is preferably 1 part by mass or more, preferably 1 part by mass or less, more preferably 0.5 part by mass or less, and still more preferably 0.4 part by mass or less.
  • the content of silicone oil is not less than the above lower limit, the occurrence of surface stickiness due to the plasticizer of the vinyl chloride resin molded article is sufficiently suppressed, and the blocking due to the linear pyromellitic acid ester is further reduced. Because it can be done. Moreover, it is because a vinyl chloride resin molding can be more easily manufactured using a vinyl chloride resin composition if content of (d) silicone oil is below the said upper limit.
  • the content of (d) silicone oil is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more with respect to 100 parts by mass of (a) vinyl chloride resin.
  • the amount is preferably not more than part by mass, and more preferably not more than 0.6 part by mass.
  • (D) If the content of the silicone oil is equal to or more than the above lower limit, it is possible to obtain a vinyl chloride resin composition and a vinyl chloride resin molded article having lower surface stickiness and better blocking resistance. . Moreover, it is because a vinyl chloride resin molding can be more easily manufactured using a vinyl chloride resin composition if content of (d) silicone oil is below the said upper limit.
  • the silicone oil may be an unmodified silicone oil, a modified silicone oil, or a mixture thereof.
  • the unmodified silicone oil include, but are not limited to, polymers having a polysiloxane structure such as polydimethylsiloxane, polydiethylsiloxane, and poly (methylethyl) siloxane, and mixtures thereof.
  • modified silicone oil for example, polar groups such as carboxyl group, hydroxyl group (silanol modification), mercapto group, amino group, epoxy group, (meth) acryloyloxy group are introduced into a polymer having a polysiloxane structure.
  • polar group-modified silicone oil is preferable, and silanol-modified silicone oil is more preferable.
  • transduced is the terminal (one terminal, both terminals) and / or a side chain of the polymer which has a polysiloxane structure.
  • (meth) acryloyloxy” means acryloyloxy and / or methacryloyloxy.
  • the vinyl chloride resin composition of the present invention may further contain various additives in addition to the components described above.
  • the additive is not particularly limited, and (b) trimellitic acid ester and (c) other plasticizers other than pyromellitic acid ester; perchloric acid-treated hydrotalcite, zeolite, ⁇ -diketone, fatty acid Stabilizers such as metal salts; mold release agents; dusting agents other than the above vinyl chloride resin fine particles; and other additives;
  • plasticizers In the vinyl chloride resin composition, in addition to the above-mentioned (b) trimellitic acid ester and (c) pyromellitic acid ester, one or more other plasticizers such as a primary plasticizer and a secondary plasticizer Etc. can be used.
  • a primary plasticizer and a secondary plasticizer Etc can be used.
  • a secondary plasticizer it is preferable to use together the primary plasticizer with an equal mass or more with the said secondary plasticizer.
  • Glycerol derivatives such as glycerol monoacetate, glycerol triacetate, glycerol tributyrate; Epoxy derivatives such as epoxy hexahydrophthalate diisodecyl, epoxy triglyceride, epoxidized octyl oleate, epoxidized decyl oleate; Polyester plasticizers such as adipic acid polyester, sebacic acid polyester, phthalic acid polyester; Etc.
  • secondary plasticizers include epoxidized vegetable oils such as epoxidized soybean oil and epoxidized linseed oil; fatty acid esters of glycols such as chlorinated paraffin and triethylene glycol dicaprylate, butyl epoxy stearate, phenyl oleate And methyl dihydroabietate.
  • epoxidized soybean oil in combination with (b) trimellitic acid ester and (c) pyromellitic acid ester.
  • 0.1 mass part or more is preferable with respect to 100 mass parts of (a) vinyl chloride resin, and, as for content of the said other plasticizer, 0.5 mass part or more is more preferable, and 1 mass part or more is still more.
  • Perchloric acid-treated hydrotalcite The perchloric acid-treated hydrotalcite that can be contained in the vinyl chloride resin composition is, for example, added to a dilute aqueous solution of perchloric acid and stirred, and then filtered, dehydrated or dried as necessary.
  • a perchlorate anion ClO 4 ⁇
  • the molar ratio of the hydrotalcite and the perchloric acid can be arbitrarily set, but generally 0.1 mol or more and 2 mol or less of perchloric acid is preferable with respect to 1 mol of hydrotalcite.
  • the substitution rate of the carbonate anion to the perchlorate anion in the untreated (unsubstituted without introducing the perchlorate anion) is preferably 50 mol% or more, more preferably 70 mol%. As mentioned above, More preferably, it is 85 mol% or more. Further, the substitution rate of the carbonate anion to the perchlorate anion in the untreated (unsubstituted without introducing a perchlorate anion) is preferably 95 mol% or less.
  • the substitution rate of carbonate anion to perchlorate anion in the untreated (unsubstituted without perchlorate anion) hydrotalcite is within the above range, ensuring tensile elongation at low temperature.
  • a vinyl chloride resin molded article having a low peak top temperature of the loss elastic modulus E ′′ after the initial and thermal aging tests can be more easily produced.
  • Hydrotalcite is a non - stoichiometric compound represented by the general formula: [Mg 1-x Al x (OH) 2 ] x + [(CO 3 ) x / 2 ⁇ mH 2 O] x- and is positively charged.
  • x is a number in the range of greater than 0 and less than or equal to 0.33.
  • Natural hydrotalcite is Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O.
  • Mg 4.5 Al 2 (OH) 13 CO 3 .3.5H 2 O is commercially available as the synthesized hydrotalcite.
  • a method for synthesizing synthetic hydrotalcite is described in, for example, JP-A-61-174270.
  • the content of the perchloric acid-treated hydrotalcite is not particularly limited, and is preferably 0.5 parts by mass or more and 1 part by mass or more with respect to 100 parts by mass of the above (a) vinyl chloride resin. More preferably, 1.5 parts by mass or more is further preferable, 7 parts by mass or less is preferable, and 6 parts by mass or less is more preferable. If the content of perchloric acid-treated hydrotalcite is in the above range, a vinyl chloride resin molded article having a low peak elastic modulus E "after initial and thermal aging tests while ensuring tensile elongation at low temperatures This is because it can be manufactured more easily.
  • the vinyl chloride resin composition may contain zeolite as a stabilizer.
  • Zeolite has the general formula: M x / n ⁇ [(AlO 2 ) x ⁇ (SiO 2 ) y ] ⁇ zH 2 O (wherein M is a metal ion of valence n and x + y is four sides per single lattice. The number of bodies, z is the number of moles of water).
  • M in the general formula include monovalent or divalent metals such as Na, Li, Ca, Mg, Zn, and mixed types thereof.
  • the content of zeolite is not particularly limited, and is preferably 0.1 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the vinyl chloride resin (a).
  • ⁇ -diketone is used to more effectively suppress fluctuations in the initial color tone of a vinyl chloride resin molded product obtained by molding a vinyl chloride resin composition.
  • ⁇ -diketone include dibenzoylmethane, stearoylbenzoylmethane, palmitoylbenzoylmethane, and the like. These ⁇ -diketones may be used singly or in combination of two or more.
  • the content of ⁇ -diketone is not particularly limited, and is preferably 0.1 parts by mass or more and more preferably 5 parts by mass or less with respect to 100 parts by mass of (a) vinyl chloride resin.
  • the fatty acid metal salt that can be contained in the vinyl chloride resin composition is not particularly limited, and can be any fatty acid metal salt. Among these, monovalent fatty acid metal salts are preferable, monovalent fatty acid metal salts having 12 to 24 carbon atoms are more preferable, and monovalent fatty acid metal salts having 15 to 21 carbon atoms are still more preferable. Specific examples of the fatty acid metal salt include lithium stearate, magnesium stearate, aluminum stearate, calcium stearate, strontium stearate, barium stearate, zinc stearate, calcium laurate, barium laurate, zinc laurate, 2-ethylhexane.
  • the metal constituting the fatty acid metal salt is preferably a metal capable of generating a polyvalent cation, more preferably a metal capable of generating a divalent cation, and a divalent cation of the third to sixth periods of the periodic table. Is more preferable, and a metal capable of generating a divalent cation in the fourth period of the periodic table is particularly preferable.
  • the most preferred fatty acid metal salt is zinc stearate.
  • the content of the fatty acid metal salt is not particularly limited, and is preferably 0.05 parts by mass or more and more preferably 0.1 parts by mass or more with respect to 100 parts by mass of the above (a) vinyl chloride resin. 5 parts by mass or less is preferable, 1 part by mass or less is more preferable, and 0.5 part by mass or less is still more preferable. This is because, if the content of the fatty acid metal salt is within the above range, the color difference values of the vinyl chloride resin composition and the vinyl chloride resin molded product can be further reduced.
  • the release agent is not particularly limited, and examples thereof include 12-hydroxystearic acid type lubricants such as 12-hydroxystearic acid ester and 12-hydroxystearic acid oligomer.
  • the content of the release agent is not particularly limited, and can be 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the (a) vinyl chloride resin.
  • dusting agents other than the above-mentioned vinyl chloride resin fine particles that can be contained in the vinyl chloride resin composition include inorganic fine particles such as calcium carbonate, talc, aluminum oxide; polyacrylonitrile resin fine particles And organic fine particles such as poly (meth) acrylate resin fine particles, polystyrene resin fine particles, polyethylene resin fine particles, polypropylene resin fine particles, polyester resin fine particles, and polyamide resin fine particles.
  • inorganic fine particles having an average particle size of 10 nm to 100 nm are preferable.
  • the content of the other dusting agent is not particularly limited, and is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, and more preferably 10 parts by mass with respect to 100 parts by mass of (a) vinyl chloride resin. This can be done.
  • Other dusting agents may be used alone or in combination of two or more, or may be used in combination with the above-described vinyl chloride resin fine particles.
  • additives that may be contained in the vinyl chloride resin composition are not particularly limited, and examples thereof include colorants (pigments), impact resistance improvers, and perchloric acid compounds other than perchloric acid-treated hydrotalcite. (Sodium perchlorate, potassium perchlorate, etc.), antioxidants, fungicides, flame retardants, antistatic agents, fillers, light stabilizers, foaming agents and the like.
  • the colorant pigments
  • quinacridone pigments are quinacridone pigments, perylene pigments, polyazo condensation pigments, isoindolinone pigments, copper phthalocyanine pigments, titanium white, and carbon black.
  • the quinacridone pigment is obtained by treating p-phenylene dianthranilic acid with concentrated sulfuric acid and exhibits a yellowish red to reddish purple hue.
  • Specific examples of the quinacridone pigment are quinacridone red, quinacridone magenta, and quinacridone violet.
  • the perylene pigment is obtained by a condensation reaction of perylene-3,4,9,10-tetracarboxylic anhydride and an aromatic primary amine, and exhibits a hue from red to magenta and brown.
  • the perylene pigment are perylene red, perylene orange, perylene maroon, perylene vermilion, and perylene bordeaux.
  • the polyazo condensation pigment is obtained by condensing an azo dye in a solvent to obtain a high molecular weight, and exhibits a hue of a yellow or red pigment.
  • Specific examples of the polyazo condensation pigment are polyazo red, polyazo yellow, chromophthal orange, chromophthal red, and chromophthal scarlet.
  • the isoindolinone pigment is obtained by a condensation reaction of 4,5,6,7-tetrachloroisoindolinone and an aromatic primary diamine, and exhibits a hue of greenish yellow to red and brown.
  • the isoindolinone pigment is isoindolinone yellow.
  • the copper phthalocyanine pigment is a pigment in which copper is coordinated to phthalocyanines, and exhibits a hue of yellowish green to vivid blue.
  • Specific examples of the copper phthalocyanine pigment are phthalocyanine green and phthalocyanine blue.
  • Titanium white is a white pigment made of titanium dioxide and has a large hiding power, and there are anatase type and rutile type.
  • Carbon black is a black pigment containing carbon as a main component and containing oxygen, hydrogen, and nitrogen. Specific examples of carbon black are thermal black, acetylene black, channel black, furnace black, lamp black, and bone black.
  • the impact resistance improver examples include acrylonitrile-butadiene-styrene copolymer, methyl methacrylate-butadiene-styrene copolymer, chlorinated polyethylene, ethylene-vinyl acetate copolymer, chlorosulfonated polyethylene and the like.
  • the vinyl chloride resin composition one or more impact modifiers can be used.
  • the impact resistance improver is dispersed as a heterogeneous phase of fine elastic particles in the vinyl chloride resin composition.
  • the chain and the polar group graft-polymerized to the elastic particles are compatible with the vinyl chloride resin (a), and the impact resistance of the vinyl chloride resin molded article using the vinyl chloride resin composition is improved. To do.
  • antioxidants include phenolic antioxidants, sulfur antioxidants, phosphorus antioxidants such as phosphites, and the like.
  • fungicide examples include aliphatic ester fungicides, hydrocarbon fungicides, organic nitrogen fungicides, organic nitrogen sulfur fungicides and the like.
  • flame retardants are halogen flame retardants such as chlorinated paraffin; phosphorus flame retardants such as phosphate esters; inorganic hydroxides such as magnesium hydroxide and aluminum hydroxide;
  • antistatic agent examples include anionic antistatic agents such as fatty acid salts, higher alcohol sulfates and sulfonates; cationic antistatic agents such as aliphatic amine salts and quaternary ammonium salts; polyoxyethylene alkyl Nonionic antistatic agents such as ethers and polyoxyethylene alkylphenol ethers;
  • filler examples include silica, talc, mica, calcium carbonate, clay and the like.
  • light stabilizers include benzotriazole-based, benzophenone-based, nickel chelate-based ultraviolet absorbers, hindered amine-based light stabilizers, and the like.
  • blowing agent examples include azo compounds such as azodicarbonamide and azobisisobutyronitrile, nitroso compounds such as N, N′-dinitrosopentamethylenetetramine, p-toluenesulfonyl hydrazide, p, p-oxybis (benzene)
  • Organic foaming agents such as sulfonyl hydrazide compounds such as sulfonyl hydrazide; volatile hydrocarbon compounds such as chlorofluorocarbon gas, carbon dioxide gas, water, pentane, and gas-based foaming agents such as microcapsules encapsulating these.
  • the vinyl chloride resin composition of the present invention can be prepared by mixing the components described above.
  • mixing of the above (a) vinyl chloride resin, (b) trimellitic acid ester, (c) pyromellitic acid ester, and further used together as necessary (d) silicone oil and various additives
  • the method is not particularly limited, for example, a method of mixing the components excluding the dusting agent including the vinyl chloride resin fine particles and other dusting agent by dry blending, and then adding and mixing the dusting agent. Is mentioned.
  • the temperature at the time of dry blending is not specifically limited, 50 degreeC or more is preferable, 70 degreeC or more is more preferable, and 200 degreeC or less is preferable.
  • vinyl chloride resin composition can be used suitably for powder molding, and can be used suitably by powder slush molding.
  • the vinyl chloride resin molded article of the present invention is obtained by molding the above-described vinyl chloride resin composition by an arbitrary method. And since the vinyl chloride resin molded article of the present invention is obtained using the vinyl chloride resin composition of the present invention, loss elasticity after the initial and thermal aging tests is maintained while maintaining good tensile elongation at low temperatures. The peak top temperature of the rate E ′′ is sufficiently low. Therefore, the vinyl chloride resin molded article of the present invention is suitably used as a skin of automobile interior materials, for example, automobile interior parts such as automobile instrument panels and door trims. It is suitably used as the skin of automobile instrument panels.
  • the mold temperature at the time of powder slush molding is not particularly limited and is preferably 200 ° C. or higher, more preferably 220 ° C. or higher, and preferably 300 ° C. or lower, and 280 ° C. More preferably, it is as follows.
  • the vinyl chloride resin composition of the present invention is sprinkled on a mold in the above temperature range and left for 5 seconds to 30 seconds, and then the excess vinyl chloride resin composition is shaken off, and further, at an arbitrary temperature. Leave for 30 seconds to 3 minutes. Thereafter, the mold is cooled to 10 ° C. or more and 60 ° C. or less, and the obtained vinyl chloride resin molded article of the present invention is removed from the mold.
  • the demolded vinyl chloride resin molded body is obtained, for example, as a sheet-shaped molded body shaped like a mold.
  • the laminate of the present invention has a foamed polyurethane molded product and the vinyl chloride resin molded product described above. Since the laminate of the present invention has a vinyl chloride resin molded body formed using the vinyl chloride resin composition of the present invention, the initial and heat are maintained while maintaining good tensile elongation at low temperatures. The peak top temperature of the loss elastic modulus E ′′ after the aging test can be sufficiently lowered. Therefore, the laminate of the present invention is used as an automotive interior material for automotive interior parts such as automotive instrument panels and door trims. It is preferably used, and particularly preferably used for an automobile instrument panel.
  • the lamination method is not particularly limited, and for example, the following method can be used. That is, (1) A method in which a foamed polyurethane molded article and a vinyl chloride resin molded article are separately prepared, and then bonded together by using heat fusion, thermal bonding, or a known adhesive; (2) Vinyl chloride resin Polyurethane foam is molded on a vinyl chloride resin molded body by performing polymerization by reacting isocyanates and polyols, which are raw materials for the foamed polyurethane molded body, on the molded body, and foaming polyurethane by a known method.
  • a method of directly forming a body is simple because the process is simple and it is easy to firmly bond the vinyl chloride resin molded body and the foamed polyurethane molded body even when obtaining laminates of various shapes. Is preferred.
  • ⁇ Average polymerization degree> The average degree of polymerization of the vinyl chloride resin particles and the vinyl chloride resin fine particles was calculated in accordance with JIS K6720-2 by dissolving the vinyl chloride resin particles and the vinyl chloride resin fine particles in cyclohexanone and measuring the viscosity. .
  • ⁇ Average particle size The average particle diameter (volume average particle diameter ( ⁇ m)) of the vinyl chloride resin particles and the vinyl chloride resin fine particles was measured according to JIS Z8825. Specifically, vinyl chloride resin particles and vinyl chloride resin fine particles are dispersed in a water tank, and the diffraction / scattering intensity distribution of light is measured and analyzed using the apparatus shown below. It was calculated by measuring the particle size distribution.
  • ⁇ Apparatus Laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, SALD-2300) ⁇ Measuring method: Laser diffraction and scattering ⁇ Measuring range: 0.017 ⁇ m to 2500 ⁇ m
  • Light source Semiconductor laser (wavelength 680 nm, output 3 mW)
  • the blocking resistance of the vinyl chloride resin composition was evaluated as follows. Specifically, 80 g of the obtained vinyl chloride resin composition was weighed into a beaker (200 ml) described in JIS R3503. Next, a beaker containing the vinyl chloride resin composition was placed on a leveled table, and a 1 kg weight having a smooth bottom surface and a diameter of 58 mm was placed directly on the vinyl chloride resin composition and allowed to stand for 1 hour at room temperature ( The vinyl chloride resin composition was pressurized by allowing it to stand at a temperature of 23 ° C. and a relative humidity of 50%.
  • the foamed polyurethane layer was peeled off from the heated laminate to prepare only a vinyl chloride resin molded sheet. Then, under the same conditions as in the initial case, the tensile elongation at break (%) of the vinyl chloride resin molded sheet after heating for 600 hours was measured. The higher the tensile elongation at break at a temperature of -20 ° C., the better the ductility at low temperature of the vinyl chloride resin molded article after heating (thermal aging test).
  • the sample was placed in an oven and heated for 600 hours in an environment at a temperature of 130 ° C.
  • the foamed polyurethane layer was peeled off from the heated laminate to prepare only a vinyl chloride resin molded sheet.
  • the peak top temperature (° C.) of the loss elastic modulus E ′′ for the vinyl chloride resin molded sheet after heating for 600 hours was measured under the same conditions as in the initial case.
  • the peak top temperature of the loss elastic modulus is low.
  • the viscosity at low temperature of the vinyl chloride resin molding after heating (heat aging test) is excellent.
  • Example 1 Preparation of vinyl chloride resin composition> Among the compounding components shown in Table 1, plasticizers (trimellitic acid ester, linear pyromellitic acid ester, and epoxidized soybean oil), and a vinyl chloride resin fine particle obtained by emulsion polymerization as a dusting agent The ingredients except for were put in a Henschel mixer and mixed. Then, when the temperature of the mixture rises to 80 ° C., all of the plasticizer is added, and the temperature is further raised to dry up (the plasticizer is absorbed by the vinyl chloride resin particles, which are vinyl chloride resins, The mixture was further improved.) Thereafter, when the dried-up mixture was cooled to a temperature of 100 ° C.
  • plasticizers trimellitic acid ester, linear pyromellitic acid ester, and epoxidized soybean oil
  • a vinyl chloride resin fine particle obtained by emulsion polymerization as a dusting agent
  • the content ratio was 50 mol%.
  • the trimellitic acid ester used for the preparation of the vinyl chloride resin composition has a linear ratio of R 5 to R 7 of 100 mol%, and among R 5 to R 7 , an alkyl having 8 carbon atoms. The total content of the groups was 100 mol%.
  • the vinyl chloride resin composition obtained above is sprinkled on a metal mold with a grain heated to a temperature of 250 ° C. and allowed to melt for an arbitrary time of about 10 to 20 seconds, and then an excess vinyl chloride resin composition. Shaken off. Thereafter, the embossed mold sprinkled with the vinyl chloride resin composition was allowed to stand in an oven set at a temperature of 200 ° C., and the embossed mold was cooled with cooling water when 60 seconds had elapsed after standing. . When the mold temperature was cooled to 40 ° C., a vinyl chloride resin molded sheet of 145 mm ⁇ 175 mm ⁇ 1 mm was removed from the mold as a vinyl chloride resin molded body. Then, for the obtained vinyl chloride resin molded sheet, the initial (unheated after molding) initial tensile elongation at low temperature and the peak top temperature of the loss elastic modulus were measured and calculated. The results are shown in Table 1.
  • a polyol mixture was obtained. Moreover, the liquid mixture which mixed the obtained polyol mixture and polymethylene polyphenylene polyisocyanate (polymeric MDI) in the ratio from which the index becomes 98 was prepared. And the prepared liquid mixture was each poured on 2 sheets of vinyl chloride resin molding sheets spread
  • polymethylene polyphenylene polyisocyanate polymeric MDI
  • Example 2 In the preparation of the vinyl chloride resin composition, as shown in Table 1, the blending amount of trimellitic acid ester is 120 parts, the linear pyromellitic acid ester content is 40 parts, and 12-hydroxystearic acid is blended. A vinyl chloride resin composition, a vinyl chloride resin molded sheet, and a laminate were produced in the same manner as in Example 1 except that the amount was changed to 0.2 part. Measurement and calculation were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 In the preparation of the vinyl chloride resin composition, as shown in Table 1, the blending amount of trimellitic acid ester is 130 parts, the linear pyromellitic acid ester content is 30 parts, and 12-hydroxystearic acid is blended. A vinyl chloride resin composition, a vinyl chloride resin molded sheet, and a laminate were produced in the same manner as in Example 1 except that the amount was changed to 0.2 part. Measurement and calculation were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 In the preparation of the vinyl chloride resin composition, vinyl chloride resin particles having an average polymerization degree different from that of the vinyl chloride resin particles of Example 1 were used as the vinyl chloride resin particles as shown in Table 1. Further, as the vinyl chloride resin fine particles, only one kind of vinyl chloride resin fine particles having an average degree of polymerization different from that of the vinyl chloride resin fine particles of Example 1 was used. Further, the amount of trimellitic acid ester was changed to 130 parts, the amount of linear pyromellitic acid ester was changed to 30 parts, and the amount of 12-hydroxystearic acid was changed to 0.2 parts. A vinyl chloride resin composition, a vinyl chloride resin molded sheet, and a laminate were produced in the same manner as Example 1 except for the above. Measurement and calculation were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 In the preparation of the vinyl chloride resin composition, a vinyl chloride resin composition was prepared in the same manner as in Example 4 except that the amount of trimellitic acid ester was changed to 110 parts and the amount of linear pyromellitic acid ester was changed to 40 parts. Products, vinyl chloride resin molded sheets, and laminates were produced. Measurement and calculation were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 In the preparation of the vinyl chloride resin composition, a vinyl chloride resin was prepared in the same manner as in Example 4 except that a branched pyromellitic acid ester was used instead of the linear pyromellitic acid ester as shown in Table 1. A composition, a vinyl chloride resin molded sheet, and a laminate were produced. Measurement and calculation were performed in the same manner as in Example 1. The results are shown in Table 1.
  • the Example using the linear pyromellitic acid ester which has the alkyl group whose total linear rate of R ⁇ 1 >, R ⁇ 2 >, R ⁇ 3 > and R ⁇ 4 > in Formula (1) is 90 mol% or more.
  • the tensile elongation at a low temperature is good with respect to each of Comparative Examples 1 and 3 using the branched pyromellitic acid ester having a straight chain ratio of less than 90 mol%. It was found that the peak top temperature of the loss elastic modulus E ′′ after the initial and heat aging tests, especially after the heat aging test, was decreased. Further, the content ratio of the linear pyromellitic acid ester was predetermined. In Comparative Example 2, which is less than the peak temperature, it was found that the peak top temperature of the loss elastic modulus E ′′ after the heat aging test could not be sufficiently reduced.
  • the vinyl chloride resin molded object with low peak top temperature of the loss elastic modulus E "after an initial stage and a heat aging test can be provided, ensuring the tensile elongation under low temperature.
  • the laminated body which has the vinyl chloride resin composition which can form the said vinyl chloride resin molded object, and the said vinyl chloride resin molded object can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

低温下における引張伸びを確保しつつ、初期および熱老化試験後の損失弾性率E"のピークトップ温度が低い塩化ビニル樹脂成形体を形成可能な塩化ビニル樹脂組成物を提供する。本発明の塩化ビニル樹脂組成物は、塩化ビニル樹脂と、トリメリット酸エステルと、合計の直鎖率が90モル%以上であるアルキル基を有する所定のピロメリット酸エステルとを含み、前記ピロメリット酸エステルの含有割合が、前記トリメリット酸エステル及び前記ピロメリット酸エステルの合計含有量に対して15質量%以上である。

Description

塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体
 本発明は、塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体に関する。
 塩化ビニル樹脂は、一般的に、耐寒性、耐熱性、耐油性などの特性に優れているため、種々の用途に用いられている。
 具体的には、塩化ビニル樹脂は、例えば、自動車インスツルメントパネルおよびドアトリムなどの自動車内装部品の表皮等を形成する際に使用されている。ここで、自動車インスツルメントパネルなどの自動車内装部品は、通常、発泡ポリウレタン層が、塩化ビニル樹脂の成形体からなる表皮等と基材との間に設けられた積層構造を有している。そして、自動車インスツルメントパネルの表皮を構成する塩化ビニル樹脂成形体には、例えば、エアバッグが膨張、展開した際に、破片が飛散することなく設計通りに割れる性能が求められている。
 そこで、近年では、例えば、自動車インスツルメントパネルの製造に好適に用い得る、塩化ビニル樹脂成形体および塩化ビニル樹脂組成物の改良が試みられている。具体的には、塩化ビニル樹脂成形体の低温下における引張伸びを向上させることにより、自動車インスツルメントパネルの表皮として用いた際に低温下においても優れた延性を発揮して、エアバッグが膨張、展開した際に破片が飛散することなく設計通りに割れる塩化ビニル樹脂成形体を提供する技術が提案されている。
 具体的には、例えば、特許文献1~2には、塩化ビニル樹脂と、トリメリット酸エステル及びエステルを構成するアルキル基が分岐状のアルキル基であるピロメリット酸エステルを併用した可塑剤とを配合した塩化ビニル樹脂組成物が開示されている。そして、特許文献1~2では、上記の組成を採用することにより、低温下における引張伸びに優れる塩化ビニル樹脂成形体を形成することを可能にしている。
国際公開第2015/141182号 国際公開第2014/091867号
 ここで、近年では、より厳しい条件下であっても、エアバッグが膨張、展開した際に設計通りに割れる自動車インスツルメントパネルの表皮が求められている。しかし、特許文献1~2に記載の塩化ビニル樹脂成形体では、自動車インスツルメントパネルの表皮として用いた際に、エアバッグが膨張、展開すると、設計された位置とは異なる、表皮部分の予期しない位置に割れ、ひびなどの破損(クラック)が生じ、表皮部分の破片が飛散する場合があった。
 このような問題に対し、本発明者は、低温下における引張伸びに優れるだけでなく、初期および熱老化試験後の損失弾性率E”のピークトップ温度が低い(即ち、粘性成分が多くてエネルギー吸収性に優れる)塩化ビニル樹脂成形体を自動車インスツルメントパネルの表皮として採用すれば、エアバッグが膨張、展開した際に予期しない位置でのクラックの発生および破片の飛散を抑制し得ることに着目した。
 そこで、本発明は、低温下における引張伸びを確保しつつ、初期および熱老化試験後の損失弾性率E”のピークトップ温度が低い塩化ビニル樹脂成形体を提供することを目的とする。また、本発明は、当該塩化ビニル樹脂成形体を形成可能な塩化ビニル樹脂組成物、および、当該塩化ビニル樹脂成形体を有する積層体を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、塩化ビニル樹脂と、トリメリット酸エステルと、所定の構造を有するピロメリット酸エステルとを、当該ピロメリット酸エステルの含有割合が所定の割合となるように配合した塩化ビニル樹脂組成物を用いて塩化ビニル樹脂成形体を形成することにより、塩化ビニル樹脂成形体の、低温下における引張伸びを確保しつつ、初期および熱老化試験後の損失弾性率E”のピークトップ温度を低下させることができることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の塩化ビニル樹脂組成物は、(a)塩化ビニル樹脂と、(b)トリメリット酸エステルと、(c)下記式(1):
Figure JPOXMLDOC01-appb-C000002
〔式(1)中、R1、R2、R3、及びR4はアルキル基であって、互いに同一であっても異なっていてもよく、R1、R2、R3、及びR4の合計の直鎖率は90モル%以上である。〕で示される化合物からなるピロメリット酸エステルと、を含み、前記(c)ピロメリット酸エステルの含有割合が、前記(b)トリメリット酸エステル及び前記(c)ピロメリット酸エステルの合計含有量に対して15質量%以上であることを特徴とする。このように、(c)所定の直鎖率のアルキル基を有するピロメリット酸エステルを、(a)塩化ビニル樹脂および(b)トリメリット酸エステルと所定の割合で併用して塩化ビニル樹脂組成物を調製すれば、当該組成物を用いて形成される塩化ビニル樹脂成形体の、低温下における引張伸びを確保しつつ初期および熱老化試験後の損失弾性率E”のピークトップ温度を低下させることができる。そして、当該塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体を自動車インスツルメントパネルの表皮として採用すれば、エアバッグが膨張、展開した際に当該表皮が設計通りに割れると共に、予期しない位置でのクラックの発生および破片の飛散を抑制することができる。
 なお、本発明において、上記式(1)中における「R1、R2、R3、及びR4の合計の直鎖率」とは、塩化ビニル樹脂組成物中に含まれているピロメリット酸エステルの一部または全部をテトラヒドロフランで抽出し、当該抽出物を、液体クロマトグラフィーを用いて測定した際に得られる、抽出したピロメリット酸エステルが有しているR~Rの合計中の直鎖状アルキル基の割合(モル%)を意味する。
 また、本明細書において、上記直鎖率が90モル%以上であるピロメリット酸エステルを「直鎖状ピロメリット酸エステル」と称することがあり、上記直鎖率が90モル%未満であるピロメリット酸エステルを「分岐状ピロメリット酸エステル」と称することがある。
 ここで、本発明の塩化ビニル樹脂組成物は、前記(c)ピロメリット酸エステルの含有割合が、前記(b)トリメリット酸エステル及び前記(c)ピロメリット酸エステルの合計含有量に対して40質量%以下であることが好ましい。直鎖状ピロメリット酸エステルは塩化ビニル樹脂のブロッキング(組成物または成形体同士が膠着して容易に分離、剥離できなくなる現象)を特に起こさせやすいところ、塩化ビニル樹脂組成物中の(c)ピロメリット酸エステルの含有割合を上記上限以下にすれば、塩化ビニル樹脂組成物のブロッキングを抑制することができるからである。
 また、本発明の塩化ビニル樹脂組成物は、前記(b)トリメリット酸エステル及び前記(c)ピロメリット酸エステルの合計含有量が、前記(a)塩化ビニル樹脂100質量部に対して5質量部以上200質量部以下であることが好ましい。塩化ビニル樹脂組成物中の(b)トリメリット酸エステル及び(c)ピロメリット酸エステルの合計含有量を上記範囲内とすれば、当該塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の表面のべた付きを抑制しつつ、低温下における引張伸びを向上させることができるからである。
 また、本発明の塩化ビニル樹脂組成物は、(d)シリコーンオイルを更に含むことが好ましい。塩化ビニル樹脂組成物が上記成分に加えて(d)シリコーンオイルを更に含めば、当該塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の表面のべた付きをより抑制しつつ、直鎖状ピロメリット酸エステルによるブロッキングをより低減することができるからである。
 更に、本発明の塩化ビニル樹脂組成物は、前記(d)シリコーンオイルの含有量が、前記(c)ピロメリット酸エステル100質量部に対して0.7質量部以上であることが好ましい。直鎖状ピロメリット酸エステルは塩化ビニル樹脂のブロッキングを特に生じさせやすいところ、(d)シリコーンオイルの含有量を上記下限以上にすれば、塩化ビニル樹脂組成物のブロッキングを更に低減させることができるからである。
 また、本発明の塩化ビニル樹脂組成物は、粉体成形に用いられることが好ましい。塩化ビニル樹脂組成物を粉体成形に用いれば、例えば、自動車インスツルメントパネルなどの自動車内装部品に利用される塩化ビニル樹脂成形体等の形成に、塩化ビニル樹脂組成物をより好適に使用することができるからである。
 そして、本発明の塩化ビニル樹脂組成物は、パウダースラッシュ成形に用いられることが好ましい。塩化ビニル樹脂組成物をパウダースラッシュ成形に用いれば、例えば、自動車インスツルメントパネルなどの自動車内装部品に利用される塩化ビニル樹脂成形体等の形成に、塩化ビニル樹脂組成物を更に好適に使用することができるからである。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の塩化ビニル樹脂成形体は、上述したいずれかの塩化ビニル樹脂組成物を成形してなることを特徴とする。上記(a)塩化ビニル樹脂、(b)トリメリット酸エステル、および(c)所定のピロメリット酸エステルを所定の含有割合で含む塩化ビニル樹脂組成物を用いて塩化ビニル樹脂成形体を形成すれば、得られる塩化ビニル樹脂成形体の、低温下における引張伸びを確保しつつ、初期および熱老化試験後の損失弾性率E”のピークトップ温度を低下させることができる。
 ここで、本発明の塩化ビニル樹脂成形体は、自動車インスツルメントパネル表皮用であることが好ましい。本発明の塩化ビニル樹脂成形体を自動車インスツルメントパネルの表皮として用いれば、当該表皮が、エアバッグ展開時に破片が飛散することなく設計通りに割れると共に、予期しない位置で破損し難くなるからである。
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の積層体は、発泡ポリウレタン成形体と、上述したいずれかの塩化ビニル樹脂成形体とを有することを特徴とする。発泡ポリウレタン成形体および上述の塩化ビニル樹脂成形体を用いて積層体とすれば、当該積層体が、低温下における引張伸びを確保しつつ初期および熱老化試験後の損失弾性率E”のピークトップ温度を低下させた塩化ビニル樹脂成形体部分を備えることができる。
 本発明によれば、低温下における引張伸びを確保しつつ、初期および熱老化試験後の損失弾性率E”のピークトップ温度が低い塩化ビニル樹脂成形体を提供することができる。
 また、本発明によれば、当該塩化ビニル樹脂成形体を形成可能な塩化ビニル樹脂組成物、および当該塩化ビニル樹脂成形体を有する積層体を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 本発明の塩化ビニル樹脂組成物は、例えば、本発明の塩化ビニル樹脂成形体を形成する際に用いることができる。また、本発明の塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体は、例えば、当該塩化ビニル樹脂成形体を有する本発明の積層体の製造に用いることができる。そして、本発明の塩化ビニル樹脂成形体は、例えば、自動車インスツルメントパネルなどの自動車内装部品の表皮用など、自動車内装材用として好適に用いることができる。
(塩化ビニル樹脂組成物)
 本発明の塩化ビニル樹脂組成物は、(a)塩化ビニル樹脂と、(b)トリメリット酸エステルと、(c)所定の直鎖率のアルキル基を有するピロメリット酸エステルとを含み、上記(c)ピロメリット酸エステルの含有割合が所定以上の割合であることを特徴とする。また、本発明の塩化ビニル樹脂組成物は、上記成分に加え、任意に、(d)シリコーンオイルおよび添加剤などを更に含有してもよい。そして、本発明の塩化ビニル樹脂組成物は、上記所定の成分を所定の割合で含んでいるため、当該組成物を用いて形成した塩化ビニル樹脂成形体などの低温下における引張伸びを確保しつつ、初期および熱老化試験後の損失弾性率E”のピークトップ温度を低下させることができる。その結果、例えば当該塩化ビニル樹脂成形体を自動車インスツルメントパネルの表皮として採用した際に、表皮が、エアバッグの膨張、展開時に、予期せぬ位置でクラックを発生することなく設計通りに良好に割れることができる。
<(a)塩化ビニル樹脂>
 ここで、塩化ビニル樹脂組成物に用いられる(a)塩化ビニル樹脂は、例えば、1種類又は2種類以上の塩化ビニル樹脂粒子を含有することができ、任意に、1種類又は2種類以上の塩化ビニル樹脂微粒子を更に含有することができる。中でも、(a)塩化ビニル樹脂は、少なくとも塩化ビニル樹脂粒子を含有することが好ましく、塩化ビニル樹脂粒子および塩化ビニル樹脂微粒子を含有することがより好ましく、1種類の塩化ビニル樹脂粒子および2種類の塩化ビニル樹脂微粒子を併用することが更に好ましい。
 なお、本明細書において、「樹脂粒子」とは、粒子径が30μm以上の粒子を指し、「樹脂微粒子」とは、粒子径が30μm未満の粒子を指す。
 また、(a)塩化ビニル樹脂は、懸濁重合法、乳化重合法、溶液重合法、塊状重合法など、従来から知られているいずれの製造法によっても製造され得る。
<<組成>>
 (a)塩化ビニル樹脂としては、塩化ビニル単量体単位からなる単独重合体の他、塩化ビニル単量体単位を好ましくは50質量%以上、より好ましくは70質量%以上含有する塩化ビニル系共重合体が挙げられる。塩化ビニル系共重合体を構成し得る、塩化ビニル単量体と共重合可能な単量体(共単量体)の具体例としては、エチレン、プロピレンなどのオレフィン類;塩化アリル、塩化ビニリデン、フッ化ビニル、三フッ化塩化エチレンなどのハロゲン化オレフィン類;酢酸ビニル、プロピオン酸ビニルなどのカルボン酸ビニルエステル類;イソブチルビニルエーテル、セチルビニルエーテルなどのビニルエーテル類;アリル-3-クロロ-2-オキシプロピルエーテル、アリルグリシジルエーテルなどのアリルエーテル類;アクリル酸、マレイン酸、イタコン酸、アクリル酸-2-ヒドロキシエチル、メタクリル酸メチル、マレイン酸モノメチル、マレイン酸ジエチル、無水マレイン酸などの不飽和カルボン酸、そのエステルまたはその酸無水物類;アクリロニトリル、メタクリロニトリルなどの不飽和ニトリル類;アクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロピルトリメチルアンモニウムクロライドなどのアクリルアミド類;アリルアミン安息香酸塩、ジアリルジメチルアンモニウムクロライドなどのアリルアミンおよびその誘導体類;などが挙げられる。以上に例示される単量体は、共単量体の一部に過ぎず、共単量体としては、近畿化学協会ビニル部会編「ポリ塩化ビニル」日刊工業新聞社(1988年)第75~104頁に例示されている各種単量体が使用され得る。これらの共単量体は、1種のみを用いてもよく、2種以上を用いてもよい。なお、上記(a)塩化ビニル樹脂には、エチレン-酢酸ビニル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、塩素化ポリエチレンなどの樹脂に、(1)塩化ビニルまたは(2)塩化ビニルと前記共単量体とがグラフト重合された樹脂も含まれる。
 ここで、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味する。
<<塩化ビニル樹脂粒子>>
 塩化ビニル樹脂組成物において、塩化ビニル樹脂粒子は、通常、マトリックス樹脂(基材)として機能する。なお、塩化ビニル樹脂粒子は、懸濁重合法により製造することが好ましい。
[平均重合度]
 ここで、塩化ビニル樹脂粒子の平均重合度は、800以上が好ましく、1000以上がより好ましく、1800以上が更に好ましく、2300以上が一層好ましく、5000以下が好ましく、3000以下がより好ましい。塩化ビニル樹脂粒子の平均重合度が上記下限以上であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の物理的強度を十分確保しつつ、低温下における引張伸びをより良好にできるからである。また、塩化ビニル樹脂粒子の平均重合度が上記上限以下であれば、塩化ビニル樹脂成形体の溶融性を向上させ、表面平滑性を向上できるからである。
 なお、本発明において「平均重合度」は、JIS K6720-2に準拠して測定することができる。
[平均粒子径]
 また、塩化ビニル樹脂粒子の平均粒子径は、通常30μm以上であり、50μm以上が好ましく、100μm以上がより好ましく、500μm以下が好ましく、250μm以下がより好ましく、200μm以下が更に好ましい。塩化ビニル樹脂粒子の平均粒子径が上記下限以上であれば、塩化ビニル樹脂組成物の粉体流動性がより向上するからである。また、塩化ビニル樹脂粒子の平均粒子径が上記上限以下であれば、塩化ビニル樹脂組成物の溶融性がより向上すると共に、当該組成物を用いて形成した塩化ビニル樹脂成形体の平滑性をより向上させることができるからである。
 なお、本発明において、「平均粒子径」は、JIS Z8825に準拠し、レーザー回折法により体積平均粒子径として測定することができる。
[含有割合]
 そして、(a)塩化ビニル樹脂中の塩化ビニル樹脂粒子の含有割合は、(a)塩化ビニル樹脂100質量%に対して70質量%以上であることが好ましく、75質量%以上であることがより好ましく、100質量%とすることができ、95質量%以下であることが好ましく、90質量%以下であることがより好ましい。(a)塩化ビニル樹脂中の塩化ビニル樹脂粒子の含有割合が上記下限以上であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の物理的強度を十分確保できる共に、低温下における引張伸びをより向上できるからである。また、(a)塩化ビニル樹脂中の塩化ビニル樹脂粒子の含有割合が上記上限以下であれば、塩化ビニル樹脂組成物の粉体流動性が更に向上するからである。
<<塩化ビニル樹脂微粒子>>
 塩化ビニル樹脂組成物において、塩化ビニル樹脂微粒子は、通常、ダスティング剤(粉体流動性改良剤)として機能する。なお、塩化ビニル樹脂微粒子は、乳化重合法により製造することが好ましい。
[平均重合度]
 ここで、塩化ビニル樹脂微粒子の平均重合度は、(a)塩化ビニル樹脂が含有する塩化ビニル樹脂微粒子全体(相加平均値)として600以上であることが好ましく、900以上であることがより好ましく、2000以下であることが好ましく、1700以下であることがより好ましい。そして、例えば、ダスティング剤として異なる平均重合度を有する2種類の塩化ビニル樹脂微粒子を併用する場合は、一方の塩化ビニル樹脂微粒子の平均重合度を500以上1500以下とし;他方の塩化ビニル樹脂微粒子の平均重合度を1600以上2200以下とする;等、適宜選択することができる。ダスティング剤としての塩化ビニル樹脂微粒子の平均重合度が上記下限以上であれば、塩化ビニル樹脂組成物の粉体流動性がより良好になると共に、当該組成物を用いて形成される塩化ビニル樹脂成形体の低温下における引張伸びがより向上するからである。また、塩化ビニル樹脂微粒子の平均重合度が上記上限以下であれば、塩化ビニル樹脂組成物の溶融性がより向上し、当該組成物を用いて形成した塩化ビニル樹脂成形体の表面平滑性がより向上するからである。
 ここで、塩化ビニル樹脂組成物の溶融性を更に向上させる観点からは、ダスティング剤としての塩化ビニル樹脂微粒子の平均重合度は、基材としての塩化ビニル樹脂粒子の平均重合度よりも小さいことが好ましい。
[平均粒子径]
 また、塩化ビニル樹脂微粒子の平均粒子径は、通常30μm未満であり、10μm以下であることが好ましく、0.1μm以上であることが好ましい。塩化ビニル樹脂微粒子の平均粒子径が上記下限以上であれば、例えばダスティング剤としてのサイズを過度に小さくすることなく、塩化ビニル樹脂組成物の粉体流動性を更に良好に発揮できるからである。また、塩化ビニル樹脂微粒子の平均粒子径が上記上限以下であれば、塩化ビニル樹脂組成物の溶融性がより高まり、形成される塩化ビニル樹脂成形体の平滑性を更に向上させることができるからである。
[含有割合]
 そして、(a)塩化ビニル樹脂中の塩化ビニル樹脂微粒子の含有割合は、(a)塩化ビニル樹脂100質量%に対して5質量%以上であることが好ましく、10質量%以上であることがより好ましく、30質量%以下であることが好ましく、25質量%以下であることがより好ましく、0質量%であってもよい。(a)塩化ビニル樹脂中の塩化ビニル樹脂微粒子の含有割合が上記下限以上であれば、塩化ビニル樹脂組成物の粉体流動性が更に向上するからである。また、(a)塩化ビニル樹脂中の塩化ビニル樹脂微粒子の含有割合が上記上限以下であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の低温下における引張伸びを更に良好にできるからである。
<(b)トリメリット酸エステル>
 本発明の塩化ビニル樹脂組成物は、(b)トリメリット酸エステルを更に含むことを必要とする。塩化ビニル樹脂組成物が(b)トリメリット酸エステルを含まなければ、当該組成物を用いて得られる塩化ビニル成形体に、低温下における良好な引張伸びを発揮させることができない。ここで、(b)トリメリット酸エステルは、塩化ビニル樹脂組成物において、通常、可塑剤としての機能を担う。
 ここで、(b)トリメリット酸エステルは、通常、トリメリット酸と一価アルコールとのエステル化合物であり、例えば、下記式(2)で示される化合物で表すことができる。
Figure JPOXMLDOC01-appb-C000003
 ここで、上記式(2)中、R5、R6及びR7は任意のアルキル基であることが好ましく、互いに同一であっても異なっていてもよい。
<<アルキル基の種類>>
 ここで、上記式(2)中のR5、R6及びR7として(b)トリメリット酸エステルが好適に有するアルキル基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-ステアリル基などの直鎖状アルキル基;
 i-プロピル基、i-ブチル基、i-ペンチル基、i-ヘキシル基、i-ヘプチル基、i-オクチル基、2-エチルヘキシル基、i-ノニル基、i-デシル基、i-ウンデシル基、i-ドデシル基、i-トリデシル基、i-テトラデシル基、i-ペンタデシル基、i-ヘキサデシル基、i-ヘプタデシル基、i-オクタデシル基、t-ブチル基、t-ペンチル基、t-ヘキシル基、t-ヘプチル基、t-オクチル基、t-ノニル基、t-デシル基、t-ウンデシル基、t-ドデシル基、t-トリデシル基、t-テトラデシル基、t-ペンタデシル基、t-ヘキサデシル基、t-ヘプタデシル基、t-オクタデシル基などの分岐状アルキル基;
などを挙げることができる。
 なお、上記(b)トリメリット酸エステルは、単一化合物からなるものであっても、混合物であってもよい。
<<R5~R7の直鎖率>>
 また、上記式(2)中、R5、R6及びR7の直鎖率は、特に制限されることなく、それぞれ90モル%以上であることが好ましく、99モル%以上であることがより好ましく、100モル%であることが更に好ましい。(b)トリメリット酸エステルが有するR5、R6及びR7がそれぞれ直鎖率90モル%以上のアルキル基であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の低温下における引張伸びがより高まるからである。
 なお、本発明において、上記式(2)中における「R5の直鎖率」とは、塩化ビニル樹脂組成物中に含まれているトリメリット酸エステルの一部又は全部をテトラヒドロフランで抽出し、当該抽出物を、液体クロマトグラフィーを用いて測定した際に得られる、抽出したトリメリット酸エステルが有しているR5の合計中の直鎖状アルキル基の割合(モル%)を意味する。また、「R6の直鎖率」及び「R7の直鎖率」についても上記同様の意味とする。
<<R5~R7の炭素数>>
 ここで、(b)トリメリット酸エステルは、上記式(2)中のR5、R6及びR7が、それぞれ炭素数8以上のアルキル基であることが好ましく、それぞれ炭素数10以下であることが好ましく、R5、R6及びR7の全てが炭素数8又は9であることがより好ましく、R5、R6及びR7の全てがn-オクチル基又はn-ノニル基であることが更に好ましい。(b)トリメリット酸エステルが上記下限以上の炭素数のアルキル基を有すれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の低温下における引張伸びをより良好にできるからである。また、(b)トリメリット酸エステルが上記上限以下の炭素数のアルキル基を有すれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の物理的強度をより保てるからである。
 なお、本発明において「炭素数」は、特に制限されることなく、例えば、液体クロマトグラフィーを用いて測定することができる。
<<各炭素数を有するアルキル基の含有割合>>
 また、(b)トリメリット酸エステルは、塩化ビニル樹脂組成物に含まれている(b)トリメリット酸エステルが有する全R5~R7に対し、炭素数7以下および炭素数11以上のアルキル基の合計含有割合がそれぞれ0モル%以上10モル%以下であることが好ましい。
 また、(b)トリメリット酸エステルは、上記式(2)中の全R5~R7に対し、炭素数8及び炭素数9のアルキル基の合計含有割合が5モル%以上100モル%以下であることが好ましい。
 更に、(b)トリメリット酸エステルは、上記式(2)中の全R5~R7に対し、炭素数10のアルキル基の含有割合が0モル%以上95モル%以下であることが好ましい。
 なお、本発明において、トリメリット酸エステルについての各炭素数を有する「アルキル基の含有割合」は、特に制限されることなく、塩化ビニル樹脂組成物に用いられるトリメリット酸エステルをアルカリで加水分解した後に加水分解されたアルコールを分離させた試料を、ガスクロマトグラフィーを用いて測定した際に得られる、トリメリット酸エステルが有している全R5~R7中の各炭素数のアルキル基の割合(モル%)として求めることができる。
<<含有量>>
 ここで、(b)トリメリット酸エステルの含有量は、(a)塩化ビニル樹脂100質量部に対して、通常0質量部超であり、1質量部以上であることが好ましく、60質量部以上であることがより好ましく、65質量部以上であることが更に好ましく、180質量部以下であることが好ましく、150質量部以下であることがより好ましく、125質量部以下であることが更に好ましい。(b)トリメリット酸エステルの含有量が上記下限以上であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の低温下における引張伸びをより良好に保てるからである。また、(b)トリメリット酸エステルの含有量が上記上限以下であれば、塩化ビニル樹脂組成物および塩化ビニル樹脂成形体の、可塑剤によるべた付きをより抑制することができるからである。
<(c)ピロメリット酸エステル>
 本発明の塩化ビニル樹脂組成物は、(c)所定の構造を有するピロメリット酸エステルを所定以上の割合で更に含むことを必要とする。つまり、本発明の塩化ビニル樹脂組成物は、上述の(b)トリメリット酸エステルおよび(c)ピロメリット酸エステルを併用する必要がある。ここで、(c)ピロメリット酸エステルは、上記(b)トリメリット酸エステルと同様に、塩化ビニル樹脂組成物において、通常、可塑剤としての機能を担う。
 ここで、(c)ピロメリット酸エステルは、ピロメリット酸と一価アルコールとのエステル化合物であり、下記式(1)で示される化合物で表される。
Figure JPOXMLDOC01-appb-C000004
 ここで、上記式(1)中、R1、R2、R3、及びR4はアルキル基であって、互いに同一であっても異なっていてもよい。また、上記式(1)中、R1、R2、R3、及びR4の合計の直鎖率は所定の割合以上である必要がある。
<<R1~R4の合計の直鎖率>>
 ここで、上記式(1)中、R1、R2、R3、及びR4の合計の直鎖率は、90モル%以上である必要がある。換言すれば、(c)ピロメリット酸エステルは、直鎖状ピロメリット酸エステルである必要がある。また、上記式(1)中、R1、R2、R3、及びR4の合計の直鎖率は99モル%以上であることが好ましく、100モル%であることがより好ましい。つまり、塩化ビニル樹脂組成物に含まれている(c)ピロメリット酸エステルが有するR1~R4は、全て直鎖状アルキル基であることがより好ましい。(c)ピロメリット酸エステルが有するアルキル基R1~R4の合計の直鎖率が90モル%未満であると、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の、初期および熱老化試験後の損失弾性率E”のピークトップ温度を良好に低下させることができない。
<<アルキル基の種類>>
 ここで、上記式(1)中のR1、R2、R3、及びR4として(c)ピロメリット酸エステルが有するアルキル基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-ステアリル基などの直鎖状アルキル基;
 i-プロピル基、i-ブチル基、i-ペンチル基、i-ヘキシル基、i-ヘプチル基、i-オクチル基、2-エチルヘキシル基、i-ノニル基、i-デシル基、i-ウンデシル基、i-ドデシル基、i-トリデシル基、i-テトラデシル基、i-ペンタデシル基、i-ヘキサデシル基、i-ヘプタデシル基、i-オクタデシル基、t-ブチル基、t-ペンチル基、t-ヘキシル基、t-ヘプチル基、t-オクチル基、t-ノニル基、t-デシル基、t-ウンデシル基、t-ドデシル基、t-トリデシル基、t-テトラデシル基、t-ペンタデシル基、t-ヘキサデシル基、t-ヘプタデシル基、t-オクタデシル基などの分岐状アルキル基;
などを挙げることができる。
 なお、上記(c)ピロメリット酸エステルは、単一化合物からなるものであっても、混合物であってもよい。
<<R1~R4の炭素数>>
 ここで、(c)ピロメリット酸エステルは、上記式(1)中のR1、R2、R3及びR4が、いずれも炭素数4以上のアルキル基であることが好ましく、炭素数6以上のアルキル基であることがより好ましく、炭素数12以下のアルキル基であることが好ましく、炭素数10以下のアルキル基であることがより好ましく、n-ヘキシル基、n-オクチル基、又はn-デシル基であることが更に好ましい。(c)ピロメリット酸エステルが上記下限以上の炭素数を有するアルキル基を有すれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の、低温下における引張伸びをより良好に確保しつつ、初期および熱老化試験後の損失弾性率E”のピークトップ温度をより低下させることができるからである。また、(c)ピロメリット酸エステルが上記上限以下の炭素数を有するアルキル基を有すれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の物理的強度をより良好にできるからである。
<<各炭素数を有するアルキル基の含有割合>>
 また、(c)ピロメリット酸エステルは、塩化ビニル樹脂組成物に含まれている(c)ピロメリット酸エステルが有するR1~R4のアルキル基が一分子中に異なる2種以上の炭素数を有することが好ましく、異なる3種以上の炭素数を有することがより好ましく、異なる3種の炭素数を有することが更に好ましい。そして、(c)ピロメリット酸エステルは、塩化ビニル樹脂組成物に含まれている(c)ピロメリット酸エステルが有する全R1~R4に対し、炭素数6のアルキル基の合計含有割合が0モル%超30モル%以下であることが好ましく、炭素数8のアルキル基の合計含有割合が10モル%以上70モル%以下であることが好ましく、炭素数10のアルキル基の合計含有割合が20モル%以上80モル%以下であることが好ましい。(c)ピロメリット酸エステル中に、炭素数6、8、および10のアルキル基が上述の含有割合で併存していれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の、初期および熱老化試験後の損失弾性率E”のピークトップ温度をより良好に低下させることができるからである。
 なお、本発明において、ピロメリット酸エステルについての各炭素数の「アルキル基の含有割合」は、上述したトリメリット酸エステルについてと同様の方法で求めることができる。
<<含有割合>>
 ここで、(c)ピロメリット酸エステルの含有割合は、上記(b)トリメリット酸エステル及び当該(c)ピロメリット酸エステルの合計含有量(100質量%)に対して、15質量%以上である必要がある。また、上記(c)ピロメリット酸エステルの含有割合は20質量%以上であることが好ましく、通常100質量%未満であり、40質量%以下であることが好ましく、30質量%以下であることがより好ましい。(c)ピロメリット酸エステルの含有割合が上記下限未満であると、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の、初期および熱老化試験後の損失弾性率E”のピークトップ温度を良好に低下させることができない。また、(c)ピロメリット酸エステルの含有割合が上記上限以下であれば、塩化ビニル樹脂組成物および塩化ビニル樹脂成形体の耐ブロッキング性を向上させることができるため、塩化ビニル樹脂成形体等をより容易に製造し得るからである。
 また、(c)ピロメリット酸エステルの含有割合は、可塑剤((b)トリメリット酸エステル、(c)ピロメリット酸エステル、および後述するその他の可塑剤を含む)の合計含有量(100質量%)に対して、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、通常100質量%未満であり、40質量%以下であることが好ましく、30質量%以下であることがより好ましい。(c)ピロメリット酸エステルの含有割合が上記下限以上であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の、初期および熱老化試験後の損失弾性率E”のピークトップ温度をより良好に低下できるからである。また、(c)ピロメリット酸エステルの含有割合が上記上限以下であれば、塩化ビニル樹脂組成物および塩化ビニル樹脂成形体の耐ブロッキング性をより向上することができるからである。
 更に、(c)ピロメリット酸エステルの含有量は、(a)塩化ビニル樹脂100質量部に対して、1質量部以上であることが好ましく、10質量部以上であることがより好ましく、30質量部以上であることがより好ましく、180質量部以下であることが好ましく、100質量部以下であることがより好ましく、50質量部以下であることが更に好ましい。(c)ピロメリット酸エステルの含有量が上記下限以上であれば、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の、初期および熱老化試験後の損失弾性率E”のピークトップ温度をより良好に低下できるからである。また、(c)ピロメリット酸エステルの含有量が上記上限以下であれば、塩化ビニル樹脂組成物および塩化ビニル樹脂成形体の耐ブロッキング性をより向上することができるからである。
 そして、(b)トリメリット酸エステル及び(c)ピロメリット酸エステルの合計含有量は、(a)塩化ビニル樹脂100質量部に対して5質量部以上であることが好ましく、70質量部以上であることがより好ましく、110質量部以上であることが更に好ましく、200質量部以下であることが好ましく、170質量部以下であることがより好ましい。(b)トリメリット酸エステルおよび(c)ピロメリット酸エステルの含有量を上記下限以上にすれば、例えば可塑剤としての効果が十分に発揮され、塩化ビニル樹脂組成物を用いて形成した塩化ビニル樹脂成形体の低温下における引張伸びを更に向上させることができるからである。また、(b)トリメリット酸エステルおよび(c)ピロメリット酸エステルの含有量を上記上限以下にすれば、得られる塩化ビニル樹脂成形体の表面のべた付きをより良好に抑えることができるからである。
 なお、(b)トリメリット酸エステル及び(c)ピロメリット酸エステルの形態は特に限定されないが、(a)塩化ビニル樹脂との混合容易性の観点から、また、形成された塩化ビニル樹脂成形体表面でのブルーミング発生(成形体表面に配合成分が折出し、表面が白くなる現象)を抑制する観点からは、常温常圧で液体であることが好ましい。
 ここで、本発明において、「常温」とは23℃を指し、「常圧」とは、1atm(絶対圧)を指す。
<(d)シリコーンオイル>
 本発明の塩化ビニル樹脂組成物は、上述した(a)塩化ビニル樹脂、(b)トリメリット酸エステル、および(c)ピロメリット酸エステルに加え、(d)シリコーンオイルを更に含んでもよい。(d)シリコーンオイルは、塩化ビニル樹脂組成物を用いて成形した塩化ビニル樹脂成形体において、通常、成形加工性調節剤、表面改質剤等の役割を担う。
<<含有量>>
 ここで、塩化ビニル樹脂組成物が(d)シリコーンオイルを更に含む場合は、(d)シリコーンオイルの含有量は、上記(c)ピロメリット酸エステル100質量部に対して0.7質量部以上であることが好ましく、1質量部以上であることがより好ましく、1.2質量部以上であることが更に好ましく、2質量部以下であることが好ましく、1.5質量部以下であることがより好ましい。(d)シリコーンオイルの含有量が上記下限以上であれば、塩化ビニル樹脂成形体の、直鎖状ピロメリット酸エステルに起因したブロッキングをより低減することができるからである。また、(d)シリコーンオイルの含有量が上記上限以下であれば、塩化ビニル樹脂組成物を用いて塩化ビニル樹脂成形体をより容易に製造できるからである。
 また、(d)シリコーンオイルの含有量は、可塑剤((b)トリメリット酸エステル、(c)ピロメリット酸エステル、および後述するその他の可塑剤を含む)100質量部に対して、0.1質量部以上であることが好ましく、1質量部以下であることが好ましく、0.5質量部以下であることがより好ましく、0.4質量部以下であることが更に好ましい。(d)シリコーンオイルの含有量が上記下限以上であれば、塩化ビニル樹脂成形体の、可塑剤による表面べた付きの発生を十分に抑制すると共に、直鎖状ピロメリット酸エステルによるブロッキングをより低減することができるからである。また、(d)シリコーンオイルの含有量が上記上限以下であれば、塩化ビニル樹脂組成物を用いて塩化ビニル樹脂成形体をより容易に製造できるからである。
 そして、(d)シリコーンオイルの含有量は、(a)塩化ビニル樹脂100質量部に対して0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましく、1質量部以下であることが好ましく、0.6質量部以下であることがより好ましい。(d)シリコーンオイルの含有量が上記下限以上であれば、表面べた付き性がより低く、耐ブロッキング性がより優れた塩化ビニル樹脂組成物および塩化ビニル樹脂成形体を得ることができるからである。また、(d)シリコーンオイルの含有量が上記上限以下であれば、塩化ビニル樹脂組成物を用いて塩化ビニル樹脂成形体をより容易に製造できるからである。
<<種類>>
 (d)シリコーンオイルは、未変性シリコーンオイルであってもよく、変性シリコーンオイルであってもよく、これらの混合物であってもよい。未変性シリコーンオイルとしては、特に限定されることなく、ポリジメチルシロキサン、ポリジエチルシロキサン、ポリ(メチルエチル)シロキサン等のポリシロキサン構造を有する高分子、及びこれらの混合物等が挙げられる。
 また、変性シリコーンオイルとしては、例えば、カルボキシル基、水酸基(シラノール変性)、メルカプト基、アミノ基、エポキシ基、(メタ)アクリロイルオキシ基等の極性基がポリシロキサン構造を有する高分子に導入されている極性基変性シリコーンオイル;非極性基がポリシロキサン構造を有する高分子に導入されている非極性基変性シリコーンオイル;等が挙げられる。中でも、極性基変性シリコーンオイルが好ましく、シラノール変性シリコーンオイルがより好ましい。
 なお、上記極性基又は非極性基が導入される部位は、ポリシロキサン構造を有する高分子の末端(片末端、両末端)及び/又は側鎖である。
 また、本明細書において、「(メタ)アクリロイルオキシ」とは、アクリロイルオキシ及び/又はメタクリロイルオキシを意味する。
<添加剤>
 本発明の塩化ビニル樹脂組成物は、上述した成分以外に、各種添加剤を更に含有してもよい。添加剤としては、特に限定されることなく、上記(b)トリメリット酸エステル及び(c)ピロメリット酸エステル以外のその他の可塑剤;過塩素酸処理ハイドロタルサイト、ゼオライト、β-ジケトン、脂肪酸金属塩などの安定剤;離型剤;上記塩化ビニル樹脂微粒子以外のダスティング剤;及びその他の添加剤;などが挙げられる。
<<その他の可塑剤>>
 塩化ビニル樹脂組成物では、上述した(b)トリメリット酸エステル及び(c)ピロメリット酸エステルに加え、1種又は2種以上の、その他の可塑剤、例えば、一次可塑剤、二次可塑剤などを使用しうる。ここで、二次可塑剤を用いる場合は、当該二次可塑剤と等質量以上の一次可塑剤を併用することが好ましい。
 ここで、いわゆる一次可塑剤としては、
 ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ジ-(2-エチルヘキシル)フタレート、ジ-n-オクチルフタレート、ジイソブチルフタレート、ジヘプチルフタレート、ジフェニルフタレート、ジイソデシルフタレート、ジトリデシルフタレート、ジウンデシルフタレート、ジベンジルフタレート、ブチルベンジルフタレート、ジノニルフタレート、ジシクロヘキシルフタレートなどのフタル酸誘導体;
 ジメチルイソフタレート、ジ-(2-エチルヘキシル)イソフタレート、ジイソオクチルイソフタレートなどのイソフタル酸誘導体;
 ジ-(2-エチルヘキシル)テトラヒドロフタレート、ジ-n-オクチルテトラヒドロフタレート、ジイソデシルテトラヒドロフタレートなどのテトラヒドロフタル酸誘導体;
 ジ-n-ブチルアジペート、ジ(2-エチルヘキシル)アジペート、ジイソデシルアジペート、ジイソノニルアジペートなどのアジピン酸誘導体;
 ジ-(2-エチルヘキシル)アゼレート、ジイソオクチルアゼレート、ジ-n-ヘキシルアゼレートなどのアゼライン酸誘導体;
 ジ-n-ブチルセバケート、ジ-(2-エチルヘキシル)セバケート、ジイソデシルセバケート、ジ-(2-ブチルオクチル)セバケートなどのセバシン酸誘導体;
 ジ-n-ブチルマレエート、ジメチルマレエート、ジエチルマレエート、ジ-(2-エチルヘキシル)マレエートなどのマレイン酸誘導体;
 ジ-n-ブチルフマレート、ジ-(2-エチルヘキシル)フマレートなどのフマル酸誘導体;
 トリエチルシトレート、トリ-n-ブチルシトレート、アセチルトリエチルシトレート、アセチルトリ-(2-エチルヘキシル)シトレートなどのクエン酸誘導体;
 モノメチルイタコネート、モノブチルイタコネート、ジメチルイタコネート、ジエチルイタコネート、ジブチルイタコネート、ジ-(2-エチルヘキシル)イタコネートなどのイタコン酸誘導体;
 ブチルオレエート、グリセリルモノオレエート、ジエチレングリコールモノオレエートなどのオレイン酸誘導体;
 メチルアセチルリシノレート、ブチルアセチルリシノレート、グリセリルモノリシノレート、ジエチレングリコールモノリシノレートなどのリシノール酸誘導体;
 n-ブチルステアレート、ジエチレングリコールジステアレートなどのステアリン酸誘導体(但し、12-ヒドロキシステアリン酸エステルを除く);
 ジエチレングリコールモノラウレート、ジエチレングリコールジペラルゴネート、ペンタエリスリトール脂肪酸エステルなどのその他の脂肪酸誘導体;
 トリエチルホスフェート、トリブチルホスフェート、トリ-(2-エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、クレジルジフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(クロロエチル)ホスフェートなどのリン酸誘導体;
 ジエチレングリコールジベンゾエート、ジプロピレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、トリエチレングリコールジ-(2-エチルブチレート)、トリエチレングリコールジ-(2-エチルヘキソエート)、ジブチルメチレンビスチオグリコレートなどのグリコール誘導体;
 グリセロールモノアセテート、グリセロールトリアセテート、グリセロールトリブチレートなどのグリセリン誘導体;
 エポキシヘキサヒドロフタル酸ジイソデシル、エポキシトリグリセライド、エポキシ化オレイン酸オクチル、エポキシ化オレイン酸デシルなどのエポキシ誘導体;
 アジピン酸系ポリエステル、セバシン酸系ポリエステル、フタル酸系ポリエステルなどのポリエステル系可塑剤;
などが挙げられる。
 また、いわゆる二次可塑剤としては、エポキシ化大豆油、エポキシ化亜麻仁油等のエポキシ化植物油;塩素化パラフィン、トリエチレングリコールジカプリレートなどのグリコールの脂肪酸エステル、ブチルエポキシステアレート、フェニルオレエート、ジヒドロアビエチン酸メチルなどが挙げられる。
 そして、上述したその他の可塑剤の中でも、エポキシ化大豆油を、(b)トリメリット酸エステル及び(c)ピロメリット酸エステルと併用することが好ましい。
 また、上記その他の可塑剤の含有量は、(a)塩化ビニル樹脂100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上が更に好ましく、30質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下が更に好ましい。その他の可塑剤の含有量が上記範囲内であれば、低温下における引張伸びがより良好な塩化ビニル樹脂成形体をより容易に製造することができるからである。
<<過塩素酸処理ハイドロタルサイト>>
 塩化ビニル樹脂組成物が含有し得る、過塩素酸処理ハイドロタルサイトは、例えば、ハイドロタルサイトを過塩素酸の希薄水溶液中に加えて撹拌し、その後必要に応じて、ろ過、脱水または乾燥することによって、ハイドロタルサイト中の炭酸アニオン(CO3 2-)の少なくとも一部を過塩素酸アニオン(ClO4 -)で置換(炭酸アニオン1モルにつき過塩素酸アニオン2モルが置換)することにより、過塩素酸導入型ハイドロタルサイトとして容易に製造することができる。上記ハイドロタルサイトと上記過塩素酸とのモル比は任意に設定できるが、一般には、ハイドロタルサイト1モルに対し、過塩素酸0.1モル以上2モル以下が好ましい。
 ここで、未処理(過塩素酸アニオンを導入していない未置換)のハイドロタルサイト中の炭酸アニオンの過塩素酸アニオンへの置換率は、好ましくは50モル%以上、より好ましくは70モル%以上、更に好ましくは85モル%以上である。また、未処理(過塩素酸アニオンを導入していない未置換)のハイドロタルサイト中の炭酸アニオンの過塩素酸アニオンへの置換率は、好ましくは95モル%以下である。未処理(過塩素酸アニオンを導入していない未置換)のハイドロタルサイト中の炭酸アニオンの過塩素酸アニオンへの置換率が上記の範囲内にあることにより、低温下における引張伸びを確保しつつ、初期および熱老化試験後の損失弾性率E”のピークトップ温度が低い塩化ビニル樹脂成形体をより容易に製造することができるからである。
 なお、ハイドロタルサイトは、一般式:[Mg1-xAlx(OH)2]x+[(CO3)x/2・mH2O]x-で表される不定比化合物で、プラスに荷電した基本層[Mg1-xAlx(OH)2]x+と、マイナスに荷電した中間層[(CO3)x/2・mH2O]x-とからなる層状の結晶構造を有する無機物質である。ここで、上記一般式中、xは0より大きく0.33以下の範囲の数である。天然のハイドロタルサイトは、Mg6Al2(OH)16CO3・4H2Oである。合成されたハイドロタルサイトとしては、Mg4.5Al2(OH)13CO3・3.5H2Oが市販されている。合成ハイドロタルサイトの合成方法は、例えば特開昭61-174270号公報に記載されている。
 ここで、過塩素酸処理ハイドロタルサイトの含有量は、特に制限されることなく、上記(a)塩化ビニル樹脂100質量部に対して、0.5質量部以上が好ましく、1質量部以上がより好ましく、1.5質量部以上が更に好ましく、7質量部以下が好ましく、6質量部以下がより好ましい。過塩素酸処理ハイドロタルサイトの含有量が上記範囲であれば、低温下における引張伸びを確保しつつ、初期および熱老化試験後の損失弾性率E”のピークトップ温度が低い塩化ビニル樹脂成形体をより容易に製造することができるからである。
<<ゼオライト>>
 塩化ビニル樹脂組成物は、ゼオライトを安定剤として含有し得る。ゼオライトは、一般式:Mx/n・[(AlO2x・(SiO2y]・zH2O(一般式中、Mは原子価nの金属イオン、x+yは単子格子当たりの四面体数、zは水のモル数である)で表される化合物である。当該一般式中のMの種類としては、Na、Li、Ca、Mg、Znなどの一価又は二価の金属及びこれらの混合型が挙げられる。
 ここで、ゼオライトの含有量は、特に制限されることなく、(a)塩化ビニル樹脂100質量部に対して0.1質量部以上が好ましく、5質量部以下が好ましい。
<<β-ジケトン>>
 β-ジケトンは、塩化ビニル樹脂組成物を成形して得られる塩化ビニル樹脂成形体の初期色調の変動をより効果的に抑えるために用いられる。β-ジケトンの具体例としては、ジベンゾイルメタン、ステアロイルベンゾイルメタン、パルミトイルベンゾイルメタンなどが挙げられる。これらのβ-ジケトンは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 なお、β-ジケトンの含有量は、特に制限されることなく、(a)塩化ビニル樹脂100質量部に対して0.1質量部以上が好ましく、5質量部以下が好ましい。
<<脂肪酸金属塩>>
 塩化ビニル樹脂組成物が含有し得る脂肪酸金属塩は、特に制限されることなく、任意の脂肪酸金属塩とすることができる。中でも、一価脂肪酸金属塩が好ましく、炭素数12~24の一価脂肪酸金属塩がより好ましく、炭素数15~21の一価脂肪酸金属塩が更に好ましい。脂肪酸金属塩の具体例は、ステアリン酸リチウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸ストロンチウム、ステアリン酸バリウム、ステアリン酸亜鉛、ラウリン酸カルシウム、ラウリン酸バリウム、ラウリン酸亜鉛、2-エチルヘキサン酸バリウム、2-エチルヘキサン酸亜鉛、リシノール酸バリウム、リシノール酸亜鉛等である。脂肪酸金属塩を構成する金属としては、多価陽イオンを生成しうる金属が好ましく、2価陽イオンを生成しうる金属がより好ましく、周期表第3周期~第6周期の、2価陽イオンを生成しうる金属が更に好ましく、周期表第4周期の、2価陽イオンを生成しうる金属が特に好ましい。最も好ましい脂肪酸金属塩はステアリン酸亜鉛である。
 ここで、脂肪酸金属塩の含有量は、特に制限されることなく、上記(a)塩化ビニル樹脂100質量部に対して、0.05質量部以上が好ましく、0.1質量部以上がより好ましく、5質量部以下が好ましく、1質量部以下がより好ましく、0.5質量部以下が更に好ましい。脂肪酸金属塩の含有量が上記範囲内であれば、塩化ビニル樹脂組成物および塩化ビニル樹脂成形体の、色差の値を更に小さくできるからである。
<<離型剤>>
 離型剤としては、特に制限されることなく、例えば、12-ヒドロキシステアリン酸エステルおよび12-ヒドロキシステアリン酸オリゴマーなどの12-ヒドロキシステアリン酸系潤滑剤が挙げられる。ここで、離型剤の含有量は、特に制限されることなく、上記(a)塩化ビニル樹脂100質量部に対して0.1質量部以上5質量部以下とすることができる。
<<その他のダスティング剤>>
 塩化ビニル樹脂組成物が含有し得る、上記塩化ビニル樹脂微粒子以外の、その他のダスティング剤(粉体流動性改良剤)としては、炭酸カルシウム、タルク、酸化アルミニウムなどの無機微粒子;ポリアクリロニトリル樹脂微粒子、ポリ(メタ)アクリレート樹脂微粒子、ポリスチレン樹脂微粒子、ポリエチレン樹脂微粒子、ポリプロピレン樹脂微粒子、ポリエステル樹脂微粒子、ポリアミド樹脂微粒子などの有機微粒子;が挙げられる。中でも、平均粒径が10nm以上100nm以下の無機微粒子が好ましい。
 ここで、その他のダスティング剤の含有量は、特に制限されることなく、(a)塩化ビニル樹脂100質量部に対して30質量部以下が好ましく、25質量部以下がより好ましく、10質量部以上とすることができる。その他のダスティング剤は、1種類を単独で、又は2種類以上を併用してもよく、また、上述した塩化ビニル樹脂微粒子と併用してもよい。
<<その他の添加剤>>
 塩化ビニル樹脂組成物が含有し得るその他の添加剤としては、特に制限されることなく、例えば、着色剤(顔料)、耐衝撃性改良剤、過塩素酸処理ハイドロタルサイト以外の過塩素酸化合物(過塩素酸ナトリウム、過塩素酸カリウム等)、酸化防止剤、防カビ剤、難燃剤、帯電防止剤、充填剤、光安定剤、発泡剤等が挙げられる。
 着色剤(顔料)の具体例は、キナクリドン系顔料、ペリレン系顔料、ポリアゾ縮合顔料、イソインドリノン系顔料、銅フタロシアニン系顔料、チタンホワイト、カーボンブラックである。1種又は2種以上の顔料が使用される。
 キナクリドン系顔料は、p-フェニレンジアントラニル酸類が濃硫酸で処理されて得られ、黄みの赤から赤みの紫の色相を示す。キナクリドン系顔料の具体例は、キナクリドンレッド、キナクリドンマゼンタ、キナクリドンバイオレットである。
 ペリレン系顔料は、ペリレン-3,4,9,10-テトラカルボン酸無水物と芳香族第一級アミンとの縮合反応により得られ、赤から赤紫、茶色の色相を示す。ペリレン系顔料の具体例は、ペリレンレッド、ペリレンオレンジ、ペリレンマルーン、ペリレンバーミリオン、ペリレンボルドーである。
 ポリアゾ縮合顔料は、アゾ色素が溶剤中で縮合されて高分子量化されて得られ、黄、赤系顔料の色相を示す。ポリアゾ縮合顔料の具体例は、ポリアゾレッド、ポリアゾイエロー、クロモフタルオレンジ、クロモフタルレッド、クロモフタルスカーレットである。
 イソインドリノン系顔料は、4,5,6,7-テトラクロロイソインドリノンと芳香族第一級ジアミンとの縮合反応により得られ、緑みの黄色から、赤、褐色の色相を示す。イソインドリノン系顔料の具体例は、イソインドリノンイエローである。
 銅フタロシアニン系顔料は、フタロシアニン類に銅を配位した顔料で、黄みの緑から鮮やかな青の色相を示す。銅フタロシアニン系顔料の具体例は、フタロシアニングリーン、フタロシアニンブルーである。
 チタンホワイトは、二酸化チタンからなる白色顔料で、隠蔽力が大きく、アナタース型とルチル型がある。
 カーボンブラックは、炭素を主成分とし、酸素、水素、窒素を含む黒色顔料である。カーボンブラックの具体例は、サーマルブラック、アセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、ボーンブラックである。
 耐衝撃性改良剤の具体例は、アクリロニトリル-ブタジエン-スチレン共重合体、メタクリル酸メチル-ブタジエン-スチレン共重合体、塩素化ポリエチレン、エチレン-酢酸ビニル共重合体、クロロスルホン化ポリエチレンなどである。塩化ビニル樹脂組成物では、1種又は2種以上の耐衝撃性改良剤が使用できる。なお、耐衝撃性改良剤は、塩化ビニル樹脂組成物中で微細な弾性粒子の不均一相となって分散する。塩化ビニル樹脂組成物では、当該弾性粒子にグラフト重合した鎖及び極性基が(a)塩化ビニル樹脂と相溶し、塩化ビニル樹脂組成物を用いてなる塩化ビニル樹脂成形体の耐衝撃性が向上する。
 酸化防止剤の具体例は、フェノール系酸化防止剤、硫黄系酸化防止剤、亜リン酸塩などのリン系酸化防止剤などである。
 防カビ剤の具体例は、脂肪族エステル系防カビ剤、炭化水素系防カビ剤、有機窒素系防カビ剤、有機窒素硫黄系防カビ剤などである。
 難燃剤の具体例は、塩素化パラフィン等のハロゲン系難燃剤;リン酸エステル等のリン系難燃剤;水酸化マグネシウム、水酸化アルミニウム等の無機水酸化物;などである。
 帯電防止剤の具体例は、脂肪酸塩類、高級アルコール硫酸エステル類、スルホン酸塩類等のアニオン系帯電防止剤;脂肪族アミン塩類、第四級アンモニウム塩類等のカチオン系帯電防止剤;ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェノールエーテル類等のノニオン系帯電防止剤;などである。
 充填剤の具体例は、シリカ、タルク、マイカ、炭酸カルシウム、クレーなどである。
 光安定剤の具体例は、ベンゾトリアゾール系、ベンゾフェノン系、ニッケルキレート系等の紫外線吸収剤、ヒンダードアミン系光安定剤などである。
 発泡剤の具体例は、アゾジカルボンアミド、アゾビスイソブチロニトリル等のアゾ化合物、N,N’-ジニトロソペンタメチレンテトラミン等のニトロソ化合物、p-トルエンスルホニルヒドラジド、p,p-オキシビス(ベンゼンスルホニルヒドラジド)等のスルホニルヒドラジド化合物などの有機発泡剤;フロンガス、炭酸ガス、水、ペンタン等の揮発性炭化水素化合物、これらを内包したマイクロカプセルなどの、ガス系の発泡剤;などである。
<塩化ビニル樹脂組成物の調製方法>
 本発明の塩化ビニル樹脂組成物は、上述した成分を混合して調製することができる。
 ここで、上記(a)塩化ビニル樹脂と、(b)トリメリット酸エステルと、(c)ピロメリット酸エステルと、必要に応じて更に併用される(d)シリコーンオイル及び各種添加剤との混合方法としては、特に限定されることなく、例えば、上記塩化ビニル樹脂微粒子およびその他のダスティング剤を含むダスティング剤を除く成分をドライブレンドにより混合し、その後、ダスティング剤を添加、混合する方法が挙げられる。ここで、ドライブレンドには、ヘンシェルミキサーの使用が好ましい。また、ドライブレンド時の温度は、特に制限されることなく、50℃以上が好ましく、70℃以上がより好ましく、200℃以下が好ましい。
<塩化ビニル樹脂組成物の用途>
 そして、得られた塩化ビニル樹脂組成物は、粉体成形に好適に用いることができ、パウダースラッシュ成形により好適に用いることができる。
(塩化ビニル樹脂成形体)
 本発明の塩化ビニル樹脂成形体は、上述した塩化ビニル樹脂組成物を、任意の方法で成形することにより得られることを特徴とする。そして、本発明の塩化ビニル樹脂成形体は、本発明の塩化ビニル樹脂組成物を用いて得られているため、低温下における良好な引張伸びを維持しつつ、初期および熱老化試験後の損失弾性率E”のピークトップ温度が十分低い。従って、本発明の塩化ビニル樹脂成形体は、自動車内装材、例えば自動車インスツルメントパネルおよびドアトリム等の自動車内用部品の表皮として好適に用いられ、特に、自動車インスツルメントパネルの表皮として好適に用いられる。
<<塩化ビニル樹脂成形体の成形方法>>
 ここで、パウダースラッシュ成形時の金型温度は、特に制限されることなく、200℃以上とすることが好ましく、220℃以上とすることがより好ましく、300℃以下とすることが好ましく、280℃以下とすることがより好ましい。
 そして、塩化ビニル樹脂成形体を製造する際には、特に限定されることなく、例えば、以下の方法を用いることができる。即ち、上記温度範囲の金型に本発明の塩化ビニル樹脂組成物を振りかけて、5秒以上30秒以下の間放置した後、余剰の塩化ビニル樹脂組成物を振り落とし、さらに、任意の温度下、30秒以上3分以下の間放置する。その後、金型を10℃以上60℃以下に冷却し、得られた本発明の塩化ビニル樹脂成形体を金型から脱型する。そして、脱型された塩化ビニル樹脂成形体は、例えば、金型の形状をかたどったシート状の成形体として得られる。
(積層体)
 本発明の積層体は、発泡ポリウレタン成形体と、上述した塩化ビニル樹脂成形体とを有する。そして、本発明の積層体は、本発明の塩化ビニル樹脂組成物を用いて形成された塩化ビニル樹脂成形体を有しているため、低温下における引張伸びを良好に維持しつつ、初期および熱老化試験後の損失弾性率E”のピークトップ温度を十分低くすることができる。従って、本発明の積層体は、例えば、自動車インスツルメントパネルおよびドアトリム等といった自動車内装部品用の自動車内装材として好適に用いられ、特に、自動車インスツルメントパネル用に好適に用いられる。
 ここで、積層方法は、特に限定されることなく、例えば、以下の方法を用いることができる。即ち、(1)発泡ポリウレタン成形体と、塩化ビニル樹脂成形体とを別途準備した後に、熱融着、熱接着、又は公知の接着剤などを用いることにより貼り合わせる方法;(2)塩化ビニル樹脂成形体上で発泡ポリウレタン成形体の原料となるイソシアネート類とポリオール類などとを反応させて重合を行うと共に、公知の方法によりポリウレタンの発泡を行うことにより、塩化ビニル樹脂成形体上に発泡ポリウレタン成形体を直接形成する方法;などが挙げられる。中でも、工程が簡素である点、および、種々の形状の積層体を得る場合においても塩化ビニル樹脂成形体と発泡ポリウレタン成形体とを強固に接着し易い点から、後者の方法(2)の方が好適である。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 そして、塩化ビニル樹脂粒子および塩化ビニル樹脂微粒子の平均重合度、平均粒子径;(b)トリメリット酸エステルおよび(c)ピロメリット酸エステルが有するアルキル基の直鎖率、各炭素数を有するアルキル基の含有割合;塩化ビニル樹脂組成物の耐ブロッキング性;初期および加熱(熱老化試験)後の塩化ビニル樹脂成形体についての低温での引張伸び、初期および加熱(熱老化試験)後の塩化ビニル樹脂成形体についての損失弾性率のピークトップ温度;は、下記の方法で測定および評価した。
<平均重合度>
 塩化ビニル樹脂粒子及び塩化ビニル樹脂微粒子の平均重合度は、JIS K6720-2に準拠し、塩化ビニル樹脂粒子及び塩化ビニル樹脂微粒子のそれぞれを、シクロヘキサノンに溶解させて粘度を測定することにより、算出した。
<平均粒子径>
 塩化ビニル樹脂粒子及び塩化ビニル樹脂微粒子の平均粒子径(体積平均粒子径(μm))は、JIS Z8825に準拠して測定した。具体的には、塩化ビニル樹脂粒子及び塩化ビニル樹脂微粒子を、それぞれ水槽内に分散させ、以下に示す装置を用いて、光の回折・散乱強度分布を測定・解析し、粒子径及び体積基準の粒子径分布を測定することにより、算出した。
 ・装置:レーザー回折式粒度分布測定機(島津製作所製、SALD-2300)
 ・測定方式:レーザー回折及び散乱
 ・測定範囲:0.017μm~2500μm
 ・光源:半導体レーザー(波長680nm、出力3mW)
<直鎖率>
 (b)トリメリット酸エステルが有するアルキル基(R5、R6、及びR7)のそれぞれの直鎖率(モル%)、および(c)ピロメリット酸エステルが有するアルキル基(R1~R4)の合計の直鎖率(モル%)は、液体クロマトグラフィーを用いて測定した。
<各炭素数を有するアルキル基の含有割合>
 (b)トリメリット酸エステルが有するR5~R7の合計アルキル基に対する各炭素数を有するアルキル基の含有割合(モル%)、および(c)ピロメリット酸エステルが有するR1~R4の合計アルキル基に対する各炭素数を有するアルキル基の含有割合(モル%)は、ガスクロマトグラフィーを用いて測定した。
<耐ブロッキング性>
 塩化ビニル樹脂組成物の耐ブロッキング性は、以下の通り評価した。具体的には、JIS R3503に記載のビーカー(200ml)に、得られた塩化ビニル樹脂組成物を80g測り入れた。次に、塩化ビニル樹脂組成物が入ったビーカーを水平が取れた台上に載せ、底面が平滑でφ58mmである1kgの重りを塩化ビニル樹脂組成物上に直接載せて、1時間室温環境下(温度:23℃、相対湿度:50%)で放置することにより、塩化ビニル樹脂組成物を加圧した。その後、重りを外し、15cm×15cmの平織り金網(線径:1.0mm、目開き:9.16mm×9.16mm、2.5メッシュ)とビーカーの開口部とを密着させながら、塩化ビニル樹脂組成物をビーカーごと平らな台上にひっくり返し、ビーカーを取り除いた。そして、平織り金網を静かに持ち上げ、持ち上げた平織り金網の上に残った塩化ビニル樹脂組成物の重量を測定した。金網の上に残った塩化ビニル樹脂組成物の重量が少ないほど、耐ブロッキング性が高く、粉体貯蔵性に優れている。
<低温での引張伸び>
<<初期>>
 得られた塩化ビニル樹脂成形シートを、JIS K6251に記載の1号ダンベルで打ち抜き、JIS K7161に準拠して、引張速度200mm/分で、-20℃の低温下における引張破断伸び(%)を測定した。引張破断伸びの値が大きいほど、初期(成形後未加熱)の塩化ビニル樹脂成形体の、低温での延性が優れている。
<<加熱(熱老化試験)後>>
 発泡ポリウレタン層が裏打ちされた積層体を試料とした。当該試料をオーブンに入れ、温度130℃の環境下で600時間、加熱を行った。次に、加熱後の積層体から発泡ポリウレタン層を剥離して、塩化ビニル樹脂成形シートのみを準備した。そして、上記初期の場合と同様の条件にて、600時間加熱後の塩化ビニル樹脂成形シートの引張破断伸び(%)を測定した。温度-20℃における引張破断伸びの値が大きいほど、加熱(熱老化試験)後における塩化ビニル樹脂成形体の、低温での延性が優れている。
<損失弾性率のピークトップ温度>
<<初期>>
 得られた塩化ビニル樹脂成形シートを、幅10mm×長さ40mmの寸法で打ち抜くことにより測定試料とした。そして、JIS K7244-4に準拠して、周波数10Hz、昇温速度2℃/分、測定温度-90℃~+100℃の範囲で、当該測定試料についての損失弾性率E”のピークトップ温度(℃)を測定した。損失弾性率のピークトップ温度が低いほど、初期(成形後未加熱)の塩化ビニル樹脂成形体の、低温での粘性が優れている。
<<加熱後>>
 発泡ポリウレタン層が裏打ちされた積層体を試料とした。当該試料をオーブンに入れ、温度130℃の環境下で600時間加熱を行った。次に、加熱後の積層体から発泡ポリウレタン層を剥離して、塩化ビニル樹脂成形シートのみを準備した。そして、上記初期の場合と同様の条件にて、600時間加熱後の塩化ビニル樹脂成形シートについての損失弾性率E”のピークトップ温度(℃)を測定した。損失弾性率のピークトップ温度が低いほど、加熱(熱老化試験)後における塩化ビニル樹脂成形体の、低温での粘性が優れている。
(実施例1)
<塩化ビニル樹脂組成物の調製>
 表1に示す配合成分のうち、可塑剤(トリメリット酸エステル、直鎖状ピロメリット酸エステル、およびエポキシ化大豆油)と、ダスティング剤である、乳化重合で得られた塩化ビニル樹脂微粒子とを除く成分をヘンシェルミキサーに入れて混合した。そして、混合物の温度が80℃に上昇した時点で上記可塑剤を全て添加し、更に昇温することにより、ドライアップ(可塑剤が、塩化ビニル樹脂である塩化ビニル樹脂粒子に吸収されて、上記混合物がさらさらになった状態をいう。)させた。その後、ドライアップさせた混合物が温度100℃以下に冷却された時点で、ダスティング剤である、乳化重合で得られた塩化ビニル樹脂微粒子を添加し、塩化ビニル樹脂組成物を調製した。
 そして、得られた塩化ビニル樹脂組成物について、上述の方法に従って、耐ブロッキング性を評価した。結果を表1に示す。
 なお、塩化ビニル樹脂組成物の調製に用いたピロメリット酸エステルについては、R1、R2、R3、及びR4の合計の直鎖率は100モル%であった。また、R1~R4の合計アルキル基に対する炭素数6のアルキル基の合計含有割合は10モル%、炭素数8のアルキル基の合計含有割合は40モル%、炭素数10のアルキル基の合計含有割合は50モル%であった。
 また、塩化ビニル樹脂組成物の調製に用いたトリメリット酸エステルについては、R5~R7の直鎖率はいずれも100モル%であり、R5~R7のうち、炭素数8のアルキル基の合計含有割合が100モル%であった。
<塩化ビニル樹脂成形体の製造>
 上述で得られた塩化ビニル樹脂組成物を、温度250℃に加熱したシボ付き金型に振りかけ、10秒~20秒程度の任意の時間放置して溶融させた後、余剰の塩化ビニル樹脂組成物を振り落とした。その後、当該塩化ビニル樹脂組成物を振りかけたシボ付き金型を、温度200℃に設定したオーブン内に静置し、静置から60秒経過した時点で当該シボ付き金型を冷却水で冷却した。金型温度が40℃まで冷却された時点で、塩化ビニル樹脂成形体として、145mm×175mm×1mmの塩化ビニル樹脂成形シートを金型から脱型した。
 そして、得られた塩化ビニル樹脂成形シートについて、上述の方法に従って、初期(成形後未加熱)の、低温での引張伸びおよび損失弾性率のピークトップ温度を測定、算出した。結果を表1に示す。
<積層体の形成>
 得られた塩化ビニル樹脂成形シート2枚を、200mm×300mm×10mmの金型の中に、シボ付き面を下にして、2枚のシート同士が重ならないように敷いた。
 別途、プロピレングリコールのPO(プロピレンオキサイド)・EO(エチレンオキサイド)ブロック付加物(水酸基価28、末端EO単位の含有量=10%、内部EO単位の含有量4%)を50部、グリセリンのPO・EOブロック付加物(水酸基価21、末端EO単位の含有量=14%)を50部、水を2.5部、トリエチレンジアミンのエチレングリコ-ル溶液(東ソー社製、商品名「TEDA-L33」)を0.2部、トリエタノールアミンを1.2部、トリエチルアミンを0.5部、および整泡剤(信越化学工業製、商品名「F-122」)を0.5部混合して、ポリオール混合物を得た。また、得られたポリオール混合物とポリメチレンポリフェニレンポリイソシアネート(ポリメリックMDI)とを、インデックスが98になる比率で混合した混合液を調製した。そして、調製した混合液を、上述の通り金型中に敷かれた塩化ビニル樹脂成形シート2枚の上にそれぞれ注いだ。その後、348mm×255mm×10mmのアルミニウム板で上記金型に蓋をして、金型を密閉した。金型を密閉してから5分間放置することにより、表皮としての塩化ビニル樹脂成形シート(厚さ:1mm)に、発泡ポリウレタン成形体(厚さ:9mm、密度:0.18g/cm3)が裏打ちされた積層体が、金型内で形成された。そして、形成された積層体を金型から取り出して、上述の方法に従って、加熱(熱老化試験)後の、低温での引張伸びおよび損失弾性率E”のピークトップ温度を測定、算出した。結果を表1に示す。
(実施例2)
 塩化ビニル樹脂組成物の調製において、表1に示す配合成分の通り、トリメリット酸エステルの配合量を120部、直鎖状ピロメリット酸エステルの配合量を40部、12-ヒドロキシステアリン酸の配合量を0.2部に変更した以外は実施例1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形シート、および積層体を製造した。
 そして、実施例1と同様の方法により測定、算出を行った。結果を表1に示す。
(実施例3)
 塩化ビニル樹脂組成物の調製において、表1に示す配合成分の通り、トリメリット酸エステルの配合量を130部、直鎖状ピロメリット酸エステルの配合量を30部、12-ヒドロキシステアリン酸の配合量を0.2部に変更した以外は実施例1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形シート、および積層体を製造した。
 そして、実施例1と同様の方法により測定、算出を行った。結果を表1に示す。
(実施例4)
 塩化ビニル樹脂組成物の調製において、表1に示す配合成分の通り、塩化ビニル樹脂粒子として、実施例1の塩化ビニル樹脂粒子とは異なる平均重合度を有する塩化ビニル樹脂粒子を用いた。また、塩化ビニル樹脂微粒子として、実施例1の塩化ビニル樹脂微粒子とは異なる平均重合度を有する塩化ビニル樹脂微粒子を1種類のみ用いた。更に、トリメリット酸エステルの配合量を130部、直鎖状ピロメリット酸エステルの配合量を30部、12-ヒドロキシステアリン酸の配合量を0.2部に変更した。上記以外は実施例1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形シート、および積層体を製造した。
 そして、実施例1と同様の方法により測定、算出を行った。結果を表1に示す。
(実施例5)
 塩化ビニル樹脂組成物の調製において、トリメリット酸エステルの配合量を110部、直鎖状ピロメリット酸エステルの配合量を40部に変更した以外は実施例4と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形シート、および積層体を製造した。
 そして、実施例1と同様の方法により測定、算出を行った。結果を表1に示す。
(比較例1)
 塩化ビニル樹脂組成物の調製において、表1に示す配合成分の通り、直鎖状ピロメリット酸エステルに替えて分岐状ピロメリット酸エステルを用いた。また、過塩素酸導入型ハイドロタルサイトの配合量を4.5部に変更した。上記以外は実施例1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形シート、および積層体を製造した。
 そして、実施例1と同様の方法により測定、算出を行った。結果を表1に示す。
(比較例2)
 塩化ビニル樹脂組成物の調製において、表1に示す配合成分の通り、トリメリット酸エステルの配合量を140部、直鎖状ピロメリット酸エステルの配合量を20部、12-ヒドロキシステアリン酸の配合量を0.2部に変更した以外は実施例1と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形シート、および積層体を製造した。
 そして、実施例1と同様の方法により測定、算出を行った。結果を表1に示す。
(比較例3)
 塩化ビニル樹脂組成物の調製において、表1に示す配合成分の通り、直鎖状ピロメリット酸エステルに替えて分岐状ピロメリット酸エステルを用いた以外は実施例4と同様にして、塩化ビニル樹脂組成物、塩化ビニル樹脂成形シート、および積層体を製造した。
 そして、実施例1と同様の方法により測定、算出を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
1)大洋塩ビ社製、製品名「TH-2800」(懸濁重合法、平均重合度:2800、平均粒子径:130μm)
2)大洋塩ビ社製、製品名「TH-2500」(懸濁重合法、平均重合度:2500、平均粒子径:129μm)
3)花王社製、製品名「トリメックスN-08」
4)ADEKA社製、製品名「アデカサイザー UL-100」(R1~R4は炭素数6、8、又は10のアルキル基、R1~R4の合計の直鎖率:100モル%)
5)ADEKA社製、製品名「アデカサイザー UL-80」(R1~R4は炭素数8のアルキル基、R1~R4の合計の直鎖率:0モル%)
6)ADEKA社製、製品名「アデカサイザー O-130S」
7)協和化学工業社製、製品名「アルカマイザー(登録商標)5」
8)水澤化学工業社製、製品名「MIZUKALIZER DS」
9)昭和電工社製、製品名「カレンズDK-1」
10)堺化学工業社、製品名「SAKAI SZ2000」
11)ADEKA社製、製品名「アデカスタブ LS-12」
12)信越シリコーン社製、製品名「KF-9701」(シラノール両末端変性シリコーンオイル)
13)新第一塩ビ社製、製品名「ZEST(登録商標) PQLTX」(乳化重合法、平均重合度:800、平均粒子径:1.8μm)
14)東ソー社製、製品名「リューロンペースト(登録商標)860」(乳化重合法、平均重合度:1600、平均粒子径:1.6μm)
15)東ソー社製、製品名「リューロンペースト(登録商標)761」(乳化重合法、平均重合度:2100、平均粒子径:1.6μm)
16)大日精化社製、製品名「DA PX 1720(A)ブラック」
 表1より、式(1)におけるR1、R2、R3、及びR4の合計の直鎖率が90モル%以上であるアルキル基を有する直鎖状ピロメリット酸エステルを用いた実施例1~3および実施例4~5では、当該直鎖率が90モル%未満である分岐状ピロメリット酸エステルを用いた比較例1および比較例3それぞれに対して、低温下における引張伸びを良好に確保しつつ、初期および熱老化試験後の、とりわけ熱老化試験後の損失弾性率E”のピークトップ温度を低下させることが分かった。また、直鎖状ピロメリット酸エステルの含有割合が所定未満である比較例2では、熱老化試験後の損失弾性率E”のピークトップ温度を十分に低下させることができないことが分かった。
 本発明によれば、低温下における引張伸びを確保しつつ、初期および熱老化試験後の損失弾性率E”のピークトップ温度が低い塩化ビニル樹脂成形体を提供することができる。
 また、本発明によれば、当該塩化ビニル樹脂成形体を形成可能な塩化ビニル樹脂組成物、および当該塩化ビニル樹脂成形体を有する積層体を提供することができる。

Claims (10)

  1.  (a)塩化ビニル樹脂と、
     (b)トリメリット酸エステルと、
     (c)下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    〔式(1)中、R1、R2、R3、及びR4はアルキル基であって、互いに同一であっても異なっていてもよく、R1、R2、R3、及びR4の合計の直鎖率は90モル%以上である。〕で示される化合物からなるピロメリット酸エステルと、
    を含み、
     前記(c)ピロメリット酸エステルの含有割合が、前記(b)トリメリット酸エステル及び前記(c)ピロメリット酸エステルの合計含有量に対して15質量%以上である、塩化ビニル樹脂組成物。
  2.  前記(c)ピロメリット酸エステルの含有割合が、前記(b)トリメリット酸エステル及び前記(c)ピロメリット酸エステルの合計含有量に対して40質量%以下である、請求項1に記載の塩化ビニル樹脂組成物。
  3.  前記(b)トリメリット酸エステル及び前記(c)ピロメリット酸エステルの合計含有量が、前記(a)塩化ビニル樹脂100質量部に対して5質量部以上200質量部以下である、請求項1又は2に記載の塩化ビニル樹脂組成物。
  4.  (d)シリコーンオイルを更に含む、請求項1~3のいずれか一項に記載の塩化ビニル樹脂組成物。
  5.  前記(d)シリコーンオイルの含有量が、前記(c)ピロメリット酸エステル100質量部に対して0.7質量部以上である、請求項4に記載の塩化ビニル樹脂組成物。
  6.  粉体成形に用いられる、請求項1~5のいずれか一項に記載の塩化ビニル樹脂組成物。
  7.  パウダースラッシュ成形に用いられる、請求項6に記載の塩化ビニル樹脂組成物。
  8.  請求項6又は7に記載の塩化ビニル樹脂組成物を成形してなる、塩化ビニル樹脂成形体。
  9.  自動車インスツルメントパネル表皮用である、請求項8に記載の塩化ビニル樹脂成形体。
  10.  発泡ポリウレタン成形体と、
     請求項8又は9に記載の塩化ビニル樹脂成形体と、
    を有する積層体。
PCT/JP2017/011447 2016-03-29 2017-03-22 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体 WO2017170037A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020187027798A KR20180127368A (ko) 2016-03-29 2017-03-22 염화 비닐 수지 조성물, 염화 비닐 수지 성형체, 및 적층체
JP2018509121A JP6819675B2 (ja) 2016-03-29 2017-03-22 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体
US16/088,301 US20190112461A1 (en) 2016-03-29 2017-03-22 Vinyl chloride resin composition, vinyl chloride resin molded product, and laminate
MX2018011858A MX2018011858A (es) 2016-03-29 2017-03-22 Composicion de resina de cloruro de vinilo, producto moldeado de resina de cloruro de vinilo, y laminado.
EP17774578.3A EP3438187B1 (en) 2016-03-29 2017-03-22 Vinyl chloride resin composition, vinyl chloride resin molded product, and laminate
CN201780019597.6A CN109071903B (zh) 2016-03-29 2017-03-22 氯乙烯树脂组合物、氯乙烯树脂成型体、及层叠体
CA3019086A CA3019086A1 (en) 2016-03-29 2017-03-22 Vinyl chloride resin composition, vinyl chloride resin molded product, and laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-066587 2016-03-29
JP2016066587 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017170037A1 true WO2017170037A1 (ja) 2017-10-05

Family

ID=59965336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011447 WO2017170037A1 (ja) 2016-03-29 2017-03-22 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体

Country Status (9)

Country Link
US (1) US20190112461A1 (ja)
EP (1) EP3438187B1 (ja)
JP (1) JP6819675B2 (ja)
KR (1) KR20180127368A (ja)
CN (1) CN109071903B (ja)
CA (1) CA3019086A1 (ja)
MX (1) MX2018011858A (ja)
TW (1) TW201738307A (ja)
WO (1) WO2017170037A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094483A (ja) * 2017-11-17 2019-06-20 荒川化学工業株式会社 熱硬化性剥離コーティング剤、及び剥離フィルム
WO2019181379A1 (ja) * 2018-03-20 2019-09-26 日本ゼオン株式会社 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174270A (ja) 1985-01-29 1986-08-05 Kyowa Chem Ind Co Ltd 耐発錆性ないし耐着色性賦与剤
JPH06279642A (ja) * 1993-03-26 1994-10-04 Shin Etsu Chem Co Ltd 粉末スラッシュ成形用塩化ビニル系樹脂組成物
JPH0753818A (ja) * 1993-08-11 1995-02-28 Asahi Denka Kogyo Kk 塩化ビニル系樹脂組成物
JPH09132689A (ja) * 1995-09-05 1997-05-20 Mitsui Toatsu Chem Inc 塩化ビニル系樹脂組成物およびそれを用いた被覆電線
JPH11140263A (ja) * 1997-09-08 1999-05-25 Mitsui Chem Inc 塩化ビニル系樹脂組成物およびそれを用いた被覆電線
WO2014091867A1 (ja) 2012-12-12 2014-06-19 日本ゼオン株式会社 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
WO2015141182A1 (ja) 2014-03-19 2015-09-24 日本ゼオン株式会社 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP2016134268A (ja) * 2015-01-19 2016-07-25 矢崎総業株式会社 絶縁電線

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435238B2 (ja) * 2010-06-23 2014-03-05 日本ゼオン株式会社 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP2012167232A (ja) * 2011-02-16 2012-09-06 Adeka Corp 塩化ビニル系樹脂組成物
CN103360695A (zh) * 2012-03-30 2013-10-23 中国石油化工股份有限公司 耐久型聚氯乙烯盐膜组合物及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174270A (ja) 1985-01-29 1986-08-05 Kyowa Chem Ind Co Ltd 耐発錆性ないし耐着色性賦与剤
JPH06279642A (ja) * 1993-03-26 1994-10-04 Shin Etsu Chem Co Ltd 粉末スラッシュ成形用塩化ビニル系樹脂組成物
JPH0753818A (ja) * 1993-08-11 1995-02-28 Asahi Denka Kogyo Kk 塩化ビニル系樹脂組成物
JPH09132689A (ja) * 1995-09-05 1997-05-20 Mitsui Toatsu Chem Inc 塩化ビニル系樹脂組成物およびそれを用いた被覆電線
JPH11140263A (ja) * 1997-09-08 1999-05-25 Mitsui Chem Inc 塩化ビニル系樹脂組成物およびそれを用いた被覆電線
WO2014091867A1 (ja) 2012-12-12 2014-06-19 日本ゼオン株式会社 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
WO2015141182A1 (ja) 2014-03-19 2015-09-24 日本ゼオン株式会社 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP2016134268A (ja) * 2015-01-19 2016-07-25 矢崎総業株式会社 絶縁電線

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Polyvinyl chloride", 1988, NIKKAN KOGYO SHIMBUN, LTD., pages: 75 - 104
See also references of EP3438187A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094483A (ja) * 2017-11-17 2019-06-20 荒川化学工業株式会社 熱硬化性剥離コーティング剤、及び剥離フィルム
JP7172468B2 (ja) 2017-11-17 2022-11-16 荒川化学工業株式会社 熱硬化性剥離コーティング剤、及び剥離フィルム
WO2019181379A1 (ja) * 2018-03-20 2019-09-26 日本ゼオン株式会社 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
JPWO2019181379A1 (ja) * 2018-03-20 2021-03-18 日本ゼオン株式会社 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
JP7251542B2 (ja) 2018-03-20 2023-04-04 日本ゼオン株式会社 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体

Also Published As

Publication number Publication date
US20190112461A1 (en) 2019-04-18
KR20180127368A (ko) 2018-11-28
EP3438187A1 (en) 2019-02-06
JPWO2017170037A1 (ja) 2019-02-07
TW201738307A (zh) 2017-11-01
EP3438187B1 (en) 2022-12-14
CA3019086A1 (en) 2017-10-05
EP3438187A4 (en) 2019-11-20
CN109071903A (zh) 2018-12-21
CN109071903B (zh) 2020-10-13
JP6819675B2 (ja) 2021-01-27
MX2018011858A (es) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6614132B2 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP5803921B2 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP6191619B2 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP6504056B2 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
WO2017170220A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体
JP6471744B2 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP6750435B2 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体
JP6750408B2 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、および積層体
JPWO2016067564A1 (ja) リアルステッチ表皮用粉体成形性塩化ビニル樹脂組成物及びその製造方法、リアルステッチ表皮用塩化ビニル樹脂成形体及びその製造方法、並びに、積層体
JP6468281B2 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
WO2017170037A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体
WO2016139959A1 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP5263545B2 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP6708201B2 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
WO2017110479A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
WO2015041031A1 (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP2020097665A (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
WO2018061859A1 (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体、及び積層体
JP2011121994A (ja) 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP2018048268A (ja) 塩化ビニル樹脂組成物、塩化ビニル樹脂成形体および積層体
JP2017179071A (ja) 塩化ビニル樹脂組成物及び積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509121

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3019086

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20187027798

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/011858

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017774578

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774578

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774578

Country of ref document: EP

Kind code of ref document: A1